Sample records for facility modeling capabilities

  1. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorensek, M.; Hamm, L.; Garcia, H.

    2011-07-18

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come frommore » many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.« less

  2. Integration of the SSPM and STAGE with the MPACT Virtual Facility Distributed Test Bed.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipiti, Benjamin B.; Shoman, Nathan

    The Material Protection Accounting and Control Technologies (MPACT) program within DOE NE is working toward a 2020 milestone to demonstrate a Virtual Facility Distributed Test Bed. The goal of the Virtual Test Bed is to link all MPACT modeling tools, technology development, and experimental work to create a Safeguards and Security by Design capability for fuel cycle facilities. The Separation and Safeguards Performance Model (SSPM) forms the core safeguards analysis tool, and the Scenario Toolkit and Generation Environment (STAGE) code forms the core physical security tool. These models are used to design and analyze safeguards and security systems and generatemore » performance metrics. Work over the past year has focused on how these models will integrate with the other capabilities in the MPACT program and specific model changes to enable more streamlined integration in the future. This report describes the model changes and plans for how the models will be used more collaboratively. The Virtual Facility is not designed to integrate all capabilities into one master code, but rather to maintain stand-alone capabilities that communicate results between codes more effectively.« less

  3. Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability

    NASA Technical Reports Server (NTRS)

    Bailey, Roger M.; Hostetler, Robert W., Jr.; Barnes, Kevin N.; Belcastro, Celeste M.; Belcastro, Christine M.

    2005-01-01

    Experimental testing is an important aspect of validating complex integrated safety critical aircraft technologies. The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed is being developed at NASA Langley to validate technologies under conditions that cannot be flight validated with full-scale vehicles. The AirSTAR capability comprises a series of flying sub-scale models, associated ground-support equipment, and a base research station at NASA Langley. The subscale model capability utilizes a generic 5.5% scaled transport class vehicle known as the Generic Transport Model (GTM). The AirSTAR Ground Facilities encompass the hardware and software infrastructure necessary to provide comprehensive support services for the GTM testbed. The ground facilities support remote piloting of the GTM aircraft, and include all subsystems required for data/video telemetry, experimental flight control algorithm implementation and evaluation, GTM simulation, data recording/archiving, and audio communications. The ground facilities include a self-contained, motorized vehicle serving as a mobile research command/operations center, capable of deployment to remote sites when conducting GTM flight experiments. The ground facilities also include a laboratory based at NASA LaRC providing near identical capabilities as the mobile command/operations center, as well as the capability to receive data/video/audio from, and send data/audio to the mobile command/operations center during GTM flight experiments.

  4. National facilities study. Volume 4: Space operations facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The principal objectives of the National Facilities Study (NFS) were to: (1) determine where U.S. facilities do not meet national aerospace needs; (2) define new facilities required to make U.S. capabilities 'world class' where such improvements are in the national interest; (3) define where consolidation and phase-out of existing facilities is appropriate; and (4) develop a long-term national plan for world-class facility acquisition and shared usage. The Space Operations Facilities Task Group defined discrete tasks to accomplish the above objectives within the scope of the study. An assessment of national space operations facilities was conducted to determine the nation's capability to meet the requirements of space operations during the next 30 years. The mission model used in the study to define facility requirements is described in Volume 3. Based on this model, the major focus of the Task Group was to identify any substantive overlap or underutilization of space operations facilities and to identify any facility shortfalls that would necessitate facility upgrades or new facilities. The focus of this initial study was directed toward facility recommendations related to consolidations, closures, enhancements, and upgrades considered necessary to efficiently and effectively support the baseline requirements model. Activities related to identifying facility needs or recommendations for enhancing U.S. international competitiveness and achieving world-class capability, where appropriate, were deferred to a subsequent study phase.

  5. Past, Present, and Future Capabilities of the Transonic Dynamics Tunnel from an Aeroelasticity Perspective

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Garcia, Jerry L.

    2000-01-01

    The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. Aeroelastic scaling for the heavy gas results in lower model structural frequencies. Lower model frequencies tend to a make aeroelastic testing safer. This paper will describe major developments in the testing capabilities at the TDT throughout its history, the current status of the facility, and planned additions and improvements to its capabilities in the near future.

  6. Utilisation of real-scale renewable energy test facility for validation of generic wind turbine and wind power plant controller models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeni, Lorenzo; Hesselbæk, Bo; Bech, John

    This article presents an example of application of a modern test facility conceived for experiments regarding the integration of renewable energy in the power system. The capabilities of the test facility are used to validate dynamic simulation models of wind power plants and their controllers. The models are based on standard and generic blocks. The successful validation of events related to the control of active power (control phenomena in <10 Hz range, including frequency control and power oscillation damping) is described, demonstrating the capabilities of the test facility and drawing the track for future work and improvements.

  7. The New Heavy Gas Testing Capability in the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Rivera, Jose A., Jr.

    1997-01-01

    The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over thirty-five years. The facility has a rich history of significant contributions to the design of many United States commercial transports and military aircraft. The facility has many features which contribute to its uniqueness for aeroelasticity testing; however, perhaps the most important facility capability is the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind-tunnel models. The heavy gas also provides other testing benefits, including reduction in the power requirements to operate the facility during testing. Unfortunately, the use of the original heavy gas has been curtailed due to environmental concerns. A new gas, referred to as R-134a, has been identified as a suitable replacement for the former TDT heavy gas. The TDT is currently undergoing a facility upgrade to allow testing in R-134a heavy gas. This replacement gas will result in an operational test envelope, model scaling advantages, and general testing capabilities similar to those available with the former TDT heavy gas. As such, the TDT is expected to remain a viable facility for aeroelasticity research and aircraft dynamic clearance testing well into the 21st century. This paper describes the anticipated advantages and facility calibration plans for the new heavy gas and briefly reviews several past test programs that exemplify the possible benefits of heavy gas testing.

  8. Development of a model protection and dynamic response monitoring system for the national transonic facility

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Balakrishna, S.; Kilgore, W. Allen

    1995-01-01

    A state-of-the-art, computerized mode protection and dynamic response monitoring system has been developed for the NASA Langley Research Center National Transonic Facility (NTF). This report describes the development of the model protection and shutdown system (MPSS). A technical description of the system is given along with discussions on operation and capabilities of the system. Applications of the system to vibration problems are presented to demonstrate the system capabilities, typical applications, versatility, and investment research return derived from the system to date. The system was custom designed for the NTF but can be used at other facilities or for other dynamic measurement/diagnostic applications. Potential commercial uses of the system are described. System capability has been demonstrated for forced response testing and for characterizing and quantifying bias errors for onboard inertial model attitude measurement devices. The system is installed in the NTF control room and has been used successfully for monitoring, recording and analyzing the dynamic response of several model systems tested in the NTF.

  9. Development and Demonstration of a Computational Tool for the Analysis of Particle Vitiation Effects in Hypersonic Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Perkins, Hugh Douglas

    2010-01-01

    In order to improve the understanding of particle vitiation effects in hypersonic propulsion test facilities, a quasi-one dimensional numerical tool was developed to efficiently model reacting particle-gas flows over a wide range of conditions. Features of this code include gas-phase finite-rate kinetics, a global porous-particle combustion model, mass, momentum and energy interactions between phases, and subsonic and supersonic particle drag and heat transfer models. The basic capabilities of this tool were validated against available data or other validated codes. To demonstrate the capabilities of the code a series of computations were performed for a model hypersonic propulsion test facility and scramjet. Parameters studied were simulated flight Mach number, particle size, particle mass fraction and particle material.

  10. Unique Testing Capabilities of the NASA Langley Transonic Dynamics Tunnel, an Exercise in Aeroelastic Scaling

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.

    2013-01-01

    NASA Langley Research Center's Transonic Dynamics Tunnel (TDT) is the world's most capable aeroelastic test facility. Its large size, transonic speed range, variable pressure capability, and use of either air or R-134a heavy gas as a test medium enable unparalleled manipulation of flow-dependent scaling quantities. Matching these scaling quantities enables dynamic similitude of a full-scale vehicle with a sub-scale model, a requirement for proper characterization of any dynamic phenomenon, and many static elastic phenomena. Select scaling parameters are presented in order to quantify the scaling advantages of TDT and the consequence of testing in other facilities. In addition to dynamic testing, the TDT is uniquely well-suited for high risk testing or for those tests that require unusual model mount or support systems. Examples of recently conducted dynamic tests requiring unusual model support are presented. In addition to its unique dynamic test capabilities, the TDT is also evaluated in its capability to conduct aerodynamic performance tests as a result of its flow quality. Results of flow quality studies and a comparison to a many other transonic facilities are presented. Finally, the ability of the TDT to support future NASA research thrusts and likely vehicle designs is discussed.

  11. Nested ocean models: Work in progress

    NASA Technical Reports Server (NTRS)

    Perkins, A. Louise

    1991-01-01

    The ongoing work of combining three existing software programs into a nested grid oceanography model is detailed. The HYPER domain decomposition program, the SPEM ocean modeling program, and a quasi-geostrophic model written in England are being combined into a general ocean modeling facility. This facility will be used to test the viability and the capability of two-way nested grids in the North Atlantic.

  12. Argonne Collaborative Center for Energy Storage Science (ACCESS)

    Science.gov Websites

    Analysis and Diagnostics Laboratory (EADL) Post- Test Facility Access Proven Capabilities Argonne has Analysis, Modeling and Prototyping (CAMP) Electrochemical Analysis and Diagnostics Laboratory (EADL) Post -Test Facility Argonne User Facilities Industries Transportation Consumer Electronics Defense Electric

  13. Technology evaluation, assessment, modeling, and simulation: the TEAMS capability

    NASA Astrophysics Data System (ADS)

    Holland, Orgal T.; Stiegler, Robert L.

    1998-08-01

    The United States Marine Corps' Technology Evaluation, Assessment, Modeling and Simulation (TEAMS) capability, located at the Naval Surface Warfare Center in Dahlgren Virginia, provides an environment for detailed test, evaluation, and assessment of live and simulated sensor and sensor-to-shooter systems for the joint warfare community. Frequent use of modeling and simulation allows for cost effective testing, bench-marking, and evaluation of various levels of sensors and sensor-to-shooter engagements. Interconnectivity to live, instrumented equipment operating in real battle space environments and to remote modeling and simulation facilities participating in advanced distributed simulations (ADS) exercises is available to support a wide- range of situational assessment requirements. TEAMS provides a valuable resource for a variety of users. Engineers, analysts, and other technology developers can use TEAMS to evaluate, assess and analyze tactical relevant phenomenological data on tactical situations. Expeditionary warfare and USMC concept developers can use the facility to support and execute advanced warfighting experiments (AWE) to better assess operational maneuver from the sea (OMFTS) concepts, doctrines, and technology developments. Developers can use the facility to support sensor system hardware, software and algorithm development as well as combat development, acquisition, and engineering processes. Test and evaluation specialists can use the facility to plan, assess, and augment their processes. This paper presents an overview of the TEAMS capability and focuses specifically on the technical challenges associated with the integration of live sensor hardware into a synthetic environment and how those challenges are being met. Existing sensors, recent experiments and facility specifications are featured.

  14. Distributed intelligent monitoring and reporting facilities

    NASA Astrophysics Data System (ADS)

    Pavlou, George; Mykoniatis, George; Sanchez-P, Jorge-A.

    1996-06-01

    Distributed intelligent monitoring and reporting facilities are of paramount importance in both service and network management as they provide the capability to monitor quality of service and utilization parameters and notify degradation so that corrective action can be taken. By intelligent, we refer to the capability of performing the monitoring tasks in a way that has the smallest possible impact on the managed network, facilitates the observation and summarization of information according to a number of criteria and in its most advanced form and permits the specification of these criteria dynamically to suit the particular policy in hand. In addition, intelligent monitoring facilities should minimize the design and implementation effort involved in such activities. The ISO/ITU Metric, Summarization and Performance management functions provide models that only partially satisfy the above requirements. This paper describes our extensions to the proposed models to support further capabilities, with the intention to eventually lead to fully dynamically defined monitoring policies. The concept of distributing intelligence is also discussed, including the consideration of security issues and the applicability of the model in ODP-based distributed processing environments.

  15. Development of a Semi-Span Test Capability at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Gatlin, G. M.; Parker, P. A.; Owens, L. R., Jr.

    2001-01-01

    A need for low-speed, high Reynolds number test capabilities has been identified for the design and development of advanced subsonic transport high-lift systems. In support of this need, multiple investigations have been conducted in the National Transonic Facility (NTF) at the NASA Langley Research Center to develop a semi-span testing capability that will provide the low-speed, flight Reynolds number data currently unattainable using conventional sting-mounted, full-span models. Although a semi-span testing capability will effectively double the Reynolds number capability over full-span models, it does come at the expense of contending with the issue of the interaction of the flow over the model with the windtunnel wall boundary layer. To address this issue the size and shape of the semi-span model mounting geometry have been investigated, and the results are presented herein. The cryogenic operating environment of the NTF produced another semi-span test technique issue in that varying thermal gradients have developed on the large semi-span balance. The suspected cause of these thermal gradients and methods to eliminate them are presented. Data are also presented that demonstrate the successful elimination of these varying thermal gradients during cryogenic operations.

  16. Test Activities in the Langley Transonic Dynamics Tunnel and a Summary of Recent Facility Improvements

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Johnson, R. Keith; Piatak, David J.; Florance, Jennifer P.; Rivera, Jose A., Jr.

    2003-01-01

    The Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities compared to testing in air. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. This paper describes TDT capabilities that make it particularly suited for aeroelasticity testing. The paper also discusses the nature of recent test activities in the TDT, including summaries of several specific tests. Finally, the paper documents recent facility improvement projects and the continuous statistical quality assessment effort for the TDT.

  17. Advanced Hypervelocity Aerophysics Facility Workshop

    NASA Technical Reports Server (NTRS)

    Witcofski, Robert D. (Compiler); Scallion, William I. (Compiler)

    1989-01-01

    The primary objective of the workshop was to obtain a critical assessment of a concept for a large, advanced hypervelocity ballistic range test facility powered by an electromagnetic launcher, which was proposed by the Langley Research Center. It was concluded that the subject large-scale facility was feasible and would provide the required ground-based capability for performing tests at entry flight conditions (velocity and density) on large, complex, instrumented models. It was also concluded that advances in remote measurement techniques and particularly onboard model instrumentation, light-weight model construction techniques, and model electromagnetic launcher (EML) systems must be made before any commitment for the construction of such a facility can be made.

  18. 10 CFR 26.123 - Testing facility capabilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...

  19. 10 CFR 26.123 - Testing facility capabilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...

  20. 10 CFR 26.123 - Testing facility capabilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...

  1. 10 CFR 26.123 - Testing facility capabilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...

  2. 10 CFR 26.123 - Testing facility capabilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...

  3. Medical care capabilities for Space Station Freedom: A phase approach

    NASA Technical Reports Server (NTRS)

    Doarn, C. R.; Lloyd, C. W.

    1992-01-01

    As a result of Congressional mandate Space Station Freedom (SSF) was restructured. This restructuring activity has affected the capabilities for providing medical care on board the station. This presentation addresses the health care facility to be built and used on the orbiting space station. This unit, named the Health Maintenance Facility (HMF) is based on and modeled after remote, terrestrial medical facilities. It will provide a phased approach to health care for the crews of SSF. Beginning with a stabilization and transport phase, HMF will expand to provide the most advanced state of the art therapeutic and diagnostic capabilities. This presentation details the capabilities of such a phased HMF. As Freedom takes form over the next decade there will be ever-increasing engineering and scientific developmental activities. The HMF will evolve with this process until it eventually reaches a mature, complete stand-alone health care facility that provides a foundation to support interplanetary travel. As man's experience in space continues to grow so will the ability to provide advanced health care for Earth-orbital and exploratory missions as well.

  4. Role Of High Speed Photography In The Testing Capabilities Of The Arnold Engineering Development Center (AEDC) Range And Track Facilities

    NASA Astrophysics Data System (ADS)

    Hendrix, Roy E.; Dugger, Paul H.

    1983-03-01

    Since the onset of user testing in the AEDC aeroballistic ranges in 1961, concentrated efforts in such areas as model launching techniques, test environment simulation, and specialized instrumentation have been made to enhance the usefulness of these test facilities. A wide selection of specialized instrumentation has been developed over the years to provide, among other features, panoramic photographic coverage of test models during flight. Pulsed ruby lasers, xenon flash lamps, visible-light spark sources, and flash X-ray systems are employed as short-duration radiation sources in various front-light and back-light photographic systems. Visible-light and near infrared image intensifier diodes are used to achieve high-speed shuttering in photographic pyrometry systems that measure surface temperatures of test models in flight. Turbine-driven framing cameras are used to provide multiframe photography of such high-speed phenomena as impact debris formation and model encounter with erosive fields. As a result, the capabilities of these ballistic range test units have increased significantly in regard to the types of tests that can be accommodated and to the quality and quantity of data that can be provided. Presently, five major range and companion track facilities are active in conducting hypervelocity testing in AEDC's von K6rman Gas Dynamics Facility (VKF): Ranges G, K, and S-1 and Tracks G and K. The following types of tests are conducted in these test units: ablation/erosion, transpiration-cooled nosetip (TCNT), nosetip transition, heat transfer, aerodynamic, cannon projectile, rocket contrail, reentry physics, and hypervelocity impact. The parallel achievements in high-speed photography and testing capabilities are discussed, and the significant role of photographic systems in the development of the overall testing capabilities of the AEDC range and track facilities is illustrated in numerous examples of photographic results.

  5. Assessment of the MHD capability in the ATHENA code using data from the ALEX facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, P.A.

    1989-03-01

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility.

  6. Institutional Transformation Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-19

    Reducing the energy consumption of large institutions with dozens to hundreds of existing buildings while maintaining and improving existing infrastructure is a critical economic and environmental challenge. SNL's Institutional Transformation (IX) work integrates facilities and infrastructure sustainability technology capabilities and collaborative decision support modeling approaches to help facilities managers at Sandia National Laboratories (SNL) simulate different future energy reduction strategies and meet long term energy conservation goals.

  7. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  8. Urban public transit systems modeling capabilities

    DOT National Transportation Integrated Search

    1995-02-01

    Current national transportation policy places increasing emphasis on multi-modal : solutions involving public transit and high-occupancy vehicle (HOV) facilities : and services. Current traffic simulation/assignment models, however, have only : limit...

  9. Development of Modeling Capabilities for Launch Pad Acoustics and Ignition Transient Environment Prediction

    NASA Technical Reports Server (NTRS)

    West, Jeff; Strutzenberg, Louise L.; Putnam, Gabriel C.; Liever, Peter A.; Williams, Brandon R.

    2012-01-01

    This paper presents development efforts to establish modeling capabilities for launch vehicle liftoff acoustics and ignition transient environment predictions. Peak acoustic loads experienced by the launch vehicle occur during liftoff with strong interaction between the vehicle and the launch facility. Acoustic prediction engineering tools based on empirical models are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. Modeling approaches are needed that capture the important details of the plume flow environment including the ignition transient, identify the noise generation sources, and allow assessment of the effects of launch pad geometric details and acoustic mitigation measures such as water injection. This paper presents a status of the CFD tools developed by the MSFC Fluid Dynamics Branch featuring advanced multi-physics modeling capabilities developed towards this goal. Validation and application examples are presented along with an overview of application in the prediction of liftoff environments and the design of targeted mitigation measures such as launch pad configuration and sound suppression water placement.

  10. Interactive Schematic Integration Within the Propellant System Modeling Environment

    NASA Technical Reports Server (NTRS)

    Coote, David; Ryan, Harry; Burton, Kenneth; McKinney, Lee; Woodman, Don

    2012-01-01

    Task requirements for rocket propulsion test preparations of the test stand facilities drive the need to model the test facility propellant systems prior to constructing physical modifications. The Propellant System Modeling Environment (PSME) is an initiative designed to enable increased efficiency and expanded capabilities to a broader base of NASA engineers in the use of modeling and simulation (M&S) technologies for rocket propulsion test and launch mission requirements. PSME will enable a wider scope of users to utilize M&S of propulsion test and launch facilities for predictive and post-analysis functionality by offering a clean, easy-to-use, high-performance application environment.

  11. Recent Improvements in Semi-Span Testing at the National Transonic Facility (Invited)

    NASA Technical Reports Server (NTRS)

    Gatlin, G. M.; Tomek, W. G.; Payne, F. M.; Griffiths, R. C.

    2006-01-01

    Three wind tunnel investigations of a commercial transport, high-lift, semi-span configuration have recently been conducted in the National Transonic Facility at the NASA Langley Research Center. Throughout the course of these investigations multiple improvements have been developed in the facility semi-span test capability. The primary purpose of the investigations was to assess Reynolds number scale effects on a modern commercial transport configuration up to full-scale flight test conditions (Reynolds numbers on the order of 27 million). The tests included longitudinal aerodynamic studies at subsonic takeoff and landing conditions across a range of Reynolds numbers from that available in conventional wind tunnels up to flight conditions. The purpose of this paper is to discuss lessons learned and improvements incorporated into the semi-span testing process. Topics addressed include enhanced thermal stabilization and moisture reduction procedures, assessments and improvements in model sealing techniques, compensation of model reference dimensions due to test temperature, significantly improved semi-span model access capability, and assessments of data repeatability.

  12. VICS-120 - A tube-vehicle system test facility.

    NASA Technical Reports Server (NTRS)

    Marte, J. E.

    1973-01-01

    Description of a large test facility for carrying out research in support of the aerodynamic and ventilation section of a handbook on subway design. The facility described is vertically oriented and has a test section with a nominal inside diameter of 2 in. and a length of 109 ft. It is capable of operating at Reynolds numbers up to full-scale (60,000,000) under open-end tube conditions. The facility is distinguished by a high degree of flexibility in configuration and operational limits. Details are given concerning the plenum assembly, the test section tubes, the scaffold, the instrumentation, the model launcher, the model arrestor, and the models themselves. A step-by-step account is given of the operation of the facility, and a brief sample of the type of data obtained from the facility is presented.

  13. Hypervelocity Capability of the HYPULSE Shock-Expansion Tunnel for Scramjet Testing

    NASA Technical Reports Server (NTRS)

    Foelsche, Robert O.; Rogers, R. Clayton; Tsai, Ching-Yi; Bakos, Robert J.; Shih, Ann T.

    2001-01-01

    New hypervelocity capabilities for scramjet testing have recently been demonstrated in the HYPULSE Shock-Expansion Tunnel (SET). With NASA's continuing interests in scramjet testing at hypervelocity conditions (Mach 12 and above), a SET nozzle was designed and added to the HYPULSE facility. Results of tests conducted to establish SET operational conditions and facility nozzle calibration are presented and discussed for a Mach 15 (M15) flight enthalpy. The measurements and detailed computational fluid dynamics calculations (CFD) show the nozzle delivers a test gas with sufficiently wide core size to be suitable for free-jet testing of scramjet engine models of similar scale as, those tested in conventional low Mach number blow-down test facilities.

  14. The ARM Climate Research Facility - New Capabilities and the Expected Impacts on Climate Science and Modeling

    NASA Astrophysics Data System (ADS)

    Voyles, J.; Mather, J. H.

    2010-12-01

    The ARM Climate Research Facility is a Department of Energy national scientific user facility. Research sites include fixed and mobile facilities, which collect research quality data for climate research. Through the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy’s Office of Science allocated $60 million to the ARM Climate Research Facility for the purchase of instruments and improvement of research sites. With these funds, ARM is in the process of deploying a broad variety of new instruments that will greatly enhance the measurement capabilities of the facility. New instruments being purchased include dual-frequency scanning cloud radars, scanning precipitation radars, Doppler lidars, a mobile Aerosol Observing System and many others. A list of instruments being purchased is available at http://www.arm.gov/about/recovery-act. Orders for all instruments have now been placed and activities are underway to integrate these new systems with our research sites. The overarching goal is to provide instantaneous and statistical measurements of the climate that can be used to advance the physical understanding and predictive performance of climate models. The Recovery Act investments enable the ARM Climate Research Facility to enhance existing and add new measurements, which enable a more complete understanding of the 3-dimensional evolution of cloud processes and related atmospheric properties. Understanding cloud processes are important globally, to reduce climate-modeling uncertainties and help improve our nation’s ability to manage climate impacts. Domer Plot of W-Band Reflectivity

  15. Measuring facility capability to provide routine and emergency childbirth care to mothers and newborns: An appeal to adjust for delivery caseload of facilities

    PubMed Central

    Allen, Stephanie M.; Opondo, Charles; Campbell, Oona M. R.

    2017-01-01

    Background Measurement of Emergency Obstetric Care capability is common, and measurement of newborn and overall routine childbirth care has begun in recent years. These assessments of facility capabilities can be used to identify geographic inequalities in access to functional health services and to monitor improvements over time. This paper develops an approach for monitoring the childbirth environment that accounts for the delivery caseload of the facility. Methods We used data from the Kenya Service Provision Assessment to examine facility capability to provide quality childbirth care, including infrastructure, routine maternal and newborn care, and emergency obstetric and newborn care. A facility was considered capable of providing a function if necessary tracer items were present and, for emergency functions, if the function had been performed in the previous three months. We weighted facility capability by delivery caseload, and compared results with those generated using traditional “survey weights”. Results Of the 403 facilities providing childbirth care, the proportion meeting criteria for capability were: 13% for general infrastructure, 6% for basic emergency obstetric care, 3% for basic emergency newborn care, 13% and 11% for routine maternal and newborn care, respectively. When the new caseload weights accounting for delivery volume were applied, capability improved and the proportions of deliveries occurring in a facility meeting capability criteria were: 51% for general infrastructure, 46% for basic emergency obstetric care, 12% for basic emergency newborn care, 36% and 18% for routine maternal and newborn care, respectively. This is because most of the caseload was in hospitals, which generally had better capability. Despite these findings, fewer than 2% of deliveries occurred in a facility capable of providing all functions. Conclusion Reporting on the percentage of facilities capable of providing certain functions misrepresents the capacity to provide care at the national level. Delivery caseload weights allow adjustment for patient volume, and shift the denominator of measurement from facilities to individual deliveries, leading to a better representation of the context in which facility births take place. These methods could lead to more standardized national datasets, enhancing their ability to inform policy at a national and international level. PMID:29049412

  16. WRATS Integrated Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Piatak, David J.

    2008-01-01

    The Wing and Rotor Aeroelastic Test System (WRATS) data acquisition system (DAS) is a 64-channel data acquisition display and analysis system specifically designed for use with the WRATS 1/5-scale V-22 tiltrotor model of the Bell Osprey. It is the primary data acquisition system for experimental aeroelastic testing of the WRATS model for the purpose of characterizing the aeromechanical and aeroelastic stability of prototype tiltrotor configurations. The WRATS DAS was also used during aeroelastic testing of Bell Helicopter Textron s Quad-Tiltrotor (QTR) design concept, a test which received international attention. The LabVIEW-based design is portable and capable of powering and conditioning over 64 channels of dynamic data at sampling rates up to 1,000 Hz. The system includes a 60-second circular data archive, an integrated model swashplate excitation system, a moving block damping application for calculation of whirl flutter mode subcritical damping, a loads and safety monitor, a pilot-control console display, data analysis capabilities, and instrumentation calibration functions. Three networked computers running custom-designed LabVIEW software acquire data through National Instruments data acquisition hardware. The aeroelastic model (see figure) was tested with the DAS at two facilities at NASA Langley, the Transonic Dynamics Tunnel (TDT) and the Rotorcraft Hover Test Facility (RHTF). Because of the need for seamless transition between testing at these facilities, DAS is portable. The software is capable of harmonic analysis of periodic time history data, Fast Fourier Transform calculations, power spectral density calculations, and on-line calibration of test instrumentation. DAS has a circular buffer archive to ensure critical data is not lost in event of model failure/incident, as well as a sample-and-hold capability for phase-correct time history data.

  17. Upgrades at the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2012-01-01

    Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.

  18. Operating capability and current status of the reactivated NASA Lewis Research Center Hypersonic Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Trefny, Charles J.; Pack, William D.

    1995-01-01

    The NASA Lewis Research Center's Hypersonic Tunnel Facility (HTF) is a free-jet, blowdown propulsion test facility that can simulate up to Mach-7 flight conditions with true air composition. Mach-5, -6, and -7 nozzles, each with a 42 inch exit diameter, are available. Previously obtained calibration data indicate that the test flow uniformity of the HTF is good. The facility, without modifications, can accommodate models approximately 10 feet long. The test gas is heated using a graphite core induction heater that generates a nonvitiated flow. The combination of clean-air, large-scale, and Mach-7 capabilities is unique to the HTF and enables an accurate propulsion performance determination. The reactivation of the HTF, in progress since 1990, includes refurbishing the graphite heater, the steam generation plant, the gaseous oxygen system, and all control systems. All systems were checked out and recertified, and environmental systems were upgraded to meet current standards. The data systems were also upgraded to current standards and a communication link with NASA-wide computers was added. In May 1994, the reactivation was complete, and an integrated systems test was conducted to verify facility operability. This paper describes the reactivation, the facility status, the operating capabilities, and specific applications of the HTF.

  19. A model for evaluating the environmental benefits of elementary school facilities.

    PubMed

    Ji, Changyoon; Hong, Taehoon; Jeong, Kwangbok; Leigh, Seung-Bok

    2014-01-01

    In this study, a model that is capable of evaluating the environmental benefits of a new elementary school facility was developed. The model is composed of three steps: (i) retrieval of elementary school facilities having similar characteristics as the new elementary school facility using case-based reasoning; (ii) creation of energy consumption and material data for the benchmark elementary school facility using the retrieved similar elementary school facilities; and (iii) evaluation of the environmental benefits of the new elementary school facility by assessing and comparing the environmental impact of the new and created benchmark elementary school facility using life cycle assessment. The developed model can present the environmental benefits of a new elementary school facility in terms of monetary values using Environmental Priority Strategy 2000, a damage-oriented life cycle impact assessment method. The developed model can be used for the following: (i) as criteria for a green-building rating system; (ii) as criteria for setting the support plan and size, such as the government's incentives for promoting green-building projects; and (iii) as criteria for determining the feasibility of green building projects in key business sectors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Concept definition study for an extremely large aerophysics range facility

    NASA Technical Reports Server (NTRS)

    Swift, H.; Witcofski, R.

    1992-01-01

    The development of a large aerophysical ballistic range facility is considered to study large-scale hypersonic flows at high Reynolds numbers for complex shapes. A two-stage light gas gun is considered for the hypervelocity launcher, and the extensive range tankage is discussed with respect to blast suppression, model disposition, and the sabot impact tank. A layout is given for the large aerophysics facility, and illustrations are provided for key elements such as the guide rail. The paper shows that such a facility could be used to launch models with diameters approaching 250 mm at velocities of 6.5 km/s with peak achievable accelerations of not more than 85.0 kgs. The envisioned range would provide gas-flow facilities capable of controlling the modeled quiescent atmospheric conditions. The facility is argued to be a feasible and important step in the investigation and experiment of such hypersonic vehicles as the National Aerospace Plane.

  1. Assessment of the MHD capability in the ATHENA code using data from the ALEX (Argonne Liquid Metal Experiment) facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, P.A.

    1988-10-28

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility. 13 refs., 4more » figs., 2 tabs.« less

  2. SD46 Facilities and Capabilities

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The displays for the Materials Conference presents some of the facilities and capabilities in SD46 that can be useful to a prospective researcher from University, Academia or other government labs. Several of these already have associated personnel as principal and co-investigators on NASA peer reviewed science investigations. 1. SCN purification facility 2. ESL facility 3. Static and Dynamic magnetic field facility 4. Microanalysis facility 5. MSG Investigation - PFMI 6. Thermo physical Properties Measurement Capabilities.

  3. Status of NASA/Army rotorcraft research and development piloted flight simulation

    NASA Technical Reports Server (NTRS)

    Condon, Gregory W.; Gossett, Terrence D.

    1988-01-01

    The status of the major NASA/Army capabilities in piloted rotorcraft flight simulation is reviewed. The requirements for research and development piloted simulation are addressed as well as the capabilities and technologies that are currently available or are being developed by NASA and the Army at Ames. The application of revolutionary advances (in visual scene, electronic cockpits, motion, and modelling of interactive mission environments and/or vehicle systems) to the NASA/Army facilities are also addressed. Particular attention is devoted to the major advances made in integrating these individual capabilities into fully integrated simulation environment that were or are being applied to new rotorcraft mission requirements. The specific simulators discussed are the Vertical Motion Simulator and the Crew Station Research and Development Facility.

  4. Low-cost production of solar-cell panels

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.; Gallagher, B. D.; Sanchez, L. E.

    1980-01-01

    Large-scale production model combines most modern manufacturing techniques to produce silicon-solar-cell panels of low costs by 1982. Model proposes facility capable of operating around the clock with annual production capacity of 20 W of solar cell panels.

  5. Summary of 2016 Light Microscopy Module (LMM) Physical Science Experiments on ISS. Update of LMM Science Experiments and Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Meyer, William V.; Foster, William M.; Fletcher, William A.; Williams, Stuart J.; Lee, Chang-Soo

    2016-01-01

    This presentation will feature a series of short, entertaining, and informative videos that describe the current status and science support for the Light Microscopy Module (LMM) facility on the International Space Station. These interviews will focus on current experiments and provide an overview of future capabilities. The recently completed experiments include nano-particle haloing, 3-D self-assembly with Janus particles and a model system for nano-particle drug delivery. The videos will share perspectives from the scientists, engineers, and managers working with the NASA Light Microscopy program.

  6. SMP: A solid modeling program version 2.0

    NASA Technical Reports Server (NTRS)

    Randall, D. P.; Jones, K. H.; Vonofenheim, W. H.; Gates, R. L.; Matthews, C. G.

    1986-01-01

    The Solid Modeling Program (SMP) provides the capability to model complex solid objects through the composition of primitive geometric entities. In addition to the construction of solid models, SMP has extensive facilities for model editing, display, and analysis. The geometric model produced by the software system can be output in a format compatible with existing analysis programs such as PATRAN-G. The present version of the SMP software supports six primitives: boxes, cones, spheres, paraboloids, tori, and trusses. The details for creating each of the major primitive types is presented. The analysis capabilities of SMP, including interfaces to existing analysis programs, are discussed.

  7. Status Report for the Hypervelocity Free-Flight Aerodynamic Facility

    NASA Technical Reports Server (NTRS)

    Cornelison, Charles J.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The Hypervelocity Free-Flight Aerodynamic Facility, located at Ames Research Center, is NASA's only aeroballistic facility. During 1997, its model imaging and time history recording systems were the focus of a major refurbishment effort. Specifically the model detection, spark gap (light source); Kerr cell (high speed shuttering); and interval timer sub-systems were inspected, repaired, modified or replaced as required. These refurbishment efforts have fully restored the HFFAF's capabilities to a much better condition, comparable to what it was 15 years ago. Details of this refurbishment effort along with a brief discussion of future upgrade plans are presented.

  8. DFL, Canada's Space AIT Facilities - Current and Planned Capabilities

    NASA Astrophysics Data System (ADS)

    Singhal, R.; Mishra, S.; Choueiry, E.; Dumoulin, J.; Ahmed, S.

    2004-08-01

    The David Florida Laboratory (DFL) of the Canadian Space Agency is the Canadian national ISO 9001:2000 registered facility for the assembly, integration, and (environmental) testing of space hardware. This paper briefly describes the three main qualification facilities: Structural Qualification Facilities (SQF); Radio Frequency Qualification Facilities (RFQF); and Thermal Qualification Facilities (TQF). The paper also describes the planned/new upgrades/improvements to the DFL's existing capabilities. These include: cylindrical near-field antenna measurement system, current capabilities in multi-frequency multi-band passive intermodulation (PIM) measurement; combined thermal/vibration test facility, improvement in efficiency and performance of the photogrammetry capability, acquisition of an additional mass properties measurement system for small and micro-satellites; combined control and data acquisition system for all existing thermal vacuum facilities, plus a new automatic thermal control system and hypobaric chamber.

  9. Engine component instrumentation development facility at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan

    1992-01-01

    The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.

  10. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  11. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.

    1995-09-15

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  12. DSN Array Simulator

    NASA Technical Reports Server (NTRS)

    Tikidjian, Raffi; Mackey, Ryan

    2008-01-01

    The DSN Array Simulator (wherein 'DSN' signifies NASA's Deep Space Network) is an updated version of software previously denoted the DSN Receive Array Technology Assessment Simulation. This software (see figure) is used for computational modeling of a proposed DSN facility comprising user-defined arrays of antennas and transmitting and receiving equipment for microwave communication with spacecraft on interplanetary missions. The simulation includes variations in spacecraft tracked and communication demand changes for up to several decades of future operation. Such modeling is performed to estimate facility performance, evaluate requirements that govern facility design, and evaluate proposed improvements in hardware and/or software. The updated version of this software affords enhanced capability for characterizing facility performance against user-defined mission sets. The software includes a Monte Carlo simulation component that enables rapid generation of key mission-set metrics (e.g., numbers of links, data rates, and date volumes), and statistical distributions thereof as functions of time. The updated version also offers expanded capability for mixed-asset network modeling--for example, for running scenarios that involve user-definable mixtures of antennas having different diameters (in contradistinction to a fixed number of antennas having the same fixed diameter). The improved version also affords greater simulation fidelity, sufficient for validation by comparison with actual DSN operations and analytically predictable performance metrics.

  13. Health and climate benefits of offshore wind facilities in the Mid-Atlantic United States

    DOE PAGES

    Buonocore, Jonathan J.; Luckow, Patrick; Fisher, Jeremy; ...

    2016-07-14

    Electricity from fossil fuels contributes substantially to both climate change and the health burden of air pollution. Renewable energy sources are capable of displacing electricity from fossil fuels, but the quantity of health and climate benefits depend on site-specific attributes that are not often included in quantitative models. Here, we link an electrical grid simulation model to an air pollution health impact assessment model and US regulatory estimates of the impacts of carbon to estimate the health and climate benefits of offshore wind facilities of different sizes in two different locations. We find that offshore wind in the Mid-Atlantic ismore » capable of producing health and climate benefits of between $54 and $120 per MWh of generation, with the largest simulated facility (3000 MW off the coast of New Jersey) producing approximately $690 million in benefits in 2017. The variability in benefits per unit generation is a function of differences in locations (Maryland versus New Jersey), simulated years (2012 versus 2017), and facility generation capacity, given complexities of the electrical grid and differences in which power plants are offset. In the end, this work demonstrates health and climate benefits of off shore wind, provides further evidence of the utility of geographically-refined modeling frameworks, and yields quantitative insights that would allow for inclusion of both climate and public health in benefits assessments of renewable energy.« less

  14. Health and climate benefits of offshore wind facilities in the Mid-Atlantic United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buonocore, Jonathan J.; Luckow, Patrick; Fisher, Jeremy

    Electricity from fossil fuels contributes substantially to both climate change and the health burden of air pollution. Renewable energy sources are capable of displacing electricity from fossil fuels, but the quantity of health and climate benefits depend on site-specific attributes that are not often included in quantitative models. Here, we link an electrical grid simulation model to an air pollution health impact assessment model and US regulatory estimates of the impacts of carbon to estimate the health and climate benefits of offshore wind facilities of different sizes in two different locations. We find that offshore wind in the Mid-Atlantic ismore » capable of producing health and climate benefits of between $54 and $120 per MWh of generation, with the largest simulated facility (3000 MW off the coast of New Jersey) producing approximately $690 million in benefits in 2017. The variability in benefits per unit generation is a function of differences in locations (Maryland versus New Jersey), simulated years (2012 versus 2017), and facility generation capacity, given complexities of the electrical grid and differences in which power plants are offset. In the end, this work demonstrates health and climate benefits of off shore wind, provides further evidence of the utility of geographically-refined modeling frameworks, and yields quantitative insights that would allow for inclusion of both climate and public health in benefits assessments of renewable energy.« less

  15. Health and climate benefits of offshore wind facilities in the Mid-Atlantic United States

    NASA Astrophysics Data System (ADS)

    Buonocore, Jonathan J.; Luckow, Patrick; Fisher, Jeremy; Kempton, Willett; Levy, Jonathan I.

    2016-07-01

    Electricity from fossil fuels contributes substantially to both climate change and the health burden of air pollution. Renewable energy sources are capable of displacing electricity from fossil fuels, but the quantity of health and climate benefits depend on site-specific attributes that are not often included in quantitative models. Here, we link an electrical grid simulation model to an air pollution health impact assessment model and US regulatory estimates of the impacts of carbon to estimate the health and climate benefits of offshore wind facilities of different sizes in two different locations. We find that offshore wind in the Mid-Atlantic is capable of producing health and climate benefits of between 54 and 120 per MWh of generation, with the largest simulated facility (3000 MW off the coast of New Jersey) producing approximately 690 million in benefits in 2017. The variability in benefits per unit generation is a function of differences in locations (Maryland versus New Jersey), simulated years (2012 versus 2017), and facility generation capacity, given complexities of the electrical grid and differences in which power plants are offset. This work demonstrates health and climate benefits of offshore wind, provides further evidence of the utility of geographically-refined modeling frameworks, and yields quantitative insights that would allow for inclusion of both climate and public health in benefits assessments of renewable energy.

  16. Computer simulation: A modern day crystal ball?

    NASA Technical Reports Server (NTRS)

    Sham, Michael; Siprelle, Andrew

    1994-01-01

    It has long been the desire of managers to be able to look into the future and predict the outcome of decisions. With the advent of computer simulation and the tremendous capability provided by personal computers, that desire can now be realized. This paper presents an overview of computer simulation and modeling, and discusses the capabilities of Extend. Extend is an iconic-driven Macintosh-based software tool that brings the power of simulation to the average computer user. An example of an Extend based model is presented in the form of the Space Transportation System (STS) Processing Model. The STS Processing Model produces eight shuttle launches per year, yet it takes only about ten minutes to run. In addition, statistical data such as facility utilization, wait times, and processing bottlenecks are produced. The addition or deletion of resources, such as orbiters or facilities, can be easily modeled and their impact analyzed. Through the use of computer simulation, it is possible to look into the future to see the impact of today's decisions.

  17. High-Reynolds Number Circulation Control Testing in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.

    2012-01-01

    A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. The first active flow control experiment was completed using the new FAST-MAC semi-span model to study Reynolds number scaling effects for several circulation control concepts. Testing was conducted over a wide range of Mach numbers, up to chord Reynolds numbers of 30 million. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. Preliminary analysis of the uncorrected lift data showed that the circulation control increased the low-speed maximum lift coefficient by 33%. At transonic speeds, the circulation control was capable of positively altering the shockwave pattern on the upper wing surface and reducing flow separation. Furthermore, application of the technique to only the outboard portion of the wing demonstrated the feasibility of a pneumatic based roll control capability.

  18. Photovoltaic Systems Test Facilities: Existing capabilities compilation

    NASA Technical Reports Server (NTRS)

    Volkmer, K.

    1982-01-01

    A general description of photovoltaic systems test facilities (PV-STFs) operated under the U.S. Department of Energy's photovoltaics program is given. Descriptions of a number of privately operated facilities having test capabilities appropriate to photovoltaic hardware development are given. A summary of specific, representative test capabilities at the system and subsystem level is presented for each listed facility. The range of system and subsystem test capabilities available to serve the needs of both the photovoltaics program and the private sector photovoltaics industry is given.

  19. The National Scientific Balloon Facility. [balloon launching capabilities of ground facility

    NASA Technical Reports Server (NTRS)

    Kubara, R. S.

    1974-01-01

    The establishment and operation of the National Scientific Balloon Facility are discussed. The balloon launching capabilities are described. The ground support systems, communication facilities, and meteorological services are analyzed.

  20. A Testing Platform for Validation of Overhead Conductor Aging Models and Understanding Thermal Limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irminger, Philip; Starke, Michael R; Dimitrovski, Aleksandar D

    2014-01-01

    Power system equipment manufacturers and researchers continue to experiment with novel overhead electric conductor designs that support better conductor performance and address congestion issues. To address the technology gap in testing these novel designs, Oak Ridge National Laboratory constructed the Powerline Conductor Accelerated Testing (PCAT) facility to evaluate the performance of novel overhead conductors in an accelerated fashion in a field environment. Additionally, PCAT has the capability to test advanced sensors and measurement methods for accessing overhead conductor performance and condition. Equipped with extensive measurement and monitoring devices, PCAT provides a platform to improve/validate conductor computer models and assess themore » performance of novel conductors. The PCAT facility and its testing capabilities are described in this paper.« less

  1. United Space Alliance LLC Parachute Refurbishment Facility Model

    NASA Technical Reports Server (NTRS)

    Esser, Valerie; Pessaro, Martha; Young, Angela

    2007-01-01

    The Parachute Refurbishment Facility Model was created to reflect the flow of hardware through the facility using anticipated start and delivery times from a project level IV schedule. Distributions for task times were built using historical build data for SFOC work and new data generated for CLV/ARES task times. The model currently processes 633 line items from 14 SFOC builds for flight readiness, 16 SFOC builds returning from flight for defoul, wash, and dry operations, 12 builds for CLV manufacturing operations, and 1 ARES 1X build. Modeling the planned workflow through the PRF is providing a reliable way to predict the capability of the facility as well as the manpower resource need. Creating a real world process allows for real world problems to be identified and potential workarounds to be implemented in a safe, simulated world before taking it to the next step, implementation in the real world.

  2. The Application of a Trade Study Methodology to Determine Which Capabilities to Implement in a Test Facility Data Acquisition System Upgrade

    NASA Technical Reports Server (NTRS)

    McDougal, Kristopher J.

    2008-01-01

    More and more test programs are requiring high frequency measurements. Marshall Space Flight Center s Cold Flow Test Facility has an interest in acquiring such data. The acquisition of this data requires special hardware and capabilities. This document provides a structured trade study approach for determining which additional capabilities of a VXI-based data acquisition system should be utilized to meet the test facility objectives. The paper is focused on the trade study approach detailing and demonstrating the methodology. A case is presented in which a trade study was initially performed to provide a recommendation for the data system capabilities. Implementation details of the recommended alternative are briefly provided as well as the system s performance during a subsequent test program. The paper then addresses revisiting the trade study with modified alternatives and attributes to address issues that arose during the subsequent test program. Although the model does not identify a single best alternative for all sensitivities, the trade study process does provide a much better understanding. This better understanding makes it possible to confidently recommend Alternative 3 as the preferred alternative.

