Sample records for facility operating experience

  1. DOE LeRC photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Forestieri, A. F.

    1978-01-01

    The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility.

  2. (US low-level radioactive waste management facility design, construction, and operation): Foreign trip report, July 22--30, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoesen, S.D.; Bolinsky, J.

    1989-08-02

    The Martin Marietta Energy Systems, Inc., Team, consisting of representatives of the Engineering Division and Oak Ridge National Laboratory (ORNL), participated in a technology exchange program on French and US low-level radioactive waste (LLW) management facility design, construction, and operation. Meetings were held at the Agence National pour la Gestion des Dechets Radioactif (ANDRA) offices in Paris to review the designs for the new French LLW disposal facility, the Cente de Stockage de l'Aube (CSA), and the new ORNL LLW disposal project, the Interim Waste Management Facility (IWMF), and the results of the French LLW disposal facility cover experiment atmore » St. Sauveur. Visits were made to the operating LLW disposal facility, the Centre de Stockage de la Manche (CSM), the LLW conditioning facilities at the La Hague Reprocessing Facility, and the St. Saueveur Disposal Cap Experiment to discuss design, construction, and operating experience. A visit was also made to the CSA site to view the progress made in construction of the new facility.« less

  3. 76 FR 40945 - Rensselaer Polytechnic Institute Critical Experiments Facility; Notice of Issuance of Renewed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-225; NRC-2008-0277] Rensselaer Polytechnic Institute Critical Experiments Facility; Notice of Issuance of Renewed Facility Operating License No. CX-22 The U.S... of the Rensselaer Polytechnic Institute Critical Experiments Facility (RCF), located in Schenectady...

  4. TSTA Piping and Flame Arrestor Operating Experience Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwallader, Lee C.; Willms, R. Scott

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium handling technology and experiment research at the Los Alamos National Laboratory. The facility operated from 1984 to 2001, running a prototype fusion fuel processing loop with ~100 grams of tritium as well as small experiments. There have been several operating experience reports written on this facility’s operation and maintenance experience. This paper describes analysis of two additional components from TSTA, small diameter gas piping that handled small amounts of tritium in a nitrogen carrier gas, and the flame arrestor used in this piping system. The operating experiences andmore » the component failure rates for these components are discussed in this paper. Comparison data from other applications are also presented.« less

  5. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  6. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  7. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  8. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  9. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  10. First Post-Flight Status Report for the Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R., III

    2003-01-01

    The Microgravity Science Glovebox (MSG) was launched to the International Space Station (ISS) this year on the second Utilization Flight (UF2). After successful on-orbit activation, the facility began supporting an active microgravity research program. The inaugural NASA experiments operated in the unit were the Solidification Using a Baffle in Sealed Ampoules (SUBSA, A. Ostrogorski, PI), and the Pore Formation and Mobility (PFMI, R. Grugel, PI) experiments. Both of these materials science investigations demonstrated the versatility of the facility through extensive use of telescience. The facility afforded the investigators with the capability of monitoring and operating the experiments in real-time and provided several instances in which the unique combination of scientists and flight crew were able to salvage situations which would have otherwise led to the loss of a science experiment in an unmanned, or automated, environment. The European Space Agency (ESA) also made use of the facility to perform a series of four experiments that were carried to the ISS via a Russian Soyuz and subsequently operated by a Belgium astronaut during a ten day Station visit. This imaginative approach demonstrated the ability of the MSG integration team to handle a rapid integration schedule (approximately seven months) and an intensive operations interval. Interestingly, and thanks to aggressive attention from the crew, the primary limitation to experiment thru-put in these early operational phases is proving to be the restrictions on the up-mass to the Station, rather than the availability of science operations.

  11. Recent Upgrades at the Safety and Tritium Applied Research Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwallader, Lee Charles; Merrill, Brad Johnson; Stewart, Dean Andrew

    This paper gives a brief overview of the Safety and Tritium Applied Research (STAR) facility operated by the Fusion Safety Program (FSP) at the Idaho National Laboratory (INL). FSP researchers use the STAR facility to carry out experiments in tritium permeation and retention in various fusion materials, including wall armor tile materials. FSP researchers also perform other experimentation as well to support safety assessment in fusion development. This lab, in its present two-building configuration, has been in operation for over ten years. The main experiments at STAR are briefly described. This paper discusses recent work to enhance personnel safety atmore » the facility. The STAR facility is a Department of Energy less than hazard category 3 facility; the personnel safety approach calls for ventilation and tritium monitoring for radiation protection. The tritium areas of STAR have about 4 to 12 air changes per hour, with air flow being once through and then routed to the facility vent stack. Additional radiation monitoring has been installed to read the laboratory room air where experiments with tritium are conducted. These ion chambers and bubblers are used to verify that no significant tritium concentrations are present in the experiment rooms. Standby electrical power has been added to the facility exhaust blower so that proper ventilation will now operate during commercial power outages as well as the real-time tritium air monitors.« less

  12. Gas and water recycling system for IOC vivarium experiments

    NASA Technical Reports Server (NTRS)

    Nitta, K.; Otsubo, K.

    1986-01-01

    Water and gas recycling units designed as one of the common experiment support system for the life science experiment facilities used in the Japanese Experiment Module are discussed. These units will save transportation and operation costs for the life science experiments in the space station. These units are also designed to have interfaces so simple that the connection to another life science experiment facilities such as the Research Animal Holding Facility developed by the Rockheed Missiles and Space Company can be easily done with small modification.

  13. World first in high level waste vitrification - A review of French vitrification industrial achievements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brueziere, J.; Chauvin, E.; Piroux, J.C.

    2013-07-01

    AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process wasmore » implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.« less

  14. Skylab materials processing facility experiment developer's report

    NASA Technical Reports Server (NTRS)

    Parks, P. G.

    1975-01-01

    The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.

  15. Gemini Observatory base facility operations: systems engineering process and lessons learned

    NASA Astrophysics Data System (ADS)

    Serio, Andrew; Cordova, Martin; Arriagada, Gustavo; Adamson, Andy; Close, Madeline; Coulson, Dolores; Nitta, Atsuko; Nunez, Arturo

    2016-08-01

    Gemini North Observatory successfully began nighttime remote operations from the Hilo Base Facility control room in November 2015. The implementation of the Gemini North Base Facility Operations (BFO) products was a great learning experience for many of our employees, including the author of this paper, the BFO Systems Engineer. In this paper we focus on the tailored Systems Engineering processes used for the project, the various software tools used in project support, and finally discuss the lessons learned from the Gemini North implementation. This experience and the lessons learned will be used both to aid our implementation of the Gemini South BFO in 2016, and in future technical projects at Gemini Observatory.

  16. Health and Safety Management for Small-scale Methane Fermentation Facilities

    NASA Astrophysics Data System (ADS)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  17. Experiment facilities for life science experiments in space.

    PubMed

    Uchida, Satoko

    2004-11-01

    To perform experiments in microgravity environment, there should be many difficulties compared with the experiments on ground. JAXA (Japan Aerospace Exploration Agency) has developed various experiment facilities to perform life science experiments in space, such as Cell Culture Kit, Thermo Electric Incubator, Free Flow Electrophoresis Unit, Aquatic Animal Experiment Unit, and so on. The first experiment facilities were flown on Spacelab-J mission in 1992, and they were improved and modified for the 2nd International Microgravity Laboratory (IML-2) mission in 1994. Based on these experiences, some of them were further improved and flown on another missions. These facilities are continuously being improved for the International Space Station use, where high level functions and automatic operations will be required.

  18. Japanese plan for SSF utilization

    NASA Technical Reports Server (NTRS)

    Mizuno, Toshio

    1992-01-01

    The Japanese Experiment Module (JEM) program has made significant progress. The JEM preliminary design review was completed in July 1992; construction of JEM operation facilities has begun; and the micro-G airplane, drop shaft, and micro-G experiment rocket are all operational. The national policy for JEM utilization was also established. The Space Experiment Laboratory (SEL) opened in June '92 and will function as a user support center. Eight JEM multiuser facilities are in phase B, and scientific requirements are being defined for 17 candidate multiuser facilities. The National Joint Research Program is about to start. Precursor missions and early Space Station utilization activities are being defined. This paper summarizes the program in outline and graphic form.

  19. Design philosophy and operating experience with the WNRE Hot Cell Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, R.G.; Seymour, C.G.; Ryz, M.A.

    1969-10-15

    The objective of radiation safety and operating efficiency often conflict. The key to preventing this conflict is proper design. In this paper we discuss how both objectives have been met in the Whiteshell Nuclear Research Establishment (WNRE) Hot Cell Facilities.

  20. Preparing the MAX IV storage rings for timing-based experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stråhlman, C., E-mail: Christian.Strahlman@maxlab.lu.se; Olsson, T., E-mail: Teresia.Olsson@maxlab.lu.se; Leemann, S. C.

    2016-07-27

    Time-resolved experimental techniques are increasingly abundant at storage ring facilities. Recent developments in accelerator technology and beamline instrumentation allow for simultaneous operation of high-intensity and timing-based experiments. The MAX IV facility is a state-of-the-art synchrotron light source in Lund, Sweden, that will come into operation in 2016. As many storage ring facilities are pursuing upgrade programs employing strong-focusing multibend achromats and passive harmonic cavities (HCs) in high-current operation, it is of broad interest to study the accelerator and instrumentation developments required to enable timing-based experiments at such machines. In particular, the use of hybrid filling modes combined with pulse pickingmore » by resonant excitation or pseudo single bunch has shown promising results. These methods can be combined with novel beamline instrumentation, such as choppers and instrument gating. In this paper we discuss how these techniques can be implemented and employed at MAX IV.« less

  1. First results of the ITER-relevant negative ion beam test facility ELISE (invited).

    PubMed

    Fantz, U; Franzen, P; Heinemann, B; Wünderlich, D

    2014-02-01

    An important step in the European R&D roadmap towards the neutral beam heating systems of ITER is the new test facility ELISE (Extraction from a Large Ion Source Experiment) for large-scale extraction from a half-size ITER RF source. The test facility was constructed in the last years at Max-Planck-Institut für Plasmaphysik Garching and is now operational. ELISE is gaining early experience of the performance and operation of large RF-driven negative hydrogen ion sources with plasma illumination of a source area of 1 × 0.9 m(2) and an extraction area of 0.1 m(2) using 640 apertures. First results in volume operation, i.e., without caesium seeding, are presented.

  2. The National Ignition Facility (NIF) as a User Facility

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; NIF Team

    2013-10-01

    The National Ignition Facility (NIF) has made significant progress towards operation as a user facility. Through June 2013, NIF conducted over 1200 experiments in support of ICF, HED science, and development of facility capabilities. The NIF laser has met or achieved all specifications and a wide variety of diagnostic and target fabrication capabilities are in place. A NIF User Group and associated Executive Board have been formed. Two User Group meetings have been conducted since formation of the User Group. NIF experiments in fundamental science have provided important new results. NIF ramp compression experiments have been conducted using diamond and iron, with EOS results obtained at pressures up to approximately 50 Mbar and 8 Mbar, respectively. Initial experiments in supernova hydrodynamics, the fundamental physics of the Rayleigh-Taylor instability, and equation of state in the Gbar pressure regime have also been conducted. This presentation will discuss the fundamental science program at NIF, including the proposal solicitation and scientific review processes and other aspects of user facility operation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  3. Long-Term Lessons

    ERIC Educational Resources Information Center

    Gettelman, Alan

    2006-01-01

    Public or private, K-12, college or university, no one knows their facilities better than school maintenance and operations staff--from the front-line custodians to facility managers. When it comes to planning restrooms for new construction and renovation, operational experience is especially critical. Applying best practices in advance can save…

  4. Status of power generation experiments in the NASA Lewis closed cycle MHD facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Nichols, L. D.

    1971-01-01

    The design and operation of the closed cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger, heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths, the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. Comparison of this data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.

  5. The ISS Fluids and Combustion Facility: Experiment Accommodations Summary

    NASA Technical Reports Server (NTRS)

    Corban, Robert R.; Simons, Stephen N. (Technical Monitor)

    2001-01-01

    The International Space Station's (ISS's) Fluids and Combustion Facility (FCF) is in the process of final design and development activities to accommodate a wide range of experiments in the fields of combustion science and fluid physics. The FCF is being designed to provide potential experiments with well defined interfaces that can meet the experimenters requirements, provide the flexibility for on-orbit reconfiguration, and provide the maximum capability within the ISS resources and constraints. As a multi-disciplined facility, the FCF supports various experiments and scientific objectives, which will be developed in the future and are not completely defined at this time. Since developing experiments to be performed within FCF is a continuous process throughout the FCF's operational lifetime, each individual experiment must determine the best configuration of utilizing facility capabilities and resources with augmentation of specific experiment hardware. Configurations of potential experiments in the FCF has been on-going to better define the FCF interfaces and provide assurances that the FCF design will meet its design requirements. This paper provides a summary of ISS resources and FCF capabilities, which are available for potential ISS FCF users. Also, to better understand the utilization of the FCF a description of a various experiment layouts and associated operations in the FCF are provided.

  6. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for a laboratory experiment, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  7. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  8. Laboratory simulations of astrophysical jets: results from experiments at the PF-3, PF-1000U, and KPF-4 facilities

    NASA Astrophysics Data System (ADS)

    Krauz, V. I.; Myalton, V. V.; Vinogradov, V. P.; Velikhov, E. P.; Ananyev, S. S.; Dan'ko, S. A.; Kalinin, Yu G.; Kharrasov, A. M.; Vinogradova, Yu V.; Mitrofanov, K. N.; Paduch, M.; Miklaszewski, R.; Zielinska, E.; Skladnik-Sadowska, E.; Sadowski, M. J.; Kwiatkowski, R.; Tomaszewski, K.; Vojtenko, D. A.

    2017-10-01

    Results are presented from laboratory simulations of plasma jets emitted by young stellar objects carried out at the plasma focus facilities. The experiments were performed at three facilities: the PF-3, PF-1000U and KPF-4. The operation modes were realized enabling the formation of narrow plasma jets which can propagate over long distances. The main parameters of plasma jets and background plasma were determined. In order to control the ratio of a jet density to that of background plasma, some special operation modes with pulsed injection of the working gas were used.

  9. Experience with a UNIX based batch computing facility for H1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhards, R.; Kruener-Marquis, U.; Szkutnik, Z.

    1994-12-31

    A UNIX based batch computing facility for the H1 experiment at DESY is described. The ultimate goal is to replace the DESY IBM mainframe by a multiprocessor SGI Challenge series computer, using the UNIX operating system, for most of the computing tasks in H1.

  10. Computational investigations of low-emission burner facilities for char gas burning in a power boiler

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.

    2016-04-01

    Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).

  11. The National Ignition Facility: alignment from construction to shot operations

    NASA Astrophysics Data System (ADS)

    Burkhart, S. C.; Bliss, E.; Di Nicola, P.; Kalantar, D.; Lowe-Webb, R.; McCarville, T.; Nelson, D.; Salmon, T.; Schindler, T.; Villanueva, J.; Wilhelmsen, K.

    2010-08-01

    The National Ignition Facility in Livermore, California, completed it's commissioning milestone on March 10, 2009 when it fired all 192 beams at a combined energy of 1.1 MJ at 351nm. Subsequently, a target shot series from August through December of 2009 culminated in scale ignition target design experiments up to 1.2 MJ in the National Ignition Campaign. Preparations are underway through the first half of of 2010 leading to DT ignition and gain experiments in the fall of 2010 into 2011. The top level requirement for beam pointing to target of 50μm rms is the culmination of 15 years of engineering design of a stable facility, commissioning of precision alignment, and precise shot operations controls. Key design documents which guided this project were published in the mid 1990's, driving systems designs. Precision Survey methods were used throughout construction, commissioning and operations for precision placement. Rigorous commissioning processes were used to ensure and validate placement and alignment throughout commissioning and in present day operations. Accurate and rapid system alignment during operations is accomplished by an impressive controls system to align and validate alignment readiness, assuring machine safety and productive experiments.

  12. Long Duration Exposure Facility (LDEF) low-temperature heat pipe experiment package power system results

    NASA Technical Reports Server (NTRS)

    Tiller, Smith E.; Sullivan, David

    1992-01-01

    An overview of a self-contained Direct Energy Transfer Power System which was developed to provide power to the Long Duration Exposure Facility (LDEF) Low-Temperature Heat Pipe Experiment Package is presented. The power system operated successfully for the entire mission. Data recorded by the onboard recorder shows that the system operated within design specifications. Other than unanticipated overcharging of the battery, the power system operated as expected for nearly 32,000 low earth orbit cycles, and was still operational when tested after the LDEF recovery. Some physical damage was sustained by the solar array panels due to micrometeoroid hits, but there were not electrical failures.

  13. On-orbit technology experiment facility definition

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Buchan, Robert W.; Gates, Richard M.

    1988-01-01

    A study was conducted to identify on-orbit integrated facility needs to support in-space technology experiments on the Space Station and associated free flyers. In particular, the first task was to examine the proposed technology development missions (TDMX's) from the model mission set and other proposed experimental facilities, both individually and by theme, to determine how and if the experiments might be combined, what equipment might be shared, what equipment might be used as generic equipment for continued experimentation, and what experiments will conflict with the conduct of other experiments or Space Station operations. Then using these results, to determine on-orbit facility needs to optimize the implementation of technology payloads. Finally, to develop one or more scenarios, design concepts, and outfitting requirements for implementation of onboard technology experiments.

  14. Grids and clouds in the Czech NGI

    NASA Astrophysics Data System (ADS)

    Kundrát, Jan; Adam, Martin; Adamová, Dagmar; Chudoba, Jiří; Kouba, Tomáš; Lokajíček, Miloš; Mikula, Alexandr; Říkal, Václav; Švec, Jan; Vohnout, Rudolf

    2016-09-01

    There are several infrastructure operators within the Czech Republic NGI (National Grid Initiative) which provide users with access to high-performance computing facilities over a grid and cloud interface. This article focuses on those where the primary author has personal first-hand experience. We cover some operational issues as well as the history of these facilities.

  15. A User's Guide for the Spacecraft Fire Safety Facility

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey S.

    2000-01-01

    The Spacecraft Fire Safety Facility (SFSF) is a test facility that can be flown on NASA's reduced gravity aircraft to perform various types of combustion experiments under a variety of experimental conditions. To date, this facility has flown numerous times on the aircraft and has been used to perform experiments ranging from an examination of the effects transient depressurization on combustion, to ignition and flame spread. A list of pubfications/presentations based on experiments performed in the SFSF is included in the reference section. This facility consists of five main subsystems: combustion chamber, sample holders, gas flow system, imaging system, and the data acquisition/control system. Each of these subsystems will be reviewed in more detail. These subsystems provide the experiment operator with the ability to monitor and/or control numerous experimental parameters.

  16. Plan of Action: JASPER Management Prestart Review (Surrogate Material Experiment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, W E

    2000-12-05

    The Lawrence Livermore National Laboratory (LLNL) Joint Actinide Shock Physics Experimental Research (JASPER) Facility is being developed at the Nevada Test Site (NTS) to conduct shock physics experiments on special nuclear material and other actinide materials. JASPER will use a two-stage, light-gas gun to shoot projectiles at actinide targets. Projectile velocities will range from 1 to 8 km/s, inducing pressures in the target material up to 6 Mbar. The JASPER gas gun has been designed to match the critical dimensions of the two-stage, light-gas gun in Building 341 of LLNL. The goal in copying the LLNL gun design is tomore » take advantage of the extensive ballistics database that exists and to minimize the effort spent on gun characterization in the initial facility start-up. A siting study conducted by an inter-Laboratory team identified Able Site in Area 27 of the NTS as the best location for the JASPER gas gun. Able Site consists of three major buildings that had previously been used to support the nuclear test program. In April 1999, Able Site was decommissioned as a Nuclear Explosive Assembly Facility and turned back to the DOE for other uses. Construction and facility modifications at Able Site to support the JASPER project started in April 1999 and were completed in September 1999. The gas gun and the secondary confinement chamber (SCC) were installed in early 2000. During the year, all facility and operational systems were brought on line. Initial system integration demonstrations were completed in September 2000. The facility is anticipated to be operational by August 2001, and the expected life cycle for the facility is 10 years. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. The review coincides with the completion of authorization-basis documents and physical subsystems, which have undergone appropriate formal engineering design reviews. This MPR will affirm the quality of those reviews, their findings/resolutions, and will look most closely at systems integration requirements and demonstrations that will have undergone technical acceptance reviews before the formal MPR action. Closure of MPR findings will finalize requirements for a DOE/NV Real Estate/Operations Permit (REOP) for surrogate-material experiments. Upon completion of that experiment series and the establishment of capabilities for incorporating SNM into future experiments, the team will convene again as part of the process of authorizing those activities.« less

  17. Plan of Action: JASPER Management Prestart Review (Surrogate Material Experiments)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, W.E.

    2000-09-29

    The Lawrence Livermore National Laboratory (LLNL) Joint Actinide Shock Physics Experimental Research (JASPER) Facility is being developed at the Nevada Test Site (NTS) to conduct shock physics experiments on special nuclear material and other actinide materials. JASPER will use a two-stage, light-gas gun to shoot projectiles at actinide targets. Projectile velocities will range from 1 to 8 km/s, inducing pressures in the target material up to 6 Mbar. The JASPER gas gun has been designed to match the critical dimensions of the two-stage, light-gas gun in Building 341 of LLNL. The goal in copying the LLNL gun design is tomore » take advantage of the extensive ballistics database that exists and to minimize the effort spent on gun characterization in the initial facility start-up. A siting study conducted by an inter-Laboratory team identified Able Site in Area 27 of the NTS as the best location for the JASPER gas gun. Able Site consists of three major buildings that had previously been used to support the nuclear test program. In April 1999, Able Site was decommissioned as a Nuclear Explosive Assembly Facility and turned back to the DOE for other uses. Construction and facility modifications at Able Site to support the JASPER project started in April 1999 and were completed in September 1999. The gas gun and the secondary confinement chamber (SCC) were installed in early 2000. During the year, all facility and operational systems were brought on line. Initial system integration demonstrations were completed in September 2000. The facility is anticipated to be operational by August 2001, and the expected life cycle for the facility is 10 years. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. The review coincides with the completion of authorization-basis documents and physical subsystems, which have undergone appropriate formal engineering design reviews. This MPR will affirm the quality of those reviews, their findings/resolutions, and will look most closely at systems integration requirements and demonstrations that will have undergone technical acceptance reviews before the formal MPR action. Closure of MPR findings will finalize requirements for a DOE/NV Real Estate/Operations Permit (REOP) for surrogate-material experiments. Upon completion of that experiment series and the establishment of capabilities for incorporating SNM into future experiments, the team will convene again as part of the process of authorizing those activities.« less

  18. SPEAR (Space Plasma Exploration by Active Radar): New Developments and Future Plans

    NASA Astrophysics Data System (ADS)

    Baddeley, L. J.; Oksavik, K.

    2009-12-01

    The SPEAR heating facility is located on Svalbard at 75° CGM latitude and as such is 10° closer to a geomagnetic pole than any current ionospheric heating facility. It thus has the unique ability to perform heating experiments inside the polar cap at all local times. It is co-located with several facilities, including the EISCAT Svalbard Radar, the SOUZY radar and the Kjell Henriksen Observatory. After much speculation regarding the operational future of the SPEAR facility, UNIS has taken ownership of the system, with a 3 year research and operational grant from the Norwegian Research Council. The facility has a detailed and successful research history, with results having already been presented at international scientific conferences and appeared in 13 peer-review papers in international journals. Successful experiments have been carried out using both X and O mode polarisation in conjunction with both ground and space based instrumentation. Additionally, the operational frequency the facility (4.45 - 5.825 MHz) means that its scientific capabilities will increase towards the next solar activity maximum in 2012. Future plans, both experimentally and logistically will be discussed in additional to possibilities for future experimental collaborations

  19. NASDA life science experiment facilities for ISS

    NASA Astrophysics Data System (ADS)

    Tanigaki, F.; Masuda, D.; Yano, S.; Fujimoto, N.; Kamigaichi, S.

    National Space Development Agency of Japan (NASDA) has been developing various experiment facilities to conduct space biology researches in KIBO (JEM). The Cell Biology Experiment Facility (CBEF) and the Clean Bench (CB) are installed into JEM Life Science Rack. The Biological Experiment Units (BEU) are operated in the CBEF and the CB for many kinds of experiments on cells, tissues, plants, microorganisms, or small animals. It is possible for all researchers to use these facilities under the system of the International Announcement of Opportunity. The CBEF is a CO2 incubator to provide a controlled environment (temperature, humidity, and CO2 concentration), in which a rotating table is equipped to make variable gravity (0-2g) for reference experiments. The containers called "Canisters" can be used to install the BEU in the CBEF. The CBEF supplies power, command, sensor, and video interfaces for the BEU through the utility connectors of Canisters. The BEU is a multiuser system consisting of chambers and control segments. It is operated by pre-set programs and by commands from the ground. NASDA is currently developing three types of the BEU: the Plant Experiment Unit (PEU) for plant life cycle observations and the Cell Experiment Unit (CEU1&2) for cell culture experiments. The PEU has an automated watering system with a water sensor, an LED matrix as a light source, and a CCD camera to observe the plant growth. The CEUs have culture chambers and an automated cultural medium exchange system. Engineering models of the PEU and CEU1 have been accomplished. The preliminary design of CEU2 is in progress. The design of the BEU will be modified to meet science requirements of each experiment. The CB provides a closed aseptic work-space (Operation Chamber) with gloves for experiment operations. Samples and the BEU can be manually handled in the CB. The CB has an air lock (Disinfection Chamber) to prevent contamination, and HEPA filters to make class-100-equivalent clean air inside the Operation Chamber. Alcohol swabs and built-in ultraviolet lamps are used to sterilize instruments and insides of the CB. The phase contrast / fluorescent microscope is equipped in the Operation Chamber to support experiments. The observed image is monitored either on the CB LCD display or on the ground through a video downlink channel. Researchers on the ground can also operate the microscope with its remote control function. Flight models of the CBEF and the CB are scheduled for completion in 2002.

  20. Design of control software for the closed ecology experiment facilities (CEEF)

    NASA Astrophysics Data System (ADS)

    Miyajima, H.; Abe, K.; Hirosaki, T.; Ishikawa, Y.

    A habitation experiment using a closed ecology experiment facilities CEEF was started in fiscal 2005 three experiments in which two humans stayed for one week were conducted Their stays will be extended gradually until fiscal 2009 when an experiment will be launched with two humans staying for four months The CEEF has an ambitious target of acquiring the technology of an advanced life support system and the system is being developed based on the technology of conventional plant systems Especially in respect to supervision and control of the system the system still has little automation This system has many manual operation parts whose starts and stops are determined by human judgment There are even several parts requiring off-line measurements that include analyses performed by hand At present a CEEF behavioral prediction system CPS is being developed as the first stage for controlling such a system In this CPS an operator creates an operational schedule after due consideration However creation of the operational schedule of the complex CEEF is not easy and it is above the operator s capability to fully cope with alterations of the operational schedule that occur during a long-term habitation experiment Therefore we are going to develop an automatic creation function of the operational schedule that will be incorporated into the CPS by the beginning of the habitation experiment in fiscal 2009 This function will enable automation of most of the operational schedule that human operators currently set up In this paper we examine

  1. French Atomic Energy Commission Decommissioning Programme and Feedback Experience - 12230

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guiberteau, Ph.; Nokhamzon, J.G.

    Since the French Atomic and Alternatives Energy Commission (CEA) was founded in 1945 to carry out research programmes on use of nuclear, and its application France has set up and run various types of installations: research or prototypes reactors, process study or examination laboratories, pilot installations, accelerators, nuclear power plants and processing facilities. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future.more » Since the 1960's and 1970's in all its centres, the CEA has acquired experience and know-how through dismantling various nuclear facilities. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing now from two dedicated funds, close to euro 15,000 M for the next thirty years, for current or projected dismantling operations, the CEA's Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2016, the dismantling of the UP1 plant at Marcoule, the largest dismantling work in France, will be well advanced, with all the process equipment dismantled. After an overview of the French regulatory framework, the paper will describe the DD and R (Decontamination Decommissioning and Remediation) strategy, programme and feedback experience inside the CEA's Nuclear Energy Division. A special feature of dismantling operations at the CEA comes from the diversity of facilities to be dismantled, which are predominantly research facilities and therefore have no series advantage. There is tremendous operating feedback, however. For more than twenty years in all its centres, the CEA has acquired experience and know-how through dismantling research reactors or critical models and laboratories or plants. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing from two dedicated funds, close to euro 15,000 Millions for the next thirty years, for current or projected dismantling operations, the Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2020, the dismantling of the UP1 plant at Marcoule, one of the largest dismantling works in the world, will be well advanced, with all the process equipment dismantled. (authors)« less

  2. A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments

    NASA Astrophysics Data System (ADS)

    Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue

    2013-03-01

    The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heise, J.

    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansionmore » of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.« less

  4. Some Operating Experience and Problems Encountered During Operation of a Free-jet Facility

    NASA Technical Reports Server (NTRS)

    Mcaulay, John E; Prince, William R

    1957-01-01

    During a free-jet investigation of a 28-inch ram-jet engine at a Mach number of 2.35, flow pulsation at the engine inlet were discovered which proved to have an effect on the engine performance and operational characteristics, particularly the engine rich blowout limits. This report discusses the finding of the flow pulsations, their elimination, and effect. Other facility characteristics, such as the establishment of flow simulation and the degree of subcritical operation of the diffuser, are also explained.

  5. Life sciences space station planning document: A reference payload for the exobiology research facilities

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Cosmic Dust Collection and Gas Grain Simulation Facilities represent collaborative efforts between the Life Sciences and Solar System Exploration Divisions designed to strengthen a natural exobiology/Planetary Sciences connection. The Cosmic Dust Collection Facility is a Planetary Science facility, with Exobiology a primary user. Conversely, the Gas Grain Facility is an exobiology facility, with Planetary Science a primary user. Requirements for the construction and operation of the two facilities, contained herein, were developed through joint workshops between the two disciplines, as were representative experiments comprising the reference payloads. In the case of the Gas Grain Simulation Facility, the astrophysics Division is an additional potential user, having participated in the workshop to select experiments and define requirements.

  6. Potential pressurized payloads: Fluid and thermal experiments

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    1992-01-01

    Space Station Freedom (SSF) presents the opportunity to perform long term fluid and thermal experiments in a microgravity environment. This presentation provides perspective on the need for fluids/thermal experimentation in a microgravity environment, addresses previous efforts, identifies possible experiments, and discusses the capabilities of a proposed fluid physics/dynamics test facility. Numerous spacecraft systems use fluids for their operation. Thermal control, propulsion, waste management, and various operational processes are examples of such systems. However, effective ground testing is very difficult. This is because the effect of gravity induced phenomena, such as hydrostatic pressure, buoyant convection, and stratification, overcome such forces as surface tension, diffusion, electric potential, etc., which normally dominate in a microgravity environment. Hence, space experimentation is necessary to develop and validate a new fluid based technology. Two broad types of experiments may be performed on SSF: basic research and applied research. Basic research might include experiments focusing on capillary phenomena (with or without thermal and/or solutal gradients), thermal/solutal convection, phase transitions, and multiphase flow. Representative examples of applied research might include two-phase pressure drop, two-phase flow instabilities, heat transfer coefficients, fluid tank fill/drain, tank slosh dynamics, condensate removal enhancement, and void formation within thermal energy storage materials. In order to better support such fluid/thermal experiments on board SSF, OSSA has developed a conceptual design for a proposed Fluid Physics/Dynamics Facility (FP/DF). The proposed facility consists of one facility rack permanently located on SSF and one experimenter rack which is changed out as needed to support specific experiments. This approach will minimize the on-board integration/deintegration required for specific experiments. The FP/DF will have acceleration/vibration compensation, power and thermal interfaces, computer command/data collection, a video imaging system, and a portable glove box for operations. This facility will allow real-time astronaut interaction with the testing.

  7. Terminal-area STOL operating systems experiments program

    NASA Technical Reports Server (NTRS)

    Smith, D. W.; Watson, D.; Christensen, J. V.

    1973-01-01

    Information which will aid in the choice by the U.S. Government and industry of system concepts, design criteria, operating procedures for STOL aircraft and STOL ports, STOL landing guidance systems, air traffic control systems, and airborne avionics and flight control systems. Ames has developed a terminal-area STOL operating systems experiments program which is a part of the joint DOT/NASA effort is discussed. The Ames operating systems experiments program, its objectives, the program approach, the program schedule, typical experiments, the research facilities to be used, and the program status are described.

  8. The Sanford Underground Research Facility at Homestake (SURF)

    DOE PAGES

    Lesko, K. T.

    2015-03-24

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the Majorana Demonstrator neutrinoless double-beta decay experiment and the Berkeley and CUBED low-background counters. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark mattermore » experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability. These plans include a Generation-2 Dark Matter experiment and the US flagship neutrino experiment, LBNE.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonathan Gray; Robert Anderson; Julio G. Rodriguez

    Abstract: Identifying and understanding digital instrumentation and control (I&C) cyber vulnerabilities within nuclear power plants and other nuclear facilities, is critical if nation states desire to operate nuclear facilities safely, reliably, and securely. In order to demonstrate objective evidence that cyber vulnerabilities have been adequately identified and mitigated, a testbed representing a facility’s critical nuclear equipment must be replicated. Idaho National Laboratory (INL) has built and operated similar testbeds for common critical infrastructure I&C for over ten years. This experience developing, operating, and maintaining an I&C testbed in support of research identifying cyber vulnerabilities has led the Korean Atomic Energymore » Research Institute of the Republic of Korea to solicit the experiences of INL to help mitigate problems early in the design, development, operation, and maintenance of a similar testbed. The following information will discuss I&C testbed lessons learned and the impact of these experiences to KAERI.« less

  10. Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation.

    NASA Technical Reports Server (NTRS)

    Hinners, A. H., Jr.; Correale, J. V.

    1973-01-01

    This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.

  11. Atmosphere, Magnetosphere and Plasmas in Space (AMPS). Space payload definition study. Volume 2: Mission support requirements document

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The flight payload, its operation, and the support required from the Space Transporatation System (STS) is defined including the flight objectives and requirements, the experiment operations, and the payload configurations. The support required from the STS includes the accommodation of the payload by the orbiter/Spacelab, use of the flight operations network and ground facilities, and the use of the launch site facilities.

  12. Biotechnology System Facility: Risk Mitigation on Mir

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R., III; Galloway, Steve R.

    2003-01-01

    NASA is working with its international partners to develop space vehicles and facilities that will give researchers the opportunity to conduct scientific investigations in space. As part of this activity, NASA's Biotechnology Cell Science Program (BCSP) at the Johnson Space Center (JSC) is developing a world-class biotechnology laboratory facility for the International Space Station (ISS). This report describes the BCSP, including the role of the BTS. We identify the purpose and objectives of the BTS and a detailed description of BTS facility design and operational concept, BTS facility and experiment-specific hardware, and scientific investigations conducted in the facility. We identify the objectives, methods, and results of risk mitigation investigations of the effects of microgravity and cosmic radiation on the BTS data acquisition and control system. These results may apply to many other space experiments that use commercial, terrestrial-based data acquisition technology. Another focal point is a description of the end-to-end process of integrating and operating biotechnology experiments on a variety of space vehicles. The identification of lessons learned that can be applied to future biotechnology experiments is an overall theme of the report. We include a brief summary of the science results, but this is not the focus of the report. The report provides some discussion on the successful 130-day tissue engineering experiment performed in BTS on Mir and describes a seminal gene array investigation that identified a set of unique genes that are activated in space.

  13. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  14. Using Spacelab as a precursor of science operations for the Space Station

    NASA Technical Reports Server (NTRS)

    Marmann, R. A.

    1997-01-01

    For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.

  15. Boiling eXperiment Facility (BXF) Fluid Toxicity Technical Interchange Meeting (TIM) with the Payload Safety Review Panel (PSRP)

    NASA Technical Reports Server (NTRS)

    Sheredy, William A.

    2012-01-01

    A Technical Interchange meeting was held between the payload developers for the Boiling eXperiment Facility (BXF) and the NASA Safety Review Panel concerning operational anomaly that resulted in overheating one of the fluid heaters, shorted a 24VDC power supply and generated Perfluoroisobutylene (PFiB) from Perfluorohexane.

  16. Fermilab Test Beam Facility Annual Report. FY 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, A.

    2015-01-01

    Fermilab Test Beam Facility (FTBF) operations are summarized for FY 2014. It is one of a series of publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  17. The Boiling eXperiment Facility (BXF) for the Microgravity Science Glovebox (MSG)

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Chao, David; Vergilii, Frank

    2006-01-01

    Boiling is an effective means of cooling by removing heat from surfaces through vaporization of a working fluid. It is also affected by both the magnitude and direction of gravity. By conducting pool boiling tests in microgravity, the effect of buoyancy n the overall boiling process and the relative magnitude of other phenomena can be assessed. The Boiling eXperiment Facility (BXF) is being built for the Microgravity Science Glovebox. This facility will conduct two pool boiling studies. The first study the Microheater Array Boiling Experiment (MABE) uses two 96 element microheater arrays, 2.7 mm and 7.0 mm in size, to measure localized hear fluxes while operating at a constant temperature. The other experiment, the Nucleate Pool Boiling eXperiment (NPBX) uses a 85 mm diameter heater wafer that has been "seeded" with five individually-controlled nucleation sites to study bubble nucleation, growth, coalescence and departure. The BXF uses normal-perfluorohexane as the test fluid and will operate between pressures of 60 to 244 Pa. and temperatures of 35 to 60 C. Both sets of experimental heaters are highly instrumented. Pressure and bulk fluid temperature measurements will be made with standard rate video. A high speed video system will be used to visualize the boiling process through the bottom of the MABE heater arrays. The BXF is currently scheduled to fly on Utilization Flight-13A.1 to the ISS with facility integration into the MSG and operation during Increment 15

  18. Framework for leadership and training of Biosafety Level 4 laboratory workers.

    PubMed

    Le Duc, James W; Anderson, Kevin; Bloom, Marshall E; Estep, James E; Feldmann, Heinz; Geisbert, Joan B; Geisbert, Thomas W; Hensley, Lisa; Holbrook, Michael; Jahrling, Peter B; Ksiazek, Thomas G; Korch, George; Patterson, Jean; Skvorak, John P; Weingartl, Hana

    2008-11-01

    Construction of several new Biosafety Level 4 (BSL-4) laboratories and expansion of existing operations have created an increased international demand for well-trained staff and facility leaders. Directors of most North American BSL-4 laboratories met and agreed upon a framework for leadership and training of biocontainment research and operations staff. They agreed on essential preparation and training that includes theoretical consideration of biocontainment principles, practical hands-on training, and mentored on-the-job experiences relevant to positional responsibilities as essential preparation before a person's independent access to a BSL-4 facility. They also agreed that the BSL-4 laboratory director is the key person most responsible for ensuring that staff members are appropriately prepared for BSL-4 operations. Although standardized certification of training does not formally exist, the directors agreed that facility-specific, time-limited documentation to recognize specific skills and experiences of trained persons is needed.