  3. A health maintenance facility for space station freedom

    NASA Technical Reports Server (NTRS)

    Billica, R. D.; Doarn, C. R.

    1991-01-01

    We describe a health care facility to be built and used on an orbiting space station in low Earth orbit. This facility, called the health maintenance facility, is based on and modeled after isolated terrestrial medical facilities. It will provide a phased approach to health care for the crews of Space Station Freedom. This paper presents the capabilities of the health maintenance facility. As Freedom is constructed over the next decade there will be an increase in activities, both construction and scientific. The health maintenance facility will evolve with this process until it is a mature, complete, stand-alone health care facility that establishes a foundation to support interplanetary travel. As our experience in space continues to grow so will the commitment to providing health care.

  4. The George C. Marshall Space Flight Center High Reynolds Number Wind Tunnel Technical Handbook

    NASA Technical Reports Server (NTRS)

    Gwin, H. S.

    1975-01-01

    The High Reynolds Number Wind Tunnel at the George C. Marshall Space Flight Center is described. The following items are presented to illustrate the operation and capabilities of the facility: facility descriptions and specifications, operational and performance characteristics, model design criteria, instrumentation and data recording equipment, data processing and presentation, and preliminary test information required.

  5. An investigation of networking techniques for the ASRM facility

    NASA Technical Reports Server (NTRS)

    Moorhead, Robert J., II; Smith, Wayne D.; Thompson, Dale R.

    1992-01-01

    This report is based on the early design concepts for a communications network for the Advanced Solid Rocket Motor (ASRM) facility being built at Yellow Creek near Iuka, MS. The investigators have participated in the early design concepts and in the evaluation of the initial concepts. The continuing system design effort and any modification of the plan will require a careful evaluation of the required bandwidth of the network, the capabilities of the protocol, and the requirements of the controllers and computers on the network. The overall network, which is heterogeneous in protocol and bandwidth, is being modeled, analyzed, simulated, and tested to obtain some degree of confidence in its performance capabilities and in its performance under nominal and heavy loads. The results of the proposed work should have an impact on the design and operation of the ASRM facility.

  6. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    capabilities, and new methodologies that allowed NREL to model operations of the Eastern Interconnection at Analyst Power Systems Modeling Researcher Project Manager Power Systems Engineering Center Research Engineer Power Systems Modeling and Control Get the full list of job postings and learn more about working

  7. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney; Gray, Perry

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California, The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a 'National Asset' by the DoD, The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  8. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960% then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas grins, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  9. Recent Advances in the LEWICE Icing Model

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Addy, Gene; Struk, Peter; Bartkus, Tadas

    2015-01-01

    This paper will describe two recent modifications to the Glenn ICE software. First, a capability for modeling ice crystals and mixed phase icing has been modified based on recent experimental data. Modifications have been made to the ice particle bouncing and erosion model. This capability has been added as part of a larger effort to model ice crystal ingestion in aircraft engines. Comparisons have been made to ice crystal ice accretions performed in the NRC Research Altitude Test Facility (RATFac). Second, modifications were made to the run back model based on data and observations from thermal scaling tests performed in the NRC Altitude Icing Tunnel.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Birchard P; Michel, Kelly D; Few, Douglas A

    From stereophonic, positional sound to high-definition imagery that is crisp and clean, high fidelity computer graphics enhance our view, insight, and intuition regarding our environments and conditions. Contemporary 3-D modeling tools offer an open architecture framework that enables integration with other technologically innovative arenas. One innovation of great interest is Augmented Reality, the merging of virtual, digital environments with physical, real-world environments creating a mixed reality where relevant data and information augments the real or actual experience in real-time by spatial or semantic context. Pairing 3-D virtual immersive models with a dynamic platform such as semi-autonomous robotics or personnel odometrymore » systems to create a mixed reality offers a new and innovative design information verification inspection capability, evaluation accuracy, and information gathering capability for nuclear facilities. Our paper discusses the integration of two innovative technologies, 3-D visualizations with inertial positioning systems, and the resulting augmented reality offered to the human inspector. The discussion in the paper includes an exploration of human and non-human (surrogate) inspections of a nuclear facility, integrated safeguards knowledge within a synchronized virtual model operated, or worn, by a human inspector, and the anticipated benefits to safeguards evaluations of facility operations.« less

  11. Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Bryan; Bill Landman; Porter Hill

    2012-12-01

    An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, “Program and Project Management for the Acquisition of Capital Assets”. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities – capabilities distributed among multiple locations ? Modify Existing DOE Facilities – capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by amore » new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.« less

  12. The development of the Canadian Mobile Servicing System Kinematic Simulation Facility

    NASA Technical Reports Server (NTRS)

    Beyer, G.; Diebold, B.; Brimley, W.; Kleinberg, H.

    1989-01-01

    Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described.

  13. Assessment of eHealth capabilities and utilization in residential care settings.

    PubMed

    Towne, Samuel D; Lee, Shinduk; Li, Yajuan; Smith, Matthew Lee

    2016-12-01

    The US National Survey of Residential Care Facilities was used to conduct cross-sectional analyses of residential care facilities (n = 2302). Most residential care facilities lacked computerized capabilities for one or more of these capabilities in 2010. Lacking computerized systems supporting electronic health information exchange with pharmacies was associated with non-chain affiliation (p < .05). Lacking electronic health information exchange with physicians was associated with being a small-sized facility (vs large) (p < .05). Lacking computerized capabilities for discharge/transfer summaries was associated with for-profit status (p < .05) and small-sized facilities (p < .05). Lacking computerized capabilities for medical provider information was associated with non-chain affiliation (p < .05), small- or medium-sized facilities (p < .05), and for-profit status (p < .05). Lack of electronic health record was associated with non-chain affiliation (p < .05), small- or medium-sized facilities (p < .05), for-profit status (p < .05), and location in urban areas (p < .05). eHealth disparities exist across residential care facilities. As the older adult population continues to grow, resources must be in place to provide an integrated system of care across multiple settings. © The Author(s) 2015.

  14. Test Capability Enhancements to the NASA Langley 8-Foot High Temperature Tunnel

    NASA Technical Reports Server (NTRS)

    Harvin, S. F.; Cabell, K. F.; Gallimore, S. D.; Mekkes, G. L.

    2006-01-01

    The NASA Langley 8-Foot High Temperature Tunnel produces true enthalpy environments simulating flight from Mach 4 to Mach 7, primarily for airbreathing propulsion and aerothermal/thermo-structural testing. Flow conditions are achieved through a methane-air heater and nozzles producing aerodynamic Mach numbers of 4, 5 or 7 and have exit diameters of 8 feet or 4.5 feet. The 12-ft long free-jet test section, housed inside a 26-ft vacuum sphere, accommodates large test articles. Recently, the facility underwent significant upgrades to support hydrocarbon fueled scramjet engine testing and to expand flight simulation capability. The upgrades were required to meet engine system development and flight clearance verification requirements originally defined by the joint NASA-Air Force X-43C Hypersonic Flight Demonstrator Project and now the Air Force X-51A Program. Enhancements to the 8-Ft. HTT were made in four areas: 1) hydrocarbon fuel delivery; 2) flight simulation capability; 3) controls and communication; and 4) data acquisition/processing. The upgrades include the addition of systems to supply ethylene and liquid JP-7 to test articles; a Mach 5 nozzle with dynamic pressure simulation capability up to 3200 psf, the addition of a real-time model angle-of-attack system; a new programmable logic controller sub-system to improve process controls and communication with model controls; the addition of MIL-STD-1553B and high speed data acquisition systems and a classified data processing environment. These additions represent a significant increase to the already unique test capability and flexibility of the facility, and complement the existing array of test support hardware such as a model injection system, radiant heaters, six-component force measurement system, and optical flow field visualization hardware. The new systems support complex test programs that require sophisticated test sequences and precise management of process fluids. Furthermore, the new systems, such as the real-time angle of attack system and the new programmable logic controller enhance the test efficiency of the facility. The motivation for the upgrades and the expanded capabilities is described here.

  15. Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Ameri, Ali

    2005-01-01

    This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.

  16. Space Power Facility-Capabilities for Space Environmental Testing Within a Single Facility

    NASA Technical Reports Server (NTRS)

    Sorge, Richard N.

    2013-01-01

    The purpose of this paper is to describe the current and near-term environmental test capabilities of the NASA Glenn Research Center's Space Power Facility (SPF) located at Sandusky, Ohio. The paper will present current and near-term capabilities for conducting electromagnetic interference and compatibility testing, base-shake sinusoidal vibration testing, reverberant acoustic testing, and thermal-vacuum testing. The paper will also present modes of transportation, handling, ambient environments, and operations within the facility to conduct those tests. The SPF is in the midst of completing and activating new or refurbished capabilities which, when completed, will provide the ability to conduct most or all required full-scale end-assembly space simulation tests at a single test location. It is envisioned that the capabilities will allow a customer to perform a wide range of space simulation tests in one facility at reasonable cost.

  17. A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test

    NASA Technical Reports Server (NTRS)

    Messer, Bradley

    2007-01-01

    Propulsion ground test facilities face the daily challenge of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Over the last decade NASA s propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and exceeded the capabilities of numerous test facility and test article components. A logistic regression mathematical modeling technique has been developed to predict the probability of successfully completing a rocket propulsion test. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),.., X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure of accomplishing a full duration test. The use of logistic regression modeling is not new; however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from this type of model provide project managers with insight and confidence into the effectiveness of rocket propulsion ground testing.

  18. An assessment of the future roles of the National Transonic Facility and the Langley Transonic Dynamics Tunnel in aeroelastic and unsteady aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Hanson, P. W.

    1980-01-01

    The characteristics and capabilities of the two tunnels, that relate to studies in the fields of aeroelasticity and unsteady aerodynamics are discussed. Scaling considerations for aeroelasticity and unsteady aerodynamics testing in the two facilities are reviewed, and some of the special features (or lack thereof) of the Langley Research Center Transonic Dynamics Tunnel (TDT) and the National Transonic Facility (NTF) that will weigh heavily in any decisions conducting a given study in the two tunnels are discussed. For illustrative purposes a fighter and a transport airplane are scaled for tests in the NTF and in the TDT, and the resulting model characteristics are compared. The NTF was designed specifically to meet the need for higher Reynolds number capability for flow simulation in aerodynamic performance testing of aircraft designs. However, the NTF can be a valuable tool for evaluating the severity of Reynolds number effects in the areas of dynamic aeroelasticity and unsteady aerodynamics. On the other hand, the TDT was constructed specifically for studies and tests in the field of aeroelasticity. Except for tests requiring the Reynolds number capability of NTF, the TDT will remain the primary facility for tests of dynamic aeroelasticity and unsteady aerodynamics.

  19. Ignition behavior of live California chaparral leaves

    Treesearch

    J.D. Engstrom; J.K Butler; S.G. Smith; L.L. Baxter; T.H. Fletcher; D.R. Weise

    2004-01-01

    Current forest fire models are largely empirical correlations based on data from beds of dead vegetation Improvement in model capabilities is sought by developing models of the combustion of live fuels. A facility was developed to determine the combustion behavior of small samples of live fuels, consisting of a flat-flame burner on a moveable platform Qualitative and...

  20. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focussed on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for increased understanding of the physical processes governing ice accretion, ice shedding, and iced airfoil aerodynamics is examined.

  1. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focused on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for the increased understanding of the physical processes governing ice accretion, ice shedding, and iced aerodynamics is examined.

  2. Feasibility of using Extreme Ultraviolet Explorer (EUVE) reaction wheels to satisfy Space Infrared Telescope Facility (SIRTF) maneuver requirements

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.

    1990-01-01

    A digital computer simulation is used to determine if the extreme ultraviolet explorer (EUVE) reaction wheels can provide sufficient torque and momentum storage capability to meet the space infrared telescope facility (SIRTF) maneuver requirements. A brief description of the pointing control system (PCS) and the sensor and actuator dynamic models used in the simulation is presented. A model to represent a disturbance such as fluid sloshing is developed. Results developed with the simulation, and a discussion of these results are presented.

  3. Experimental Physical Sciences Vistas: MaRIE (draft)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shlachter, Jack

    To achieve breakthrough scientific discoveries in the 21st century, a convergence and integration of world-leading experimental facilities and capabilities with theory, modeling, and simulation is necessary. In this issue of Experimental Physical Sciences Vistas, I am excited to present our plans for Los Alamos National Laboratory's future flagship experimental facility, MaRIE (Matter-Radiation Interactions in Extremes). MaRIE is a facility that will provide transformational understanding of matter in extreme conditions required to reduce or resolve key weapons performance uncertainties, develop the materials needed for advanced energy systems, and transform our ability to create materials by design. Our unique role in materialsmore » science starting with the Manhattan Project has positioned us well to develop a contemporary materials strategy pushing the frontiers of controlled functionality - the design and tailoring of a material for the unique demands of a specific application. Controlled functionality requires improvement in understanding of the structure and properties of materials in order to synthesize and process materials with unique characteristics. In the nuclear weapons program today, improving data and models to increase confidence in the stockpile can take years from concept to new knowledge. Our goal with MaRIE is to accelerate this process by enhancing predictive capability - the ability to compute a priori the observables of an experiment or test and pertinent confidence intervals using verified and validated simulation tools. It is a science-based approach that includes the use of advanced experimental tools, theoretical models, and multi-physics codes, simultaneously dealing with multiple aspects of physical operation of a system that are needed to develop an increasingly mature predictive capability. This same approach is needed to accelerate improvements to other systems such as nuclear reactors. MaRIE will be valuable to many national security science challenges. Our first issue of Vistas focused on our current national user facilities (the Los Alamos Neutron Science Center [LANSCE], the National High Magnetic Field Laboratory-Pulsed Field Facility, and the Center for Integrated Nanotechnologies) and the vitality they bring to our Laboratory. These facilities are a magnet for students, postdoctoral researchers, and staff members from all over the world. This, in turn, allows us to continue to develop and maintain our strong staff across the relevant disciplines and conduct world-class discovery science. The second issue of Vistas was devoted entirely to the Laboratory's materials strategy - one of the three strategic science thrusts for the Laboratory. This strategy has helped focus our thinking for MaRIE. We believe there is a bright future in cutting-edge experimental materials research, and that a 21st-century facility with unique capability is necessary to fulfill this goal. The Laboratory has spent the last several years defining MaRIE, and this issue of Vistas presents our current vision of that facility. MaRIE will leverage LANSCE and our other user facilities, as well as our internal and external materials community for decades to come, giving Los Alamos a unique competitive advantage, advancing materials science for the Laboratory's missions and attracting and recruiting scientists of international stature. MaRIE will give the international materials research community a suite of tools capable of meeting a broad range of outstanding grand challenges.« less

  4. Experimental investigation of nozzle/plume aerodynamics at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cambier, Jean-Luc; Papadopoulos, Perikles

    1994-01-01

    Much of the work involved the Ames 16-Inch Shock Tunnel facility. The facility was reactivated and upgraded, a data acquisition system was configured and upgraded several times, several facility calibrations were performed and test entries with a wedge model with hydrogen injection and a full scramjet combustor model, with hydrogen injection, were performed. Extensive CFD modeling of the flow in the facility was done. This includes modeling of the unsteady flow in the driver and driven tubes and steady flow modeling of the nozzle flow. Other modeling efforts include simulations of non-equilibrium flows and turbulence, plasmas, light gas guns and the use of non-ideal gas equations of state. New experimental techniques to improve the performance of gas guns, shock tubes and tunnels and scramjet combustors were conceived and studied computationally. Ways to improve scramjet engine performance using steady and pulsed detonation waves were also studied computationally. A number of studies were performed on the operation of the ram accelerator, including investigations of in-tube gasdynamic heating and the use of high explosives to raise the velocity capability of the device.

  5. Overview of the Orion Vibroacoustic Test Capability at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; Hozman, Aron D.; McNelis, Mark E.; Otten, Kim D.

    2008-01-01

    In order to support the environmental test needs for our new Orion and Constellation program, NASA is developing unique world-class test facilities. To optimize this testing of spaceflight hardware while minimizing transportation issues, a one-stop, under one roof test capability is being developed at the Space Power Facility at the NASA Glenn Research Center's Plum Brook Station. This facility will provide the capability to perform the following environmental testing: (1) reverberation acoustic testing, (2) mechanical base-shake sine testing, (3) modal testing, (4) thermal-vacuum testing, and (5) EMI/EMC (electromagnetic interference and compatibility) testing. An overview of this test capability will be provided in this presentation, with special focus on the two new vibroacoustic test facilities currently being designed and built, the Reverberant Acoustic Test Facility (RATF) and the Mechanical Vibration Facility (MVF). Testing of the engineering developmental hardware and qualification hardware of the Orion (Crew Exploration Vehicle) will commence shortly after the facilities are commissioned.

  6. Entry, Descent, and Landing Aerothermodynamics: NASA Langley Experimental Capabilities and Contributions

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Berger, Karen T.; Berry, Scott A.; Bruckmann, Gregory J.; Buck, Gregory M.; DiFulvio, Michael; Horvath, Thomas J.; Liechty, Derek S.; Merski, N. Ronald; Murphy, Kelly J.; hide

    2014-01-01

    A review is presented of recent research, development, testing and evaluation activities related to entry, descent and landing that have been conducted at the NASA Langley Research Center. An overview of the test facilities, model development and fabrication capabilities, and instrumentation and measurement techniques employed in this work is provided. Contributions to hypersonic/supersonic flight and planetary exploration programs are detailed, as are fundamental research and development activities.

  7. Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Brune, A. J.; Bruce, W. E., III; Glass, D. E.; Splinter, S. C.

    2017-01-01

    The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability.

  8. A guideline for interpersonal capabilities enhancement to support sustainable facility management practice

    NASA Astrophysics Data System (ADS)

    Sarpin, Norliana; Kasim, Narimah; Zainal, Rozlin; Noh, Hamidun Mohd

    2018-04-01

    Facility management is the key phase in the development cycle of an assets and spans over a considerable length of time. Therefore, facility managers are in a commanding position to maximise the potential of sustainability through the development phases from construction, operation, maintenance and upgrade leading to decommission and deconstruction. Sustainability endeavours in facility management practices will contribute to reducing energy consumption, waste and running costs. Furthermore, it can also help in improving organisational productivity, financial return and community standing of the organisation. Facility manager should be empowered with the necessary knowledge and capabilities at the forefront facing sustainability challenge. However, literature studies show a gap between the level of awareness, specific knowledge and the necessary skills required to pursue sustainability in the facility management professional. People capability is considered as the key enabler in managing the sustainability agenda as well as being central to the improvement of competency and innovation in an organisation. This paper aims to develop a guidelines for interpersonal capabilities to support sustainability in facility management practice. Starting with a total of 7 critical interpersonal capabilities factors identified from previous questionnaire survey, the authors conducted an interview with 3 experts in facility management to assess the perceived importance of these factors. The findings reveal a set of guidelines for the enhancement of interpersonal capabilities among facility managers by providing what can be done to acquire these factors and how it can support the application of sustainability in their practice. The findings of this paper are expected to form the basis of a mechanism framework developed to equip facility managers with the right knowledge, to continue education and training and to develop new mind-sets to enhance the implementation of sustainability measures in FM practices.

  9. Kennedy Space Center Launch and Landing Support

    NASA Technical Reports Server (NTRS)

    Wahlberg, Jennifer

    2010-01-01

    The presentations describes Kennedy Space Center (KSC) payload processing, facilities and capabilities, and research development and life science experience. Topics include launch site processing, payload processing, key launch site processing roles, leveraging KSC experience, Space Station Processing Facility and capabilities, Baseline Data Collection Facility, Space Life Sciences Laboratory and capabilities, research payload development, International Space Station research flight hardware, KSC flight payload history, and KSC life science expertise.

  10. Systems test facilities existing capabilities compilation

    NASA Technical Reports Server (NTRS)

    Weaver, R.

    1981-01-01

    Systems test facilities (STFS) to test total photovoltaic systems and their interfaces are described. The systems development (SD) plan is compilation of existing and planned STFs, as well as subsystem and key component testing facilities. It is recommended that the existing capabilities compilation is annually updated to provide and assessment of the STF activity and to disseminate STF capabilities, status and availability to the photovoltaics program.

  11. Facility Name | Research Site Name | NREL

    Science.gov Websites

    ex ea commodo consequat. Images should have a width of 1746px - height can vary Capabilities Capability 1 Capability 2 Capability 3 Testing Facilities and Laboratories Laboratory Name Images should have a width of 768px - height can vary Download fact sheet Laboratory Name Images should have a width of

  12. Teacher's Corner: Structural Equation Modeling with the Sem Package in R

    ERIC Educational Resources Information Center

    Fox, John

    2006-01-01

    R is free, open-source, cooperatively developed software that implements the S statistical programming language and computing environment. The current capabilities of R are extensive, and it is in wide use, especially among statisticians. The sem package provides basic structural equation modeling facilities in R, including the ability to fit…

  13. Code System to Calculate Tornado-Induced Flow Material Transport.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ANDRAE, R. W.

    1999-11-18

    Version: 00 TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation system components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form amore » complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.« less

  14. Development of a Simulation Capability for the Space Station Active Rack Isolation System

    NASA Technical Reports Server (NTRS)

    Johnson, Terry L.; Tolson, Robert H.

    1998-01-01

    To realize quality microgravity science on the International Space Station, many microgravity facilities will utilize the Active Rack Isolation System (ARIS). Simulation capabilities for ARIS will be needed to predict the microgravity environment. This paper discusses the development of a simulation model for use in predicting the performance of the ARIS in attenuating disturbances with frequency content between 0.01 Hz and 10 Hz. The derivation of the model utilizes an energy-based approach. The complete simulation includes the dynamic model of the ISPR integrated with the model for the ARIS controller so that the entire closed-loop system is simulated. Preliminary performance predictions are made for the ARIS in attenuating both off-board disturbances as well as disturbances from hardware mounted onboard the microgravity facility. These predictions suggest that the ARIS does eliminate resonant behavior detrimental to microgravity experimentation. A limited comparison is made between the simulation predictions of ARIS attenuation of off-board disturbances and results from the ARIS flight test. These comparisons show promise, but further tuning of the simulation is needed.

  15. Modern CFD applications for the design of a reacting shear layer facility

    NASA Technical Reports Server (NTRS)

    Yu, S. T.; Chang, C. T.; Marek, C. J.

    1991-01-01

    The RPLUS2D code, capable of calculating high speed reacting flows, was adopted to design a compressible shear layer facility. In order to create reacting shear layers at high convective Mach numbers, hot air streams at supersonic speeds, rendered by converging-diverging nozzles, must be provided. A finite rate chemistry model is used to simulate the nozzle flows. Results are compared with one-dimensional solutions at chemical equilibrium. Additionally, a two equation turbulence model with compressibility effects was successfully incorporated with the RPLUS code. The model was applied to simulate a supersonic shear layer. Preliminary results show favorable comparisons with the experimental data.

  16. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    NASA Technical Reports Server (NTRS)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  17. Development and Use of a Virtual NMR Facility

    NASA Astrophysics Data System (ADS)

    Keating, Kelly A.; Myers, James D.; Pelton, Jeffrey G.; Bair, Raymond A.; Wemmer, David E.; Ellis, Paul D.

    2000-03-01

    We have developed a "virtual NMR facility" (VNMRF) to enhance access to the NMR spectrometers in Pacific Northwest National Laboratory's Environmental Molecular Sciences Laboratory (EMSL). We use the term virtual facility to describe a real NMR facility made accessible via the Internet. The VNMRF combines secure remote operation of the EMSL's NMR spectrometers over the Internet with real-time videoconferencing, remotely controlled laboratory cameras, real-time computer display sharing, a Web-based electronic laboratory notebook, and other capabilities. Remote VNMRF users can see and converse with EMSL researchers, directly and securely control the EMSL spectrometers, and collaboratively analyze results. A customized Electronic Laboratory Notebook allows interactive Web-based access to group notes, experimental parameters, proposed molecular structures, and other aspects of a research project. This paper describes our experience developing a VNMRF and details the specific capabilities available through the EMSL VNMRF. We show how the VNMRF has evolved during a test project and present an evaluation of its impact in the EMSL and its potential as a model for other scientific facilities. All Collaboratory software used in the VNMRF is freely available from http://www.emsl.pnl.gov:2080/docs/collab.

  18. Capabilities of the Large-Scale Sediment Transport Facility

    DTIC Science & Technology

    2016-04-01

    experiments in wave /current environments. INTRODUCTION: The LSTF (Figure 1) is a large-scale laboratory facility capable of simulating conditions...comparable to low- wave energy coasts. The facility was constructed to address deficiencies in existing methods for calculating longshore sediment...transport. The LSTF consists of a 30 m wide, 50 m long, 1.4 m deep basin. Waves are generated by four digitally controlled wave makers capable of producing

  19. AIAA Aerospace America Magazine - Year in Review Article, 2010

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    2010-01-01

    NASA Stennis Space Center has implemented a pilot operational Integrated System Health Management (ISHM) capability. The implementation was done for the E-2 Rocket Engine Test Stand and a Chemical Steam Generator (CSG) test article; and validated during operational testing. The CSG test program is a risk mitigation activity to support building of the new A-3 Test Stand, which will be a highly complex facility for testing of engines in high altitude conditions. The foundation of the ISHM capability are knowledge-based integrated domain models for the test stand and CSG, with physical and model-based elements represented by objects the domain models enable modular and evolutionary ISHM functionality.

  20. Validating Inertial Confinement Fusion (ICF) predictive capability using perturbed capsules

    NASA Astrophysics Data System (ADS)

    Schmitt, Mark; Magelssen, Glenn; Tregillis, Ian; Hsu, Scott; Bradley, Paul; Dodd, Evan; Cobble, James; Flippo, Kirk; Offerman, Dustin; Obrey, Kimberly; Wang, Yi-Ming; Watt, Robert; Wilke, Mark; Wysocki, Frederick; Batha, Steven

    2009-11-01

    Achieving ignition on NIF is a monumental step on the path toward utilizing fusion as a controlled energy source. Obtaining robust ignition requires accurate ICF models to predict the degradation of ignition caused by heterogeneities in capsule construction and irradiation. LANL has embarked on a project to induce controlled defects in capsules to validate our ability to predict their effects on fusion burn. These efforts include the validation of feature-driven hydrodynamics and mix in a convergent geometry. This capability is needed to determine the performance of capsules imploded under less-than-optimum conditions on future IFE facilities. LANL's recently initiated Defect Implosion Experiments (DIME) conducted at Rochester's Omega facility are providing input for these efforts. Recent simulation and experimental results will be shown.

  1. Attitude and articulation control system testing for Project Galileo

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. D.

    1981-01-01

    A type of facility required to integrate and test a complex autonomous spacecraft subsystem is presented, using the attitude and articulation control subsystem (AACS) of Project Galileo as an example. The equipment created for testing the AACS at both the subsystem and spacecraft system levels is described, including a description of the support equipment (SE) architecture in its two main configurations, closed loop simulation techniques, the user interface to the SE, and plans for the use of the facility beyond the test period. This system is capable of providing a flight-like functional environment through the use of accurate real-time models and carefully chosen points of interaction, and flexible control capability and high visibility to the test operator.

  2. Systems development of a stall/spin research facility using remotely controlled/augmented aircraft models. Volume 1: Systems overview

    NASA Technical Reports Server (NTRS)

    Montoya, R. J.; Jai, A. R.; Parker, C. D.

    1979-01-01

    A ground based, general purpose, real time, digital control system simulator (CSS) is specified, developed, and integrated with the existing instrumentation van of the testing facility. This CSS is built around a PDP-11/55, and its operational software was developed to meet the dual goal of providing the immediate capability to represent the F-18 drop model control laws and the flexibility for expansion to represent more complex control laws typical of control configured vehicles. Overviews of the two CSS's developed are reviewed as well as the overall system after their integration with the existing facility. Also the latest version of the F-18 drop model control laws (REV D) is described and the changes needed for its incorporation in the digital and analog CSS's are discussed.

  3. LaRC design analysis report for National Transonic Facility for 304 stainless steel tunnel shell. Volume 1S: Finite difference analysis of cone/cylinder junction

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W., Jr.; Taylor, J. T.; Wilson, J. F.; Gray, C. E., Jr.; Leatherman, A. D.; Rooker, J. R.; Allred, J. W.

    1976-01-01

    The results of extensive computer (finite element, finite difference and numerical integration), thermal, fatigue, and special analyses of critical portions of a large pressurized, cryogenic wind tunnel (National Transonic Facility) are presented. The computer models, loading and boundary conditions are described. Graphic capability was used to display model geometry, section properties, and stress results. A stress criteria is presented for evaluation of the results of the analyses. Thermal analyses were performed for major critical and typical areas. Fatigue analyses of the entire tunnel circuit are presented.

  4. The NASA integrated test facility and its impact on flight research

    NASA Technical Reports Server (NTRS)

    Mackall, D. A.; Pickett, M. D.; Schilling, L. J.; Wagner, C. A.

    1988-01-01

    The Integrated Test Facility (ITF), being built at NASA Ames-Dryden Flight Research Facility, will provide new test capabilities for emerging research aircraft. An overview of the ITF and the challenges being addressed by this unique facility are outlined. The current ITF capabilities, being developed with the X-29 Forward Swept Wing Program, are discussed along with future ITF activities.

  5. Advancing Test Capabilities at NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James

    2015-01-01

    NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant enhancements to NASA capabilities in ground-based testing. They ensure that these wind tunnels will provide accurate and relevant experimental data for years to come, supporting both NASAs mission and the missions of our government and industry customers.

  6. New hypersonic facility capability at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Haas, Jeffrey E.; Chamberlin, Roger; Dicus, John H.

    1989-01-01

    Four facility activities are underway at NASA Lewis Research Center to develop new hypersonic propulsion test capability. Two of these efforts consist of upgrades to existing operational facilities. The other two activities will reactivate facilities that have been in a standby condition for over 15 years. These four activities are discussed and the new test facilities NASA Lewis will have in place to support evolving high speed research programs are described.

  7. Sensitivity Study of the Wall Interference Correction System (WICS) for Rectangular Tunnels

    NASA Technical Reports Server (NTRS)

    Walker, Eric L.; Everhart, Joel L.; Iyer, Venkit

    2001-01-01

    An off-line version of the Wall Interference Correction System (WICS) has been implemented for the NASA Langley National Transonic Facility. The correction capability is currently restricted to corrections for solid wall interference in the model pitch plane for Mach numbers less than 0.45 due to a limitation in tunnel calibration data. A study to assess output sensitivity to measurement uncertainty was conducted to determine standard operational procedures and guidelines to ensure data quality during the testing process. Changes to the current facility setup and design recommendations for installing the WICS code into a new facility are reported.

  8. Implementation of a state-to-state analytical framework for the calculation of expansion tube flow properties

    NASA Astrophysics Data System (ADS)

    James, C. M.; Gildfind, D. E.; Lewis, S. W.; Morgan, R. G.; Zander, F.

    2018-03-01

    Expansion tubes are an important type of test facility for the study of planetary entry flow-fields, being the only type of impulse facility capable of simulating the aerothermodynamics of superorbital planetary entry conditions from 10 to 20 km/s. However, the complex flow processes involved in expansion tube operation make it difficult to fully characterise flow conditions, with two-dimensional full facility computational fluid dynamics simulations often requiring tens or hundreds of thousands of computational hours to complete. In an attempt to simplify this problem and provide a rapid flow condition prediction tool, this paper presents a validated and comprehensive analytical framework for the simulation of an expansion tube facility. It identifies central flow processes and models them from state to state through the facility using established compressible and isentropic flow relations, and equilibrium and frozen chemistry. How the model simulates each section of an expansion tube is discussed, as well as how the model can be used to simulate situations where flow conditions diverge from ideal theory. The model is then validated against experimental data from the X2 expansion tube at the University of Queensland.

  9. GHG emission control and solid waste management for megacities with inexact inputs: a case study in Beijing, China.

    PubMed

    Lu, Hongwei; Sun, Shichao; Ren, Lixia; He, Li

    2015-03-02

    This study advances an integrated MSW management model under inexact input information for the city of Beijing, China. The model is capable of simultaneously generating MSW management policies, performing GHG emission control, and addressing system uncertainty. Results suggest that: (1) a management strategy with minimal system cost can be obtained even when suspension of certain facilities becomes unavoidable through specific increments of the remaining ones; (2) expansion of facilities depends only on actual needs, rather than enabling the full usage of existing facilities, although it may prove to be a costly proposition; (3) adjustment of waste-stream diversion ratio directly leads to a change in GHG emissions from different disposal facilities. Results are also obtained from the comparison of the model with a conventional one without GHG emissions consideration. It is indicated that (1) the model would reduce the net system cost by [45, 61]% (i.e., [3173, 3520] million dollars) and mitigate GHG emissions by [141, 179]% (i.e., [76, 81] million tons); (2) increased waste would be diverted to integrated waste management facilities to prevent overmuch CH4 emission from the landfills. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Dual-mode capability for hardware-in-the-loop

    NASA Astrophysics Data System (ADS)

    Vamivakas, A. N.; Jackson, Ron L.

    2000-07-01

    This paper details a Hardware-in-the-Loop Facility (HIL) developed for evaluation and verification of a missile system with dual mode capability. The missile has the capability of tracking and intercepting a target using either an RF antenna or an IR sensor. The testing of a dual mode system presents a significant challenge in the development of the HIL facility. An IR and RF target environment must be presented simultaneously to the missile under test. These targets, simulated by IR and RF sources, must be presented to the missile under test without interference from each other. The location of each source is critical in the development of the HIL facility. The requirements for building a HIL facility with dual mode capability and the methodology for testing the dual mode system are defined within this paper. Methods for the verification and validation of the facility are discussed.

  11. The Prompt Gamma Neutron Activation Analysis Facility at ICN—Pitesti

    NASA Astrophysics Data System (ADS)

    Bǎrbos, D.; Pǎunoiu, C.; Mladin, M.; Cosma, C.

    2008-08-01

    PGNAA is a very widely applicable technique for determining the presence and amount of many elements simultaneously in samples ranging in size from micrograms to many grams. PGNAA is characterized by its capability for nondestructive multi-elemental analysis and its ability to analyse elements that cannot be determined by INAA. By means of this PGNAA method we are able to increase the performace of INAA method. A facility has been developed at Institute for Nuclear Research—Piteşti so that the unique features of prompt gamma-ray neutron activation analysis can be used to measure trace and major elements in samples. The facility is linked at the radial neutron beam tube at ACPR-TRIGA reactor. During the PGNAA—facility is in use the ACPR reactor will be operated in steady-state mode at 250 KW maximum power. The facility consists of a radial beam-port, external sample position with shielding, and induced prompt gamma-ray counting system. Thermal neutron flux with energy lower than cadmium cut-off at the sample position was measured using thin gold foil is: φscd = 1.106 n/cm2/s with a cadmium ratio of:80. The gamma-ray detection system consist of an HpGe detector of 16% efficiency (detector model GC1518) with 1.85 keV resolution capability. The HpGe is mounted with its axis at 90° with respect to the incident neutron beam at distance about 200mm from the sample position. To establish the performance capabilities of the facility, irradiation of pure element or sample compound standards were performed to identify the gama-ray energies from each element and their count rates.

  12. Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research

    DOE PAGES

    Moses, E. I.; Lindl, J. D.; Spaeth, M. L.; ...

    2017-03-23

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besidesmore » the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This study provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. Finally, they are covered in more detail in the papers that follow.« less

  13. Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, E. I.; Lindl, J. D.; Spaeth, M. L.

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besidesmore » the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This study provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. Finally, they are covered in more detail in the papers that follow.« less

  14. Engineering directorate technical facilities catalog

    NASA Technical Reports Server (NTRS)

    Maloy, Joseph E.

    1993-01-01

    The Engineering Directorate Technical Facilities Catalog is designed to provide an overview of the technical facilities available within the Engineering Directorate at the National Aeronautics and Space Administration (NASA), Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The combined capabilities of these engineering facilities are essential elements of overall JSC capabilities required to manage and perform major NASA engineering programs. The facilities are grouped in the text by chapter according to the JSC division responsible for operation of the facility. This catalog updates the facility descriptions for the JSC Engineering Directorate Technical Facilities Catalog, JSC 19295 (August 1989), and supersedes the Engineering Directorate, Principle test and Development Facilities, JSC, 19962 (November 1984).

  15. Initialization and Setup of the Coastal Model Test Bed: STWAVE

    DTIC Science & Technology

    2017-01-01

    Laboratory (CHL) Field Research Facility (FRF) in Duck , NC. The improved evaluation methodology will promote rapid enhancement of model capability and focus...Blanton 2008) study . This regional digital elevation model (DEM), with a cell size of 10 m, was generated from numerous datasets collected at different...INFORMATION: For additional information, contact Spicer Bak, Coastal Observation and Analysis Branch, Coastal and Hydraulics Laboratory, 1261 Duck Road

  16. An inventory of aeronautical ground research facilities. Volume 4: Engineering flight simulation facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.

    1971-01-01

    The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.

  17. National facilities study. Volume 5: Space research and development facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With the beginnings of the U.S. space program, there was a pressing need to develop facilities that could support the technology research and development, testing, and operations of evolving space systems. Redundancy in facilities that was once and advantage in providing flexibility and schedule accommodation is instead fast becoming a burden on scarce resources. As a result, there is a clear perception in many sectors that the U.S. has many space R&D facilities that are under-utilized and which are no longer cost-effective to maintain. At the same time, it is clear that the U.S. continues to possess many space R&D facilities which are the best -- or among the best -- in the world. In order to remain world class in key areas, careful assessment of current capabilities and planning for new facilities is needed. The National Facility Study (NFS) was initiated in 1992 to develop a comprehensive and integrated long-term plan for future aerospace facilities that meets current and projected government and commercial needs. In order to assess the nation's capability to support space research and development (R&D), a Space R&D Task Group was formed. The Task Group was co-chaired by NASA and DOD. The Task Group formed four major, technologically- and functionally- oriented working groups: Human and Machine Operations; Information and Communications; Propulsion and Power; and Materials, Structures, and Flight Dynamics. In addition to these groups, three supporting working groups were formed: Systems Engineering and Requirements; Strategy and Policy; and Costing Analysis. The Space R&D Task Group examined several hundred facilities against the template of a baseline mission and requirements model (developed in common with the Space Operations Task Group) and a set of excursions from the baseline. The model and excursions are described in Volume 3 of the NFS final report. In addition, as a part of the effort, the group examined key strategic issues associated with space R&D facilities planning for the U.S., and these are discussed in Section 4 of this volume.

  18. STEADY STATE MODELING OF THE MINIMUM CRITICAL CORE OF THE TRANSIENT REACTOR TEST FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony L. Alberti; Todd S. Palmer; Javier Ortensi

    2016-05-01

    With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. The DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum, air-cooled, nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific scenarios range from simple temperature transients to full fuel melt accidents. DOE has expressed a desire to develop a simulation capability that will accurately modelmore » the experiments before they are irradiated at the facility. It is the aim for this capability to have an emphasis on effective and safe operation while minimizing experimental time and cost. The multi physics platform MOOSE has been selected as the framework for this project. The goals for this work are to identify the fundamental neutronics properties of TREAT and to develop an accurate steady state model for future multiphysics transient simulations. In order to minimize computational cost, the effect of spatial homogenization and angular discretization are investigated. It was found that significant anisotropy is present in TREAT assemblies and to capture this effect, explicit modeling of cooling channels and inter-element gaps is necessary. For this modeling scheme, single element calculations at 293 K gave power distributions with a root mean square difference of 0.076% from those of reference SERPENT calculations. The minimum critical core configuration with identical gap and channel treatment at 293 K resulted in a root mean square, total core, radial power distribution 2.423% different than those of reference SERPENT solutions.« less

  19. Mach Stability Improvements Using an Existing Second Throat Capability at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Balakrishna, Sundareswara; Walker, Eric L.; Goodliff, Scott L.

    2015-01-01

    Recent data quality improvements at the National Transonic Facility have an intended goal of reducing the Mach number variation in a data point to within plus or minus 0.0005, with the ultimate goal of reducing the data repeatability of the drag coefficient for full-span subsonic transport models at transonic speeds to within half a drag count. This paper will discuss the Mach stability improvements achieved through the use of an existing second throat capability at the NTF to create a minimum area at the end of the test section. These improvements were demonstrated using both the NASA Common Research Model and the NTF Pathfinder-I model in recent experiments. Sonic conditions at the throat were verified using sidewall static pressure data. The Mach variation levels from both experiments in the baseline tunnel configuration and the choked tunnel configuration will be presented and the correlation between Mach number and drag will also be examined. Finally, a brief discussion is given on the consequences of using the second throat in its location at the end of the test section.

  20. Mach Stability Improvements Using an Existing Second Throat Capability at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Chan, David T.

    2015-01-01

    Recent data quality improvements at the National Transonic Facility (NTF) have an intended goal of reducing the Mach number variation in a data point to within unit vector A plus or minus 0.0005, with the ultimate goal of reducing the data repeatability of the drag coefficient for full-span subsonic transport models at transonic speeds to within half of a drag count. This paper will discuss the Mach stability improvements achieved through the use of an existing second throat capability at the NTF to create a minimum area at the end of the test section. These improvements were demonstrated using both the NASA Common Research Model and the NTF Pathfinder-I model in recent experiments. Sonic conditions at the throat were verified using sidewall static pressure data. The Mach variation levels from both experiments in the baseline tunnel configuration and the choked tunnel configuration will be presented. Finally, a brief discussion is given on the consequences of using the second throat in its location at the end of the test section.

  1. A Capable and Temporary Test Facility on a Shoestring Budget: The MSL Touchdown Test Facility

    NASA Technical Reports Server (NTRS)

    White, Christopher V.; Frankovich, John K.; Yates, Philip; Wells, George, Jr.; Robert, Losey

    2008-01-01

    The Mars Science Laboratory mission (MSL) has undertaken a developmental Touchdown Test Program that utilizes a full-scale rover vehicle and an overhead winch system to replicate the skycrane landing event. Landing surfaces consisting of flat and sloped granular media, planar, rigid surfaces, and various combinations of rocks and slopes were studied. Information gathered from these tests was vital for validating the rover analytical model, validating certain design or system behavior assumptions, and for exploring events and phenomenon that are either very difficult or too costly to model in a credible way. This paper describes this test program, with a focus on the creation of test facility, daily test operations, and some of the challenges faced and lessons learned along the way.

  2. Sandia QIS Capabilities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Richard P.

    2017-07-01

    Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.

  3. Extreme Environments Capabilities at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Balcerski, Jeffrey; Kremic, Tibor; Arnett, Lori; Vento, Dan; Nakley, Leah

    2016-01-01

    The NASA Glenn Research Center has several facilities that can provide testing for extreme evironments of interest to the New Frontiers community. This includes the Glenn Extreme Enivironments Rig (GEER) which can duplicate the atmospheric chemistry and conditions for the Venus surface or any other planet with a hot environment. GRC also has several cryogenic facilities which have the capability to run with hydrogen atmospheres, hydrocarbon atmosphere, CO2 based atmospheres or nitrogen atmospheres. The cryogenic facilities have the capability to emulate Titan lakes.

  4. ASC FY17 Implementation Plan, Rev. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, P. G.

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resources, including technical staff, hardware, simulation software, and computer science solutions.« less

  5. Advanced Simulation and Computing Fiscal Year 2016 Implementation Plan, Version 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, M.; Archer, B.; Hendrickson, B.

    2015-08-27

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The purpose of this IP is to outline key work requirements to be performed and to control individualmore » work activities within the scope of work. Contractors may not deviate from this plan without a revised WA or subsequent IP.« less

  6. An astrometric facility for planetary detection on the space station

    NASA Technical Reports Server (NTRS)

    Nishioka, Kenji; Scargle, Jeffrey D.; Givens, John J.

    1987-01-01

    An Astrometric Telescope Facility (ATF) for planetary detection is being studied as a potential space station initial operating capability payload. The primary science objective of this mission is the detection and study of planetary systems around other stars. In addition, the facility will be capable of other astrometric measurements such as stellar motions of other galaxies and highly precise direct measurement of stellar distance within the Milky Way Galaxy. The results of a recently completed ATF preliminary systems definition study are summarized. Results of this study indicate that the preliminary concept for the facility is fully capable of meeting the science objective without the development of any new technologies. A simple straightforward operations approach was developed for the ATF. A real-time facility control is not normally required, but does maintain a near real-time ground monitoring capability for the facility and science data stream on a full-time basis. Facility observational sequences are normally loaded once a week. In addition, the preliminary system is designed to be fail-safe and single-fault tolerant. Routine interactions by the space station crew with the ATF will not be necessary, but onboard controls are provided for crew override as required for emergencies and maintenance.

  7. Economic Feasibility Analysis Report. Strategic Mobility 21

    DTIC Science & Technology

    2007-08-31

    dedicated arc (truck lane, main rail line, MAGLEV , etc.) and an inland facility capable of serving as a logistics buffer for the marine terminal to...for the Commercial Deployment of Transportation Technologies, “Marketing Study Phase I: MAGLEV Market Sizing and Operational Model.” May, 2006

  8. Development of the 15 meter diameter hoop column antenna

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The building of a deployable 15-meter engineering model of the 100 meter antenna based on the point-design of an earlier task of this contract, complete with an RF-capable surface is described. The 15 meter diameter was selected so that the model could be tested in existing manufacturing, near-field RF, thermal vacuum, and structural dynamics facilities. The antenna was designed with four offset paraboloidal reflector surfaces with a focal length of 366.85 in and a primary surface accuracy goal of .069 in rms. Surface adjustment capability was provided by manually resetting the length of 96 surface control cords which emanated from the lower column extremity. A detailed description of the 15-meter Hoop/Column Antenna, major subassemblies, and a history of its fabrication, assembly, deployment testing, and verification measurements are given. The deviation for one aperture surface (except the outboard extremity) was measured after adjustments in follow-on tests at the Martin Marietta Near-field Facility to be .061 in; thus the primary surface goal was achieved.