  19. Framework for Leadership and Training of Biosafety Level 4 Laboratory Workers

    PubMed Central

    Anderson, Kevin; Bloom, Marshall E.; Estep, James E.; Feldmann, Heinz; Geisbert, Joan B.; Geisbert, Thomas W.; Hensley, Lisa; Holbrook, Michael; Jahrling, Peter B.; Ksiazek, Thomas G.; Korch, George; Patterson, Jean; Skvorak, John P.; Weingartl, Hana

    2008-01-01

    Construction of several new Biosafety Level 4 (BSL-4) laboratories and expansion of existing operations have created an increased international demand for well-trained staff and facility leaders. Directors of most North American BSL-4 laboratories met and agreed upon a framework for leadership and training of biocontainment research and operations staff. They agreed on essential preparation and training that includes theoretical consideration of biocontainment principles, practical hands-on training, and mentored on-the-job experiences relevant to positional responsibilities as essential preparation before a person’s independent access to a BSL-4 facility. They also agreed that the BSL-4 laboratory director is the key person most responsible for ensuring that staff members are appropriately prepared for BSL-4 operations. Although standardized certification of training does not formally exist, the directors agreed that facility-specific, time-limited documentation to recognize specific skills and experiences of trained persons is needed. PMID:18976549

  20. Leveraging Safety Programs to Improve and Support Security Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leach, Janice; Snell, Mark K.; Pratt, R.

    2015-10-01

    There has been a long history of considering Safety, Security, and Safeguards (3S) as three functions of nuclear security design and operations that need to be properly and collectively integrated with operations. This paper specifically considers how safety programmes can be extended directly to benefit security as part of an integrated facility management programme. The discussion will draw on experiences implementing such a programme at Sandia National Laboratories’ Annular Research Reactor Facility. While the paper focuses on nuclear facilities, similar ideas could be used to support security programmes at other types of high-consequence facilities and transportation activities.

  1. New experiments selected for 1980 operational shuttle flight

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Experiments selected for NASA's Long Duration Exposure Facility mission are described. Technical areas represented by the experiments include materials, thermal control coatings, detectors, power, micrometeoroids, electronics, lubrication, optics, and space debris detection.

  2. Zero Gravity Research Facility User's Guide

    NASA Technical Reports Server (NTRS)

    Thompson, Dennis M.

    1999-01-01

    The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.

  3. The Wallsend Owenites

    ERIC Educational Resources Information Center

    Todd, Nigel

    2013-01-01

    The nineteenth-century British Co-operative Movement included a commitment to education. Although only a minority of consumer co-operative societies offered educational facilities for their members, there was a willingness to experiment among those Co-operators whose grasp of Co-operation extended ideologically beyond remaining content with…

  4. A review of ventilated storage cask (VSC) system projects and experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConaghy, W.

    1995-12-31

    First, the author discusses the ventilated storage cask (VSC) design and an operations summary is given. Next VSC project status at Palisades, Point Beach, Arkansas Nuclear One, Fast Flux Test Facility and Zaporozhye is discussed. Lastly, VSC operational experience and VSC transportation interfaces are reviewed.

  5. The Light Microscopy Module: An On-Orbit Multi-User Microscope Facility

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Snead, John H.

    2002-01-01

    The Light Microscopy Module (LMM) is planned as a remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and operation of fluids and biology experiments within the Fluids and Combustion Facility (FCF) Fluids Integrated Rack (FIR) on the International Space Station (ISS). The LMM will be the first integrated payload with the FIR to conduct four fluid physics experiments. A description of the LMM diagnostic capabilities, including video microscopy, interferometry, laser tweezers, confocal, and spectrophotometry, will be provided.

  6. Test results and facility description for a 40-kilowatt stirling engine

    NASA Technical Reports Server (NTRS)

    Kelm, G. G.; Cairelli, J. E.; Walter, R. J.

    1981-01-01

    A 40 kilowatt Stirling engine, its test support facilities, and the experimental procedures used for these tests are described. Operating experience with the engine is discussed, and some initial test results are presented

  7. Effect of facility on the operative costs of distal radius fractures.

    PubMed

    Mather, Richard C; Wysocki, Robert W; Mack Aldridge, J; Pietrobon, Ricardo; Nunley, James A

    2011-07-01

    The purpose of this study was to investigate whether ambulatory surgery centers can deliver lower-cost care and to identify sources of those cost savings. We performed a cost identification analysis of outpatient volar plating for closed distal radius fractures at a single academic medical center. Multiple costs and time measures were taken from an internal database of 130 consecutive patients and were compared by venue of treatment, either an inpatient facility or an ambulatory, stand-alone surgery facility. The relationships between total cost and operative time and multiple variables, including fracture severity, patient age, gender, comorbidities, use of bone graft, concurrent carpal tunnel release, and surgeon experience, were examined, using multivariate analysis and regression modeling to identify other cost drivers or explanatory variables. The mean operative cost was considerably greater at the inpatient facility ($7,640) than at the outpatient facility ($5,220). Cost drivers of this difference were anesthesia services, post-anesthesia care unit, and operating room costs. Total surgical time, nursing time, set-up, and operative times were 33%, 109%, 105%, and 35% longer, respectively, at the inpatient facility. There was no significant difference between facilities for the additional variables, and none of those variables independently affected cost or operative time. The only predictor of cost and time was facility type. This study supports the use of ambulatory stand-alone surgical facilities to achieve efficient resource utilization in the operative treatment of distal radius fractures. We also identified several specific costs and time measurements that differed between facilities, which can serve as potential targets for tertiary facilities to improve utilization. Economic and Decisional Analysis III. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  8. LANL OPERATING EXPERIENCE WITH THE WAND AND HERCULES PROTOTYPE SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. M. GRUETZMACHER; C. L. FOXX; S. C. MYERS

    2000-09-01

    The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) prototype systems have been operating at Los Alamos National Laboratory's (LANL's) Solid Waste Operation's (SWO'S) non-destructive assay (NDA) building since 1997 and 1998, respectively. These systems are the cornerstone of the verification program for low-density Green is Clean (GIC) waste at the Laboratory. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAS) that has been actively segregated as clean (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). The use of this methodology alters LANL's pastmore » practice of disposing of all room trash generated in nuclear facilities in radioactive waste landfills. Waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from radioactive material handling areas at Los Alamos might be free of contamination. This approach avoids the high cost of disposal of clean waste at a radioactive waste landfill. It also reduces consumption of precious space in the radioactive waste landfill where disposal of this waste provides no benefit to the public or the environment. Preserving low level waste (LLW) disposal capacity for truly radioactive waste is critical in this era when expanding existing radioactive waste landfills or permitting new ones is resisted by regulators and stakeholders. This paper describes the operating experience with the WAND and HERCULES since they began operation at SWO. Waste for verification by the WAND system has been limited so far to waste from the Plutonium Facility and the Solid Waste Operations Facility. A total of461 ft3 (13.1 m3) of low-density shredded waste and paper have been verified clean by the WAND system. The HERCULES system has been used to verify waste from four Laboratory facilities. These are the Solid Waste Operations Facility, the TA-48 Chemistry Facility, the Shops Facility, and the Environmental Facility. A total of 3150 ft3 (89.3 m3) of low-density waste has been verified clean by the HERCULES system.« less

  9. Atmosphere, Magnetosphere and Plasmas in Space (AMPS). Spacelab payload definition study. Volume 2: Mission support requirements document. Addendum: Flight 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The AMPS Flight 2 payload, its operation, and the support required from the Space Transportation System (STS) are described. The definition of the payload includes the flight objectives and requirements, the experiment operations, and the payload configuration. The support required from the STS includes the accommodation of the payload by the orbiter/Spacelab, use of the flight operations network and ground facilities, and the use of the launch site facilities.

  10. Hypersonic Wind Tunnel Calibration Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Rhode, Matthew N.; DeLoach, Richard

    2005-01-01

    A calibration of a hypersonic wind tunnel has been conducted using formal experiment design techniques and response surface modeling. Data from a compact, highly efficient experiment was used to create a regression model of the pitot pressure as a function of the facility operating conditions as well as the longitudinal location within the test section. The new calibration utilized far fewer design points than prior experiments, but covered a wider range of the facility s operating envelope while revealing interactions between factors not captured in previous calibrations. A series of points chosen randomly within the design space was used to verify the accuracy of the response model. The development of the experiment design is discussed along with tactics used in the execution of the experiment to defend against systematic variation in the results. Trends in the data are illustrated, and comparisons are made to earlier findings.

  11. A summary of existing and planned experiment hardware for low-gravity fluids research

    NASA Technical Reports Server (NTRS)

    Hill, Myron E.; Omalley, Terence F.

    1991-01-01

    An overview is presented of (1) existing ground-based, low gravity research facilities, with examples of hardware capabilities, and (2) existing and planned space-based research facilities, with examples of current and past flight hardware. Low-gravity, ground-based facilities, such as drop towers and aircraft, provide the experimenter with quick turnaround time, easy access to equipment, gravity levels ranging from 10(exp -2) to 10(exp -6) G, and low-gravity durations ranging from 2 to 30 sec. Currently, the only operational space-based facility is the Space Shuttle. The Shuttle's payload bay and middeck facilities are described. Existing and planned low-gravity fluids research facilities are also described with examples of experiments and hardware capabilities.

  12. NASA/ESA CV-990 spacelab simulation

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.

    1976-01-01

    Simplified techniques were applied to conduct an extensive spacelab simulation using the airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy. The mission was successful and provided extensive data relevant to spacelab objectives on overall management of a complex international payload; experiment preparation, testing, and integration; training for proxy operation in space; data handling; multiexperimenter use of common experimenter facilities (telescopes); multiexperiment operation by experiment operators; selection criteria for spacelab experiment operators; and schedule requirements to prepare for such a spacelab mission.

  13. CRITICAL EXPERIMENT TANK (CET) REACTOR HAZARDS SUMMARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becar, N.J.; Kunze, J.F.; Pincock, G..D.

    1961-03-31

    The Critical Experiment Tank (CET) reactor assembly, the associated systems, and the Low Power Test Facility in which the reactor is to be operated are described. An evaluation and summary of the hazards associated with the operation of the CET reactor in the LPTF at the ldsho Test Station are also presented. (auth)

  14. Five Years of Cyclotron Radioisotope Production Experiences at the First PET-CT in Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colmenter, L.; Coelho, D.; Esteves, L. M.

    2007-10-26

    Five years operation of a compact cyclotron installed at PET-CT facility in Caracas, Venezuela is given. Production rate of {sup 18}F labeled FDG, operation and radiation monitoring experience are included. We conclude that {sup 18}FDG CT-PET is the most effective technique for patient diagnosis.

  15. Waste Estimates for a Future Recycling Plant in the US Based Upon AREVA Operating Experience - 13206

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foare, Genevieve; Meze, Florian; Bader, Sven

    2013-07-01

    Estimates of process and secondary wastes produced by a recycling plant built in the U.S., which is composed of a used nuclear fuel (UNF) reprocessing facility and a mixed oxide (MOX) fuel fabrication facility, are performed as part of a U.S. Department of Energy (DOE) sponsored study [1]. In this study, a set of common inputs, assumptions, and constraints were identified to allow for comparison of these wastes between different industrial teams. AREVA produced a model of a reprocessing facility, an associated fuel fabrication facility, and waste treatment facilities to develop the results for this study. These facilities were dividedmore » into a number of discrete functional areas for which inlet and outlet flow streams were clearly identified to allow for an accurate determination of the radionuclide balance throughout the facility and the waste streams. AREVA relied primarily on its decades of experience and feedback from its La Hague (reprocessing) and MELOX (MOX fuel fabrication) commercial operating facilities in France to support this assessment. However, to perform these estimates for a U.S. facility with different regulatory requirements and to take advantage of some technological advancements, such as in the potential treatment of off-gases, some deviations from this experience were necessary. A summary of AREVA's approach and results for the recycling of 800 metric tonnes of initial heavy metal (MTIHM) of LWR UNF per year into MOX fuel under the assumptions and constraints identified for this DOE study are presented. (authors)« less

  16. Advanced user support programme—TEMPUS IML-2

    NASA Astrophysics Data System (ADS)

    Diefenbach, A.; Kratz, M.; Uffelmann, D.; Willnecker, R.

    1995-05-01

    The DLR Microgravity User Support Centre (MUSC) in Cologne has supported microgravity experiments in the field of materials and life sciences since 1979. In the beginning of user support activities, MUSC tasks comprised the basic ground and mission support, whereas present programmes are expanded on, for example, powerful telescience and advanced real time data acquisition capabilities for efficient experiment operation and monitoring. In view of the Space Station era, user support functions will increase further. Additional tasks and growing responsibilities must be covered, e.g. extended science support as well as experiment and facility operations. The user support for TEMPUS IML-2, under contract of the German Space Agency DARA, represents a further step towards the required new-generation of future ground programme. TEMPUS is a new highly sophisticated Spacelab multi-user facility for containerless processing of metallic samples. Electromagnetic levitation technique is applied and various experiment diagnosis tools are offered. Experiments from eight U.S. and German investigator groups have been selected for flight on the second International Microgravity Laboratory Mission IML-2 in 1994. Based on the experience gained in the research programme of the DLR Institute for Space Simulation since 1984, MUSC is performing a comprehensive experiment preparation programme in close collaboration with the investigator teams. Complex laboratory equipment has been built up for technology and experiment preparation development. New experiment techniques have been developed for experiment verification tests. The MUSC programme includes thorough analysis and testing of scientific requirements of every proposed experiment with respect to the facility hard- and software capabilities. In addition, studies on the experiment-specific operation requirements have been performed and suitable telescience scenarios were analysed. The present paper will give a survey of the TEMPUS user support tasks emphasizing the advanced science support activities, which are considered significant for future ground programmes.

  17. Terminal-area STOL operating systems experiments program

    NASA Technical Reports Server (NTRS)

    Smith, D. W.; Watson, D.; Christensen, J. V.

    1972-01-01

    A system study to determine the application of short takeoff aircraft for a high speed, short haul air transportation service was conducted. The study focused on developing information which will aid in choosing system concepts, design criteria, operating procedures, landing guidance systems, air traffic control systems, and airborne avionics and flight control systems. A terminal area STOL operating system experiments program was developed. The objectives, program approach, program schedule, typical experiments, research facilities to be used, and program status are discussed.

  18. Remote experimental site concept development

    NASA Astrophysics Data System (ADS)

    Casper, Thomas A.; Meyer, William; Butner, David

    1995-01-01

    Scientific research is now often conducted on large and expensive experiments that utilize collaborative efforts on a national or international scale to explore physics and engineering issues. This is particularly true for the current US magnetic fusion energy program where collaboration on existing facilities has increased in importance and will form the basis for future efforts. As fusion energy research approaches reactor conditions, the trend is towards fewer large and expensive experimental facilities, leaving many major institutions without local experiments. Since the expertise of various groups is a valuable resource, it is important to integrate these teams into an overall scientific program. To sustain continued involvement in experiments, scientists are now often required to travel frequently, or to move their families, to the new large facilities. This problem is common to many other different fields of scientific research. The next-generation tokamaks, such as the Tokamak Physics Experiment (TPX) or the International Thermonuclear Experimental Reactor (ITER), will operate in steady-state or long pulse mode and produce fluxes of fusion reaction products sufficient to activate the surrounding structures. As a direct consequence, remote operation requiring robotics and video monitoring will become necessary, with only brief and limited access to the vessel area allowed. Even the on-site control room, data acquisition facilities, and work areas will be remotely located from the experiment, isolated by large biological barriers, and connected with fiber-optics. Current planning for the ITER experiment includes a network of control room facilities to be located in the countries of the four major international partners; USA, Russian Federation, Japan, and the European Community.

  19. LWS/SET End-to-End Data System

    NASA Technical Reports Server (NTRS)

    Giffin, Geoff; Sherman, Barry; Colon, Gilberto (Technical Monitor)

    2002-01-01

    This paper describes the concept for the End-to-End Data System that will support NASA's Living With a Star Space Environment Testbed missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap.between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The End-to-end data system allows investigators to access the SET control center, command their experiments, and receive data from their experiments back at their home facility, using the Internet. The logical functioning of major components of the end-to-end data system are described, including the GSFC Payload Operations Control Center (POCC), SET Payloads, the GSFC SET Simulation Lab, SET Experiment PI Facilities, and Host Systems. Host Spacecraft Operations Control Centers (SOCC) and the Host Spacecraft are essential links in the end-to-end data system, but are not directly under the control of the SET Project. Formal interfaces will be established between these entities and elements of the SET Project. The paper describes data flow through the system, from PI facilities connecting to the SET operations center via the Internet, communications to SET carriers and experiments via host systems, to telemetry returns to investigators from their flight experiments. It also outlines the techniques that will be used to meet mission requirements, while holding development and operational costs to a minimum. Additional information is included in the original extended abstract.

  20. Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability

    NASA Technical Reports Server (NTRS)

    Bailey, Roger M.; Hostetler, Robert W., Jr.; Barnes, Kevin N.; Belcastro, Celeste M.; Belcastro, Christine M.

    2005-01-01

    Experimental testing is an important aspect of validating complex integrated safety critical aircraft technologies. The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed is being developed at NASA Langley to validate technologies under conditions that cannot be flight validated with full-scale vehicles. The AirSTAR capability comprises a series of flying sub-scale models, associated ground-support equipment, and a base research station at NASA Langley. The subscale model capability utilizes a generic 5.5% scaled transport class vehicle known as the Generic Transport Model (GTM). The AirSTAR Ground Facilities encompass the hardware and software infrastructure necessary to provide comprehensive support services for the GTM testbed. The ground facilities support remote piloting of the GTM aircraft, and include all subsystems required for data/video telemetry, experimental flight control algorithm implementation and evaluation, GTM simulation, data recording/archiving, and audio communications. The ground facilities include a self-contained, motorized vehicle serving as a mobile research command/operations center, capable of deployment to remote sites when conducting GTM flight experiments. The ground facilities also include a laboratory based at NASA LaRC providing near identical capabilities as the mobile command/operations center, as well as the capability to receive data/video/audio from, and send data/audio to the mobile command/operations center during GTM flight experiments.

  1. International Microgravity Plasma Facility IMPF: A Multi-User Modular Research Facility for Complex Plasma Research on ISS

    NASA Astrophysics Data System (ADS)

    Seurig, R.; Burfeindt, J.; Castegini, R.; Griethe, W.; Hofmann, P.

    2002-01-01

    On March 03, 2001, the PKE-Nefedov plasma experiment was successfully put into operation on board ISS. This complex plasma experiment is the predecessor for the semi-autonomous multi-user facility IMPF (International Microgravity Plasma Facility) to be flown in 2006 with an expected operational lifetime of 10 years. IMPF is envisioned to be an international research facility for investigators in the field of multi-component plasmas containing ions, electrons, and charged microparticles. This research filed is often referred to as "complex plasmas". The actual location of IMPF on ISS is not decided yet; potential infrastructure under consideration are EXPRESS Rack, Standard Interface Rack SIR, European Drawer Rack EDR, or a to be designed custom rack infrastructure on the Russian Segment. The actual development status of the DLR funded Pre-phase B Study for IMPF will be presented. For this phase, IMPF was assumed to be integrated in an EXPRESS Rack requiring four middeck lockers with two 4-PU ISIS drawers for accommodation. Technical and operational challenges, like a 240 Mbytes/sec continuous experimental data stream for 60 minutes, will be addressed. The project was funded by the German Space Agency (DLR) and was performed in close cooperation with scientists from the Max-Planck-Institute for Extraterrestical Physics in Munich, Germany.

  2. Materials Research Conducted Aboard the International Space Station: Facilities Overview, Operational Procedures, and Experimental Outcomes

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Luz, Paul; Smith, Guy; Spivey, Reggie; Jeter, Linda; Gillies, Donald; Hua, Fay; Anikumar, A. V.

    2007-01-01

    The Microgravity Science Glovebox (MSG) and Maintenance Work Area (MWA) are facilities aboard the International Space Station (ISS) that were used to successfully conduct experiments in support of, respectively, the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI). The capabilities of these facilities are briefly discussed and then demonstrated by presenting "real-time" and subsequently down-linked video-taped examples from the abovementioned experiments. Data interpretation, ISS telescience, some lessons learned, and the need of such facilities for conducting work in support of understanding materials behavior, particularly fluid processing and transport scenarios, in low-gravity environments is discussed.

  3. Materials Research Conducted Aboard the International Space Station: Facilities Overview, Operational Procedures, and Experimental Outcomes

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Gillies, D. C.; Hua, F.; Anilkumar, A. V.

    2006-01-01

    The Microgravity Science Glovebox (MSG) and Maintenance Work Area (MWA) are facilities aboard the International Space Station (ISS) that were used to successfully conduct experiments in support of, respectively, the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI). The capabilities of these facilities are briefly discussed and then demonstrated by presenting real-time and subsequently down-linked video-taped examples from the abovementioned experiments. Data interpretation, ISS telescience, some lessons learned, and the need of such facilities for conducting work in support of understanding materials behavior, particularly fluid processing and transport scenarios, in low-gravity environments is discussed.

  4. Opportunities for Combined Heat and Power at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field

    EPA Pesticide Factsheets

    This report presents the opportunities for combined heat and power (CHP) applications in the municipal wastewater treatment sector, and it documents the experiences of the wastewater treatment facility (WWTF) operators who have employed CHP.

  5. Combustion Module-2 Preparations Completed for SPACEHAB Mission Including the Addition of a New Major Experiment

    NASA Technical Reports Server (NTRS)

    Over, Ann P.

    2001-01-01

    The Combustion Module-1 (CM-1) was a large, state-of-the-art space shuttle Spacelab facility that was designed, built, and operated on STS-83 and STS-94 by a team from the NASA Glenn Research Center composed of civil servants and local support contractors (Analex and Zin Technologies). CM-1 accomplished the incredible task of providing a safe environment to support flammable and toxic gases while providing a suite of diagnostics for science measurements more extensive than any prior shuttle experiment (or anything since). Finally, CM-1 proved that multiple science investigations can be accommodated in one facility, a crucial step for Glenn's Fluids and Combustion Facility developed for the International Space Station. However, the story does not end with CM-1. In 1998, CM-2 was authorized to take the CM-1 accomplishments a big step further by completing three major steps: Converting the entire experiment to operate in a SPACEHAB module. Conducting an extensive hardware refurbishment and upgrading diagnostics (e.g., cameras, gas chromatograph, and numerous sensors). Adding a new, completely different combustion experiment.

  6. The Mailbox Computer System for the IAEA verification experiment on HEU downlending at the Portsmouth Gaseous Diffusion Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronson, A.L.; Gordon, D.M.

    IN APRIL 1996, THE UNITED STATES (US) ADDED THE PORTSMOUTH GASEOUS DIFFUSION PLANT TO THE LIST OF FACILITIES ELIGIBLE FOR THE APPLICATION OF INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA) SAFEGUARDS. AT THAT TIME, THE US PROPOSED THAT THE IAEA CARRY OUT A ''VERIFICATION EXPERIMENT'' AT THE PLANT WITH RESPECT TO DOOWNBLENDING OF ABOUT 13 METRIC TONS OF HIGHLY ENRICHED URANIUM (HEU) IN THE FORM OF URANIUM HEXAFLUROIDE (UF6). DURING THE PERIOD DECEMBER 1997 THROUGH JULY 1998, THE IAEA CARRIED OUT THE REQUESTED VERIFICATION EXPERIMENT. THE VERIFICATION APPROACH USED FOR THIS EXPERIMENT INCLUDED, AMONG OTHER MEASURES, THE ENTRY OF PROCESS-OPERATIONAL DATA BYmore » THE FACILITY OPERATOR ON A NEAR-REAL-TIME BASIS INTO A ''MAILBOX'' COMPUTER LOCATED WITHIN A TAMPER-INDICATING ENCLOSURE SEALED BY THE IAEA.« less

  7. Halogen lamp experiment, HALEX

    NASA Technical Reports Server (NTRS)

    Schmitt, G.; Stapelmann, J.

    1986-01-01

    The main purpose of the Halogen Lamp Experiment (HALEX) was to investigate the operation of a halogen lamp during an extended period in a microgravity environment and to prove its behavior in space. The Mirror Heating Facilities for Crystal Growth and Material Science Experiments in space relies on one or two halogen lamps as a furnace to melt the specimens. The HALEX aim is to verify: full power operation of a halogen lamp for a period of about 60 hours; achievement of about 10% of its terrestrial life span; and operation of the halogen lamp under conditions similar to furnace operation.

  8. Space Missions for Automation and Robotics Technologies (SMART) Program

    NASA Technical Reports Server (NTRS)

    Cliffone, D. L.; Lum, H., Jr.

    1985-01-01

    NASA is currently considering the establishment of a Space Mission for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of shuttle based flight experiments which will utilize telepresence technologies and real time operation concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the shuttle or the space station. To ensure incorporation of leading edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89.

  9. A knowledge acquisition process to analyse operational problems in solid waste management facilities.

    PubMed

    Dokas, Ioannis M; Panagiotakopoulos, Demetrios C

    2006-08-01

    The available expertise on managing and operating solid waste management (SWM) facilities varies among countries and among types of facilities. Few experts are willing to record their experience, while few researchers systematically investigate the chains of events that could trigger operational failures in a facility; expertise acquisition and dissemination, in SWM, is neither popular nor easy, despite the great need for it. This paper presents a knowledge acquisition process aimed at capturing, codifying and expanding reliable expertise and propagating it to non-experts. The knowledge engineer (KE), the person performing the acquisition, must identify the events (or causes) that could trigger a failure, determine whether a specific event could trigger more than one failure, and establish how various events are related among themselves and how they are linked to specific operational problems. The proposed process, which utilizes logic diagrams (fault trees) widely used in system safety and reliability analyses, was used for the analysis of 24 common landfill operational problems. The acquired knowledge led to the development of a web-based expert system (Landfill Operation Management Advisor, http://loma.civil.duth.gr), which estimates the occurrence possibility of operational problems, provides advice and suggests solutions.

  10. The Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R.; Primm, Lowell (Technical Monitor)

    2001-01-01

    The Microgravity Science Glovebox (MSG) provides scientific investigators the opportunity to implement interactive experiments on the International Space Station. The facility has been designed around the concept of an enclosed scientific workbench that allows the crew to assemble and operate an experimental apparatus with participation from ground-based scientists through real-time data and video links. Workbench utilities provided to operate the experiments include power, data acquisition, computer communications, vacuum, nitrogen. and specialized tools. Because the facility work area is enclosed and held at a negative pressure with respect to the crew living area, the requirements on the experiments for containment of small parts, particulates, fluids, and gasses are substantially reduced. This environment allows experiments to be constructed in close parallel with bench type investigations performed in groundbased laboratories. Such an approach enables experimental scientists to develop hardware that more closely parallel their traditional laboratory experience and transfer these experiments into meaningful space-based research. When delivered to the ISS the MSG will represent a significant scientific capability that will be continuously available for a decade of evolutionary research.

  11. Atmospheric science facility pallet-only mode space transportation system payload (feasibility study), Volume 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The economic and technical feasibility is assessed of employing a pallet-only mode for conducting Atmospheric Magnetospheric Plasmas-in-Space experiments. A baseline design incorporating the experiment and instrument descriptions is developed. The prime instruments are packaged into four pallets in a physical and functional manner compatible with the Space Transportation System capabilities and/or constraints and an orbiter seven-day mission timeline. Operational compatibility is verified between the orbiter/payload and supporting facilities. The development status and the schedule requirements applicable to the Atmospheric Science Facility mission are identified. Conclusions and recommendations are presented and discussed.

  12. Biomedical user facility at the 400-MeV Linac at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, W.T.

    1993-12-01

    In this paper, general requirements are discussed on a biomedical user facility at the Fermilab`s 400-MeV Linac, which meets the needs of biology and biophysics experiments, and a conceptual design and typical operations requirements of the facility is presented. It is assumed that no human patient treatment will take place in this facility. If human patients were treated, much greater attention would have to be paid to safeguarding the patients.

  13. Science Based Human Reliability Analysis: Using Digital Nuclear Power Plant Simulators for Human Reliability Research

    NASA Astrophysics Data System (ADS)

    Shirley, Rachel Elizabeth

    Nuclear power plant (NPP) simulators are proliferating in academic research institutions and national laboratories in response to the availability of affordable, digital simulator platforms. Accompanying the new research facilities is a renewed interest in using data collected in NPP simulators for Human Reliability Analysis (HRA) research. An experiment conducted in The Ohio State University (OSU) NPP Simulator Facility develops data collection methods and analytical tools to improve use of simulator data in HRA. In the pilot experiment, student operators respond to design basis accidents in the OSU NPP Simulator Facility. Thirty-three undergraduate and graduate engineering students participated in the research. Following each accident scenario, student operators completed a survey about perceived simulator biases and watched a video of the scenario. During the video, they periodically recorded their perceived strength of significant Performance Shaping Factors (PSFs) such as Stress. This dissertation reviews three aspects of simulator-based research using the data collected in the OSU NPP Simulator Facility: First, a qualitative comparison of student operator performance to computer simulations of expected operator performance generated by the Information Decision Action Crew (IDAC) HRA method. Areas of comparison include procedure steps, timing of operator actions, and PSFs. Second, development of a quantitative model of the simulator bias introduced by the simulator environment. Two types of bias are defined: Environmental Bias and Motivational Bias. This research examines Motivational Bias--that is, the effect of the simulator environment on an operator's motivations, goals, and priorities. A bias causal map is introduced to model motivational bias interactions in the OSU experiment. Data collected in the OSU NPP Simulator Facility are analyzed using Structural Equation Modeling (SEM). Data include crew characteristics, operator surveys, and time to recognize and diagnose the accident in the scenario. These models estimate how the effects of the scenario conditions are mediated by simulator bias, and demonstrate how to quantify the strength of the simulator bias. Third, development of a quantitative model of subjective PSFs based on objective data (plant parameters, alarms, etc.) and PSF values reported by student operators. The objective PSF model is based on the PSF network in the IDAC HRA method. The final model is a mixed effects Bayesian hierarchical linear regression model. The subjective PSF model includes three factors: The Environmental PSF, the simulator Bias, and the Context. The Environmental Bias is mediated by an operator sensitivity coefficient that captures the variation in operator reactions to plant conditions. The data collected in the pilot experiments are not expected to reflect professional NPP operator performance, because the students are still novice operators. However, the models used in this research and the methods developed to analyze them demonstrate how to consider simulator bias in experiment design and how to use simulator data to enhance the technical basis of a complex HRA method. The contributions of the research include a framework for discussing simulator bias, a quantitative method for estimating simulator bias, a method for obtaining operator-reported PSF values, and a quantitative method for incorporating the variability in operator perception into PSF models. The research demonstrates applications of Structural Equation Modeling and hierarchical Bayesian linear regression models in HRA. Finally, the research demonstrates the benefits of using student operators as a test platform for HRA research.

  14. A Unique Outside Neutron and Gamma Ray Instrumentation Development Test Facility at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration

  15. Testing and checkout experiences in the National Transonic Facility since becoming operational

    NASA Technical Reports Server (NTRS)

    Bruce, W. E., Jr.; Gloss, B. B.; Mckinney, L. W.

    1988-01-01

    The U.S. National Transonic Facility, constructed by NASA to meet the national needs for High Reynolds Number Testing, has been operational in a checkout and test mode since the operational readiness review (ORR) in late 1984. During this time, there have been problems centered around the effect of large temperature excursions on the mechanical movement of large components, the reliable performance of instrumentation systems, and an unexpected moisture problem with dry insulation. The more significant efforts since the ORR are reviewed and NTF status concerning hardware, instrumentation and process controls systems, operating constraints imposed by the cryogenic environment, and data quality and process controls is summarized.

  16. The advantages and disadvantages of using the TREAT reactor for nuclear laser experiments

    NASA Astrophysics Data System (ADS)

    Dickson, P. W.; Snyder, A. M.; Imel, G. R.; McConnell, R. J.

    The Transient Reactor Test Facility (TREAT) is a large air-cooled test facility located at the Idaho National Engineering Laboratory. Two of the major design features of TREAT, its large size and its being an air-cooled reactor, provide clues to both its advantages and disadvantages for supporting nuclear laser experiments. Its large size, which is dictated by the dilute uranium/graphite fuel, permits accommodation of geometrically large experiments. However, TREAT's large size also results in relatively long transients so that the energy deposited in an experiment is large relative to the peak power available from the reactor. TREAT's air-cooling mode of operation allows its configuration to be changed fairly readily. Due to air cooling, the reactor cools down slowly, permitting only one full power transient a day, which can be a disadvantage in some experimental programs. The reactor is capable of both steady-state or transient operation.

  17. Overview of Engineering Design and Analysis at the NASA John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Ryan, Harry; Congiardo, Jared; Junell, Justin; Kirkpatrick, Richard

    2007-01-01

    A wide range of rocket propulsion test work occurs at the NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2, E-3 and E-4) test facilities. The propulsion test engineer at NASA SSC faces many challenges associated with designing and operating a test facility due to the extreme operating conditions (e.g., cryogenic temperatures, high pressures) of the various system components and the uniqueness of many of the components and systems. The purpose of this paper is to briefly describe the NASA SSC Engineering Science Directorate s design and analysis processes, experience, and modeling techniques that are used to design and support the operation of unique rocket propulsion test facilities.

  18. Senator Doug Jones (D-AL) Tour of MSFC Facilities

    NASA Image and Video Library

    2018-02-22

    Senator Doug Jones (D-AL.) and wife, Louise, tour Marshall Space Flight facilities. Steve Doering, manager, Stages Element, Space Launch System (SLS) program at MSFC, also tour the Payload Operations Integration Center (POIC) where Marshall controllers oversee stowage requirements aboard the International Space Station (ISS) as well as scientific experiments.

  19. Terminal configured vehicle program: Test facilities guide

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The terminal configured vehicle (TCV) program was established to conduct research and to develop and evaluate aircraft and flight management system technology concepts that will benefit conventional take off and landing operations in the terminal area. Emphasis is placed on the development of operating methods for the highly automated environment anticipated in the future. The program involves analyses, simulation, and flight experiments. Flight experiments are conducted using a modified Boeing 737 airplane equipped with highly flexible display and control equipment and an aft flight deck for research purposes. The experimental systems of the Boeing 737 are described including the flight control computer systems, the navigation/guidance system, the control and command panel, and the electronic display system. The ground based facilities used in the program are described including the visual motion simulator, the fixed base simulator, the verification and validation laboratory, and the radio frequency anechoic facility.

  20. A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI

    NASA Astrophysics Data System (ADS)

    Tiedemann, D.; Stiebing, K. E.; Winters, D. F. A.; Quint, W.; Varentsov, V.; Warczak, A.; Malarz, A.; Stöhlker, Th.

    2014-11-01

    A pulsed supersonic gas jet target for experiments at the HITRAP facility at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt has been designed and built as a multi-purpose installation for key experiments on fundamental atomic physics in strong fields. This setup is currently installed at the Institut für Kernphysik of Goethe-University, Frankfurt am Main (IKF), in order to explore its operation prior to its installation at the HITRAP facility. Design and performance of the target are described. The measured target densities of 5.9×1012 atoms/cm3 for helium and 8.1×1012 atoms/cm³ for argon at the stagnation pressure of 30 bar match the required values. The target-beam diameter of 0.9 mm and the pulsed operation mode (jet built-up-time ≤15 ms) are well suited for the use at HITRAP.

  1. TOPEX/POSEIDON operational orbit determination results using global positioning satellites

    NASA Technical Reports Server (NTRS)

    Guinn, J.; Jee, J.; Wolff, P.; Lagattuta, F.; Drain, T.; Sierra, V.

    1994-01-01

    Results of operational orbit determination, performed as part of the TOPEX/POSEIDON (T/P) Global Positioning System (GPS) demonstration experiment, are presented in this article. Elements of this experiment include the GPS satellite constellation, the GPS demonstration receiver on board T/P, six ground GPS receivers, the GPS Data Handling Facility, and the GPS Data Processing Facility (GDPF). Carrier phase and P-code pseudorange measurements from up to 24 GPS satellites to the seven GPS receivers are processed simultaneously with the GDPF software MIRAGE to produce orbit solutions of T/P and the GPS satellites. Daily solutions yield subdecimeter radial accuracies compared to other GPS, LASER, and DORIS precision orbit solutions.

  2. Overview of materials processing in space activity at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Chassay, R. P.; Moore, W. W.; Ruff, R. C.; Yates, I. C.

    1984-01-01

    An overview of activities involving the Space Transportation System (STS), now in the operational phase, and results of some of the current space experiments, as well as future research opportunities in microgravity environment, are presented. The experiments of the Materials Processing in Space Program flown on the STS, such as bioseparation processes, isoelectric focusing, solidification and crystal growth processes, containerless processes, and the Materials Experiment Assembly experiments are discussed. Special consideration is given to the experiments to be flown aboard the Spacelab 3 module, the Fluids Experiments System, and the Vapor Crystal Growth System. Ground-based test facilities and planned space research facilities, as well as the nature of the commercialization activities, are briefly explained.

  3. Making of the NSTX Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Neumeyer; M. Ono; S.M. Kaye

    1999-11-01

    The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.

  4. Nuclear Criticality Experimental Research Center (NCERC) Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goda, Joetta Marie; Grove, Travis Justin; Hayes, David Kirk

    The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activitiesmore » that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.« less

  5. Driver detention times in commercial motor vehicle operations : [research brief].

    DOT National Transportation Integrated Search

    2014-12-01

    The purpose of this project was to better understand : the nature of detention times in the commercial motor : vehicle (CMV) industry. Detention time refers to the : time that CMV operators may experience at shipping : and receiving facilities associ...

  6. Expanding Your Laboratory by Accessing Collaboratory Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyt, David W.; Burton, Sarah D.; Peterson, Michael R.

    2004-03-01

    The Environmental Molecular Sciences Laboratory (EMSL) in Richland, Washington, is the home of a research facility setup by the United States Department of Energy (DOE). The facility is atypical because it houses over 100 cutting-edge research systems for the use of researchers all over the United States and the world. Access to the lab is requested through a peer-review proposal process and the scientists who use the facility are generally referred to as ‘users’. There are six main research facilities housed in EMSL, all of which host visiting researchers. Several of these facilities also participate in the EMSL Collaboratory, amore » remote access capability supported by EMSL operations funds. Of these, the High-Field Magnetic Resonance Facility (HFMRF) and Molecular Science Computing Facility (MSCF) have a significant number of their users performing remote work. The HFMRF in EMSL currently houses 12 NMR spectrometers that range in magnet field strength from 7.05T to 21.1T. Staff associated with the NMR facility offers scientific expertise in the areas of structural biology, solid-state materials/catalyst characterization, and magnetic resonance imaging (MRI) techniques. The way in which the HFMRF operates, with a high level of dedication to remote operation across the full suite of High-Field NMR spectrometers, has earned it the name “Virtual NMR Facility”. This review will focus on the operational aspects of remote research done in the High-Field Magnetic Resonance Facility and the computer tools that make remote experiments possible.« less

  7. High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.E. O'Brien; X. Zhang; K. DeWall

    2012-09-01

    This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.

  8. Public outreach at the Soudan Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Gran, Richard

    2016-04-01

    There are many facets to the outreach program at the Soudan Underground Laboratory, currently host to the MINOS neutrino oscillation experiment and the Cryogenic Dark Matter experiment, plus a number of smaller experiments in the Low Background Counting Facility. The main focus is on twice daily public tours, operated in coordination with the Soudan Underground State Park and Minnesota Department of Natural Resources, who also operate undergound tours of the historical iron mining area. Another important component is the undergraduate interns and high school teachers who lead the tours. They also participate in the operation and/or analysis of the experiments hosted at the mine.

  9. Flight dynamics facility operational orbit determination support for the ocean topography experiment

    NASA Technical Reports Server (NTRS)

    Bolvin, D. T.; Schanzle, A. F.; Samii, M. V.; Doll, C. E.

    1991-01-01

    The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation.

  10. Microgravity and Materials Processing Facility study (MMPF): Requirements and Analyses of Commercial Operations (RACO) preliminary data release

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This requirements and analyses of commercial operations (RACO) study data release reflects the current status of research activities of the Microgravity and Materials Processing Facility under Modification No. 21 to NASA/MSFC Contract NAS8-36122. Section 1 includes 65 commercial space processing projects suitable for deployment aboard the Space Station. Section 2 contains reports of the R:BASE (TM) electronic data base being used in the study, synopses of the experiments, and a summary of data on the experimental facilities. Section 3 is a discussion of video and data compression techniques used as well as a mission timeline analysis.

  11. Public-private partnerships for hospitals.

    PubMed

    McKee, Martin; Edwards, Nigel; Atun, Rifat

    2006-11-01

    While some forms of public-private partnerships are a feature of hospital construction and operation in all countries with mixed economies, there is increasing interest in a model in which a public authority contracts with a private company to design, build and operate an entire hospital. Drawing on the experience of countries such as Australia, Spain, and the United Kingdom, this paper reviews the experience with variants of this model. Although experience is still very limited and rigorous evaluations lacking, four issues have emerged: cost, quality, flexibility and complexity. New facilities have, in general, been more expensive than they would have been if procured using traditional methods. Compared with the traditional system, new facilities are more likely to be built on time and within budget, but this seems often to be at the expense of compromises on quality. The need to minimize the risk to the parties means that it is very difficult to "future-proof" facilities in a rapidly changing world. Finally, such projects are extremely, and in some cases prohibitively, complex. While it is premature to say whether the problems experienced relate to the underlying model or to their implementation, it does seem that a public-private partnership further complicates the already difficult task of building and operating a hospital.

  12. Public-private partnerships for hospitals.

    PubMed Central

    McKee, Martin; Edwards, Nigel; Atun, Rifat

    2006-01-01

    While some forms of public-private partnerships are a feature of hospital construction and operation in all countries with mixed economies, there is increasing interest in a model in which a public authority contracts with a private company to design, build and operate an entire hospital. Drawing on the experience of countries such as Australia, Spain, and the United Kingdom, this paper reviews the experience with variants of this model. Although experience is still very limited and rigorous evaluations lacking, four issues have emerged: cost, quality, flexibility and complexity. New facilities have, in general, been more expensive than they would have been if procured using traditional methods. Compared with the traditional system, new facilities are more likely to be built on time and within budget, but this seems often to be at the expense of compromises on quality. The need to minimize the risk to the parties means that it is very difficult to "future-proof" facilities in a rapidly changing world. Finally, such projects are extremely, and in some cases prohibitively, complex. While it is premature to say whether the problems experienced relate to the underlying model or to their implementation, it does seem that a public-private partnership further complicates the already difficult task of building and operating a hospital. PMID:17143463

  13. An Analysis of Attendance Patterns in the Experimental Food Service System at Travis Air Force Base

    DTIC Science & Technology

    1974-12-01

    Food Service System Study was undertaken to develop wideranging improvements in current Air Force food service operations. Of particular concern was the need to increase consumer attendance and utilization of the dining facilities. A number of changes were implemented during the experiment including menu modifications, dining hall renovations, and the introduction of three new food service operations - a modular fast food unit, a flight line facility, and an ethnic, specialty meal service provided by one of the renovated dining

  14. Development of the Plant Growth Facility for Use in the Shuttle Middeck and Test Units for Ground-Based Experiments

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Wells, H. William

    1996-01-01

    The plant growth facility (PGF), currently under development as a Space Shuttle middeck facility for the support of research on higher plants in microgravity, is presented. The PGF provides controlled fluorescent lighting and the active control of temperature, relative humidity and CO2 concentration. These parameters are designed to be centrally controlled by a dedicated microprocessor. The status of the experiment can be displayed for onboard analysis, and will be automatically archived for post-flight analysis. The facility is designed to operate for 15 days and will provide air filtration to remove ethylene and trace organics with replaceable potassium permanganate filters. Similar ground units will be available for pre-flight experimentation.

  15. 30-kW class Arcjet Advanced Technology Transition Demonstration (ATTD) flight experiment diagnostic package

    NASA Astrophysics Data System (ADS)

    Kriebel, M. M.; Stevens, N. J.

    1992-07-01

    TRW, Rocket Research Co and Defense Systems Inc are developing a space qualified 30-kW class arcjet flight unit as a part of the Arcjet ATTD program. During space operation the package will measure plume deposition and contamination, electromagnetic interference, thermal radiation, arcjet thruster performance, and plume heating in order to quantify arcjet operational interactions. The Electric Propulsion Space Experiment (ESEX) diagnostic package is described. The goals of ESEX are the demonstration of a high powered arcjet performance and the measurement of potential arcjet-spacecraft interactions which cannot be determined in ground facilities. Arcjet performance, plume characterization, thermal radiation flux and the electromagnetic interference (EMI) experiment as well as experiment operations with a preliminary operations plan are presented.

  16. The microgravity environment of the D1 mission

    NASA Technical Reports Server (NTRS)

    Hamacher, H.; Merbold, U.; Jilg, R.

    1990-01-01

    Some characteristic features and results of D1 microgravity measurements are discussed as performed in the Material Science Double Rack (MSDR) and the Materials Science Double Rack for Experiment Modules and Apparatus (MEDEA). Starting with a brief review of the main potential disturbances, the payload aspects of interest to the analysis and the accelerometer measuring systems are described. The microgravity data are analyzed with respect to selected mission events such as thruster firings for attitude control, operations of Spacelab experiment facilities, vestibular experiments and crew activities. The origins are divided into orbit, vehicle, and experiment induced perturbations. It has been found that the microgravity-environment is dictated mainly by payload-induced perturbations. To reduce the microgravity-level, the design of some experiment facilities has to be improved by minimizing the number of moving parts, decoupling of disturbing units from experiment facilities, by taking damping measures, etc. In addition, strongly disturbing experiments and very sensitive investigations should be performed in separate mission phases.

  17. The FCF Combustion Integrated Rack: Microgravity Combustion Science Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    OMalley, Terence F.; Weiland, Karen J.

    2002-01-01

    The Combustion Integrated Rack (CIR) is one of three facility payload racks being developed for the International Space Station (ISS) Fluids and Combustion Facility (FCF). Most microgravity combustion experiments will be performed onboard the Space Station in the Combustion Integrated Rack. Experiment-specific equipment will be installed on orbit in the CIR to customize it to perform many different scientific experiments during the ten or more years that it will operate on orbit. This paper provides an overview of the CIR, including a description of its preliminary design and planned accommodations for microgravity combustion science experiments, and descriptions of the combustion science experiments currently planned for the CIR.

  18. Check-Standard Testing Across Multiple Transonic Wind Tunnels with the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Deloach, Richard

    2012-01-01

    This paper reports the result of an analysis of wind tunnel data acquired in support of the Facility Analysis Verification & Operational Reliability (FAVOR) project. The analysis uses methods referred to collectively at Langley Research Center as the Modern Design of Experiments (MDOE). These methods quantify the total variance in a sample of wind tunnel data and partition it into explained and unexplained components. The unexplained component is further partitioned in random and systematic components. This analysis was performed on data acquired in similar wind tunnel tests executed in four different U.S. transonic facilities. The measurement environment of each facility was quantified and compared.

  19. Hadron Physics with Antiprotons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Ulrich

    2005-10-26

    The new FAIR facility which comes into operation at GSI in the upcoming years has a dedicated program of utilizing antiprotons for hadron physics. In particular, the planned PANDA experiment belongs to the group of core experiments at the new FAIR facility in Darmstadt/Germany. PANDA will be a universal detector to study the strong interaction by utilizing the annihilation process of antiprotons with protons and nuclear matter. The current paper gives an introduction into the hadron physics with antiprotons and part of the planned physics program with PANDA.

  20. Space Station Furnace Facility Core. Requirements definition and conceptual design study. Volume 2: Technical report. Appendix 6: Technical summary reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. The facility is designed to support a complement of furnace modules as outlined in the Science Capabilities Requirements Document (SCRD). The SSFF is a three rack facility that provides the functions, interfaces, and equipment necessary for the processing of the furnaces and consists of two main parts: the SSFF Core Rack and the two Experiment Racks. The facility is designed to accommodate two experimenter-provided furnace modules housed within the two experiment racks, and is designed to operate these two furnace modules simultaneously. The SCRD specifies a wide range of furnace requirements and serves as the basis for the SSFF conceptual design. SSFF will support automated processing during the man-tended operations and is also designed for crew interface during the permanently manned configuration. The facility is modular in design and facilitates changes as required, so the SSFF is adept to modifications, maintenance, reconfiguration, and technology evolution.

  1. Integration and use of Microgravity Research Facility: Lessons learned by the crystals by vapor transport experiment and Space Experiments Facility programs

    NASA Technical Reports Server (NTRS)

    Heizer, Barbara L.

    1992-01-01

    The Crystals by Vapor Transport Experiment (CVTE) and Space Experiments Facility (SEF) are materials processing facilities designed and built for use on the Space Shuttle mid deck. The CVTE was built as a commercial facility owned by the Boeing Company. The SEF was built under contract to the UAH Center for Commercial Development of Space (CCDS). Both facilities include up to three furnaces capable of reaching 850 C minimum, stand-alone electronics and software, and independent cooling control. In addition, the CVTE includes a dedicated stowage locker for cameras, a laptop computer, and other ancillary equipment. Both systems are designed to fly in a Middeck Accommodations Rack (MAR), though the SEF is currently being integrated into a Spacehab rack. The CVTE hardware includes two transparent furnaces capable of achieving temperatures in the 850 to 870 C range. The transparent feature allows scientists/astronauts to directly observe and affect crystal growth both on the ground and in space. Cameras mounted to the rack provide photodocumentation of the crystal growth. The basic design of the furnace allows for modification to accommodate techniques other than vapor crystal growth. Early in the CVTE program, the decision was made to assign a principal scientist to develop the experiment plan, affect the hardware/software design, run the ground and flight research effort, and interface with the scientific community. The principal scientist is responsible to the program manager and is a critical member of the engineering development team. As a result of this decision, the hardware/experiment requirements were established in such a way as to balance the engineering and science demands on the equipment. Program schedules for hardware development, experiment definition and material selection, flight operations development and crew training, both ground support and astronauts, were all planned and carried out with the understanding that the success of the program science was as important as the hardware functionality. How the CVTE payload was designed and what it is capable of, the philosophy of including the scientists in design and operations decisions, and the lessons learned during the integration process are descussed.

  2. Shuttle sortie simulation using a Lear jet aircraft: Mission no. 1 (assess program)

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Nell, C. B., Jr.; Mason, R. H.

    1972-01-01

    The shuttle sortie simulation mission of the Airborne Science/Shuttle Experiments System Simulation Program which was conducted using the CV-990 aircraft is reported. The seven flight, five day mission obtained data on experiment preparation, type of experiment components, operation and maintenance, data acquisition, crew functions, timelines and interfaces, use of support equipment and spare parts, power consumption, work cycles, influence of constraints, and schedule impacts. This report describes the experiment, the facilities, the operation, and the results analyzed from the standpoint of their possible use in aiding the planning for experiments in the Shuttle Sortie Laboratory.

  3. SINQ layout, operation, applications and R&D to high power

    NASA Astrophysics Data System (ADS)

    Bauer, G. S.; Dai, Y.; Wagner, W.

    2002-09-01

    Since 1997, the Paul Scherrer Institut (PSI) is operating a 1 MW class research spallation neutron source, named SINQ. SINQ is driven by a cascade of three accelerators, the final stage being a 590 MeV isochronous ring cyclotron which delivers a beam current of 1.8 mA at an rf-frequency of 51 MHz. Since for neutron production this is essentially a dc-device, SINQ is a continuous neutron source and is optimized in its design for high time average neutron flux. This makes the facility similar to a research reactor in terms of utilization, but, in terms of beam power, it is, by a large margin, the most powerful spallation neutron source currently in operation world wide. As a consequence, target load levels prevail in SINQ which are beyond the realm of existing experience, demanding a careful approach to the design and operation of a high power target. While the best neutronic performance of the source is expected for a liquid lead-bismuth eutectic target, no experience with such systems exists. For this reason a staged approach has been embarked upon, starting with a heavy water cooled rod target of Zircaloy-2 and proceeding via steel clad lead rods towards the final goal of a target optimised in both, neutronic performance and service life time. Experience currently accruing with a test target containing sample rods with different materials specimens will help to select the proper structural material and make dependable life time estimates accounting for the real operating conditions that prevail in the facility. In parallel, both theoretical and experimental work is going on within the MEGAPIE (MEGAwatt Pilot Experiment) project, a joint initiative by six European research institutions and JAERI (Japan), DOE (USA) and KAERI (Korea), to design, build, operate and explore a liquid lead-bismuth spallation target for 1MW of beam power, taking advantage of the existing spallation neutron facility SINQ.

  4. The Biotechnology Facility for International Space Station

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas; Lundquist, Charles; Hurlbert, Katy; Tuxhorn, Jennifer

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput. With the BTF, dedicated ground support, and a community of investigators, the goals of the Cellular Biotechnology Program at Johnson Space Center are to: Support approximately 400 typical investigator experiments during the nominal design life of BTF (10 years). Support a steady increase in investigations per year, starting with stationary bioreactor experiments and adding rotating bioreactor experiments at a later date. Support at least 80% of all new cellular biotechnology investigations selected through the NASA Research Announcement (NRA) process. Modular components - to allow sequential and continuous experiment operations without cross-contamination Increased cold storage capability (+4 C, -80 C, -180 C). Storage of frozen cell culture inoculum - to allow sequential investigations. Storage of post-experiment samples - for return of high quality samples. Increased number of cell cultures per investigation, with replicates - to provide sufficient number of samples for data analysis and publication of results in peer-reviewed scientific journals.

  5. Improving INPE'S balloon ground facilities for operation of the protoMIRAX experiment

    NASA Astrophysics Data System (ADS)

    Mattiello-Francisco, F.; Rinke, E.; Fernandes, J. O.; Cardoso, L.; Cardoso, P.; Braga, J.

    2014-10-01

    The system requirements for reusing the scientific balloon ground facilities available at INPE were a challenge to the ground system engineers involved in the protoMIRAX X-ray astronomy experiment. A significant effort on software updating was required for the balloon ground station. Considering that protoMIRAX is a pathfinder for the MIRAX satellite mission, a ground infrastructure compatible with INPE's satellite operation approach would be useful and highly recommended to control and monitor the experiment during the balloon flights. This approach will make use of the SATellite Control System (SATCS), a software-based architecture developed at INPE for satellite commanding and monitoring. SATCS complies with particular operational requirements of different satellites by using several customized object-oriented software elements and frameworks. We present the ground solution designed for protoMIRAX operation, the Control and Reception System (CRS). A new server computer, properly configured with Ethernet, has extended the existing ground station facilities with switch, converters and new software (OPS/SERVER) in order to support the available uplink and downlink channels being mapped to TCP/IP gateways required by SATCS. Currently, the CRS development is customizing the SATCS for the kernel functions of protoMIRAX command and telemetry processing. Design-patterns, component-based libraries and metadata are widely used in the SATCS in order to extend the frameworks to address the Packet Utilization Standard (PUS) for ground-balloon communication, in compliance with the services provided by the data handling computer onboard the protoMIRAX balloon.

  6. 2017 Topical Workshop on Electronics for Particle Physics

    NASA Astrophysics Data System (ADS)

    2017-09-01

    The workshop will cover all aspects of electronics for particle physics experiments, and accelerator instrumentation of general interest to users. LHC experiments (and their operational experience) will remain a focus of the meeting but a strong emphasis on R&D for future experimentation will be maintained, such as SLHC, CLIC, ILC, neutrino facilities as well as other particle and astroparticle physics experiments. The purpose of the workshop is: To present results and original concepts for electronic research and development relevant to experiments as well as accelerator and beam instrumentation at future facilities; To review the status of electronics for the LHC experiments; To identify and encourage common efforts for the development of electronics; To promote information exchange and collaboration in the relevant engineering and physics communities.

  7. Current significant challenges in the decommissioning and environmental remediation of radioactive facilities: A perspective from outside the nuclear industry.

    PubMed

    Gil-Cerezo, V; Domínguez-Vilches, E; González-Barrios, A J

    2017-05-01

    This paper presents the results of implementing an extrajudicial environmental mediation procedure in the socioenvironmental conflict associated with routine operation of the El Cabril Disposal Facility for low- and medium- activity radioactive waste (Spain). We analyse the socio-ethical perspective of this facility's operation with regard to its nearby residents, detailing the structure and development of the environmental mediation procedure through the participation of society and interested parties who are or may become involved in such a conflict. The research, action, and participation method was used to apply the environmental mediation procedure. This experience provides lessons that could help improve decision-making processes in nuclear or radioactive facility decommissioning projects or in environmental remediation projects dealing with ageing facilities or with those in which nuclear or radioactive accidents/incidents may have occurred. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Two-MILP models for scheduling elective surgeries within a private healthcare facility.

    PubMed

    Khlif Hachicha, Hejer; Zeghal Mansour, Farah

    2016-11-05

    This paper deals with an Integrated Elective Surgery-Scheduling Problem (IESSP) that arises in a privately operated healthcare facility. It aims to optimize the resource utilization of the entire surgery process including pre-operative, per-operative and post-operative activities. Moreover, it addresses a specific feature of private facilities where surgeons are independent service providers and may conduct their surgeries in different private healthcare facilities. Thus, the problem requires the assignment of surgery patients to hospital beds, operating rooms and recovery beds as well as their sequencing over a 1-day period while taking into account surgeons' availability constraints. We present two Mixed Integer Linear Programs (MILP) that model the IESSP as a three-stage hybrid flow-shop scheduling problem with recirculation, resource synchronization, dedicated machines, and blocking constraints. To assess the empirical performance of the proposed models, we conducted experiments on real-world data of a Tunisian private clinic: Clinique Ennasr and on randomly generated instances. Two criteria were minimised: the patients' average length of stay and the number of patients' overnight stays. The computational results show that the proposed models can solve instances with up to 44 surgical cases in a reasonable CPU time using a general-purpose MILP solver.

  9. Operational Experience of an Open-Access, Subscription-Based Mass Spectrometry and Proteomics Facility.

    PubMed

    Williamson, Nicholas A

    2018-03-01

    This paper discusses the successful adoption of a subscription-based, open-access model of service delivery for a mass spectrometry and proteomics facility. In 2009, the Mass Spectrometry and Proteomics Facility at the University of Melbourne (Australia) moved away from the standard fee for service model of service provision. Instead, the facility adopted a subscription- or membership-based, open-access model of service delivery. For a low fixed yearly cost, users could directly operate the instrumentation but, more importantly, there were no limits on usage other than the necessity to share available instrument time with all other users. All necessary training from platform staff and many of the base reagents were also provided as part of the membership cost. These changes proved to be very successful in terms of financial outcomes for the facility, instrument access and usage, and overall research output. This article describes the systems put in place as well as the overall successes and challenges associated with the operation of a mass spectrometry/proteomics core in this manner. Graphical abstract ᅟ.

  10. Operational Experience of an Open-Access, Subscription-Based Mass Spectrometry and Proteomics Facility

    NASA Astrophysics Data System (ADS)

    Williamson, Nicholas A.

    2018-03-01

    This paper discusses the successful adoption of a subscription-based, open-access model of service delivery for a mass spectrometry and proteomics facility. In 2009, the Mass Spectrometry and Proteomics Facility at the University of Melbourne (Australia) moved away from the standard fee for service model of service provision. Instead, the facility adopted a subscription- or membership-based, open-access model of service delivery. For a low fixed yearly cost, users could directly operate the instrumentation but, more importantly, there were no limits on usage other than the necessity to share available instrument time with all other users. All necessary training from platform staff and many of the base reagents were also provided as part of the membership cost. These changes proved to be very successful in terms of financial outcomes for the facility, instrument access and usage, and overall research output. This article describes the systems put in place as well as the overall successes and challenges associated with the operation of a mass spectrometry/proteomics core in this manner. [Figure not available: see fulltext.

  11. Cryogenic On-Orbit Liquid Depot-Storage, Acquisition and Transfer (COLD-SAT) Experiment Conceptual Design and Feasibility Study

    NASA Technical Reports Server (NTRS)

    Kramer, Edward (Editor)

    1998-01-01

    The cryogenic fluid management technologies required for the exploration of the solar system can only be fully developed via space-based experiments. A dedicated spacecraft is the most efficient way to perform these experiments. This report documents the extended conceptual design of the COLD-SAT spacecraft, capable of meeting these experimental requirements. All elements, including the spacecraft, ground segment, launch site modifications and launch vehicle operations, and flight operations are included. Greatly expanded coverage is provided for those areas unique to this cryogenic spacecraft, such as the experiment system, attitude control system, and spacecraft operations. Supporting analyses are included as are testing requirements, facilities surveys, and proposed project timelines.

  12. The manned space-laboratories control centre - MSCC. Operational functions and its implementation

    NASA Astrophysics Data System (ADS)

    Brogl, H.; Kehr, J.; Wlaka, M.

    This paper describes the functions of the MSCC during the operations of the Columbus Attached Laboratory and the Free Flying Laboratory as part of the In-Orbit-Infrastructure Ground Segment. For the Attached Laboratory, MSCC payload operations coordination for European experiments within the Attached Laboratory and elsewhere on the Space Station Freedom will be explained. The Free Flying Laboratory will be operated and maintained exclusively from the MSCC during its 30 years lifetime. Several operational scenarios will demonstrate the role of the MSCC during routine - and servicing operations: of main importance are the servicing activities of the Attached Laboratory and the Free Flyer at the Space Station as well as servicing of the Free Flyer by the European Space Plane Hermes. The MSCC will have complex operational-, communications-and management interfaces with the IOI Ground Segment, the Space Station User community and with the international partners. Columbus User Support Centres will be established in many European member states, which have to be coordinated by the MSCC to ensure the proper reception of the scientific data and to provide them with quick access to their experiments in space. For operations planning and execution of experiments in the Attached Laboratory, a close cooperation with the Space Station control authorities in the USA will be established. The paper will show the development of the MSCC being initially used for the upcoming Spacelab Mission D-2 (MSCC Phase-1) and later upgraded to a Columbus dedicated control centre (MSCC Phase-2). For the initial construction phase the establishing of MSCC requirements, the philosophie used for the definition of the 'basic infrastructure' and key features of the installed facilities will be addressed. Resulting from Columbus and D-2 requirements, the sizing of the building with respect to controlrooms, conference rooms, office spare and simulation high-bay areas will be discussed. The defined 'basic infrastructure', consisting of standardized controlroom consoles, intercom system, video system, simulation system, timing system, public address system, office communications system and the associated networks will be presented with their main performance data. The D-2 data processing concept and associated interfaces is presented as well; although this portion of the MSCC facilities is unlikely to be used in later IOI operations activities the experience gathered during D-2 operations will be relevant for defining the Columbus (MSCC - Phase 2) configuration. A summary of the available budget and the allocation to the discussed MSCC Phase-1 facilities will be given. One chapter of the paper will present the current status and objectives of the Detailed Definition Phase (DDP) contract with industry. The last part of this presentation will address the planned implementation integration and test approach for the MSCC as a facility suitable for Columbus operations.

  13. Development and use of a master health facility list: Haiti's experience during the 2010 earthquake response.

    PubMed

    Rose-Wood, Alyson; Heard, Nathan; Thermidor, Roody; Chan, Jessica; Joseph, Fanor; Lerebours, Gerald; Zugaldia, Antonio; Konkel, Kimberly; Edwards, Michael; Lang, Bill; Torres, Carmen-Rosa

    2014-08-01

    Master health facility lists (MHFLs) are gaining attention as a standards-based means to uniquely identify health facilities and to link facility-level data. The ability to reliably communicate information about specific health facilities can support an array of health system functions, such as routine reporting and emergency response operations. MHFLs support the alignment of donor-supported health information systems with county-owned systems. Recent World Health Organization draft guidance promotes the utility of MHFLs and outlines a process for list development and governance. Although the potential benefits of MHFLs are numerous and may seem obvious, there are few documented cases of MHFL construction and use. The international response to the 2010 Haiti earthquake provides an example of how governments, nongovernmental organizations, and others can collaborate within a framework of standards to build a more complete and accurate list of health facilities. Prior to the earthquake, the Haitian Ministry of Health (Ministère de la Santé Publique et de la Population [MSPP]) maintained a list of public-sector health facilities but lacked information on privately managed facilities. Following the earthquake, the MSPP worked with a multinational group to expand the completeness and accuracy of the list of health facilities, including information on post-quake operational status. This list later proved useful in the response to the cholera epidemic and is now incorporated into the MSPP's routine health information system. Haiti's experience demonstrates the utility of MHFL formation and use in crisis as well as in the routine function of the health information system.

  14. Development and use of a master health facility list: Haiti's experience during the 2010 earthquake response

    PubMed Central

    Rose-Wood, Alyson; Heard, Nathan; Thermidor, Roody; Chan, Jessica; Joseph, Fanor; Lerebours, Gerald; Zugaldia, Antonio; Konkel, Kimberly; Edwards, Michael; Lang, Bill; Torres, Carmen-Rosa

    2014-01-01

    ABSTRACT Master health facility lists (MHFLs) are gaining attention as a standards-based means to uniquely identify health facilities and to link facility-level data. The ability to reliably communicate information about specific health facilities can support an array of health system functions, such as routine reporting and emergency response operations. MHFLs support the alignment of donor-supported health information systems with county-owned systems. Recent World Health Organization draft guidance promotes the utility of MHFLs and outlines a process for list development and governance. Although the potential benefits of MHFLs are numerous and may seem obvious, there are few documented cases of MHFL construction and use. The international response to the 2010 Haiti earthquake provides an example of how governments, nongovernmental organizations, and others can collaborate within a framework of standards to build a more complete and accurate list of health facilities. Prior to the earthquake, the Haitian Ministry of Health (Ministère de la Santé Publique et de la Population [MSPP]) maintained a list of public-sector health facilities but lacked information on privately managed facilities. Following the earthquake, the MSPP worked with a multinational group to expand the completeness and accuracy of the list of health facilities, including information on post-quake operational status. This list later proved useful in the response to the cholera epidemic and is now incorporated into the MSPP's routine health information system. Haiti's experience demonstrates the utility of MHFL formation and use in crisis as well as in the routine function of the health information system. PMID:25276595

  15. Safety Analysis and Protection Measures of the Control System of the Pulsed High Magnetic Field Facility in WHMFC

    NASA Astrophysics Data System (ADS)

    Shi, J. T.; Han, X. T.; Xie, J. F.; Yao, L.; Huang, L. T.; Li, L.

    2013-03-01

    A Pulsed High Magnetic Field Facility (PHMFF) has been established in Wuhan National High Magnetic Field Center (WHMFC) and various protection measures are applied in its control system. In order to improve the reliability and robustness of the control system, the safety analysis of the PHMFF is carried out based on Fault Tree Analysis (FTA) technique. The function and realization of 5 protection systems, which include sequence experiment operation system, safety assistant system, emergency stop system, fault detecting and processing system and accident isolating protection system, are given. The tests and operation indicate that these measures improve the safety of the facility and ensure the safety of people.

  16. JAEA's actions and contributions to the strengthening of nuclear non-proliferation

    NASA Astrophysics Data System (ADS)

    Suda, Kazunori; Suzuki, Mitsutoshi; Michiji, Toshiro

    2012-06-01

    Japan, a non-nuclear weapons state, has established a commercial nuclear fuel cycle including LWRs, and now is developing a fast neutron reactor fuel cycle as part of the next generation nuclear energy system, with commercial operation targeted for 2050. Japan Atomic Energy Agency (JAEA) is the independent administrative agency for conducting comprehensive nuclear R&D in Japan after the merger of Japan Atomic Energy Research Institute (JAERI) and Japan Nuclear Cycle Development Institute (JNC). JAEA and its predecessors have extensive experience in R&D, facility operations, and safeguards development and implementation for new types of nuclear facilities for the peaceful use of nuclear energy. As the operator of various nuclear fuel cycle facilities and numerous nuclear materials, JAEA makes international contributions to strengthen nuclear non-proliferation. This paper provides an overview of JAEA's development of nuclear non-proliferation and safeguards technologies, including remote monitoring of nuclear facilities, environmental sample analysis methods and new efforts since the 2010 Nuclear Security Summit in Washington D.C.

  17. Overview of Propellant Delivery Systems at the NASA John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Haselmaier, L. Haynes; Field, Robert E.; Ryan, Harry M.; Dickey, Jonathan C.

    2006-01-01

    A wide range of rocket propulsion test work occurs at he NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2. E-3 and E-4) test facilities. One of the greatest challenges associated with operating a test facility is maintaining the health of the primary propellant system and test-critical support systems. The challenge emerges due to the fact that the operating conditions of the various system components are extreme (e.g., low temperatures, high pressures) and due to the fact that many of the components and systems are unique. The purpose of this paper is to briefly describe the experience and modeling techniques that are used to operate the unique test facilities at NASA SSC that continue to support successful propulsion testing.

  18. 26 CFR 4.954-2 - Foreign personal holding company income; taxable years beginning after December 31, 1986.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... until such time as interest is required to be charged under section 482 and the regulations thereunder... operates a research facility in foreign country X. At the research facility employees of Corporation A who are full time scientists, engineers, and technicians regularly perform experiments, tests, and other...

  19. 26 CFR 4.954-2 - Foreign personal holding company income; taxable years beginning after December 31, 1986.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... until such time as interest is required to be charged under section 482 and the regulations thereunder... operates a research facility in foreign country X. At the research facility employees of Corporation A who are full time scientists, engineers, and technicians regularly perform experiments, tests, and other...

  20. AMS data production facilities at science operations center at CERN

    NASA Astrophysics Data System (ADS)

    Choutko, V.; Egorov, A.; Eline, A.; Shan, B.

    2017-10-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy physics experiment on the board of the International Space Station (ISS). This paper presents the hardware and software facilities of Science Operation Center (SOC) at CERN. Data Production is built around production server - a scalable distributed service which links together a set of different programming modules for science data transformation and reconstruction. The server has the capacity to manage 1000 paralleled job producers, i.e. up to 32K logical processors. Monitoring and management tool with Production GUI is also described.

  1. ORATOS: ESA's future flight dynamics operations system

    NASA Astrophysics Data System (ADS)

    Dreger, Frank; Fertig, Juergen; Muench, Rolf

    The Orbit and Attitude Operations System (ORATOS -- the European Space Agency's future orbit and attitude operations system -- will be in use from the mid-nineties until well beyond the year 2000. The ORATOS design is based on the experience from flight dynamics support to all past ESA missions. The ORATOS computer hardware consists of a network of powerful UNIX workstations. ORATOS resides on several hardware platforms, each comprising one or more fileservers, several client workstations and the associated communications interface hardware. The ORATOS software is structured into three layers. The flight dynamics applications layer, the support layer and the operating system layer. This architectural design separates the flight dynamics application software from the support tools and operating system facilities. It allows upgrading and replacement of operating system facilities with a minimum (or no) effect on the application layer.

  2. Spacelab

    NASA Image and Video Library

    1992-06-01

    The first United States Microgravity Laboratory (USML-1) provided scientific research in materials science, fluid dynamics, biotechnology, and combustion science in a weightless environment inside the Spacelab module. This photograph is a close-up view of the Glovebox in operation during the mission. The Spacelab Glovebox, provided by the European Space Agency, offers experimenters new capabilities to test and develop science procedures and technologies in microgravity. It enables crewmembers to handle, transfer, and otherwise manipulate materials in ways that are impractical in the open Spacelab. The facility is equipped with three doors: a central port through which experiments are placed in the Glovebox and two glovedoors on both sides with an attachment for gloves or adjustable cuffs and adapters for cameras. The Glovebox has an enclosed compartment that offers a clean working space and minimizes the contamination risks to both Spacelab and experiment samples. Although fluid containment and ease of cleanup are major benefits provided by the facility, it can also contain powders and bioparticles; toxic, irritating, or potentially infectious materials; and other debris produced during experiment operations. The facility is equipped with photographic/video capabilities and permits mounting a microscope. For the USML-1 mission, the Glovebox experiments fell into four basic categories: fluid dynamics, combustion science, crystal growth, and technology demonstration. The USML-1 flew aboard the STS-50 mission in June 1992.

  3. NASA's Zero-g aircraft operations

    NASA Technical Reports Server (NTRS)

    Williams, R. K.

    1988-01-01

    NASA's Zero-g aircraft, operated by the Johnson Space Center, provides the unique weightless or zero-g environment of space flight for hardware development and test and astronaut training purposes. The program, which began in 1959, uses a slightly modified Boeing KC-135A aircraft, flying a parabolic trajectory, to produce weightless periods of 20 to 25 seconds. The program has supported the Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz and Shuttle programs as well as a number of unmanned space operations. Typical experiments for flight in the aircraft have included materials processing experiments, welding, fluid manipulation, cryogenics, propellant tankage, satellite deployment dynamics, planetary sciences research, crew training with weightless indoctrination, space suits, tethers, etc., and medical studies including vestibular research. The facility is available to microgravity research organizations on a cost-reimbursable basis, providing a large, hands-on test area for diagnostic and support equipment for the Principal Investigators and providing an iterative-type design approach to microgravity experiment development. The facility allows concepts to be proven and baseline experimentation to be accomplished relatively inexpensively prior to committing to the large expense of a space flight.

  4. Cost (non)-recovery by platform technology facilities in the Bio21 Cluster.

    PubMed

    Gibbs, Gerard; Clark, Stella; Quinn, Julieanne; Gleeson, Mary Joy

    2010-04-01

    Platform technologies (PT) are techniques or tools that enable a range of scientific investigations and are critical to today's advanced technology research environment. Once installed, they require specialized staff for their operations, who in turn, provide expertise to researchers in designing appropriate experiments. Through this pipeline, research outputs are raised to the benefit of the researcher and the host institution. Platform facilities provide access to instrumentation and expertise for a wide range of users beyond the host institution, including other academic and industry users. To maximize the return on these substantial public investments, this wider access needs to be supported. The question of support and the mechanisms through which this occurs need to be established based on a greater understanding of how PT facilities operate. This investigation was aimed at understanding if and how platform facilities across the Bio21 Cluster meet operating costs. Our investigation found: 74% of platforms surveyed do not recover 100% of direct operating costs and are heavily subsidized by their home institution, which has a vested interest in maintaining the technology platform; platform managers play a major role in establishing the costs and pricing of the facility, normally in a collaborative process with a management committee or institutional accountant; and most facilities have a three-tier pricing structure recognizing internal academic, external academic, and commercial clients.

  5. Cost (Non)-Recovery by Platform Technology Facilities in the Bio21 Cluster

    PubMed Central

    Gibbs, Gerard; Clark, Stella; Quinn, JulieAnne; Gleeson, Mary Joy

    2010-01-01

    Platform technologies (PT) are techniques or tools that enable a range of scientific investigations and are critical to today's advanced technology research environment. Once installed, they require specialized staff for their operations, who in turn, provide expertise to researchers in designing appropriate experiments. Through this pipeline, research outputs are raised to the benefit of the researcher and the host institution.1 Platform facilities provide access to instrumentation and expertise for a wide range of users beyond the host institution, including other academic and industry users. To maximize the return on these substantial public investments, this wider access needs to be supported. The question of support and the mechanisms through which this occurs need to be established based on a greater understanding of how PT facilities operate. This investigation was aimed at understanding if and how platform facilities across the Bio21 Cluster meet operating costs. Our investigation found: 74% of platforms surveyed do not recover 100% of direct operating costs and are heavily subsidized by their home institution, which has a vested interest in maintaining the technology platform; platform managers play a major role in establishing the costs and pricing of the facility, normally in a collaborative process with a management committee or institutional accountant; and most facilities have a three-tier pricing structure recognizing internal academic, external academic, and commercial clients. PMID:20357980

  6. Radiation predictions and shielding calculations for RITS-6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maenchen, John Eric; O'Malley, John; Kensek, Ronald Patrick

    2005-06-01

    The mission of Radiographic Integrated Test Stand-6 (RITS-6) facility is to provide the underlying science and technology for pulsed-power-driven flash radiographic X-ray sources for the National Nuclear Security Administration (NNSA). Flash X-ray radiography is a penetrating diagnostic to discern the internal structure in dynamic experiments. Short (~50 nanosecond (ns) duration) bursts of very high intensity Xrays from mm-scale source sizes are required at a variety of voltages to address this mission. RITS-6 was designed and is used to both develop the accelerator technology needed for these experiments and serves as the principal test stand to develop the high intensity electronmore » beam diodes that generate the required X-ray sources. RITS is currently in operation with three induction cavities (RITS-3) with a maximum voltage output of 5.5 MV and is classified as a low hazard non-nuclear facility in accordance with CPR 400.1.1, Chapter 13, Hazards Identification/Analysis and Risk Management. The facility will be expanded from three to six cavities (RITS-6) effectively doubling the operating voltage. The increase in the operating voltage to above 10 MV has resulted in RITS-6 being classified as an accelerator facility. RITS-6 will come under DOE Order 420.2B, Safety of Accelerator Facilities. The hazards of RITS are detailed in the "Safety Assessment Document for the Radiographic Integrated Test Stand Facility." The principal non-industrial hazard is prompt x-ray radiation. As the operating voltage is increased, both the penetration power and the total amount (dose) of x-rays are increased, thereby increasing the risk to local personnel. Fixed site shielding (predominantly concrete walls and a steel/lead skyshine shield) is used to attenuate these x-rays and mitigate this risk. This SAND Report details the anticipated x-ray doses, the shielding design, and the anticipated x-ray doses external to this shielding structure both in areas where administrative access control restricts occupation and in adjacent uncontrolled areas.« less

  7. NASA Reactor Facility Hazards Summary. Volume 1

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The Lewis Research Center of the National Aeronautics and Space Administration proposes to build a nuclear research reactor which will be located in the Plum Brook Ordnance Works near Sandusky, Ohio. The purpose of this report is to inform the Advisory Committee on Reactor Safeguards of the U. S. Atomic Energy Commission in regard to the design Lq of the reactor facility, the characteristics of the site, and the hazards of operation at this location. The purpose of this research reactor is to make pumped loop studies of aircraft reactor fuel elements and other reactor components, radiation effects studies on aircraft reactor materials and equipment, shielding studies, and nuclear and solid state physics experiments. The reactor is light water cooled and moderated of the MTR-type with a primary beryllium reflector and a secondary water reflector. The core initially will be a 3 by 9 array of MTR-type fuel elements and is designed for operation up to a power of 60 megawatts. The reactor facility is described in general terms. This is followed by a discussion of the nuclear characteristics and performance of the reactor. Then details of the reactor control system are discussed. A summary of the site characteristics is then presented followed by a discussion of the larger type of experiments which may eventually be operated in this facility. The considerations for normal operation are concluded with a proposed method of handling fuel elements and radioactive wastes. The potential hazards involved with failures or malfunctions of this facility are considered in some detail. These are examined first from the standpoint of preventing them or minimizing their effects and second from the standpoint of what effect they might have on the reactor facility staff and the surrounding population. The most essential feature of the design for location at the proposed site is containment of the maximum credible accident.