  9. Langley Research Center's Unitary Plan Wind Tunnel: Testing Capabilities and Recent Modernization Activities

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    2001-01-01

    Description, capabilities, initiatives, and utilization of the NASA Langley Research Center's Unitary Plan Wind Tunnel are presented. A brief overview of the facility's operational capabilities and testing techniques is provided. A recent Construction of Facilities (CoF) project to improve facility productivity and efficiency through facility automation has been completed and is discussed. Several new and maturing thrusts are underway that include systematic efforts to provide credible assessment for data quality, modifications to the new automation control system for increased compatibility with the Modern Design Of Experiments (MDOE) testing methodology, and process improvements for better test coordination, planning, and execution.

  10. Langley Research Center's Unitary Plan Wind Tunnel: Testing Capabilities and Recent Modernization Activities

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    2001-01-01

    Description, capabilities, initiatives, and utilization of the NASA Langley Research Center's Unitary Plan Wind Tunnel are presented. A brief overview of the facility's operational capabilities and testing techniques is provided. A recent Construction of Facilities (Car) project to improve facility productivity and efficiency through facility automation has been completed and is discussed. Several new and maturing thrusts are underway that include systematic efforts to provide credible assessment for data quality, modifications to the new automation control system for increased compatibility with the Modern Design of Experiments (MDOE) testing methodology, and process improvements for better test coordination, planning, and execution.

  11. 33 CFR 158.310 - Reception facilities: General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... order to pass the inspection under § 158.160, must— (1) Be a reception facility as defined under § 158... residue; (5) Be capable of receiving NLS residue from an oceangoing ship within 24 hours after notice by that ship of the need for reception facilities; and (6) Be capable of completing the transfer of NLS...

  12. Hypersonic engine component experiments in high heat flux, supersonic flow environment

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Melis, Matthew E.

    1993-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Even though progress has been made in the computational understanding of fluid dynamics and the physics/chemistry of high speed flight, there is also a need for experimental facilities capable of providing a high heat flux environment for testing component concepts and verifying/calibrating these analyses. A hydrogen/oxygen rocket engine heat source was developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to fulfill this need. This 'Hot Gas Facility' is capable of providing heat fluxes up to 450 w/sq cm on flat surfaces and up to 5,000 w/sq cm at the leading edge stagnation point of a strut in a supersonic flow stream. Gas temperatures up to 3050 K can also be attained. Two recent experimental programs conducted in this facility are discussed. The objective of the first experiment is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Macrophotographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight. The objective of the second experiment is to assess the capability of cooling a porous surface exposed to a high temperature, high velocity flow environment and to provide a heat transfer data base for a design procedure. Experimental results from transpiration cooled surfaces in a supersonic flow environment are presented.

  13. Integrated Facilities and Infrastructure Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisz Westlund, Jennifer Jill

    Our facilities and infrastructure are a key element of our capability-based science and engineering foundation. The focus of the Integrated Facilities and Infrastructure Plan is the development and implementation of a comprehensive plan to sustain the capabilities necessary to meet national research, design, and fabrication needs for Sandia National Laboratories’ (Sandia’s) comprehensive national security missions both now and into the future. A number of Sandia’s facilities have reached the end of their useful lives and many others are not suitable for today’s mission needs. Due to the continued aging and surge in utilization of Sandia’s facilities, deferred maintenance has continuedmore » to increase. As part of our planning focus, Sandia is committed to halting the growth of deferred maintenance across its sites through demolition, replacement, and dedicated funding to reduce the backlog of maintenance needs. Sandia will become more agile in adapting existing space and changing how space is utilized in response to the changing requirements. This Integrated Facilities & Infrastructure (F&I) Plan supports the Sandia Strategic Plan’s strategic objectives, specifically Strategic Objective 2: Strengthen our Laboratories’ foundation to maximize mission impact, and Strategic Objective 3: Advance an exceptional work environment that enables and inspires our people in service to our nation. The Integrated F&I Plan is developed through a planning process model to understand the F&I needs, analyze solution options, plan the actions and funding, and then execute projects.« less

  14. XRCF Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Reily, Cary; Kegely, Jeff; Burdine, Robert (Technical Monitor)

    2001-01-01

    The Space Optics Manufacturing Technology Center's X-ray Calibration Facility has been recently modified to test Next Generation Space Telescope (NGST) developmental mirrors at cryogenic temperatures (35 degrees Kelvin) while maintaining capability for performance testing of x-ray optics and detectors. The facility's current cryo-optical testing capability and potential modifications for future support of NGST will be presented.

  15. Progressive fracture of fiber composites

    NASA Technical Reports Server (NTRS)

    Irvin, T. B.; Ginty, C. A.

    1983-01-01

    Refined models and procedures are described for determining progressive composite fracture in graphite/epoxy angleplied laminates. Lewis Research Center capabilities are utilized including the Real Time Ultrasonic C Scan (RUSCAN) experimental facility and the Composite Durability Structural Analysis (CODSTRAN) computer code. The CODSTRAN computer code is used to predict the fracture progression based on composite mechanics, finite element stress analysis, and fracture criteria modules. The RUSCAN facility, CODSTRAN computer code, and scanning electron microscope are used to determine durability and identify failure mechanisms in graphite/epoxy composites.

  16. Sensing and Active Flow Control for Advanced BWB Propulsion-Airframe Integration Concepts

    NASA Technical Reports Server (NTRS)

    Fleming, John; Anderson, Jason; Ng, Wing; Harrison, Neal

    2005-01-01

    In order to realize the substantial performance benefits of serpentine boundary layer ingesting diffusers, this study investigated the use of enabling flow control methods to reduce engine-face flow distortion. Computational methods and novel flow control modeling techniques were utilized that allowed for rapid, accurate analysis of flow control geometries. Results were validated experimentally using the Techsburg Ejector-based wind tunnel facility; this facility is capable of simulating the high-altitude, high subsonic Mach number conditions representative of BWB cruise conditions.

  17. Simulating the Composite Propellant Manufacturing Process

    NASA Technical Reports Server (NTRS)

    Williamson, Suzanne; Love, Gregory

    2000-01-01

    There is a strategic interest in understanding how the propellant manufacturing process contributes to military capabilities outside the United States. The paper will discuss how system dynamics (SD) has been applied to rapidly assess the capabilities and vulnerabilities of a specific composite propellant production complex. These facilities produce a commonly used solid propellant with military applications. The authors will explain how an SD model can be configured to match a specific production facility followed by a series of scenarios designed to analyze operational vulnerabilities. By using the simulation model to rapidly analyze operational risks, the analyst gains a better understanding of production complexities. There are several benefits of developing SD models to simulate chemical production. SD is an effective tool for characterizing complex problems, especially the production process where the cascading effect of outages quickly taxes common understanding. By programming expert knowledge into an SD application, these tools are transformed into a knowledge management resource that facilitates rapid learning without requiring years of experience in production operations. It also permits the analyst to rapidly respond to crisis situations and other time-sensitive missions. Most importantly, the quantitative understanding gained from applying the SD model lends itself to strategic analysis and planning.

  18. Comparative Measurements of Earth and Martian Entry Environments in the NASA Langley HYMETS Facility

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Bey, Kim S.; Gragg, Jeffrey G.; Brewer, Amy

    2011-01-01

    Arc-jet facilities play a major role in the development of heat shield materials for entry vehicles because they are capable of producing representative high-enthalpy flow environments. Arc-jet test data is used to certify material performance for a particular mission and to validate or calibrate models of material response during atmospheric entry. Materials used on missions entering Earth s atmosphere are certified in an arc-jet using a simulated air entry environment. Materials used on missions entering the Martian atmosphere should be certified in an arc-jet using a simulated Martian atmosphere entry environment, which requires the use of carbon dioxide. Carbon dioxide has not been used as a test gas in a United States arc-jet facility since the early 1970 s during the certification of materials for the Viking Missions. Materials certified for the Viking missions have been used on every entry mission to Mars since that time. The use of carbon dioxide as a test gas in an arc-jet is again of interest to the thermal protection system community for certification of new heat shield materials that can increase the landed mass capability for Mars bound missions beyond that of Viking and Pathfinder. This paper describes the modification, operation, and performance of the Hypersonic Materials Environmental Test System (HYMETS) arc-jet facility with carbon dioxide as a test gas. A basic comparison of heat fluxes, various bulk properties, and performance characteristics for various Earth and Martian entry environments in HYMETS is provided. The Earth and Martian entry environments consist of a standard Earth atmosphere, an oxygen-rich Earth atmosphere, and a simulated Martian atmosphere. Finally, a preliminary comparison of the HYMETS arc-jet facility to several European plasma facilities is made to place the HYMETS facility in a more global context of arc-jet testing capability.

  19. Space Weather Modeling at the Community Coordinated Modeling Center

    NASA Astrophysics Data System (ADS)

    Hesse, M.; Falasca, A.; Johnson, J.; Keller, K.; Kuznetsova, M.; Rastaetter, L.

    2003-04-01

    The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership aimed at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of NASA's Living With a Star (LWS) initiative, of the National Space Weather Program Implementation Plan, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the US Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and development accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate. We will demonstrate the capabilities of models resident at CCMC via the analysis of a geomagnetic storm, driven by a shock in the solar wind.

  20. Low thrust rocket test facility

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Schneider, Steven J.

    1990-01-01

    A low thrust chemical rocket test facility has recently become operational at the NASA-Lewis. The new facility is used to conduct both long duration and performance tests at altitude over a thruster's operating envelope using hydrogen and oxygen gas for propellants. The facility provides experimental support for a broad range of objectives, including fundamental modeling of fluids and combustion phenomena, the evaluation of thruster components, and life testing of full rocket designs. The major mechanical and electrical systems are described along with aspects of the various optical diagnostics available in the test cell. The electrical and mechanical systems are designed for low down time between tests and low staffing requirements for test operations. Initial results are also presented which illustrate the various capabilities of the cell.

  1. Recent "Ground Testing" Experiences in the National Full-Scale Aerodynamics Complex

    NASA Technical Reports Server (NTRS)

    Zell, Peter; Stich, Phil; Sverdrup, Jacobs; George, M. W. (Technical Monitor)

    2002-01-01

    The large test sections of the National Full-scale Aerodynamics Complex (NFAC) wind tunnels provide ideal controlled wind environments to test ground-based objects and vehicles. Though this facility was designed and provisioned primarily for aeronautical testing requirements, several experiments have been designed to utilize existing model mount structures to support "non-flying" systems. This presentation will discuss some of the ground-based testing capabilities of the facility and provide examples of groundbased tests conducted in the facility to date. It will also address some future work envisioned and solicit input from the SATA membership on ways to improve the service that NASA makes available to customers.

  2. The NASA JSC Hypervelocity Impact Test Facility (HIT-F)

    NASA Technical Reports Server (NTRS)

    Crews, Jeanne L.; Christiansen, Eric L.

    1992-01-01

    The NASA Johnson Space Center Hypervelocity Impact Test Facility was created in 1980 to study the hypervelocity impact characteristics of composite materials. The facility consists of the Hypervelocity Impact Laboratory (HIRL) and the Hypervelocity Analysis Laboratory (HAL). The HIRL supports three different-size light-gas gun ranges which provide the capability of launching particle sizes from 100 micron spheres to 12.7 mm cylinders. The HAL performs three functions: (1) the analysis of data collected from shots in the HIRL, (2) numerical and analytical modeling to predict impact response beyond test conditions, and (3) risk and damage assessments for spacecraft exposed to the meteoroid and orbital debris environments.

  3. Scientific Computing Strategic Plan for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiting, Eric Todd

    Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory’s (INL’s) challenge and charge, and is central to INL’s ongoing success. Computing is an essential part of INL’s future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing numbermore » of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.« less

  4. Improving the explanation capabilities of advisory systems

    NASA Technical Reports Server (NTRS)

    Porter, Bruce; Souther, Art

    1993-01-01

    A major limitation of current advisory systems (e.g., intelligent tutoring systems and expert systems) is their restricted ability to give explanations. The goal of our research is to develop and evaluate a flexible explanation facility, one that can dynamically generate responses to questions not anticipated by the system's designers and that can tailor these responses to individual users. To achieve this flexibility, we are developing a large knowledge base, a viewpoint construction facility, and a modeling facility. In the long term we plan to build and evaluate advisory systems with flexible explanation facilities for scientists in numerous domains. In the short term, we are focusing on a single complex domain in biological science, and we are working toward two important milestones: (1) building and evaluating an advisory system with a flexible explanation facility for freshman-level students studying biology; and (2) developing general methods and tools for building similar explanation facilities in other domains.

  5. Improving the explanation capabilities of advisory systems

    NASA Technical Reports Server (NTRS)

    Porter, Bruce; Souther, Art

    1994-01-01

    A major limitation of current advisory systems (e.g., intelligent tutoring systems and expert systems) is their restricted ability to give explanations. The goal of our research is to develop and evaluate a flexible explanation facility, one that can dynamically generate responses to questions not anticipated by the system's designers and that can tailor these responses to individual users. To achieve this flexibility, we are developing a large knowledge base, a viewpoint construction facility, and a modeling facility. In the long term we plan to build and evaluate advisory systems with flexible explanation facilities for scientists in numerous domains. In the short term, we are focusing on a single complex domain in biological science, and we are working toward two important milestones: (1) building and evaluating an advisory system with a flexible explanation facility for freshman-level students studying biology, and (2) developing general methods and tools for building similar explanation facilities in other domains.

  6. Revalidation of the NASA Ames 11-by 11-Foot Transonic Wind Tunnel with a Commercial Airplane Model

    NASA Technical Reports Server (NTRS)

    Kmak, Frank J.; Hudgins, M.; Hergert, D.; George, Michael W. (Technical Monitor)

    2001-01-01

    The 11-By 11-Foot Transonic leg of the Unitary Plan Wind Tunnel (UPWT) was modernized to improve tunnel performance, capability, productivity, and reliability. Wind tunnel tests to demonstrate the readiness of the tunnel for a return to production operations included an Integrated Systems Test (IST), calibration tests, and airplane validation tests. One of the two validation tests was a 0.037-scale Boeing 777 model that was previously tested in the 11-By 11-Foot tunnel in 1991. The objective of the validation tests was to compare pre-modernization and post-modernization results from the same airplane model in order to substantiate the operational readiness of the facility. Evaluation of within-test, test-to-test, and tunnel-to-tunnel data repeatability were made to study the effects of the tunnel modifications. Tunnel productivity was also evaluated to determine the readiness of the facility for production operations. The operation of the facility, including model installation, tunnel operations, and the performance of tunnel systems, was observed and facility deficiency findings generated. The data repeatability studies and tunnel-to-tunnel comparisons demonstrated outstanding data repeatability and a high overall level of data quality. Despite some operational and facility problems, the validation test was successful in demonstrating the readiness of the facility to perform production airplane wind tunnel%, tests.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, William I.; Vogelmann, Andrew M.; Cheng, Xiaoping

    The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility began a pilot project in May 2015 to design a routine, high-resolution modeling capability to complement ARM’s extensive suite of measurements. This modeling capability has been named the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) project. The initial focus of LASSO is on shallow convection at the ARM Southern Great Plains (SGP) Climate Research Facility. The availability of LES simulations with concurrent observations will serve many purposes. LES helps bridge the scale gap between DOE ARM observations and models, and the use of routine LES addsmore » value to observations. It provides a self-consistent representation of the atmosphere and a dynamical context for the observations. Further, it elucidates unobservable processes and properties. LASSO will generate a simulation library for researchers that enables statistical approaches beyond a single-case mentality. It will also provide tools necessary for modelers to reproduce the LES and conduct their own sensitivity experiments. Many different uses are envisioned for the combined LASSO LES and observational library. For an observationalist, LASSO can help inform instrument remote sensing retrievals, conduct Observation System Simulation Experiments (OSSEs), and test implications of radar scan strategies or flight paths. For a theoretician, LASSO will help calculate estimates of fluxes and co-variability of values, and test relationships without having to run the model yourself. For a modeler, LASSO will help one know ahead of time which days have good forcing, have co-registered observations at high-resolution scales, and have simulation inputs and corresponding outputs to test parameterizations. Further details on the overall LASSO project are available at https://www.arm.gov/capabilities/modeling/lasso.« less

  8. The Altitude Wind Tunnel (AWT): A unique facility for propulsion system and adverse weather testing

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.

    1985-01-01

    A need has arisen for a new wind tunnel facility with unique capabilities for testing propulsion systems and for conducting research in adverse weather conditions. New propulsion system concepts, new aircraft configurations with an unprecedented degree of propulsion system/aircraft integration, and requirements for aircraft operation in adverse weather dictate the need for a new test facility. Required capabilities include simulation of both altitude pressure and temperature, large size, full subsonic speed range, propulsion system operation, and weather simulation (i.e., icing, heavy rain). A cost effective rehabilitation of the NASA Lewis Research Center's Altitude Wind Tunnel (AWT) will provide a facility with all these capabilities.

  9. Phenomenological Modeling of Infrared Sources: Recent Advances

    NASA Technical Reports Server (NTRS)

    Leung, Chun Ming; Kwok, Sun (Editor)

    1993-01-01

    Infrared observations from planned space facilities (e.g., ISO (Infrared Space Observatory), SIRTF (Space Infrared Telescope Facility)) will yield a large and uniform sample of high-quality data from both photometric and spectroscopic measurements. To maximize the scientific returns of these space missions, complementary theoretical studies must be undertaken to interpret these observations. A crucial step in such studies is the construction of phenomenological models in which we parameterize the observed radiation characteristics in terms of the physical source properties. In the last decade, models with increasing degree of physical realism (in terms of grain properties, physical processes, and source geometry) have been constructed for infrared sources. Here we review current capabilities available in the phenomenological modeling of infrared sources and discuss briefly directions for future research in this area.

  10. Cryogenic Wind Tunnel Models. Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Young, C. P., Jr. (Compiler); Gloss, B. B. (Compiler)

    1983-01-01

    The principal motivating factor was the National Transonic Facility (NTF). Since the NTF can achieve significantly higher Reynolds numbers at transonic speeds than other wind tunnels in the world, and will therefore occupy a unique position among ground test facilities, every effort is being made to ensure that model design and fabrication technology exists to allow researchers to take advantage of this high Reynolds number capability. Since a great deal of experience in designing and fabricating cryogenic wind tunnel models does not exist, and since the experience that does exist is scattered over a number of organizations, there is a need to bring existing experience in these areas together and share it among all interested parties. Representatives from government, the airframe industry, and universities are included.

  11. Progress in Flaps Down Flight Reynolds Number Testing Techniques at the NTF

    NASA Technical Reports Server (NTRS)

    Payne, Frank; Bosetti, Cris; Gatlin, Greg; Tuttle, Dave; Griffiths, Bob

    2007-01-01

    A series of NASA/Boeing cooperative low speed wind tunnel tests was conducted in the National Transonic Facility (NTF) between 2003 and 2004 using a semi-span high lift model representative of the 777-200 aircraft. The objective of this work was to develop the capability to acquire high quality, low speed (flaps down) wind tunnel data at up to flight Reynolds numbers in a facility originally optimized for high speed full span models. In the course of testing, a number of facility and procedural improvements were identified and implemented. The impact of these improvements on key testing metrics data quality, productivity, and so forth - was significant, and is discussed here, together with the relevance of these metrics as applied to cryogenic wind tunnel testing in general. Details of the improvements at the NTF are discussed in AIAA-2006-0508 (Recent Improvements in Semi-span Testing at the National Transonic Facility). The development work at the NTF culminated with validation testing of a 787-8 semi-span model at full flight Reynolds number in the first quarter of 2006.

  12. Propulsion Ground Testing: Planning for the Future

    NASA Technical Reports Server (NTRS)

    Bruce, Robert

    2003-01-01

    Advanced planners are constantly being asked to plan for the provision of future test capability. Historically, this capability is provided either by substantial investment in new test facility capabilities, or in the substantial investment in the modification of pre-exiting test facilities. The key words in the previous sentence are 'substantial investment.' In the evolving environment of increasingly constrained resources, how is an advanced planner to plan for the provisions of such capabilities? Additionally, the conundrum exists that program formulation decisions are being made based on both life cycle cost decisions in an environment in which the more immediate challenge of front-end capital investment oftentimes is the linchpin upon which early decisions are made. In such an environment, how are plans and decisions made? This paper cites examples of decisions made in the past in the area of both major test facility upgrades, as well as major new test facility investment.

  13. Performance Evaluation of the Honeywell GG1308 Miniature Ring Laser Gyroscope

    DTIC Science & Technology

    1993-01-01

    information. The final display line provides the current DSB configuration status. An external strobe was established between the Contraves motion...components and systems. The core of the facility is a Contraves -Goerz Model 57CD 2-axis motion simulator capable of highly precise position, rate and

  14. Past and Present Large Solid Rocket Motor Test Capabilities

    NASA Technical Reports Server (NTRS)

    Kowalski, Robert R.; Owen, David B., II

    2011-01-01

    A study was performed to identify the current and historical trends in the capability of solid rocket motor testing in the United States. The study focused on test positions capable of testing solid rocket motors of at least 10,000 lbf thrust. Top-level information was collected for two distinct data points plus/minus a few years: 2000 (Y2K) and 2010 (Present). Data was combined from many sources, but primarily focused on data from the Chemical Propulsion Information Analysis Center s Rocket Propulsion Test Facilities Database, and heritage Chemical Propulsion Information Agency/M8 Solid Rocket Motor Static Test Facilities Manual. Data for the Rocket Propulsion Test Facilities Database and heritage M8 Solid Rocket Motor Static Test Facilities Manual is provided to the Chemical Propulsion Information Analysis Center directly from the test facilities. Information for each test cell for each time period was compiled and plotted to produce a graphical display of the changes for the nation, NASA, Department of Defense, and commercial organizations during the past ten years. Major groups of plots include test facility by geographic location, test cells by status/utilization, and test cells by maximum thrust capability. The results are discussed.

  15. Advances in Engine Test Capabilities at the NASA Glenn Research Center's Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter M.; Panek, Joseph W.; Dicki, Dennis J.; Piendl, Barry R.; Lizanich, Paul J.; Klann, Gary A.

    2006-01-01

    The Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Glenn Research Center is one of the premier U.S. facilities for research on advanced aeropropulsion systems. The facility can simulate a wide range of altitude and Mach number conditions while supplying the aeropropulsion system with all the support services necessary to operate at those conditions. Test data are recorded on a combination of steady-state and highspeed data-acquisition systems. Recently a number of upgrades were made to the facility to meet demanding new requirements for the latest aeropropulsion concepts and to improve operational efficiency. Improvements were made to data-acquisition systems, facility and engine-control systems, test-condition simulation systems, video capture and display capabilities, and personnel training procedures. This paper discusses the facility s capabilities, recent upgrades, and planned future improvements.

  16. Interactive 3D Models and Simulations for Nuclear Security Education, Training, and Analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, David K.; Dickens, Brian Scott; Heimer, Donovan J.

    By providing examples of products that have been produced in the past, it is the hopes of the authors that the audience will have a more thorough understanding of 3D modeling tools, potential applications, and capabilities that they can provide. Truly the applications and capabilities of these types of tools are only limited by one’s imagination. The future of three-dimensional models lies in the expansion into the world of virtual reality where one will experience a fully immersive first-person environment. The use of headsets and hand tools will allow students and instructors to have a more thorough spatial understanding ofmore » facilities and scenarios that they will encounter in the real world.« less

  17. Aircraft Landing Dynamics Facility - A unique facility with new capabilities

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Stubbs, S. M.; Tanner, J. A.

    1985-01-01

    The Aircraft Landing Dynamics Facility (ALDF), formerly called the Landing Loads Track, is described. The paper gives a historical overview of the original NASA Langley Research Center Landing Loads Track and discusses the unique features of this national test facility. Comparisons are made between the original track characteristics and the new capabilities of the Aircraft Landing Dynamics Facility following the recently completed facility update. Details of the new propulsion and arresting gear systems are presented along with the novel features of the new high-speed carriage. The data acquisition system is described and the paper concludes with a review of future test programs.

  18. An evaluation of three experimental processes for two-dimensional transonic tests

    NASA Technical Reports Server (NTRS)

    Zuppardi, Gennaro

    1989-01-01

    The aerodynamic measurements in conventional wind tunnels usually suffer from the interference effects of the sting supporting the model and the test section walls. These effects are particularly severe in the transonic regime. Sting interference effects can be overcome through the Magnetic Suspension technique. Wall effects can be alleviated by: testing airfoils in conventional, ventilated tunnels at relatively small model to tunnel size ratios; treatment of the tunnel wall boundary layers; or by utilization of the Adaptive Wall Test Section (AWTS) concept. The operating capabilities and results from two of the foremost two-dimensional, transonic, AWTS facilities in existence are assessed. These facilities are the NASA 0.3-Meter Transonic Cryogenic Tunnel and the ONERA T-2 facility located in Toulouse, France. In addition, the results derived from the well known conventional facility, the NAE 5 ft x 5 ft Canadian wind tunnel will be assessed. CAST10/D0A2 Airfoil results will be used in all of the evaluations.

  19. Evaluating the capabilities model of dementia care: a non-randomized controlled trial exploring resident quality of life and care staff attitudes and experiences.

    PubMed

    Moyle, Wendy; Venturato, Lorraine; Cooke, Marie; Murfield, Jenny; Griffiths, Susan; Hughes, Julian; Wolf, Nathan

    2016-07-01

    This 12 month, Australian study sought to compare the Capabilities Model of Dementia Care (CMDC) with usual long-term care (LTC), in terms of (1) the effectiveness of the CMDC in assisting care staff to improve Quality Of Life (QOL) for older people with dementia; and (2) whether implementation of the CMDC improved staff attitudes towards, and experiences of working and caring for the person with dementia. A single blind, non-randomized controlled trial design, involving CMDC intervention group (three facilities) and a comparison usual LTC practice control group (one facility), was conducted from August 2010 to September 2011. Eighty-one staff members and 48 family members of a person with dementia were recruited from these four LTC facilities. At baseline, 6 and 12 months, staff completed a modified Staff Experiences of Working with Demented Residents questionnaire (SEWDR), and families completed the Quality of Life - Alzheimer's Disease questionnaire (QOL-AD). LTC staff in the usual care group reported significantly lower SEWDR scores (i.e. less work satisfaction) than those in the CMDC intervention group at 12 months (p = 0.005). Similarly, family members in the comparison group reported significantly lower levels of perceived QOL for their relative with dementia (QOL-AD scores) than their counterparts in the CMDC intervention group at 12 months (p = 0.012). Although the study has a number of limitations the CMDC appears to be an effective model of dementia care - more so than usual LTC practice. The CMDC requires further evaluation with participants from a diverse range of LTC facilities and stages of cognitive impairment.

  20. National Facilities study

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This study provides a set of recommendations for improving the effectiveness of our nation's aeronautics and space facilities. The study plan considers current and future government and commercial needs as well as DOD and NASA mission requirements through the year 2023. It addresses shortfalls in existing capabilities, new facility requirements, upgrades, consolidations, and phase-out of existing facilities. If the recommendations are implemented, they will provide world-class capability where it is vital to our country's needs and make us more efficient in meeting future needs.

  1. GRC Ground Support Facilities

    NASA Technical Reports Server (NTRS)

    SaintOnge, Thomas H.

    2010-01-01

    The ISS Program is conducting an "ISS Research Academy' at JSC the first week of August 2010. This Academy will be a tutorial for new Users of the International Space Station, focused primarily on the new ISS National Laboratory and its members including Non-Profit Organizations, other government agencies and commercial users. Presentations on the on-orbit research facilities accommodations and capabilities will be made, as well as ground based hardware development, integration and test facilities and capabilities. This presentation describes the GRC Hardware development, test and laboratory facilities.

  2. Force Measurement Improvements to the National Transonic Facility Sidewall Model Support System

    NASA Technical Reports Server (NTRS)

    Goodliff, Scott L.; Balakrishna, Sundareswara; Butler, David; Cagle, C. Mark; Chan, David; Jones, Gregory S.; Milholen, William E., II

    2016-01-01

    The National Transonic Facility is a transonic pressurized cryogenic facility. The development of the high Reynolds number semi-span capability has advanced over the years to include transonic active flow control and powered testing using the sidewall model support system. While this system can be used in total temperatures down to -250Â F for conventional unpowered configurations, it is limited to temperatures above -60Â F when used with powered models that require the use of the high-pressure air delivery system. Thermal instabilities and non-repeatable mechanical arrangements revealed several data quality shortfalls by the force and moment measurement system. Recent modifications to the balance cavity recirculation system have improved the temperature stability of the balance and metric model-to-balance hardware. Changes to the mechanical assembly of the high-pressure air delivery system, particularly hardware that interfaces directly with the model and balance, have improved the repeatability of the force and moment measurement system. Drag comparisons with the high-pressure air system removed will also be presented in this paper.

  3. Meeting the challenges of bringing a new base facility operation model to Gemini Observatory

    NASA Astrophysics Data System (ADS)

    Nitta, Atsuko; Arriagada, Gustavo; Adamson, A. J.; Cordova, Martin; Nunez, Arturo; Serio, Andrew; Kleinman, Scot

    2016-08-01

    The aim of the Gemini Observatory's Base Facilities Project is to provide the capabilities to perform routine night time operations with both telescopes and their instruments from their respective base facilities without anyone present at the summit. Tightening budget constraints prompted this project as both a means to save money and an opportunity to move toward increasing remote operations in the future. We successfully moved Gemini North nighttime operation to our base facility in Hawaii in Nov., 2015. This is the first 8mclass telescope to completely move night time operations to base facility. We are currently working on implementing BFO to Gemini South. Key challenges for this project include: (1) This is a schedule driven project. We have to implement the new capabilities by the end of 2015 for Gemini North and end of 2016 for Gemini South. (2) The resources are limited and shared with operations which has the higher priority than our project. (3) Managing parallel work within the project. (4) Testing, commissioning and introducing new tools to operational systems without adding significant disruptions to nightly operations. (5) Staff buying to the new operational model. (6) The staff involved in the project are spread on two locations separated by 10,000km, seven time zones away from each other. To overcome these challenges, we applied two principles: "Bare Minimum" and "Gradual Descent". As a result, we successfully completed the project ahead of schedule at Gemini North Telescope. I will discuss how we managed the cultural and human aspects of the project through these concepts. The other management aspects will be presented by Gustavo Arriagada [2], the Project Manager of this project. For technical details, please see presentations from Andrew Serio [3] and Martin Cordova [4].

  4. TREE Simulation Facilities, Second Edition, Revision 2

    DTIC Science & Technology

    1979-01-01

    included radiation effects on propellants , ordnance, electronics and chemicals, vehicle shielding, neutron radiography , dosimetry, and health physics...Special Capabilities 2.11.10.1 Radiography Facility 2.11.10.2 Flexo-Rabbit System Support Capabilities 2.11.11.1 Staff 2.11.11.2 Electronics...5,400-MW pulsing operation (experimental dosimetry values for a typical core loading of 94 fuel elements). 2-156 2-46 ACPR radiography facility

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, L.T.; Hickey, M.

    This paper summarizes the progress to date by CH2M HILL and the UKAEA in development of a parametric modelling capability for estimating the costs of large nuclear decommissioning projects in the United Kingdom (UK) and Europe. The ability to successfully apply parametric cost estimating techniques will be a key factor to commercial success in the UK and European multi-billion dollar waste management, decommissioning and environmental restoration markets. The most useful parametric models will be those that incorporate individual components representing major elements of work: reactor decommissioning, fuel cycle facility decommissioning, waste management facility decommissioning and environmental restoration. Models must bemore » sufficiently robust to estimate indirect costs and overheads, permit pricing analysis and adjustment, and accommodate the intricacies of international monetary exchange, currency fluctuations and contingency. The development of a parametric cost estimating capability is also a key component in building a forward estimating strategy. The forward estimating strategy will enable the preparation of accurate and cost-effective out-year estimates, even when work scope is poorly defined or as yet indeterminate. Preparation of cost estimates for work outside the organizations current sites, for which detailed measurement is not possible and historical cost data does not exist, will also be facilitated. (authors)« less

  6. High Enthalpy Studies of Capsule Heating in an Expansion Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Dufrene, Aaron; MacLean, Matthew; Holden, Michael

    2012-01-01

    Measurements were made on an Orion heat shield model to demonstrate the capability of the new LENS-XX expansion tunnel facility to make high quality measurements of heat transfer distributions at flow velocities from 3 km/s (h(sub 0) = 5 MJ/kg) to 8.4 km/s (h(sub 0) = 36 MJ/kg). Thirty-nine heat transfer gauges, including both thin-film and thermocouple instruments, as well as four pressure gauges, and high-speed Schlieren were used to assess the aerothermal environment on the capsule heat shield. Only results from laminar boundary layer runs are reported. A major finding of this test series is that the high enthalpy, low-density flows displayed surface heating behavior that is observed to be consistent with some finite-rate recombination process occurring on the surface of the model. It is too early to speculate on the nature of the mechanism, but the response of the gages on the surface seems generally repeatable and consistent for a range of conditions. This result is an important milestone in developing and proving a capability to make measurements in a ground test environment and extrapolate them to flight for conditions with extreme non-equilibrium effects. Additionally, no significant, isolated stagnation point augmentation ("bump") was observed in the tests in this facility. Cases at higher Reynolds number seemed to show the greatest amount of overall increase in heating on the windward side of the model, which may in part be due to small-scale particulate.

  7. Rail and Motor Outloading Capability Study. Fort Devens, Massachusetts,

    DTIC Science & Technology

    1980-03-01

    AD-AI 765 MILITARY TRAFFIC MANAGEMENT COMMAND TRANSPORTATION EN-ETC FIO 15/5 RAIL AND MOTOR OUTLOADING CAPABILITY STUDY. FORT DEVENS . MASSAC-ETC(U...REPORT TE 79-4-54 RAIL AND MOTOR OUTLOADING CAPABILITY STUDY FORT DEVENS , MASSACHUSETTS Accession Far DTIC TAB March 1980 _stribution/ Av_alability...INTRODUCTION 6.. . .. . . II. ANALYSIS OF FORT DEVENS ’ RAIL OUTLOADING FACILITIES ... . . .. . .9 A. General .9.. B. Rail Facility Description

  8. Rotorcraft research testing in the National Full-Scale Aerodynamics Complex at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Smith, C. A.; Johnson, W.

    1985-01-01

    The unique capabilities of the National Full-Scale Aerodynamics Complex (NFAC) for testing rotorcraft systems are described. The test facilities include the 40- by 80-Foot Wind Tunnel, the 80- by 120-Foot Wind Tunnel, and the Outdoor Aerodynamic Research Facility. The Ames 7- by 10-Foot Subsonic Wind Tunnel is also used in support of the rotor research programs conducted in the NFAC. Detailed descriptions of each of the facilities, with an emphasis on helicopter rotor test capability, are presented. The special purpose rotor test equipment used in conducting helicopter research is reviewed. Test rigs to operate full-scale helicopter main rotors, helicopter tail rotors, and tilting prop-rotors are available, as well as full-scale and small-scale rotor systems for use in various research programs. The test procedures used in conducting rotor experiments are discussed together with representative data obtained from previous test programs. Specific examples are given for rotor performance, loads, acoustics, system interactions, dynamic and aeroelastic stability, and advanced technology and prototype demonstration models.

  9. Advanced Simulation and Computing Fiscal Year 14 Implementation Plan, Rev. 0.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Robert; McCoy, Michel; Archer, Bill

    2013-09-11

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Moreover, ASC’s business model is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools.« less

  10. Replicating systems concepts: Self-replicating lunar factory and demonstration

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Automation of lunar mining and manufacturing facility maintenance and repair is addressed. Designing the factory as an automated, multiproduct, remotely controlled, reprogrammable Lunar Manufacturing Facility capable of constructing duplicates of itself which would themselves be capable of further replication is proposed.

  11. An Astrometric Facility For Planetary Detection On The Space Station

    NASA Astrophysics Data System (ADS)

    Nishioka, Kenji; Scargle, Jeffrey D.; Givens, John J.

    1987-09-01

    An Astrometric Telescope Facility (ATF) for planetary detection is being studied as a potential Space Station initial operating capability payload. The primary science objective of this mission is the detection and study of planetary systems around other stars. In addition, the facility will be capable of other astrometric measurements such as stellar motions of other galaxies and highly precise direct measurement of stellar distances within the Milky Way Galaxy. This paper summarizes the results of a recently completed ATF preliminary systems definition study. Results of this study indicate that the preliminary concept for the facility is fully capable of meeting the science objectives without the development of any new technologies. This preliminary systems study started with the following basic assumptions: 1) the facility will be placed in orbit by a single Shuttle launch, 2) the Space Station will provide a coarse pointing system , electrical power, communications, assembly and checkout, maintenance and refurbishment services, and 3) the facility will be operated from a ground facility. With these assumptions and the science performance requirements a preliminary "strawman" facility was designed. The strawman facility design with a prime-focus telescope of 1.25-m aperture, f-ratio of 13 and a single prime-focus instrument was chosen to minimize random and systemmatic errors. Total facility mass is 5100 kg and overall dimensions are 1.85-m diam by 21.5-m long. A simple straightforward operations approach has been developed for ATF. A real-time facility control is not normally required, but does maintain a near real-time ground monitoring capability for facility and science data stream on a full-time basis. Facility observational sequences are normally loaded once a week. In addition, the preliminary system is designed to be fail-safe and single-fault tolerant. Routine interactions by the Space Station crew with ATF will not be necessary, but onboard controls are provided for crew override as required for emergencies and maintenance.

  12. Propulsion Ground Testing: Planning for the Future

    NASA Technical Reports Server (NTRS)

    Bruce, Robert

    2003-01-01

    Advanced planners are constantly being asked to plan for the provision of future test capability. Historically, this capability is provided either by substantial investment in new test facility capabilities, or in the substantial investment in the modification of pre- existing test capabilities. The key words in the previous sentence are "substantial investment". In the evolving environment of increasingly constrained resources, how is an advanced planner to plan for the provisions of such capabilities? Additionally, the conundrum exists that program formulation decisions are being made based upon both life cycle cost decisions in an environment in which the more immediate challenge of "front-end" capital investment? Often times is the linch-pin upon which early decisions are made. In such an environment, how are plans and decisions made? This paper cites examples of decisions made in the past in the area of both major test facility upgrades, as well as major new test facility investment.

  13. Refining the W1 and SE1 Facilities

    NASA Technical Reports Server (NTRS)

    Chambers, Rodney D.

    2004-01-01

    The Engine Research Building (ERB) houses more than 60 test rigs that study all aspects of engine development. By working with Mary Gibson in the SE1 and W1A Turbine Facilities, I became aware of her responsibilities and better acquainted with the inner workings of the ERB. The SE1 Supersonic/Subsonic Wind Tunnel Facility contains 2 small wind tunnels. The first tunnel uses an atmospheric inlet, while the second uses treated 40-psig air. Both of the tunnels are capable of subsonic and supersonic operation. An auxiliary air supply and exhaust piping providing both test sections with suction, blowing, and crossfire capabilities. The current configuration of SE1 consists of a curved diffuser that studies the blockage along the endwalls. The W1A Low Speed Compressor Facility provides insight for the complex flow phenomena within its 4-stage axial compressor, sand the data obtained from W 1A is used to develop advanced models for fluid dynamic assessment. W1A is based off of a low speed research compressor developed by GE in the 1950's. This compressor has a removable casing treatment under rotor 1, which allows for various tip treatment studies. The increased size and low speed allows instrumentation to be located in the compressor s complex flow paths. Air enters the facility through a filtered roof vent, conditioned for temperature and turbulence, and then passed through the compressor W1A is described as a dynamic facility with many projects taking place simultaneously. This current environment makes it challenging to follow the various affairs that are taking place within the area. During my first 4 weeks at the NASA Glenn Research Center, I have assisted Mary Gibson in multiple tasks such as facility documents, record keeping, maintenance and upgrades. The facility has lube systems for its gearbox and compressor. These systems are critical in the successful operation of the facility. I was assigned the task of creating a facility estimate list, which included the filters and strainers required for the compressor. For my remaining time spent here, we expect to complete a facility parts listing and a virtual project summary so that W1A and SE1 will become ergonomic facilities that will make it easier for people to observe the capabilities and history of the area and the employees that operate. Bolstering our efforts in achieving these goal are the online technical tutorials, software such as Microsoft Excel. Macromedia Flash MX Macromedia Dreamweaver MX, Photoshop 6.0 and the assistance of several NASA employees.

  14. Cryogenic wind tunnels: Unique capabilities for the aerodynamicist

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1976-01-01

    The cryogenic wind-tunnel concept as a practical means for improving ground simulation of transonic flight conditions. The Langley 1/3-meter transonic cryogenic tunnel is operational, and the design of a cryogenic National Transonic Facility is undertaken. A review of some of the unique capabilities of cryogenic wind tunnels is presented. In particular, the advantages of having independent control of tunnel Mach number, total pressure, and total temperature are highlighted. This separate control over the three tunnel parameters will open new frontiers in Mach number, Reynolds number, aeroelastic, and model-tunnel interaction studies.

  15. Real-time data reduction capabilities at the Langley 7 by 10 foot high speed tunnel

    NASA Technical Reports Server (NTRS)

    Fox, C. H., Jr.

    1980-01-01

    The 7 by 10 foot high speed tunnel performs a wide range of tests employing a variety of model installation methods. To support the reduction of static data from this facility, a generalized wind tunnel data reduction program had been developed for use on the Langley central computer complex. The capabilities of a version of this generalized program adapted for real time use on a dedicated on-site computer are discussed. The input specifications, instructions for the console operator, and full descriptions of the algorithms are included.

  16. Around Marshall

    NASA Image and Video Library

    1997-10-31

    The Shooting Star Experiment (SSE) is designed to develop and demonstrate the technology required to focus the sun's energy and use the energy for inexpensive space Propulsion Research. Pictured is an engineering model (Pathfinder III) of the Shooting Star Experiment (SSE). This model was used to test and characterize the motion and deformation of the structure caused by thermal effects. In this photograph, alignment targets are being placed on the engineering model so that a theodolite (alignment telescope) could be used to accurately measure the deformation and deflections of the engineering model under extreme conditions, such as the coldness of deep space and the hotness of the sun as well as vacuum. This thermal vacuum test was performed at the X-Ray Calibration Facility because of the size of the test article and the capabilities of the facility to simulate in-orbit conditions

  17. Shooting Star Experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Shooting Star Experiment (SSE) is designed to develop and demonstrate the technology required to focus the sun's energy and use the energy for inexpensive space Propulsion Research. Pictured is an engineering model (Pathfinder III) of the Shooting Star Experiment (SSE). This model was used to test and characterize the motion and deformation of the structure caused by thermal effects. In this photograph, alignment targets are being placed on the engineering model so that a theodolite (alignment telescope) could be used to accurately measure the deformation and deflections of the engineering model under extreme conditions, such as the coldness of deep space and the hotness of the sun as well as vacuum. This thermal vacuum test was performed at the X-Ray Calibration Facility because of the size of the test article and the capabilities of the facility to simulate in-orbit conditions

  18. Assessment of predictive capabilities for aerodynamic heating in hypersonic flow

    NASA Astrophysics Data System (ADS)

    Knight, Doyle; Chazot, Olivier; Austin, Joanna; Badr, Mohammad Ali; Candler, Graham; Celik, Bayram; Rosa, Donato de; Donelli, Raffaele; Komives, Jeffrey; Lani, Andrea; Levin, Deborah; Nompelis, Ioannis; Panesi, Marco; Pezzella, Giuseppe; Reimann, Bodo; Tumuklu, Ozgur; Yuceil, Kemal

    2017-04-01

    The capability for CFD prediction of hypersonic shock wave laminar boundary layer interaction was assessed for a double wedge model at Mach 7.1 in air and nitrogen at 2.1 MJ/kg and 8 MJ/kg. Simulations were performed by seven research organizations encompassing both Navier-Stokes and Direct Simulation Monte Carlo (DSMC) methods as part of the NATO STO AVT Task Group 205 activity. Comparison of the CFD simulations with experimental heat transfer and schlieren visualization suggest the need for accurate modeling of the tunnel startup process in short-duration hypersonic test facilities, and the importance of fully 3-D simulations of nominally 2-D (i.e., non-axisymmmetric) experimental geometries.

  19. X-ray Cryogenic Facility (XRCF) Handbook

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey R.

    2016-01-01

    The X-ray & Cryogenic Facility (XRCF) Handbook is a guide for planning operations at the facility. A summary of the capabilities, policies, and procedures is provided to enhance project coordination between the facility user and XRCF personnel. This handbook includes basic information that will enable the XRCF to effectively plan and support test activities. In addition, this handbook describes the facilities and systems available at the XRCF for supporting test operations. 1.2 General Facility Description The XRCF was built in 1989 to meet the stringent requirements associated with calibration of X-ray optics, instruments, and telescopes and was subsequently modified in 1999 & 2005 to perform the challenging cryogenic verification of Ultraviolet, Optical, and Infrared mirrors. These unique and premier specialty capabilities, coupled with its ability to meet multiple generic thermal vacuum test requirements for large payloads, make the XRCF the most versatile and adaptable space environmental test facility in the Agency. XRCF is also recognized as the newest, most cost effective, most highly utilized facility in the portfolio and as one of only five NASA facilities having unique capabilities. The XRCF is capable of supporting and has supported missions during all phases from technology development to flight verification. Programs/projects that have benefited from XRCF include Chandra, Solar X-ray Imager, Hinode, and James Webb Space Telescope. All test programs have been completed on-schedule and within budget and have experienced no delays due to facility readiness or failures. XRCF is currently supporting Strategic Astrophysics Technology Development for Cosmic Origins. Throughout the years, XRCF has partnered with and continues to maintain positive working relationships with organizations such as ATK, Ball Aerospace, Northrop Grumman Aerospace, Excelis (formerly Kodak/ITT), Smithsonian Astrophysical Observatory, Goddard Space Flight Center, University of Alabama Huntsville, and more.

  20. 78 FR 5765 - Wireline Competition Bureau Releases Connect America Phase II Cost Model Virtual Workshop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... variation by geography; inter-office transport cost; voice capability; wire center facilities; sizing of... through traditional channels at the FCC, such as the Commission's Electronic Comment Filing System (ECFS... Electronic Comment Filing System (ECFS). In the meantime, parties are encouraged to examine both the Virtual...