  8. Mission Success for Combustion Science

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.

    2004-01-01

    This presentation describes how mission success for combustion experiments has been obtained in previous spaceflight experiments and how it will be obtained for future International Space Station (ISS) experiments. The fluids and combustion facility is a payload planned for the ISS. It is composed of two racks: the fluids Integrated rack and the Combustion INtegrated Rack (CIR). Requirements for the CIR were obtained from a set of combustion basis experiments that served as surrogates for later experiments. The process for experiments that fly on the ISS includes proposal selection, requirements and success criteria definition, science and engineering reviews, mission operations, and postflight operations. By following this process, the microgravity combustion science program has attained success in 41 out of 42 experiments.

  9. 14 CFR 171.43 - Requests for IFR procedure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... organization and a maintenance manual that meets the requirements of § 171.51. (4) A statement of intent to... operational reliability and an acceptable standard of performance. Previous equivalent operational experience... owner of the results and of any required changes in the facility or the maintenance manual or...

  10. Decommissioning ALARA programs Cintichem decommissioning experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, J.J.; LaGuardia, T.S.

    1995-03-01

    The Cintichem facility, originally the Union Carbide Nuclear Company (UCNC) Research Center, consisted primarily of a 5MW pool type reactor linked via a four-foot-wide by twelve-foot-deep water-filled canal to a bank of five adjacent hot cells. Shortly after going into operations in the early 1960s, the facility`s operations expanded to provide various reactor-based products and services to a multitude of research, production, medical, and education groups. From 1968 through 1972, the facility developed a process of separating isotopes from mixed fission products generated by irradiating enriched Uranium target capsules. By the late 1970s, 20 to 30 capsules were being processedmore » weekly, with about 200,000 curies being produced per week. Several isotopes such as Mo{sup 99}, I{sup 131}, and Xe{sup 133} were being extracted for medical use.« less

  11. SAFEGUARDS REPORT FOR THE NORTHROP PULSE RADIATION FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feinauer, E.; Thomas, R.D.

    1961-03-22

    Ae description is given of the Northrop pulse Radiation Facility, (NPRF), which consists of a TRlGA Mark-F reactor and associated supporting equipment. The NPRF was designed to operate in the following modes: Mode 1-100 kw steady-state operation; Mode II--Pulsed operation up to a maximum transient giving a maximum measured fuel element temperature of 470 deg C, which corresponds to an energy release of about 18 Mw-sec (approximately 1.9% sigma K/ K). The movable reactor will be operated in three general areas in the pool: adjacent to the exposure room; adjacent to the beam ponts; or at intermediate positions. Based onmore » the analyses presented and operating experience with the prototype TRIGA Mark F and other TRlGA reactors, it is concluded that operation of the NPRF does not present any undue hazard to the health and safety of the operating personnel or the public. (auth)« less

  12. Air cushion vehicles: A briefing

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Finnegan, P. M.

    1971-01-01

    Experience and characteristics; the powering, uses, and implications of large air cushion vehicles (ACV); and the conceptual design and operation of a nuclear powered ACV freighter and supporting facilities are described.

  13. The development of a Space Shuttle Research Animal Holding Facility

    NASA Technical Reports Server (NTRS)

    Jagow, R. B.

    1980-01-01

    The ability to maintain the well being of experiment animals is of primary importance to the successful attainment of life sciences flight experiment goals. To assist scientists in the conduct of life sciences flight experiments, a highly versatile Research Animal Holding Facility (RAHF) is being developed for use on Space Shuttle/Spacelab missions. This paper describes the design of the RAHF system, which in addition to providing general housing for various animal species, approximating the environment found in ground based facilities, is designed to minimize disturbances of the specimens by vehicle and mission operations. Life-sustaining capabilities such as metabolic support and environmental control are provided. RAHF is reusable and is a modular concept to accommodate animals of different sizes. The basic RAHF system will accommodate a combination of 24 500-g rats or 144 mice or a mixed number of rats and mice. An alternative design accommodates four squirrel monkeys. The entire RAHF system is housed in a single ESA rack. The animal cages are in drawers which are removable for easy access to the animals. Each cage contains a waste management system, a feeding system and a watering system all of which will operate in zero or one gravity.

  14. Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute

    NASA Astrophysics Data System (ADS)

    Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.

    2004-02-01

    The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and ``iron'' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.

  15. An Overview of National Transonic Facility Investigations for High Performance Military Aerodynamics (Invited)

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2001-01-01

    A review of National Transonic Facility (NTF) investigations for high-performance military aerodynamics has been completed. The review spans the entire operational period of the tunnel, and includes configurations ranging from full aircraft to basic research geometries. The intent for this document is to establish a comprehensive summary of these experiments with selected technical results

  16. Extension of drop experiments with the MIKROBA balloon drop facility

    NASA Astrophysics Data System (ADS)

    Sommer, K.; Kretzschmar, K.; Dorn, C.

    1992-12-01

    The German balloon drop facility MIKROBA extends the worldwide available drop experiment opportunities to the presently highest usable experimentation time span of 55 s at microgravity conditions better than 0.001 g. The microgravity period is started with the typical quasi-deal step function from 1 to 0 g. MIKROBA allows flexible experiment design, short access time, and easy hands-on payload integration. The transport to the operational height is realized by soft energies and technologies compatible with the earth's environment. Balloon campaigns are not restricted to a certain test range, i.e., several suitable sites are available all over the world. MIKROBA combines negligible mechanical loads at the mission start, typical of all drop facilities, with extremely low drop deceleration loads (less than g), due to the implemented three-stage parachute and airbag recovery subsystem.

  17. A model for manuscript submitted to the nth IIR conference on overview of the long-baseline neutrino facility cryogenic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanari, David; Adamowski, Mark; Bremer, Johan

    2017-03-09

    The Deep Underground Neutrino Experiment (DUNE) collaboration is developing a multi-kiloton Long-Baseline neutrino experiment that will be located one mile underground at the Sanford Underground Research Facility (SURF) in Lead, SD. In the present design, detectors will be located inside four cryostats filled with a total of 68,400 ton of ultrapure liquid argon, at the level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) is developing the conventional facilities and cryogenics infrastructure supporting this experiment. The cryogenics system is composed of several sub-systems: External/Infrastructure, Proximity, and Internal cryogenics. It will bemore » engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution highlights the main features of the LBNF cryogenic system. It presents its performance, functional requirements and modes of operations. As a result, it also details the status of the design, present and future needs.« less

  18. Reference earth orbital research and applications investigations (blue book). Volume 4: Earth observations

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The earth observations capability of the space station and space shuttle program definition is discussed. The stress in the functional program element has been to update the sensor specifications and to shift some of the emphasis from sensors to experiments to be done aboard the facility. The earth observations facility will include provisions for data acquisition, sensor control and display, data analysis, and maintenance and repair. The facility is research and development in nature with a potential for operational applications.

  19. One Community Responds.

    ERIC Educational Resources Information Center

    Crossland, Cathy L.; Hasselbring, Ted S.

    1979-01-01

    The article describes Life Experiences, Inc., an organization in Cary, North Carolina, that operates and maintains facilities and programs for handicapped adults and assists them to function as productive citizens of the community. (DLS)

  20. Expedition 14 Crew and Backup Crew Training

    NASA Image and Video Library

    2006-05-24

    JSC2006-E-20053 (24 May 2006) --- Astronaut Clayton C. Anderson, Expedition 14 backup flight engineer, participates in Journals experiment overview training in the Flight Operations Facility at Johnson Space Center. This type of training is a presentation format regarding the experiment objectives and tools. Training instructor Lindsay Kirschner assisted Anderson.

  1. Operations planning simulation model extension study. Volume 1: Long duration exposure facility ST-01-A automated payload

    NASA Technical Reports Server (NTRS)

    Marks, D. A.; Gendiellee, R. E.; Kelly, T. M.; Giovannello, M. A.

    1974-01-01

    Ground processing and operation activities for selected automated and sortie payloads are evaluated. Functional flow activities are expanded to identify payload launch site facility and support requirements. Payload definitions are analyzed from the launch site ground processing viewpoint and then processed through the expanded functional flow activities. The requirements generated from the evaluation are compared with those contained in the data sheets. The following payloads were included in the evaluation: Long Duration Exposure Facility; Life Sciences Shuttle Laboratory; Biomedical Experiments Scientific Satellite; Dedicated Solar Sortie Mission; Magnetic Spectrometer; and Mariner Jupiter Orbiter. The expanded functional flow activities and descriptions for the automated and sortie payloads at the launch site are presented.

  2. Use of PROFIBUS for cryogenic instrumentation at XFEL

    NASA Astrophysics Data System (ADS)

    Boeckmann, T.; Bolte, J.; Bozhko, Y.; Clausen, M.; Escherich, K.; Korth, O.; Penning, J.; Rickens, H.; Schnautz, T.; Schoeneburg, B.; Zhirnov, A.

    2017-12-01

    The European X-ray Free Electron Laser (XFEL) is a research facility and since December 2016 under commissioning at DESY in Hamburg. The XFEL superconducting accelerator is 1.5 km long and contains 96 superconducting accelerator modules. The control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the XFEL cryogenic system consisting of the XFEL refrigerator, cryogenic distribution systems and the XFEL accelerator. The PROFIBUS fieldbus technology is the key technology of the cryogenic instrumentation and the link to the control system. More than 650 PROFIBUS nodes are implemented in the different parts of the XFEL cryogenic facilities. The presentation will give an overview of PROFIBUS installation in these facilities regarding engineering, possibilities of diagnostics, commissioning and the first operating experience.

  3. Pre-Flight Testing of Spaceborne GPS Receivers using a GPS Constellation Simulator

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Davis, Edward; Alonso, R.

    1999-01-01

    The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket balloon. The GPS simulation system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and tests sites. The GPS facility has been operational since early 1996 and has utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulation, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.

  4. Pre-Flight Testing of Spaceborne GPS Receivers Using a GPS Constellation Simulator

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Davis, Edward; Alonso, Roberto

    1999-01-01

    The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket or balloon. The GPS simulator system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and test sites. The GPS facility has been operational since early 1996 and has been utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulator, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.

  5. A scientific operations plan for the NASA space telescope. [ground support systems, project planning

    NASA Technical Reports Server (NTRS)

    West, D. K.; Costa, S. R.

    1975-01-01

    A ground system is described which is compatible with the operational requirements of the space telescope. The goal of the ground system is to minimize the cost of post launch operations without seriously compromising the quality and total throughput of space telescope science, or jeopardizing the safety of the space telescope in orbit. The resulting system is able to accomplish this goal through optimum use of existing and planned resources and institutional facilities. Cost is also reduced and efficiency in operation increased by drawing on existing experience in interfacing guest astronomers with spacecraft as well as mission control experience obtained in the operation of present astronomical spacecraft.

  6. Navy Safety Center data on the effects of fire protection systems on electrical equipment

    NASA Astrophysics Data System (ADS)

    Levine, Robert S.

    1991-04-01

    Records of the Navy Safety Center, Norfolk, VA were reviewed to find data relevant to inadvertant operation of installed fire extinguishing systems in civilian nuclear power plants. Navy data show the incidence of collateral fire or other damage by fresh water on operating electrical equipment in submarines and in shore facilities is about the same as the civilian experience, about 30 percent. Aboard surface ships, however, the collateral damage incidence in much lower, about 15 percent. With sea water, the collateral damage incidence is at least 75 percent. It is concluded that the fire extinguisher water has to be contaminated, as by rust in sprinkler systems or deposited salt spray, for most collateral damage to occur. Reasons for inadvertant operation (or advertant operation) of firex systems at shore facilities, submarines, and surface ships resemble those for nuclear power plants. Mechanical or electrical failures lead the list, followed by mishaps during maintenance. Detector and alarm system failures are significant problems at Navy shore facilities, and significant at nuclear power plants. Fixed halon and CO2 systems in shore facilities cause no collateral damage. Lists of individual Navy incidents with water and with halon and carbon dioxide are included as appendices.

  7. 9 CFR 2.30 - Registration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... intends to use live animals for research, tests, experiments, or teaching, the university or college... function as a research facility, or which changes its method of operation so that it no longer uses...

  8. 9 CFR 2.30 - Registration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... intends to use live animals for research, tests, experiments, or teaching, the university or college... function as a research facility, or which changes its method of operation so that it no longer uses...

  9. 9 CFR 2.30 - Registration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... intends to use live animals for research, tests, experiments, or teaching, the university or college... function as a research facility, or which changes its method of operation so that it no longer uses...

  10. 9 CFR 2.30 - Registration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... intends to use live animals for research, tests, experiments, or teaching, the university or college... function as a research facility, or which changes its method of operation so that it no longer uses...

  11. Facility design, construction, and operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    France has been disposing of low-level radioactive waste (LLW) at the Centre de Stockage de la Manche (CSM) since 1969 and now at the Centre de Stockage de l`Aube (CSA) since 1992. In France, several agencies and companies are involved in the development and implementation of LLW technology. The Commissariat a l`Energie Atomic (CEA), is responsible for research and development of new technologies. The Agence National pour la Gestion des Dechets Radioactifs is the agency responsible for the construction and operation of disposal facilities and for wastes acceptance for these facilities. Compagnie Generale des Matieres Nucleaires provides fuel services, includingmore » uranium enrichment, fuel fabrication, and fuel reprocessing, and is thus one generator of LLW. Societe pour les Techniques Nouvelles is an engineering company responsible for commercializing CEA waste management technology and for engineering and design support for the facilities. Numatec, Inc. is a US company representing these French companies and agencies in the US. In Task 1.1 of Numatec`s contract with Martin Marietta Energy Systems, Numatec provides details on the design, construction and operation of the LLW disposal facilities at CSM and CSA. Lessons learned from operation of CSM and incorporated into the design, construction and operating procedures at CSA are identified and discussed. The process used by the French for identification, selection, and evaluation of disposal technologies is provided. Specifically, the decisionmaking process resulting in the change in disposal facility design for the CSA versus the CSM is discussed. This report provides` all of the basic information in these areas and reflects actual experience to date.« less

  12. The concept of a facility for cosmic dust research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Blum, Juergen; Cabane, Michel; Fonda, Mark; Giovane, Frank; Gustafson, Bo A. S.; Keller, Horst U.; Markiewicz, Wojciech J.; Levasseur-Regourd, Any-Chantal; Worms, Jean-Claude; Nuth, Joseph A.; hide

    1996-01-01

    A proposal for the development of a permanently operating facility for the experimental investigation of cosmic dust-related phenomena onboard the International Space Station (ISS) is presented. Potential applications for this facility are the convection-free nucleation of dust grains, studies of coagulation and aggregation phenomena in a microgravity environment, investigations of heat transport through, and dust emissions from, high-porosity cometary analogs, and experiments on the interaction of very fluffy dust grains with electromagnetic radiation and with low pressure gas flows. Possible extensions of such a facility are towards aerosol science and colloidal plasma research.

  13. A Methodical Approach to the Creation, Operation, and Enhancement of a General-use Microcomputer Laboratory.

    ERIC Educational Resources Information Center

    Seilheimer, Steven D.

    1988-01-01

    Outlines procedures for developing a microcomputer laboratory for use by students in an academic organization, based on experiences at Niagara University. The four phases described include: (1) needs assessment; (2) establishment, including software and hardware selection and physical facilities; (3) operation, including staffing, maintenance,…

  14. Navy nurse anesthetists at Fleet Hospital Five: the Desert Shield/Storm experience.

    PubMed

    Hrezo, Richard J

    2003-06-01

    In 1990, the United States Navy deployed its first operational fleet hospital: "Fleet Hospital Five" in support of Operation Desert Shield/Storm. Within 2 weeks of notification, the 900 medical providers assigned to this medical facility, which was capable of providing major trauma surgery and critical care, were on their way to Al Jabayl, Saudi Arabia. This article discusses the unique characteristics of this facility and introduces the crucial role that nurse anesthetists play. The article also introduces several innovative ideas that were developed and tested to expand the capabilities of the hospital.

  15. Experiments in a Combustion-Driven Shock Tube with an Area Change

    NASA Astrophysics Data System (ADS)

    Schmidt, B. E.; Bobbitt, B.; Parziale, N. J.; Shepherd, J. E.

    Shock tubes are versatile and useful tools for studying high temperature gas dynamics and the production of hypervelocity flows. High shock speeds are desirable for creating higher enthalpy, pressure, and temperature in the test gas which makes the study of thermo-chemical effects on fluid dynamics possible. Independent of construction and operational cost, free-piston drivers, such as the one used in the T5 facility at Caltech, give the best performance [3]. The high operational cost and long turnaround time of such a facility make a more economical option desirable for smaller-scale testing.

  16. Space Station Furnace Facility. Experiment/Facility Requirements Document (E/FRD), volume 2, appendix 5

    NASA Technical Reports Server (NTRS)

    Kephart, Nancy

    1992-01-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidifcation conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment, and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace.

  17. Apollo experience report: Real-time auxiliary computing facility development

    NASA Technical Reports Server (NTRS)

    Allday, C. E.

    1972-01-01

    The Apollo real time auxiliary computing function and facility were an extension of the facility used during the Gemini Program. The facility was expanded to include support of all areas of flight control, and computer programs were developed for mission and mission-simulation support. The scope of the function was expanded to include prime mission support functions in addition to engineering evaluations, and the facility became a mandatory mission support facility. The facility functioned as a full scale mission support activity until after the first manned lunar landing mission. After the Apollo 11 mission, the function and facility gradually reverted to a nonmandatory, offline, on-call operation because the real time program flexibility was increased and verified sufficiently to eliminate the need for redundant computations. The evaluation of the facility and function and recommendations for future programs are discussed in this report.

  18. Design concepts for the Centrifuge Facility Life Sciences Glovebox

    NASA Technical Reports Server (NTRS)

    Sun, Sidney C.; Horkachuck, Michael J.; Mckeown, Kellie A.

    1989-01-01

    The Life Sciences Glovebox will provide the bioisolated environment to support on-orbit operations involving non-human live specimens and samples for human life sceinces experiments. It will be part of the Centrifuge Facility, in which animal and plant specimens are housed in bioisolated Habitat modules and transported to the Glovebox as part of the experiment protocols supported by the crew. At the Glovebox, up to two crew members and two habitat modules must be accommodated to provide flexibility and support optimal operations. This paper will present several innovative design concepts that attempt to satisfy the basic Glovebox requirements. These concepts were evaluated for ergonomics and ease of operations using computer modeling and full-scale mockups. The more promising ideas were presented to scientists and astronauts for their evaluation. Their comments, and the results from other evaluations are presented. Based on the evaluations, the authors recommend designs and features that will help optimize crew performance and facilitate science accommodations, and specify problem areas that require further study.

  19. Plasma MRI Experiments at UW-Madison

    NASA Astrophysics Data System (ADS)

    Flanagan, K.; Clark, M.; Desangles, V.; Siller, R.; Wallace, J.; Weisberg, D.; Forest, C. B.

    2015-11-01

    Experiments for driving Keplerian-like flow profiles on both the Plasma Couette Experiment Upgrade (PCX-U) and the Wisconsin Plasma Astrophysics Laboratory (WiPAL) user facility are described. Instead of driving flow at the boundaries, as is typical in many liquid metal Couette experiments, a global drive is implemented. A large radial current is drawn across a small axial field generating torque across the whole profile. This global electrically driven flow is capable of producing profiles similar to Keplerian flow. PCX-U has been purposely constructed for MRI experiments, while similar experiments on the WiPAL device show the versatility of the user facility and provide a larger plasma volume. Numerical calculations show the predicted parameter spaces for exciting the MRI in these plasmas and the equilibrium flow profiles expected. In both devices, relevant MRI parameters appear to be within reach of typical operating characteristics.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sklenka, L.; Rataj, J.; Frybort, J.

    Research reactors play an important role in providing key personnel of nuclear power plants a hands-on experience from operation and experiments at nuclear facilities. Training of NPP (Nuclear Power Plant) staff is usually deeply theoretical with an extensive utilisation of simulators and computer visualisation. But a direct sensing of the reactor response to various actions can only improve the personnel awareness of important aspects of reactor operation. Training Reactor VR-1 and its utilization for training of NPP operators and other professionals from Czech Republic and Slovakia is described. Typical experimental exercises and good practices in organization of a training programmore » are demonstrated. (authors)« less

  1. 1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothman, E.Z.

    1995-05-01

    This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility.

  2. Senator Doug Jones (D-AL) Tour of MSFC Facilities

    NASA Image and Video Library

    2018-02-22

    Senator Doug Jones (D-AL.) and wife, Louise, tour Marshall Space Flight facilities. Steve Doering, manager, Stages Element, Space Launch System (SLS) program at MSFC, also tour the Payload Operations Integration Center (POIC) where Marshall controllers oversee stowage requirements aboard the International Space Station (ISS) as well as scientific experiments. Different positions in the room are explained to Senator Jones by MSFC controller Beau Simpson.

  3. Space Station Furnace Facility. Volume 1: Requirements definition and conceptual design study, executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Freedom Furnace (SSFF) Study was awarded on June 2, 1989, to Teledyne Brown Engineering (TBE) to define an advanced facility for materials research in the microgravity environment of Space Station Freedom (SSF). The SSFF will be designed for research in the solidification of metals and alloys, the crystal growth of electronic and electro-optical materials, and research in glasses and ceramics. The SSFF is one of the first 'facility' class payloads planned by the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications of NASA Headquarters. This facility is planned for early deployment during man-tended operations of the SSF with continuing operations through the Permanently Manned Configuration (PMC). The SSFF will be built around a general 'Core' facility which provides common support functions not provided by SSF, common subsystems which are best centralized, and common subsystems which are best distributed with each experiment module. The intent of the facility approach is to reduce the overall cost associated with implementing and operating a variety of experiments. This is achieved by reducing the launch mass and simplifying the hardware development and qualification processes associated with each experiment. The Core will remain on orbit and will require only periodic maintenance and upgrading while new Furnace Modules, samples, and consumables are developed, qualified, and transported to the SSF. The SSFF Study was divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. The definition phase 1 is addressed. Phase 1 was divided into two parts. In the first part, the basic part of the effort, covered the preliminary definition and assessment of requirements; conceptual design of the SSFF; fabrication of mockups; and the preparation for and support of the Conceptual Design Review (CoDR). The second part, the option part, covered requirements update and documentation; refinement of the selected conceptual design through additional trades and analyses; design, fabrication, and test of the Development Model; and design, fabrication, and test of the Interrack Demonstration Unit; and support of the requirements definition review (RDR). The purpose of part 2 was to prove concept feasibility.

  4. Technical and design update in the AUBE French low-level radioactive waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marque, Y.

    1989-01-01

    Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA). ANDRA is in charge of design, siting, construction, and operation of disposal centers. The solution selected in France for the disposal of low- and medium-level, short-lived radioactive waste is near-surface disposal in the earth using the principle of multiple barriers, in accordance with national safety rules and regulations, and based on operating experience from the Centre de Stockage de la Manche. Since the center's start-up in 1969, 400,000 m{sup 3} of waste have been disposed of. The Frenchmore » national program for waste management is proceeding with the construction of a second near-surface disposal, which is expected to be operational in 1991. It is located in the department of AUBE (from which its name derives), 100 miles southeast of Paris. The paper describes the criteria for siting and design of the AUBE disposal facility, design of the AUBE facility disposal module, and comparison with North Carolina and Pennsylvania disposal facility designs.« less

  5. How the University of Texas system responded to the need for interim storage of low-level radioactive waste materials.

    PubMed

    Emery, Robert J

    2012-11-01

    Faced with the prospect of being unable to permanently dispose of low-level radioactive wastes (LLRW) generated from teaching, research, and patient care activities, component institutions of the University of Texas System worked collaboratively to create a dedicated interim storage facility to be used until a permanent disposal facility became available. Located in a remote section of West Texas, the University of Texas System Interim Storage Facility (UTSISF) was licensed and put into operation in 1993, and since then has provided safe and secure interim storage for up to 350 drums of dry solid LLRW at any given time. Interim storage capability provided needed relief to component institutions, whose on-site waste facilities could have possibly become overburdened. Experiences gained from the licensing and operation of the site are described, and as a new permanent LLRW disposal facility emerges in Texas, a potential new role for the storage facility as a surge capacity storage site in times of natural disasters and emergencies is also discussed.

  6. Syncom 4 deploy, LDEF retrieval highlight 10-day Columbia flight

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objectives of Space Shuttle Mission STS-32 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objectives of STS-32 are the deployment of a Navy synchronous communications satellite (Syncom 4) and the retrieval of the Long Duration Exposure Facility (LDEF) launched from the Challenger in April 1984. Secondary STS-32 payloads include a protein crystal growth experiment, the Fluids Experiment Apparatus (FEA) for the investigation of microgravity materials processing, the Mesoscale Lighting Experiment, the Latitude-Longitude Locator Experiment, the Americal Flight Echocardiograph, and an experiment to investigate neurospora circadian rhythms in a microgravity environment.

  7. Effects of health and safety problem recognition on small business facility investment

    PubMed Central

    2013-01-01

    Objectives This study involved a survey of the facility investment experiences, which was designed to recognize the importance of health and safety problems, and industrial accident prevention. Ultimately, we hope that small scale industries will create effective industrial accident prevention programs and facility investments. Methods An individual survey of businesses’ present physical conditions, recognition of the importance of the health and safety problems, and facility investment experiences for preventing industrial accidents was conducted. The survey involved 1,145 business operators or management workers in small business places with fewer than 50 workers in six industrial complexes. Results Regarding the importance of occupational health and safety problems (OHS), 54.1% said it was “very important”. Received technical and financial support, and industrial accidents that occurred during the past three years were recognized as highly important for OHS. In an investigation regarding facility investment experiences for industrial accident prevention, the largest factors were business size, greater numbers of industrial accidents, greater technical and financial support received, and greater recognition of the importance of the OHS. The related variables that decided facility investment for industry accident prevention in a logistic regression analysis were the experiences of business facilities where industrial accidents occurred during the past three years, received technical and financial support, and recognition of the OHS. Those considered very important were shown to be highly significant. Conclusions Recognition of health and safety issues was higher when small businesses had experienced industrial accidents or received financial support. The investment in industrial accidents was greater when health and safety issues were recognized as important. Therefore, the goal of small business health and safety projects is to prioritize health and safety issues in terms of business management and recognition of importance. Therefore, currently various support projects are being conducted. However, there are issues regarding the limitations of the target businesses and inadequacies in maintenance and follow-up. Overall, it is necessary to provide various incentives for onsite participation that can lead to increased recognition of health and safety issues and practical investments, while perfecting maintenance and follow up measures by thoroughly revising existing operating systems. PMID:24472180

  8. Effects of health and safety problem recognition on small business facility investment.

    PubMed

    Park, Jisu; Jeong, Harin; Hong, Sujin; Park, Jong-Tae; Kim, Dae-Sung; Kim, Jongseo; Kim, Hae-Joon

    2013-10-23

    This study involved a survey of the facility investment experiences, which was designed to recognize the importance of health and safety problems, and industrial accident prevention. Ultimately, we hope that small scale industries will create effective industrial accident prevention programs and facility investments. An individual survey of businesses' present physical conditions, recognition of the importance of the health and safety problems, and facility investment experiences for preventing industrial accidents was conducted. The survey involved 1,145 business operators or management workers in small business places with fewer than 50 workers in six industrial complexes. Regarding the importance of occupational health and safety problems (OHS), 54.1% said it was "very important". Received technical and financial support, and industrial accidents that occurred during the past three years were recognized as highly important for OHS. In an investigation regarding facility investment experiences for industrial accident prevention, the largest factors were business size, greater numbers of industrial accidents, greater technical and financial support received, and greater recognition of the importance of the OHS. The related variables that decided facility investment for industry accident prevention in a logistic regression analysis were the experiences of business facilities where industrial accidents occurred during the past three years, received technical and financial support, and recognition of the OHS. Those considered very important were shown to be highly significant. Recognition of health and safety issues was higher when small businesses had experienced industrial accidents or received financial support. The investment in industrial accidents was greater when health and safety issues were recognized as important. Therefore, the goal of small business health and safety projects is to prioritize health and safety issues in terms of business management and recognition of importance. Therefore, currently various support projects are being conducted. However, there are issues regarding the limitations of the target businesses and inadequacies in maintenance and follow-up. Overall, it is necessary to provide various incentives for onsite participation that can lead to increased recognition of health and safety issues and practical investments, while perfecting maintenance and follow up measures by thoroughly revising existing operating systems.

  9. The materials processing sciences glovebox

    NASA Technical Reports Server (NTRS)

    Traweek, Larry

    1990-01-01

    The Materials Processing Sciences Glovebox is a rack mounted workstation which allows on orbit sample preparation and characterization of specimens from various experiment facilities. It provides an isolated safe, clean, and sterile environment for the crew member to work with potentially hazardous materials. It has to handle a range of chemicals broader than even PMMS. The theme is that the Space Station Laboratory experiment preparation and characterization operations provide the fundamental glovebox design characteristics. Glovebox subsystem concepts and how internal material handling operations affect the design are discussed.

  10. The UCLA Design Diversity Experiment (DEDIX) system: A distributed testbed for multiple-version software

    NASA Technical Reports Server (NTRS)

    Avizienis, A.; Gunningberg, P.; Kelly, J. P. J.; Strigini, L.; Traverse, P. J.; Tso, K. S.; Voges, U.

    1986-01-01

    To establish a long-term research facility for experimental investigations of design diversity as a means of achieving fault-tolerant systems, a distributed testbed for multiple-version software was designed. It is part of a local network, which utilizes the Locus distributed operating system to operate a set of 20 VAX 11/750 computers. It is used in experiments to measure the efficacy of design diversity and to investigate reliability increases under large-scale, controlled experimental conditions.

  11. Space Plasma Exploration by Active Radar (SPEAR induced modifications of the high latitude (78°N) ionosphere observed by both coherent and incoherent radars (Invited)

    NASA Astrophysics Data System (ADS)

    Baddeley, L. J.; Haggstrom, I.; Wright, D. M.; Isham, B.; Gallop, P.

    2010-12-01

    The SPEAR (Space Plasma Exploration by Active Radar) system, which is the newest operational heating facility, is located on Svalbard at 78°N (75° CGM) latitude and, as such, is the highest latitudinally located heating system. The unique geomagnetic location of SPEAR also allows it to be inside the Polar Cap at all local times. It is co-located with several facilities, including the EISCAT Incoherent Scatter Radar. The system is also inside the fields of view of several SuperDARN Coherent Scatter Radars. An overview of the SPEAR system, specific operating modes, as well as data from new, currently undergoing and planned experiments conducted in 2010 will be presented and discussed. Procedures for any future collaborative experiments will also be presented.

  12. Gradient Heating Facility in the Materials Science Double Rack (MSDR) on Spacelab-1 Module

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Space Shuttle was designed to carry large payloads into Earth orbit. One of the most important payloads is Spacelab. The Spacelab serves as a small but well-equipped laboratory in space to perform experiments in zero-gravity and make astronomical observations above the Earth's obscuring atmosphere. In this photograph, Payload Specialist, Ulf Merbold, is working at Gradient Heating Facility on the Materials Science Double Rack (MSDR) inside the science module in the Orbiter Columbia's payload bay during STS-9, Spacelab-1 mission. Spacelab-1, the joint ESA (European Space Agency)/NASA mission, was the first operational flight for the Spacelab, and demonstrated new instruments and methods for conducting experiments that are difficult or impossible in ground-based laboratories. This facility performed, in extremely low gravity, a wide variety of materials processing experiments in crystal growth, fluid physics, and metallurgy. The Marshall Space Flight Center had overall management responsibilities.

  13. Prerelease Planning and Practices for Youth with Disabilities in Juvenile Detention

    ERIC Educational Resources Information Center

    Mathur, Sarup R.; Clark, Heather Griller

    2013-01-01

    Many youth in detention facilities come from vulnerable home environments where factors such as economic pressures, abuse, neglect, and parental incarceration are constantly operating within the family system. A vast majority of these youth have not had positive school experiences and many of them experience special needs and mental health issues.…

  14. 75 FR 65669 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... INFORMATION: I. Abstract DIME & WING are components of a NASA competition program which allows teams to design and build a science experiment which will then be operated in a NASA microgravity drop tower facility. Teams of 4 students are selected to come to GRC and drop their experiment and will be required to...

  15. 75 FR 54189 - Notice of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... INFORMATION: I. Abstract DIME & WING are components of a NASA competition program which allows teams to design and build a science experiment which will then be operated in a NASA microgravity drop tower facility. Teams of 4 students are selected to come to GRC and drop their experiment and will be required to...

  16. Review of Physics Research Programs at LAMPF. Progress report, January-December 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allred, J.C.

    1984-04-01

    Research and development summaries are presented under the main headings: research, proton storage ring construction and research program development, status of LAMPF II, facility and experimental development, and accelerator operations. Complete lists are given for experiments run in 1983, new prospects, and active and complete experiments by channel. (WHK)

  17. Performance Evaluation of the International Space Station Flow Boiling and Condensation Experiment (FBCE) Test Facility

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad; Balasubramaniam, R.; Nahra, Henry; Mackey, Jeff; Hall, Nancy; Frankenfield, Bruce; Harpster, George; May, Rochelle; Mudawar, Issam; Kharangate, Chirag R.; hide

    2016-01-01

    A ground-based experimental facility to perform flow boiling and condensation experiments is built in support of the development of the long duration Flow Boiling and Condensation Experiment (FBCE) destined for operation on board of the International Space Station (ISS) Fluid Integrated Rack (FIR). We performed tests with the condensation test module oriented horizontally and vertically. Using FC-72 as the test fluid and water as the cooling fluid, we evaluated the operational characteristics of the condensation module and generated ground based data encompassing the range of parameters of interest to the condensation experiment to be performed on the ISS. During this testing, we also evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, and the heat loss from different components. In this presentation, we discuss representative results of performance testing of the FBCE flow loop. These results will be used in the refinement of the flight system design and build-up of the FBCE which is scheduled for flight in 2019.

  18. Polarized Negative Light Ions at the Cooler Synchrotron COSY/Juelich

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebel, R.; Felden, O.; Rossen, P. von

    2005-04-06

    The polarized ion source at the cooler synchrotron facility COSY of the research centre Juelich in Germany delivers negative polarized protons or deuterons for medium energy experiments. The polarized ion source, originally built by the universities of Bonn, Erlangen and Cologne, is based on the colliding beams principle, using after an upgrade procedure an intense pulsed neutralized caesium beam for charge exchange with a pulsed highly polarized hydrogen beam. The source is operated at 0.5 Hz repetition rate with 20 ms pulse length, which is the maximum useful length for the injection into the synchrotron. Routinely intensities of 20 {mu}Amore » are delivered for injection into the cyclotron of the COSY facility. For internal targets the intensity of 2 mA and a polarization up to 90% have been reached. Reliable long-term operation for experiments at COSY for up to 9 weeks has been achieved. Since 2003 polarized deuterons with different combinations of vector and tensor polarization were delivered to experiments.« less

  19. Astrobee Guest Science Guide

    NASA Technical Reports Server (NTRS)

    Benavides, Jose; Smith, Marion F; Wheeler, Dawn; Fluckiger, Lorenzo

    2017-01-01

    The Astrobee Research Facility will maintain three identical free-flying Astrobee robots on the ISS. After the Astrobees are launched and commissioned in 2018, they will replace the SPHERES robots that have been operating on the ISS since 2006 (Fig. 2). Over the years, the SPHERES have been among the most-used payloads on the ISS, supporting dozens of experiments from a variety of guest scientists. In the next section, we'll talk about past SPHERES experiments as possible inspiration for your future research on Astrobee. Compared to SPHERES, the Astrobee robots will offer many new capabilities and will require less astronaut time to support, so we hope the new facility will be able to fly experiments much more often.

  20. The concept verification testing of materials science payloads

    NASA Technical Reports Server (NTRS)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  1. Do Nursing Home Chain Size and Proprietary Status Affect Experiences With Care?

    PubMed

    You, Kai; Li, Yue; Intrator, Orna; Stevenson, David; Hirth, Richard; Grabowski, David; Banaszak-Holl, Jane

    2016-03-01

    In 2012, over half of nursing homes were operated by corporate chains. Facilities owned by the largest for-profit chains were reported to have lower quality of care. However, it is unknown how nursing home chain ownerships are related with experiences of care. To study the relationship between nursing home chain characteristics (chain size and profit status) with patients' family member reported ratings on experiences with care. Maryland nursing home care experience reports, the Online Survey, Certification, And Reporting (OSCAR) files, and Area Resource Files are used. Our sample consists of all nongovernmental nursing homes in Maryland from 2007 to 2010. Consumer ratings were reported for: overall care; recommendation of the facility; staff performance; care provided; food and meals; physical environment; and autonomy and personal rights. We identified chain characteristics from OSCAR, and estimated multivariate random effect linear models to test the effects of chain ownership on care experience ratings. Independent nonprofit nursing homes have the highest overall rating score of 8.9, followed by 8.6 for facilities in small nonprofit chains, and 8.5 for independent for-profit facilities. Facilities in small, medium, and large for-profit chains have even lower overall ratings of 8.2, 7.9, and 8.0, respectively. We find similar patterns of differences in terms of recommendation rate, and important areas such as staff communication and quality of care. Evidence suggests that Maryland nursing homes affiliated with large-for-profit and medium-for-profit chains had lower ratings of family reported experience with care.