  1. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    simulation and testing platforms from each organization. Power-hardware-in-the-loop technology at the power-hardware-in-the-loop and modeling capabilities together with real data from Duke Energy and GE's , communities, and microgrids. Hardware-in-the-loop testing for power systems will be used to verify the

  2. The CSU Accelerator and FEL Facility

    NASA Astrophysics Data System (ADS)

    Biedron, Sandra; Milton, Stephen; D'Audney, Alex; Edelen, Jonathan; Einstein, Josh; Harris, John; Hall, Chris; Horovitz, Kahren; Martinez, Jorge; Morin, Auralee; Sipahi, Nihan; Sipahi, Taylan; Williams, Joel

    2014-03-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode drive linac will be used in conjunction with a hybrid undulator capable of producing THz radiation. Details of the systems used in CSU Accelerator Facility are discussed.

  3. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Blais, P. D.; Davis, J. R., Jr.

    1977-01-01

    Thirty-five (35) furnace runs were carried out during this quarter, of which 25 produced a total of 120 web crystals. The two main thermal models for the dendritic growth process were completed and are being used to assist the design of the thermal geometry of the web growth apparatus. The first model, a finite element representation of the susceptor and crucible, was refined to give greater precision and resolution in the critical central region of the melt. The second thermal model, which describes the dissipation of the latent heat to generate thickness-velocity data, was completed. Dendritic web samples were fabricated into solar cells using a standard configuration and a standard process for a N(+) -P-P(+) configuration. The detailed engineering design was completed for a new dendritic web growth facility of greater width capability than previous facilities.

  4. NSCL and FRIB at Michigan State University: Nuclear science at the limits of stability

    NASA Astrophysics Data System (ADS)

    Gade, A.; Sherrill, B. M.

    2016-05-01

    The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) is a scientific user facility that offers beams of rare isotopes at a wide range of energies. This article describes the facility, its capabilities, and some of the experimental devices used to conduct research with rare isotopes. The versatile nuclear science program carried out by researchers at NSCL continues to address the broad challenges of the field, employing sensitive experimental techniques that have been developed and optimized for measurements with rare isotopes produced by in-flight separation. Selected examples showcase the broad program, capabilities, and the relevance for forefront science questions in nuclear physics, addressing, for example, the limits of nuclear existence; the nature of the nuclear force; the origin of the elements in the cosmos; the processes that fuel explosive scenarios in the Universe; and tests for physics beyond the standard model of particle physics. NSCL will cease operations in approximately 2021. The future program will be carried out at the Facility for Rare Isotope Beams, FRIB, presently under construction on the MSU campus adjacent to NSCL. FRIB will provide fast, stopped, and reaccelerated beams of rare isotopes at intensities exceeding NSCL’s capabilities by three orders of magnitude. An outlook will be provided on the enormous opportunities that will arise upon completion of FRIB in the early 2020s.

  5. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Werner

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to bemore » considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.« less

  6. The Regional Healthcare Ecosystem Analyst (RHEA): a simulation modeling tool to assist infectious disease control in a health system.

    PubMed

    Lee, Bruce Y; Wong, Kim F; Bartsch, Sarah M; Yilmaz, S Levent; Avery, Taliser R; Brown, Shawn T; Song, Yeohan; Singh, Ashima; Kim, Diane S; Huang, Susan S

    2013-06-01

    As healthcare systems continue to expand and interconnect with each other through patient sharing, administrators, policy makers, infection control specialists, and other decision makers may have to take account of the entire healthcare 'ecosystem' in infection control. We developed a software tool, the Regional Healthcare Ecosystem Analyst (RHEA), that can accept user-inputted data to rapidly create a detailed agent-based simulation model (ABM) of the healthcare ecosystem (ie, all healthcare facilities, their adjoining community, and patient flow among the facilities) of any region to better understand the spread and control of infectious diseases. To demonstrate RHEA's capabilities, we fed extensive data from Orange County, California, USA, into RHEA to create an ABM of a healthcare ecosystem and simulate the spread and control of methicillin-resistant Staphylococcus aureus. Various experiments explored the effects of changing different parameters (eg, degree of transmission, length of stay, and bed capacity). Our model emphasizes how individual healthcare facilities are components of integrated and dynamic networks connected via patient movement and how occurrences in one healthcare facility may affect many other healthcare facilities. A decision maker can utilize RHEA to generate a detailed ABM of any healthcare system of interest, which in turn can serve as a virtual laboratory to test different policies and interventions.

  7. Manufacturing Laboratory | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Manufacturing Laboratory Manufacturing Laboratory Researchers in the Energy Systems Integration Facility's Manufacturing Laboratory develop methods and technologies to scale up renewable energy technology manufacturing capabilities. Photo of researchers and equipment in the Manufacturing Laboratory. Capability Hubs

  8. Microgravity Science Glovebox (MSG), Space Science's Past, Present and Future Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie; Spearing, Scott; Jordan, Lee

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an overview of the facility enhancements that will shortly be available for use by future investigators.

  9. Space station needs, attributes and architectural options. Part 1: Summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Candidate missions for the space station were subjected to an evaluation/filtering process which included the application of budgetary constraints and performance of benefits analysis. Results show that the initial space station should be manned, placed in a 28.5 deg orbit, and provide capabilities which include a space test facility, satellite service, a transport harbor, and an observatory. A space industrial park may be added once further development effort validates the cost and expanding commercial market for space-processed material. Using the space station as a national space test facility can enhance national security, as well as commercial and scientific interests alike. The potential accrued gross mission model benefit derived from these capabilities is $5.9B without the industrial park, and $9.3B with it. Other benefits include the lowering of acquisition costs for NASA and DoD space assets and a basis for broadening international participation.

  10. Wind Energy Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  11. Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.

  12. Wind Energy Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Energy Efficiency and Renewable Energy

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  13. Research at a European Planetary Simulation Facility

    NASA Astrophysics Data System (ADS)

    Merrison, J.; Iversen, J. J.; Alois, S.; Rasmussen, K. R.

    2015-10-01

    This unique environmental simulation facility is capable of re-creating extreme terrestrial, Martian and other planetary environments. It is supported by EU activities including Europlanet RI and a volcanology network VERTIGO. It is also used as a test facility by ESA for the forthcoming ExoMars 2018 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and Industrial community. The latest research and networking activities will be presented.

  14. TRAC-P1: an advanced best estimate computer program for PWR LOCA analysis. I. Methods, models, user information, and programming details

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-05-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos Scientific Laboratory (LASL) to provide an advanced ''best estimate'' predictive capability for the analysis of postulated accidents in light water reactors (LWRs). TRAC-Pl provides this analysis capability for pressurized water reactors (PWRs) and for a wide variety of thermal-hydraulic experimental facilities. It features a three-dimensional treatment of the pressure vessel and associated internals; two-phase nonequilibrium hydrodynamics models; flow-regime-dependent constitutive equation treatment; reflood tracking capability for both bottom flood and falling film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions.more » The TRAC-Pl User's Manual is composed of two separate volumes. Volume I gives a description of the thermal-hydraulic models and numerical solution methods used in the code. Detailed programming and user information is also provided. Volume II presents the results of the developmental verification calculations.« less

  15. Indian LSSC (Large Space Simulation Chamber) facility

    NASA Technical Reports Server (NTRS)

    Brar, A. S.; Prasadarao, V. S.; Gambhir, R. D.; Chandramouli, M.

    1988-01-01

    The Indian Space Agency has undertaken a major project to acquire in-house capability for thermal and vacuum testing of large satellites. This Large Space Simulation Chamber (LSSC) facility will be located in Bangalore and is to be operational in 1989. The facility is capable of providing 4 meter diameter solar simulation with provision to expand to 4.5 meter diameter at a later date. With such provisions as controlled variations of shroud temperatures and availability of infrared equipment as alternative sources of thermal radiation, this facility will be amongst the finest anywhere. The major design concept and major aspects of the LSSC facility are presented here.

  16. Cryogenic Test Capability at Marshall Space Flight Center's X-ray Cryogenic Test Facility

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey; Baker, Mark; Carpenter, Jay; Eng, Ron; Haight, Harlan; Hogue, William; McCracken, Jeff; Siler, Richard; Wright, Ernie

    2006-01-01

    Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing sub-liquid nitrogen temperature testing since 1999. Optical wavefront measurement, thermal structural deformation, mechanism functional & calibration, and simple cryo-conditioning tests have been completed. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The chamber's payload envelope and the facility s refrigeration capacity have both been increased. Modifications have also been made to the optical instrumentation area improving access for both the installation and operation of optical instrumentation outside the vacuum chamber. The facility's capabilities, configuration, and performance data will be presented.

  17. Strategic level proton therapy patient admission planning: a Markov decision process modeling approach.

    PubMed

    Gedik, Ridvan; Zhang, Shengfan; Rainwater, Chase

    2017-06-01

    A relatively new consideration in proton therapy planning is the requirement that the mix of patients treated from different categories satisfy desired mix percentages. Deviations from these percentages and their impacts on operational capabilities are of particular interest to healthcare planners. In this study, we investigate intelligent ways of admitting patients to a proton therapy facility that maximize the total expected number of treatment sessions (fractions) delivered to patients in a planning period with stochastic patient arrivals and penalize the deviation from the patient mix restrictions. We propose a Markov Decision Process (MDP) model that provides very useful insights in determining the best patient admission policies in the case of an unexpected opening in the facility (i.e., no-shows, appointment cancellations, etc.). In order to overcome the curse of dimensionality for larger and more realistic instances, we propose an aggregate MDP model that is able to approximate optimal patient admission policies using the worded weight aggregation technique. Our models are applicable to healthcare treatment facilities throughout the United States, but are motivated by collaboration with the University of Florida Proton Therapy Institute (UFPTI).

  18. Spacecraft propulsion systems test capability at the NASA White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Baker, Pleddie; Gorham, Richard

    1993-01-01

    The NASA White Sands Facility (WSTF), a component insallation of the Johnson Space Center, is located on a 94-square-mile site in southwestern New Mexico. WSTF maintains many unique capabilities to support its mission to test and evaluate spacecraft materials, components, and propulsion systems to enable the safe human exploration and utilization of space. WSTF has tested over 340 rocket engines with more than 2.5 million firings to date. Included are propulsion system testing for Apollo, Shuttle, and now Space Station as well as unmanned spacecraft such as Viking, Pioneer, and Mars Observer. This paper describes the current WSTF propulsion test facilities and capabilities.

  19. Facility Targeting, Protection and Mission Decision Making Using the VISAC Code

    NASA Technical Reports Server (NTRS)

    Morris, Robert H.; Sulfredge, C. David

    2011-01-01

    The Visual Interactive Site Analysis Code (VISAC) has been used by DTRA and several other agencies to aid in targeting facilities and to predict the associated collateral effects for the go, no go mission decision making process. VISAC integrates the three concepts of target geometric modeling, damage assessment capabilities, and an event/fault tree methodology for evaluating accident/incident consequences. It can analyze a variety of accidents/incidents at nuclear or industrial facilities, ranging from simple component sabotage to an attack with military or terrorist weapons. For nuclear facilities, VISAC predicts the facility damage, estimated downtime, amount and timing of any radionuclides released. Used in conjunction with DTRA's HPAC code, VISAC also can analyze transport and dispersion of the radionuclides, levels of contamination of the surrounding area, and the population at risk. VISAC has also been used by the NRC to aid in the development of protective measures for nuclear facilities that may be subjected to attacks by car/truck bombs.

  20. Hydropower Modeling Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoll, Brady; Andrade, Juan; Cohen, Stuart

    Hydropower facilities are important assets for the electric power sector and represent a key source of flexibility for electric grids with large amounts of variable generation. As variable renewable generation sources expand, understanding the capabilities and limitations of the flexibility from hydropower resources is important for grid planning. Appropriately modeling these resources, however, is difficult because of the wide variety of constraints these plants face that other generators do not. These constraints can be broadly categorized as environmental, operational, and regulatory. This report highlights several key issues involving incorporating these constraints when modeling hydropower operations in terms of production costmore » and capacity expansion. Many of these challenges involve a lack of data to adequately represent the constraints or issues of model complexity and run time. We present several potential methods for improving the accuracy of hydropower representation in these models to allow for a better understanding of hydropower's capabilities.« less

  1. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not availablemore » or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.« less

  2. TRAC-PD2 posttest analysis of the CCTF Evaluation-Model Test C1-19 (Run 38). [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motley, F.

    The results of a Transient Reactor Analysis Code posttest analysis of the Cylindral Core Test Facility Evaluation-Model Test agree very well with the results of the experiment. The good agreement obtained verifies the multidimensional analysis capability of the TRAC code. Because of the steep radial power profile, the importance of using fine noding in the core region was demonstrated (as compared with poorer results obtained from an earlier pretest prediction that used a coarsely noded model).

  3. A summary of existing and planned experiment hardware for low-gravity fluids research

    NASA Technical Reports Server (NTRS)

    Hill, Myron E.; Omalley, Terence F.

    1991-01-01

    An overview is presented of (1) existing ground-based, low gravity research facilities, with examples of hardware capabilities, and (2) existing and planned space-based research facilities, with examples of current and past flight hardware. Low-gravity, ground-based facilities, such as drop towers and aircraft, provide the experimenter with quick turnaround time, easy access to equipment, gravity levels ranging from 10(exp -2) to 10(exp -6) G, and low-gravity durations ranging from 2 to 30 sec. Currently, the only operational space-based facility is the Space Shuttle. The Shuttle's payload bay and middeck facilities are described. Existing and planned low-gravity fluids research facilities are also described with examples of experiments and hardware capabilities.

  4. Research at a European Planetary Simulation Facility

    NASA Astrophysics Data System (ADS)

    Merrison, Jonathan; Alois, Stefano; Iversen, Jens Jacob

    2016-04-01

    A unique environmental simulation facility will be presented which is capable of re-creating extreme terrestrial or other planetary environments. It is supported by EU activities including a volcanology network VERTIGO and a planetology network Europlanet 2020 RI. It is also used as a test facility by ESA for the forthcoming ExoMars 2018 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and industrial community. Details of this laboratory facility will be presented and some of the most recent activities will be summarized. For information on access to this facility please contact the author.

  5. Experimental Aerodynamic Facilities of the Aerodynamics Research and Concepts Assistance Section

    DTIC Science & Technology

    1983-02-01

    experimental data desired. Internal strain gage balances covering a range of sizes and load capabilities are available for static force and moment tests...tunnel. Both sting and side wall model mounts are available which can be adapted to a variety of internal strain gage balance systems for force and...model components or liquids in the test section. A selection of internal and external strain gage balances and associated mounting fixtures are

  6. Scramjet test flow reconstruction for a large-scale expansion tube, Part 1: quasi-one-dimensional modelling

    NASA Astrophysics Data System (ADS)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2018-07-01

    Large-scale free-piston driven expansion tubes have uniquely high total pressure capabilities which make them an important resource for development of access-to-space scramjet engine technology. However, many aspects of their operation are complex, and their test flows are fundamentally unsteady and difficult to measure. While computational fluid dynamics methods provide an important tool for quantifying these flows, these calculations become very expensive with increasing facility size and therefore have to be carefully constructed to ensure sufficient accuracy is achieved within feasible computational times. This study examines modelling strategies for a Mach 10 scramjet test condition developed for The University of Queensland's X3 facility. The present paper outlines the challenges associated with test flow reconstruction, describes the experimental set-up for the X3 experiments, and then details the development of an experimentally tuned quasi-one-dimensional CFD model of the full facility. The 1-D model, which accurately captures longitudinal wave processes, is used to calculate the transient flow history in the shock tube. This becomes the inflow to a higher-fidelity 2-D axisymmetric simulation of the downstream facility, detailed in the Part 2 companion paper, leading to a validated, fully defined nozzle exit test flow.

  7. Scramjet test flow reconstruction for a large-scale expansion tube, Part 1: quasi-one-dimensional modelling

    NASA Astrophysics Data System (ADS)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2017-11-01

    Large-scale free-piston driven expansion tubes have uniquely high total pressure capabilities which make them an important resource for development of access-to-space scramjet engine technology. However, many aspects of their operation are complex, and their test flows are fundamentally unsteady and difficult to measure. While computational fluid dynamics methods provide an important tool for quantifying these flows, these calculations become very expensive with increasing facility size and therefore have to be carefully constructed to ensure sufficient accuracy is achieved within feasible computational times. This study examines modelling strategies for a Mach 10 scramjet test condition developed for The University of Queensland's X3 facility. The present paper outlines the challenges associated with test flow reconstruction, describes the experimental set-up for the X3 experiments, and then details the development of an experimentally tuned quasi-one-dimensional CFD model of the full facility. The 1-D model, which accurately captures longitudinal wave processes, is used to calculate the transient flow history in the shock tube. This becomes the inflow to a higher-fidelity 2-D axisymmetric simulation of the downstream facility, detailed in the Part 2 companion paper, leading to a validated, fully defined nozzle exit test flow.

  8. The requirements for a new full scale subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kelly, M. W.; Mckinney, M. O.; Luidens, R. W.

    1972-01-01

    Justification and requirements are presented for a large subsonic wind tunnel capable of testing full scale aircraft, rotor systems, and advanced V/STOL propulsion systems. The design considerations and constraints for such a facility are reviewed, and the trades between facility test capability and costs are discussed.

  9. Life sciences utilization of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chambers, Lawrence P.

    1992-01-01

    Space Station Freedom will provide the United States' first permanently manned laboratory in space. It will allow, for the first time, long term systematic life sciences investigations in microgravity. This presentation provides a top-level overview of the planned utilization of Space Station Freedom by NASA's Life Sciences Division. The historical drivers for conducting life sciences research on a permanently manned laboratory in space as well as the advantages that a space station platform provides for life sciences research are discussed. This background information leads into a description of NASA's strategy for having a fully operational International Life Sciences Research Facility by the year 2000. Achieving this capability requires the development of the five discipline focused 'common core' facilities. Once developed, these facilities will be brought to the space station during the Man-Tended Capability phase, checked out and brought into operation. Their delivery must be integrated with the Space Station Freedom manifest. At the beginning of Permanent Manned Capability, the infrastructure is expected to be completed and the Life Sciences Division's SSF Program will become fully operational. A brief facility description, anticipated launch date and a focused objective is provided for each of the life sciences facilities, including the Biomedical Monitoring and Countermeasures (BMAC) Facility, Gravitational Biology Facility (GBF), Gas Grain Simulation Facility (GGSF), Centrifuge Facility (CF), and Controlled Ecological Life Support System (CELSS) Test Facility. In addition, hardware developed by other NASA organizations and the SSF International Partners for an International Life Sciences Research Facility is also discussed.

  10. Description and calibration of the Langley 6- by 19-inch transonic tunnel

    NASA Technical Reports Server (NTRS)

    Ladson, C. L.

    1973-01-01

    A description and calibration is presented of the Langley 6- by 19-inch transonic tunnel which is a two-dimensional facility with top and bottom slotted walls used for testing two-dimensional airfoil sections. Basic tunnel-empty Mach number distributions and schlieren flow photographs as well as integrated normal-force coefficients, pitching-moment coefficients, surface-pressure distributions, and schlieren flow photographs of an NACA 0012 airfoil calibration model are presented. The Mach number capability of the facility is from 0.5 to about 1.1 with a corresponding Reynolds number range of 1.5 million to 3 million based on a 4.0-in. model chord. Comparisons of experimental results from the tests with previous data are also presented.

  11. Coal conversion systems design and process modeling. Volume 1: Application of MPPR and Aspen computer models

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of a coal gasification system design and mass and energy balance simulation program for the TVA and other similar facilities is described. The materials-process-product model (MPPM) and the advanced system for process engineering (ASPEN) computer program were selected from available steady state and dynamic models. The MPPM was selected to serve as the basis for development of system level design model structure because it provided the capability for process block material and energy balance and high-level systems sizing and costing. The ASPEN simulation serves as the basis for assessing detailed component models for the system design modeling program. The ASPEN components were analyzed to identify particular process blocks and data packages (physical properties) which could be extracted and used in the system design modeling program. While ASPEN physical properties calculation routines are capable of generating physical properties required for process simulation, not all required physical property data are available, and must be user-entered.

  12. Thermal (Silicon Diode) Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey

    2008-01-01

    Marshall Space Flight Center's X-ray Calibration Facility (XRCF) has been performing cryogenic testing to 20 Kelvin since 1999. Two configurations for acquiring data from silicon diode temperature sensors have been implemented at the facility. The facility's environment is recorded via a data acquisition system capable of reading up to 60 silicon diodes. Test article temperature is recorded by a second data acquisition system capable of reading 150+ silicon diodes. The specifications and architecture of both systems will be presented.

  13. Thermal (Silicon Diode) Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Wright, Ernest; Kegley, Jeff

    2008-01-01

    Marshall Space Flight Center s X-ray Cryogenic Facility (XRCF) has been performing cryogenic testing to 20 Kelvin since 1999. Two configurations for acquiring data from silicon diode temperature sensors have been implemented at the facility. The facility's environment is recorded via a data acquisition system capable of reading up to 60 silicon diodes. Test article temperature is recorded by a second data acquisition system capable of reading 150+ silicon diodes. The specifications and architecture of both systems will be presented.

  14. Innovations at a European Planetary Simulation Facility

    NASA Astrophysics Data System (ADS)

    Merrison, J.; Iversen, J. J.; Alois, S.; Rasmussen, K. R.

    2017-09-01

    This unique and recently improved planetary simulation facility is capable of re-creating extreme terrestrial, Martian and other planetary environments. It is supported by EU activities including Europlanet 2020 RI and a volcanology network VERTIGO. It is also used as a test facility by ESA for the forthcoming ExoMars 2020 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and Industrial community. The latest research and networking activities will be presented.

  15. Status of the national transonic facility

    NASA Technical Reports Server (NTRS)

    Mckinney, L. W.; Gloss, B. B.

    1982-01-01

    The National Transonic Facility at NASA Langley Research Center, scheduled for completion in July, 1982, is described with emphasis on model and instrumentation activities, calibration plans and some initial research plans. Performance capabilities include a Mach number range of 0.2-1.2, a pressure range of 1-9 atmospheres, and a temperature range of 77-350 K, which will produce a maximum Reynolds number of 120 million at a Mach number of 1.0, based on a 0.25 m chord. A comprehensive tunnel calibration program is planned, which will cover basic tunnel calibration, data qualities, and data comparisons with other facilites and flights.

  16. NASA Stennis Space Center integrated system health management test bed and development capabilities

    NASA Astrophysics Data System (ADS)

    Figueroa, Fernando; Holland, Randy; Coote, David

    2006-05-01

    Integrated System Health Management (ISHM) capability for rocket propulsion testing is rapidly evolving and promises substantial reduction in time and cost of propulsion systems development, with substantially reduced operational costs and evolutionary improvements in launch system operational robustness. NASA Stennis Space Center (SSC), along with partners that includes NASA, contractor, and academia; is investigating and developing technologies to enable ISHM capability in SSC's rocket engine test stands (RETS). This will enable validation and experience capture over a broad range of rocket propulsion systems of varying complexity. This paper describes key components that constitute necessary ingredients to make possible implementation of credible ISHM capability in RETS, other NASA ground test and operations facilities, and ultimately spacecraft and space platforms and systems: (1) core technologies for ISHM, (2) RETS as ISHM testbeds, and (3) RETS systems models.

  17. The Mothball, Sustainment, and Proposed Reactivation of the Hypersonic Tunnel Facility (HTF) at NASA Glenn Research Center Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Lee, Jinho; Stephens, John W.; Hostler, Robert W., Jr.; VonKamp, William D.

    2010-01-01

    The Hypersonic Tunnel Facility (HTF) located at the NASA Glenn Research Center s Plum Brook Station in Sandusky, Ohio, is the nation s only large-scale, non-vitiated, hypersonic propulsion test facility. The HTF, with its 4-story graphite induction heater, is capable of duplicating Mach 5, 6, and 7 flight conditions. This unique propulsion system test facility has experienced several standby and reactivation cycles. The intent of the paper is to overview the HTF capabilities to the propulsion community, present the current status of HTF, and share the lessons learned from putting a large-scale facility into mothball status for a later restart

  18. Large High Performance Optics for Spaceborne Missions: L-3 Brashear Experience and Capability

    NASA Technical Reports Server (NTRS)

    Canzian, Blaise; Gardopee, George; Clarkson, Andrew; Hull, Tony; Borucki, William J.

    2010-01-01

    Brashear is a division of L-3 Communications, Integrated Optical Systems. Brashear is well known for the ground-based telescopes it has manufactured at its facilities and delivered to satisfied customers. Optics from meter-class up to 8.3 meters diameter have been fabricated in Brashear's facilities. Brashear has demonstrated capabilities for large spaceborne optics. We describe in this paper both legacy and new Brashear capabilities for high performance spaceborne optics.

  19. Major Facilities for Materials Research and Related Disciplines.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    This report presents priorities for new facilities and new capabilities at existing facilities with initial costs of at least $5 million. The new facilities in order of priority are: (1) a 6 GeV synchrotron radiation facility; (2) an advanced steady state neutron facility; (3) a 1 to 2 GeV synchrotron radiation facility; and (4) a high intensity…

  20. Design Features and Capabilities of the First Materials Science Research Rack

    NASA Technical Reports Server (NTRS)

    Pettigrew, P. J.; Lehoczky, S. L.; Cobb, S. D.; Holloway, T.; Kitchens, L.

    2003-01-01

    The First Materials Science Research Rack (MSRR-1) aboard the International Space Station (ISS) will offer many unique capabilities and design features to facilitate a wide range of materials science investigations. The initial configuration of MSRR-1 will accommodate two independent Experiment Modules (EMS) and provide the capability for simultaneous on-orbit processing. The facility will provide the common subsystems and interfaces required for the operation of experiment hardware and accommodate telescience capabilities. MSRR1 will utilize an International Standard Payload Rack (ISPR) equipped with an Active Rack Isolation System (ARIS) for vibration isolation of the facility.

  1. International Space Station Capabilities and Payload Accommodations

    NASA Technical Reports Server (NTRS)

    Kugler, Justin; Jones, Rod; Edeen, Marybeth

    2010-01-01

    This slide presentation reviews the research facilities and capabilities of the International Space Station. The station can give unique views of the Earth, as it provides coverage of 85% of the Earth's surface and 95% of the populated landmass every 1-3 days. The various science rack facilities are a resource for scientific research. There are also external research accom0dations. The addition of the Japanese Experiment Module (i.e., Kibo) will extend the science capability for both external payloads and internal payload rack locations. There are also slides reviewing the post shuttle capabilities for payload delivery.

  2. Power source evaluation capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  3. Space station needs, attributes, and architectural options. Volume 1. Executive summary

    NASA Technical Reports Server (NTRS)

    Pritchard, E. B.

    1983-01-01

    The initial space station should be manned, placed in 28.5 deg orbit, and provide substantial economic, performance, and social benefits. The most beneficial space station capabilities include: a space test facility; a transport harbor; satellite servicing and assembly; and an observatory. A space industrial park could be added once further development effort validates the cost and expanding commercial market for space processed materials. The potential accrued gross mission model benefit derived from these capabilities is $5.9B without the industrial park, and $9.3B with it. An unclassified overview of all phases of the study is presented.

  4. Spacelab Data Processing Facility

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The capabilities of the Spacelab Data Processing Facility (SPDPF) are highlighted. The capturing, quality monitoring, processing, accounting, and forwarding of vital Spacelab data to various user facilities around the world are described.

  5. Photovoltaic Manufacturing Consortium (PVMC) – Enabling America’s Solar Revolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metacarpa, David

    The U.S. Photovoltaic Manufacturing Consortium (US-PVMC) is an industry-led consortium which was created with the mission to accelerate the research, development, manufacturing, field testing, commercialization, and deployment of next-generation solar photovoltaic technologies. Formed as part of the U.S. Department of Energy's (DOE) SunShot initiative, and headquartered in New York State, PVMC is managed by the State University of New York Polytechnic Institute (SUNY Poly) at the Colleges of Nanoscale Science and Engineering. PVMC is a hybrid of industry-led consortium and manufacturing development facility, with capabilities for collaborative and proprietary industry engagement. Through its technology development programs, advanced manufacturing development facilities,more » system demonstrations, and reliability and testing capabilities, PVMC has demonstrated itself to be a recognized proving ground for innovative solar technologies and system designs. PVMC comprises multiple locations, with the core manufacturing and deployment support activities conducted at the Solar Energy Development Center (SEDC), and the core Si wafering and metrology technologies being headed out of the University of Central Florida. The SEDC provides a pilot line for proof-of-concept prototyping, offering critical opportunities to demonstrate emerging concepts in PV manufacturing, such as evaluations of innovative materials, system components, and PV system designs. The facility, located in Halfmoon NY, encompasses 40,000 square feet of dedicated PV development space. The infrastructure and capabilities housed at PVMC includes PV system level testing at the Prototype Demonstration Facility (PDF), manufacturing scale cell & module fabrication at the Manufacturing Development Facility (MDF), cell and module testing, reliability equipment on its PV pilot line, all integrated with a PV performance database and analytical characterizations for PVMC and its partners test and commercial arrays. Additional development and deployment support are also housed at the SEDC, such as cost modeling and cost model based development activities for PV and thin film modules, components, and system level designs for reduced LCOE through lower installation hardware costs, labor reductions, soft costs and reduced operations and maintenance costs. The progression of the consortium activities started with infrastructure and capabilities build out focused on CIGS thin film photovoltaics, with a particular focus on flexible cell and module production. As marketplace changes and partners objectives shifted, the consortium shifted heavily towards deployment and market pull activities including Balance of System, cost modeling, and installation cost reduction efforts along with impacts to performance and DER operational costs. The consortium consisted of a wide array of PV supply chain companies from equipment and component suppliers through national developers and installers with a particular focus on commercial scale deployments (typically 25 to 2MW installations). With DOE funding ending after the fifth budget period, the advantages and disadvantages of such a consortium is detailed along with potential avenues for self-sustainability is reviewed.« less

  6. Plant model of KIPT neutron source facility simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system ismore » coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.« less

  7. A continuously self regenerating high-flux neutron-generator facility

    NASA Astrophysics Data System (ADS)

    Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.

    2013-10-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.

  8. Flexible Biomanufacturing Processes that Address the Needs of the Future.

    PubMed

    Diel, Bernhard; Manzke, Christian; Peuker, Thorsten

    2014-01-01

    : As the age of the blockbuster drug recedes, the business model for the biopharmaceutical industry is evolving at an ever-increasing pace. The personalization of medicine, the emergence of biosimilars and biobetters, and the need to provide vaccines globally are just some of the factors forcing biomanufacturers to rethink how future manufacturing capability is implemented. One thing is clear: the traditional manufacturing strategy of constructing large-scale, purpose-built, capital-intensive facilities will no longer meet the industry's emerging production and economic requirements. Therefore, the authors of this chapter describe the new approach for designing and implementing flexible production processes for monoclonal antibodies and focus on the points to consider as well as the lessons learned from past experience in engineering such systems. A conceptual integrated design is presented that can be used as a blueprint for next-generation biomanufacturing facilities. In addition, this chapter discusses the benefits of the new approach with respect to flexibility, cost, and schedule. The concept presented here can be applied to other biopharmaceutical manufacturing processes and facilities, including-but not limited to-vaccine manufacturing, multiproduct and/or multiprocess capability, clinical manufacturing, and so on.

  9. Major Range and Test Facility Base Summary of Capabilities.

    DTIC Science & Technology

    1983-06-01

    TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A 3,i 4, S °.I i L -. ~ . % o,. ° . - ° . - . .I ¢ PHOTOGRAPH THIS SHEET LEVEL INVENTORY DOCUMENT...NUMBER DOD 3200.11-D 4. TTLE(~dS..tt~t@) S TYPE Of REPORT a PERIO’ COVERED Major Range and Test Facility Base Summary Reference Maerial of Capabilities...Electronic Warfare, Command, Control Communications and Intelligence (C31) Surveillance, Jammers, Radar, Test Facility ZG5 ABETW ACT f~ a "Afie Afr- s 444 eF~f

  10. Guidance on the Stand Down, Mothball, and Reactivation of Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Volkman, Gregrey T.; Dunn, Steven C.

    2013-01-01

    The development of aerospace and aeronautics products typically requires three distinct types of testing resources across research, development, test, and evaluation: experimental ground testing, computational "testing" and development, and flight testing. Over the last twenty plus years, computational methods have replaced some physical experiments and this trend is continuing. The result is decreased utilization of ground test capabilities and, along with market forces, industry consolidation, and other factors, has resulted in the stand down and oftentimes closure of many ground test facilities. Ground test capabilities are (and very likely will continue to be for many years) required to verify computational results and to provide information for regimes where computational methods remain immature. Ground test capabilities are very costly to build and to maintain, so once constructed and operational it may be desirable to retain access to those capabilities even if not currently needed. One means of doing this while reducing ongoing sustainment costs is to stand down the facility into a "mothball" status - keeping it alive to bring it back when needed. Both NASA and the US Department of Defense have policies to accomplish the mothball of a facility, but with little detail. This paper offers a generic process to follow that can be tailored based on the needs of the owner and the applicable facility.

  11. Marned Orbital Systems Concept

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Despite the indefinite postponement of the Space Station in 1972, Marshall Space Flight Center (MSFC) continued to look to the future for some type of orbital facility during the post-Skylab years. In 1975, the MSFC directed a contract with the McDonnel Douglas Aerospace Company for the Manned Orbital Systems Concept (MOSC) study. This 9-month effort examined the requirements for, and defined a cost-effective orbital facility concept capable of, supporting extended manned missions in Earth orbit. The capabilities of this concept exceeded those envisioned for the Space Shuttle and Spacelab, both of which were limited by a 7 to 30-day orbital time constraint. The MOSC's initial operating capability was to be achieved in late 1984. A crew of four would man a four-module configuration. During its five-year orbital life the MOSC would have the capability to evolve into a larger 12-to-24-man facility. This is an artist's concept of MOSC.

  12. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  13. Description of Liquid Nitrogen Experimental Test Facility

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; Jacobs, Richard E.; Saiyed, Naseem H.

    1991-01-01

    The Liquid Nitrogen Test Facility is a unique test facility for ground-based liquid nitrogen experimentation. The test rig consists of an insulated tank of approximately 12.5 cubic ft in volume, which is supplied with liquid nitrogen from a 300 gal dewar via a vacuum jacketed piping system. The test tank is fitted with pressure and temperature measuring instrumentation, and with two view ports which allow visual observation of test conditions. To demonstrate the capabilities of the facility, the initial test program is briefly described. The objective of the test program is to measure the condensation rate by injecting liquid nitrogen as a subcooled spray into the ullage of a tank 50 percent full of liquid nitrogen at saturated conditions. The condensation rate of the nitrogen vapor on the subcooled spray can be analytically modeled, and results validated and corrected by experimentally measuring the vapor condensation on liquid sprays.

  14. Description of liquid nitrogen experimental test facility

    NASA Technical Reports Server (NTRS)

    Jurns, J. M.; Jacobs, R. E.; Saiyed, N. H.

    1992-01-01

    The Liquid Nitrogen Test Facility is a unique test facility for ground-based liquid nitrogen experimentation. The test rig consists of an insulated tank of approximately 12.5 cubic ft in volume, which is supplied with liquid nitrogen from a 300 gal dewar via a vacuum jacketed piping system. The test tank is fitted with pressure and temperature measuring instrumentation, and with two view ports which allow visual observation of test conditions. To demonstrate the capabilities of the facility, the initial test program is briefly described. The objective of the test program is to measure the condensation rate by injecting liquid nitrogen as a subcooled spray into the ullage of a tank 50 percent full of liquid nitrogen at saturated conditions. The condensation rate of the nitrogen vapor on the subcooled spray can be analytically modeled, and results validated and corrected by experimentally measuring the vapor condensation on liquid sprays.

  15. Development of a High Accuracy Angular Measurement System for Langley Research Center Hypersonic Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)

    2003-01-01

    Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.

  16. Technical basis for implementation of remote reading capabilities for radiological control instruments at tank farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PIERSON, R.M.

    1999-10-27

    This document provides the technical basis for use of remote reading capabilities with radiological control instruments at River Protection Project facilities. The purpose of this document is to evaluate applications of remote reading capabilities with Radiological Control instrumentation to allow continuous monitoring of radiation dose rates at River Protection Project (RPP) facilities. In addition this document provides a technical basis and implementing guidelines for remote monitoring of dose rates and their potential contribution to maintaining radiation exposures ALARA.

  17. A thermal scale modeling study for Apollo and Apollo applications, volume 1

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.

    1972-01-01

    The program is reported for developing and demonstrating the capabilities of thermal scale modeling as a thermal design and verification tool for Apollo and Apollo Applications Projects. The work performed for thermal scale modeling of STB; cabin atmosphere/spacecraft cabin wall thermal interface; closed loop heat rejection radiator; and docked module/spacecraft thermal interface are discussed along with the test facility requirements for thermal scale model testing of AAP spacecraft. It is concluded that thermal scale modeling can be used as an effective thermal design and verification tool to provide data early in a spacecraft development program.

  18. Aeronautical facilities assessment

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler)

    1985-01-01

    A survey of the free world's aeronautical facilities was undertaken and an evaluation made on where the relative strengths and weaknesses exist. Special emphasis is given to NASA's own capabilities and needs. The types of facilities surveyed are: Wind Tunnels; Airbreathing Propulsion Facilities; and Flight Simulators

  19. Nonterrestrial utilization of materials: Automated space manufacturing facility

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility.

  20. NASA Wallops Flight Facility Air-Sea Interaction Research Facility

    NASA Technical Reports Server (NTRS)

    Long, Steven R.

    1992-01-01

    This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

  1. Orbital transfer vehicle launch operations study: Manpower summary and facility requirements, volume 5

    NASA Technical Reports Server (NTRS)

    1986-01-01

    All manpower numbers, number of heads (by skill), serial time and manhours have been accumulated and compiled on a per subtask basis in spreadsheet format for both the ground based and the space based data flows. To aid in identifying the facility resources required to process the Ground Based Orbital Transfer Vehicle (GBOTV) and/or the space based orbital transfer vehicle (SBOTV) through the ground facilities at Kennedy Space Center (KSC), a software application package was developed using a general purpose data base management system known as Data Flex. The facility requirements are used as the basic input to this software application. The resources of the KSC facility that could be used by orbital transfer vehicle program were digitized in the same format used to identify facility requirements. The facility capabilities were digitized in this format for subsequent, automated comparative analyses. Composite facility requirements are compared to each of the baseline facility capabilities and the system generates a relative score that indicates how each facility weighs against the composite requirements in relation to the other facilities in the set.

  2. The National Transonic Facility: A Research Retrospective

    NASA Technical Reports Server (NTRS)

    Wahls, R. A.

    2001-01-01

    An overview of the National Transonic Facility (NTF) from a research utilization perspective is provided. The facility was born in the 1970s from an internationally recognized need for a high Reynolds number test capability based on previous experiences with preflight predictions of aerodynamic characteristics and an anticipated need in support of research and development for future aerospace vehicle systems. Selection of the cryogenic concept to meet the need, unique capabilities of the facility, and the eventual research utilization of the facility are discussed. The primary purpose of the paper is to expose the range of investigations that have used the NTF since being declared operational in late 1984; limited research results are included, though many more can be found in the references.

  3. Expanded operational capabilities of the Langley Mach 7 Scramjet test facility

    NASA Technical Reports Server (NTRS)

    Thomas, S. R.; Guy, R. W.

    1983-01-01

    An experimental research program conducted to expand the operational capabilities of the NASA Langley Mach 7 Scramjet Test Facility is described. Previous scramjet testing in this facility was limited to a single simulated flight condition of Mach 6.9 at an altitude of 115,300 ft. The arc heater research demonstrates the potential of the facility for scramjet testing at simulated flight conditions from Mach 4 (at altitudes from 77,000 to 114,000 ft) to Mach 7 (at latitudes from 108,000 to 149,000 ft). Arc heater electrical characteristics, operational problems, measurements of nitrogen oxide contaminants, and total-temperature profiles are discussed.

  4. Guide to Facilities, Capabilities, and Programs of Medical Schools in the United States.

    ERIC Educational Resources Information Center

    Mayeda, Tadashi A.

    The information in this document was gathered to aid analysts and designers of the proposed Biomedical Communications Network (BCN) of the National Library of Medicine. The current capabilities and facilities of medical schools in areas of activity impinging on the concept and role of BCN are summarized. Medical schools are listed geographically…

  5. An experimental technique for performing 3-D LDA measurements inside whirling annular seals

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Johnson, Mark C.; Deotte, Robert E., Jr.; Thames, H. Davis, III.; Wiedner, Brian G.

    1992-01-01

    During the last several years, the Fluid Mechanics Division of the Turbomachinery Laboratory at Texas A&M University has developed a rather unique facility with the experimental capability for measuring the flow field inside journal bearings, labyrinth seals, and annular seals. The facility consists of a specially designed 3-D LDA system which is capable of measuring the instantaneous velocity vector within 0.2 mm of a wall while the laser beams are aligned almost perpendicular to the wall. This capability was required to measure the flow field inside journal bearings, labyrinth seals, and annular seals. A detailed description of this facility along with some representative results obtained for a whirling annular seal are presented.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by themore » Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.« less

  7. Modelling the energy costs of the wastewater treatment process: The influence of the aging factor.

    PubMed

    Castellet-Viciano, Lledó; Hernández-Chover, Vicent; Hernández-Sancho, Francesc

    2018-06-01

    Wastewater treatment plants (WWTPs) are aging and its effects on the process are more evident as time goes by. Due to the deterioration of the facilities, the efficiency of the treatment process decreases gradually. Within this framework, this paper proves the increase in the energy consumption of the WWTPs with time, and finds differences among facilities size. Accordingly, the paper aims to develop a dynamic energy cost function capable of predicting the energy cost of the process in the future. The time variable is used to introduce the aging effects on the energy cost estimation in order to increase the accuracy of the estimation. For this purpose, the evolution of energy costs will be assessed and modelled for a group of WWTPs using the methodology of cost functions. The results will be useful for the managers of the facilities in the decision making process. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. High Power MPD Thruster Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Mikellides, Pavlos G.; Reddy, Dhanireddy (Technical Monitor)

    2001-01-01

    Propulsion requirements for large platform orbit raising, cargo and piloted planetary missions, and robotic deep space exploration have rekindled interest in the development and deployment of high power electromagnetic thrusters. Magnetoplasmadynamic (MPD) thrusters can effectively process megawatts of power over a broad range of specific impulse values to meet these diverse in-space propulsion requirements. As NASA's lead center for electric propulsion, the Glenn Research Center has established an MW-class pulsed thruster test facility and is refurbishing a high-power steady-state facility to design, build, and test efficient gas-fed MPD thrusters. A complimentary numerical modeling effort based on the robust MACH2 code provides a well-balanced program of numerical analysis and experimental validation leading to improved high power MPD thruster performance. This paper reviews the current and planned experimental facilities and numerical modeling capabilities at the Glenn Research Center and outlines program plans for the development of new, efficient high power MPD thrusters.

  9. Geospatial relationship of road traffic crashes and healthcare facilities with trauma surgical capabilities in Nairobi, Kenya: defining gaps in coverage.

    PubMed

    Shaw, Brian I; Wangara, Ali Akida; Wambua, Gladys Mbatha; Kiruja, Jason; Dicker, Rochelle A; Mweu, Judith Mutindi; Juillard, Catherine

    2017-01-01

    Road traffic injuries (RTIs) are a cause of significant morbidity and mortality in low- and middle-income countries. Access to timely emergency services is needed to decrease the morbidity and mortality of RTIs and other traumatic injuries. Our objective was to describe the distribution of roadtrafficcrashes (RTCs) in Nairobi with the relative distance and travel times for victims of RTCs to health facilities with trauma surgical capabilities. RTCs in Nairobi County were recorded by the Ma3route app from May 2015 to October 2015 with latitude and longitude coordinates for each RTC extracted using geocoding. Health facility administrators were interviewed to determine surgical capacity of their facilities. RTCs and health facilities were plotted on maps using ArcGIS. Distances and travel times between RTCs and health facilities were determined using the Google Maps Distance Matrix API. 89 percent (25/28) of health facilities meeting inclusion criteria were evaluated. Overall, health facilities were well equipped for trauma surgery with 96% meeting WHO Minimal Safety Criteria. 76 percent of facilities performed greater than 12 of three pre-selected 'Bellweather Procedures' shown to correlate with surgical capability. The average travel time and distance from RTCs to the nearest health facilities surveyed were 7 min and 3.4 km, respectively. This increased to 18 min and 9.6 km if all RTC victims were transported to Kenyatta National Hospital (KNH). Almost all hospitals surveyed in the present study have the ability to care for trauma patients. Treating patients directly at these facilities would decrease travel time compared with transfer to KNH. Nairobi County could benefit from formally coordinating the triage of trauma patients to more facilities to decrease travel time and potentially improve patient outcomes. III.

  10. Near-Field Magnetic Dipole Moment Analysis

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  11. Integration of research infrastructures and ecosystem models toward development of predictive ecology

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Huang, Y.; Jiang, J.; MA, S.; Saruta, V.; Liang, G.; Hanson, P. J.; Ricciuto, D. M.; Milcu, A.; Roy, J.

    2017-12-01

    The past two decades have witnessed rapid development in sensor technology. Built upon the sensor development, large research infrastructure facilities, such as National Ecological Observatory Network (NEON) and FLUXNET, have been established. Through networking different kinds of sensors and other data collections at many locations all over the world, those facilities generate large volumes of ecological data every day. The big data from those facilities offer an unprecedented opportunity for advancing our understanding of ecological processes, educating teachers and students, supporting decision-making, and testing ecological theory. The big data from the major research infrastructure facilities also provides foundation for developing predictive ecology. Indeed, the capability to predict future changes in our living environment and natural resources is critical to decision making in a world where the past is no longer a clear guide to the future. We are living in a period marked by rapid climate change, profound alteration of biogeochemical cycles, unsustainable depletion of natural resources, and deterioration of air and water quality. Projecting changes in future ecosystem services to the society becomes essential not only for science but also for policy making. We will use this panel format to outline major opportunities and challenges in integrating research infrastructure and ecosystem models toward developing predictive ecology. Meanwhile, we will also show results from an interactive model-experiment System - Ecological Platform for Assimilating Data into models (EcoPAD) - that have been implemented at the Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE) experiment in Northern Minnesota and Montpellier Ecotron, France. EcoPAD is developed by integrating web technology, eco-informatics, data assimilation techniques, and ecosystem modeling. EcoPAD is designed to streamline data transfer seamlessly from research infrastructure facilities to model simulation, data assimilation, and ecological forecasting.

  12. Recent Upgrades at the Fermilab Test Beam Facility

    NASA Astrophysics Data System (ADS)

    Rominsky, Mandy

    2016-03-01

    The Fermilab Test Beam Facility is a world class facility for testing and characterizing particle detectors. The facility has been in operation since 2005 and has undergone significant upgrades in the last two years. A second beam line with cryogenic support has been added and the facility has adopted the MIDAS data acquisition system. The facility also recently added a cosmic telescope test stand and improved tracking capabilities. With two operational beam lines, the facility can deliver a variety of particle types and momenta ranging from 120 GeV protons in the primary beam line down to 200 MeV particles in the tertiary beam line. In addition, recent work has focused on analyzing the beam structure to provide users with information on the data they are collecting. With these improvements, the Fermilab Test Beam facility is capable of supporting High Energy physics applications as well as industry users. The upgrades will be discussed along with plans for future improvements.

  13. Assessing Spectral Shortwave Cloud Observations at the Southern Great Plains Facility

    NASA Technical Reports Server (NTRS)

    McBride, P. J.; Marshak, A.; Wiscombe, W. J.; Flynn, C. J.; Vogelmann, A. M.

    2012-01-01

    The Atmospheric Radiation Measurement (ARM) program (now Atmospheric System Research) was established, in part, to improve radiation models so that they could be used reliably to compute radiation fluxes through the atmosphere, given knowledge of the surface albedo, atmospheric gases, and the aerosol and cloud properties. Despite years of observations, discrepancies still exist between radiative transfer models and observations, particularly in the presence of clouds. Progress has been made at closing discrepancies in the spectral region beyond 3 micron, but the progress lags at shorter wavelengths. Ratios of observed visible and near infrared cloud albedo from aircraft and satellite have shown both localized and global discrepancies between model and observations that are, thus far, unexplained. The capabilities of shortwave surface spectrometry have been improved in recent years at the Southern Great Plains facility (SGP) of the ARM Climate Research Facility through the addition of new instrumentation, the Shortwave Array Spectroradiometer, and upgrades to existing instrumentation, the Shortwave Spectroradiometer and the Rotating Shadowband Spectroradiometer. An airborne-based instrument, the HydroRad Spectroradiometer, was also deployed at the ARM site during the Routine ARM Aerial Facility Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign. Using the new and upgraded spectral observations along with radiative transfer models, cloud scenes at the SGP are presented with the goal of characterizing the instrumentation and the cloud fields themselves.

  14. Marshall Space Flight Center Test Capabilities

    NASA Technical Reports Server (NTRS)

    Hamilton, Jeffrey T.

    2005-01-01

    The Test Laboratory at NASA's Marshall Space Flight Center has over 50 facilities across 400+ acres inside a secure, fenced facility. The entire Center is located inside the boundaries of Redstone Arsenal, a 40,000 acre military reservation. About 150 Government and 250 contractor personnel operate facilities capable of all types of propulsion and structural testing, from small components to engine systems and structural strength, structural dynamic and environmental testing. We have tremendous engineering expertise in research, evaluation, analysis, design and development, and test of space transportation systems, subsystems, and components.

  15. National Transonic Facility: A review of the operational plan

    NASA Technical Reports Server (NTRS)

    Liepmann, H. W.; Black, R. E.; Dietz, R. O.; Kirchner, M. E.; Sears, W. R.

    1980-01-01

    The proposed National Transonic Facility (NTF) operational plan is reviewed. The NTF will provide an aerodynamic test capability significantly exceeding that of other transonic regime wind tunnels now available. A limited number of academic research program that might use the NTF are suggested. It is concluded that the NTF operational plan is useful for management, technical, instrumentation, and model building techniques available in the specialized field of aerodynamic analysis and simulation. It is also suggested that NASA hold an annual conference to discuss wind tunnel research results and to report on developments that will further improve the utilization and cost effectiveness of the NTF and other wind tunnels.

  16. Collaborative Mission Design at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.

    2005-01-01

    NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.

  17. Calibration Laboratory Capabilities Listing as of April 2009

    NASA Technical Reports Server (NTRS)

    Kennedy, Gary W.

    2009-01-01

    This document reviews the Calibration Laboratory capabilities for various NASA centers (i.e., Glenn Research Center and Plum Brook Test Facility Kennedy Space Center Marshall Space Flight Center Stennis Space Center and White Sands Test Facility.) Some of the parameters reported are: Alternating current, direct current, dimensional, mass, force, torque, pressure and vacuum, safety, and thermodynamics parameters. Some centers reported other parameters.

  18. Cryogenic, high speed, turbopump bearing cooling requirements

    NASA Technical Reports Server (NTRS)

    Dolan, Fred J.; Gibson, Howard G.; Cannon, James L.; Cody, Joe C.

    1988-01-01

    Although the Space Shuttle Main Engine (SSME) has repeatedly demonstrated the capability to perform during launch, the High Pressure Oxidizer Turbopump (HPOTP) main shaft bearings have not met their 7.5 hour life requirement. A tester is being employed to provide the capability of subjecting full scale bearings and seals to speeds, loads, propellants, temperatures, and pressures which simulate engine operating conditions. The tester design permits much more elaborate instrumentation and diagnostics than could be accommodated in an SSME turbopump. Tests were made to demonstrate the facilities; and the devices' capabilities, to verify the instruments in its operating environment and to establish a performance baseline for the flight type SSME HPOTP Turbine Bearing design. Bearing performance data from tests are being utilized to generate: (1) a high speed, cryogenic turbopump bearing computer mechanical model, and (2) a much improved, very detailed thermal model to better understand bearing internal operating conditions. Parametric tests were also made to determine the effects of speed, axial loads, coolant flow rate, and surface finish degradation on bearing performance.

  19. Characterization and validation of an anechoic facility for high-temperature jet noise studies

    NASA Astrophysics Data System (ADS)

    Craft, Joseph

    In response to the increasing demand for jet noise studies performed at realistic conditions, the Florida Center For Advanced Aero-Propulsion at Florida State University has recently brought online an upgraded Anechoic High-Temperature Jet Facility. The function of this facility is to accurately simulate and characterize the aeroacoustic properties of exhaust from jet engines at realistic temperatures and flow speeds. This new addition is a blow-down facility supplied by a 3500 kPa, 114 cubic meter compressed dry air system and a sudden-expansion ethylene burner that is capable of producing ideally expanded jets up to Mach 2.6 and stagnation temperatures up to 1500 K. The jet exhausts into a fully anechoic chamber which is equipped to acquire acoustic and flow measurements including the temperature and pressure of the jet. The facility is capable of operating under free jet as well as in various impinging jet configurations pertinent to sea- and land-based aircraft, such as the F-35B. Compared to the original facility, the updated rig is capable of longer run times at higher temperatures. In this paper we demonstrate the facility's experimental capabilities and document jet aeroacoustic characteristics at various flow and temperature conditions. The anechoic chamber was characterized using ISO (3745:2003) guidelines and the lower cutoff frequency of the chamber was determined to be 315 Hz. Aeroacoustic properties of jets operating at subsonic conditions and supersonic Mach numbers ranging from 1.2 to 2.1 at temperatures of 300 K to 1300 K are documented. Where available, very good agreement was found when the present results were compared with data in the jet noise literature.

  20. Laboratory 15 kV high voltage solar array facility

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Gooder, S. T.

    1976-01-01

    The laboratory high voltage solar array facility is a photoelectric power generating system. Consisting of nine modules with over 23,000 solar cells, the facility is capable of delivering more than a kilowatt of power. The physical and electrical characteristics of the facility are described.

  1. Langley Ground Facilities and Testing in the 21st Century

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Kegelman, Jerome T.; Kilgore, William A.

    2010-01-01

    A strategic approach for retaining and more efficiently operating the essential Langley Ground Testing Facilities in the 21st Century is presented. This effort takes advantage of the previously completed and ongoing studies at the Agency and National levels. This integrated approach takes into consideration the overall decline in test business base within the nation and reduced utilization in each of the Langley facilities with capabilities to test in the subsonic, transonic, supersonic, and hypersonic speed regimes. The strategy accounts for capability needs to meet the Agency programmatic requirements and strategic goals and to execute test activities in the most efficient and flexible facility operating structure. The structure currently being implemented at Langley offers agility to right-size our capability and capacity from a national perspective, to accommodate the dynamic nature of the testing needs, and will address the influence of existing and emerging analytical tools for design. The paradigm for testing in the retained facilities is to efficiently and reliably provide more accurate and high-quality test results at an affordable cost to support design information needs for flight regimes where the computational capability is not adequate and to verify and validate the existing and emerging computational tools. Each of the above goals are planned to be achieved, keeping in mind the increasing small industry customer base engaged in developing unpiloted aerial vehicles and commercial space transportation systems.

  2. Current Capabilities and Capacity of Ebola Treatment Centers in the United States.

    PubMed

    Herstein, Jocelyn J; Biddinger, Paul D; Kraft, Colleen S; Saiman, Lisa; Gibbs, Shawn G; Le, Aurora B; Smith, Philip W; Hewlett, Angela L; Lowe, John J

    2016-03-01

    To describe current Ebola treatment center (ETC) locations, their capacity to care for Ebola virus disease patients, and infection control infrastructure features. A 19-question survey was distributed electronically in April 2015. Responses were collected via email by June 2015 and analyzed in an electronic spreadsheet. The survey was sent to and completed by site representatives of each ETC. The survey was sent to all 55 ETCs; 47 (85%) responded. Of the 47 responding ETCs, there are 84 isolation beds available for adults and 91 for children; of these pediatric beds, 35 (38%) are in children's hospitals. In total, the simultaneous capacity of the 47 reporting ETCs is 121 beds. On the basis of the current US census, there are 0.38 beds per million population. Most ETCs have negative pressure isolation rooms, anterooms, and a process for category A waste sterilization, although only 11 facilities (23%) have the capability to sterilize infectious waste on site. Facilities developed ETCs on the basis of Centers for Disease Control and Prevention guidance, but specific capabilities are not mandated at this present time. Owing to the complex and costly nature of Ebola virus disease treatment and variability in capabilities from facility to facility, in conjunction with the lack of regulations, nationwide capacity in specialized facilities is limited. Further assessments should determine whether ETCs can adapt to safely manage other highly infectious disease threats.

  3. Capability of a Mobile Monitoring System to Provide Real-Time Data Broadcasting and Near Real-Time Source Attribution

    NASA Astrophysics Data System (ADS)

    Erickson, M.; Olaguer, J.; Wijesinghe, A.; Colvin, J.; Neish, B.; Williams, J.

    2014-12-01

    It is becoming increasingly important to understand the emissions and health effects of industrial facilities. Many areas have no or limited sustained monitoring capabilities, making it difficult to quantify the major pollution sources affecting human health, especially in fence line communities. Developments in real-time monitoring and micro-scale modeling offer unique ways to tackle these complex issues. This presentation will demonstrate the capability of coupling real-time observations with micro-scale modeling to provide real-time information and near real-time source attribution. The Houston Advanced Research Center constructed the Mobile Acquisition of Real-time Concentrations (MARC) laboratory. MARC consists of a Ford E-350 passenger van outfitted with a Proton Transfer Reaction Mass Spectrometer (PTR-MS) and meteorological equipment. This allows for the fast measurement of various VOCs important to air quality. The data recorded from the van is uploaded to an off-site database and the information is broadcast to a website in real-time. This provides for off-site monitoring of MARC's observations, which allows off-site personnel to provide immediate input to the MARC operators on how to best achieve project objectives. The information stored in the database can also be used to provide near real-time source attribution. An inverse model has been used to ascertain the amount, location, and timing of emissions based on MARC measurements in the vicinity of industrial sites. The inverse model is based on a 3D micro-scale Eulerian forward and adjoint air quality model known as the HARC model. The HARC model uses output from the Quick Urban and Industrial Complex (QUIC) wind model and requires a 3D digital model of the monitored facility based on lidar or industrial permit data. MARC is one of the instrument platforms deployed during the 2014 Benzene and other Toxics Exposure Study (BEE-TEX) in Houston, TX. The main goal of the study is to quantify and explain the origin of ambient exposure to hazardous air pollutants in an industrial fence line community near the Houston Ship Channel. Preliminary results derived from analysis of MARC observations during the BEE-TEX experiment will be presented.

  4. Updates to the Generation of Physics Data Inputs for MAMMOTH Simulations of the Transient Reactor Test Facility - FY2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortensi, Javier; Baker, Benjamin Allen; Schunert, Sebastian

    The INL is currently evolving the modeling and simulation (M&S) capability that will enable improved core operation as well as design and analysis of TREAT experiments. This M&S capability primarily uses MAMMOTH, a reactor physics application being developed under Multi-physics Object Oriented Simulation Environment (MOOSE) framework. MAMMOTH allows the coupling of a number of other MOOSE-based applications. This second year of work has been devoted to the generation of a deterministic reference solution for the full core, the preparation of anisotropic diffusion coefficients, the testing of the SPH equivalence method, and the improvement of the control rod modeling. In addition,more » this report includes the progress made in the modeling of the M8 core configuration and experiment vehicle since January of this year.« less

  5. Test Facilities Capability Handbook: Volume 1 - Stennis Space Center (SSC); Volume 2 - Marshall Space Flight Center (MSFC)

    NASA Technical Reports Server (NTRS)

    Hensarling, Paula L.

    2007-01-01

    The John C. Stennis Space Center (SSC) is located in Southern Mississippi near the Mississippi-Louisiana state line. SSC is chartered as the National Aeronautics and Space Administration (NASA) Center of Excellence for large space transportation propulsion system testing. This charter has led to many unique test facilities, capabilities and advanced technologies provided through the supporting infrastructure. SSC has conducted projects in support of such diverse activities as liquid, and hybrid rocket testing and development; material development; non-intrusive plume diagnostics; plume tracking; commercial remote sensing; test technology and more. On May 30, 1996 NASA designated SSC the lead center for rocket propulsion testing, giving the center total responsibility for conducting and/or managing all NASA rocket engine testing. Test services are now available not only for NASA but also for the Department of Defense, other government agencies, academia, and industry. This handbook was developed to provide a summary of the capabilities that exist within SSC. It is intended as a primary resource document, which will provide the reader with the top-level capabilities and characteristics of the numerous test facilities, test support facilities, laboratories, and services. Due to the nature of continually evolving programs and test technologies, descriptions of the Center's current capabilities are provided. Periodic updates and revisions of this document will be made to maintain its completeness and accuracy.

  6. Decision Support System For Management Of Low-Level Radioactive Waste Disposal At The Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, G.; Yucel, V.; Desotell, L.

    2006-07-01

    The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental monitoring programs. (authors)« less

  7. Remote-Handled Low-Level Waste Disposal Project Code of Record

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austad, S. L.; Guillen, L. E.; McKnight, C. W.

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by themore » Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.« less

  8. Destination healthcare facility of shocked trauma patients in Scotland: analysis of transfusion and surgical capability of receiving hospitals.

    PubMed

    Peach, Christopher M; Morrison, Jonathan J; Apodaca, Amy N; Egan, Gerry; Watson, Henry G; Jansen, Jan O

    2013-10-01

    Haemorrhage is a leading cause of death from trauma. Management requires a combination of haemorrhage control and resuscitation which may incur significant surgical and transfusion utilisation. The aim of this study is to evaluate the resource provision of the destination hospital of Scottish trauma patients exhibiting evidence of pre-hospital shock. Patients who sustained a traumatic injury between November 2008 and October 2010 were retrospectively identified from the Scottish Ambulance Service electronic patients record system. Patients with a systolic blood pressure less than 110 mmHg or if missing, a heart rate greater than 120 bpm, were considered in shock. The level of the destination healthcare facility was classified in terms of surgical and transfusion capability. Patients with and without shock were compared. There were 135,004 patients identified, 133,651 (99.0%) of whom had sustained blunt trauma, 68,411 (50.7%) were male and the median (IQR) age was 59 (46). There were 6721 (5.0%) patients with shock, with a similar age and gender distribution to non-shocked patients. Only 1332 (19.8%) of shocked patients were taken to facilities with full surgical capability, 5137 (76.4%) to hospitals with limited (general and orthopaedic surgery only) and 252 (3.7%) to hospitals with no surgical services. In terms of transfusion capability, 5556 (82.7%) shocked patients were admitted to facilities with full capability and 1165 (17.3%) to a hospital with minimal or no capability. The majority of Scottish trauma patients are transported to a hospital with full transfusion capability, although the majority lack surgical sub-specialty representation. Copyright © 2013 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  9. NASA AETC Test Technology Subproject

    NASA Technical Reports Server (NTRS)

    Bell, James

    2017-01-01

    Funds directed to improve measurement capabilities (pressure, force, flow, and temperature), test techniques and processes, and develop technologies critical to meeting NASA research needs and applicable to a multitude of facilities. Primarily works by funding small ($40K - $400K) tasks which result in a demonstration or initial capability of a new technology in an AETC facility.TT research and development tasks are generally TRL 3-6; they should be things which work in small scale or lab environments but need further development for use in production facilities.TT differs from CA in its focus on smaller-scale tasks and on instrumentation. Technologies developed by TT may become CA projects in order be fully realized within a facility.

  10. EOS MLS Science Data Processing System: A Description of Architecture and Capabilities

    NASA Technical Reports Server (NTRS)

    Cuddy, David T.; Echeverri, Mark D.; Wagner, Paul A.; Hanzel, Audrey T.; Fuller, Ryan A.

    2006-01-01

    This paper describes the architecture and capabilities of the Science Data Processing System (SDPS) for the EOS MLS. The SDPS consists of two major components--the Science Computing Facility and the Science Investigator-led Processing System. The Science Computing Facility provides the facilities for the EOS MLS Science Team to perform the functions of scientific algorithm development, processing software development, quality control of data products, and scientific analyses. The Science Investigator-led Processing System processes and reprocesses the science data for the entire mission and delivers the data products to the Science Computing Facility and to the Goddard Space Flight Center Earth Science Distributed Active Archive Center, which archives and distributes the standard science products.

  11. MCNP (Monte Carlo Neutron Photon) capabilities for nuclear well logging calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forster, R.A.; Little, R.C.; Briesmeister, J.F.

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. The general-purpose continuous-energy Monte Carlo code MCNP (Monte Carlo Neutron Photon), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tally characteristics with standard MCNP features. The time-dependent capabilitymore » of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data. A rich collections of variance reduction features can greatly increase the efficiency of a calculation. MCNP is written in FORTRAN 77 and has been run on variety of computer systems from scientific workstations to supercomputers. The next production version of MCNP will include features such as continuous-energy electron transport and a multitasking option. Areas of ongoing research of interest to the well logging community include angle biasing, adaptive Monte Carlo, improved discrete ordinates capabilities, and discrete ordinates/Monte Carlo hybrid development. Los Alamos has requested approval by the Department of Energy to create a Radiation Transport Computational Facility under their User Facility Program to increase external interactions with industry, universities, and other government organizations. 21 refs.« less

  12. Extremely Intensive and Conservative Fault Capability Studies on Nuclear Facilities in Japan after the 2011 Tohoku Earthquake and Fukushima Daiichi Incident

    NASA Astrophysics Data System (ADS)

    Okumura, K.

    2013-12-01

    Rocks of the Japanese islands are mostly faulted since the Mesozoic Era. The opening of the Sea of Japan in Middle Miocene stretched most of the Japanese crust together with rifting systems. Modern compressional tectonic regime started in Pliocene and accelerated during Quaternary. The ubiquitous bedrock fault prior to the Quaternary had long been regarded as incapable for the future rupturing. This view on the bedrock fault, however, is in question after the March 11, 2011 Tohoku earthquake and tsunamis. There is no scientific reason for the Tohoku earthquake to let the geologists and seismologists worry about the capability of the long-deceased fault. Neither the unexpected April 11, 2011 extensional faulting event on shore in southern Fukushima prefecture has any scientific reason as well. There was no change and no new stress field, but the psychological situation of the scientists and the public welcomed the wrong belief in unexpected stress changes all over Japan, in the same manner that the March 11 M 9 was not expected. Finally, the capabilities of the bedrock faults, fractures, and joints came up to concern about seismic safety of nuclear facilities. After the incidents, the nuclear regulation authority of Japan began reevaluation of the seismic safety of all facilities in Japan. The primary issues of the reevaluation were conjunctive multi-fault mega-earthquakes and the capabilities of the bedrock faults, precisely reflecting the Tohoku events. The former does not require immediate abandonment of a facility. However, the latter now denies any chance of continued operation. It is because of the new (July 2013) safety guide gave top priority to the capability of the displacement under a facility for the evaluation on safe operation. The guide also requires utmost deterministic manner in very conservative ways. The regulators ordered the utility companies to thoroughly examine the capability for several sites, and started review of the studies in late 2012. Many of the Japanese critical nuclear facilities are built on bedrocks with faults, fractures, and joints. They were not regarded as capable when the facilities were built in 1970's to 1990's. In many cases it was not possible to know about Late Pleistocene movement owing to the lack of young sediments on bedrocks. In a few cases, geologist studied past movement and found nothing. Some very cautious researchers on nuclear safety overturned previous evaluation easily. The capability studies by the utility companies then became very serious. The young sediments that may indicate the timing of faulting were completely removed during construction. Within bedrock, it is almost impossible to demonstrate that there was no recent displacement. The regulators are very rigid and relentless to require perfect evidence of incapability. Now several utility companies are opening huge trenches, digging beside a reactor, or drilling many cores from bedrock in the site spending billions of Yen. The results of extremely intensive studies brought a lot of information on the geologic structures and their capabilities. This paper will summarize the scientific finding and their meaning on the seismic safety of critical nuclear facilities.

  13. Final Report for "Design calculations for high-space-charge beam-to-RF conversion".

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David N Smithe

    2008-10-17

    Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference “cut-cell” boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimummore » energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT’s, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of “stair-step” geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications, radar and other defense applications.« less

  14. An inventory of aeronautical ground research facilities. Volume 3: Structural

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    An inventory of test facilities for conducting acceleration, environmental, impact, structural shock, load, heat, vibration, and noise tests is presented. The facility is identified with a description of the equipment, the testing capabilities, and cost of operation. Performance data for the facility are presented in charts and tables.

  15. Improving Large-Scale Testing Capability by Modifying the 40- by 80-ft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Mort, Kenneth W.; Soderman, Paul T.; Eckert, William T.

    1979-01-01

    Interagency studies conducted during the last several years have indicated the need to Improve full-scale testing capabilities. The studies showed that the most effective trade between test capability and facility cost was provided by re-powering the existing Ames Research Center 40- by 80-ft Wind Tunnel to Increase the maximum speed from about 100 m/s (200 knots) lo about 150 m/s (300 knots) and by adding a new 24- by 37-m (80- by 120-ft) test section powered for about a 50-m/s (100-knot) maximum speed. This paper reviews the design of the facility, a few or its capabilities, and some of its unique features.

  16. Study of a stereo electro-optical tracker system for the measurement of model deformations at the national transonic facility

    NASA Technical Reports Server (NTRS)

    Hertel, R. J.

    1979-01-01

    An electro-optical method to measure the aeroelastic deformations of wind tunnel models is examined. The multitarget tracking performance of one of the two electronic cameras comprising the stereo pair is modeled and measured. The properties of the targets at the model, the camera optics, target illumination, number of targets, acquisition time, target velocities, and tracker performance are considered. The electronic camera system is shown to be capable of locating, measuring, and following the positions of 5 to 50 targets attached to the model at measuring rates up to 5000 targets per second.

  17. A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test

    NASA Technical Reports Server (NTRS)

    Messer, Bradley P.

    2004-01-01

    Propulsion ground test facilities face the daily challenges of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Due to budgetary and schedule constraints, NASA and industry customers are pushing to test more components, for less money, in a shorter period of time. As these new rocket engine component test programs are undertaken, the lack of technology maturity in the test articles, combined with pushing the test facilities capabilities to their limits, tends to lead to an increase in facility breakdowns and unsuccessful tests. Over the last five years Stennis Space Center's propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and broken numerous test facility and test article parts. While various initiatives have been implemented to provide better propulsion test techniques and improve the quality, reliability, and maintainability of goods and parts used in the propulsion test facilities, unexpected failures during testing still occur quite regularly due to the harsh environment in which the propulsion test facilities operate. Previous attempts at modeling the lifecycle of a propulsion component test project have met with little success. Each of the attempts suffered form incomplete or inconsistent data on which to base the models. By focusing on the actual test phase of the tests project rather than the formulation, design or construction phases of the test project, the quality and quantity of available data increases dramatically. A logistic regression model has been developed form the data collected over the last five years, allowing the probability of successfully completing a rocket propulsion component test to be calculated. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),..,X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure. Logistic regression has primarily been used in the fields of epidemiology and biomedical research, but lends itself to many other applications. As indicated the use of logistic regression is not new, however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from the models provide project managers with insight and confidence into the affectivity of rocket engine component ground test projects. The initial success in modeling rocket propulsion ground test projects clears the way for more complex models to be developed in this area.

  18. Development of Detonation Modeling Capabilities for Rocket Test Facilities: Hydrogen-Oxygen-Nitrogen Mixtures

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.

    2016-01-01

    The objective of the presented work was to develop validated computational fluid dynamics (CFD) based methodologies for predicting propellant detonations and their associated blast environments. Applications of interest were scenarios relevant to rocket propulsion test and launch facilities. All model development was conducted within the framework of the Loci/CHEM CFD tool due to its reliability and robustness in predicting high-speed combusting flow-fields associated with rocket engines and plumes. During the course of the project, verification and validation studies were completed for hydrogen-fueled detonation phenomena such as shock-induced combustion, confined detonation waves, vapor cloud explosions, and deflagration-to-detonation transition (DDT) processes. The DDT validation cases included predicting flame acceleration mechanisms associated with turbulent flame-jets and flow-obstacles. Excellent comparison between test data and model predictions were observed. The proposed CFD methodology was then successfully applied to model a detonation event that occurred during liquid oxygen/gaseous hydrogen rocket diffuser testing at NASA Stennis Space Center.

  19. Required Assets for a Nuclear Energy Applied R&D Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harold F. McFarlane; Craig L. Jacobson

    2009-03-01

    This report is one of a set of three documents that have collectively identified and recommended research and development capabilities that will be required to advance nuclear energy in the next 20 to 50 years. The first report, Nuclear Energy for the Future: Required Research and Development Capabilities—An Industry Perspective, was produced by Battelle Memorial Institute at the request of the Assistant Secretary of Nuclear Energy. That report, drawn from input by industry, academia, and Department of Energy laboratories, can be found in Appendix 5.1. This Idaho National Laboratory report maps the nuclear-specific capabilities from the Battelle report onto facilitymore » requirements, identifying options from the set of national laboratory, university, industry, and international facilities. It also identifies significant gaps in the required facility capabilities. The third document, Executive Recommendations for Nuclear R&D Capabilities, is a letter report containing a set of recommendations made by a team of senior executives representing nuclear vendors, utilities, academia, and the national laboratories (at Battelle’s request). That third report can be found in Appendix 5.2. The three reports should be considered as set in order to have a more complete picture. The basis of this report was drawn from three sources: previous Department of Energy reports, workshops and committee meetings, and expert opinion. The facilities discussed were winnowed from several hundred facilities that had previously been catalogued and several additional facilities that had been overlooked in past exercises. The scope of this report is limited to commercial nuclear energy and those things the federal government, or more specifically the Office of Nuclear Energy, should do to support its expanded deployment in order to increase energy security and reduce carbon emissions. In the context of this report, capabilities mean innovative, well-structured research and development programs, a viable work force, and well-equipped specialized facilities.« less

  20. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility was developed at NASA-Lewis. The purpose of this flight simulator is to allow integrated propulsion control and flight control algorithm development and evaluation in real time. As a preliminary check of the simulator facility capabilities and correct integration of its components, the control design and physics models for a short take-off and vertical landing fighter aircraft model were shown, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The initial testing and evaluation results show that this fixed based flight simulator can provide real time feedback and display of both airframe and propulsion variables for validation of integrated flight and propulsion control systems. Additionally, through the use of this flight simulator, various control design methodologies and cockpit mechanizations can be tested and evaluated in a real time environment.

  1. Integrated Component-based Data Acquisition Systems for Aerospace Test Facilities

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.

    2001-01-01

    The Multi-Instrument Integrated Data Acquisition System (MIIDAS), developed by the NASA Langley Research Center, uses commercial off the shelf (COTS) products, integrated with custom software, to provide a broad range of capabilities at a low cost throughout the system s entire life cycle. MIIDAS combines data acquisition capabilities with online and post-test data reduction computations. COTS products lower purchase and maintenance costs by reducing the level of effort required to meet system requirements. Object-oriented methods are used to enhance modularity, encourage reusability, and to promote adaptability, reducing software development costs. Using only COTS products and custom software supported on multiple platforms reduces the cost of porting the system to other platforms. The post-test data reduction capabilities of MIIDAS have been installed at four aerospace testing facilities at NASA Langley Research Center. The systems installed at these facilities provide a common user interface, reducing the training time required for personnel that work across multiple facilities. The techniques employed by MIIDAS enable NASA to build a system with a lower initial purchase price and reduced sustaining maintenance costs. With MIIDAS, NASA has built a highly flexible next generation data acquisition and reduction system for aerospace test facilities that meets customer expectations.

  2. The Deep Space Network: An instrument for radio astronomy research

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.; Levy, G. S.; Kuiper, T. B. H.; Walken, P. R.; Chandlee, R. C.

    1988-01-01

    The NASA Deep Space Network operates and maintains the Earth-based two-way communications link for unmanned spacecraft exploring the solar system. It is NASA's policy to also make the Network's facilities available for radio astronomy observations. The Network's microwave communication systems and facilities are being continually upgraded. This revised document, first published in 1982, describes the Network's current radio astronomy capabilities and future capabilities that will be made available by the ongoing Network upgrade. The Bibliography, which includes published papers and articles resulting from radio astronomy observations conducted with Network facilities, has been updated to include papers to May 1987.

  3. A unique facility for V/STOL aircraft hover testing

    NASA Technical Reports Server (NTRS)

    Culpepper, R. G.; Murphy, R. D.

    1979-01-01

    The paper discusses the Navy's XFV-12A tethered hover testing capabilities utilizing NASA's Impact Dynamic Research Facility (IDRF) at Langley. The facility allows for both static and dynamic tethered hover test operations to be undertaken with safety. The installation which consists of the 'Z' system (tether), restraint system, static tiedowns and the control room and console, is presented in detail. Among the capabilities demonstrated were the ability to recover the aircraft anytime during a test, to rapidly and safely define control limits, and to provide a realistic environment for pilot training and proficiency in VTOL flight.

  4. Lewis Research Center space station electric power system test facilities

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  5. Modeling of a Two-Phase Jet Pump with Phase Change, Shocks and Temperature-Dependent Properties

    NASA Technical Reports Server (NTRS)

    Sherif, S. A.

    1998-01-01

    One of the primary motivations behind this work is the attempt to understand the physics of a two-phase jet pump which constitutes part of a flow boiling test facility at NASA-Marshall. The flow boiling apparatus is intended to provide data necessary to design highly efficient two-phase thermal control systems for aerospace applications. The facility will also be capable of testing alternative refrigerants and evaluate their performance using various heat exchangers with enhanced surfaces. The test facility is also intended for use in evaluating single-phase performance of systems currently using CFC refrigerants. Literature dealing with jet pumps is abundant and covers a very wide array of application areas. Example application areas include vacuum pumps which are used in the food industry, power station work, and the chemical industry; ejector systems which have applications in the aircraft industry as cabin ventilators and for purposes of jet thrust augmentation; jet pumps which are used in the oil industry for oil well pumping; and steam-jet ejector refrigeration, to just name a few. Examples of work relevant to this investigation includes those of Fairuzov and Bredikhin (1995). While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the author apart from that of Anand (1992) who was able to account for condensation shocks. Thus, one of the objectives of this work is to model the dynamics of fluid interaction between a two-phase primary fluid and a subcooled liquid secondary fluid which is being injected employing atomizing spray injectors. The model developed accounts for phase transformations due to expansion, compression, and mixing. It also accounts for shock waves developing in the different parts of the jet pump as well as temperature and pressure dependencies of the fluid properties for both the primary two-phase mixture and the secondary subcooled liquid. The research effort on which this document partly reports described a relatively simple model capable of describing the performance of a two-phase flow jet pump. The model is based on the isentropic homogeneous expansion/compression hypothesis and is capable of fully incorporating the effects of shocks in both the mixing chamber and the throat/diffuser parts of the pump. The physical system chosen is identical to that experimentally tested by Fairuzov and Bredikhin (1995) and should therefore be relatively easy to validate.

  6. Development and application of a model for the analysis of trades between space launch system operations and acquisition costs

    NASA Astrophysics Data System (ADS)

    Nix, Michael B.

    2005-12-01

    Early design decisions in the development of space launch systems determine the costs to acquire and operate launch systems. Some sources indicate that as much as 90% of life cycle costs are fixed by the end of the critical design review phase. System characteristics determined by these early decisions are major factors in the acquisition cost of flight hardware elements and facilities and influence operations costs through the amount of maintenance and support labor required to sustain system function. Operations costs are also dependent on post-development management decisions regarding how much labor will be deployed to meet requirements of market demand and ownership profit. The ability to perform early trade-offs between these costs is vital to the development of systems that have the necessary capacity to provide service and are profitable to operate. An Excel-based prototype model was developed for making early analyses of trade-offs between the costs to operate a space launch system and to acquire the necessary assets to meet a given set of operational requirements. The model, integrating input from existing models and adding missing capability, allows the user to make such trade-offs across a range of operations concepts (required flight rates, staffing levels, shifts per workday, workdays per week and per year, unreliability, wearout and depot maintenance) and the number, type and capability of assets (flight hardware elements, processing and supporting facilities and infrastructure). The costs and capabilities of hypothetical launch systems can be modeled as a function of interrelated turnaround times and labor resource levels, and asset loss and retirement. The number of flight components and facilities required can be calculated and the operations and acquisition costs compared for a specified scenario. Findings, based on the analysis of a hypothetical two stage to orbit, reusable, unmanned launch system, indicate that the model is suitable for the trade-off analyses desired. The minimum turnaround time/maximum labor allocation for specific hardware configurations and characteristics and corresponding asset requirements can be estimated. Either turnaround time or resources can be varied and the resulting operations and acquisition costs can be compared. Asset reliability, wearout and depot maintenance intervals and durations can be varied as well to analyze the effects on costs. Likewise, the effects on operations and acquisitions costs of the introduction of alternative technologies that affect reliability, maintainability and supportability in various hardware configurations can be evaluated.

  7. Air Force Cambridge Research Laboratories balloon operations

    NASA Technical Reports Server (NTRS)

    Danaher, T. J.

    1974-01-01

    The establishment and functions of the AFCRL balloon operations facility are discussed. The types of research work conducted by the facility are defined. The facilities which support the balloon programs are described. The free balloon and tethered balloon capabilities are analyzed.

  8. Aeronautical Facilities Catalogue. Volume 1: Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler); Freda, M. S. (Compiler)

    1985-01-01

    Domestic and foreign wind tunnel facilities are enumerated and their technical parameters are described. Data pertinent to managers and engineers are presented. Facilities judged comparable in testing capability are noted and grouped together. Several comprehensive cross-indexes and charts are included.

  9. Data Acquisition System Architecture and Capabilities At NASA GRC Plum Brook Station's Space Environment Test Facilities

    NASA Technical Reports Server (NTRS)

    Evans, Richard K.; Hill, Gerald M.

    2012-01-01

    Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world?s largest space environment test facilities located at the NASA Glenn Research Center?s Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.

  10. Data Acquisition System Architecture and Capabilities at NASA GRC Plum Brook Station's Space Environment Test Facilities

    NASA Technical Reports Server (NTRS)

    Evans, Richard K.; Hill, Gerald M.

    2014-01-01

    Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world's largest space environment test facilities located at the NASA Glenn Research Center's Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.

  11. Small Projects Rapid Integration and Test Environment (SPRITE): Application for Increasing Robustness

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Heater, Daniel; Lee, Ashley

    2013-01-01

    Marshall Space Flight Center's (MSFC) Small Projects Rapid Integration and Test Environment (SPRITE) is a Hardware-In-The-Loop (HWIL) facility that provides rapid development, integration, and testing capabilities for small projects (CubeSats, payloads, spacecraft, and launch vehicles). This facility environment focuses on efficient processes and modular design to support rapid prototyping, integration, testing and verification of small projects at an affordable cost, especially compared to larger type HWIL facilities. SPRITE (Figure 1) consists of a "core" capability or "plant" simulation platform utilizing a graphical programming environment capable of being rapidly re-configured for any potential test article's space environments, as well as a standard set of interfaces (i.e. Mil-Std 1553, Serial, Analog, Digital, etc.). SPRITE also allows this level of interface testing of components and subsystems very early in a program, thereby reducing program risk.

  12. A research study for the preliminary definition of an aerophysics free-flight laboratory facility

    NASA Technical Reports Server (NTRS)

    Canning, Thomas N.

    1988-01-01

    A renewed interest in hypervelocity vehicles requires an increase in the knowledge of aerodynamic phenomena. Tests conducted with ground-based facilities can be used both to better understand the physics of hypervelocity flight, and to calibrate and validate computer codes designed to predict vehicle performance in the hypervelocity environment. This research reviews the requirements for aerothermodynamic testing and discusses the ballistic range and its capabilities. Examples of the kinds of testing performed in typical high performance ballistic ranges are described. We draw heavily on experience obtained in the ballistics facilities at NASA Ames Research Center, Moffett Field, California. Prospects for improving the capabilities of the ballistic range by using advanced instrumentation are discussed. Finally, recent developments in gun technology and their application to extend the capability of the ballistic range are summarized.

  13. The AEDC aerospace chamber 7V: An advanced test capability for infrared surveillance and seeker sensors

    NASA Technical Reports Server (NTRS)

    Simpson, W. R.

    1994-01-01

    An advanced sensor test capability is now operational at the Air Force Arnold Engineering Development Center (AEDC) for calibration and performance characterization of infrared sensors. This facility, known as the 7V, is part of a broad range of test capabilities under development at AEDC to provide complete ground test support to the sensor community for large-aperture surveillance sensors and kinetic kill interceptors. The 7V is a state-of-the-art cryo/vacuum facility providing calibration and mission simulation against space backgrounds. Key features of the facility include high-fidelity scene simulation with precision track accuracy and in-situ target monitoring, diffraction limited optical system, NIST traceable broadband and spectral radiometric calibration, outstanding jitter control, environmental systems for 20 K, high-vacuum, low-background simulation, and an advanced data acquisition system.

  14. Does the Health Maintenance Facility Provide Speciality Capabilities?

    NASA Technical Reports Server (NTRS)

    Boyce, Joey; Wurgler, James; Broadwell, Kim; Martin, William; Stiernberg, Charles M.; Bove, Alfred; Fromm, Rob; O'Neill, Daniel

    1991-01-01

    The Health Maintenance Facility (HMF) is capable of handling all minor illnesses, most moderate illnesses, and some major illnesses on board a space station. Its primary purpose should be to treat problems that are mission threatening, not life threatening. The HMF will have greater medical capabilities than those currently on Navy submarines. Much of the discussion in this document focuses on the possibilities of treating specific medical conditions on board a space station. The HMF will be limited to caring for critically ill patients for a few days, so a crew return vehicle will be important.

  15. First Materials Science Research Facility Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  16. Application of Radioxenon Stack Emission Data in High-Resolution Atmospheric Transport Modelling

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Schoeppner, M.; Kalinowski, M.; Bourgouin, P.; Kushida, N.; Barè, J.

    2017-12-01

    The Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) has developed the capability to run high-resolution atmospheric transport modelling by employing WRF and Flexpart-WRF. This new capability is applied to simulate the impact of stack emission data on simulated concentrations and how the availability of such data improves the overall accuracy of atmospheric transport modelling. The presented case study focuses on xenon-133 emissions from IRE, a medical isotope production facility in Belgium, and air concentrations detected at DEX33, a monitoring station close to Freiburg, Germany. The CTBTO is currently monitoring the atmospheric concentration of xenon-133 at 25 stations and will further expand the monitoring efforts to 40 stations worldwide. The incentive is the ability to detect xenon-133 that has been produced and released from a nuclear explosion. A successful detection can be used to prove the nuclear nature of an explosion and even support localization efforts. However, xenon-133 is also released from nuclear power plants and to a larger degree from medical isotope production facilities. The availability of stack emission data in combination with atmospheric transport modelling can greatly facilitate the understanding of xenon-133 concentrations detected at monitoring stations to distinguish between xenon-133 that has been emitted from a nuclear explosion and from civilian sources. Newly available stack emission data is used with a high-resolution version of the Flexpart atmospheric transport model, namely Flexpart-WRF, to assess the impact of the emissions on the detected concentrations and the advantage gained from the availability of such stack emission data. The results are analyzed with regard to spatial and time resolution of the high-resolution model and in comparison to conventional atmospheric transport models with and without stack emission data.

  17. Developing a NASA strategy for the verification of large space telescope observatories

    NASA Astrophysics Data System (ADS)

    Crooke, Julie A.; Gunderson, Johanna A.; Hagopian, John G.; Levine, Marie

    2006-06-01

    In July 2005, the Office of Program Analysis and Evaluation (PA&E) at NASA Headquarters was directed to develop a strategy for verification of the performance of large space telescope observatories, which occurs predominantly in a thermal vacuum test facility. A mission model of the expected astronomical observatory missions over the next 20 years was identified along with performance, facility and resource requirements. Ground testing versus alternatives was analyzed to determine the pros, cons and break points in the verification process. Existing facilities and their capabilities were examined across NASA, industry and other government agencies as well as the future demand for these facilities across NASA's Mission Directorates. Options were developed to meet the full suite of mission verification requirements, and performance, cost, risk and other analyses were performed. Findings and recommendations from the study were presented to the NASA Administrator and the NASA Strategic Management Council (SMC) in February 2006. This paper details the analysis, results, and findings from this study.

  18. Advanced X-ray Astrophysics Facility (AXAF): An overview

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; ODell, S. L.; Elsner, R. F.; VanSpeybroeck, L. P.

    1995-01-01

    The Advanced X-ray Astrophysics Facility (AXAF) is the x-ray component of NASA's Great Observatories. To be launched in late 1998, AXAF will provide unprecedented capabilities for high-resolution imaging, spectrometric imaging, and high-resolution disperse spectroscopy, over the x-ray band from about 0.1 keV to 10 keV. With these capabilities, AXAF observations will address many of the outstanding questions in astronomy, astrophysics, and cosmology.

  19. Health care delivery system for long duration manned space operations

    NASA Technical Reports Server (NTRS)

    Logan, J. S.; Shulman, E. L.; Johnson, P. C.

    1983-01-01

    Specific requirements for medical support of a long-duration manned facility in a low earth orbit derive from inflight medical experience, projected medical scenarios, mission related spacecraft and environmental hazards, health maintenance, and preventive medicine. A sequential buildup of medical capabilities tailored to increasing mission complexity is proposed. The space station health maintenance facility must provide preventive, diagnostic, and therapeutic medical support as immediate rescue capability may not exist.

  20. 2014 Annual Report - Argonne Leadership Computing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, James R.; Papka, Michael E.; Cerny, Beth A.

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  1. 2015 Annual Report - Argonne Leadership Computing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, James R.; Papka, Michael E.; Cerny, Beth A.

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  2. Status of the Daniel K. Inouye Solar Telescope: unraveling the mysteries the Sun.

    NASA Astrophysics Data System (ADS)

    Rimmele, Thomas R.; Pillet, Valentin; Goode, Philip R.; Knoelker, Michael; Kuhn, Jeffrey Richard; Rosner, Robert; Casini, Roberto; Lin, Haosheng; von der Luehe, Oskar; Woeger, Friedrich; Tritschler, Alexandra; Fehlmann, Andre; Jaeggli, Sarah A.; Schmidt, Wolfgang; De Wijn, Alfred; Rast, Mark; Harrington, David M.; Sueoka, Stacey R.; Beck, Christian; Schad, Thomas A.; Warner, Mark; McMullin, Joseph P.; Berukoff, Steven J.; Mathioudakis, Mihalis; DKIST Team

    2018-06-01

    The 4m Daniel K. Inouye Solar Telescope (DKIST) currently under construction on Haleakala, Maui will be the world’s largest solar telescope. Designed to meet the needs of critical high resolution and high sensitivity spectral and polarimetric observations of the sun, this facility will perform key observations of our nearest star that matters most to humankind. DKIST’s superb resolution and sensitivity will enable astronomers to address many of the fundamental problems in solar and stellar astrophysics, including the origin of stellar magnetism, the mechanisms of coronal heating and drivers of the solar wind, flares, coronal mass ejections and variability in solar and stellar output. DKIST will also address basic research aspects of Space Weather and help improve predictive capabilities. In combination with synoptic observations and theoretical modeling DKIST will unravel the many remaining mysteries of the Sun.The construction of DKIST is progressing on schedule with 80% of the facility complete. Operations are scheduled to begin early 2020. DKIST will replace the NSO facilities on Kitt Peak and Sac Peak with a national facility with worldwide unique capabilities. The design allows DKIST to operate as a coronagraph. Taking advantage of its large aperture and infrared polarimeters DKIST will be capable to routinely measure the currently illusive coronal magnetic fields. The state-of-the-art adaptive optics system provides diffraction limited imaging and the ability to resolve features approximately 20 km on the Sun. Achieving this resolution is critical for the ability to observe magnetic structures at their intrinsic, fundamental scales. Five instruments will be available at the start of operations, four of which will provide highly sensitive measurements of solar magnetic fields throughout the solar atmosphere – from the photosphere to the corona. The data from these instruments will be distributed to the world wide community via the NSO/DKIST data center located in Boulder. We present examples of science objectives and provide an overview of the facility and project status, including the ongoing efforts of the community to develop the critical science plan for the first 2-3 years of operations.