  2. Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research

    DOE PAGES

    Moses, E. I.; Lindl, J. D.; Spaeth, M. L.; ...

    2017-03-23

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besidesmore » the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This study provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. Finally, they are covered in more detail in the papers that follow.« less

  3. Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, E. I.; Lindl, J. D.; Spaeth, M. L.

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besidesmore » the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This study provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. Finally, they are covered in more detail in the papers that follow.« less

  4. Distributed computing testbed for a remote experimental environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butner, D.N.; Casper, T.A.; Howard, B.C.

    1995-09-18

    Collaboration is increasing as physics research becomes concentrated on a few large, expensive facilities, particularly in magnetic fusion energy research, with national and international participation. These facilities are designed for steady state operation and interactive, real-time experimentation. We are developing tools to provide for the establishment of geographically distant centers for interactive operations; such centers would allow scientists to participate in experiments from their home institutions. A testbed is being developed for a Remote Experimental Environment (REE), a ``Collaboratory.`` The testbed will be used to evaluate the ability of a remotely located group of scientists to conduct research on themore » DIII-D Tokamak at General Atomics. The REE will serve as a testing environment for advanced control and collaboration concepts applicable to future experiments. Process-to-process communications over high speed wide area networks provide real-time synchronization and exchange of data among multiple computer networks, while the ability to conduct research is enhanced by adding audio/video communication capabilities. The Open Software Foundation`s Distributed Computing Environment is being used to test concepts in distributed control, security, naming, remote procedure calls and distributed file access using the Distributed File Services. We are exploring the technology and sociology of remotely participating in the operation of a large scale experimental facility.« less

  5. Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korbin, G.; Wollenberg, H.; Wilson, C.

    Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce themore » duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility.« less

  6. Neutron scattering facilities at Chalk River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, T.M.; Powell, B.M.; Dolling, G.

    1995-12-31

    The Chalk River Laboratories of AECL Research provides neutron beams for research with the NRU reactor. The NRU reactor has eight reactor loops for engineering test experiments, 30 isotope irradiation sites and beam tubes, six of which feed the neutron scattering instruments. The peak thermal flux is 3 {times} 10{sup 14}n cm{sup {minus}2} s{sup {minus}1}. The neutron spectrometers are operated as national facilities for Canadian neutron scattering research. Since the research requirements for the Canadian nuclear industry are changing, and since the NRU reactor is unlikely to operate much beyond the year 2000, a new Irradiation Research Facility (IRF) ismore » being considered for start-up in the first decade of the next century. An outline is given of this proposed new neutron source.« less

  7. Occupational Safety Review of High Technology Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee Cadwallader

    2005-01-31

    This report contains reviews of operating experiences, selected accident events, and industrial safety performance indicators that document the performance of the major US DOE magnetic fusion experiments and particle accelerators. These data are useful to form a basis for the occupational safety level at matured research facilities with known sets of safety rules and regulations. Some of the issues discussed are radiation safety, electromagnetic energy exposure events, and some of the more widespread issues of working at height, equipment fires, confined space work, electrical work, and other industrial hazards. Nuclear power plant industrial safety data are also included for comparison.

  8. Design Features and Capabilities of the First Materials Science Research Rack

    NASA Technical Reports Server (NTRS)

    Pettigrew, P. J.; Lehoczky, S. L.; Cobb, S. D.; Holloway, T.; Kitchens, L.

    2003-01-01

    The First Materials Science Research Rack (MSRR-1) aboard the International Space Station (ISS) will offer many unique capabilities and design features to facilitate a wide range of materials science investigations. The initial configuration of MSRR-1 will accommodate two independent Experiment Modules (EMS) and provide the capability for simultaneous on-orbit processing. The facility will provide the common subsystems and interfaces required for the operation of experiment hardware and accommodate telescience capabilities. MSRR1 will utilize an International Standard Payload Rack (ISPR) equipped with an Active Rack Isolation System (ARIS) for vibration isolation of the facility.

  9. A planar reacting shear layer system for the study of fluid dynamics-combustion interaction

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Chang, C. T.; Ghorashi, B.; Wey, C. C.; Wey, C.; Mularz, E. J.

    1989-01-01

    A versatile planar reacting shear layer facility is constructed at NASA-Lewis. The research objectives, as well as design, instrumentations and the operational procedures developed for the system are described. The fundamental governing equations and the type of quantitative information that are needed from experiments are described. Additionally, a review of earlier work is presented. Whenever appropriate, comparisons are made with similar systems in other facilities and the main differences are described. Finally, the nonintrusive measurement techniques (PLIF, PMS, LDV, and Schlieren photography) and the type of experiments that are planned are described.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brink, J.

    Crude oil (c. 10,700 BOPD) was produced through temporary topside facilities in the Rolf Field offshore Denmark from January 7th to September 17th, 1986. These simple, unmanned and remote controlled facilities were a low cost solution to a problem caused by delays of the permanent topside facilities. Project execution time was two months from start of conceptual design until start-up of oil production. Installation works were performed from a jack-up drilling rig - in part simultaneously with drilling operations. Materials and equipment installed were obtained with very short delivery times. The facilties which were certified by a Certification Society andmore » approved by the Danish Authoritites included all necessary safety features. Total costs for the facilities amounted to c. 1 million US$ (excl. rig time for installation). Due to simplicity high reliability of the production system was obtained. Availability of the facilities for the entire period from start-up was 99.6 percent. The facilities were manned 3.2 percent of the total operating time mainly due to wireline work for reservoir monitoring. It is considered that the experience with the concept applied for the early production from the Rolf Field could form the basis for more simple and cost effective topside facilities for minor offshore fields.« less

  11. The BepiColombo/SERENA Integrated Test Campaign

    NASA Astrophysics Data System (ADS)

    Orsini, Stefano; De Angelis, Elisabetta; Livi, Stefano; Lichtenegger, Herbert; Barabash, Stas; Milillo, Anna; Wurz, Peter; Olivieri, Angelo; D'Arcio, Luigi; Phillips, Mark; Laky, Gunter; Wieser, Martin; Camozzi, Fabio; Di Lellis, Andrea M.; Mura, Alessandro; Lazzarotto, Francesco; Aronica, Alessandro; Rispoli, Rosanna; Verolli, Nello; Piazza, Daniele

    2017-04-01

    The activities related to the BepiColombo/MPO/SERENA Integrated Test (SIT, held in February 2017 by the vacuum facility at the University of Bern, CH) are presented. This campaign is a unique opportunity to test the experiment performances, with all the four flight-spare instruments of SERENA (ELENA, STROFIO, PICAM, AND MIPA, simultaneously operated by the System Control Unit (SCU), in a fully operational configuration. The test is focused on the On-Board Commanding Procedure and on the Science Operation Basic Procedure, with the goal of providing a comprehensive picture of the on-board S/W facility both in nominal and more resource demanding conditions. Such a test is a powerful tool for allowing SERENA to perform the best possible observation of the particle populations surrounding Mercury.

  12. An Evaluation of Air Force Food Service Operations at Travis Air Force Base

    DTIC Science & Technology

    1974-06-01

    food service system as represented by food service operations...was base level feeding requirements, excluding non-appropriated fund food service activities, hospital dining facilities and patient feeding, and...inflight food service . Following completion of these studies, proposed solutions to the problems were actually implemented and evaluated in a food service experiment at Travis

  13. Analyses of requirements for computer control and data processing experiment subsystems. Volume 2: ATM experiment S-056 image data processing system software development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The IDAPS (Image Data Processing System) is a user-oriented, computer-based, language and control system, which provides a framework or standard for implementing image data processing applications, simplifies set-up of image processing runs so that the system may be used without a working knowledge of computer programming or operation, streamlines operation of the image processing facility, and allows multiple applications to be run in sequence without operator interaction. The control system loads the operators, interprets the input, constructs the necessary parameters for each application, and cells the application. The overlay feature of the IBSYS loader (IBLDR) provides the means of running multiple operators which would otherwise overflow core storage.

  14. STS-5 Fifth Space shuttle mission, first operational flight: Press Kit

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Schedules for the fifth Space Shuttle flight are provided. Launching procedure, extravehicular activity, contingency plans, satellite deployment, and onboard experiments are discussed. Landing procedures, tracking facilities, and crew data are provided.

  15. The Biotechnology Facility for International Space Station.

    PubMed

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-03-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  16. The Biotechnology Facility for International Space Station

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  17. Managing Risk in Safety Critical Operations - Lessons Learned from Space Operations

    NASA Technical Reports Server (NTRS)

    Gonzalez, Steven A.

    2002-01-01

    The Mission Control Center (MCC) at Johnson Space Center (JSC) has a rich legacy of supporting Human Space Flight operations throughout the Apollo, Shuttle and International Space Station eras. Through the evolution of ground operations and the Mission Control Center facility, NASA has gained a wealth of experience of what it takes to manage the risk in Safety Critical Operations, especially when human life is at risk. The focus of the presentation will be on the processes (training, operational rigor, team dynamics) that enable the JSC/MCC team to be so successful. The presentation will also share the evolution of the Mission Control Center architecture and how the evolution was introduced while managing the risk to the programs supported by the team. The details of the MCC architecture (e.g., the specific software, hardware or tools used in the facility) will not be shared at the conference since it would not give any additional insight as to how risk is managed in Space Operations.

  18. NASA/ESA CV-990 spacelab simulation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Due to interest in the application of simplified techniques used to conduct airborne science missions at NASA's Ames Research Center, a joint NASA/ESA endeavor was established to conduct an extensive Spacelab simulation using the NASA CV-990 airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy with principal investigators from France, the Netherlands, England, and several groups from the United States. Communication links between the 'Spacelab' and a ground based mission operations center were limited consistent with Spacelab plans. The mission was successful and provided extensive data relevant to Spacelab objectives on overall management of a complex international payload; experiment preparation, testing, and integration; training for proxy operation in space; data handling; multiexperimenter use of common experimenter facilities (telescopes); multiexperiment operation by experiment operators; selection criteria for Spacelab experiment operators; and schedule requirements to prepare for such a Spacelab mission.

  19. Health care delivery system for long duration manned space operations

    NASA Technical Reports Server (NTRS)

    Logan, J. S.; Shulman, E. L.; Johnson, P. C.

    1983-01-01

    Specific requirements for medical support of a long-duration manned facility in a low earth orbit derive from inflight medical experience, projected medical scenarios, mission related spacecraft and environmental hazards, health maintenance, and preventive medicine. A sequential buildup of medical capabilities tailored to increasing mission complexity is proposed. The space station health maintenance facility must provide preventive, diagnostic, and therapeutic medical support as immediate rescue capability may not exist.

  20. Conducting Research on the International Space Station Using the EXPRESS Rack Facilities

    NASA Technical Reports Server (NTRS)

    Thompson, Sean W.; Lake, Robert E.

    2013-01-01

    Conducting Research on the International Space Station using the EXPRESS Rack Facilities. Sean W. Thompson and Robert E. Lake. NASA Marshall Space Flight Center, Huntsville, AL, USA. Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling (500 W) for two locations, one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.

  1. Langley Research Center's Unitary Plan Wind Tunnel: Testing Capabilities and Recent Modernization Activities

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    2001-01-01

    Description, capabilities, initiatives, and utilization of the NASA Langley Research Center's Unitary Plan Wind Tunnel are presented. A brief overview of the facility's operational capabilities and testing techniques is provided. A recent Construction of Facilities (CoF) project to improve facility productivity and efficiency through facility automation has been completed and is discussed. Several new and maturing thrusts are underway that include systematic efforts to provide credible assessment for data quality, modifications to the new automation control system for increased compatibility with the Modern Design Of Experiments (MDOE) testing methodology, and process improvements for better test coordination, planning, and execution.

  2. Langley Research Center's Unitary Plan Wind Tunnel: Testing Capabilities and Recent Modernization Activities

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    2001-01-01

    Description, capabilities, initiatives, and utilization of the NASA Langley Research Center's Unitary Plan Wind Tunnel are presented. A brief overview of the facility's operational capabilities and testing techniques is provided. A recent Construction of Facilities (Car) project to improve facility productivity and efficiency through facility automation has been completed and is discussed. Several new and maturing thrusts are underway that include systematic efforts to provide credible assessment for data quality, modifications to the new automation control system for increased compatibility with the Modern Design of Experiments (MDOE) testing methodology, and process improvements for better test coordination, planning, and execution.

  3. Physics and technology in the ion-cyclotron range of frequency on Tore Supra and TITAN test facility: implication for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litaudon, X; Bernard, J. M.; Colas, L.

    2013-01-01

    To support the design of an ITER ion-cyclotron range of frequency heating (ICRH) system and to mitigate risks of operation in ITER, CEA has initiated an ambitious Research & Development program accompanied by experiments on Tore Supra or test-bed facility together with a significant modelling effort. The paper summarizes the recent results in the following areas: Comprehensive characterization (experiments and modelling) of a new Faraday screen concept tested on the Tore Supra antenna. A new model is developed for calculating the ICRH sheath rectification at the antenna vicinity. The model is applied to calculate the local heat flux on Toremore » Supra and ITER ICRH antennas. Full-wave modelling of ITER ICRH heating and current drive scenarios with the EVE code. With 20 MW of power, a current of 400 kA could be driven on axis in the DT scenario. Comparison between DT and DT(3He) scenario is given for heating and current drive efficiencies. First operation of CW test-bed facility, TITAN, designed for ITER ICRH components testing and could host up to a quarter of an ITER antenna. R&D of high permittivity materials to improve load of test facilities to better simulate ITER plasma antenna loading conditions.« less

  4. Head and neck trauma in Iraq and Afghanistan: different war, different surgery, lessons learned.

    PubMed

    Brennan, Joseph

    2013-10-01

    The objectives are to compare and contrast the head and neck trauma experience in Iraq and Afghanistan and to identify trauma lessons learned that are applicable to civilian practice. A retrospective review of one head and neck surgeon's operative experience in Iraq and Afghanistan was performed using operative logs and medical records. The surgeon's daily operative log book with patient demographic data and operative reports was reviewed. Also, patient medical records were examined to identify the preoperative and postoperative course of care. The head and neck trauma experiences in Iraq and Afghanistan were very different, with a higher percentage of emergent cases performed in Iraq. In Iraq, only 10% of patients were pretreated at a facility with surgical capabilities. In Afghanistan, 93% of patients were pretreated at such facilities. Emergent neck exploration for penetrating neck trauma and emergent airway surgery were more common in Iraq, which most likely accounted for the increased perioperative mortality also seen in Iraq (5.3% in Iraq vs. 1.3% in Afghanistan). Valuable lessons regarding soft tissue trauma repair, midface fracture repair, and mandible fracture repair were learned. The head and neck trauma experiences in Iraq and Afghanistan were very different, and the future training for mass casualty trauma events should reflect these differences. Furthermore, valuable head and neck trauma lessons learned in both war zones are applicable to the civilian practice of trauma. Level 4. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Preliminary analysis of WL experiment number 701: Space environment effects on operating fiber optic systems

    NASA Technical Reports Server (NTRS)

    Taylor, E. W.; Padden, R. J.; Berry, J. N.; Sanchez, A. D.; Chapman, S. P.

    1991-01-01

    A brief overview of the analysis performed on WL Experiment number 701 is presented, highlighting the successful operation of the first know active fiber optic links orbited in space. Four operating fiber optic links were exposed to the space environment for a period exceeding five years, situated aboard and external to the Long Duration Exposure Facility (LDEF). Despite the prolonged space exposure to radiation, wide temperature extremums, atomic oxygen interactions, and micrometeorite and debris impacts, the optical data links performed well within specification limits. Early Phillips Laboratory tests and analyses performed on the experiment and its recovered magnetic tape data strongly indicate that fiber optic application in space will have a high success rate.

  6. NASA/ESA CV-990 airborne simulation of Spacelab

    NASA Technical Reports Server (NTRS)

    Mulholland, D.; Neel, C.; De Waard, J.; Lovelett, R.; Weaver, L.; Parker, R.

    1975-01-01

    The paper describes the joint NASA/ESA extensive Spacelab simulation using the NASA CV-990 airborne laboratory. The scientific payload was selected to conduct studies in upper atmospheric physics and infrared astronomy. Two experiment operators from Europe and two from the U.S. were selected to live aboard the aircraft along with a mission manager for a six-day period and operate the experiments in behalf of the principal scientists. The mission was successful and provided extensive data relevant to Spacelab objectives on overall management of a complex international payload; experiment preparation, testing, and integration; training for proxy operation in space; data handling; multiexperimenter use of common experimenter facilities (telescopes); and schedule requirements to prepare for such a Spacelab mission.

  7. Education and public engagement in observatory operations

    NASA Astrophysics Data System (ADS)

    Gabor, Pavel; Mayo, Louis; Zaritsky, Dennis

    2016-07-01

    Education and public engagement (EPE) is an essential part of astronomy's mission. New technologies, remote observing and robotic facilities are opening new possibilities for EPE. A number of projects (e.g., Telescopes In Education, MicroObservatory, Goldstone Apple Valley Radio Telescope and UNC's Skynet) have developed new infrastructure, a number of observatories (e.g., University of Arizona's "full-engagement initiative" towards its astronomy majors, Vatican Observatory's collaboration with high-schools) have dedicated their resources to practical instruction and EPE. Some of the facilities are purpose built, others are legacy telescopes upgraded for remote or automated observing. Networking among institutions is most beneficial for EPE, and its implementation ranges from informal agreements between colleagues to advanced software packages with web interfaces. The deliverables range from reduced data to time and hands-on instruction while operating a telescope. EPE represents a set of tasks and challenges which is distinct from research applications of the new astronomical facilities and operation modes. In this paper we examine the experience with several EPE projects, and some lessons and challenges for observatory operation.

  8. Preliminary design for a maglev development facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, H.T.; He, J.L.; Chang, S.L.

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable ofmore » powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.« less

  9. Mach 5 to 7 RBCC Propulsion System Testing at NASA-LeRC HTF

    NASA Technical Reports Server (NTRS)

    Perkins, H. Douglas; Thomas, Scott R.; Pack, William D.

    1996-01-01

    A series of Mach 5 to 7 freejet tests of a Rocket Based Combined Cycle (RBCC) engine were cnducted at the NASA Lewis Research Center (LERC) Hypersonic Tunnel Facility (HTF). This paper describes the configuration and operation of the HTF and the RBCC engine during these tests. A number of facility support systems are described which were added or modified to enhance the HTF test capability for conducting this experiment. The unfueled aerodynamic perfor- mance of the RBCC engine flowpath is also presented and compared to sub-scale test results previously obtained in the NASA LERC I x I Supersonic Wind Tunnel (SWT) and to Computational Fluid Dynamic (CFD) analysis results. This test program demonstrated a successful configuration of the HTF for facility starting and operation with a generic RBCC type engine and an increased range of facility operating conditions. The ability of sub-scale testing and CFD analysis to predict flowpath performance was also shown. The HTF is a freejet, blowdown propulsion test facility that can simulate up to Mach 7 flight conditions with true air composition. Mach 5, 6, and 7 facility nozzles are available, each with an exit diameter of 42 in. This combination of clean air, large scale, and Mach 7 capabilities is unique to the HTF. This RBCC engine study is the first engine test program conducted at the HTF since 1974.

  10. Test Plan for the Wake Steering Experiment at the Scaled Wind Farm Technology (SWiFT) Facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, Brian Thomas

    This document is a test plan describing the objectives, configuration, procedures, reporting, roles, and responsibilities for conducting the joint Sandia National Laboratories and National Renewable Energy Laboratory Wake Steering Experiment at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in 2016 and 2017 . The purpose of this document is to ensure the test objectives and procedures are sufficiently detailed such that al l involved personnel are able to contribute to the technical success of the test. This document is not intended to address safety explicitly which is addressed in a separate document listed in the referencesmore » titled Sandia SWiFT Facility Site Operations Manual . Both documents should be reviewed by all test personnel.« less

  11. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobson, D; Churby, A; Krieger, E

    2011-07-25

    The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtualmore » model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.« less

  12. The ISS Fluids Integrated Rack (FIR): a Summary of Capabilities

    NASA Astrophysics Data System (ADS)

    Gati, F.; Hill, M. E.

    2002-01-01

    The Fluids Integrated Rack (FIR) is a modular, multi-user scientific research facility that will fly in the U.S. laboratory module, Destiny, of the International Space Station (ISS). The FIR will be one of the two racks that will make up the Fluids and Combustion Facility (FCF) - the other being the Combustion Integrated Rack (CIR). The ISS will provide the FCF with the necessary resources, such as power and cooling. While the ISS crew will be available for experiment operations, their time will be limited. The FCF is, therefore, being designed for autonomous operations and remote control operations. Control of the FCF will be primarily through the Telescience Support Center (TSC) at the Glenn Research Center. The FCF is being designed to accommodate a wide range of combustion and fluids physics experiments within the ISS resources and constraints. The primary mission of the FIR, however, is to accommodate experiments from four major fluids physics disciplines: Complex Fluids; Multiphase Flow and Heat Transfer; Interfacial Phenomena; and Dynamics and Stability. The design of the FIR is flexible enough to accommodate experiments from other science disciplines such as Biotechnology. The FIR flexibility is a result of the large volume dedicated for experimental hardware, easily re-configurable diagnostics that allow for unique experiment configurations, and it's customizable software. The FIR will utilize six major subsystems to accommodate this broad scope of fluids physics experiments. The major subsystems are: structural, environmental, electrical, gaseous, command and data management, and imagers and illumination. Within the rack, the FIR's structural subsystem provides an optics bench type mechanical interface for the precise mounting of experimental hardware; including optical components. The back of the bench is populated with FIR avionics packages and light sources. The interior of the rack is isolated from the cabin through two rack doors that are hinged near the top and bottom of the rack. Transmission of micro-gravity disturbances to and from the rack is minimized through the Active Rack Isolation System (ARIS). The environmental subsystem will utilize air and water to remove heat generated by facility and experimental hardware. The air will be circulated throughout the rack and will be cooled by an air-water heat exchanger. Water will be used directly to cool some of the FIR components and will also be available to cool experiment hardware as required. The electrical subsystem includes the Electrical Power Control Unit (EPCU), which provides 28 VDC and 120 VDC power to the facility and the experiment hardware. The EPCU will also provide power management and control functions, as well as fault protection capabilities. The FIR will provide access to the ISS gaseous nitrogen and vacuum systems. These systems are available to support experiment operations such as the purging of experimental cells, creating flows within experimental cells and providing dry conditions where needed. The FIR Command and Data Management subsystem (CDMS) provides command and data handling for both facility and experiment hardware. The Input Output Processor (IOP) provides the overall command and data management functions for the rack including downlinking or writing data to removable drives. The IOP will also monitor the health and status of the rack subsystems. The Image Processing and Storage Units (IPSU) will perform diagnostic control and image data acquisition functions. An IPSU will be able to control a digital camera, receive image data from that camera and process/ compress image data as necessary. The Fluids Science and Avionics Package (FSAP) will provide the primary control over an experiment. The FSAP contains various computer boards/cards that will perform data and control functions. To support the imaging needs, cameras and illumination sources will be available to the investigator. Both color analog and black and white digital cameras with lenses are expected. These cameras will be capable of high resolution and, separately, frame rates up to 32,000 frames per second. Lenses for these cameras will provide both microscopic and macroscopic views. The FIR will provide two illumination sources, a 532 nm Nd:YAG laser and a white light source, both with adjustable power output. The FIR systems are being designed to maximize the amount of science that can be done on-orbit. Experiments will be designed and efficiently operated. Each individual experiment must determine the best configuration of utilizing facility capabilities and resources with augmentation of specific experiment hardware. Efficient operations will be accomplished via a combination of on-orbit physical component change-outs or processing by the crew, and software updates via ground commanding or by the crew. Careful coordination by ground and on-orbit personnel regarding the on-orbit storage and downlinking of image data will also be very important.

  13. PIRATE: A Remotely Operable Telescope Facility for Research and Education

    NASA Astrophysics Data System (ADS)

    Holmes, S.; Kolb, U.; Haswell, C. A.; Burwitz, V.; Lucas, R. J.; Rodriguez, J.; Rolfe, S. M.; Rostron, J.; Barker, J.

    2011-10-01

    We introduce PIRATE, a new remotely operable telescope facility for use in research and education, constructed from off-the-shelf hardware, operated by The Open University. We focus on the PIRATE Mark 1 operational phase, in which PIRATE was equipped with a widely used 0.35 m Schmidt-Cassegrain system (now replaced with a 0.425 m corrected Dall-Kirkham astrograph). Situated at the Observatori Astronòmic de Mallorca, PIRATE is currently used to follow up potential transiting extrasolar planet candidates produced by the SuperWASP North experiment, as well as to hunt for novae in M31 and other nearby galaxies. It is operated by a mixture of commercially available software and proprietary software developed at the Open University. We discuss problems associated with performing precision time-series photometry when using a German Equatorial Mount, investigating the overall performance of such off-the-shelf solutions in both research and teaching applications. We conclude that PIRATE is a cost-effective research facility, and it also provides exciting prospects for undergraduate astronomy. PIRATE has broken new ground in offering practical astronomy education to distance-learning students in their own homes.

  14. Recent advances and plans in processing and geocoding of SAR data at the DFD

    NASA Technical Reports Server (NTRS)

    Noack, W.

    1993-01-01

    Because of the needs of future projects like ENVISAT and the experiences made with the current operational ERS-1 facilities, a radical change in the synthetic aperture radar (SAR) processing scenarios can be predicted for the next years. At the German PAF several new developments were initialized which are driven mainly either by user needs or by system and operational constraints ('lessons learned'). At the end there will be a major simplification and uniformation of all used computer systems. Especially the following changes are likely to be implemented at the German PAF: transcription before archiving, processing of all standard products with high throughput directly at the receiving stations, processing of special 'high-valued' products at the PAF, usage of a single type of processor hardware, implementation of a large and fast on-line data archive, and improved and unified fast data network between the processing and archiving facilities. A short description of the current operational SAR facilities as well as the future implementations are given.

  15. Detailed results of ASTP experiment MA-011. [biological processing facility in space

    NASA Technical Reports Server (NTRS)

    Seaman, G. V. F.; Allen, R. E.; Barlow, G. H.; Bier, M.

    1976-01-01

    This experiment was developed in order to conduct engineering and operational tests of electrokinetic equipment in a micro-gravity environment. The experimental hardware in general functioned as planned and electrophoretic separations were obtained in space. The results indicated the development of satisfactory sample collection, return, and preservation techniques. The application of a near-zero zeta potential interior wall coating to the experimental columns, confirmation of biocompatibility of all appropriate hardware components, and use of a sterile operating environment provided a significant step forward in the development of a biological processing facility in space. A separation of a test of aldehyde-fixed rabbit, human, and horse red blood cells was obtained. Human kidney cells were separated into several components and viable cells returned to earth. The isotachophoretic separation of red cells was also demonstrated. Problems associated with the hardware led to a lack of success in the attempt to separate subpopulations of human lymphocytes.

  16. MSFC ISS Resource Reel 2016

    NASA Image and Video Library

    2016-04-01

    International Space Station Resource Reel. This video describes shows the International Space Station components, such as the Destiny laboratory and the Quest Airlock, being manufactured at NASA's Marshall Space Flight Center in Huntsville, Ala. It provides manufacturing and ground testing video and in-flight video of key space station components: the Microgravity Science Glovebox, the Materials Science Research Facility, the Window Observational Research Facility, the Environmental Control Life Support System, and basic research racks. There is video of people working in Marshall's Payload Operations Integration Center where controllers operate experiments 24/7, 365 days a week. Various crews are shown conducting experiments on board the station. PAO Name:Jennifer Stanfield Phone Number:256-544-0034 Email Address: JENNIFER.STANFIELD@NASA.GOV Name/Title of Video: ISS Resource Reel Description: ISS Resource Reel Graphic Information: NASA PAO Name:Tracy McMahan Phone Number:256-544-1634 Email Address: tracy.mcmahan@nasa.gov

  17. Cryogenic helium gas convection research

    NASA Astrophysics Data System (ADS)

    Behringer, Robert P.; Donnelly, Russell J.; McAshan, Michael; Maddocks, James; Sreenivasan, Katepalli; Swanson, Chris; Wu, Xaio-Zhong

    1994-10-01

    This is a report prepared by a group interested in doing research in thermal convection using the large scale refrigeration facilities available at the SSC Laboratories (SSCL). The group preparing this report consists of Michael McAshan at SSCL, Robert Behringer at Duke University, Katepalli Sreenivasan at Yale University, Xiao-Zhong Wu at Northern Illinois University and Russell Donnelly at the University of Oregon, who served as Editor for this report. This study reports the research and development opportunities in such a project, the technical requirements and feasibility of its construction and operation, and the costs associated with the needed facilities and support activities. The facility will be a unique national resource for studies of high-Reynolds-number and high-Rayleigh-number and high Rayleigh number turbulence phenomena, and is one of the six items determined as suitable for potential funding through a screening of Expressions of Interest. The proposed facility is possible only because of the advanced cryogenic technology available at the SSCL. Typical scientific issues to be addressed in the facility will be discussed. It devolved during our study, that while the main experiment is still considered to be the thermal convection experiment discussed in our original Expression of Interest, there are now a very substantial set of other, important and fundamental experiments which can be done with the large cryostat proposed for the convection experiment. We believe the facility could provide several decades of front-line research in turbulence, and shall describe why this is so.

  18. Operational experience of the OC-OTEC experiments at NELH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, H

    1989-02-01

    The Solar Energy Research Institute, under funding and program direction from the US Department of Energy, has been operating a small-scale test apparatus to investigate key components of open- cycle ocean thermal energy conversion (OC-OTEC). The apparatus started operations in October 1987 and continues to provide valuable information on heat-and mass-transfer processes in evaporators and condensers, gas sorption processes as seawater is depressurized and repressurized, and control and instrumentation characteristics of open-cycle systems. Although other test facilities have been used to study some of these interactions, this is the largest apparatus of its kind to use seawater since Georges Claude`smore » efforts in 1926. The information obtained from experiments conducted in this apparatus is being used to design a larger scale experiment in which a positive net power production is expected to be demonstrated for the first time with OC-OTEC. This paper describes the apparatus, the major tests conducted during its first 18 months of operation, and the experience gained in OC-OTEC system operation. 13 refs., 8 figs.« less

  19. Operating manual for the Bulk Shielding Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-04-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxillary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supercedes all previous operating manuals for the BSR.

  20. Operating manual for the Bulk Shielding Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxiliary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supersedes all previous operating manuals for the BSR.

  1. The National Transonic Facility: A Research Retrospective

    NASA Technical Reports Server (NTRS)

    Wahls, R. A.

    2001-01-01

    An overview of the National Transonic Facility (NTF) from a research utilization perspective is provided. The facility was born in the 1970s from an internationally recognized need for a high Reynolds number test capability based on previous experiences with preflight predictions of aerodynamic characteristics and an anticipated need in support of research and development for future aerospace vehicle systems. Selection of the cryogenic concept to meet the need, unique capabilities of the facility, and the eventual research utilization of the facility are discussed. The primary purpose of the paper is to expose the range of investigations that have used the NTF since being declared operational in late 1984; limited research results are included, though many more can be found in the references.

  2. Building a secondary containment system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broder, M.F.

    1994-10-01

    Retail fertilizer and pesticide dealers across the United States are installing secondary containment at their facilities or are seriously considering it. Much of this work is in response to new state regulations; however, many dealers not facing new regulations are upgrading their facilities to reduce their liability, lower their insurance costs, or comply with anticipated regulations. The Tennessee Valley Authority`s (TVA) National Fertilizer and Environmental Research Center (NFERC) has assisted dealers in 22 states in retrofitting containment to their facilities. Simultaneous improvements in the operational efficiency of the facilities have been achieved at many of the sites. This paper ismore » based on experience gained in that work and details the rationale used in planning secondary containment and facility modifications.« less

  3. First Materials Science Research Facility Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  4. A cyclic ground test of an ion auxiliary propulsion system: Description and operational considerations

    NASA Technical Reports Server (NTRS)

    Ling, Jerri S.; Kramer, Edward H.

    1988-01-01

    The Ion Auxiliary Propulsion System (IAPS) experiment is designed for launch on an Air Force Space Test Program satellite (NASA-TM-78859; AIAA Paper No. 78-647). The primary objective of the experiment is to flight qualify the 8 cm mercury ion thruster system for stationkeeping applications. Secondary objectives are measuring the interactions between operating ion thruster systems and host spacecraft, and confirming the design performance of the thruster systems. Two complete 8 cm mercury ion thruster subsystems will be flown. One of these will be operated for 2557 on and off cycles and 7057 hours at full thrust. Tests are currently under way in support of the IAPS flight experiment. In this test an IAPS thruster is being operated through a series of startup/run/shut-down cycles which simulate thruster operation during the planned flight experiment. A test facility description and operational considerations of this testing using an engineering model 8 cm thruster (S/N 905) is the subject of this paper. Final results will be published at a later date when the ground test has been concluded.

  5. ETF Mission Statement document. ETF Design Center team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-04-01

    The Mission Statement document describes the results, activities, and processes used in preparing the Mission Statement, facility characteristics, and operating goals for the Engineering Test Facility (ETF). Approximately 100 engineers and scientists from throughout the US fusion program spent three days at the Knoxville Mission Workshop defining the requirements that should be met by the ETF during its operating life. Seven groups were selected to consider one major category each of design and operation concerns. Each group prepared the findings of the assigned area as described in the major sections of this document. The results of the operations discussed mustmore » provide the data, knowledge, experience, and confidence to continue to the next steps beyond the ETF in making fusion power a viable energy option. The results from the ETF mission (operations are assumed to start early in the 1990's) are to bridge the gap between the base of magnetic fusion knowledge at the start of operations and that required to design the EPR/DEMO devices.« less

  6. Initial utilization of the CVIRB video production facility

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Busquets, Anthony M.; Hogge, Thomas W.

    1987-01-01

    Video disk technology is one of the central themes of a technology demonstrator workstation being assembled as a man/machine interface for the Space Station Data Management Test Bed at Johnson Space Center. Langley Research Center personnel involved in the conception and implementation of this workstation have assembled a video production facility to allow production of video disk material for this propose. This paper documents the initial familiarization efforts in the field of video production for those personnel and that facility. Although the entire video disk production cycle was not operational for this initial effort, the production of a simulated disk on video tape did acquaint the personnel with the processes involved and with the operation of the hardware. Invaluable experience in storyboarding, script writing, audio and video recording, and audio and video editing was gained in the production process.

  7. Fusion interfaces for tactical environments: An application of virtual reality technology

    NASA Technical Reports Server (NTRS)

    Haas, Michael W.

    1994-01-01

    The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and nonvirtual concepts and devices across the visual, auditory, and haptic sensory modalities. A fusion interface is a multisensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion interface concepts. This new facility, the Fusion Interfaces for Tactical Environments (FITE) Facility is a specialized flight simulator enabling efficient concept development through rapid prototyping and direct experience of new fusion concepts. The FITE Facility also supports evaluation of fusion concepts by operation fighter pilots in an air combat environment. The facility is utilized by a multidisciplinary design team composed of human factors engineers, electronics engineers, computer scientists, experimental psychologists, and oeprational pilots. The FITE computational architecture is composed of twenty-five 80486-based microcomputers operating in real-time. The microcomputers generate out-the-window visuals, in-cockpit and head-mounted visuals, localized auditory presentations, haptic displays on the stick and rudder pedals, as well as executing weapons models, aerodynamic models, and threat models.

  8. Commissioning and Early Operation Experience of the NSLS-II Storage Ring RF System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, F.; Rose, J.; Cupolo, J.

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) is a 3 GeV electron X-ray user facility commissioned in 2014. The storage ring RF system, essential for replenishing energy loss per turn of the electrons, consists of digital low level RF controllers, 310 kW CW klystron transmitters, CESR-B type superconducting cavities, as well as a supporting cryogenic system. Here we will report on RF commissioning and early operation experience of the system for beam current up to 200mA.

  9. Do nursing home chain size and proprietary status affect experiences with care?

    PubMed Central

    You, Kai; Li, Yue; Intrator, Orna; Stevenson, David; Hirth, Richard; Grabowski, David; Banaszak-Holl, Jane

    2015-01-01

    Background In 2012, over half of nursing homes were operated by corporate chains. Facilities owned by the largest for-profit chains were reported to have lower quality of care. However, it is unknown how nursing home chain ownerships are related with experiences of care. Objectives To study the relationship between nursing home chain characteristics (chain size and profit status) with patients' family member reported ratings on experiences with care. Data Sources and Study Design Maryland nursing home care experience reports, the Online Survey, Certification, And Reporting (OSCAR) files, and Area Resource Files are used. Our sample consists of all non-governmental nursing homes in Maryland from 2007 to 2010. Consumer ratings were reported for: overall care; recommendation of the facility; staff performance; care provided; food and meals; physical environment; and autonomy and personal rights. We identified chain characteristics from OSCAR, and estimated multivariate random effect linear models to test the effects of chain ownership on care experience ratings. Results Independent nonprofit nursing homes have the highest overall rating score of 8.9, followed by 8.6 for facilities in small nonprofit chains, and 8.5 for independent for-profit facilities. Facilities in small, medium and large for-profit chains have even lower overall ratings of 8.2, 7.9, and 8.0, respectively. We find similar patterns of differences in terms of recommendation rate, and important areas such as staff communication and quality of care. Conclusions Evidence suggests that Maryland nursing homes affiliated with large- and medium- for-profit chains had lower ratings of family reported experience with care. PMID:26765147

  10. Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility

    NASA Technical Reports Server (NTRS)

    Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer

    2009-01-01

    Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits and difficulties that a migration to cloud-based computing philosophies has uncovered when compared to the legacy Mission Control Center architecture. The team consists of system and software engineers with extensive experience with the MCC infrastructure and software currently used to support the International Space Station (ISS) and Space Shuttle program (SSP).

  11. Soudan Low Background Counting Facility (SOLO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attisha, Michael; Viveiros, Luiz de; Gaitksell, Richard

    2005-09-08

    The Soudan Low Background Counting Facility (SOLO) has been in operation at the Soudan Mine, MN since March 2003. In the past two years, we have gamma-screened samples for the Majorana, CDMS and XENON experiments. With individual sample exposure times of up to two weeks we have measured sample contamination down to the 0.1 ppb level for 238U / 232Th, and down to the 0.25 ppm level for 40K.