  3. Transient Testing of Nuclear Fuels and Materials in the United States

    NASA Astrophysics Data System (ADS)

    Wachs, Daniel M.

    2012-12-01

    The United States has established that transient irradiation testing is needed to support advanced light water reactors fuel development. The U.S. Department of Energy (DOE) has initiated an effort to reestablish this capability. Restart of the Transient Testing Reactor (TREAT) facility located at the Idaho National Laboratory (INL) is being considered for this purpose. This effort would also include the development of specialized test vehicles to support stagnant capsule and flowing loop tests as well as the enhancement of postirradiation examination capabilities and remote device assembly capabilities at the Hot Fuel Examination Facility. It is anticipated that the capability will be available to support testing by 2018, as required to meet the DOE goals for the development of accident-tolerant LWR fuel designs.

  4. Boundary-Layer Detection at Cryogenic Conditions Using Temperature Sensitive Paint Coupled with a Carbon Nanotube Heating Layer

    NASA Technical Reports Server (NTRS)

    Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal

    2016-01-01

    Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.

  5. Boundary-Layer Detection at Cryogenic Conditions Using Temperature Sensitive Paint Coupled with a Carbon Nanotube Heating Layer.

    PubMed

    Goodman, Kyle Z; Lipford, William E; Watkins, Anthony Neal

    2016-12-03

    Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.

  6. Boundary-Layer Detection at Cryogenic Conditions Using Temperature Sensitive Paint Coupled with a Carbon Nanotube Heating Layer

    PubMed Central

    Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal

    2016-01-01

    Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method. PMID:27918493

  7. Application of pulsed multi-ion irradiations in radiation damage research: A stochastic cluster dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan

    2018-07-01

    Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.

  8. Development and operation of a real-time simulation at the NASA Ames Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Sweeney, Christopher; Sheppard, Shirin; Chetelat, Monique

    1993-01-01

    The Vertical Motion Simulator (VMS) facility at the NASA Ames Research Center combines the largest vertical motion capability in the world with a flexible real-time operating system allowing research to be conducted quickly and effectively. Due to the diverse nature of the aircraft simulated and the large number of simulations conducted annually, the challenge for the simulation engineer is to develop an accurate real-time simulation in a timely, efficient manner. The SimLab facility and the software tools necessary for an operating simulation will be discussed. Subsequent sections will describe the development process through operation of the simulation; this includes acceptance of the model, validation, integration and production phases.

  9. Shock Tube and Ballistic Range Facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.

  10. Multi-User Hardware Solutions to Combustion Science ISS Research

    NASA Technical Reports Server (NTRS)

    Otero, Angel M.

    2001-01-01

    In response to the budget environment and to expand on the International Space Station (ISS) Fluids and Combustion Facility (FCF) Combustion Integrated Rack (CIR), common hardware approach, the NASA Combustion Science Program shifted focus in 1999 from single investigator PI (Principal Investigator)-specific hardware to multi-user 'Minifacilities'. These mini-facilities would take the CIR common hardware philosophy to the next level. The approach that was developed re-arranged all the investigations in the program into sub-fields of research. Then common requirements within these subfields were used to develop a common system that would then be complemented by a few PI-specific components. The sub-fields of research selected were droplet combustion, solids and fire safety, and gaseous fuels. From these research areas three mini-facilities have sprung: the Multi-user Droplet Combustion Apparatus (MDCA) for droplet research, Flow Enclosure for Novel Investigations in Combustion of Solids (FEANICS) for solids and fire safety, and the Multi-user Gaseous Fuels Apparatus (MGFA) for gaseous fuels. These mini-facilities will develop common Chamber Insert Assemblies (CIA) and diagnostics for the respective investigators complementing the capability provided by CIR. Presently there are four investigators for MDCA, six for FEANICS, and four for MGFA. The goal of these multi-user facilities is to drive the cost per PI down after the initial development investment is made. Each of these mini-facilities will become a fixture of future Combustion Science NASA Research Announcements (NRAs), enabling investigators to propose against an existing capability. Additionally, an investigation is provided the opportunity to enhance the existing capability to bridge the gap between the capability and their specific science requirements. This multi-user development approach will enable the Combustion Science Program to drive cost per investigation down while drastically reducing the time required to go from selection to space flight.

  11. Rehabilitation of the Rocket Vehicle Integration Test Stand at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ray, Ronald J.; Phillips, Paul

    2005-01-01

    Since initial use in 1958 for the X-15 rocket-powered research airplane, the Rocket Engine Test Facility has proven essential for testing and servicing rocket-powered vehicles at Edwards Air Force Base. For almost two decades, several successful flight-test programs utilized the capability of this facility. The Department of Defense has recently demonstrated a renewed interest in propulsion technology development with the establishment of the National Aerospace Initiative. More recently, the National Aeronautics and Space Administration is undergoing a transformation to realign the organization, focusing on the Vision for Space Exploration. These initiatives provide a clear indication that a very capable ground-test stand at Edwards Air Force Base will be beneficial to support the testing of future access-to-space vehicles. To meet the demand of full integration testing of rocket-powered vehicles, the NASA Dryden Flight Research Center, the Air Force Flight Test Center, and the Air Force Research Laboratory have combined their resources in an effort to restore and upgrade the original X-15 Rocket Engine Test Facility to become the new Rocket Vehicle Integration Test Stand. This report describes the history of the X-15 Rocket Engine Test Facility, discusses the current status of the facility, and summarizes recent efforts to rehabilitate the facility to support potential access-to-space flight-test programs. A summary of the capabilities of the facility is presented and other important issues are discussed.

  12. An Overview of the NASA Aeronautics Test Program Strategic Plan

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD), however an overarching strategy for management of these national assets was needed. Therefore, in Fiscal Year (FY) 2006 NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD Test Resources Management Center (TRMC), stewards of the DoD test and evaluation infrastructure. Since then, approximately seventy percent of the ATP budget has been directed to underpin fixed and variable costs of facility operations within its portfolio and the balance towards strategic investments in its test facilities, including maintenance and capability upgrades. Also, a strong guiding coalition was established through the National Partnership for Aeronautics Testing (NPAT), with governance by the senior leadership of NASA s Aeronautics Research Mission Directorate (ARMD) and the DoD's TRMC. As part of its strategic planning, ATP has performed or participated in many studies and analyses, including assessments of major NASA and DoD aeronautics test capabilities, test facility condition evaluations and market research. The ATP strategy has also benefitted from unpublished RAND research and analysis by Ant n et al. (2009). Together, these various studies, reports and assessments serve as a foundation for a new, five year strategic plan that will guide ATP through FY 2014. Our vision for the future is a balanced portfolio of aeronautics ground and flight test capabilities that advance U.S. leadership in aeronautics in the short and long term. Key to the ATP vision is the concept of availability, not necessarily ownership; that is, NASA does not have to own and operate all facilities that are envisioned for future aeronautics testing. However, ATP will enable access to capabilities which are needed but not owned by NASA through strategic partnerships and reliance agreements. This paper will outline the major aspects of the ATP strategic plan for achieving its mission.

  13. Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert D.

    2006-08-10

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now takemore » hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.« less

  14. Measurement Capabilities of the DOE ARM Aerial Facility

    NASA Astrophysics Data System (ADS)

    Schmid, B.; Tomlinson, J. M.; Hubbe, J.; Comstock, J. M.; Kluzek, C. D.; Chand, D.; Pekour, M. S.

    2012-12-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites in three important climatic regimes that provide long-term measurements of climate relevant properties. ARM also operates mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months) to investigate understudied climate regimes around the globe. Finally, airborne observations by ARM's Aerial Facility (AAF) enhance the surface-based ARM measurements by providing high-resolution in situ measurements for process understanding, retrieval algorithm development, and model evaluation that is not possible using ground-based techniques. AAF started out in 2007 as a "virtual hangar" with no dedicated aircraft and only a small number of instruments owned by ARM. In this mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, the Battelle owned G-1 aircraft was included in the ARM facility. The G-1 is a large twin turboprop aircraft, capable of measurements up to altitudes of 7.5 km and a range of 2,800 kilometers. Furthermore the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of seventeen new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also heavily engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments. In the presentation we will showcase science applications based on measurements from recent field campaigns such as CARES, CALWATER and TCAP.

  15. Extraordinary tools for extraordinary science: the impact of SciDAC on accelerator science and technology

    NASA Astrophysics Data System (ADS)

    Ryne, Robert D.

    2006-09-01

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  16. Hardware simulation of fuel cell/gas turbine hybrids

    NASA Astrophysics Data System (ADS)

    Smith, Thomas Paul

    Hybrid solid oxide fuel cell/gas turbine (SOFC/GT) systems offer high efficiency power generation, but face numerous integration and operability challenges. This dissertation addresses the application of hardware-in-the-loop simulation (HILS) to explore the performance of a solid oxide fuel cell stack and gas turbine when combined into a hybrid system. Specifically, this project entailed developing and demonstrating a methodology for coupling a numerical SOFC subsystem model with a gas turbine that has been modified with supplemental process flow and control paths to mimic a hybrid system. This HILS approach was implemented with the U.S. Department of Energy Hybrid Performance Project (HyPer) located at the National Energy Technology Laboratory. By utilizing HILS the facility provides a cost effective and capable platform for characterizing the response of hybrid systems to dynamic variations in operating conditions. HILS of a hybrid system was accomplished by first interfacing a numerical model with operating gas turbine hardware. The real-time SOFC stack model responds to operating turbine flow conditions in order to predict the level of thermal effluent from the SOFC stack. This simulated level of heating then dynamically sets the turbine's "firing" rate to reflect the stack output heat rate. Second, a high-speed computer system with data acquisition capabilities was integrated with the existing controls and sensors of the turbine facility. In the future, this will allow for the utilization of high-fidelity fuel cell models that infer cell performance parameters while still computing the simulation in real-time. Once the integration of the numeric and the hardware simulation components was completed, HILS experiments were conducted to evaluate hybrid system performance. The testing identified non-intuitive transient responses arising from the large thermal capacitance of the stack that are inherent to hybrid systems. Furthermore, the tests demonstrated the capabilities of HILS as a research tool for investigating the dynamic behavior of SOFC/GT hybrid power generation systems.

  17. Astronomic Telescope Facility: Preliminary systems definition study report. Volume 2: Technical description

    NASA Technical Reports Server (NTRS)

    Sobeck, Charlie (Editor)

    1987-01-01

    The Astrometric Telescope Facility (AFT) is to be an earth-orbiting facility designed specifically to measure the change in relative position of stars. The primary science investigation for the facility will be the search for planets and planetary systems outside the solar system. In addition the facility will support astrophysics investigations dealing with the location or motions of stars. The science objective and facility capabilities for astrophysics investigations are discussed.

  18. New atmospheric sensor analysis study

    NASA Technical Reports Server (NTRS)

    Parker, K. G.

    1989-01-01

    The functional capabilities of the ESAD Research Computing Facility are discussed. The system is used in processing atmospheric measurements which are used in the evaluation of sensor performance, conducting design-concept simulation studies, and also in modeling the physical and dynamical nature of atmospheric processes. The results may then be evaluated to furnish inputs into the final design specifications for new space sensors intended for future Spacelab, Space Station, and free-flying missions. In addition, data gathered from these missions may subsequently be analyzed to provide better understanding of requirements for numerical modeling of atmospheric phenomena.

  19. Ensuring US National Aeronautics Test Capabilities

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD). However, changes in the Aerospace landscape, primarily the decrease in demand for testing over the last 20 years required an overarching strategy for management of these national assets. Therefore, NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD. Test facility utilization is a critical factor for ATP because it relies on user occupancy fees to recover a substantial part of the operations costs for its facilities. Decreasing utilization is an indicator of excess capacity and in some cases low-risk redundancy (i.e., several facilities with basically the same capability and overall low utilization). However, low utilization does not necessarily translate to lack of strategic importance. Some facilities with relatively low utilization are nonetheless vitally important because of the unique nature of the capability and the foreseeable aeronautics testing needs. Unfortunately, since its inception, the customer base for ATP has continued to shrink. Utilization of ATP wind tunnels has declined by more than 50% from the FY 2006 levels. This significant decrease in customer usage is attributable to several factors, including the overall decline in new programs and projects in the aerospace sector; the impact of computational fluid dynamics (CFD) on the design, development, and research process; and the reductions in wind tunnel testing requirements within the largest consumer of ATP wind tunnel test time, the Aeronautics Research Mission Directorate (ARMD). Retirement of the Space Shuttle Program and recent perturbations of NASA's Constellation Program will exacerbate this downward trend. Therefore it is crucial that ATP periodically revisit and determine which of its test capabilities are strategically important, which qualify as low-risk redundancies that could be put in an inactive status or closed, and address the challenges associated with both sustainment and improvements to the test capabilities that must remain active. This presentation will provide an overview of the ATP vision, mission, and goals as well as the challenges and opportunities the program is facing both today and in the future. We will discuss the strategy ATP is taking over the next five years to address the National aeronautics test capability challenges and what the program will do to capitalize on its opportunities to ensure a ready, robust and relevant portfolio of National aeronautics test capabilities.

  20. Vacuum System and Modeling for the Materials Plasma Exposure Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumsdaine, Arnold; Meitner, Steve; Graves, Van

    Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breakingmore » vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.« less

  1. Vacuum System and Modeling for the Materials Plasma Exposure Experiment

    DOE PAGES

    Lumsdaine, Arnold; Meitner, Steve; Graves, Van; ...

    2017-08-07

    Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breakingmore » vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.« less

  2. Assessment of Ports for Offshore Wind Development in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkinton, Chris; Blatiak, Alicia; Ameen, Hafsa

    As offshore wind energy develops in the United States, port facilities will become strategic hubs in the offshore wind farm supply chain because all plant and transport logistics must transit through these facilities. Therefore, these facilities must provide suitable infrastructure to meet the specific requirements of the offshore wind industry. As a result, it is crucial that federal and state policy-makers and port authorities take effective action to position ports in the offshore wind value chain to take best advantage of their economic potential. The U.S. Department of Energy tasked the independent consultancy GL Garrad Hassan (GL GH) with carryingmore » out a review of the current capability of U.S. ports to support offshore wind project development and an assessment of the challenges and opportunities related to upgrading this capability to support the growth of as many as 54 gigawatts of offshore wind installed in U.S. waters by 2030. The GL GH report and the open-access web-based Ports Assessment Tool resulting from this study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations. The offshore wind industry in the United States is still in its infancy and this study finds that additional port facilities capable of supporting offshore wind projects are needed to meet the anticipated project build-out by 2030; however, no significant barriers exist to prevent the development of such facilities. Furthermore, significant port capabilities are in place today with purpose-build port infrastructure currently being built. While there are currently no offshore wind farms operating in the United States, much of the infrastructure critical to the success of such projects does exist, albeit in the service of other industries. This conclusion is based on GL GH’s review of U.S. ports infrastructure and its readiness to support the development of proposed offshore wind projects in U.S. waters. Specific examples of facility costs and benefits are provided for five coastal regions (North Atlantic, South Atlantic, Gulf of Mexico, Great Lakes, and Pacific) around the country. GL GH began this study by identifying the logistical requirements of offshore wind ports to service offshore wind. This review was based on lessons learned through industry practice in Northern Europe. A web-based port readiness assessment tool was developed to allow a capability gap analysis to be conducted on existing port facilities based on the identified requirements. Cost models were added to the assessment tool, which allowed GL GH to estimate the total upgrade cost to a port over the period 2014-2030 based on a set of regional project build-out scenarios. Port fee information was gathered from each port allowing an estimate of the potential revenue to the port under this same set of scenarios. The comparison of these revenue and improvement cost figures provides an initial indication of the level of offshore wind port readiness. To facilitate a more in-depth infrastructure analysis, six ports from different geographic regions, with varied levels of interest and preparedness towards offshore wind, were evaluated by modeling a range of installation strategies and port use types to identify gaps in capability and potential opportunities for economic development. Commonalities, trends, and specific examples from these case studies are presented and provide a summary of the current state of offshore wind port readiness in the U.S. and also illustrate the direction some ports have chosen to take to prepare for offshore wind projects. For example, the land area required for wind turbine and foundation manufacturing is substantial, particularly due to the large size of offshore wind components. Also, the necessary bearing capacities of the quayside and storage area are typically greater for offshore wind components than for more conventional cargo handling. As a result, most U.S. ports will likely require soil strength improvements before they can fully support offshore wind project construction. As U.S. ports and offshore wind developers look to work together on specific projects, they will encounter synergies and challenges. The challenges they face will include identifying sources of funding for the facility improvements required, and addressing ports’ typical desire to engage in long-term partnerships on the order of 10-20 years. Early projects will especially feel these challenges as they set the precedent for these partnerships in the United States. This study seeks to provide information about gaps, costs, and opportunities to aid these discussions.« less

  3. Development of the NTF-117S Semi-Span Balance

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.

    2010-01-01

    A new high-capacity semi-span force and moment balance has recently been developed for use at the National Transonic Facility at the NASA Langley Research Center. This new semi-span balance provides the NTF a new measurement capability that will support testing of semi-span test models at transonic high-lift testing regimes. Future testing utilizing this new balance capability will include active circulation control and propulsion simulation testing of semi-span transonic wing models. The NTF has recently implemented a new highpressure air delivery station that will provide both high and low mass flow pressure lines that are routed out to the semi-span models via a set high/low pressure bellows that are indirectly linked to the metric end of the NTF-117S balance. A new check-load stand is currently being developed to provide the NTF with an in-house capability that will allow for performing check-loads on the NTF-117S balance in order to determine the pressure tare affects on the overall performance of the balance. An experimental design is being developed that will allow for experimentally assessing the static pressure tare affects on the balance performance.

  4. Recommendations for the Implementation of the LASSO Workflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, William I; Vogelmann, Andrew M; Cheng, Xiaoping

    The U. S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Research Fa-cility began a pilot project in May 2015 to design a routine, high-resolution modeling capability to complement ARM’s extensive suite of measurements. This modeling capability, envisioned in the ARM Decadal Vision (U.S. Department of Energy 2014), subsequently has been named the Large-Eddy Simu-lation (LES) ARM Symbiotic Simulation and Observation (LASSO) project, and it has an initial focus of shallow convection at the ARM Southern Great Plains (SGP) atmospheric observatory. This report documents the recommendations resulting from the pilot project to be considered by ARM for imple-mentation into routinemore » operations. During the pilot phase, LASSO has evolved from the initial vision outlined in the pilot project white paper (Gustafson and Vogelmann 2015) to what is recommended in this report. Further details on the overall LASSO project are available at https://www.arm.gov/capabilities/modeling/lasso. Feedback regarding LASSO and the recommendations in this report can be directed to William Gustafson, the project principal investigator (PI), and Andrew Vogelmann, the co-principal investigator (Co-PI), via lasso@arm.gov.« less

  5. Status and Trends in Networking at LHC Tier1 Facilities

    NASA Astrophysics Data System (ADS)

    Bobyshev, A.; DeMar, P.; Grigaliunas, V.; Bigrow, J.; Hoeft, B.; Reymund, A.

    2012-12-01

    The LHC is entering its fourth year of production operation. Most Tier1 facilities have been in operation for almost a decade, when development and ramp-up efforts are included. LHC's distributed computing model is based on the availability of high capacity, high performance network facilities for both the WAN and LAN data movement, particularly within the Tier1 centers. As a result, the Tier1 centers tend to be on the leading edge of data center networking technology. In this paper, we analyze past and current developments in Tier1 LAN networking, as well as extrapolating where we anticipate networking technology is heading. Our analysis will include examination into the following areas: • Evolution of Tier1 centers to their current state • Evolving data center networking models and how they apply to Tier1 centers • Impact of emerging network technologies (e.g. 10GE-connected hosts, 40GE/100GE links, IPv6) on Tier1 centers • Trends in WAN data movement and emergence of software-defined WAN network capabilities • Network virtualization

  6. Direct Reactions at the Facility for Experiments on Nuclear Reactions in Stars (FENRIS)

    NASA Astrophysics Data System (ADS)

    Longland, Richard; Kelley, John; Marshall, Caleb; Portillo, Federico; Setoodehnia, Kiana

    2017-09-01

    Nuclear cross sections are a key ingredient in stellar models designed to understand how stars evolve. Determining these cross sections, therefore, is critical for obtaining reliable predictions from stellar models. While many charged-particle reaction cross sections can be measured in the laboratory, the Coulomb barrier means that they cannot always be measured at the low energies relevant to astrophysics. In other cases, radioactive targets make the measurements unfeasible. Radioactive ion beam experiments in inverse kinematics are one solution, but low beam intensities mean that cross sections plague these attempts further. Direct measurements, particularly particle transfer experiments, are one tool in our inventory that provides us with the necessary information to infer reaction cross sections at stellar energies. I will present an overview of one facility: the Facility for Experiments on Nuclear Reactions in Stars (FENRIS), which is dedicated to performing particle transfer measurements for astrophysical cross sections. Over the past few years, FENRIS has been fully upgraded and characterized. I will show highlights of our upgrade activities and current capabilities. I will also highlight our recent experimental results and discuss current upgrade efforts.

  7. Transient analysis of ”2 inch Direct Vessel Injection line break” in SPES-2 facility by using TRACE code

    NASA Astrophysics Data System (ADS)

    D'Amico, S.; Lombardo, C.; Moscato, I.; Polidori, M.; Vella, G.

    2015-11-01

    In the past few decades a lot of theoretical and experimental researches have been done to understand the physical phenomena characterizing nuclear accidents. In particular, after the Three Miles Island accident, several reactors have been designed to handle successfully LOCA events. This paper presents a comparison between experimental and numerical results obtained for the “2 inch Direct Vessel Injection line break” in SPES-2. This facility is an integral test facility built in Piacenza at the SIET laboratories and simulating the primary circuit, the relevant parts of the secondary circuits and the passive safety systems typical of the AP600 nuclear power plant. The numerical analysis here presented was performed by using TRACE and CATHARE thermal-hydraulic codes with the purpose of evaluating their prediction capability. The main results show that the TRACE model well predicts the overall behaviour of the plant during the transient, in particular it is able to simulate the principal thermal-hydraulic phenomena related to all passive safety systems. The performance of the presented CATHARE noding has suggested some possible improvements of the model.

  8. THE LARGE HIGH PRESSURE ARC PLASMA GENERATOR: A FACILITY FOR SIMULATING MISSLE AND SATELLITE RE-ENTRY. Research Report 56

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, P.; Powers, W.; Hritzay, D.

    1959-06-01

    The development of an arc wind tunnel capable of stagnation pressures in the excess of twenty atmospheres and using as much as fifteen megawatts of electrical power is described. The calibration of this facility shows that it is capable of reproducing the aerodynamic environment encountered by vehicles flying at velocities as great as satellite velocity. Its use as a missile re-entry material test facility is described. The large power capacity of this facility allows one to make material tests on specimens of size sufficient to be useful for material development yet at realistic energy and Reynolds number values. By themore » addition of a high-capacity vacuum system, this facility can be used to produce the low density, high Mach number environment needed for simulating satellite re-entry, as well as hypersonic flight at extreme altitudes. (auth)« less

  9. 32 CFR 260.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-controlled property. Cafeteria. A food dispensing facility capable of providing a broad variety of prepared foods and beverages (including hot meals) primarily through the use of a line where the customer serves... facilities are always provided. The DoD Component food dispensing facilities that conduct cafeteria-type...

  10. 17 CFR 37.205 - Audit trail.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... trading; and (iv) Identification of each account to which fills are allocated. (3) Electronic analysis capability. A swap execution facility's audit trail program shall include electronic analysis capability with respect to all audit trail data in the transaction history database. Such electronic analysis capability...

  11. Small engine components test facility compressor testing cell at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Brokopp, Richard A.; Gronski, Robert S.

    1992-01-01

    LeRC has designed and constructed a new test facility. This facility, called the Small Engine Components Facility (SECTF) is used to test gas turbines and compressors at conditions similar to actual engine conditions. The SECTF is comprised of a compressor testing cell and a turbine testing cell. Only the compressor testing cell is described. The capability of the facility, the overall facility design, the instrumentation used in the facility, and the data acquisition system are discussed in detail.

  12. Benchmarking of Neutron Production of Heavy-Ion Transport Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models andmore » codes and additional benchmarking are required.« less

  13. Benchmarking of Heavy Ion Transport Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in designing and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models andmore » codes and additional benchmarking are required.« less

  14. KSC-2015-1109

    NASA Image and Video Library

    2015-01-08

    VANDENBERG AIR FORCE BASE, Calif. – Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, engineers and technicians inspect NASA's Soil Moisture Active Passive mission, or SMAP, satellite. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: Jeremy Moore, USAF Photo Squadron

  15. KSC-2015-1111

    NASA Image and Video Library

    2015-01-08

    VANDENBERG AIR FORCE BASE, Calif. – Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, engineers and technicians inspect NASA's Soil Moisture Active Passive mission, or SMAP, satellite. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: Jeremy Moore, USAF Photo Squadron

  16. SWAN: An expert system with natural language interface for tactical air capability assessment

    NASA Technical Reports Server (NTRS)

    Simmons, Robert M.

    1987-01-01

    SWAN is an expert system and natural language interface for assessing the war fighting capability of Air Force units in Europe. The expert system is an object oriented knowledge based simulation with an alternate worlds facility for performing what-if excursions. Responses from the system take the form of generated text, tables, or graphs. The natural language interface is an expert system in its own right, with a knowledge base and rules which understand how to access external databases, models, or expert systems. The distinguishing feature of the Air Force expert system is its use of meta-knowledge to generate explanations in the frame and procedure based environment.

  17. Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex): NASA's Next Human-Rated Testing Facility

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.

    1999-01-01

    As a key component in its ground test bed capability, NASA's Advanced Life Support Program has been developing a large-scale advanced life support test facility capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. This facility-targeted for evaluation of hypogravity compatible life support systems to be developed for use on planetary surfaces such as Mars or the Moon-is called the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) and is currently under development at the Johnson Space Center. This test bed is comprised of a set of interconnected chambers with a sealed internal environment which are outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support functions. This presentation provides a description of the proposed test "missions" to be supported by the BIO-Plex and the planned development strategy for the facility.

  18. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    DOE PAGES

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; ...

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m 2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holdersmore » compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less

  19. Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities

    NASA Astrophysics Data System (ADS)

    Hubbard, H. H.; Powell, C. A.

    1981-06-01

    A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.

  20. Potential utilization of the NASA/George C. Marshall Space Flight Center in earthquake engineering research

    NASA Technical Reports Server (NTRS)

    Scholl, R. E. (Editor)

    1979-01-01

    Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested.

  1. Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Powell, C. A.

    1981-01-01

    A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.

  2. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basicmore » PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.« less

  3. Capability of detecting ultraviolet counterparts of gravitational waves with GLUV

    NASA Astrophysics Data System (ADS)

    Ridden-Harper, Ryan; Tucker, B. E.; Sharp, R.; Gilbert, J.; Petkovic, M.

    2017-12-01

    With the discovery of gravitational waves (GWs), attention has turned towards detecting counterparts to these sources. In discussions on counterpart signatures and multimessenger follow-up strategies to the GW detections, ultraviolet (UV) signatures have largely been neglected, due to UV facilities being limited to SWIFT, which lacks high-cadence UV survey capabilities. In this paper, we examine the UV signatures from merger models for the major GW sources, highlighting the need for further modelling, while presenting requirements and a design for an effective UV survey telescope. Using the u΄-band models as an analogue, we find that a UV survey telescope requires a limiting magnitude of m_{u^' }}(AB)≈ 24 to fully complement the aLIGO range and sky localization. We show that a network of small, balloon-based UV telescopes with a primary mirror diameter of 30 cm could be capable of covering the aLIGO detection distance from ∼60 to 100 per cent for BNS events and ∼40 per cent for the black hole and a neutron star events. The sensitivity of UV emission to initial conditions suggests that a UV survey telescope would provide a unique data set, which can act as an effective diagnostic to discriminate between models.

  4. Evolution in a centralized transfusion service.

    PubMed

    AuBuchon, James P; Linauts, Sandra; Vaughan, Mimi; Wagner, Jeffrey; Delaney, Meghan; Nester, Theresa

    2011-12-01

    The metropolitan Seattle area has utilized a centralized transfusion service model throughout the modern era of blood banking. This approach has used four laboratories to serve over 20 hospitals and clinics, providing greater capabilities for all at a lower consumption of resources than if each depended on its own laboratory and staff for these functions. In addition, this centralized model has facilitated wider use of the medical capabilities of the blood center's physicians, and a county-wide network of transfusion safety officers is now being developed to increase the impact of the blood center's transfusion expertise at the patient's bedside. Medical expectations and traffic have led the blood center to evolve the centralized model to include on-site laboratories at facilities with complex transfusion requirements (e.g., a children's hospital) and to implement in all the others a system of remote allocation. This new capability places a refrigerator stocked with uncrossmatched units in the hospital but retains control over the dispensing of these through the blood center's computer system; the correct unit can be electronically cross-matched and released on demand, obviating the need for transportation to the hospital and thus speeding transfusion. This centralized transfusion model has withstood the test of time and continues to evolve to meet new situations and ensure optimal patient care. © 2011 American Association of Blood Banks.

  5. Space Weather Model Testing And Validation At The Community Coordinated Modeling Center

    NASA Astrophysics Data System (ADS)

    Hesse, M.; Kuznetsova, M.; Rastaetter, L.; Falasca, A.; Keller, K.; Reitan, P.

    The Community Coordinated Modeling Center (CCMC) is a multi-agency partner- ship aimed at the creation of next generation space weather models. The goal of the CCMC is to undertake the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to pro- vide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of NASA's Living With aStar initiative, of the National Space Weather Program Implementation Plan, and of the Department of Defense Space Weather Tran- sition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and devel- opment accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate.

  6. Boeing infrared sensor (BIRS) calibration facility

    NASA Technical Reports Server (NTRS)

    Hazen, John D.; Scorsone, L. V.

    1990-01-01

    The Boeing Infrared Sensor (BIRS) Calibration Facility represents a major capital investment in optical and infrared technology. The facility was designed and built for the calibration and testing of the new generation large aperture long wave infrared (LWIR) sensors, seekers, and related technologies. Capability exists to perform both radiometric and goniometric calibrations of large infrared sensors under simulated environmental operating conditions. The system is presently configured for endoatmospheric calibrations with a uniform background field which can be set to simulate the expected mission background levels. During calibration, the sensor under test is also exposed to expected mission temperatures and pressures within the test chamber. Capability exists to convert the facility for exoatmospheric testing. The configuration of the system is described along with hardware elements and changes made to date are addressed.

  7. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, P.D.

    2000-04-25

    The goal of the National Ignition Facility (NIF) project is to provide an aboveground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber--the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusionmore » reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California.« less

  8. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, P.D.

    The goal of the National Ignition Facility (NIF) project is to provide an aboveground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber--the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusionmore » reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California.« less

  9. Crew systems and flight station concepts for a 1995 transport aircraft

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1983-01-01

    Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.

  10. Medical evaluations on the KC-135 1991 flight report summary

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.

    1993-01-01

    The medical investigations completed on the KC-135 during FY 1991 in support of the development of the Health Maintenance Facility and Medical Operations are presented. The experiments consisted of medical and engineering evaluations of medical hardware and procedures and were conducted by medical and engineering personnel. The hardware evaluated included prototypes of a crew medical restraint system and advanced life support pack, a shuttle orbiter medical system, an airway medical accessory kit, a supplementary extended duration orbiter medical kit, and a surgical overhead canopy. The evaluations will be used to design flight hardware and identify hardware-specific training requirements. The following procedures were evaluated: transport of an ill or injured crewmember at man-tended capability, surgical technique in microgravity, transfer of liquids in microgravity, advanced cardiac life support using man-tended capability Health Maintenance Facility hardware, medical transport using a model of the assured crew return vehicle, and evaluation of delivery mechanisms for aerosolized medications in microgravity. The results of these evaluation flights allow for a better understanding of the types of procedures that can be performed in a microgravity environment.

  11. A dynamic motion simulator for future European docking systems

    NASA Technical Reports Server (NTRS)

    Brondino, G.; Marchal, PH.; Grimbert, D.; Noirault, P.

    1990-01-01

    Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized.

  12. 30 CFR 715.13 - Postmining use of land.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... disturbed areas shall be restored in a timely manner (1) to conditions that are capable of supporting the... facilities, powerplants, airports or similar facilities. (2) Light industry and commercial services. Office... facilities may include commercial services incorporated in and comprising less than 5 percent of the total...

  13. 30 CFR 715.13 - Postmining use of land.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... disturbed areas shall be restored in a timely manner (1) to conditions that are capable of supporting the... facilities, powerplants, airports or similar facilities. (2) Light industry and commercial services. Office... facilities may include commercial services incorporated in and comprising less than 5 percent of the total...

  14. 30 CFR 715.13 - Postmining use of land.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... disturbed areas shall be restored in a timely manner (1) to conditions that are capable of supporting the... facilities, powerplants, airports or similar facilities. (2) Light industry and commercial services. Office... facilities may include commercial services incorporated in and comprising less than 5 percent of the total...

  15. 42 CFR 483.20 - Resident assessment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... additional assessment performed on the care areas triggered by the completion of the Minimum Data Set (MDS.... (f) Automated data processing requirement—(1) Encoding data. Within 7 days after a facility completes...) Transmitting data. Within 7 days after a facility completes a resident's assessment, a facility must be capable...

  16. 42 CFR 483.20 - Resident assessment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... additional assessment performed on the care areas triggered by the completion of the Minimum Data Set (MDS.... (f) Automated data processing requirement—(1) Encoding data. Within 7 days after a facility completes...) Transmitting data. Within 7 days after a facility completes a resident's assessment, a facility must be capable...

  17. 42 CFR 483.20 - Resident assessment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... additional assessment performed on the care areas triggered by the completion of the Minimum Data Set (MDS.... (f) Automated data processing requirement—(1) Encoding data. Within 7 days after a facility completes...) Transmitting data. Within 7 days after a facility completes a resident's assessment, a facility must be capable...

  18. 42 CFR 483.20 - Resident assessment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... additional assessment performed on the care areas triggered by the completion of the Minimum Data Set (MDS.... (f) Automated data processing requirement—(1) Encoding data. Within 7 days after a facility completes...) Transmitting data. Within 7 days after a facility completes a resident's assessment, a facility must be capable...

  19. 42 CFR 483.20 - Resident assessment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... additional assessment performed on the care areas triggered by the completion of the Minimum Data Set (MDS.... (f) Automated data processing requirement—(1) Encoding data. Within 7 days after a facility completes...) Transmitting data. Within 7 days after a facility completes a resident's assessment, a facility must be capable...

  20. 33 CFR 154.1210 - Purpose and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Animal Fats and Vegetable Oils Facilities § 154.1210 Purpose and applicability. (a) The requirements of this... fats or vegetable oils including— (1) A fixed MTR facility capable of transferring oil in bulk, to or...

  1. 33 CFR 154.1210 - Purpose and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Animal Fats and Vegetable Oils Facilities § 154.1210 Purpose and applicability. (a) The requirements of this... fats or vegetable oils including— (1) A fixed MTR facility capable of transferring oil in bulk, to or...

  2. Development of Semi-Span Model Test Techniques

    NASA Technical Reports Server (NTRS)

    Pulnam, L. Elwood (Technical Monitor); Milholen, William E., II; Chokani, Ndaona; McGhee, Robert J.

    1996-01-01

    A computational investigation was performed to support the development of a semi-span model test capability in the NASA Langley Research Center's National Transonic Facility. This capability is desirable for the testing of advanced subsonic transport aircraft at full-scale Reynolds numbers. A state-of-the-art three-dimensional Navier-Stokes solver was used to examine methods to improve the flow over a semi-span configuration. First, a parametric study is conducted to examine the influence of the stand-off height on the flow over the semi-span model. It is found that decreasing the stand-off height, below the maximum fuselage radius, improves the aerodynamic characteristics of the semi-span model. Next, active sidewall boundary layer control techniques are examined. Juncture region blowing jets, upstream tangential blowing, and sidewall suction are found to improve the flow over the aft portion of the semi-span model. Both upstream blowing and suction are found to reduce the sidewall boundary layer separation. The resulting near surface streamline patterns are improved, and found to be quite similar to the full-span results. Both techniques however adversely affect the pitching moment coefficient.

  3. Development of Semi-Span Model Test Techniques

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Chokani, Ndaona; McGhee, Robert J.

    1996-01-01

    A computational investigation was performed to support the development of a semispan model test capability in the NASA Langley Research Center's National Transonic Facility. This capability is desirable for the testing of advanced subsonic transport aircraft at full-scale Reynolds numbers. A state-of-the-art three-dimensional Navier-Stokes solver was used to examine methods to improve the flow over a semi-span configuration. First, a parametric study is conducted to examine the influence of the stand-off height on the flow over the semispan model. It is found that decreasing the stand-off height, below the maximum fuselage radius, improves the aerodynamic characteristics of the semi-span model. Next, active sidewall boundary layer control techniques are examined. Juncture region blowing jets, upstream tangential blowing, and sidewall suction are found to improve the flow over the aft portion of the semispan model. Both upstream blowing and suction are found to reduce the sidewall boundary layer separation. The resulting near surface streamline patterns are improved, and found to be quite similar to the full-span results. Both techniques however adversely affect the pitching moment coefficient.

  4. Crew Dragon Demonstration Mission 1

    NASA Image and Video Library

    2018-06-13

    SpaceX’s Crew Dragon is at NASA’s Plum Brook Station in Ohio, ready to undergo testing in the In-Space Propulsion Facility — the world’s only facility capable of testing full-scale upper-stage launch vehicles and rocket engines under simulated high-altitude conditions. The chamber will allow SpaceX and NASA to verify Crew Dragon’s ability to withstand the extreme temperatures and vacuum of space. This is the spacecraft that SpaceX will fly during its Demonstration Mission 1 flight test under NASA’s Commercial Crew Transportation Capability contract with the goal of returning human spaceflight launch capabilities to the U.S.

  5. Aligning with physicians to regionalize services.

    PubMed

    Fink, John

    2014-11-01

    When effectively designed and implemented, regionalization allows a health system to coordinate care, eliminate redundancies, reduce costs, optimize resource utilization, and improve outcomes. The preferred model to manage service lines regionally will depend on each facility's capabilities and the willingness of physicians to accept changes in clinical delivery. Health systems can overcome physicians' objections to regionalization by implementing a hospital-physician alignment structure that gives a measure of shared control in the management of the organization.

  6. High-Reynolds Number Active Blowing Semi-Span Force Measurement System Development

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Rhew, Ray D.; Acheson, Michael J.; Jones, Gregory S.; Milholen, William E.; Goodliff, Scott L.

    2012-01-01

    Recent wind-tunnel tests at the NASA Langley Research Center National Transonic Facility utilized high-pressure bellows to route air to the model for evaluating aircraft circulation control. The introduction of these bellows within the Sidewall Model Support System significantly impacted the performance of the external sidewall mounted semi-span balance. As a result of this impact on the semi-span balance measurement performance, it became apparent that a new capability needed to be built into the National Transonic Facility s infrastructure to allow for performing pressure tare calibrations on the balance in order to properly characterize its performance under the influence of static bellows pressure tare loads and bellows thermal effects. The objective of this study was to design both mechanical calibration hardware and an experimental calibration design that can be employed at the facility in order to efficiently and precisely perform the necessary loadings in order to characterize the semi-span balance under the influence of multiple calibration factors (balance forces/moments and bellows pressure/temperature). Using statistical design of experiments, an experimental design was developed allowing for strategically characterizing the behavior of the semi-span balance for use in circulation control and propulsion-type flow control testing at the National Transonic Facility.

  7. Resources and Capabilities of the Department of Veterans Affairs to Provide Timely and Accessible Care to Veterans

    PubMed Central

    Hussey, Peter S.; Ringel, Jeanne S.; Ahluwalia, Sangeeta; Price, Rebecca Anhang; Buttorff, Christine; Concannon, Thomas W.; Lovejoy, Susan L.; Martsolf, Grant R.; Rudin, Robert S.; Schultz, Dana; Sloss, Elizabeth M.; Watkins, Katherine E.; Waxman, Daniel; Bauman, Melissa; Briscombe, Brian; Broyles, James R.; Burns, Rachel M.; Chen, Emily K.; DeSantis, Amy Soo Jin; Ecola, Liisa; Fischer, Shira H.; Friedberg, Mark W.; Gidengil, Courtney A.; Ginsburg, Paul B.; Gulden, Timothy; Gutierrez, Carlos Ignacio; Hirshman, Samuel; Huang, Christina Y.; Kandrack, Ryan; Kress, Amii; Leuschner, Kristin J.; MacCarthy, Sarah; Maksabedian, Ervant J.; Mann, Sean; Matthews, Luke Joseph; May, Linnea Warren; Mishra, Nishtha; Miyashiro, Lisa; Muchow, Ashley N.; Nelson, Jason; Naranjo, Diana; O'Hanlon, Claire E.; Pillemer, Francesca; Predmore, Zachary; Ross, Rachel; Ruder, Teague; Rutter, Carolyn M.; Uscher-Pines, Lori; Vaiana, Mary E.; Vesely, Joseph V.; Hosek, Susan D.; Farmer, Carrie M.

    2016-01-01

    Abstract The Veterans Access, Choice, and Accountability Act of 2014 addressed the need for access to timely, high-quality health care for veterans. Section 201 of the legislation called for an independent assessment of various aspects of veterans' health care. The RAND Corporation was tasked with an assessment of the Department of Veterans Affairs (VA) current and projected health care capabilities and resources. An examination of data from a variety of sources, along with a survey of VA medical facility leaders, revealed the breadth and depth of VA resources and capabilities: fiscal resources, workforce and human resources, physical infrastructure, interorganizational relationships, and information resources. The assessment identified barriers to the effective use of these resources and capabilities. Analysis of data on access to VA care and the quality of that care showed that almost all veterans live within 40 miles of a VA health facility, but fewer have access to VA specialty care. Veterans usually receive care within 14 days of their desired appointment date, but wait times vary considerably across VA facilities. VA has long played a national leadership role in measuring the quality of health care. The assessment showed that VA health care quality was as good or better on most measures compared with other health systems, but quality performance lagged at some VA facilities. VA will require more resources and capabilities to meet a projected increase in veterans' demand for VA care over the next five years. Options for increasing capacity include accelerated hiring, full nurse practice authority, and expanded use of telehealth. PMID:28083424

  8. Theoretical and experimental studies relevant to interpretation of auroral emissions

    NASA Technical Reports Server (NTRS)

    Keffer, Charles E.

    1994-01-01

    This report describes the accomplishments of a program designed to develop the tools necessary to interpret auroral emissions measured from a space-based platform. The research was divided into two major areas. The first area was a laboratory study designed to improve our understanding of the space vehicle external environment and how it will affect the space-based measurement of auroral emissions. Facilities have been setup and measurements taken to simulate the gas phase environment around a space vehicle; the radiation environment encountered by an orbiting vehicle that passes through the Earth's radiation belts; and the thermal environment of a vehicle in Earth orbit. The second major area of study was a modeling program to develop the capability of using auroral images at various wavelengths to infer the total energy influx and characteristic energy of the incident auroral particles. An ab initio auroral calculation has been added to the extant ionospheric/thermospheric global modeling capabilities within our group. Once the addition of the code was complete, the combined model was used to compare the relative intensities and behavior of various emission sources (dayglow, aurora, etc.). Attached papers included are: 'Laboratory Facility for Simulation of Vehicle-Environment Interactions'; 'Workshop on the Induced Environment of Space Station Freedom'; 'Radiation Damage Effects in Far Ultraviolet Filters and Substrates'; 'Radiation Damage Effects in Far Ultraviolet Filters, Thin Films, and Substrates'; 'Use of FUV Auroral Emissions as Diagnostic Indicators'; and 'Determination of Ionospheric Conductivities from FUV Auroral Emissions'.

  9. A study of model deflection measurement techniques applicable within the national transonic facility

    NASA Technical Reports Server (NTRS)

    Hildebrand, B. P.; Doty, J. L.

    1982-01-01

    Moire contouring, scanning interferometry, and holographic contouring were examined to determine their practicality and potential to meet performance requirements for a model deflection sensor. The system envisioned is to be nonintrusive, and is to be capable of mapping or contouring the surface of a 1-meter by 1-meter model with a resolution of 50 to 100 points. The available literature was surveyed, and computations and analyses were performed to establish specific performance requirements, as well as the capabilities and limitations of such a sensor within the geometry of the NTF section test section. Of the three systems examined, holographic contouring offers the most promise. Unlike Moire, it is not hampered by limited contour spacing and extraneous fringes. Its transverse resolution can far exceed the limited point sampling resolution of scanning heterodyne interferometry. The availability of the ruby laser as a high power, pulsed, multiple wavelength source makes such a system feasible within the NTF.

  10. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.

    PubMed

    Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Langley Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.; Stubbs, Sandy M.; Tanner, John A.

    1987-01-01

    The Langley Research Center has recently upgraded the Landing Loads Track (LLT) to improve the capability of low-cost testing of conventional and advanced landing gear systems. The unique feature of the Langley Aircraft Landing Dynamics Facility (ALDF) is the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A historical overview of the original LLT is given, followed by a detailed description of the new ALDF systems and operational capabilities.

  12. Space station accommodations for life sciences research facilities: Phase A conceptual design and programmatics studies for Missions SAAX0307, SAAX0302 and the transition from SAAX0307 to SAAX0302. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are highlighted. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or Follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSRF to the FOC LSRF.