  12. The Low Temperature Microgravity Physics Experiments Project

    NASA Technical Reports Server (NTRS)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; hide

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard the ISS, the other is re-integrated on the ground with new experiments. When the cryogen of the facility in space are exhausted, it will be swapped with the other facility with the new experiment. A total of 20 science missions are envisioned over the next 20 years.

  13. Design, Development and Operational Experience of Demonstration Facility for Cs-137 Source Pencil Production at Trombay - 13283

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, S.B.; Srivastava, P.; Mishra, S.K.

    2013-07-01

    Radioactive waste management is a vital aspect of any nuclear program. The commercial feasibility of the nuclear program largely depends on the efficiency of the waste management techniques. One of such techniques is the separation of high yield radio-nuclides from the waste and making it suitable for medical and industrial applications. This will give societal benefit in addition to revenue generation. Co-60, the isotope presently being used for medical applications, needs frequent replacement because of its short half life. Cs-137, the major constituent of the nuclear waste, is a suitable substitute for Co-60 as a radioactive source because of itsmore » longer half life (28 years). Indian nuclear waste management program has given special emphasis on utilization of Cs-137 for such applications. In view of this a demonstration facility has been designed for vitrification of Cs-137 in borosilicate glass, cast in stainless steel pencils, to be used as source pencils of 300 Ci strength for blood irradiation. An induction heated metallic melter of suitable capacity has been custom designed for the application and employed for the Cs-137 pencil fabrication facility. This article describes various systems, design features, experiments and resulting modifications, observations and remote handling features necessary for the actual operation of such facility. The layout of the facility has been planned in such a way that the same can be adopted in a hot cell for commercial production of source pencils. (authors)« less

  14. Technology evaluation, assessment, modeling, and simulation: the TEAMS capability

    NASA Astrophysics Data System (ADS)

    Holland, Orgal T.; Stiegler, Robert L.

    1998-08-01

    The United States Marine Corps' Technology Evaluation, Assessment, Modeling and Simulation (TEAMS) capability, located at the Naval Surface Warfare Center in Dahlgren Virginia, provides an environment for detailed test, evaluation, and assessment of live and simulated sensor and sensor-to-shooter systems for the joint warfare community. Frequent use of modeling and simulation allows for cost effective testing, bench-marking, and evaluation of various levels of sensors and sensor-to-shooter engagements. Interconnectivity to live, instrumented equipment operating in real battle space environments and to remote modeling and simulation facilities participating in advanced distributed simulations (ADS) exercises is available to support a wide- range of situational assessment requirements. TEAMS provides a valuable resource for a variety of users. Engineers, analysts, and other technology developers can use TEAMS to evaluate, assess and analyze tactical relevant phenomenological data on tactical situations. Expeditionary warfare and USMC concept developers can use the facility to support and execute advanced warfighting experiments (AWE) to better assess operational maneuver from the sea (OMFTS) concepts, doctrines, and technology developments. Developers can use the facility to support sensor system hardware, software and algorithm development as well as combat development, acquisition, and engineering processes. Test and evaluation specialists can use the facility to plan, assess, and augment their processes. This paper presents an overview of the TEAMS capability and focuses specifically on the technical challenges associated with the integration of live sensor hardware into a synthetic environment and how those challenges are being met. Existing sensors, recent experiments and facility specifications are featured.

  15. Global meteorological data facility for real-time field experiments support and guidance

    NASA Technical Reports Server (NTRS)

    Shipham, Mark C.; Shipley, Scott T.; Trepte, Charles R.

    1988-01-01

    A Global Meteorological Data Facility (GMDF) has been constructed to provide economical real-time meteorological support to atmospheric field experiments. After collection and analysis of meteorological data sets at a central station, tailored meteorological products are transmitted to experiment field sites using conventional ground link or satellite communication techniques. The GMDF supported the Global Tropospheric Experiment Amazon Boundary Layer Experiment (GTE-ABLE II) based in Manaus, Brazil, during July and August 1985; an arctic airborne lidar survey mission for the Polar Stratospheric Clouds (PSC) experiment during January 1986; and the Genesis of Atlantic Lows Experiment (GALE) during January, February and March 1986. GMDF structure is similar to the UNIDATA concept, including meteorological data from the Zephyr Weather Transmission Service, a mode AAA GOES downlink, and dedicated processors for image manipulation, transmission and display. The GMDF improved field experiment operations in general, with the greatest benefits arising from the ability to communicate with field personnel in real time.

  16. Critical experiments at Sandia National Laboratories : technical meeting on low-power critical facilities and small reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-11-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-IIImore » is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark reactor physics data to support validation of the reactor physics codes used to design commercial reactor fuel elements in an enrichment range above the current 5% enrichment cap. A first set of critical experiments in the 7uPCX has been completed. More experiments are planned in the 7uPCX series. The critical experiments at Sandia National Laboratories are currently funded by the US Department of Energy Nuclear Criticality Safety Program (NCSP). The NCSP has committed to maintain the critical experiment capability at Sandia and to support the development of a critical experiments training course at the facility. The training course is intended to provide hands-on experiment experience for the training of new and re-training of practicing Nuclear Criticality Safety Engineers. The current plans are for the development of the course to continue through the first part of fiscal year 2011 with the development culminating is the delivery of a prototype of the course in the latter part of the fiscal year. The course will be available in fiscal year 2012.« less

  17. Superfluid helium on orbit transfer (SHOOT)

    NASA Technical Reports Server (NTRS)

    Dipirro, Michael J.

    1987-01-01

    A number of space flight experiments and entire facilities require superfluid helium as a coolant. Among these are the Space Infrared Telescope Facility (SIRTF), the Large Deployable Reflector (LDR), the Advanced X-ray Astrophysics Facility (AXAF), the Particle Astrophysics Magnet Facility (PAMF or Astromag), and perhaps even a future Hubble Space Telescope (HST) instrument. Because these systems are required to have long operational lifetimes, a means to replenish the liquid helium, which is exhausted in the cooling process, is required. The most efficient method of replenishment is to refill the helium dewars on orbit with superfluid helium (liquid helium below 2.17 Kelvin). To develop and prove the technology required for this liquid helium refill, a program of ground and flight testing was begun. The flight demonstration is baselined as a two flight program. The first, described in this paper, will prove the concepts involved at both the component and system level. The second flight will demonstrate active astronaut involvement and semi-automated operation. The current target date for the first launch is early 1991.

  18. Challenges and Opportunities for Biological Mass Spectrometry Core Facilities in the Developing World.

    PubMed

    Bell, Liam; Calder, Bridget; Hiller, Reinhard; Klein, Ashwil; Soares, Nelson C; Stoychev, Stoyan H; Vorster, Barend C; Tabb, David L

    2018-04-01

    The developing world is seeing rapid growth in the availability of biological mass spectrometry (MS), particularly through core facilities. As proteomics and metabolomics becomes locally feasible for investigators in these nations, application areas associated with high burden in these nations, such as infectious disease, will see greatly increased research output. This article evaluates the rapid growth of MS in South Africa (currently approaching 20 laboratories) as a model for establishing MS core facilities in other nations of the developing world. Facilities should emphasize new services rather than new instruments. The reduction of the delays associated with reagent and other supply acquisition would benefit both facilities and the users who make use of their services. Instrument maintenance and repair, often mediated by an in-country business for an international vendor, is also likely to operate on a slower schedule than in the wealthiest nations. A key challenge to facilities in the developing world is educating potential facility users in how best to design experiments for proteomics and metabolomics, what reagents are most likely to introduce problematic artifacts, and how to interpret results from the facility. Here, we summarize the experience of 6 different institutions to raise the level of biological MS available to researchers in South Africa.

  19. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  20. System integration of RF based negative ion experimental facility at IPR

    NASA Astrophysics Data System (ADS)

    Bansal, G.; Bandyopadhyay, M.; Singh, M. J.; Gahlaut, A.; Soni, J.; Pandya, K.; Parmar, K. G.; Sonara, J.; Chakraborty, A.

    2010-02-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ~5 × 1012 cm-3. The source can deliver a negative ion beam of ~10 A with a current density of ~30 mA/cm2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  1. Recent advances in automatic alignment system for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Wilhelmsen, Karl; Awwal, Abdul A. S.; Kalantar, Dan; Leach, Richard; Lowe-Webb, Roger; McGuigan, David; Miller Kamm, Vicki

    2011-03-01

    The automatic alignment system for the National Ignition Facility (NIF) is a large-scale parallel system that directs all 192 laser beams along the 300-m optical path to a 50-micron focus at target chamber in less than 50 minutes. The system automatically commands 9,000 stepping motors to adjust mirrors and other optics based upon images acquired from high-resolution digital cameras viewing beams at various locations. Forty-five control loops per beamline request image processing services running on a LINUX cluster to analyze these images of the beams and references, and automatically steer the beams toward the target. This paper discusses the upgrades to the NIF automatic alignment system to handle new alignment needs and evolving requirements as related to various types of experiments performed. As NIF becomes a continuously-operated system and more experiments are performed, performance monitoring is increasingly important for maintenance and commissioning work. Data, collected during operations, is analyzed for tuning of the laser and targeting maintenance work. Handling evolving alignment and maintenance needs is expected for the planned 30-year operational life of NIF.

  2. Computer assisted operations in Petroleum Development Oman (PDO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Hinai, S.H.; Mutimer, K.

    1995-10-01

    Petroleum Development Oman (PDO) currently produces some 750,000 bopd and 900,000 bwpd from some 74 fields in a large geographical area and diverse operating conditions. A key corporate objective is to reduce operating costs by exploiting productivity gains from proven technology. Automation is seen as a means of managing the rapid growth of well population and production facilities. the overall objective is to improve field management through continuous monitoring of wells and facilities and dissemination of data throughout the whole organization. A major upgrade of PDO`s field Supervisory Control and Data Acquisition (SCADA) system is complete providing a platform tomore » exploit new initiatives particularly for production optimization of artificial lift systems and automatic well testing using multi selector valves, coriolis flow meter measurements and multi component (oil, gas, water) flowmeter. The paper describes PDO`s experience including benefits and challenges which have to be managed when developing Computer Assisted Operations (CAO).« less

  3. Fermilab Testbeam Facility Annual Report – FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrow, M. G.

    2016-11-01

    This Technical Memorandum (TM) summarizes the Fermilab Test Beam operations for FY 2015. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF, which are tabulated. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  4. The national ignition facility: path to ignition in the laboratory

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.

    2007-08-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the US nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

  5. Payload Crew Training Complex (PCTC) utilization and training plan

    NASA Technical Reports Server (NTRS)

    Self, M. R.

    1980-01-01

    The physical facilities that comprise the payload crew training complex (PCTC) are described including the host simulator; experiment simulators; Spacelab aft flight deck, experiment pallet, and experiment rack mockups; the simulation director's console; payload operations control center; classrooms; and supporting soft- and hardware. The parameters of a training philosophy for payload crew training at the PCTC are established. Finally the development of the training plan is addressed including discussions of preassessment, and evaluation options.

  6. Automated space processing payloads study. Volume 2, book 2: Technical report, appendices A through E. [instrument packages and space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Experiment hardware and operational requirements for space shuttle experiments are discussed along with payload and system concepts. Appendixes are included in which experiment data sheets, chamber environmental control and monitoring, method for collection and storage of electrophoretically-separated samples, preliminary thermal evaluation of electromagnetic levitation facilities L1, L2, and L3, and applicable industrial automation equipment are discussed.

  7. Deployment of precise and robust sensors on board ISS-for scientific experiments and for operation of the station.

    PubMed

    Stenzel, Christian

    2016-09-01

    The International Space Station (ISS) is the largest technical vehicle ever built by mankind. It provides a living area for six astronauts and also represents a laboratory in which scientific experiments are conducted in an extraordinary environment. The deployed sensor technology contributes significantly to the operational and scientific success of the station. The sensors on board the ISS can be thereby classified into two categories which differ significantly in their key features: (1) sensors related to crew and station health, and (2) sensors to provide specific measurements in research facilities. The operation of the station requires robust, long-term stable and reliable sensors, since they assure the survival of the astronauts and the intactness of the station. Recently, a wireless sensor network for measuring environmental parameters like temperature, pressure, and humidity was established and its function could be successfully verified over several months. Such a network enhances the operational reliability and stability for monitoring these critical parameters compared to single sensors. The sensors which are implemented into the research facilities have to fulfil other objectives. The high performance of the scientific experiments that are conducted in different research facilities on-board demands the perfect embedding of the sensor in the respective instrumental setup which forms the complete measurement chain. It is shown that the performance of the single sensor alone does not determine the success of the measurement task; moreover, the synergy between different sensors and actuators as well as appropriate sample taking, followed by an appropriate sample preparation play an essential role. The application in a space environment adds additional challenges to the sensor technology, for example the necessity for miniaturisation, automation, reliability, and long-term operation. An alternative is the repetitive calibration of the sensors. This approach, however, increases the operational overhead significantly. But meeting especially these requirements offers unique opportunities for testing these sensor technologies in harsh and dedicated environments which are not available on Earth, therefore pushing the related technologies and methodologies to their limits. The scientific objectives for selected experiments, representing a wide range of research fields, are presented, including the instrument setups and the implemented sensor technologies, and where available, the first scientific results are presented.

  8. Design and Fabrication of the ISTAR Direct-Connect Combustor Experiment at the NASA Hypersonic Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Lee, Jin-Ho; Krivanek, Thomas M.

    2005-01-01

    The Integrated Systems Test of an Airbreathing Rocket (ISTAR) project was a flight demonstration project initiated to advance the state of the art in Rocket Based Combined Cycle (RBCC) propulsion development. The primary objective of the ISTAR project was to develop a reusable air breathing vehicle and enabling technologies. This concept incorporated a RBCC propulsion system to enable the vehicle to be air dropped at Mach 0.7 and accelerated up to Mach 7 flight culminating in a demonstration of hydrocarbon scramjet operation. A series of component experiments was planned to reduce the level of risk and to advance the technology base. This paper summarizes the status of a full scale direct connect combustor experiment with heated endothermic hydrocarbon fuels. This is the first use of the NASA GRC Hypersonic Tunnel facility to support a direct-connect test. The technical and mechanical challenges involved with adapting this facility, previously used only in the free-jet configuration, for use in direct connect mode will be also described.

  9. Automated space processing payloads study. Volume 2, book 1: Technical report. [instrument packages and space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The extent was investigated to which experiment hardware and operational requirements can be met by automatic control and material handling devices; payload and system concepts that make extensive use of automation technology are defined. Hardware requirements for each experiment were established and tabulated, and investigations of applicable existing hardware were documented. The capabilities and characteristics of industrial automation equipment, controls, and techniques are presented in the form of a summary of applicable equipment characteristics in three basic mutually-supporting formats. Facilities for performing groups of experiments are defined along with four levitation groups and three furnace groups; major hardware elements required to implement them were identified. A conceptual design definition of ten different automated processing facilities is presented along with the specific equipment to implement each facility and the design layouts of the different units. Constraints and packaging, weight, and power requirements for six payloads postulated for shuttle missions in the 1979 to 1982 time period were examined.

  10. Low Background Counting at LBNL

    DOE PAGES

    Smith, A. R.; Thomas, K. J.; Norman, E. B.; ...

    2015-03-24

    The Low Background Facility (LBF) at Lawrence Berkeley National Laboratory in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background cave and remotely at an underground location that historically has operated underground in Oroville, CA, but has recently been relocated to the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K)more » or common cosmogenic/anthropogenic products, as well as active screening via Neutron Activation Analysis for specific applications. The LBF also provides hosting services for general R&D testing in low background environments on the surface or underground for background testing of detector systems or similar prototyping. A general overview of the facilities, services, and sensitivities is presented. Recent activities and upgrades will also be presented, such as the completion of a 3π anticoincidence shield at the surface station and environmental monitoring of Fukushima fallout. The LBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.« less

  11. The Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Kundu, Sampa

    2004-01-01

    Microgravity is an environment with very weak gravitational effects. The Fluids and Combustion Facility (FCF) on the International Space Station (ISS) will support the study of fluid physics and combustion science in a long-duration microgravity environment. The Fluid Combustion Facility's design will permit both independent and remote control operations from the Telescience Support Center. The crew of the International Space Station will continue to insert and remove the experiment module, store and reload removable data storage and media data tapes, and reconfigure diagnostics on either side of the optics benches. Upon completion of the Fluids Combustion Facility, about ten experiments will be conducted within a ten-year period. Several different areas of fluid physics will be studied in the Fluids Combustion Facility. These areas include complex fluids, interfacial phenomena, dynamics and instabilities, and multiphase flows and phase change. Recently, emphasis has been placed in areas that relate directly to NASA missions including life support, power, propulsion, and thermal control systems. By 2006 or 2007, a Fluids Integrated Rack (FIR) and a Combustion Integrated Rack (CIR) will be installed inside the International Space Station. The Fluids Integrated Rack will contain all the hardware and software necessary to perform experiments in fluid physics. A wide range of experiments that meet the requirements of the international space station, including research from other specialties, will be considered. Experiments will be contained in subsystems such as the international standard payload rack, the active rack isolation system, the optics bench, environmental subsystem, electrical power control unit, the gas interface subsystem, and the command and data management subsystem. In conclusion, the Fluids and Combustion Facility will allow researchers to study fluid physics and combustion science in a long-duration microgravity environment. Additional information is included in the original extended abstract.

  12. Development of PETAL diagnostics: PETAPhys project

    NASA Astrophysics Data System (ADS)

    Raffestin, D.; Boutoux, G.; Baggio, J.; Batani, D.; Blanchot, N.; Bretheau, D.; Hulin, S.; D'Humieres, E.; Granet, F.; Longhi, Th.; Meyer, Ch.; Moreno, Q.; Nuter, R.; Rault, J.; Tikhonchuk, V.; Universite de Bordeaux/Celia Team; CEA. DAM/Cesta Team

    2017-10-01

    Beginning of autumn 2017, PETAL, a Petawatt laser beam, will be operated for experiments on the LMJ facility at the CEA/ Cesta research center. The PETAPhys project provides a support to the qualification phase of the PETAL laser operation. Within the PETAPhys project, we are developing two simple and robust diagnostics permitting both to characterize the focal spot of the PETAL beam and to measure the hard X-ray spectrum at each shot. The first diagnostic consists in optical imaging of the PETAL beam focal spot in the spectral range of the second and third harmonic radiation emitted from the target. The second diagnostic is a hard X-ray dosimeter consisting in a stack of imaging plates (IP) and filters, either placed inside a re-entrant tube or inserted close to target. Numerical simulations as well as experiments on small scale facilities have been performed to design these diagnostics. If available, preliminary results from PETAL experiments will be discussed. We acknowledge the financial support from the French National Research Agency (ANR) in the framework of ``the investments for the future'' Programme IdEx Bordeaux-LAPHIA (ANR-10-IDEX-03-02).

  13. Apollo experience report: Engineering and analysis mission support

    NASA Technical Reports Server (NTRS)

    Fricke, R. W., Jr.

    1975-01-01

    The tasks performed by the team of specialists that evaluated hardware performance during prelaunch checkout and in-flight operation are discussed. The organizational structure, operational procedures, and interfaces as well as the facilities and software required to perform these tasks are discussed. The scope of the service performed by the team and the evaluation philosophy are described. Summaries of problems and their resolution are included as appendixes.

  14. Segmented beryllium target for a 2 MW super beam facility

    DOE PAGES

    Davenne, T.; Caretta, O.; Densham, C.; ...

    2015-09-14

    The Long Baseline Neutrino Facility (LBNF, formerly the Long Baseline Neutrino Experiment) is under design as a next generation neutrino oscillation experiment, with primary objectives to search for CP violation in the leptonic sector, to determine the neutrino mass hierarchy and to provide a precise measurement of θ 23. The facility will generate a neutrino beam at Fermilab by the interaction of a proton beam with a target material. At the ultimate anticipated proton beam power of 2.3 MW the target material must dissipate a heat load of between 10 and 25 kW depending on the target size. This paper presents amore » target concept based on an array of spheres and compares it to a cylindrical monolithic target such as that which currently operates at the T2K facility. Thus simulation results show that the proposed technology offers efficient cooling and lower stresses whilst delivering a neutrino production comparable with that of a conventional solid cylindrical target.« less

  15. The challenge of logistics facilities development

    NASA Technical Reports Server (NTRS)

    Davis, James R.

    1987-01-01

    The paper discusses the experiences of a group of engineers and logisticians at John F. Kennedy Space center in the design, construction and activation of a consolidated logistics facility for support of Space Transportation System ground operations and maintenance. The planning, methodology and processes are covered, with emphasis placed on unique aspects and lessons learned. The project utilized a progressive design, baseline and build concept for each phase of construction, with the Government exercising funding and configuration oversight.

  16. Computational Studies of X-ray Framing Cameras for the National Ignition Facility

    DTIC Science & Technology

    2013-06-01

    Livermore National Laboratory 7000 East Avenue Livermore, CA 94550 USA Abstract The NIF is the world’s most powerful laser facility and is...a phosphor screen where the output is recorded. The x-ray framing cameras have provided excellent information. As the yields at NIF have increased...experiments on the NIF . The basic operation of these cameras is shown in Fig. 1. Incident photons generate photoelectrons both in the pores of the MCP and

  17. Experiences with welding multi-assembly sealed baskets at Palisades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agace, S.; Worrell, S.; Stewart, L.

    1995-12-01

    Four utilities were using operational canister-based dry storage facilities at year-end, and seven more have contracts to establish similar facilities. Consumers Power`s Palisades Nuclear Power Plant has successfully completed loading its eighth dry storage canister with the Ventilated Storage Cask (VSC) system, under license to Sierra Nuclear Corporation. The VSC has a Multi-Assembly Sealed Basket (MSB) containing 24 specially-selected and aged spent fuel assemblies. MSB closure occurs when two independent lids are welded at the utility. The canister wall and lids are SA-516 Grade 70 carbon steel. This paper discusses the welding system design, closure operations and MSB closure operationsmore » at Palisades.« less

  18. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppens, Philip

    2003-06-22

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellentmore » training for students and postdoctoral scientists in the field.« less

  19. Experiment/facility requirements document for the Space Station Furnace Facility. Section 1: Integrated configuration

    NASA Astrophysics Data System (ADS)

    1992-05-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).

  20. Alternative Fuels Research Laboratory

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Nakley, Leah M.; Yen, Chia H.

    2012-01-01

    NASA Glenn has invested over $1.5 million in engineering, and infrastructure upgrades to renovate an existing test facility at the NASA Glenn Research Center (GRC), which is now being used as an Alternative Fuels Laboratory. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch (F-T) synthesis and thermal stability testing. This effort is supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing project. The purpose of this test facility is to conduct bench scale F-T catalyst screening experiments. These experiments require the use of a synthesis gas feedstock, which will enable the investigation of F-T reaction kinetics, product yields and hydrocarbon distributions. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor for catalyst activation studies. Product gas composition and performance data can be continuously obtained with an automated gas sampling system, which directly connects the reactors to a micro-gas chromatograph (micro GC). Liquid and molten product samples are collected intermittently and are analyzed by injecting as a diluted sample into designated gas chromatograph units. The test facility also has the capability of performing thermal stability experiments of alternative aviation fuels with the use of a Hot Liquid Process Simulator (HLPS) (Ref. 1) in accordance to ASTM D 3241 "Thermal Oxidation Stability of Aviation Fuels" (JFTOT method) (Ref. 2). An Ellipsometer will be used to study fuel fouling thicknesses on heated tubes from the HLPS experiments. A detailed overview of the test facility systems and capabilities are described in this paper.

  1. Experiment/facility requirements document for the Space Station Furnace Facility. Section 1: Integrated configuration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).

  2. The NTF Inlet Guide Vanes Thermal Gradient Problem and Its Mitigation

    NASA Technical Reports Server (NTRS)

    Venkat, Venki S.; Paryz, Roman W.; Bissett, Owen W.; Kilgore, W.

    2013-01-01

    The National Transonic Facility (NTF) utilizes Inlet Guide Vanes (IGV) to provide precise, quick response Mach number control for the tunnel. During cryogenic operations, the massive IGV structure can experience large thermal gradients, measured as "Delta T or (Delta)T", between the IGV ring and its support structure called the transfer case. If these temperature gradients are too large, the IGV structure can be stressed beyond its safety limit and cease operation. In recent years, (Delta)T readings exceeding the prescribed safety limits were observed frequently during cryogenic operations, particularly during model access. The tactical operation methods of the tunnel to minimize (Delta)T did not always succeed. One obvious option to remedy this condition is to warm up the IGV structure by disabling the main drive operation, but this "natural" warm up method can takes days in some cases, resulting in productivity loss. This paper documents the thermal gradient problem associated with the IGV structure during cryogenic operation and how the facility has recently achieved an acceptable mitigation which has resulted in improved efficiency of operations.

  3. Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities

    NASA Astrophysics Data System (ADS)

    Hubbard, H. H.; Powell, C. A.

    1981-06-01

    A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.

  4. Space station needs, attributes, and architectural options: Commercial opportunities in space

    NASA Technical Reports Server (NTRS)

    Wolbers, H. L., Jr.

    1983-01-01

    The roles of government and industry in the commercialization of space are examined and an approach for stimulating the interests of potential users is described. Several illustrative examples of potential commercial developments are presented. The role of manned space systems in space commercialization is discussed as well as some of the issues and opportunities that are likely to be encountered in the commercial exploitation of the unique characteristics of space. Results suggest that interest in space facilities can be found among a number of commercially oriented users. In order to develop and maintain the involvement of these potential users, however, space demonstrations are required, and commercial growth or evolution depends on the results of the initial in situ experience. Manned facilities are required for the conceptual research and development phases and for maintenance and servicing operations during production or operational missions. Space facilities must be easily accessible by dependable and regularly scheduled means.

  5. Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Powell, C. A.

    1981-01-01

    A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.

  6. Operational Experience of the Upgraded Cryogenic Systems at the Nscl

    NASA Astrophysics Data System (ADS)

    McCartney, A. H.; Laumer, H. L.; Jones, S. A.

    2010-04-01

    The National Superconducting Cyclotron Laboratory (NSCL) is a NSF-supported facility, with additional support from Michigan State University (MSU) for conducting research in nuclear and accelerator science. The facility consists of two superconducting cyclotrons and over fifty individual cryostats, each containing several superconducting magnets that are used in the beam transport system. Beginning in 1999 a major facility upgrade was started. New, larger magnets were added, increasing the total 4.5 K loads, necessitating an increase of the cryogenic capacity. A helium plant (nominal 1750-Watt at 4.5 K) was acquired from the United States Bureau of Mines where it had been operating as a pure liquefier since the early 1980's. It was refurbished for the NSCL with extensive support from the cryogenics group at Thomas Jefferson National Laboratory. The new cryogenic system came online early in 2001. The cold-mass is relatively high in relation to the installed capacity, presenting challenges during cool downs. Reliability over the last five years has been greater than 99%. An overview of the last seven years of operations of our cryogenic systems is presented that includes normal operations, testing of new equipment, noteworthy breakdowns, routine maintenance, and system reliability.

  7. Research objectives, opportunities, and facilities for microgravity science

    NASA Technical Reports Server (NTRS)

    Bayuzick, Robert J.

    1992-01-01

    Microgravity Science in the U.S.A. involves research in fluids science, combustion science, materials science, biotechnology, and fundamental physics. The purpose is to achieve a thorough understanding of the effects of gravitational body forces on physical phenomena relevant to those disciplines. This includes the study of phenomena which are usually overwhelmed by the presence of gravitational body forces and, therefore, chiefly manifested when gravitational forces are weak. In the pragmatic sense, the research involves gravity level as an experimental parameter. Calendar year 1992 is a landmark year for research opportunities in low earth orbit for Microgravity Science. For the first time ever, three Spacelab flights will fly in a single year: IML-1 was launched on January 22; USML-1 was launched on June 25; and, in September, SL-J will be launched. A separate flight involving two cargo bay carriers, USMP-1, will be launched in October. From the beginning of 1993 up to and including the Space Station era (1997), nine flights involving either Spacelab or USMP carriers will be flown. This will be augmented by a number of middeck payloads and get away specials flying on various flights. All of this activity sets the stage for experimentation on Space Station Freedom. Beginning in 1997, experiments in Microgravity Science will be conducted on the Space Station. Facilities for doing experiments in protein crystal growth, solidification, and biotechnology will all be available. These will be joined by middeck-class payloads and the microgravity glove box for conducting additional experiments. In 1998, a new generation protein crystal growth facility and a facility for conducting combustion research will arrive. A fluids science facility and additional capability for conducting research in solidification, as well as an ability to handle small payloads on a quick response basis, will be added in 1999. The year 2000 will see upgrades in the protein crystal growth and fluids science facilities. From the beginning of 1997 to the fall of 1999 (the 'man-tended capability' era), there will be two or three utilization flights per year. Plans call for operations in Microgravity Science during utilization flights and between utilization flights. Experiments conducted during utilization flights will characteristically require crew interaction, short duration, and less sensitivity to perturbations in the acceleration environment. Operations between utilization flights will involve experiments that can be controlled remotely and/or can be automated. Typically, the experiments will require long times and a pristine environment. Beyond the fall of 1999 (the 'permanently-manned capability' era), some payloads will require crew interaction; others will be automated and will make use of telescience.

  8. Improved E-ELT subsystem and component specifications, thanks to M1 test facility

    NASA Astrophysics Data System (ADS)

    Dimmler, M.; Marrero, J.; Leveque, S.; Barriga, Pablo; Sedghi, B.; Kornweibel, N.

    2014-07-01

    During the last 2 years ESO has operated the "M1 Test Facility", a test stand consisting of a representative section of the E-ELT primary mirror equipped with 4 complete prototype segment subunits including sensors, actuators and control system. The purpose of the test facility is twofold: it serves to study and get familiar with component and system aspects like calibration, alignment and handling procedures and suitable control strategies on real hardware long before the primary mirror (hereafter M1) components are commissioned. Secondly, and of major benefit to the project, it offered the possibility to evaluate component and subsystem performance and interface issues in a system context in such detail, that issues could be identified early enough to feed back into the subsystem and component specifications. This considerably reduces risk and cost of the production units and allows refocusing the project team on important issues for the follow-up of the production contracts. Experiences are presented in which areas the results of the M1 Test Facility particularly helped to improve subsystem specifications and areas, where additional tests were adopted independent of the main test facility. Presented are the key experiences of the M1 Test Facility which lead to improved specifications or identified the need for additional testing outside of the M1 Test Facility.

  9. Implementation of a Water Flow Control System into the ISS'S Planned Fluids & Combustion Facility

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2003-01-01

    The Fluids and Combustion Facility (FCF) will become an ISS facility capable of performing basic combustion and fluids research. The facility consists of two independent payload racks specifically configured to support multiple experiments over the life of the ISS. Both racks will depend upon the ISS's Moderate Temperature Loop (MTL) for removing waste heat generated by the avionics and experiments operating within the racks. By using the MTL, constraints are imposed by the ISS vehicle on how the coolant resource is used. On the other hand, the FCF depends upon effective thermal control for maximizing life of the hardware and for supplying proper boundary conditions for the experiments. In the implementation of a design solution, significant factors in the selection of the hardware included ability to measure and control relatively low flow rates, ability to throttle flow within the time constraints of the ISS MTL, conserve energy usage, observe low mass and small volume requirements. An additional factor in the final design solution selection was considering how the system would respond to a loss of power event. This paper describes the method selected to satisfy the FCF design requirements while maintaining the constraints applied by the ISS vehicle.

  10. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  11. Ground based simulation of life sciences Spacelab experiments

    NASA Technical Reports Server (NTRS)

    Rummel, J. A.; Alexander, W. C.; Bush, W. H.; Johnston, R. S.

    1978-01-01

    The third in a series of Spacelab Mission Development tests was a joint effort of the Ames Research and Johnson Space Centers to evaluate planned operational concepts of the Space Shuttle life sciences program. A three-man crew conducted 26 experiments and 12 operational tests, utilizing both human and animal subjects. The crew lived aboard an Orbiter/Spacelab mockup for the seven-day simulation. The Spacelab was identical in geometry to the European Space Agency design, complete with removable rack sections and stowage provisions. Communications were controlled as currently planned for operational Shuttle flights. A Science Operations Remote Center at the Ames Research Center was managed by simulated Mission Control and Payload Operation Control Centers at the Johnson Space Center. This paper presents the test objectives, describes the facilities and test program, and outlines the results of this test.

  12. 24 CFR 320.3 - Eligible issuers of securities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Have management with adequate experience, and access to adequate facilities to issue or service... policies of the issuer permit any discrimination based on race, religion, color, national origin, age, or... its business operations in accordance with accepted mortgage banking practices, ethics, and standards...

  13. 75 FR 26714 - Notice of Proposed New Recreation Fee Site; Federal Lands Recreation Enhancement Act, (Title VIII...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... charge $10 per operator. A $60 annual pass will also be available for purchase by the public. This annual... recreational experience at the facility. Comparable recreational use fees are being proposed at other sites...

  14. Space robotic experiment in JEM flight demonstration

    NASA Technical Reports Server (NTRS)

    Nagatomo, Masanori; Tanaka, Masaki; Nakamura, Kazuyuki; Tsuda, Shinichi

    1994-01-01

    Japan is collaborating on the multinational space station program. The JEM, Japanese Experiment Module, has both a pressurized module and an Exposed Facility (EF). JEM Remote Manipulator System (JEMRMS) will play a dominant role in handling/servicing payloads and the maintenance of the EF, and consists of two robotic arms, a main arm and a small fine arm. JEM Flight Demonstration (JFD) is a space robotics experiment using the prototype small fine arm to demonstrate its capability, prior to the Space Station operation. The small fine arm will be installed in the Space Shuttle cargo bay and operated by a crew from a dedicated workstation in the Aft Flight Deck of the orbiter.

  15. Whitson working on the Nutrition Experiment during Expedition 15/Expedition 16

    NASA Image and Video Library

    2007-10-19

    ISS015-E-35308 (19 Oct. 2007) --- NASA astronaut Peggy A. Whitson, Expedition 16 commander, works with the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) in the Destiny laboratory of the International Space Station. MELFI is a low temperature freezer facility with nominal operating temperatures of -80, -26 and +4 degrees Celsius that will preserve experiment materials over long periods.

  16. Fermilab Testbeam Facility Annual Report – FY 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrow, M. G.

    2015-11-01

    This Technical Memorandum (TM) summarizes the Fermilab Test Beam operations for FY 2015. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF and are listed in Table TB-1. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  17. Fermilab Test Beam Facility Annual Report FY17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rominsky, M.; Schmidt, E.; Rivera, R.

    This Technical Memorandum (TM) summarizes the Fermilab Test Beam operations for FY2017. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF and are listed in Table 1. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  18. Design Visualization Internship Overview

    NASA Technical Reports Server (NTRS)

    Roberts, Trevor D.

    2014-01-01

    This is a report documenting the details of my work as a NASA KSC intern for the Summer Session from June 2nd to August 8th, 2014. This work was conducted within the Design Visualization Group, a Contractor staffed organization within the C1 division of the IT Directorate. The principle responsibilities of the KSC Design Visualization Group are the production of 3D simulations of NASA equipment and facilities for the purpose of planning complex operations such as hardware transportation and vehicle assembly. My role as an intern focused on aiding engineers in using 3D scanning equipment to obtain as-built measurements of NASA facilities, as well as using CATIA and DELMIA to process this data. My primary goals for this internship focused on expanding my CAD knowledge and capabilities, while also learning more about technologies I was previously unfamiliar with, such as 3D scanning. An additional goal of mine was to learn more about how NASA operates, and how the U.S. Space Program operates on a day-to-day basis. This opportunity provided me with a front-row seat to the daily maneuvers and operations of KSC and NASA as a whole. Each work day, I was able to witness, and even take part of, a small building block of the future systems that will take astronauts to other worlds. After my experiences this summer, not only can I say that my goals have been met, but also that this experience has been the highlight of my experience in higher education.

  19. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2004-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30,60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized information from psychological and medical testing, data on the knowledge, experience and skills of the applicants, and team building exercises. The design, development, buildup and operation of test hardware and documentation followed the established NASA processes and requirements for test buildup and operation.

  20. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized information from psychological and medical testing, data on the knowledge, experience and skills of the applicants, and team building exercises. The design, development, buildup and operation of test hardware and documentation followed the established NASA processes and requirements for test buildup and operation.

  1. The BepiColombo/SERENA package: Serena Integrated Test campaign

    NASA Astrophysics Data System (ADS)

    Orsini, S.; De Angelis, E.; Livi, S.; Lichtenegger, H.; Barabash, S.; Milillo, A.; Wurz, P.; Olivieir, A.; D'Arcio, L.; Philips, M.; Laky, G.; Wieser, M.; Camozzi, F.; Di Lellis, A. M.; Rispoli, R.; Jeszenesky, H.; Mura, A.; Aronica, A.; Lazzarotto, F.; Vertolli, N.

    2017-09-01

    The activities related to the BepiColombo/ MPO/SERENA Integrated Test (SIT, held in February-March 2017 inside the thermal vacuum facility at the University of Bern, Phys. Inst.) are presented. This campaign has been a unique opportunity to test the experiment performances, with all the four flight-spare instruments of SERENA (ELENA, STROFIO, PICAM, and MIPA, simultaneously operated by the System Control Unit (SCU), in a fully operational configuration.

  2. Bruker SMART X2S Benchtop System: A Means to Making X-Ray Crystallography More Mainstream in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Guzei, Ilia A.; Hill, Nicholas J.; Zakai, Uzma I.

    2010-01-01

    Bruker SMART X2S is a portable benchtop diffractometer that requires only a 110 V outlet to operate. The instrument operation is intuitive and facile with an automation layer governing the workflow from behind the scenes. The user participation is minimal. At the end of an experiment, the instrument attempts to solve the structure automatically;…

  3. University of Minnesota Aquifer Thermal Energy Storage Field Test Facility

    NASA Astrophysics Data System (ADS)

    Walton, M.; Hoyer, M. C.

    1982-12-01

    The University of Minnesota Aquifer Thermal Energy Storage (ATES) Field Test Facility became operational. Experiments demonstrated that the Franconia-Ironton-Galesville aquifer will accept injection of 300 gpm (18.9 1 sec (-1)) at reasonable pressures with a heat buildup in the injection well of about 44 psi (31.6 m) over 8 days. Heating of the ground water caused precipitation of carbonate in the piping and injection well, but with proper water conditioning, the system will work satisfactorily at elevated temperatures.

  4. Evaluating the heat pump alternative for heating enclosed wastewater treatment facilities in cold regions

    NASA Astrophysics Data System (ADS)

    Martel, C. J.; Phetteplace, G. E.

    1982-05-01

    This report presents a five-step procedure for evaluating the technical and economic feasibility of using heat pumps to recover heat from treatment plant effluent. The procedure is meant to be used at the facility planning level by engineers who are unfamiliar with this technology. An example of the use of the procedure and general design information are provided. Also, the report reviews the operational experience with heat pumps at wastewater plants located in Fairbanks, Alaska, Madison, Wisconsin, and Wilton, Maine.