  13. DTRA National Ignition Facility (NIF)

    DTIC Science & Technology

    2009-01-16

    might provide a capability closer to that of UGT ‟s, particularly in the 15-100 keV X-ray band. We conclude that DRTA should monitor developments in...presently be tested. This is because, since the cessation of underground tests ( UGT ‟s), available facilities cannot produce X-ray environments of...provide a capability closer to that of UGT ‟s, particularly in the 15-100 keV X-ray band. However, source characteristics, including the level of

  14. Method and program product for determining a radiance field in an optical environment

    NASA Technical Reports Server (NTRS)

    Reinersman, Phillip N. (Inventor); Carder, Kendall L. (Inventor)

    2007-01-01

    A hybrid method is presented by which Monte Carlo techniques are combined with iterative relaxation techniques to solve the Radiative Transfer Equation in arbitrary one-, two- or three-dimensional optical environments. The optical environments are first divided into contiguous regions, or elements, with Monte Carlo techniques then being employed to determine the optical response function of each type of element. The elements are combined, and the iterative relaxation techniques are used to determine simultaneously the radiance field on the boundary and throughout the interior of the modeled environment. This hybrid model is capable of providing estimates of the under-water light field needed to expedite inspection of ship hulls and port facilities. It is also capable of providing estimates of the subaerial light field for structured, absorbing or non-absorbing environments such as shadows of mountain ranges within and without absorption spectral bands such as water vapor or CO.sub.2 bands.

  15. Capability 9.2 Mobility

    NASA Technical Reports Server (NTRS)

    Zakrasjek, June

    2005-01-01

    Modern operational concepts require significant bandwidths and multipoint communication capabilities. Provide voice, video and data communications among vehicles moving along the surface, vehicles in suborbital transport or reconnaissance, surface elements, and home planet facilities.

  16. Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2008-01-01

    Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2's support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed in the early 1960s to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Exhaust system performance, including understanding the present facility capabilities, is the primary focus of this work. A variety of approaches and analytical tools are being employed to gain this understanding. This presentation discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

  17. Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2007-01-01

    Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2 s support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed 4 decades ago to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Instrumental in this task is understanding the present facility capabilities and identifying what reasonable changes can be implemented. A variety of approaches and analytical tools are being employed to gain this understanding. This paper discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

  18. Survey of aircraft icing simulation test facilities in North America

    NASA Technical Reports Server (NTRS)

    Olsen, W.

    1981-01-01

    A survey was made of the aircraft icing simulation facilities in North America: there are 12 wind tunnels, 28 engine test facilities, 6 aircraft tankers and 14 low velocity facilities, that perform aircraft icing tests full or part time. The location and size of the facility, its speed and temperature range, icing cloud parameters, and the technical person to contact are surveyed. Results are presented in tabular form. The capabilities of each facility were estimated by its technical contact person. The adequacy of these facilities for various types of icing tests is discussed.

  19. The hills are alive: Earth surface dynamics in the University of Arizona Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    DeLong, S.; Troch, P. A.; Barron-Gafford, G. A.; Huxman, T. E.; Pelletier, J. D.; Dontsova, K.; Niu, G.; Chorover, J.; Zeng, X.

    2012-12-01

    To meet the challenge of predicting landscape-scale changes in Earth system behavior, the University of Arizona has designed and constructed a new large-scale and community-oriented scientific facility - the Landscape Evolution Observatory (LEO). The primary scientific objectives are to quantify interactions among hydrologic partitioning, geochemical weathering, ecology, microbiology, atmospheric processes, and geomorphic change associated with incipient hillslope development. LEO consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1 meter of basaltic tephra ground to homogenous loamy sand and contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. Each ~1000 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation), to facilitate better quantification of evapotraspiration. Each landscape has an engineered rain system that allows application of precipitation at rates between3 and 45 mm/hr. These landscapes are being studied in replicate as "bare soil" for an initial period of several years. After this initial phase, heat- and drought-tolerant vascular plant communities will be introduced. Introduction of vascular plants is expected to change how water, carbon, and energy cycle through the landscapes, with potentially dramatic effects on co-evolution of the physical and biological systems. LEO also provides a physical comparison to computer models that are designed to predict interactions among hydrological, geochemical, atmospheric, ecological and geomorphic processes in changing climates. These computer models will be improved by comparing their predictions to physical measurements made in LEO. The main focus of our iterative modeling and measurement discovery cycle is to use rapid data assimilation to facilitate validation of newly coupled open-source Earth systems models. LEO will be a community resource for Earth system science research, education, and outreach. The LEO project operational philosophy includes 1) open and real-time availability of sensor network data, 2) a framework for community collaboration and facility access that includes integration of new or comparative measurement capabilities into existing facility cyberinfrastructure, 3) community-guided science planning and 4) development of novel education and outreach programs.Artistic rendering of the University of Arizona Landscape Evolution Observatory

  20. Comparisons of Air Radiation Model with Shock Tube Measurements

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  1. 47 CFR 1.20006 - Assistance capability requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Assistance capability requirements. 1.20006... regarding wire and electronic communications and call-identifying information, see 47 U.S.C. 1002. A carrier... equipment, facilities, and services comply with the assistance capability requirements of 47 U.S.C. 1002. (c...

  2. NREL's Energy Systems Integration Supporting Facilities - Continuum

    Science.gov Websites

    Integration Facility opened in December, 2012. Photo by Dennis Schroeder, NREL NREL's Energy Systems capabilities. Photo by Dennis Schroeder, NREL This research electrical distribution bus (REDB) works as a power

  3. 33 CFR 154.1210 - Purpose and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fats and Vegetable Oils Facilities § 154.1210 Purpose and applicability. (a) The requirements of this... fats or vegetable oils including— (1) A fixed MTR facility capable of transferring oil in bulk, to or...

  4. 33 CFR 154.1210 - Purpose and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fats and Vegetable Oils Facilities § 154.1210 Purpose and applicability. (a) The requirements of this... fats or vegetable oils including— (1) A fixed MTR facility capable of transferring oil in bulk, to or...

  5. 33 CFR 154.1210 - Purpose and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fats and Vegetable Oils Facilities § 154.1210 Purpose and applicability. (a) The requirements of this... fats or vegetable oils including— (1) A fixed MTR facility capable of transferring oil in bulk, to or...

  6. RETROFITTING POTW

    EPA Science Inventory

    This manual is intended as a source document for individuals responsible for improving the performance of an existing, non-complying wastewater treatment facility. Described are: 1) methods to evaluate an existing facility's capability to achieve improved performance, 2) a ...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Michel; Archer, Bill; Hendrickson, Bruce

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.« less

  8. No Vent Tank Fill and Transfer Line Chilldown Analysis by Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    2013-01-01

    The purpose of the paper is to present the analytical capability developed to model no vent chill and fill of cryogenic tank to support CPST (Cryogenic Propellant Storage and Transfer) program. Generalized Fluid System Simulation Program (GFSSP) was adapted to simulate charge-holdvent method of Tank Chilldown. GFSSP models were developed to simulate chilldown of LH2 tank in K-site Test Facility and numerical predictions were compared with test data. The report also describes the modeling technique of simulating the chilldown of a cryogenic transfer line and GFSSP models were developed to simulate the chilldown of a long transfer line and compared with test data.

  9. A Bioinformatics Facility for NASA

    NASA Technical Reports Server (NTRS)

    Schweighofer, Karl; Pohorille, Andrew

    2006-01-01

    Building on an existing prototype, we have fielded a facility with bioinformatics technologies that will help NASA meet its unique requirements for biological research. This facility consists of a cluster of computers capable of performing computationally intensive tasks, software tools, databases and knowledge management systems. Novel computational technologies for analyzing and integrating new biological data and already existing knowledge have been developed. With continued development and support, the facility will fulfill strategic NASA s bioinformatics needs in astrobiology and space exploration. . As a demonstration of these capabilities, we will present a detailed analysis of how spaceflight factors impact gene expression in the liver and kidney for mice flown aboard shuttle flight STS-108. We have found that many genes involved in signal transduction, cell cycle, and development respond to changes in microgravity, but that most metabolic pathways appear unchanged.

  10. Implementation of a low-cost, commercial orbit determination system

    NASA Technical Reports Server (NTRS)

    Corrigan, Jim

    1994-01-01

    This paper describes the implementation and potential applications of a workstation-based orbit determination system developed by Storm Integration, Inc. called the Precision Orbit Determination System (PODS). PODS is offered as a layered product to the commercially-available Satellite Tool Kit (STK) produced by Analytical Graphics, Inc. PODS also incorporates the Workstation/Precision Orbit Determination (WS/POD) product offered by Van Martin System, Inc. The STK graphical user interface is used to access and invoke the PODS capabilities and to display the results. WS/POD is used to compute a best-fit solution to user-supplied tracking data. PODS provides the capability to simultaneously estimate the orbits of up to 99 satellites based on a wide variety of observation types including angles, range, range rate, and Global Positioning System (GPS) data. PODS can also estimate ground facility locations, Earth geopotential model coefficients, solar pressure and atmospheric drag parameters, and observation data biases. All determined data is automatically incorporated into the STK data base, which allows storage, manipulation and export of the data to other applications. PODS is offered in three levels: Standard, Basic GPS and Extended GPS. Standard allows processing of non-GPS observation types for any number of vehicles and facilities. Basic GPS adds processing of GPS pseudo-ranging data to the Standard capabilities. Extended GPS adds the ability to process GPS carrier phase data.

  11. Space Nuclear Facility test capability at the Baikal-1 and IGR sites Semipalatinsk-21, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Hill, T. J.; Stanley, M. L.; Martinell, J. S.

    1993-01-01

    The International Space Technology Assessment Program was established 1/19/92 to take advantage of the availability of Russian space technology and hardware. DOE had two delegations visit CIS and assess its space nuclear power and propulsion technologies. The visit coincided with the Conference on Nuclear Power Engineering in Space Nuclear Rocket Engines at Semipalatinsk-21 (Kurchatov, Kazakhstan) on Sept. 22-25, 1992. Reactor facilities assessed in Semipalatinski-21 included the IVG-1 reactor (a nuclear furnace, which has been modified and now called IVG-1M), the RA reactor, and the Impulse Graphite Reactor (IGR), the CIS version of TREAT. Although the reactor facilities are being maintained satisfactorily, the support infrastructure appears to be degrading. The group assessment is based on two half-day tours of the Baikals-1 test facility and a brief (2 hr) tour of IGR; because of limited time and the large size of the tour group, it was impossible to obtain answers to all prepared questions. Potential benefit is that CIS fuels and facilities may permit USA to conduct a lower priced space nuclear propulsion program while achieving higher performance capability faster, and immediate access to test facilities that cannot be available in this country for 5 years. Information needs to be obtained about available data acquisition capability, accuracy, frequency response, and number of channels. Potential areas of interest with broad application in the U.S. nuclear industry are listed.

  12. An integrated approach for determining plutonium mass in spent fuel assemblies with nondestructive assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinhoe, Martyn T; Tobin, Stephen J; Fensin, Mike L

    2009-01-01

    There are a variety of reasons for quantifying plutonium (Pu) in spent fuel. Below, five motivations are listed: (1) To verify the Pu content of spent fuel without depending on unverified information from the facility, as requested by the IAEA ('independent verification'). New spent fuel measurement techniques have the potential to allow the IAEA to recover continuity of knowledge and to better detect diversion. (2) To assure regulators that all of the nuclear material of interest leaving a nuclear facility actually arrives at another nuclear facility ('shipper/receiver'). Given the large stockpile of nuclear fuel at reactor sites around the world,more » it is clear that in the coming decades, spent fuel will need to be moved to either reprocessing facilities or storage sites. Safeguarding this transportation is of significant interest. (3) To quantify the Pu in spent fuel that is not considered 'self-protecting.' Fuel is considered self-protecting by some regulatory bodies when the dose that the fuel emits is above a given level. If the fuel is not self-protecting, then the Pu content of the fuel needs to be determined and the Pu mass recorded in the facility's accounting system. This subject area is of particular interest to facilities that have research-reactor spent fuel or old light-water reactor (LWR) fuel. It is also of interest to regulators considering changing the level at which fuel is considered self-protecting. (4) To determine the input accountability value at an electrochemical processing facility. It is not expected that an electrochemical reprocessing facility will have an input accountability tank, as is typical in an aqueous reprocessing facility. As such, one possible means of determining the input accountability value is to measure the Pu content in the spent fuel that arrives at the facility. (5) To fully understand the composition of the fuel in order to efficiently and safely pack spent fuel into a long-term repository. The NDA of spent fuel can be part of a system that cost-effectively meets the burnup credit needs of a repository. Behind each of these reasons is a regulatory structure with MC&A requirements. In the case of the IAEA, the accountable quantity is elemental plutonium. The material in spent fuel (fissile isotopes, fission products, etc.) emits signatures that provide information about the content and history of the fuel. A variety of nondestructive assay (NDA) techniques are available to quantify these signatures. The effort presented in this paper is investigation of the capabilities of 12 NDA techniques. For these 12, none is conceptually capable of independently determining the Pu content in a spent fuel assembly while at the same time being able to detect the diversion of a significant quantity of rods. For this reason the authors are investigating the capability of 12 NDA techniques with the end goal of integrating a few techniques together into a system that is capable of measuring Pu mass in an assembly. The work described here is the beginning of what is anticipated to be a five year effort: (1) two years of modeling to select the best technologies, (2) one year fabricating instruments and (3) two years measuring spent fuel. This paper describes the first two years of this work. In order to cost effectively and robustly model the performance of the 12 NDA techniques, an 'assembly library' was created. The library contains the following: (a) A diverse range of PWR spent fuel assemblies (burnup, enrichment, cooling time) similar to that which exists in spent pools today and in the future. (b) Diversion scenarios that capture a range of possible rod removal options. (c) The spatial and isotopic detail needed to accurately quantify the capability of all the NDA techniques so as to enable integration. It is our intention to make this library available to other researchers in the field for inter-comparison purposes. The performance of each instrument will be quantified for the full assembly library for measurements in three different media: air, water and borated water. The 12 NDA techniques being researched are the following: Delayed Gamma, Delayed Neutrons, Differential Die-Away, Lead Slowing Down Spectrometer, Neutron Multiplicity, Nuclear Resonance Fluorescence, Passive Prompt Gamma, Passive Neutron Albedo Reactivity, Self-integration Neutron Resonance Densitometry, Total Neutron (Gross Neutron), X-Ray Fluorescence, {sup 252}Cf Interrogation with Prompt Neutron Detection.« less

  13. LUMA: A many-core, Fluid-Structure Interaction solver based on the Lattice-Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Harwood, Adrian R. G.; O'Connor, Joseph; Sanchez Muñoz, Jonathan; Camps Santasmasas, Marta; Revell, Alistair J.

    2018-01-01

    The Lattice-Boltzmann Method at the University of Manchester (LUMA) project was commissioned to build a collaborative research environment in which researchers of all abilities can study fluid-structure interaction (FSI) problems in engineering applications from aerodynamics to medicine. It is built on the principles of accessibility, simplicity and flexibility. The LUMA software at the core of the project is a capable FSI solver with turbulence modelling and many-core scalability as well as a wealth of input/output and pre- and post-processing facilities. The software has been validated and several major releases benchmarked on supercomputing facilities internationally. The software architecture is modular and arranged logically using a minimal amount of object-orientation to maintain a simple and accessible software.

  14. Design Optimization Considerations for the MROI

    NASA Astrophysics Data System (ADS)

    Creech-Eakman, M. J.; Buscher, D. F.; Haniff, C. A.; MROI Team

    2014-04-01

    The Magdalena Ridge Observatory Interferometer (MROI) has been conceived to be a 10 element 1.4m aperture imaging interferometer working in the optical and near-infrared and located at a altitude of 10,500 feet in the mountains of south-central New Mexico. When designing the MROI, we attempted to take lessons learned from the design of other similar facilities and specifically considered sensitivity, speed of data collection, scalability and mobility of the design, along with polarization preservation and imaging capabilities to attain the present model for the facility. Several papers detailing the specifics of the design of the MROI and the philosophy behind the certain choices or trade-offs have been published in the past few years. These references and those listed therein are listed below.

  15. Design philosophy of the Jet Propulsion Laboratory infrared detector test facility

    NASA Technical Reports Server (NTRS)

    Burns, R.; Blessinger, M. A.

    1983-01-01

    To support the development of advanced infrared remote sensing instrumentation using line and area arrays, a test facility has been developed to characterize the detectors. The necessary performance characteristics of the facility were defined by considering current and projected requirements for detector testing. The completed facility provides the desired level of detector testing capability as well as providing ease of human interaction.

  16. The Aliso Canyon Natural Gas Leak : Large Eddy Simulations for Modeling Atmospheric Dynamics and Interpretation of Observations.

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Thorpe, A. K.; Duren, R. M.; Thompson, D. R.; Whetstone, J. R.

    2016-12-01

    The National Institute of Standards and Technology (NIST) has supported the development and demonstration of a measurement capability to accurately locate greenhouse gas sources and measure their flux to the atmosphere over urban domains. However, uncertainties in transport models which form the basis of all top-down approaches can significantly affect our capability to attribute sources and predict their flux to the atmosphere. Reducing uncertainties between bottom-up and top-down models will require high resolution transport models as well as validation and verification of dispersion models over an urban domain. Tracer experiments involving the release of Perfluorocarbon Tracers (PFTs) at known flow rates offer the best approach for validating dispersion / transport models. However, tracer experiments are limited by cost, ability to make continuous measurements, and environmental concerns. Natural tracer experiments, such as the leak from the Aliso Canyon underground storage facility offers a unique opportunity to improve and validate high resolution transport models, test leak hypothesis, and to estimate the amount of methane released.High spatial resolution (10 m) Large Eddy Simulations (LES) coupled with WRF atmospheric transport models were performed to simulate the dynamics of the Aliso Canyon methane plume and to quantify the source. High resolution forward simulation results were combined with aircraft and tower based in-situ measurements as well as data from NASA airborne imaging spectrometers. Comparison of simulation results with measurement data demonstrate the capability of the LES models to accurately model transport and dispersion of methane plumes over urban domains.

  17. Autonomous rendezvous and capture development infrastructure

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Roe, Fred; Coker, Cindy; Nelson, Pam; Johnson, B.

    1991-01-01

    In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the ultimate test facility, using a Shuttle-based reusable free-flying testbed to perform a Technology Demonstration Test Flight which can be structured to include a variety of additional sensors, control schemes, and operational approaches. This conceptual testbed and flight demonstration will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.

  18. NASA Lighting Research, Test, & Analysis

    NASA Technical Reports Server (NTRS)

    Clark, Toni

    2015-01-01

    The Habitability and Human Factors Branch, at Johnson Space Center, in Houston, TX, provides technical guidance for the development of spaceflight lighting requirements, verification of light system performance, analysis of integrated environmental lighting systems, and research of lighting-related human performance issues. The Habitability & Human Factors Lighting Team maintains two physical facilities that are integrated to provide support. The Lighting Environment Test Facility (LETF) provides a controlled darkroom environment for physical verification of lighting systems with photometric and spetrographic measurement systems. The Graphics Research & Analysis Facility (GRAF) maintains the capability for computer-based analysis of operational lighting environments. The combined capabilities of the Lighting Team at Johnson Space Center have been used for a wide range of lighting-related issues.

  19. Ground based ISS payload microgravity disturbance assessments.

    PubMed

    McNelis, Anne M; Heese, John A; Samorezov, Sergey; Moss, Larry A; Just, Marcus L

    2005-01-01

    In order to verify that the International Space Station (ISS) payload facility racks do not disturb the microgravity environment of neighboring facility racks and that the facility science operations are not compromised, a testing and analytical verification process must be followed. Currently no facility racks have taken this process from start to finish. The authors are participants in implementing this process for the NASA Glenn Research Center (GRC) Fluids and Combustion Facility (FCF). To address the testing part of the verification process, the Microgravity Emissions Laboratory (MEL) was developed at GRC. The MEL is a 6 degree of freedom inertial measurement system capable of characterizing inertial response forces (emissions) of components, sub-rack payloads, or rack-level payloads down to 10(-7) g's. The inertial force output data, generated from the steady state or transient operations of the test articles, are utilized in analytical simulations to predict the on-orbit vibratory environment at specific science or rack interface locations. Once the facility payload rack and disturbers are properly modeled an assessment can be made as to whether required microgravity levels are achieved. The modeling is utilized to develop microgravity predictions which lead to the development of microgravity sensitive ISS experiment operations once on-orbit. The on-orbit measurements will be verified by use of the NASA GRC Space Acceleration Measurement System (SAMS). The major topics to be addressed in this paper are: (1) Microgravity Requirements, (2) Microgravity Disturbers, (3) MEL Testing, (4) Disturbance Control, (5) Microgravity Control Process, and (6) On-Orbit Predictions and Verification. Published by Elsevier Ltd.

  20. Onsite and Electric Backup Capabilities at Critical Infrastructure Facilities in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Julia A.; Wallace, Kelly E.; Kudo, Terence Y.

    2016-04-01

    The following analysis, conducted by Argonne National Laboratory’s (Argonne’s) Risk and Infrastructure Science Center (RISC), details an analysis of electric power backup of national critical infrastructure as captured through the Department of Homeland Security’s (DHS’s) Enhanced Critical Infrastructure Program (ECIP) Initiative. Between January 1, 2011, and September 2014, 3,174 ECIP facility surveys have been conducted. This study focused first on backup capabilities by infrastructure type and then expanded to infrastructure type by census region.

  1. Wind-tunnel simulation of store jettison with the aid of magnetic artificial gravity

    NASA Technical Reports Server (NTRS)

    Stephens, T.; Adams, R.

    1972-01-01

    A method employed in the simulation of jettison of stores from aircraft involving small scale wind-tunnel drop tests from a model of the parent aircraft is described. Proper scaling of such experiments generally dictates that the gravitational acceleration should ideally be a test variable. A method of introducing a controllable artificial component of gravity by magnetic means has been proposed. The use of a magnetic artificial gravity facility based upon this idea, in conjunction with small scale wind-tunnel drop tests, would improve the accuracy of simulation. A review of the scaling laws as they apply to the design of such a facility is presented. The design constraints involved in the integration of such a facility with a wind tunnel are defined. A detailed performance analysis procedure applicable to such a facility is developed. A practical magnet configuration is defined which is capable of controlling the strength and orientation of the magnetic artificial gravity field in the vertical plane, thereby allowing simulation of store jettison from a diving or climbing aircraft. The factors involved in the choice between continuous or intermittent operation of the facility, and the use of normal or superconducting magnets, are defined.

  2. 40 CFR 60.40 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Fossil-Fuel-Fired Steam Generators § 60.40 Applicability and designation of affected facility. (a) The affected facilities to which the provisions of this subpart apply are: (1) Each fossil-fuel-fired... per hour (MMBtu/hr)). (2) Each fossil-fuel and wood-residue-fired steam generating unit capable of...

  3. 40 CFR 60.40 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Fossil-Fuel-Fired Steam Generators § 60.40 Applicability and designation of affected facility. (a) The affected facilities to which the provisions of this subpart apply are: (1) Each fossil-fuel-fired... per hour (MMBtu/hr)). (2) Each fossil-fuel and wood-residue-fired steam generating unit capable of...

  4. 40 CFR 60.40 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Fossil-Fuel-Fired Steam Generators § 60.40 Applicability and designation of affected facility. (a) The affected facilities to which the provisions of this subpart apply are: (1) Each fossil-fuel-fired... per hour (MMBtu/hr)). (2) Each fossil-fuel and wood-residue-fired steam generating unit capable of...

  5. A laboratory facility for research on wind-driven rain intrusion in building envelope assemblies

    Treesearch

    Samuel V. Glass

    2010-01-01

    Moisture management is critical for durable, energy-efficient buildings. To address the need for research on wind-driven rain intrusion in wall assemblies, the U.S. Forest Products Laboratory is developing a new facility. This paper describes the underlying principle of this facility and its capabilities.

  6. NASA Langley's Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.

    1993-01-01

    The Aircraft Landing Dynamics Facility (ALDF) is a unique facility with the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A brief historical overview of the original Landing Loads Track (LLT) is given, followed by a detailed description of the new ALDF systems and operational capabilities.

  7. The Attached Payload Facility Program: A Family of In-Space Commercial Facilities for Technology, Science and Industry

    NASA Technical Reports Server (NTRS)

    Avery, Don E.; Kaszubowski, Martin J.; Kearney, Michael E.; Howard, Trevor P.

    1996-01-01

    It is anticipated that as the utilization of space increases in both the government and commercial sec tors the re will be a high degree of interest in materials and coatings research as well as research in space environment definition, deployable structures, multi-functional structures and electronics. The International Space Station (ISS) is an excellent platform for long-term technology development because it provides large areas for external attached payloads, power and data capability, and ready access for experiment exchange and return. An alliance of SPACEHAB, MicroCraft, Inc. and SpaceTec, Inc. has been formed to satisfy this research need through commercial utilization of the capabilities of ISS. The alliance will provide a family of facilities designed to provide low-cost, reliable access to space for experimenters. This service would start as early as 1997 and mature to a fully functional attached facility on ISS by 2001. The alliances facilities are based on early activities by NASA, Langley Research Center (LaRC) to determine the feasibility of a Material Exposure Facility (MEF).

  8. Radiography Capabilities for Matter-Radiation Interactions in Extremes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walstrom, Peter Lowell; Garnett, Robert William; Chapman, Catherine A. B

    The Matter-Radiation Interactions in Extremes (MaRIE) experimental facility will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges. This new facility will provide the new tools scientists need to develop next-generation materials that will perform predictably and on-demand for currently unattainable lifetimes in extreme environments. The MaRIE facility is based on upgrades to the existing LANSCE 800-MeV proton linac and a new 12-GeV electron linac and associated X-ray FEL to provide simultaneous multiple probe beams, and new experimental areas. In addition to the high-energy photon probe beam, both electronmore » and proton radiography capabilities will be available at the MaRIE facility. Recently, detailed radiography system studies have been performed to develop conceptual layouts of high-magnification electron and proton radiography systems that can meet the experimental requirements for the expected first experiments to be performed at the facility. A description of the radiography systems, their performance requirements, and a proposed facility layout are presented.« less

  9. Fluids and Combustion Facility: Combustion Integrated Rack Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user, two-rack facility dedicated to combustion and fluids science in the US Laboratory Destiny on the International Space Station. FCF is a permanent facility that is capable of accommodating up to ten combustion and fluid science investigations per year. FCF research in combustion and fluid science supports NASA's Exploration of Space Initiative for on-orbit fire suppression, fire safety, and space system fluids management. The Combustion Integrated Rack (CIR) is one of two racks in the FCF. The CIR major structural elements include the International Standard Payload Rack (ISPR), Experiment Assembly (optics bench and combustion chamber), Air Thermal Control Unit (ATCU), Rack Door, and Lower Structure Assembly (Input/Output Processor and Electrical Power Control Unit). The load path through the rack structure is outlined. The CIR modal survey was conducted to validate the load path predicted by the CIR finite element model (FEM). The modal survey is done by experimentally measuring the CIR frequencies and mode shapes. The CIR model was test correlated by updating the model to represent the test mode shapes. The correlated CIR model delivery is required by NASA JSC at Launch-10.5 months. The test correlated CIR flight FEM is analytically integrated into the Shuttle for a coupled loads analysis of the launch configuration. The analysis frequency range of interest is 0-50 Hz. A coupled loads analysis is the analytical integration of the Shuttle with its cargo element, the Mini Payload Logistics Module (MPLM), in the Shuttle cargo bay. For each Shuttle launch configuration, a verification coupled loads analysis is performed to determine the loads in the cargo bay as part of the structural certification process.

  10. NOAA Big Data Partnership RFI

    NASA Astrophysics Data System (ADS)

    de la Beaujardiere, J.

    2014-12-01

    In February 2014, the US National Oceanic and Atmospheric Administration (NOAA) issued a Big Data Request for Information (RFI) from industry and other organizations (e.g., non-profits, research laboratories, and universities) to assess capability and interest in establishing partnerships to position a copy of NOAA's vast data holdings in the Cloud, co-located with easy and affordable access to analytical capabilities. This RFI was motivated by a number of concerns. First, NOAA's data facilities do not necessarily have sufficient network infrastructure to transmit all available observations and numerical model outputs to all potential users, or sufficient infrastructure to support simultaneous computation by many users. Second, the available data are distributed across multiple services and data facilities, making it difficult to find and integrate data for cross-domain analysis and decision-making. Third, large datasets require users to have substantial network, storage, and computing capabilities of their own in order to fully interact with and exploit the latent value of the data. Finally, there may be commercial opportunities for value-added products and services derived from our data. Putting a working copy of data in the Cloud outside of NOAA's internal networks and infrastructures should reduce demands and risks on our systems, and should enable users to interact with multiple datasets and create new lines of business (much like the industries built on government-furnished weather or GPS data). The NOAA Big Data RFI therefore solicited information on technical and business approaches regarding possible partnership(s) that -- at no net cost to the government and minimum impact on existing data facilities -- would unleash the commercial potential of its environmental observations and model outputs. NOAA would retain the master archival copy of its data. Commercial partners would not be permitted to charge fees for access to the NOAA data they receive, but would be able to develop and sell value-added products and services. This effort is still very much in the initial market research phase and has complexity in technical, business, and technical domains. This paper will discuss the current status of the activity and potential next steps.

  11. Benchmarking of neutron production of heavy-ion transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, I.; Ronningen, R. M.; Heilbronn, L.

    Document available in abstract form only, full text of document follows: Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondarymore » neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required. (authors)« less

  12. A space transportation system operations model

    NASA Technical Reports Server (NTRS)

    Morris, W. Douglas; White, Nancy H.

    1987-01-01

    Presented is a description of a computer program which permits assessment of the operational support requirements of space transportation systems functioning in both a ground- and space-based environment. The scenario depicted provides for the delivery of payloads from Earth to a space station and beyond using upper stages based at the station. Model results are scenario dependent and rely on the input definitions of delivery requirements, task times, and available resources. Output is in terms of flight rate capabilities, resource requirements, and facility utilization. A general program description, program listing, input requirements, and sample output are included.

  13. NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility

    NASA Technical Reports Server (NTRS)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.

  14. The Past, Present, and Future of Configuration Management

    DTIC Science & Technology

    1992-07-01

    surveying the tools and environments, it is possible to extract a set of 15 CM concepts [12] that capture the essence of automated support for CM. These...tools in maintaining the configuration’s integrity, as in Jasmine [20]. 9. Subsystem: provide a means to limit the effect of changes and recompilation...workspace facility. Thus, the ser- vices model, in essence , is intended to provide plug in/plug out, "black box" capabilities. The initial set of 50

  15. Air Force Medical Modeling and Simulation: Bringing Virtual Reality to Reality

    DTIC Science & Technology

    2011-01-26

    OMB control number. 1. REPORT DATE 26 JAN 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4 . TITLE AND SUBTITLE Air Force...7 Over $ 4 billion added to Medicare health care cost! 2011 MHS Conference One Decade Later… 8 •10% increase inpatient deaths from medication errors in...Conference “Hub & Spoke” Simulation Network Facilities grouped into 4 -tiered system based on training requirements and simulation capability Category

  16. Nondestructive Evaluation and Monitoring Results from COPV Accelerated Stress Rupture Testing, NASA White Sands Test Facility (WSTF)

    NASA Technical Reports Server (NTRS)

    Saulsberry Regor

    2010-01-01

    Develop and demonstrate NDE techniques for real-time characterization of CPVs and, where possible, identification of NDE capable of assessing stress rupture related strength degradation and/or making vessel life predictions (structural health monitoring or periodic inspection modes). Secondary: Provide the COPV user and materials community with quality carbon/epoxy (C/Ep) COPV stress rupture progression rate data. Aid in modeling, manufacturing, and application of COPVs for NASA spacecraft.

  17. Integration and software for thermal test of heat rate sensors. [space shuttle external tank

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Shrider, K. R.

    1982-01-01

    A minicomputer controlled radiant test facility is described which was developed and calibrated in an effort to verify analytical thermal models of instrumentation islands installed aboard the space shuttle external tank to measure thermal flight parameters during ascent. Software was provided for the facility as well as for development tests on the SRB actuator tail stock. Additional testing was conducted with the test facility to determine the temperature and heat flux rate and loads required to effect a change of color in the ET tank external paint. This requirement resulted from the review of photographs taken of the ET at separation from the orbiter which showed that 75% of the external tank paint coating had not changed color from its original white color. The paint on the remaining 25% of the tank was either brown or black, indicating that it had degraded due to heating or that the spray on form insulation had receded in these areas. The operational capability of the facility as well as the various tests which were conducted and their results are discussed.

  18. Scaling Studies for Advanced High Temperature Reactor Concepts, Final Technical Report: October 2014—December 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Brian; Gutowska, Izabela; Chiger, Howard

    Computer simulations of nuclear reactor thermal-hydraulic phenomena are often used in the design and licensing of nuclear reactor systems. In order to assess the accuracy of these computer simulations, computer codes and methods are often validated against experimental data. This experimental data must be of sufficiently high quality in order to conduct a robust validation exercise. In addition, this experimental data is generally collected at experimental facilities that are of a smaller scale than the reactor systems that are being simulated due to cost considerations. Therefore, smaller scale test facilities must be designed and constructed in such a fashion tomore » ensure that the prototypical behavior of a particular nuclear reactor system is preserved. The work completed through this project has resulted in scaling analyses and conceptual design development for a test facility capable of collecting code validation data for the following high temperature gas reactor systems and events— 1. Passive natural circulation core cooling system, 2. pebble bed gas reactor concept, 3. General Atomics Energy Multiplier Module reactor, and 4. prismatic block design steam-water ingress event. In the event that code validation data for these systems or events is needed in the future, significant progress in the design of an appropriate integral-type test facility has already been completed as a result of this project. Where applicable, the next step would be to begin the detailed design development and material procurement. As part of this project applicable scaling analyses were completed and test facility design requirements developed. Conceptual designs were developed for the implementation of these design requirements at the Oregon State University (OSU) High Temperature Test Facility (HTTF). The original HTTF is based on a ¼-scale model of a high temperature gas reactor concept with the capability for both forced and natural circulation flow through a prismatic core with an electrical heat source. The peak core region temperature capability is 1400°C. As part of this project, an inventory of test facilities that could be used for these experimental programs was completed. Several of these facilities showed some promise, however, upon further investigation it became clear that only the OSU HTTF had the power and/or peak temperature limits that would allow for the experimental programs envisioned herein. Thus the conceptual design and feasibility study development focused on examining the feasibility of configuring the current HTTF to collect validation data for these experimental programs. In addition to the scaling analyses and conceptual design development, a test plan was developed for the envisioned modified test facility. This test plan included a discussion on an appropriate shakedown test program as well as the specific matrix tests. Finally, a feasibility study was completed to determine the cost and schedule considerations that would be important to any test program developed to investigate these designs and events.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlburg, Jill; Corones, James; Batchelor, Donald

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individualmore » features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC integrated planning document (IPPA, 2000), represents a significant opportunity for the DOE Office of Science to further the understanding of fusion plasmas to a level unparalleled worldwide.« less

  20. Robotic Access to Planetary Surfaces Capability Roadmap

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A set of robotic access to planetary surfaces capability developments and supporting infrastructure have been identified. Reference mission pulls derived from ongoing strategic planning. Capability pushes to enable broader mission considerations. Facility and flight test capability needs. Those developments have been described to the level of detail needed for high-level planning. Content and approach. Readiness and metrics. Rough schedule and cost. Connectivity to mission concepts.

  1. Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities.

    PubMed

    Garcia, Fernando A; Vandiver, Michael W

    2017-01-01

    In order to operate profitably under different product demand scenarios, biopharmaceutical companies must design their facilities with mass output flexibility in mind. Traditional biologics manufacturing technologies pose operational challenges in this regard due to their high costs and slow equipment turnaround times, restricting the types of products and mass quantities that can be processed. Modern plant design, however, has facilitated the development of lean and efficient bioprocessing facilities through footprint reduction and adoption of disposable and continuous manufacturing technologies. These development efforts have proven to be crucial in seeking to drastically reduce the high costs typically associated with the manufacturing of recombinant proteins. In this work, mathematical modeling is used to optimize annual production schedules for a single-product commercial facility operating with a continuous upstream and discrete batch downstream platform. Utilizing cell culture duration and volumetric productivity as process variables in the model, and annual plant throughput as the optimization objective, 3-D surface plots are created to understand the effect of process and facility design on expected mass output. The model shows that once a plant has been fully debottlenecked it is capable of processing well over a metric ton of product per year. Moreover, the analysis helped to uncover a major limiting constraint on plant performance, the stability of the neutralized viral inactivated pool, which may indicate that this should be a focus of attention during future process development efforts. LAY ABSTRACT: Biopharmaceutical process modeling can be used to design and optimize manufacturing facilities and help companies achieve a predetermined set of goals. One way to perform optimization is by making the most efficient use of process equipment in order to minimize the expenditure of capital, labor and plant resources. To that end, this paper introduces a novel mathematical algorithm used to determine the most optimal equipment scheduling configuration that maximizes the mass output for a facility producing a single product. The paper also illustrates how different scheduling arrangements can have a profound impact on the availability of plant resources, and identifies limiting constraints on the plant design. In addition, simulation data is presented using visualization techniques that aid in the interpretation of the scientific concepts discussed. © PDA, Inc. 2017.

  2. Space Weather Modeling at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse M.

    2005-01-01

    The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires dose collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the US Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and development accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate. Special emphasis will be on solar and heliospheric models currently residing at CCMC, and on plans for validation and verification.

  3. PSL Icing Facility Upgrade Overview

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  4. The rationale and design features for the 40 by 80/80 by 120 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Mort, K. W.; Kelly, M. W.; Hickey, D. H.

    1976-01-01

    A substantial increase in the test capability of full scale wind tunnels is considered. In order to determine the most cost effective means for providing this desired increase in test capability, a series of design studies were conducted of various new facilities as well as of major modifications to the existing 40- by 80-foot wind tunnel. The most effective trade between test capability and facility cost was provided by repowering the existing 40 by 80 foot wind tunnel to increase the maximum speed from 200 knots to 300 knots and by the addition of a new 80- by 120-foot test section having a 110 knot maximum speed. The design of the facility is described with special emphasis on the unique features, such as the drive system which absorbs nearly four times the power without an increase in noise, and the large flow diversion devices required to interface the two test sections to a single drive.

  5. A far-ultraviolet contamination-irradiation facility for in situ reflectance measurements

    NASA Astrophysics Data System (ADS)

    Meier, Steven R.; Tveekrem, June L.; Keski-Kuha, Ritva A. M.

    1998-10-01

    In this article, a contamination-irradiation facility designed to measure contamination effects on far-ultraviolet optical surfaces is described. An innovative feature of the facility is the capability of depositing a contaminant, photopolymerizing the contaminant with far-ultraviolet light, and measuring the reflectance of the contaminated sample, all in situ. In addition to describing the facility, we present far-ultraviolet reflectance measurements for a contaminated mirror.

  6. Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Lisa; Lekov, Alex; McKane, Aimee

    2010-08-20

    This case study enhances the understanding of open automated demand response opportunities in municipal wastewater treatment facilities. The report summarizes the findings of a 100 day submetering project at the San Luis Rey Wastewater Treatment Plant, a municipal wastewater treatment facility in Oceanside, California. The report reveals that key energy-intensive equipment such as pumps and centrifuges can be targeted for large load reductions. Demand response tests on the effluent pumps resulted a 300 kW load reduction and tests on centrifuges resulted in a 40 kW load reduction. Although tests on the facility?s blowers resulted in peak period load reductions ofmore » 78 kW sharp, short-lived increases in the turbidity of the wastewater effluent were experienced within 24 hours of the test. The results of these tests, which were conducted on blowers without variable speed drive capability, would not be acceptable and warrant further study. This study finds that wastewater treatment facilities have significant open automated demand response potential. However, limiting factors to implementing demand response are the reaction of effluent turbidity to reduced aeration load, along with the cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities.« less

  7. Aerocapture, Entry, Descent and Landing (AEDL) Human Planetary Landing Systems. Section 10: AEDL Analysis, Test and Validation Infrastructure

    NASA Technical Reports Server (NTRS)

    Arnold, J.; Cheatwood, N.; Powell, D.; Wolf, A.; Guensey, C.; Rivellini, T.; Venkatapathy, E.; Beard, T.; Beutter, B.; Laub, B.

    2005-01-01

    Contents include the following: 3 Listing of critical capabilities (knowledge, procedures, training, facilities) and metrics for validating that they are mission ready. Examples of critical capabilities and validation metrics: ground test and simulations. Flight testing to prove capabilities are mission ready. Issues and recommendations.

  8. Microgravity Combustion Science and Fluid Physics Experiments and Facilities for the ISS

    NASA Technical Reports Server (NTRS)

    Lauver, Richard W.; Kohl, Fred J.; Weiland, Karen J.; Zurawski, Robert L.; Hill, Myron E.; Corban, Robert R.

    2001-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program supports both ground-based and flight experiment research in the disciplines of Combustion Science and Fluid Physics. Combustion Science research includes the areas of gas jet diffusion flames, laminar flames, burning of droplets and misting fuels, solids and materials flammability, fire and fire suppressants, turbulent combustion, reaction kinetics, materials synthesis, and other combustion systems. The Fluid Physics discipline includes the areas of complex fluids (colloids, gels, foams, magneto-rheological fluids, non-Newtonian fluids, suspensions, granular materials), dynamics and instabilities (bubble and drop dynamics, magneto/electrohydrodynamics, electrochemical transport, geophysical flows), interfacial phenomena (wetting, capillarity, contact line hydrodynamics), and multiphase flows and phase changes (boiling and condensation, heat transfer, flow instabilities). A specialized International Space Station (ISS) facility that provides sophisticated research capabilities for these disciplines is the Fluids and Combustion Facility (FCF). The FCF consists of the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) and the Shared Accommodations Rack and is designed to accomplish a large number of science investigations over the life of the ISS. The modular, multiuser facility is designed to optimize the science return within the available resources of on-orbit power, uplink/downlink capacity, crew time, upmass/downmass, volume, etc. A suite of diagnostics capabilities, with emphasis on optical techniques, will be provided to complement the capabilities of the subsystem multiuser or principal investigator-specific experiment modules. The paper will discuss the systems concept, technical capabilities, functionality, and the initial science investigations in each discipline.

  9. An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Werner; Sam Bhattacharyya; Mike Houts

    Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuelmore » and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.« less

  10. ATR National Scientific User Facility 2013 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrich, Julie A.; Robertson, Sarah

    2015-03-01

    This is the 2013 Annual Report for the Advanced Test Reactor National Scientific User Facility. This report includes information on university-run research projects along with a description of the program and the capabilities offered researchers.

  11. Facility Search Criteria Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides powerful search capabilities offering more than 100 search criteria to target your results. Use the ECHO to search compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide.

  12. Improved Cryogenic Optical Test Capability at Marshall Space Flight Center's X-ray Cryogenic Test Facility

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey; Haight, Harlan; Hogue, William; Carpenter, Jay; Siler, Richard; Wright, Ernie; Eng, Ron; Baker, Mark; McCracken, Jeff

    2005-01-01

    Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing optical wavefront testing and thermal structural deformation testing at subliquid nitrogen cryogenic temperatures since 1999. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The test article envelope and the chamber's refrigeration capacity have both been increased. A new larger helium-cooled enclosure has been added to the existing enclosure increasing both the cross-sectional area and the length. This new enclosure is capable of supporting six JWST Primary Mirror Segment Assemblies. A second helium refrigeration system has been installed essentially doubling the cooling capacity available at the facility. Modifications have also been made to the optical instrumentation area. Improved access is now available for both the installation and operation of optical instrumentation outside the vacuum chamber. Chamber configuration, specifications, and performance data will be presented.

  13. CSER-98-002: Criticality analysis for the storage of special nuclear material sources and standards in the WRAP facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GOLDBERG, H.J.

    1999-05-18

    The Waste Receiving and Processing (WRAP) Facility will store uranium and transuranic (TRU) sources and standards for certification that WRAP meets the requirements of the Quality Assurance Program Plan (QAPP) for the Waste Isolation Pilot Plant (WIPP). In addition, WRAP must meet internal requirements for testing and validation of measuring instruments for nondestructive assay (NDA). In order to be certified for WIPP, WRAP will participate in the NDA Performance Demonstration Program (PDP). This program is a blind test of the NDA capabilities for TRU waste. It is intended to ensure that the NDA capabilities of this facility satisfy the requirementsmore » of the quality assurance program plan for the WIPP. The PDP standards have been provided by the Los Alamos National Laboratory (LANL) for this program. These standards will be used in the WRAP facility.« less

  14. New Environmental Testing Capabilities at INTA

    NASA Astrophysics Data System (ADS)

    Olivo, Esperanza; Hernandez, Daniel; Garranzo, Daniel; Barandiaran, Javier; Reina, Manuel

    2012-07-01

    In this paper we aim to present and describe the facilities for aerospace environmental testing at INTA; the Spanish National Institute for Aerospace Technique with emphasis on the Thermal Vacuum testing facility with dimensions 4 m x 4 m x 4 m and a temperature range from +150oC to -175 oC and 10-6 vacuum conditions with the new Thermo Elastic Distortion (TED) measurement capability designed at INTA. It will be presented the validation data for the empty chamber, with specimens such a 3m diameter reflector and antenna towers for both, thermal cycling and TED measurements. For TED, it will be shown the feasibility study and the solution finally selected. Apart from those, it will be shown other complementary facilities for environmental testing such as 320 (2x160) kN dual shaker with a new 3 m x 3 m sliding table and other complementary facilities.

  15. Aerodynamics and thermal physics of helicopter ice accretion

    NASA Astrophysics Data System (ADS)

    Han, Yiqiang

    Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was developed based on a set of 82 experimental measurements and also compared to existing predictions tools. Two reference predictions found in the literature yielded 76% and 54% discrepancy with respect to experimental testing, whereas the proposed ice roughness prediction model resulted in a 31% minimum accuracy in prediction. It must be noted that the accuracy of the proposed model is within the ice shape reproduction uncertainty of icing facilities. Based on the new ice roughness prediction model and the CSR heat transfer scaling method, an icing heat transfer model was developed. The approach achieved high accuracy in heat transfer prediction compared to experiments conducted at the AERTS facility. The discrepancy between predictions and experimental results was within +/-15%, which was within the measurement uncertainty range of the facility. By combining both the ice roughness and heat transfer predictions, and incorporating the modules into an existing ice prediction tool (LEWICE), improved prediction capability was obtained, especially for the glaze regime. With the available ice shapes accreted at the AERTS facility and additional experiments found in the literature, 490 sets of experimental ice shapes and corresponding aerodynamics testing data were available. A physics-based performance degradation empirical tool was developed and achieved a mean absolute deviation of 33% when compared to the entire experimental dataset, whereas 60% to 243% discrepancies were observed using legacy drag penalty prediction tools. Rotor torque predictions coupling Blade Element Momentum Theory and the proposed drag performance degradation tool was conducted on a total of 17 validation cases. The coupled prediction tool achieved a 10% predicting error for clean rotor conditions, and 16% error for iced rotor conditions. It was shown that additional roughness element could affect the measured drag by up to 25% during experimental testing, emphasizing the need of realistic ice structures during aerodynamics modeling and testing for ice accretion.