  5. Status of the LBNF Cryogenic System

    DOE PAGES

    Montanari, D.; Adamowski, M.; Bremer, J.; ...

    2017-12-30

    We present that the Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An internationalmore » engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. Lastly, the expected performance, the functional requirements and the status of the design are also highlighted.« less

  6. Status of the LBNF Cryogenic System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanari, D.; Adamowski, M.; Bremer, J.

    We present that the Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An internationalmore » engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. Lastly, the expected performance, the functional requirements and the status of the design are also highlighted.« less

  7. Status of the LBNF Cryogenic System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanari, D.; Adamowski, M.; Bremer, J.

    2017-01-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 ton of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team willmore » design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the models of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.« less

  8. Development and construction of a comprehensive set of research diagnostics for the FLARE user facility

    NASA Astrophysics Data System (ADS)

    Yoo, Jongsoo; Jara-Almonte, J.; Majeski, S.; Frank, S.; Ji, H.; Yamada, M.

    2016-10-01

    FLARE (Facility for Laboratory Reconnection Experiments) will be operated as a flexible user facility, and so a complete set of research diagnostics is under development, including magnetic probe arrays, Langmuir probes, Mach probes, spectroscopic probes, and a laser interferometer. In order to accommodate the various requirements of users, large-scale (1 m), variable resolution (0.5-4 cm) magnetic probes have been designed, and are currently being prototyped. Moreover, a fully fiber-coupled laser interferometer has been designed to measure the line-integrated electron density. This fiber-coupled interferometer system will reduce the complexity of alignment processes and minimize maintenance of the system. Finally, improvements to the electrostatic probes and spectroscopic probes currently used in the Magnetic Reconnection Experiment (MRX) are discussed. The specifications of other subsystems, such as integrators and digitizers, are also presented. This work is supported by DoE Contract No. DE-AC0209CH11466.

  9. Status of the LBNF Cryogenic System

    NASA Astrophysics Data System (ADS)

    Montanari, D.; Adamowski, M.; Bremer, J.; Delaney, M.; Diaz, A.; Doubnik, R.; Haaf, K.; Hentschel, S.; Norris, B.; Voirin, E.

    2017-12-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  10. 75 FR 26711 - Notice of New Recreation Fee Site; Federal Lands Recreation Enhancement Act, (Title VIII, Pub. L...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... operator for access to these trails. A $60 annual pass will also be available for purchase by the public... recreational experience at the facility. Comparable recreational use fees are being proposed at other sites...

  11. A new ion-beam laboratory for materials research at the Slovak University of Technology

    NASA Astrophysics Data System (ADS)

    Noga, Pavol; Dobrovodský, Jozef; Vaňa, Dušan; Beňo, Matúš; Závacká, Anna; Muška, Martin; Halgaš, Radoslav; Minárik, Stanislav; Riedlmajer, Róbert

    2017-10-01

    An ion beam laboratory (IBL) for materials research has been commissioned recently at the Slovak University of Technology within the University Science Park CAMBO located in Trnava. The facility will support research in the field of materials science, physical engineering and nanotechnology. Ion-beam materials modification (IBMM) as well as ion-beam analysis (IBA) are covered and deliverable ion energies are in the range from tens of keV up to tens of MeV. Two systems have been put into operation. First, a high current version of the HVEE 6 MV Tandetron electrostatic tandem accelerator with duoplasmatron and cesium sputtering ion sources, equipped with two end-stations: a high-energy ion implantation and IBA end-station which includes RBS, PIXE and ERDA analytical systems. Second, a 500 kV implanter equipped with a Bernas type ion source and two experimental wafer processing end-stations. The facility itself, operational experience and first IBMM and IBA experiments are presented together with near-future plans and ongoing development of the IBL.

  12. Crew operations

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The requirements for the activities involved, and the procedures used by the crew in the operations of the modular space station are presented. All crew-related characteristics of the station and its operations are indicated. The interior configuration and arrangement of each of the space station modules, the facilities and equipment in the module and their operation are described as related to crew habitability. The crew activities and procedures involved in the operation of the station in the accomplishment of its primary mission are defined. The operations involved in initial station buildup, and the on-orbit operation and maintenance of the station and its subsystems to support the experimental program are included. A general description of experiment operations is also given.

  13. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify and employ novel software for procedure development and execution. The procedures contained the ground procedure logic and actions as possible to include fault detection and recovery capabilities.

  14. PERLE. Powerful energy recovery linac for experiments. Conceptual design report

    NASA Astrophysics Data System (ADS)

    Angal-Kalinin, D.; Arduini, G.; Auchmann, B.; Bernauer, J.; Bogacz, A.; Bordry, F.; Bousson, S.; Bracco, C.; Brüning, O.; Calaga, R.; Cassou, K.; Chetvertkova, V.; Cormier, E.; Daly, E.; Douglas, D.; Dupraz, K.; Goddard, B.; Henry, J.; Hutton, A.; Jensen, E.; Kaabi, W.; Klein, M.; Kostka, P.; Lasheras, N.; Levichev, E.; Marhauser, F.; Martens, A.; Milanese, A.; Militsyn, B.; Peinaud, Y.; Pellegrini, D.; Pietralla, N.; Pupkov, Y.; Rimmer, R.; Schirm, K.; Schulte, D.; Smith, S.; Stocchi, A.; Valloni, A.; Welsch, C.; Willering, G.; Wollmann, D.; Zimmermann, F.; Zomer, F.

    2018-06-01

    A conceptual design is presented of a novel energy-recovering linac (ERL) facility for the development and application of the energy recovery technique to linear electron accelerators in the multi-turn, large current and large energy regime. The main characteristics of the powerful energy recovery linac experiment facility (PERLE) are derived from the design of the Large Hadron electron Collider, an electron beam upgrade under study for the LHC, for which it would be the key demonstrator. PERLE is thus projected as a facility to investigate efficient, high current (HC) (>10 mA) ERL operation with three re-circulation passages through newly designed SCRF cavities, at 801.58 MHz frequency, and following deceleration over another three re-circulations. In its fully equipped configuration, PERLE provides an electron beam of approximately 1 GeV energy. A physics programme possibly associated with PERLE is sketched, consisting of high precision elastic electron–proton scattering experiments, as well as photo-nuclear reactions of unprecedented intensities with up to 30 MeV photon beam energy as may be obtained using Fabry–Perot cavities. The facility has further applications as a general technology test bed that can investigate and validate novel superconducting magnets (beam induced quench tests) and superconducting RF structures (structure tests with HC beams, beam loading and transients). Besides a chapter on operation aspects, the report contains detailed considerations on the choices for the SCRF structure, optics and lattice design, solutions for arc magnets, source and injector and on further essential components. A suitable configuration derived from the here presented design concept may next be moved forward to a technical design and possibly be built by an international collaboration which is being established.

  15. 1994 SSRL Activity Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-11-18

    SSRL, a division of the Stanford Linear Accelerator Center, is a national user facility which provides synchrotron radiation, a name given to x-rays or light produced by electrons circulating in a storage ring at nearly the speed of light. The synchrotron radiation is produced by the 3.3 GeV storage ring, SPEAR. SPEAR is a fully dedicated synchrotron radiation facility which has been operating for user experiments 6 to 7 months per year. 1994, the third year of operation of SSRL as a fully dedicated, low-emittance, independent user facility was superb. The facility ran extremely well, delivering 89% of the scheduledmore » user beam to 25 experimental stations during 6.5 months of user running. Over 600 users came from 167 institutions to participate in 343 experiments. Users from private industry were involved in 31% of these experiments. The SPEAR accelerator ran very well with no major component failures and an unscheduled down time of only 2.9%. In addition to this increased reliability, there was a significant improvement in the stability of the beam. The enhancements to the SPEAR orbit as part of a concerted three-year program were particularly noticeable to users. the standard deviation of beam movement (both planes) in the last part of the run was 80 microns, major progress toward the ultimate goal of 50-micron stability. This was a significant improvement from the previous year when the movement was 400 microns in the horizontal and 200 microns in the vertical. A new accelerator Personal Protection System (PPS), built with full redundancy and providing protection from both radiation exposure and electrical hazards, was installed in 1994.« less

  16. Development of Army Facility Functionality Assessment Criteria and Procedures

    DTIC Science & Technology

    2010-09-01

    critical facility types: the Tactical Equipment Main- tenance Facility (TEMF), the Company Operations Facility (COF), the Bat- talion Headquarters...Criteria for Company Operations Facilities (COF) ................ 56 Appendix G: Army Standard Design Criteria for Tactical Equipment Maintenance...1 mission-critical facility types: the Tactical Equipment Mainten- ance Facility (TEMF), the Company Operations Facility (COF), the Batta- lion

  17. Effect of steam generator configuration in a loss of the RHR during mid-loop operation at PKL facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villanueva, J. F.; Carlos, S.; Martorell, S.

    The loss of the residual heat removal system in mid-loop conditions may occur with a non-negligible contribution to the plant risk, so the analysis of the accidental sequences and the actions to mitigate the accident are of great interest in shutdown conditions. In order to plan the appropriate measures to mitigate the accident is necessary to understand the thermal-hydraulic processes following the loss of the residual heat removal system during shutdown. Thus, transients of this kind have been simulated using best-estimate codes in different integral test facilities and compared with experimental data obtained in different facilities. In PKL (Primaerkreislauf-Versuchsanlage, primarymore » coolant loop test facility) test facility different series of experiments have been undertaken to analyze the plant response in shutdown. In this context, the E3 and F2 series consist of analyzing the loss of the residual heat removal system with a reduced inventory in the primary system. In particular, the experiments were developed to investigate the influence of the steam generators secondary side configuration on the plant response, what involves the consideration of different number of steam generators filled with water and ready for activation, on the heat transfer mechanisms inside the steam generators U-tubes. This work presents the results of such experiments calculated using, RELAP5/Mod 3.3. (authors)« less

  18. Conducting Research on the International Space Station Using the EXPRESS Rack Facilities

    NASA Technical Reports Server (NTRS)

    Thompson, Sean W.; Lake, Robert E.

    2013-01-01

    Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling (500 W) for two locations, one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.

  19. Conducting Research on the International Space Station using the EXPRESS Rack Facilities

    NASA Technical Reports Server (NTRS)

    Thompson, Sean W.; Lake, Robert E.

    2016-01-01

    Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling for two locations (500W ea.), one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.

  20. Deuterium results at the negative ion source test facility ELISE

    NASA Astrophysics Data System (ADS)

    Kraus, W.; Wünderlich, D.; Fantz, U.; Heinemann, B.; Bonomo, F.; Riedl, R.

    2018-05-01

    The ITER neutral beam system will be equipped with large radio frequency (RF) driven negative ion sources, with a cross section of 0.9 m × 1.9 m, which have to deliver extracted D- ion beams of 57 A at 1 MeV for 1 h. On the extraction from a large ion source experiment test facility, a source of half of this size is being operational since 2013. The goal of this experiment is to demonstrate a high operational reliability and to achieve the extracted current densities and beam properties required for ITER. Technical improvements of the source design and the RF system were necessary to provide reliable operation in steady state with an RF power of up to 300 kW. While in short pulses the required D- current density has almost been reached, the performance in long pulses is determined in particular in Deuterium by inhomogeneous and unstable currents of co-extracted electrons. By application of refined caesium evaporation and distribution procedures, and reduction and symmetrization of the electron currents, considerable progress has been made and up to 190 A/m2 D-, corresponding to 66% of the value required for ITER, have been extracted for 45 min.

  1. Containerless Processing in Reduced Gravity Using the TEMPUS Facility during MSL-1 and MSL-1R

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.

    1998-01-01

    Containerless processing provides a high purity environment for the study of high-temperature, very reactive materials. It is an important method which provides access to the metastable state of an undercooled melt. In the absence of container walls, the nucleation rate is greatly reduced and undercooling up to (Tm-Tn)/Tm approx. equal to 0.2 can be obtained, where Tm and Tn are the melting and nucleation temperatures, respectively. Electromagnetic levitation represents a method particularly well-suited for the study of metallic melts. The TEMPUS (Tiegelfreies ElektroMagnetisches Prozessieren Unter Schwerelosgkeit) facility is a research instrument designed to perform electromagnetic levitation studies in reduced gravity. TEMPUS is a joint undertaking between DARA, the German Space Agency, and the Microgravity Science and Applications Division of NASA. The George C. Marshall Space Flight Center provides the leadership for scientific and management efforts which support the four US PI teams which performed experiments in the TEMPUS facility. The facility is sensitive to accelerations in the 1-10 Hz range. This became evident during the MSL-1 mission. Analysis of accelerometer and video data indicated that loss of sample control occurred during crew exercise periods which created disturbances in this frequency range. Prior to the MSL-1R flight the TEMPUS team, the accelerometer support groups and the mission operations team developed a strategy to provide for the operation of the facility without such disturbances. The successful implementation of this plan led to the highly successful operation of this facility during MSL-1R.

  2. Ground based ISS payload microgravity disturbance assessments.

    PubMed

    McNelis, Anne M; Heese, John A; Samorezov, Sergey; Moss, Larry A; Just, Marcus L

    2005-01-01

    In order to verify that the International Space Station (ISS) payload facility racks do not disturb the microgravity environment of neighboring facility racks and that the facility science operations are not compromised, a testing and analytical verification process must be followed. Currently no facility racks have taken this process from start to finish. The authors are participants in implementing this process for the NASA Glenn Research Center (GRC) Fluids and Combustion Facility (FCF). To address the testing part of the verification process, the Microgravity Emissions Laboratory (MEL) was developed at GRC. The MEL is a 6 degree of freedom inertial measurement system capable of characterizing inertial response forces (emissions) of components, sub-rack payloads, or rack-level payloads down to 10(-7) g's. The inertial force output data, generated from the steady state or transient operations of the test articles, are utilized in analytical simulations to predict the on-orbit vibratory environment at specific science or rack interface locations. Once the facility payload rack and disturbers are properly modeled an assessment can be made as to whether required microgravity levels are achieved. The modeling is utilized to develop microgravity predictions which lead to the development of microgravity sensitive ISS experiment operations once on-orbit. The on-orbit measurements will be verified by use of the NASA GRC Space Acceleration Measurement System (SAMS). The major topics to be addressed in this paper are: (1) Microgravity Requirements, (2) Microgravity Disturbers, (3) MEL Testing, (4) Disturbance Control, (5) Microgravity Control Process, and (6) On-Orbit Predictions and Verification. Published by Elsevier Ltd.

  3. MagLev Cobra: Test Facilities and Operational Experiments

    NASA Astrophysics Data System (ADS)

    Sotelo, G. G.; Dias, D. H. J. N.; de Oliveira, R. A. H.; Ferreira, A. C.; De Andrade, R., Jr.; Stephan, R. M.

    2014-05-01

    The superconducting MagLev technology for transportation systems is becoming mature due to the research and developing effort of recent years. The Brazilian project, named MagLev-Cobra, started in 1998. It has the goal of developing a superconducting levitation vehicle for urban areas. The adopted levitation technology is based on the diamagnetic and the flux pinning properties of YBa2Cu3O7-δ (YBCO) bulk blocks in the interaction with Nd-Fe-B permanent magnets. A laboratory test facility with permanent magnet guideway, linear induction motor and one vehicle module is been built to investigate its operation. The MagLev-Cobra project state of the art is presented in the present paper, describing some construction details of the new test line with 200 m.

  4. Study of experiments on condensation of nitrogen by homogeneous nucleation at states modelling those on the national transonic facility

    NASA Technical Reports Server (NTRS)

    Wegener, P. P.

    1980-01-01

    A cryogenic wind tunnel is based on the twofold idea of lowering drive power and increasing Reynolds number by operating with nitrogen near its boiling point. There are two possible types of condensation problems involved in this mode of wind tunnel operation. They concern the expansion from the nozzle supply to the test section at relatively low cooling rates, and secondly the expansion around models in the test section. This secondary expansion involves higher cooling rates and shorter time scales. In addition to these two condensation problems it is not certain what purity of nitrogen can be achieved in a large facility. Therefore, one cannot rule out condensation processes other than those of homogeneous nucleation.

  5. Little Boy replication: justification and construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malenfant, R.E.

    A reconstruction of the Little Boy weapon allowed experiments to evaluate yield, leakage measurements for comparison with calculations, and phenomenological measurements to evaluate various in-situ dosimeters. The reconstructed weapon was operated at sustained delayed critical at the Los Alamos Critical Assembly Facility. The present experiments provide a wealth of information to benchmark calculations and demonstrate that the 1965 measurements on the Ichiban assembly (a spherical mockup of Little Boy) were in error.

  6. SCALE TSUNAMI Analysis of Critical Experiments for Validation of 233U Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Don; Rearden, Bradley T

    2009-01-01

    Oak Ridge National Laboratory (ORNL) staff used the SCALE TSUNAMI tools to provide a demonstration evaluation of critical experiments considered for use in validation of current and anticipated operations involving {sup 233}U at the Radiochemical Development Facility (RDF). This work was reported in ORNL/TM-2008/196 issued in January 2009. This paper presents the analysis of two representative safety analysis models provided by RDF staff.

  7. [Bone metabolism in human space flight and bed rest study].

    PubMed

    Ohshima, Hiroshi; Mukai, Chiaki

    2008-09-01

    Japanese Experiment Module "KIBO" is Japan's first manned space facility and will be operated as part of the international space station (ISS) . KIBO operations will be monitored and controlled from Tsukuba Space Center. In Japan, after the KIBO element components are fully assembled and activated aboard the ISS, Japanese astronauts will stay on the ISS for three or more months, and full-scale experiment operations will begin. Bone loss and renal stone are significant medical concerns for long duration human space flight. This paper will summarize the results of bone loss, calcium balance obtained from the American and Russian space programs, and ground-base analog bedrest studies. Current in-flight training program, nutritional recommendations and future countermeasure plans for station astronauts are also described.

  8. Science-based HRA: experimental comparison of operator performance to IDAC (Information-Decision-Action Crew) simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirley, Rachel; Smidts, Carol; Boring, Ronald

    Information-Decision-Action Crew (IDAC) operator model simulations of a Steam Generator Tube Rupture are compared to student operator performance in studies conducted in the Ohio State University’s Nuclear Power Plant Simulator Facility. This study is presented as a prototype for conducting simulator studies to validate key aspects of Human Reliability Analysis (HRA) methods. Seven student operator crews are compared to simulation results for crews designed to demonstrate three different decision-making strategies. The IDAC model used in the simulations is modified slightly to capture novice behavior rather that expert operators. Operator actions and scenario pacing are compared. A preliminary review of availablemore » performance shaping factors (PSFs) is presented. After the scenario in the NPP Simulator Facility, student operators review a video of the scenario and evaluate six PSFs at pre-determined points in the scenario. This provides a dynamic record of the PSFs experienced by the OSU student operators. In this preliminary analysis, Time Constraint Load (TCL) calculated in the IDAC simulations is compared to TCL reported by student operators. We identify potential modifications to the IDAC model to develop an “IDAC Student Operator Model.” This analysis provides insights into how similar experiments could be conducted using expert operators to improve the fidelity of IDAC simulations.« less

  9. (The AMY experiment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    The AMY experiment is one of three major experiments at TRISTAN which is studying the states the matter produced in electron positron annihilations in the center of mass energy range of 50--65GeV. It provides information between the lower energy facilities such as PEP and PETRA and the new facilities SLC and LEP which are designed to operate in the region of the Z{sup 0} mass near 90GeV. In the region of the AMY experiment, interaction cross sections are near their minimum of about 100pb, making it difficult to acquire large data samples during typical running cycles. This last year hasmore » seen an accumulation of about 10--{minus}12pb{sup {minus}1} of integrated luminosity in the energy range from 58 to 61.7GeV. Despite this limited data sample, the AMY experiment has been extremely active in attempting to extract the minimum amount of information from the data. Some of the most significant results are discussed in this paper. 9 refs.« less

  10. The Penn State ``Cyber Wind Facility''

    NASA Astrophysics Data System (ADS)

    Brasseur, James; Vijayakumar, Ganesh; Lavely, Adam; Nandi, Tarak; Jayaraman, Balaji; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Haupt, Sue; Craven, Brent; Campbell, Robert; Schmitz, Sven; Paterson, Eric

    2012-11-01

    We describe development and results from a first generation Penn State ``Cyber Wind Facility'' (CWF). The aim of the CWF program is to develop and validate a computational ``facility'' that, in the most powerful HPC environments, will be basis for the design and implementation of cyber ``experiments'' at a level of complexity, fidelity and resolution to be treated similarly to field experiments on wind turbines operating in true atmospheric environments. We see cyber experiments as complimentary to field experiments in the sense that, whereas field data can record over ranges of events not representable in the cyber environment, with sufficient resolution, numerical accuracy, and HPC power, it is theoretically possible to collect cyber data from more true, albeit canonical, atmospheric environments can produce data from extraordinary numbers of sensors impossible to obtain in the field. I will describe our first generation CWF, from which we have quantified and analyzed useful details of the interactions between atmospheric turbulence and wind turbine loadings for an infinitely stiff commercial-scale turbine rotor in a canonical convective daytime atmospheric boundary layer over horizontally homogeneous rough flat terrain. Supported by the DOE Offshore Initiative and the National Science Foundation.

  11. The national ignition facility: Path to ignition in the laboratory

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.

    2006-06-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the U.S. nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

  12. Chemistry in a Large, Multidisciplinary Laboratory.

    ERIC Educational Resources Information Center

    Lingren, Wesley E.; Hughson, Robert C.

    1982-01-01

    Describes a science facility built at Seattle Pacific University for approximately 70 percent of the capital cost of a conventional science building. The building serves seven disciplines on a regular basis. The operation of the multidisciplinary laboratory, special features, laboratory security, and student experience/reactions are highlighted.…

  13. Preliminary flight results from the second U.S. Microgravity Payload (USMP-2)

    NASA Technical Reports Server (NTRS)

    Curreri, Peter; Reiss, Donald

    1994-01-01

    The second U.S. Microgravity Payload (USMP-2) was flown on the Space Shuttle in March 1994. It carried four major microgravity experiments plus a sophisticated accelerometer system to record the microgravity environment during USMP-2 operations. The USMP program is designed to accommodate experiments requiring extensive resources short of a full Spacelab mission, and the experiments are remotely operated and monitored. Results are reviewed from the four experiments: the Advanced Automated Directional Solidification Facility (AADSF), the Isothermal Dendrite Growth Experiment (IDGE), the Materiel por Etude des Phenomenes Interessant la Soldification sur Terre et en Orbite (MEPHISTO), and the Critical Fluid Light Scattering Experiment (Zeno). AASDF grew what is expected to be the largest steady-state sample ever of HgCdTe during 240 hours of operation. IDGE provided 60 growth cycles over a wide range of supercooling conditions studying the dendritic solidification of succinonitrile. MEPHISTO achieved 55 melt-solidify cycles and grew over 1 m of Bi/Sn alloy. Zeno located the critical point temperature for liquid Xe to 0.00001 K. IDGE and Zeno also provided the most extensive demonstrations to date of telescience.

  14. ENGINEERING AND CONSTRUCTING THE HALLAM NUCLEAR POWER FACILITY REACTOR STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahlmeister, J E; Haberer, W V; Casey, D F

    1960-12-15

    The Hallam Nuclear Power Facility reactor structure, including the cavity liner, is described, and the design philosophy and special design requirements which were developed during the preliminary and final engineering phases of the project are explained. The structure was designed for 600 deg F inlet and 1000 deg F outlet operating sodium temperatures and fabricated of austenitic and ferritic stainless steels. Support for the reactor core components and adequate containment for biological safeguards were readily provided even though quite conservative design philosophy was used. The calculated operating characteristics, including heat generation, temperature distributions and stress levels for full-power operation, aremore » summarized. Ship fabrication and field installation experiences are also briefly related. Results of this project have established that the sodium graphite reactor permits practical and economical fabrication and field erection procedures; considerably higher operating design temperatures are believed possible without radical design changes. Also, larger reactor structures can be similarly constructed for higher capacity (300 to 1000 Mwe) nuclear power plants. (auth)« less

  15. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte harvests a potato grown in the Biomass Production Chamber of the Controlled environment Life Support system (CELSS) in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' His work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  16. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte (right) and Cheryl Mackowiak harvest potatoes grown in the Biomass Production Chamber of the Controlled Enviornment Life Support System (CELSS in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  17. Short Duration Reduced Gravity Drop Tower Design and Development

    NASA Astrophysics Data System (ADS)

    Osborne, B.; Welch, C.

    The industrial and commercial development of space-related activities is intimately linked to the ability to conduct reduced gravity research. Reduced gravity experimentation is important to many diverse fields of research in the understanding of fundamental and applied aspects of physical phenomena. Both terrestrial and extra-terrestrial experimental facilities are currently available to allow researchers access to reduced gravity environments. This paper discusses two drop tower designs, a 2.0 second facility built in Australia and a proposed 2.2 second facility in the United Kingdom. Both drop towers utilise a drag shield for isolating the falling experiment from the drag forces of the air during the test. The design and development of The University of Queensland's (Australia) 2.0 second drop tower, including its specifications and operational procedures is discussed first. Sensitive aspects of the design process are examined. Future plans are then presented for a new short duration (2.2 sec) ground-based reduced gravity drop tower. The new drop tower has been designed for Kingston University (United Kingdom) to support teaching and research in the field of reduced gravity physics. The design has been informed by the previous UQ drop tower design process and utilises a catapult mechanism to increase test time and also incorporates features to allow participants for a variety of backgrounds (from high school students through to university researchers) to learn and experiment in reduced gravity. Operational performance expectations for this new facility are also discussed.

  18. Cryosorption Pumps for a Neutral Beam Injector Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dremel, M.; Mack, A.; Day, C.

    2006-04-27

    We present the experiences of the manufacturing and the operating of a system of two identical cryosorption pumps used in a neutral beam injector test facility for fusion reactors. Calculated and measured heat loads of the cryogenic liquid helium and liquid nitrogen circuits of the cryosorption pumps are discussed. The design calculations concerning the thermo-hydraulics of the helium circuit are compared with experiences from the operation of the cryosorption pumps. Both cryopumps are integrated in a test facility of a neutral beam injector that will be used to heat the plasma of a nuclear fusion reactor with a beam ofmore » deuterium or hydrogen molecules. The huge gas throughput into the vessel of the test facility results in challenging needs on the cryopumping system.The developed cryosorption pumps are foreseen to pump a hydrogen throughput of 20 - 30 mbar{center_dot}l/s. To establish a mean pressure of several 10-5 mbar in the test vessel a pumping speed of about 350 m3/s per pump is needed. The pressure conditions must be maintained over several hours pumping without regeneration of the cryopanels, which necessitates a very high pumping capacity. A possibility to fulfill these requirements is the use of charcoal coated cryopanels to pump the gasloads by adsorption. For the cooling of the cryopanels, liquid helium at saturation pressure is used and therefore a two-phase forced flow in the cryopump system must be controlled.« less

  19. High Performance Computing Operations Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cupps, Kimberly C.

    2013-12-19

    The High Performance Computing Operations Review (HPCOR) meeting—requested by the ASC and ASCR program headquarters at DOE—was held November 5 and 6, 2013, at the Marriott Hotel in San Francisco, CA. The purpose of the review was to discuss the processes and practices for HPC integration and its related software and facilities. Experiences and lessons learned from the most recent systems deployed were covered in order to benefit the deployment of new systems.

  20. Bulk Shielding Facility quarterly report, April, May and June 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbett, B.L.; Lance, E.D.

    1984-12-01

    The BSR operated at an average power level of 1310 kW for 3.8% of the time during April, May, and June. Water-quality control in both the reactor primary and secondary cooling systems was satisfactory. The PCA was used in training startups and was operated on five occasions for the NBS and HEDL recheck of a previous experiment run on the LWR pressure vessel surveillance dosimetry improvement program.

  1. Development of a Control Optimization System for Real Time Monitoring of Managed Aquifer Recharge and Recovery Systems Using Intelligent Sensors

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Drumheller, Z. W.; Lee, J. H.; Illangasekare, T. H.; Regnery, J.; Kitanidis, P. K.

    2015-12-01

    Aquifers around the world show troubling signs of irreversible depletion and seawater intrusion as climate change, population growth, and urbanization lead to reduced natural recharge rates and overuse. Scientists and engineers have begun to revisit the technology of managed aquifer recharge and recovery (MAR) as a means to increase the reliability of the diminishing and increasingly variable groundwater supply. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data-driven, real-time control. This research seeks to develop and validate a general simulation-based control optimization algorithm that relies on real-time data collected though embedded sensors that can be used to ease the operational challenges of MAR facilities. Experiments to validate the control algorithm were conducted at the laboratory scale in a two-dimensional synthetic aquifer under both homogeneous and heterogeneous packing configurations. The synthetic aquifer used well characterized technical sands and the electrical conductivity signal of an inorganic conservative tracer as a surrogate measure for water quality. The synthetic aquifer was outfitted with an array of sensors and an autonomous pumping system. Experimental results verified the feasibility of the approach and suggested that the system can improve the operation of MAR facilities. The dynamic parameter inversion reduced the average error between the simulated and observed pressures between 12.5 and 71.4%. The control optimization algorithm ran smoothly and generated optimal control decisions. Overall, results suggest that with some improvements to the inversion and interpolation algorithms, which can be further advanced through testing with laboratory experiments using sensors, the concept can successfully improve the operation of MAR facilities.

  2. Conceptual Design of Tail-Research EXperiment (T-REX) on Space Plasma Environment Research Facility

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Xiaogang; E, Peng; Shen, Chao; Wang, Zhibin; Mao, Aohua; Xiao, Chijie; Ding, Weixing; Ji, Hantao; Ren, Yang

    2016-10-01

    Space Environment Simulation Research Infrastructure (SESRI), a scientific project for a major national facility of fundamental researches, has recently been launched at Harbin Institute of Technology (HIT). The Space Plasma Environment Research Facility (SPERF) for simulation of space plasma environment is one of the components of SESRI. It is designed to investigate fundamental issues in space plasma environment, such as energetic particles transportation and the interaction with waves in magnetosphere, magnetic reconnection at magnetopause and magnetotail, etc. Tail-Research Experiment (T-REX) is part of the SPERF for laboratory studies of space physics relevant to tail reconnection and dipolarization process. T-REX is designed to carry out two kinds of experiments: the tail plasmamoid for magnetic reconnection and magnetohydrodynamic waves excited by high speed plasma jet. In this presentation, the scientific goals and experimental plans for T-REX together with the means applied to generate the plasma with desired parameters are reviewed. Two typical scenarios of T-REX with operations of plasma sources and various magnetic configurations to study specific physical processes in space plasmas will also be presented.

  3. High energy flux thermo-mechanical test of 1D-carbon-carbon fibre composite prototypes for the SPIDER diagnostic calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Muri, M., E-mail: michela.demuri@igi.cnr.it; Pasqualotto, R.; Dalla Palma, M.

    2014-02-15

    Operation of the thermonuclear fusion experiment ITER requires additional heating via injection of neutral beams from accelerated negative ions. In the SPIDER test facility, under construction in Padova, the production of negative ions will be studied and optimised. STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment) is a diagnostic used to characterise the SPIDER beam during short pulse operation (several seconds) to verify if the beam meets the ITER requirements about the maximum allowed beam non-uniformity (below ±10%). The major components of STRIKE are 16 1D-CFC (Carbon-Carbon Fibre Composite) tiles, observed at the rear side by a thermal camera. This contribution givesmore » an overview of some tests under high energy particle flux, aimed at verifying the thermo-mechanical behaviour of several CFC prototype tiles. The tests were performed in the GLADIS facility at IPP (Max-Plank-Institut für Plasmaphysik), Garching. Dedicated linear and nonlinear simulations were carried out to interpret the experiments and a comparison of the experimental data with the simulation results is presented. The results of some morphological and structural studies on the material after exposure to the GLADIS beam are also given.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, S.R.

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different frommore » the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.« less

  5. Computer code for analyzing the performance of aquifer thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Vail, L. W.; Kincaid, C. T.; Kannberg, L. D.

    1985-05-01

    A code called Aquifer Thermal Energy Storage System Simulator (ATESSS) has been developed to analyze the operational performance of ATES systems. The ATESSS code provides an ability to examine the interrelationships among design specifications, general operational strategies, and unpredictable variations in the demand for energy. The uses of the code can vary the well field layout, heat exchanger size, and pumping/injection schedule. Unpredictable aspects of supply and demand may also be examined through the use of a stochastic model of selected system parameters. While employing a relatively simple model of the aquifer, the ATESSS code plays an important role in the design and operation of ATES facilities by augmenting experience provided by the relatively few field experiments and demonstration projects. ATESSS has been used to characterize the effect of different pumping/injection schedules on a hypothetical ATES system and to estimate the recovery at the St. Paul, Minnesota, field experiment.

  6. Scientific approach and practical experience for reconstruction of waste water treatment plants in Russia

    NASA Astrophysics Data System (ADS)

    Makisha, Nikolay; Gogina, Elena

    2017-11-01

    Protection of water bodies has a strict dependence on reliable operation of engineering systems and facilities for water supply and sewage. The majority of these plants and stations has been constructed in 1970-1980's in accordance with rules and regulations of that time. So now most of them require reconstruction due to serious physical or/and technological wear. The current condition of water supply and sewage systems and facilities frequently means a hidden source of serious danger for normal life support and ecological safety of cities and towns. The article reveals an obtained experience and modern approaches for reconstruction of waste water and sludge treatment plants that proved their efficiency even if applied in limited conditions such as area limits, investments limits. The main directions of reconstruction: overhaul repair and partial modernization of existing facilities on the basis of initial project; - restoration and modernization of existing systems on the basis on the current documents and their current condition; upgrade of waste water treatment plants (WWTPs) performance on the basis of modern technologies and methods; reconstruction of sewage systems and facilities and treatment quality improvement.

  7. Prospects for a Muon Spin Resonance Facility in the Fermilab MuCool Test Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, John A.; Johnstone, Carol

    This paper investigates the feasibility of re-purposing the MuCool Test Area (MTA) beamline and experimental hall to support a Muon Spin Resonance (MuSR) facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application in the context of the MTA facility. Two scenarios were determined feasible. One, an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that utilizes an existing high- intensity beam absorber and, another, upgraded stage, that implements an optimized production target pile,more » a proximate high-intensity absorber, and optimized secondary muon lines. A unique approach is proposed which chops or strips a macropulse of H$^-$ beam into a micropulse substructure – a muon creation timing scheme – which allows Muon Spin Resonance experiments in a linac environment. With this timing scheme, and attention to target design and secondary beam collection, the MTA can host enabling and competitive Muon Spin Resonance experiments.« less

  8. The Design of PSB-VVER Experiments Relevant to Accident Management

    NASA Astrophysics Data System (ADS)

    Nevo, Alessandro Del; D'Auria, Francesco; Mazzini, Marino; Bykov, Michael; Elkin, Ilya V.; Suslov, Alexander

    Experimental programs carried-out in integral test facilities are relevant for validating the best estimate thermal-hydraulic codes(1), which are used for accident analyses, design of accident management procedures, licensing of nuclear power plants, etc. The validation process, in fact, is based on well designed experiments. It consists in the comparison of the measured and calculated parameters and the determination whether a computer code has an adequate capability in predicting the major phenomena expected to occur in the course of transient and/or accidents. University of Pisa was responsible of the numerical design of the 12 experiments executed in PSB-VVER facility (2), operated at Electrogorsk Research and Engineering Center (Russia), in the framework of the TACIS 2.03/97 Contract 3.03.03 Part A, EC financed (3). The paper describes the methodology adopted at University of Pisa, starting form the scenarios foreseen in the final test matrix until the execution of the experiments. This process considers three key topics: a) the scaling issue and the simulation, with unavoidable distortions, of the expected performance of the reference nuclear power plants; b) the code assessment process involving the identification of phenomena challenging the code models; c) the features of the concerned integral test facility (scaling limitations, control logics, data acquisition system, instrumentation, etc.). The activities performed in this respect are discussed, and emphasis is also given to the relevance of the thermal losses to the environment. This issue affects particularly the small scaled facilities and has relevance on the scaling approach related to the power and volume of the facility.

  9. 75 FR 70708 - Palisades Nuclear Plant; Notice of Consideration of Issuance of Amendment to Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... of Consideration of Issuance of Amendment to Facility Operating License, Proposed No Significant... (NRC, the Commission) is considering issuance of an amendment to Facility Operating License No. DPR-20... PNP Renewed Facility Operating License. The change would remove the name of the former operator of the...

  10. Chemical hazards database and detection system for Microgravity and Materials Processing Facility (MMPF)

    NASA Technical Reports Server (NTRS)

    Steele, Jimmy; Smith, Robert E.

    1991-01-01

    The ability to identify contaminants associated with experiments and facilities is directly related to the safety of the Space Station. A means of identifying these contaminants has been developed through this contracting effort. The delivered system provides a listing of the materials and/or chemicals associated with each facility, information as to the contaminant's physical state, a list of the quantity and/or volume of each suspected contaminant, a database of the toxicological hazards associated with each contaminant, a recommended means of rapid identification of the contaminants under operational conditions, a method of identifying possible failure modes and effects analysis associated with each facility, and a fault tree-type analysis that will provide a means of identifying potential hazardous conditions related to future planned missions.

  11. A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orris, D.; Carcagno, R.; Nogiec, J.

    2013-09-01

    Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls withmore » data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.« less

  12. NASA Program of Airborne Optical Observations.

    PubMed

    Bader, M; Wagoner, C B

    1970-02-01

    NASA's Ames Research Center currently operates a Convair 990 four-engine jet transport as a National Facility for airborne scientific research (astronomy, aurora, airglow, meteorology, earth resources). This aircraft can carry about twelve experiments to 12 km for several hours. A second aircraft, a twin-engine Lear Jet, has been used on a limited basis for airborne science and can carry one experiment to 15 km for 1 h. Mobility and altitude are the principal advantages over ground sites, while large payload and personnel carrying capabilities, combined with ease of operations and relatively low cost, are the main advantages compared to balloons, rockets, or satellites. Typical airborne instrumentation and scientific results are presented.

  13. Space Station life sciences guidelines for nonhuman experiment accommodation

    NASA Technical Reports Server (NTRS)

    Arno, R.; Hilchey, J.

    1985-01-01

    Life scientists will utilize one of four habitable modules which constitute the initial Space Station configuration. This module will be initially employed for studies related to nonhuman and human life sciences. At a later date, a new module, devoted entirely to nonhuman life sciences will be launched. This report presents a description of the characteristics of a Space Station laboratory facility from the standpoint of nonhuman research requirements. Attention is given to the science rationale for experiments which support applied medical research and basic gravitational biology, mission profiles and typical equipment and subsystem descriptions, issues associated with the accommodation of nonhuman life sciences on the Space Station, and conceptual designs for the initial operational capability configuration and later Space Station life-sciences research facilities.