  16. Integrated System Health Management: Foundational Concepts, Approach, and Implementation

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    2009-01-01

    Implementation of integrated system health management (ISHM) capability is fundamentally linked to the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system. It is akin to having a team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive to an accurate and reliable assessment of its health. This paper presents concepts, procedures, and a specific approach as a foundation for implementing a credible ISHM capability. The capability stresses integration of DIaK from all elements of a subsystem. The intent is also to make possible implementation of on-board ISHM capability, in contrast to a remote capability. The information presented is the result of many years of research, development, and maturation of technologies, and of prototype implementations in operational systems (rocket engine test facilities). The paper will address the following topics: ISHM Model of a system; detection of anomaly indicators; determination and confirmation of anomalies; diagnostic of causes and determination of effects; consistency checking cycle; sharing of health information; sharing of display information; storage and retrieval of health information; and example implementation.

  17. An inventory of aeronautical ground research facilities. Volume 1: Wind tunnels

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    A survey of wind tunnel research facilities in the United States is presented. The inventory includes all subsonic, transonic, and hypersonic wind tunnels operated by governmental and private organizations. Each wind tunnel is described with respect to size, mechanical operation, construction, testing capabilities, and operating costs. Facility performance data are presented in charts and tables.

  18. 75 FR 28596 - Bryant Mountain LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... acre-feet and normal water surface elevation of 5500 feet mean sea level; (2) an earthen dam... facility to release water into the stream below the dam; and (4) intake facilities for the power tunnel with facilities to store additional water to provide black start capability. Lower Reservoir (1) Will...

  19. SSC Test Operations Contract Overview

    NASA Technical Reports Server (NTRS)

    Kleim, Kerry D.

    2010-01-01

    This slide presentation reviews the Test Operations Contract at the Stennis Space Center (SSC). There are views of the test stands layouts, and closer views of the test stands. There are descriptions of the test stand capabilities, some of the other test complexes, the Cryogenic propellant storage facility, the High Pressure Industrial Water (HPIW) facility, and Fluid Component Processing Facility (FCPF).

  20. Simulation of Containment Atmosphere Mixing and Stratification Experiment in the ThAI Facility with a CFD Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babic, Miroslav; Kljenak, Ivo; Mavko, Borut

    2006-07-01

    The CFD code CFX4.4 was used to simulate an experiment in the ThAI facility, which was designed for investigation of thermal-hydraulic processes during a severe accident inside a Light Water Reactor containment. In the considered experiment, air was initially present in the vessel, and helium and steam were injected during different phases of the experiment at various mass flow rates and at different locations. The main purpose of the proposed work was to assess the capabilities of the CFD code to reproduce the atmosphere structure with a three-dimensional model, coupled with condensation models proposed by the authors. A three-dimensional modelmore » of the ThAI vessel for the CFX4.4 code was developed. The flow in the simulation domain was modeled as single-phase. Steam condensation on vessel walls was modeled as a sink of mass and energy using a correlation that was originally developed for an integral approach. A simple model of bulk phase change was also included. Calculated time-dependent variables together with temperature and volume fraction distributions at the end of different experiment phases are compared to experimental results. (authors)« less

  1. TSR: A storage and cooling ring for HIE-ISOLDE

    NASA Astrophysics Data System (ADS)

    Butler, P. A.; Blaum, K.; Davinson, T.; Flanagan, K.; Freeman, S. J.; Grieser, M.; Lazarus, I. H.; Litvinov, Yu. A.; Lotay, G.; Page, R. D.; Raabe, R.; Siesling, E.; Wenander, F.; Woods, P. J.

    2016-06-01

    It is planned to install the heavy-ion, low-energy ring TSR, currently at the Max-Planck-Institute for Nuclear Physics in Heidelberg, at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored, cooled secondary beams that is rich and varied, spanning from studies of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. In addition to experiments performed using beams recirculating within the ring, the cooled beams can be extracted and exploited by external spectrometers for high-precision measurements. The capabilities of the ring facility as well as some physics cases will be presented, together with a brief report on the status of the project.

  2. Autonomous rendezvous and capture development infrastructure

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.

    1991-01-01

    In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This need involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the Low Earth Orbit test facility. Using a reusable free-flying testbed carried in the Shuttle, as a technology demonstration test flight, can be structured to include a variety of sensors, control schemes, and operational approaches. This testbed and flight demonstration concept will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.

  3. The 88-Inch Cyclotron: A One-Stop Facility for Electronics Radiation and Detector Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kireeff Covo, M.; Albright, R. A.; Ninemire, B. F.

    In outer space down to the altitudes routinely flown by larger aircrafts, radiation can pose serious issues for microelectronics circuits. The 88-Inch Cyclotron at Lawrence Berkeley National Laboratory is a sector-focused cyclotron and home of the Berkeley Accelerator Space Effects Facility, where the effects of energetic particles on sensitive microelectronics are studied with the goal of designing electronic systems for the space community. This paper describes the flexibility of the facility and its capabilities for testing the bombardment of electronics by heavy ions, light ions, and neutrons. Experimental capabilities for the generation of neutron beams from deuteron breakups and radiationmore » testing of carbon nanotube field effect transistor will be discussed.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattes, R.H.; Bacho, A.; Wade, L.V.

    The Lake Lynn Laboratory is a multipurpose mining research laboratory operated by the Bureau of Mines and located in Fairchance, Pa. It consists of both surface and underground facilities. The initial focus of the facility, scheduled for full operation in fall 1982, will be on the problems of fires and explosions in mines. The initial experimental explosion was fired on March 3, 1982. The intent of this document is to provide the reader with detailed information on the physical capabilities of the Lake Lynn Laboratory. Subsequent publications will focus on the capabilities of Lake Lynn as compared with those ofmore » other similar facilities worldwide, and a comparison of initial explosion test results realized at Lake Lynn and comparable results from the Bruceton Experimental Mines.« less

  5. Impact Testing for Materials Science at NASA - MSFC

    NASA Technical Reports Server (NTRS)

    Sikapizye, Mitch

    2010-01-01

    The Impact Testing Facility (ITF) at NASA - Marshall Space Flight Center is host to different types of guns used to study the effects of high velocity impacts. The testing facility has been and continues to be utilized for all NASA missions where impact testing is essential. The Facility has also performed tests for the Department of Defense, other corporations, as well as universities across the nation. Current capabilities provided by Marshall include ballistic guns, light gas guns, exploding wire gun, and the Hydrometeor Impact Gun. A new plasma gun has also been developed which would be able to propel particles at velocities of 20km/s. This report includes some of the guns used for impact testing at NASA Marshall and their capabilities.

  6. Man-vehicle systems research facility: Design and operating characteristics

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Man-Vehicle Systems Research Facility (MVSRF) provides the capability of simulating aircraft (two with full crews), en route and terminal air traffic control and aircrew interactions, and advanced cockpit (1995) display representative of future generations of aircraft, all within the full mission context. The characteristics of this facility derive from research, addressing critical human factors issues that pertain to: (1) information requirements for the utilization and integration of advanced electronic display systems, (2) the interaction and distribution of responsibilities between aircrews and ground controllers, and (3) the automation of aircrew functions. This research has emphasized the need for high fidelity in simulations and for the capability to conduct full mission simulations of relevant aircraft operations. This report briefly describes the MVSRF design and operating characteristics.

  7. Demonstration of New OLAF Capabilities and Technologies

    NASA Astrophysics Data System (ADS)

    Kingston, C.; Palmer, E.; Stone, J.; Neese, C.; Mueller, B.

    2017-06-01

    Upgrades to the On-Line Archiving Facility (OLAF) PDS tool are leading to improved usability and additional functionality by integration of JavaScript web app frameworks. Also included is the capability to upload tabular data as CSV files.

  8. Alternative Fuels Research Laboratory

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Nakley, Leah M.; Yen, Chia H.

    2012-01-01

    NASA Glenn has invested over $1.5 million in engineering, and infrastructure upgrades to renovate an existing test facility at the NASA Glenn Research Center (GRC), which is now being used as an Alternative Fuels Laboratory. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch (F-T) synthesis and thermal stability testing. This effort is supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing project. The purpose of this test facility is to conduct bench scale F-T catalyst screening experiments. These experiments require the use of a synthesis gas feedstock, which will enable the investigation of F-T reaction kinetics, product yields and hydrocarbon distributions. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor for catalyst activation studies. Product gas composition and performance data can be continuously obtained with an automated gas sampling system, which directly connects the reactors to a micro-gas chromatograph (micro GC). Liquid and molten product samples are collected intermittently and are analyzed by injecting as a diluted sample into designated gas chromatograph units. The test facility also has the capability of performing thermal stability experiments of alternative aviation fuels with the use of a Hot Liquid Process Simulator (HLPS) (Ref. 1) in accordance to ASTM D 3241 "Thermal Oxidation Stability of Aviation Fuels" (JFTOT method) (Ref. 2). An Ellipsometer will be used to study fuel fouling thicknesses on heated tubes from the HLPS experiments. A detailed overview of the test facility systems and capabilities are described in this paper.

  9. 10 CFR 50.47 - Emergency plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... responsibilities for emergency response by the nuclear facility licensee and by State and local organizations... supporting organizations have been specifically established, and each principal response organization has... licensee's near-site Emergency Operations Facility have been made, and other organizations capable of...

  10. Wind Tunnel and Propulsion Test Facilities: An Assessment of NASA's Capabilities to Serve National Needs

    NASA Technical Reports Server (NTRS)

    Anton, Philip S.; Gritton, Eugene C.; Mesic, Richard; Steinberg, Paul; Johnson, Dana J.

    2004-01-01

    This monograph reveals and discusses the National Aeronautics and Space Administration's (NASA's) wind tunnel and propulsion test facility management issues that are creating real risks to the United States' competitive aeronautics advantage.

  11. Data communication network at the ASRM facility

    NASA Technical Reports Server (NTRS)

    Moorhead, Robert J., III; Smith, Wayne D.; Nirgudkar, Ravi; Dement, James

    1994-01-01

    This three-year project (February 1991 to February 1994) has involved analyzing and helping to design the communication network for the Advanced Solid Rocket Motor (ASRM) facility at Yellow Creek, near Iuka, MS. The principal concerns in the analysis were the bandwidth (both on average and in the worst case) and the expandability of the network. As the communication network was designed and modified, a careful evaluation of the bandwidth of the network, the capabilities of the protocol, and the requirements of the controllers and computers on the network was required. The overall network, which was heterogeneous in protocol and bandwidth, needed to be modeled, analyzed, and simulated to obtain some degree of confidence in its performance capabilities and in its performance under nominal and heavy loads. The results of our analysis did have an impact on the design and operation of the ASRM facility. During 1993 we analyzed many configurations of this basic network structure. The analyses are described in detail in Section 2 and 3 herein. Section 2 reports on an analysis of the whole network. The preliminary results of that research indicated that the most likely bottleneck as the network traffic increased would be the hubs. Thus a study of Cabletron hubs was initiated. The results of that study are in Section 3. Section 4 herein reports on the final network configuration analyzed. When the ASRM facility was mothballed in December of 1993, this was basically the planned and partially installed network. A briefing was held at NASA/MSFC on December 7, 1993, at which time our final analysis and conclusions were disseminated. This report contains a written record of most of the information disseminated at that briefing.

  12. Next Generation Safeguards Initiative research to determine the Pu mass in spent fuel assemblies: Purpose, approach, constraints, implementation, and calibration

    NASA Astrophysics Data System (ADS)

    Tobin, S. J.; Menlove, H. O.; Swinhoe, M. T.; Schear, M. A.

    2011-10-01

    The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy has funded a multi-lab/multi-university collaboration to quantify the plutonium mass in spent nuclear fuel assemblies and to detect the diversion of pins from them. The goal of this research effort is to quantify the capability of various non-destructive assay (NDA) technologies as well as to train a future generation of safeguards practitioners. This research is "technology driven" in the sense that we will quantify the capabilities of a wide range of safeguards technologies of interest to regulators and policy makers; a key benefit to this approach is that the techniques are being tested in a unified manner. When the results of the Monte Carlo modeling are evaluated and integrated, practical constraints are part of defining the potential context in which a given technology might be applied. This paper organizes the commercial spent fuel safeguard needs into four facility types in order to identify any constraints on the NDA system design. These four facility types are the following: future reprocessing plants, current reprocessing plants, once-through spent fuel repositories, and any other sites that store individual spent fuel assemblies (reactor sites are the most common facility type in this category). Dry storage is not of interest since individual assemblies are not accessible. This paper will overview the purpose and approach of the NGSI spent fuel effort and describe the constraints inherent in commercial fuel facilities. It will conclude by discussing implementation and calibration of measurement systems. This report will also provide some motivation for considering a couple of other safeguards concepts (base measurement and fingerprinting) that might meet the safeguards need but not require the determination of plutonium mass.

  13. Integration of the White Sands Complex into a Wide Area Network

    NASA Technical Reports Server (NTRS)

    Boucher, Phillip Larry; Horan, Sheila, B.

    1996-01-01

    The NASA White Sands Complex (WSC) satellite communications facility consists of two main ground stations, an auxiliary ground station, a technical support facility, and a power plant building located on White Sands Missile Range. When constructed, terrestrial communication access to these facilities was limited to copper telephone circuits. There was no local or wide area communications network capability. This project incorporated a baseband local area network (LAN) topology at WSC and connected it to NASA's wide area network using the Program Support Communications Network-Internet (PSCN-I). A campus-style LAN is configured in conformance with the International Standards Organization (ISO) Open Systems Interconnect (ISO) model. Ethernet provides the physical and data link layers. Transmission Control Protocol and Internet Protocol (TCP/IP) are used for the network and transport layers. The session, presentation, and application layers employ commercial software packages. Copper-based Ethernet collision domains are constructed in each of the primary facilities and these are interconnected by routers over optical fiber links. The network and each of its collision domains are shown to meet IEEE technical configuration guidelines. The optical fiber links are analyzed for the optical power budget and bandwidth allocation and are found to provide sufficient margin for this application. Personal computers and work stations attached to the LAN communicate with and apply a wide variety of local and remote administrative software tools. The Internet connection provides wide area network (WAN) electronic access to other NASA centers and the world wide web (WWW). The WSC network reduces and simplifies the administrative workload while providing enhanced and advanced inter-communications capabilities among White Sands Complex departments and with other NASA centers.

  14. A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence

    NASA Technical Reports Server (NTRS)

    Kibbey, Timothy P.

    2014-01-01

    A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.

  15. Glass sample characterization

    NASA Technical Reports Server (NTRS)

    Ahmad, Anees

    1990-01-01

    The development of in-house integrated optical performance modelling capability at MSFC is described. This performance model will take into account the effects of structural and thermal distortions, as well as metrology errors in optical surfaces to predict the performance of large an complex optical systems, such as Advanced X-Ray Astrophysics Facility. The necessary hardware and software were identified to implement an integrated optical performance model. A number of design, development, and testing tasks were supported to identify the debonded mirror pad, and rebuilding of the Technology Mirror Assembly. Over 300 samples of Zerodur were prepared in different sizes and shapes for acid etching, coating, and polishing experiments to characterize the subsurface damage and stresses produced by the grinding and polishing operations.

  16. URBAN STORMWATER INVESTIGATIONS BY THE U. S. GEOLOGICAL SURVEY.

    USGS Publications Warehouse

    Jennings, Marshall E.

    1985-01-01

    Urban stormwater hydrology studies in the U. S. Geological Survey are currently focused on compilation of national data bases containing flood-peak and short time-interval rainfall, discharge and water-quality information for urban watersheds. Current data bases, updated annually, are nationwide in scope. Supplementing the national data files are published reports of interpretative analyses, a map report and research products including improved instrumentation and deterministic modeling capabilities. New directions of Survey investigations include gaging programs for very small catchments and for stormwater detention facilities.

  17. Ion Beam Analysis of Diffusion in Diamondlike Carbon Films

    NASA Astrophysics Data System (ADS)

    Chaffee, Kevin Paul

    The van de Graaf accelerator facility at Case Western Reserve University was developed into an analytical research center capable of performing Rutherford Backscattering Spectrometry, Elastic Recoil Detection Analysis for hydrogen profiling, Proton Enhanced Scattering, and ^4 He resonant scattering for ^{16 }O profiling. These techniques were applied to the study of Au, Na^+, Cs ^+, and H_2O water diffusion in a-C:H films. The results are consistent with the fully constrained network model of the microstructure as described by Angus and Jansen.

  18. Development and application of structural dynamics analysis capabilities

    NASA Technical Reports Server (NTRS)

    Heinemann, Klaus W.; Hozaki, Shig

    1994-01-01

    Extensive research activities were performed in the area of multidisciplinary modeling and simulation of aerospace vehicles that are relevant to NASA Dryden Flight Research Facility. The efforts involved theoretical development, computer coding, and debugging of the STARS code. New solution procedures were developed in such areas as structures, CFD, and graphics, among others. Furthermore, systems-oriented codes were developed for rendering the code truly multidisciplinary and rather automated in nature. Also, work was performed in pre- and post-processing of engineering analysis data.

  19. Application of a Two-Dimensional Model of Hydrodynamics and Water Quality (CE-QUAL-W2) to Cordell Hull Reservoir, Tennessee

    DTIC Science & Technology

    1988-08-01

    the four navigation projects on the Cumberland River. It houses a run-of- the-river hydropower facility with three hydroturbines capable of producing...a total of 100 MW. Releases from the structure are made primarily through the hydroturbines with a small amount of flow discharged through lockages...intake. The intakes for the hydroturbines are shown in Figure 3. These intakes spanned several layers vertically, and individual discharges for the

  20. NASA's hypersonic fluid and thermal physics program (Aerothermodynamics)

    NASA Technical Reports Server (NTRS)

    Graves, R. A.; Hunt, J. L.

    1985-01-01

    This survey paper gives an overview of NASA's hypersonic fluid and thermal physics program (recently renamed aerothermodynamics). The purpose is to present the elements of, example results from, and rationale and projection for this program. The program is based on improving the fundamental understanding of aerodynamic and aerothermodynamic flow phenomena over hypersonic vehicles in the continuum, transitional, and rarefied flow regimes. Vehicle design capabilities, computational fluid dynamics, computational chemistry, turbulence modeling, aerothermal loads, orbiter flight data analysis, orbiter experiments, laser photodiagnostics, and facilities are discussed.

  1. Computer aided design environment for the analysis and design of multi-body flexible structures

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Jayant V.; Singh, Ramen P.

    1989-01-01

    A computer aided design environment consisting of the programs NASTRAN, TREETOPS and MATLAB is presented in this paper. With links for data transfer between these programs, the integrated design of multi-body flexible structures is significantly enhanced. The CAD environment is used to model the Space Shuttle/Pinhole Occulater Facility. Then a controller is designed and evaluated in the nonlinear time history sense. Recent enhancements and ongoing research to add more capabilities are also described.

  2. Airborne Optical Systems Test Bed (AOSTB)

    DTIC Science & Technology

    2016-07-01

    resident laser radar platform with roll -on/ roll -off sensor capability. The new platform provides The Laboratory with an added capability of leveraging...29 Figure 11 – Finite Element Analysis of Loads on Isolators (9G Forward...This project created a resident sensor suite with roll -on/ roll -off capability, coupled to a resident platform (Twin Otter Aircraft). This facility

  3. Development of a Microphone Phased Array Capability for the Langley 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Humphreys, William M.; Brooks, Thomas F.; Bahr, Christopher J.; Spalt, Taylor B.; Bartram, Scott M.; Culliton, William G.; Becker, Lawrence E.

    2014-01-01

    A new aeroacoustic measurement capability has been developed for use in open-jet testing in the NASA Langley 14- by 22-Foot Subsonic Tunnel (14x22 tunnel). A suite of instruments has been developed to characterize noise source strengths, locations, and directivity for both semi-span and full-span test articles in the facility. The primary instrument of the suite is a fully traversable microphone phased array for identification of noise source locations and strengths on models. The array can be mounted in the ceiling or on either side of the facility test section to accommodate various test article configurations. Complementing the phased array is an ensemble of streamwise traversing microphones that can be placed around the test section at defined locations to conduct noise source directivity studies along both flyover and sideline axes. A customized data acquisition system has been developed for the instrumentation suite that allows for command and control of all aspects of the array and microphone hardware, and is coupled with a comprehensive data reduction system to generate information in near real time. This information includes such items as time histories and spectral data for individual microphones and groups of microphones, contour presentations of noise source locations and strengths, and hemispherical directivity data. The data acquisition system integrates with the 14x22 tunnel data system to allow real time capture of facility parameters during acquisition of microphone data. The design of the phased array system has been vetted via a theoretical performance analysis based on conventional monopole beamforming and DAMAS deconvolution. The performance analysis provides the ability to compute figures of merit for the array as well as characterize factors such as beamwidths, sidelobe levels, and source discrimination for the types of noise sources anticipated in the 14x22 tunnel. The full paper will summarize in detail the design of the instrumentation suite, the construction of the hardware system, and the results of the performance analysis. Although the instrumentation suite is designed to characterize noise for a variety of test articles in the 14x22 tunnel, this paper will concentrate on description of the instruments for two specific test campaigns in the facility, namely a full-span NASA Hybrid Wing Body (HWB) model entry and a semi-span Gulfstream aircraft model entry, tested in the facility in the winter of 2012 and spring of 2013, respectively.

  4. Description and operational status of the National Transonic Facility computer complex

    NASA Technical Reports Server (NTRS)

    Boyles, G. B., Jr.

    1986-01-01

    This paper describes the National Transonic Facility (NTF) computer complex and its support of tunnel operations. The capabilities of the research data acquisition and reduction are discussed along with the types of data that can be acquired and presented. Pretest, test, and posttest capabilities are also outlined along with a discussion of the computer complex to monitor the tunnel control processes and provide the tunnel operators with information needed to control the tunnel. Planned enhancements to the computer complex for support of future testing are presented.

  5. NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics.

    PubMed

    Johnsen, Stian F; Taylor, Zeike A; Clarkson, Matthew J; Hipwell, John; Modat, Marc; Eiben, Bjoern; Han, Lianghao; Hu, Yipeng; Mertzanidou, Thomy; Hawkes, David J; Ourselin, Sebastien

    2015-07-01

    NiftySim, an open-source finite element toolkit, has been designed to allow incorporation of high-performance soft tissue simulation capabilities into biomedical applications. The toolkit provides the option of execution on fast graphics processing unit (GPU) hardware, numerous constitutive models and solid-element options, membrane and shell elements, and contact modelling facilities, in a simple to use library. The toolkit is founded on the total Lagrangian explicit dynamics (TLEDs) algorithm, which has been shown to be efficient and accurate for simulation of soft tissues. The base code is written in C[Formula: see text], and GPU execution is achieved using the nVidia CUDA framework. In most cases, interaction with the underlying solvers can be achieved through a single Simulator class, which may be embedded directly in third-party applications such as, surgical guidance systems. Advanced capabilities such as contact modelling and nonlinear constitutive models are also provided, as are more experimental technologies like reduced order modelling. A consistent description of the underlying solution algorithm, its implementation with a focus on GPU execution, and examples of the toolkit's usage in biomedical applications are provided. Efficient mapping of the TLED algorithm to parallel hardware results in very high computational performance, far exceeding that available in commercial packages. The NiftySim toolkit provides high-performance soft tissue simulation capabilities using GPU technology for biomechanical simulation research applications in medical image computing, surgical simulation, and surgical guidance applications.

  6. Advances in petascale kinetic plasma simulation with VPIC and Roadrunner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, Kevin J; Albright, Brian J; Yin, Lin

    2009-01-01

    VPIC, a first-principles 3d electromagnetic charge-conserving relativistic kinetic particle-in-cell (PIC) code, was recently adapted to run on Los Alamos's Roadrunner, the first supercomputer to break a petaflop (10{sup 15} floating point operations per second) in the TOP500 supercomputer performance rankings. They give a brief overview of the modeling capabilities and optimization techniques used in VPIC and the computational characteristics of petascale supercomputers like Roadrunner. They then discuss three applications enabled by VPIC's unprecedented performance on Roadrunner: modeling laser plasma interaction in upcoming inertial confinement fusion experiments at the National Ignition Facility (NIF), modeling short pulse laser GeV ion acceleration andmore » modeling reconnection in magnetic confinement fusion experiments.« less

  7. An Oil-Free Thrust Foil Bearing Facility Design, Calibration, and Operation

    NASA Technical Reports Server (NTRS)

    Bauman, Steve

    2005-01-01

    New testing capabilities are needed in order to foster thrust foil air bearing technology development and aid its transition into future Oil-Free gas turbines. This paper describes a new test apparatus capable of testing thrust foil air bearings up to 100 mm in diameter at speeds to 80,000 rpm and temperatures to 650 C (1200 F). Measured parameters include bearing torque, load capacity, and bearing temperatures. This data will be used for design performance evaluations and for validation of foil bearing models. Preliminary test results demonstrate that the rig is capable of testing thrust foil air bearings under a wide range of conditions which are anticipated in future Oil-Free gas turbines. Torque as a function of speed and temperature corroborates results expected from rudimentary performance models. A number of bearings were intentionally failed with no resultant damage whatsoever to the test rig. Several test conditions (specific speeds and loads) revealed undesirable axial shaft vibrations which have been attributed to the magnetic bearing control system and are under study. Based upon these preliminary results, this test rig will be a valuable tool for thrust foil bearing research, parametric studies and technology development.

  8. A Novel TRM Calculation Method by Probabilistic Concept

    NASA Astrophysics Data System (ADS)

    Audomvongseree, Kulyos; Yokoyama, Akihiko; Verma, Suresh Chand; Nakachi, Yoshiki

    In a new competitive environment, it becomes possible for the third party to access a transmission facility. From this structure, to efficiently manage the utilization of the transmission network, a new definition about Available Transfer Capability (ATC) has been proposed. According to the North American ElectricReliability Council (NERC)’s definition, ATC depends on several parameters, i. e. Total Transfer Capability (TTC), Transmission Reliability Margin (TRM), and Capacity Benefit Margin (CBM). This paper is focused on the calculation of TRM which is one of the security margin reserved for any uncertainty of system conditions. The TRM calculation by probabilistic method is proposed in this paper. Based on the modeling of load forecast error and error in transmission line limitation, various cases of transmission transfer capability and its related probabilistic nature can be calculated. By consideration of the proposed concept of risk analysis, the appropriate required amount of TRM can be obtained. The objective of this research is to provide realistic information on the actual ability of the network which may be an alternative choice for system operators to make an appropriate decision in the competitive market. The advantages of the proposed method are illustrated by application to the IEEJ-WEST10 model system.

  9. Multiscale Data Assimilation for Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Li, Z.; Cheng, X.; Gustafson, W. I., Jr.; Xiao, H.; Vogelmann, A. M.; Endo, S.; Toto, T.

    2017-12-01

    Large-eddy simulation (LES) is a powerful tool for understanding atmospheric turbulence, boundary layer physics and cloud development, and there is a great need for developing data assimilation methodologies that can constrain LES models. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) User Facility has been developing the capability to routinely generate ensembles of LES. The LES ARM Symbiotic Simulation and Observation (LASSO) project (https://www.arm.gov/capabilities/modeling/lasso) is generating simulations for shallow convection days at the ARM Southern Great Plains site in Oklahoma. One of major objectives of LASSO is to develop the capability to observationally constrain LES using a hierarchy of ARM observations. We have implemented a multiscale data assimilation (MSDA) scheme, which allows data assimilation to be implemented separately for distinct spatial scales, so that the localized observations can be effectively assimilated to constrain the mesoscale fields in the LES area of about 15 km in width. The MSDA analysis is used to produce forcing data that drive LES. With such LES workflow we have examined 13 days with shallow convection selected from the period May-August 2016. We will describe the implementation of MSDA, present LES results, and address challenges and opportunities for applying data assimilation to LES studies.

  10. An Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Jordan, Lee P.

    2013-01-01

    The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 14500 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The investigative Payload Integration Manager (iPIM) is the focal to assist organizations that have payloads operating in the MSG facility. NASA provides an MSG engineering unit for payload developers to verify that their hardware is operating properly before actual operation on the ISS. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an overview of video and biological upgrades.

  11. Prediction Interval Development for Wind-Tunnel Balance Check-Loading

    NASA Technical Reports Server (NTRS)

    Landman, Drew; Toro, Kenneth G.; Commo, Sean A.; Lynn, Keith C.

    2014-01-01

    Results from the Facility Analysis Verification and Operational Reliability project revealed a critical gap in capability in ground-based aeronautics research applications. Without a standardized process for check-loading the wind-tunnel balance or the model system, the quality of the aerodynamic force data collected varied significantly between facilities. A prediction interval is required in order to confirm a check-loading. The prediction interval provides an expected upper and lower bound on balance load prediction at a given confidence level. A method has been developed which accounts for sources of variability due to calibration and check-load application. The prediction interval method of calculation and a case study demonstrating its use is provided. Validation of the methods is demonstrated for the case study based on the probability of capture of confirmation points.

  12. Feasibility study for a numerical aerodynamic simulation facility. Volume 3: FMP language specification/user manual

    NASA Technical Reports Server (NTRS)

    Kenner, B. G.; Lincoln, N. R.

    1979-01-01

    The manual is intended to show the revisions and additions to the current STAR FORTRAN. The changes are made to incorporate an FMP (Flow Model Processor) for use in the Numerical Aerodynamic Simulation Facility (NASF) for the purpose of simulating fluid flow over three-dimensional bodies in wind tunnel environments and in free space. The FORTRAN programming language for the STAR-100 computer contains both CDC and unique STAR extensions to the standard FORTRAN. Several of the STAR FORTRAN extensions to standard FOR-TRAN allow the FORTRAN user to exploit the vector processing capabilities of the STAR computer. In STAR FORTRAN, vectors can be expressed with an explicit notation, functions are provided that return vector results, and special call statements enable access to any machine instruction.

  13. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    NASA Astrophysics Data System (ADS)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  14. 10 CFR 205.373 - Application procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...

  15. 10 CFR 205.373 - Application procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...

  16. 10 CFR 205.373 - Application procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...

  17. 10 CFR 205.373 - Application procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...

  18. An Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie; Flores, Ginger N.

    2009-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG has been operating on the ISS since July 2002 and is currently located in the Columbus Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a workbench type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. In fact, the MSG has been used for over 5000 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technologies. MSG is an ideal platform for science investigations and research required to advance the technology readiness levels (TRLs) applicable to the Constellation Program. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of future investigations currently planned for operation in the MSG, and potential applications of MSG investigations that can provide useful data to the Constellation Program. In addition, this paper will address the role of the MSG facility in the ISS National Lab.

  19. Liquid Methane Conditioning Capabilities Developed at the NASA Glenn Research Center's Small Multi- Purpose Research Facility (SMiRF) for Accelerated Lunar Surface Storage Thermal Testing

    NASA Technical Reports Server (NTRS)

    Bamberger, Helmut H.; Robinson, R. Craig; Jurns, John M.; Grasl, Steven J.

    2011-01-01

    Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions.

  20. Optimal location of emergency stations in underground mine networks using a multiobjective mathematical model.

    PubMed

    Lotfian, Reza; Najafi, Mehdi

    2018-02-26

    Background Every year, many mining accidents occur in underground mines all over the world resulting in the death and maiming of many miners and heavy financial losses to mining companies. Underground mining accounts for an increasing share of these events due to their special circumstances and the risks of working therein. Thus, the optimal location of emergency stations within the network of an underground mine in order to provide medical first aid and transport injured people at the right time, plays an essential role in reducing deaths and disabilities caused by accidents Objective The main objective of this study is to determine the location of emergency stations (ES) within the network of an underground coal mine in order to minimize the outreach time for the injured. Methods A three-objective mathematical model is presented for placement of ES facility location selection and allocation of facilities to the injured in various stopes. Results Taking into account the radius of influence for each ES, the proposed model is capable to reduce the maximum time for provision of emergency services in the event of accident for each stope. In addition, the coverage or lack of coverage of each stope by any of the emergency facility is determined by means of Floyd-Warshall algorithm and graph. To solve the problem, a global criterion method using GAMS software is used to evaluate the accuracy and efficiency of the model. Conclusions 7 locations were selected from among 46 candidates for the establishment of emergency facilities in Tabas underground coal mine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Extreme Environments Test Capabilities at NASA GRC for Parker Hannifin Visit

    NASA Technical Reports Server (NTRS)

    Arnett, Lori

    2016-01-01

    The presentation includes general description on the following test facilities: Fuel Cell Testing Lab, Structural Dynamics Lab, Thermal Vacuum Test Facilities - including a description of the proposed Kinetic High Altitude Simulator concept, EMI Test Lab, and the Creek Road Cryogenic Complex - specifically the Small Multi-purpose Research Facility (SMiRF) and the Cryogenics Components Lab 7 (CCL-7).

  2. Energy Systems Integration Facility Insight Center | Energy Systems

    Science.gov Websites

    simulation data. Photo of researchers studying data on a 3-D power system profile depicting the interaction of renewable energy resources on the grid. Capabilities The Insight Center offers the following Integration Facility Insight Center Located adjacent to the Energy System Integration Facility's High

  3. The National Ignition Facility (NIF) as a User Facility

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; NIF Team

    2013-10-01

    The National Ignition Facility (NIF) has made significant progress towards operation as a user facility. Through June 2013, NIF conducted over 1200 experiments in support of ICF, HED science, and development of facility capabilities. The NIF laser has met or achieved all specifications and a wide variety of diagnostic and target fabrication capabilities are in place. A NIF User Group and associated Executive Board have been formed. Two User Group meetings have been conducted since formation of the User Group. NIF experiments in fundamental science have provided important new results. NIF ramp compression experiments have been conducted using diamond and iron, with EOS results obtained at pressures up to approximately 50 Mbar and 8 Mbar, respectively. Initial experiments in supernova hydrodynamics, the fundamental physics of the Rayleigh-Taylor instability, and equation of state in the Gbar pressure regime have also been conducted. This presentation will discuss the fundamental science program at NIF, including the proposal solicitation and scientific review processes and other aspects of user facility operation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  4. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-09-01

    US DOE mixed low-level and mixed transuranic waste inventory was estimated at 181,000 cubic meters (about 2,000 waste streams). Treatability studies may be used as part of DOE`s mixed waste management program. Commercial treatability study suppliers have been identified that either have current capability in their own facilities or have access to licensed facilities. Numerous federal and state regulations, as well as DOE Order 5820.2A, impact the performance of treatability studies. Generators, transporters, and treatability study facilities are subject to regulation. From a mixed- waste standpoint, a key requirement is that the treatability study facility must have an NRC ormore » state license that allows it to possess radioactive materials. From a RCRA perspective, the facility must support treatability study activities with the applicable plans, reports, and documentation. If PCBs are present in the waste, TSCA will also be an issue. CERCLA requirements may apply, and both DOE and NRC regulations will impact the transportation of DOE mixed waste to an off-site treatment facility. DOE waste managers will need to be cognizant of all applicable regulations as mixed-waste treatability study programs are initiated.« less

  5. Construction of the Propulsion Systems Laboratory No. 1 and 2

    NASA Image and Video Library

    1951-01-21

    Construction of the Propulsion Systems Laboratory No. 1 and 2 at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. When it began operation in late 1952, the Propulsion Systems Laboratory was the NACA’s most powerful facility for testing full-scale engines at simulated flight altitudes. The facility contained two altitude simulating test chambers which were a technological combination of the static sea-level test stands and the complex Altitude Wind Tunnel, which recreated actual flight conditions on a larger scale. NACA Lewis began designing the new facility in 1947 as part of a comprehensive plan to improve the altitude testing capabilities across the lab. The exhaust, refrigeration, and combustion air systems from all the major test facilities were linked. In this way, different facilities could be used to complement the capabilities of one another. Propulsion Systems Laboratory construction began in late summer 1949 with the installation of an overhead exhaust pipe connecting the facility to the Altitude Wind Tunnel and Engine Research Building. The large test section pieces arriving in early 1951, when this photograph was taken. The two primary coolers for the altitude exhaust are in place within the framework near the center of the photograph.

  6. Description of a Ground Facility for Conducting Ionospheric Scintillation Measurements with the ATS-5 Spacecraft

    DOT National Transportation Integrated Search

    1974-07-01

    Some of the capabilities of the DOT/TSC Westford Propagation Facility located in Westford Massachusetts as they relate to ionospheric measurements will be described. A detailed bibliography of over 400 references is supplied.

  7. The Shock Compression Laboratory at Harvard: A New Facility for Planetary Impact Processes

    NASA Technical Reports Server (NTRS)

    Stewart, S. T.

    2004-01-01

    The Shock Compression Laboratory in the Department of Earth and Planetary Sciences at Harvard is a new facility for the study of impact and collisional phenomena. The following describes the experimental capabilities of the laboratory.

  8. PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabharwall, Piyush; Skifton, Richard; Stoots, Carl

    2013-12-01

    Currently, computational fluid dynamics (CFD) is widely used in the nuclear thermal hydraulics field for design and safety analyses. To validate CFD codes, high quality multi dimensional flow field data are essential. The Matched Index of Refraction (MIR) Flow Facility at Idaho National Laboratory has a unique capability to contribute to the development of validated CFD codes through the use of Particle Image Velocimetry (PIV). The significance of the MIR facility is that it permits non intrusive velocity measurement techniques, such as PIV, through complex models without requiring probes and other instrumentation that disturb the flow. At the heart ofmore » any PIV calculation is the cross-correlation, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. This image displacement is indicated by the location of the largest peak. In the MIR facility, uncertainty quantification is a challenging task due to the use of optical measurement techniques. Currently, this study is developing a reliable method to analyze uncertainty and sensitivity of the measured data and develop a computer code to automatically analyze the uncertainty/sensitivity of the measured data. The main objective of this study is to develop a well established uncertainty quantification method for the MIR Flow Facility, which consists of many complicated uncertainty factors. In this study, the uncertainty sources are resolved in depth by categorizing them into uncertainties from the MIR flow loop and PIV system (including particle motion, image distortion, and data processing). Then, each uncertainty source is mathematically modeled or adequately defined. Finally, this study will provide a method and procedure to quantify the experimental uncertainty in the MIR Flow Facility with sample test results.« less

  9. The ISS Fluids and Combustion Facility: Experiment Accommodations Summary

    NASA Technical Reports Server (NTRS)

    Corban, Robert R.; Simons, Stephen N. (Technical Monitor)

    2001-01-01

    The International Space Station's (ISS's) Fluids and Combustion Facility (FCF) is in the process of final design and development activities to accommodate a wide range of experiments in the fields of combustion science and fluid physics. The FCF is being designed to provide potential experiments with well defined interfaces that can meet the experimenters requirements, provide the flexibility for on-orbit reconfiguration, and provide the maximum capability within the ISS resources and constraints. As a multi-disciplined facility, the FCF supports various experiments and scientific objectives, which will be developed in the future and are not completely defined at this time. Since developing experiments to be performed within FCF is a continuous process throughout the FCF's operational lifetime, each individual experiment must determine the best configuration of utilizing facility capabilities and resources with augmentation of specific experiment hardware. Configurations of potential experiments in the FCF has been on-going to better define the FCF interfaces and provide assurances that the FCF design will meet its design requirements. This paper provides a summary of ISS resources and FCF capabilities, which are available for potential ISS FCF users. Also, to better understand the utilization of the FCF a description of a various experiment layouts and associated operations in the FCF are provided.

  10. A summary of existing and planned experiment hardware for low-gravity fluids research

    NASA Technical Reports Server (NTRS)

    Hill, Myron E.; O'Malley, Terence F.

    1991-01-01

    NASA's ground-based and space-based low-gravity facilities are summarized, and an overview of selected experiments that have been developed for use in these facilities is presented. A variety of ground-based facilities (drop towers and aircraft) used to conduct low-gravity experiments for in-space experimentation are described. Capabilities that are available to the researcher and future on-orbit fluids facilities are addressed. The payload bay facilities range from the completely self-contained, relatively small get-away-special canisters to the Materials Science Laboratory and to the larger Spacelab facilities that require crew interaction.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobyshev, A.; DeMar, P.; Grigaliunas, V.

    The LHC is entering its fourth year of production operation. Most Tier1 facilities have been in operation for almost a decade, when development and ramp-up efforts are included. LHC's distributed computing model is based on the availability of high capacity, high performance network facilities for both the WAN and LAN data movement, particularly within the Tier1 centers. As a result, the Tier1 centers tend to be on the leading edge of data center networking technology. In this paper, we analyze past and current developments in Tier1 LAN networking, as well as extrapolating where we anticipate networking technology is heading. Ourmore » analysis will include examination into the following areas: Evolution of Tier1 centers to their current state Evolving data center networking models and how they apply to Tier1 centers Impact of emerging network technologies (e.g. 10GE-connected hosts, 40GE/100GE links, IPv6) on Tier1 centers Trends in WAN data movement and emergence of software-defined WAN network capabilities Network virtualization« less

  12. A random distribution reacting mixing layer model

    NASA Technical Reports Server (NTRS)

    Jones, Richard A.; Marek, C. John; Myrabo, Leik N.; Nagamatsu, Henry T.

    1994-01-01

    A methodology for simulation of molecular mixing, and the resulting velocity and temperature fields has been developed. The ideas are applied to the flow conditions present in the NASA Lewis Research Center Planar Reacting Shear Layer (PRSL) facility, and results compared to experimental data. A gaussian transverse turbulent velocity distribution is used in conjunction with a linearly increasing time scale to describe the mixing of different regions of the flow. Equilibrium reaction calculations are then performed on the mix to arrive at a new species composition and temperature. Velocities are determined through summation of momentum contributions. The analysis indicates a combustion efficiency of the order of 80 percent for the reacting mixing layer, and a turbulent Schmidt number of 2/3. The success of the model is attributed to the simulation of large-scale transport of fluid. The favorable comparison shows that a relatively quick and simple PC calculation is capable of simulating the basic flow structure in the reacting and nonreacting shear layer present in the facility given basic assumptions about turbulence properties.

  13. KSC-2014-3284

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is transported from the Building 836 hangar to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  14. KSC-2015-1114

    NASA Image and Video Library

    2015-01-08

    VANDENBERG AIR FORCE BASE, Calif. – Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, engineers and technicians place a protective cover over NASA's Soil Moisture Active Passive mission, or SMAP, satellite prior the spacecraft being transported to the launch pad. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: Jeremy Moore, USAF Photo Squadron

  15. KSC-2014-3290

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, accomplishes some tight turns on its approach to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  16. KSC-2014-3291

    NASA Image and Video Library

    2014-07-23

    VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, passes the mobile service tower at Space Launch Complex 2 on its way to the Horizontal Processing Facility on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  17. KSC-2015-1112

    NASA Image and Video Library

    2015-01-08

    VANDENBERG AIR FORCE BASE, Calif. – Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, engineers and technicians place a protective cover over NASA's Soil Moisture Active Passive mission, or SMAP, satellite prior the spacecraft being transported to the launch pad. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: Jeremy Moore, USAF Photo Squadron

  18. KSC-2015-1113

    NASA Image and Video Library

    2015-01-08

    VANDENBERG AIR FORCE BASE, Calif. – Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, engineers and technicians place a protective cover over NASA's Soil Moisture Active Passive mission, or SMAP, satellite prior the spacecraft being transported to the launch pad. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: Jeremy Moore, USAF Photo Squadron

  19. Miniature Reservoir Cathode: An Update

    NASA Technical Reports Server (NTRS)

    Vancil, Bernard K.; Wintucky, Edwin G.

    2002-01-01

    We report on recent work to produce a small low power, low cost reservoir cathode capable of long life (more than 100,000 hours) at high loading (> 5 A/sq cm). Our objective is a highly manufacturable, commercial device costing less than $30. Small highly loaded cathodes are needed, especially for millimeter wave tubes, where focusing becomes difficult when area convergence ratios are too high. We currently have 3 models ranging from .060-inch diameter to. 125-inch diameter. Reservoir type barium dispenser cathodes have a demonstrated capability for simultaneous high emission density and long life. Seven reservoir cathodes continue to operate on the cathode life test facility at NSWC, Crane, Indiana at 2 and 4 amps/sq cm. They have accumulated nearly 100,000 hours with practically no change in emission levels or knee temperature.

  20. Test Capabilities and Recent Experiences in the NASA Langley 8-Foot High Temperature Tunnel

    NASA Technical Reports Server (NTRS)

    Hodge, Jeffrey S.; Harvin, Stephen F.

    2000-01-01

    The NASA Langley 8-Foot High Temperature Tunnel is a combustion-heated hypersonic blowdown-to-atmosphere wind tunnel that provides flight enthalpy simulation for Mach numbers of 4, 5, and 7 through an altitude range from 50,000 to 120,000 feet. The open-.jet test section is 8-ft. in diameter and 12-ft. long. The test section will accommodate large air-breathing hypersonic propulsion systems as well as structural and thermal protection system components. Stable wind tunnel test conditions can be provided for 60 seconds. Additional test capabilities are provided by a radiant heater system used to simulate ascent or entry heating profiles. The test medium is the combustion products of air and methane that are burned in a pressurized combustion chamber. Oxygen is added to the test medium for air-breathing propulsion tests so that the test gas contains 21 percent molar oxygen. The facility was modified extensively in the late 1980's to provide airbreathing propulsion testing capability. In this paper, a brief history and general description of the facility are presented along with a discussion of the types of supported testing. Recently completed tests are discussed to explain the capabilities this facility provides and to demonstrate the experience of the staff.

Top