  14. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    NASA Astrophysics Data System (ADS)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  15. Jim Green | NREL

    Science.gov Websites

    NWTC. He was the project lead for the design and construction of the NWTC 5.8 MW dynamometer facility completed in 2013. During 2012-2016, Jim was responsible for operations, safety, and engineering assessment of a successful net-power-producing experiment in Hawaii, a fully-functional and grid-connected OTEC

  16. 14 CFR 171.305 - Requests for IFR procedure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... maintenance manual that meets the requirements of § 171.325. (4) A statement of intent to meet the... reliability and an acceptable standard of performance. Previous equivalent operational experience with a... results, and of any required changes in the MLS facility or in the maintenance manual or maintenance...

  17. Radon Measurement in Schools: Self-Paced Training Workbook.

    ERIC Educational Resources Information Center

    Institute for Disability Research and Training, Inc., Silver Spring, MD.

    This workbook is designed to educate school personnel in randon detection. The workbook is intended for an audience of school officials, including administrators, business officers, facility managers, and maintenance and operations staff. It is meant to provide trainees with experience in planning a radon test, interpreting test results,…

  18. Telelearning for Extension Agents: The Virginia Experience.

    ERIC Educational Resources Information Center

    Murphy, William F., Jr.

    The creation of the Virginia Tech Teleport Facility and the installation of a nine-meter (diameter) C-Band satellite uplink antenna provided the initial impetus for the Virginia Cooperative Extension Service (VCES) to explore the use of satellite technology for information and program delivery. The $600,000 uplink became operational in September…

  19. Spin physics at ELSA

    NASA Astrophysics Data System (ADS)

    Althoff, K. H.

    1989-05-01

    In 1987 the new Bonn stretcher accelerator ELSA came into operation. In this paper a short description of the accelerator and the three experimental facilities PHOENICS, ELAN and SAPHIR is given. The determination of spin observables is one of the main subjects of the experimental program. Some experiments are discussed in more detail.

  20. Studies Related to the Oregon State University High Temperature Test Facility: Scaling, the Validation Matrix, and Similarities to the Modular High Temperature Gas-Cooled Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard R. Schultz; Paul D. Bayless; Richard W. Johnson

    2010-09-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5 year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) beganmore » their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant project. Because the NRC interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC). Since DOE has incorporated the HTTF as an ingredient in the NGNP thermal-fluids validation program, several important outcomes should be noted: 1. The reference prismatic reactor design, that serves as the basis for scaling the HTTF, became the modular high temperature gas-cooled reactor (MHTGR). The MHTGR has also been chosen as the reference design for all of the other NGNP thermal-fluid experiments. 2. The NGNP validation matrix is being planned using the same scaling strategy that has been implemented to design the HTTF, i.e., the hierarchical two-tiered scaling methodology developed by Zuber in 1991. Using this approach a preliminary validation matrix has been designed that integrates the HTTF experiments with the other experiments planned for the NGNP thermal-fluids verification and validation project. 3. Initial analyses showed that the inherent power capability of the OSU infrastructure, which only allowed a total operational facility power capability of 0.6 MW, is inadequate to permit steady-state operation at reasonable conditions. 4. To enable the HTTF to operate at a more representative steady-state conditions, DOE recently allocated funding via a DOE subcontract to HTTF to permit an OSU infrastructure upgrade such that 2.2 MW will become available for HTTF experiments. 5. Analyses have been performed to study the relationship between HTTF and MHTGR via the hierarchical two-tiered scaling methodology which has been used successfully in the past, e.g., APEX facility scaling to the Westinghouse AP600 plant. These analyses have focused on the relationship between key variables that will be measured in the HTTF to the counterpart variables in the MHTGR with a focus on natural circulation, using nitrogen as a working fluid, and core heat transfer. 6. Both RELAP5-3D and computational fluid dynamics (CD-Adapco’s STAR-CCM+) numerical models of the MHTGR and the HTTF have been constructed and analyses are underway to study the relationship between the reference reactor and the HTTF. The HTTF is presently being designed. It has ¼-scaling relationship to the MHTGR in both the height and the diameter. Decisions have been made to design the reactor cavity cooling system (RCCS) simulation as a boundary condition for the HTTF to ensure that (a) the boundary condition is well defined and (b) the boundary condition can be modified easily to achieve the desired heat transfer sink for HTTF experimental operations.« less

  1. Experiment Needs and Facilities Study Appendix A Transient Reactor Test Facility (TREAT) Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The TREAT Upgrade effort is designed to provide significant new capabilities to satisfy experiment requirements associated with key LMFBR Safety Issues. The upgrade consists of reactor-core modifications to supply the physics performance needed for the new experiments, an Advanced TREAT loop with size and thermal-hydraulics capabilities needed for the experiments, associated interface equipment for loop operations and handling, and facility modifications necessary to accommodate operations with the Loop. The costs and schedules of the tasks to be accomplished under the TREAT Upgrade project are summarized. Cost, including contingency, is about 10 million dollars (1976 dollars). A schedule for execution ofmore » 36 months has been established to provide the new capabilities in order to provide timely support of the LMFBR national effort. A key requirement for the facility modifications is that the reactor availability will not be interrupted for more than 12 weeks during the upgrade. The Advanced TREAT loop is the prototype for the STF small-bundle package loop. Modified TREAT fuel elements contain segments of graphite-matrix fuel with graded uranium loadings similar to those of STF. In addition, the TREAT upgrade provides for use of STF-like stainless steel-UO{sub 2} TREAT fuel for tests of fully enriched fuel bundles. This report will introduce the Upgrade study by presenting a brief description of the scope, performance capability, safety considerations, cost schedule, and development requirements. This work is followed by a "Design Description". Because greatly upgraded loop performance is central to the upgrade, a description is given of Advanced TREAT loop requirements prior to description of the loop concept. Performance requirements of the upgraded reactor system are given. An extensive discussion of the reactor physics calculations performed for the Upgrade concept study is provided. Adequate physics performance is essential for performance of experiments with the Advanced TREAT loop, and the stress placed on these calculations reflects this. Additional material on performance and safety is provided. Backup calculations on calculations of plutonium-release limits are described. Cost and schedule information for the Upgrade are presented.« less

  2. Initial design for an experimental investigation of strongly coupled plasma behavior in the Atlas facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munson, C.P.; Benage, J.F. Jr.; Taylor, A.J.

    Atlas is a high current ({approximately} 30 MA peak, with a current risetime {approximately} 4.5 {micro}sec), high energy (E{sub stored} = 24 MJ, E{sub load} = 3--6 MJ), pulsed power facility which is being constructed at Los Alamos National Laboratory with a scheduled completion date in the year 2000. When operational, this facility will provide a platform for experiments in high pressure shocks (> 20 Mbar), adiabatic compression ({rho}/{rho}{sub 0} > 5, P > 10 Mbar), high magnetic fields ({approximately} 2,000 T), high strain and strain rates ({var_epsilon} > 200%, d{var_epsilon}/dt {approximately} 10{sup 4} to 10{sup 6} s{sup {minus}1}), hydrodynamicmore » instabilities of materials in turbulent regimes, magnetized target fusion, equation of state, and strongly coupled plasmas. For the strongly coupled plasma experiments, an auxiliary capacitor bank will be used to generate a moderate density (< 0.1 solid), relatively cold ({approximately} 1 eV) plasma by ohmic heating of a conducting material of interest such as titanium. This stargate plasma will be compressed against a central column containing diagnostic instrumentation by a cylindrical conducting liner that is driven radially inward by current from the main Atlas capacitor bank. The plasma is predicted to reach densities of {approximately} 1.1 times solid, achieve ion and electron temperatures of {approximately} 10 eV, and pressures of {approximately} 4--5 Mbar. This is a density/temperature regime which is expected to experience strong coupling, but only partial degeneracy. X-ray radiography is planned for measurements of the material density at discrete times during the experiments; diamond Raman measurements are anticipated for determination of the pressure. In addition, a neutron resonance spectroscopic technique is being evaluated for possible determination of the temperature (through low percentage doping of the titanium with a suitable resonant material). Initial target plasma formation experiments are being planned on an existing pulsed power facility at LANL and will be completed before the start of operation of Atlas.« less

  3. Skylab mission report, third visit

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation is presented of the operational and engineering aspects of the third Skylab visit, including information on the performance of the command and service module and the experiment hardware, the crew's evaluation of the visit, and other visit-related areas of interest such as biomedical observations. The specific areas discussed are contained in the following: (1) solar physics and astrophysics investigations; (2) Comet Kohoutek experiments; (3) medical experiments; (4) earth observations, including data for the multispectral photographic facility, the earth terrain camera, and the microwave radiometer/scattermometer and altimeter; (5) engineering and technology experiments; (6) food and medical operational equipment; (7) hardware and experiment anomalies; and (8) mission support, mission objectives, flight planning, and launch phase summary. Conclusions discussed as a result of the third visit to Skylab involve the advancement of the sciences, practical applications, the durability of man and systems in space, and spaceflight effectiveness and economy.

  4. Around Marshall

    NASA Image and Video Library

    1990-12-02

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activity at the Operations Control Facility during the mission as Dr. Urban and Paul Whitehouse give a “thumbs up”.

  5. A quiet flow Ludwieg tube for study of transition in compressible boundary layers: Design and feasibility

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1991-01-01

    Laminar-turbulent transition in high speed boundary layers is a complicated problem which is still poorly understood, partly because of experimental ambiguities caused by operating in noisy wind tunnels. The NASA Langley experience with quiet tunnel design has been used to design a quiet flow tunnel which can be constructed less expensively. Fabrication techniques have been investigated, and inviscid, boundary layer, and stability computer codes have been adapted for use in the nozzle design. Construction of such a facility seems feasible, at a reasonable cost. Two facilities have been proposed: a large one, with a quiet flow region large enough to study the end of transition, and a smaller and less expensive one, capable of studying low Reynolds number issues such as receptivity. Funding for either facility remains to be obtained, although key facility elements have been obtained and are being integrated into the existing Purdue supersonic facilities.

  6. Little Boy replication: justification and construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malenfant, R.E.

    A reconstruction of the Little Boy weapon allowed experiments to evaluate yield, leakage measurements for comparison with calculations, and phenomenological measurements to evaluate various in-situ dosimeters. The reconstructed weapon was operated at sustained delayed critical at the Los Alamos Critical Assembly Facility. The present experiments provide a wealth of information to benchmark calculations and demonstrate that the 1965 measurements on the Ichiban assembly (a spherical mockup of Little Boy) were in error. 5 references, 2 figures.

  7. The LUX experiment

    DOE PAGES

    Akerib, D. S.; Araújo, H. M.; Bai, X.; ...

    2015-03-24

    We present the status and prospects of the LUX experiment, which employs approximately 300 kg of two-phase xenon to search for WIMP dark matter interactions. The LUX detector was commissioned at the surface laboratory of the Sanford Underground Research Facility in Lead, SD, between December 2011 and February 2012 and the detector has been operating underground since January, 2013. These proceedings review the results of the commissioning run as well as the status of underground data-taking.

  8. The NASA Langley building solar project and the supporting Lewis solar technology program

    NASA Technical Reports Server (NTRS)

    Ragsdale, R. G.; Namkoong, D.

    1974-01-01

    A solar energy technology program is described that includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Early results from simulator tests indicate that non-selective coatings behave more nearly in accord with predicted performance than do selective coatings. Initial experiments on the decay rate of thermally stratified hot water in a storage tank have been run. Results suggest that where high temperature water is required, excess solar energy collected by a building solar system should be stored overnight in the form of chilled water rather than hot water.

  9. Research activities at the Loma Linda University and Proton Treatment Facility--an overview

    NASA Technical Reports Server (NTRS)

    Nelson, G. A.; Green, L. M.; Gridley, D. S.; Archambeau, J. O.; Slater, J. M.

    2001-01-01

    The Loma Linda University (LLU) Radiobiology Program coordinates basic research and proton beam service activities for the university and extramural communities. The current focus of the program is on the biological and physical properties of protons and the operation of radiobiology facilities for NASA-sponsored projects. The current accelerator, supporting facilities and operations are described along with a brief review of extramural research projects supported by the program. These include space craft electronic parts and shielding testing as well as tumorigenesis and animal behavior experiments. An overview of research projects currently underway at LLU is also described. These include: 1) acute responses of the C57Bl/6 mouse immune system, 2) modulation of gene expression in the nematode C. elegans and rat thyroid cells, 3) quantitation of dose tolerance in rat CNS microvasculature, 4) behavioral screening of whole body proton and iron ion-irradiated C57Bl/6 mice, and 5) investigation of the role of cell integration into epithelial structures on responses to radiation.

  10. Remote Internet access to advanced analytical facilities: a new approach with Web-based services.

    PubMed

    Sherry, N; Qin, J; Fuller, M Suominen; Xie, Y; Mola, O; Bauer, M; McIntyre, N S; Maxwell, D; Liu, D; Matias, E; Armstrong, C

    2012-09-04

    Over the past decade, the increasing availability of the World Wide Web has held out the possibility that the efficiency of scientific measurements could be enhanced in cases where experiments were being conducted at distant facilities. Examples of early successes have included X-ray diffraction (XRD) experimental measurements of protein crystal structures at synchrotrons and access to scanning electron microscopy (SEM) and NMR facilities by users from institutions that do not possess such advanced capabilities. Experimental control, visual contact, and receipt of results has used some form of X forwarding and/or VNC (virtual network computing) software that transfers the screen image of a server at the experimental site to that of the users' home site. A more recent development is a web services platform called Science Studio that provides teams of scientists with secure links to experiments at one or more advanced research facilities. The software provides a widely distributed team with a set of controls and screens to operate, observe, and record essential parts of the experiment. As well, Science Studio provides high speed network access to computing resources to process the large data sets that are often involved in complex experiments. The simple web browser and the rapid transfer of experimental data to a processing site allow efficient use of the facility and assist decision making during the acquisition of the experimental results. The software provides users with a comprehensive overview and record of all parts of the experimental process. A prototype network is described involving X-ray beamlines at two different synchrotrons and an SEM facility. An online parallel processing facility has been developed that analyzes the data in near-real time using stream processing. Science Studio and can be expanded to include many other analytical applications, providing teams of users with rapid access to processed results along with the means for detailed discussion of their significance.

  11. Theory versus experiment for the rotordynamic coefficients of annular gas seals. Part 1: Test facility and apparatus

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Nelson, C. E.; Nicks, C.; Scharrer, J. K.; Elrod, D.; Hale, K.

    1983-01-01

    A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cmn (6 in). The air supply unit yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency are discussed.

  12. Food irradiation: Technology transfer in Asia, practical experiences

    NASA Astrophysics Data System (ADS)

    Kunstadt, Peter; Eng, P.

    1993-10-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.

  13. Results of the Winter Flow Experiments Conducted on December 7-8, February 7-8, and February 28-29, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dressen, Donald S.; Beikmann, Mel

    A winter flow regime has been proposed as a method of maintaining a non-freezing environment following the loss of circulation in the HDR Reservoir test facility when ambient temperature is below 32 °F. The regime, as presently envisioned, would automatically convert the surface facility from reservoir circulation to low rate reservoir production through the entire operating system except the EE-3A wellhead, the EE-2A x-mas tree, and the make-up/feed pump/water supply system.

  14. Development of the West Virginia University Small Microgravity Research Facility (WVU SMiRF)

    NASA Astrophysics Data System (ADS)

    Phillips, Kyle G.

    West Virginia University (WVU) has created the Small Microgravity Research Facility (SMiRF) drop tower through a WVU Research Corporation Program to Stimulate Competitive Research (PSCoR) grant on its campus to increase direct access to inexpensive and repeatable reduced gravity research. In short, a drop tower is a tall structure from which experimental payloads are dropped, in a controlled environment, and experience reduced gravity or microgravity (i.e. "weightlessness") during free fall. Currently, there are several methods for conducting scientific research in microgravity including drop towers, parabolic flights, sounding rockets, suborbital flights, NanoSats, CubeSats, full-sized satellites, manned orbital flight, and the International Space Station (ISS). However, none of the aforementioned techniques is more inexpensive or has the capability of frequent experimentation repeatability as drop tower research. These advantages are conducive to a wide variety of experiments that can be inexpensively validated, and potentially accredited, through repeated, reliable research that permits frequent experiment modification and re-testing. Development of the WVU SMiRF, or any drop tower, must take a systems engineering approach that may include the detailed design of several main components, namely: the payload release system, the payload deceleration system, the payload lifting and transfer system, the drop tower structure, and the instrumentation and controls system, as well as a standardized drop tower payload frame for use by those researchers who cannot afford to spend money on a data acquisition system or frame. In addition to detailed technical development, a budgetary model by which development took place is also presented throughout, summarized, and detailed in an appendix. After design and construction of the WVU SMiRF was complete, initial calibration provided performance characteristics at various payload weights, and full-scale checkout via experimentation provided repeatability characteristics of the facility. Based on checkout instrumentation, Initial repeatability results indicated a drop time of 1.26 seconds at an average of 0.06g, with a standard deviation of 0.085g over the period of the drop, and a peak impact load of 28.72g, with a standard deviation of 10.73g, for a payload weight of 113.8 lbs. In order to thoroughly check out the facility, a full-scale, fully operational experiment was developed to create an experience that provides a comprehensive perspective of the end-user experience to the developer, so as to incorporate the details that may have been overlooked to the designer and/or developer, in this case, Kyle Phillips. The experiment that was chosen was to determine the effects of die swell, or extrudate swell, in reduced gravity. Die swell is a viscoelastic phenomenon that occurs when a dilatant, or shear-thickening substance is forced through a sufficient constriction, or "die," such that the substance expands, or "swells," downstream of the constriction, even while forming and maintaining a free jet at ambient sea level conditions. A wide range of dilatants exhibit die swell when subjected to the correct conditions, ranging from simple substances such as ketchup, oobleck, and shampoo to complex specially-formulated substances to be used for next generation body armor and high performance braking systems. To date, very few, if any, have researched the stabilizing effect that gravity may have on the phenomenon of die swell. By studying a fluid phenomenon in a reduced gravity environment, both the effect of gravity can be studied and the predominant forces acting on the fluid can be concluded. Furthermore, a hypothesis describing the behavior of a viscoelastic fluid particle employing the viscous Navier-Stokes Equations was derived to attempt to push the fluid mechanics community toward further integrating more fluid behavior into a unified mathematical model of fluid mechanics. While inconclusive in this experiment, several suggestions for future research were made in order to further the science behind die swell, and a comprehensive checkout of the facility and its operations were characterized. As a result of this checkout experience, several details were modified or added to the facility in order for the drop tower to be properly operated and provide the optimal user experience, such that open operation of the WVU SMiRF may begin in the Fall of 2014.

  15. Ultra violet disinfection: A 3-year history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tubesing, R.R.; Lindeke, D.R.

    1998-07-01

    The Stillwater Wastewater Treatment Facility is one of nine wastewater treatment facilities operated by the Metropolitan Council Environmental Services in the Minneapolis-St. Paul Metropolitan Area. The facility services the cities of Stillwater, Oak Park Heights, and Bayport. In 1993, an ultra violet disinfection facility began operation to provide the disinfection for the Facility. This presentation discusses the reasons for using ultra violet disinfection in lieu of chlorination/dechlorination facilities, the operating performance, and operating cost factors.

  16. SLSF in-reactor local fault safety experiment P4. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, D. H.; Holland, J. W.; Braid, T. H.

    The Sodium Loop Safety Facility (SLSF), a major facility in the US fast-reactor safety program, has been used to simulate a variety of sodium-cooled fast reactor accidents. SLSF experiment P4 was conducted to investigate the behavior of a "worse-than-case" local fault configuration. Objectives of this experiment were to eject molten fuel into a 37-pin bundle of full-length Fast-Test-Reactor-type fuel pins form heat-generating fuel canisters, to characterize the severity of any molten fuel-coolant interaction, and to demonstrate that any resulting blockage could either be tolerated during continued power operation or detected by global monitors to prevent fuel failure propagation. The designmore » goal for molten fuel release was 10 to 30 g. Explusion of molten fuel from fuel canisters caused failure of adjacent pins and a partial flow channel blockage in the fuel bundle during full-power operation. Molten fuel and fuel debris also lodged against the inner surface of the test subassembly hex-can wall. The total fuel disruption of 310 g evaluated from posttest examination data was in excellent agreement with results from the SLSF delayed neutron detection system, but exceeded the target molten fuel release by an order of magnitude. This report contains a summary description of the SLSF in-reactor loop and support systems and the experiment operations. results of the detailed macro- and microexamination of disrupted fuel and metal and results from the analysis of the on-line experimental data are described, as are the interpretations and conclusions drawn from the posttest evaluations. 60 refs., 74 figs.« less

  17. Virtually-augmented interfaces for tactical aircraft.

    PubMed

    Haas, M W

    1995-05-01

    The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and non-virtual concepts and devices across the visual, auditory and haptic sensory modalities. A fusion interface is a multi-sensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion-interface concepts. One of the virtual concepts to be investigated in the Fusion Interfaces for Tactical Environments facility (FITE) is the application of EEG and other physiological measures for virtual control of functions within the flight environment. FITE is a specialized flight simulator which allows efficient concept development through the use of rapid prototyping followed by direct experience of new fusion concepts. The FITE facility also supports evaluation of fusion concepts by operational fighter pilots in a high fidelity simulated air combat environment. The facility was utilized by a multi-disciplinary team composed of operational pilots, human-factors engineers, electronics engineers, computer scientists, and experimental psychologists to prototype and evaluate the first multi-sensory, virtually-augmented cockpit. The cockpit employed LCD-based head-down displays, a helmet-mounted display, three-dimensionally localized audio displays, and a haptic display. This paper will endeavor to describe the FITE facility architecture, some of the characteristics of the FITE virtual display and control devices, and the potential application of EEG and other physiological measures within the FITE facility.

  18. Mars mission science operations facilities design

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Wales, Roxana; Powell, Mark W.; Backes, Paul G.; Steinke, Robert C.

    2002-01-01

    A variety of designs for Mars rover and lander science operations centers are discussed in this paper, beginning with a brief description of the Pathfinder science operations facility and its strengths and limitations. Particular attention is then paid to lessons learned in the design and use of operations facilities for a series of mission-like field tests of the FIDO prototype Mars rover. These lessons are then applied to a proposed science operations facilities design for the 2003 Mars Exploration Rover (MER) mission. Issues discussed include equipment selection, facilities layout, collaborative interfaces, scalability, and dual-purpose environments. The paper concludes with a discussion of advanced concepts for future mission operations centers, including collaborative immersive interfaces and distributed operations. This paper's intended audience includes operations facility and situation room designers and the users of these environments.

  19. 34 CFR 395.1 - Terms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... machine or a vending facility on the same premises as a vending facility operated by a blind vendor, except that vending machines or vending facilities operated in areas serving employees the majority of... time required to patronize the vending facility) to the vending facility operated by a blind vendor...

  20. 34 CFR 395.1 - Terms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... machine or a vending facility on the same premises as a vending facility operated by a blind vendor, except that vending machines or vending facilities operated in areas serving employees the majority of... time required to patronize the vending facility) to the vending facility operated by a blind vendor...

  1. 34 CFR 395.1 - Terms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... machine or a vending facility on the same premises as a vending facility operated by a blind vendor, except that vending machines or vending facilities operated in areas serving employees the majority of... time required to patronize the vending facility) to the vending facility operated by a blind vendor...

  2. 75 FR 66683 - Defense Federal Acquisition Regulation Supplement; Safety of Facilities, Infrastructure, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... operation of facilities, infrastructure, and equipment for use by DoD military or civilian should be...-7004, Safety of Facilities, Infrastructure, and Equipment for Military Operations. DFARS 246.270-1... operation of facilities. This includes contracts for facilities, infrastructure, and equipment configured...

  3. Advising the Command: Best Practices from the Special Operations Advisory Experience in Afghanistan

    DTIC Science & Technology

    2015-01-01

    in their spare time. They looked for opportunities to have lunch with Afghans and reportedly extended offers for dinner .18 The SMW ETT cultivated...extremely close relationships with their counterparts, in part by routinely eating with colleagues in the Afghan dining facility. They initiated the...October 21 and November 21, 2013. The practice is very much akin to that of Task Force (TF) 51, where Norwegian SOF operators eat daily meals with

  4. Airspace Technology Demonstration 2 (ATD-2) Integrated Surface and Airspace Simulation - Experiment Plan

    NASA Technical Reports Server (NTRS)

    Verma, Savita Arora; Jung, Yoon Chul

    2017-01-01

    This presentation describes the overview of the ATD-2 project and the integrated simulation of surface and airspace to evaluate the procedures of IADS system and evaluate surface metering capabilities via a high-fidelity human-in-the-loop simulation. Two HITL facilities, Future Flight Central (FFC) and Airspace Operations Laboratory (AOL), are integrated for simulating surface operations of the Charlotte-Douglas International Airport (CLT) and airspace in CLT TRACON and Washington Center.

  5. Interactive dependency curves for resilience management.

    PubMed

    Petit, Frédéric; Wallace, Kelly; Phillip, Julia

    Physical dependencies are a fundamental consideration when assessing the resilience of an organisation and, ultimately, the resilience of a region. Every organisation needs specific resources for supporting its operations. A disruption in the supply of these resources can severely impact business continuity. It is important to characterise dependencies thoroughly when seeking to reduce the extent an organisation is directly affected by the missions, functions and operations of other organisations. The general protocol when addressing each critical resource is to determine the use for the resource, whether there are redundant services providing the resource, and what protections, backup equipment and arrangements are in place to maintain service. Finally, the criticality of the resource is determined by estimating the time it will take for the facility to experience a severe impact once primary service is lost and what percentage of facility operations can be maintained without backup service in place, as well as identifying whether any external regulations/policies are in place that require shutdown of the facility because of service disruption owing to lack of a critical resource. All of this information can be presented in the form of interactive dependency curves that help anticipate and manage the effect(s) of a disruption on critical resources supply.

  6. Development of a Work Control System for Propulsion Testing at NASA Stennis

    NASA Technical Reports Server (NTRS)

    Messer, Elizabeth A.

    2005-01-01

    In 1996 Stennis Space Center was given management authority for all Propulsion Testing for NASA. Over the next few years several research and development (R&D) test facilities were completed and brought up to full operation in what is known as the E-Complex Test Facility at Stennis Space Center. To construct, activate and operate these test facilities, a manual paper-based work control system was created. After utilizing this paper-based work control system for approximately three years, it became apparent that the research and development test area needed a better method to execute, monitor, and report on tasks required to further propulsion testing. The paper based system did not provide the engineers adequate visibility into work tasks or the tracking of testing or hardware discrepancies. This system also restricted the engineer s ability to utilize and access past knowledge and experiences given the severe schedule limitations for most R&D propulsion testing projects. Therefore a system was developed to meet the growing need of Test Operations called the Propulsion Test Directorate (PTD) Work Control System. This system is used to plan, perform, and track tasks that support testing and also to capture lessons learned while doing so.

  7. Experiments on water detritiation and cryogenic distillation at TLK; Impact on ITER fuel cycle subsystems interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristescu, I.; Cristescu, I. R.; Doerr, L.

    2008-07-15

    The ITER Isotope Separation System (ISS) and Water Detritiation System (WDS) should be integrated in order to reduce potential chronic tritium emissions from the ISS. This is achieved by routing the top (protium) product from the ISS to a feed point near the bottom end of the WDS Liquid Phase Catalytic Exchange (LPCE) column. This provides an additional barrier against ISS emissions and should mitigate the memory effects due to process parameter fluctuations in the ISS. To support the research activities needed to characterize the performances of various components for WDS and ISS processes under various working conditions and configurationsmore » as needed for ITER design, an experimental facility called TRENTA representative of the ITER WDS and ISS protium separation column, has been commissioned and is in operation at TLK The experimental program on TRENTA facility is conducted to provide the necessary design data related to the relevant ITER operating modes. The operation availability and performances of ISS-WDS have impact on ITER fuel cycle subsystems with consequences on the design integration. The preliminary experimental data on TRENTA facility are presented. (authors)« less

  8. East Spar development: NCC buoy--The vertical submarine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, E.C.

    1998-02-01

    The remote East Spar gas/condensate field has been developed using a subsea production system operated by an unmanned navigation, communication, and control (NCC) buoy. The use of this type of system allows control of the field from any convenient location, with the command-response time and the cost of the facility almost completely independent of the distance to the shore or host facility. Successes during the project (such as using model tests to prove the concept and using a tension-leg mooring system to reduce the motion response of the buoy) are discussed and compared to failures, like the weight and sizemore » growth of the structure, caused as the design requirements were finalized and external factors changed. The operation and layout of this facility is summarized, showing why it was described as a vertical submarine. Conclusions are drawn about the use of an NCC buoy to develop this field, showing that the main objectives have been achieved. The limited operating experience to date is also considered in the review of the design objectives. The paper concludes with the possibilities for the future of this type of concept.« less

  9. Full length view of the Spacelab module

    NASA Image and Video Library

    2016-08-12

    STS083-312-031 (4-8 April 1997) --- Payload specialist Gregory T. Linteris (left) is seen at the Mid Deck Glove Box (MGBX), while astronaut Donald A. Thomas, mission specialist, works at the Expedite the Processing of Experiments to Space Station (EXPRESS) rack. MGBX is a facility that allows scientists the capability of doing tests on hardware and materials that are not approved to be handled in the open Spacelab. It is equipped with photographic, video and data recording capability, allowing a complete record of experiment operations. Experiments performed on STS-83 were Bubble Drop Nonlinear Dynamics and Fiber Supported Droplet Combustion. EXPRESS is designed to provide accommodations for Sub-rack payloads on Space Station. For STS-83, it held two payloads. The Physics of Hard Colloidal Spheres (PHaSE) and ASTRO-Plant Generic Bioprocessing Apparatus (ASTRO-PGBA), a facility with light and atmospheric controls which supports plant growth for commercial research.

  10. Containerless Processing on ISS: Ground Support Program for EML

    NASA Technical Reports Server (NTRS)

    Diefenbach, Angelika; Schneider, Stephan; Willnecker, Rainer

    2012-01-01

    EML is an electromagnetic levitation facility planned for the ISS aiming at processing and investigating liquid metals or semiconductors by using electromagnetic levitation technique under microgravity with reduced electromagnetic fields and convection conditions. Its diagnostics and processing methods allow to measure thermophysical properties in the liquid state over an extended temperature range and to investigate solidification phenomena in undercooled melts. The EML project is a common effort of The European Space Agency (ESA) and the German Space Agency DLR. The Microgravity User Support Centre MUSC at Cologne, Germany, has been assigned the responsibility for EML operations. For the EML experiment preparation an extensive scientific ground support program is established at MUSC, providing scientific and technical services in the preparation, performance and evaluation of the experiments. Its final output is the transcription of the scientific goals and requirements into validated facility control parameters for the experiment execution onboard the ISS.

  11. Status and Plans for the FLARE (Facility for Laboratory Reconnection Experiments) Project

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, S.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.; Chen, Y.; Cutler, R.; Fox, W.; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-11-01

    The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton to study magnetic reconnection in regimes directly relevant to space, solar, astrophysical, and fusion plasmas. The existing small-scale experiments have been focusing on the single X-line reconnection process either with small effective sizes or at low Lundquist numbers, but both of which are typically very large in natural and fusion plasmas. The design of the FLARE device is motivated to provide experimental access to the new regimes involving multiple X-lines, as guided by a reconnection ``phase diagram'' [Ji & Daughton, PoP (2011)]. Most of major components of the FLARE device have been designed and are under construction. The device will be assembled and installed in 2016, followed by commissioning and operation in 2017. The planned research on FLARE as a user facility will be discussed. Supported by NSF.

  12. Norm - contaminated iodine production facilities decommissioning in Turkmenistan: experience and results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelbutovskiy, Alexander; Cheremisin, Peter; Egorov, Alexander

    2013-07-01

    This report summarizes the data, including the cost parameters of the former iodine production facilities decommissioning project in Turkmenistan. Before the closure, these facilities were producing the iodine from the underground mineral water by the methods of charcoal adsorption. Balkanabat iodine and Khazar chemical plants' sites remediation, transportation and disposal campaigns main results could be seen. The rehabilitated area covers 47.5 thousand square meters. The remediation equipment main characteristics, technical solutions and rehabilitation operations performed are indicated also. The report shows the types of the waste shipping containers, the quantity and nature of the logistics operations. The project waste turnovermore » is about 2 million ton-kilometers. The problems encountered during the remediation of the Khazar chemical plant site are discussed: undetected waste quantities that were discovered during the operational activities required the additional volume of the disposal facility. The additional repository wall superstructure was designed and erected to accommodate this additional waste. There are data on the volume and characteristics of the NORM waste disposed: 60.4 thousand cu.m. of NORM with total activity 1 439 x 10{sup 9} Bq (38.89 Ci) were disposed at all. This report summarizes the project implementation results, from 2009 to 15.02.2012 (the date of the repository closure and its placement under the controlled supervision), including monitoring results within a year after the repository closure. (authors)« less

  13. One-year clinical experience with a fully digitized nuclear medicine department: organizational and economical aspects

    NASA Astrophysics Data System (ADS)

    Anema, P. C.; de Graaf, C. N.; Wilmink, J. B.; Hall, David R.; Hoekstra, A. G.; van Rijk, P. P.; Van Isselt, J. W.; Viergever, Max A.

    1991-07-01

    At the department of nuclear medicine of the University Hospital Utrecht a single-modality PACS has been operational since mid-1990. After one year of operation the functionality, the organizational and economical consequences, and the acceptability of the PACS were evaluated. The functional aspects reviewed were: viewing facilities, patient data management, connectivity, reporting facilities, archiving, privacy, and security. It was concluded that the improved quality of diagnostic viewing and the potential integration with diagnosis, reporting, and archiving are highly appreciated. The many problems that have occurred during the transition period, however, greatly influence the appreciation and acceptability of the PACS. Overall, it is felt that in the long term there will be a positive effect on the quality and efficiency of the work.

  14. Preliminary feasibility study of pallet-only mode for magnetospheric and plasmas in space payloads, volume 4

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Results of studies performed on the magnetospheric and plasma portion of the AMPS are presented. Magnetospheric and plasma in space experiments and instruments are described along with packaging (palletization) concepts. The described magnetospheric and plasma experiments were considered as separate entities. Instrumentation ospheric and plasma experiments were considered as separate entities. Instrumentation requirements and operations were formulated to provide sufficient data for unambiguous interpretation of results without relying upon other experiments of the series. Where ground observations are specified, an assumption was made that large-scale additions or modifications to existing facilities were not required.

  15. Williams loads the MELFI for the Nutrition Experiment during Expedition 15

    NASA Image and Video Library

    2007-06-01

    ISS015-E-10572 (1 June 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, inserts test samples in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) as a part of the Nutritional Status Assessment (Nutrition) experiment in the Destiny laboratory of the International Space Station. MELFI is a low temperature freezer facility with nominal operating temperatures of -80, -26 and +4 degrees Celsius that will preserve experiment materials over long periods. The results of the Nutrition experiment will be used to better understand the time course effects of space flight on human physiology.

  16. Anderson works on the NUTRITION Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-06-25

    ISS015-E-13670 (25 June 2007) --- Astronaut Clayton Anderson, Expedition 15 flight engineer, works with the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) as part of the Nutritional Status Assessment (NUTRITION) experiment in the Destiny laboratory of the International Space Station. MELFI is a low temperature freezer facility with nominal operating temperatures of -80, -26 and +4 degrees Celsius that will preserve experiment materials over long periods. The results of the Nutrition experiment will be used to better understand the time course effects of space flight on human physiology.

  17. Anderson works on the NUTRITION Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-06-25

    ISS015-E-13695 (25 June 2007) --- Astronaut Clayton Anderson, Expedition 15 flight engineer, works with the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) as part of the Nutritional Status Assessment (NUTRITION) experiment in the Destiny laboratory of the International Space Station. MELFI is a low temperature freezer facility with nominal operating temperatures of -80, -26 and +4 degrees Celsius that will preserve experiment materials over long periods. The results of the Nutrition experiment will be used to better understand the time course effects of space flight on human physiology.

  18. Use of a personal computer for the real-time reception and analysis of data from a sounding rocket experiment

    NASA Technical Reports Server (NTRS)

    Herrick, W. D.; Penegor, G. T.; Cotton, D. M.; Kaplan, G. C.; Chakrabarti, S.

    1990-01-01

    In September 1988 the Earth and Planetary Atmospheres Group of the Space Sciences Laboratory of the University of California at Berkeley flew an experiment on a high-altitude sounding rocket launched from the NASA Wallops Flight Facility in Virginia. The experiment, BEARS (Berkeley EUV Airglow Rocket Spectrometer), was designed to obtain spectroscopic data on the composition and structure of the earth's upper atmosphere. Consideration is given to the objectives of the BEARS experiment; the computer interface and software; the use of remote data transmission; and calibration, integration, and flight operations.

  19. NACA Zero Power Reactor Facility Hazards Summary

    NASA Technical Reports Server (NTRS)

    1957-01-01

    The Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics proposes to build a zero power research reactor facility which will be located in the laboratory grounds near Clevelaurd, Ohio. The purpose of this report is to inform the Advisory Commit tee on Reactor Safeguards of the U. S. Atomic Energy Commission in re gard to the design of the reactor facility, the cha,acteristics of th e site, and the hazards of operation at this location, The purpose o f this reactor is to perform critical experiments, to measure reactiv ity effects, to serve as a neutron source, and to serve as a training tool. The reactor facility is described. This is followed by a discu ssion of the nuclear characteristics and the control system. Site cha racteristics are then discussed followed by a discussion of the exper iments which may be conducted in the facility. The potential hazards of the facility are then considered, particularly, the maximum credib le accident. Finally, the administrative procedure is discussed.

  20. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Technical Reports Server (NTRS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-01-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the deagglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle deagglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid particle generation system was developed and characterization tests performed. The breadboard hardware emulates the functions of the GGSF solid particle cloud generator in a ground laboratory environment, but with some modifications, can be used on other platforms.

  1. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Astrophysics Data System (ADS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-12-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the de-agglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle de-agglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid particle generation system was developed and characterization tests performed. The breadboard hardware emulates the functions of the GGSF solid particle cloud generator in a ground laboratory environment, but with some modifications, can be used on other platforms.

  2. The Drop Tower Bremen -An Overview

    NASA Astrophysics Data System (ADS)

    von Kampen, Peter; Könemann, Thorben; Rath, Hans J.

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University of Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of ZARM`s drop tower began. Since its inau-guration in September 1990, the eye-catching Drop Tower Bremen with a height of 146m and its characteristic glass roof has become twice a landmark on the campus of the University of Bremen and the emblem of the technology park Bremen. As such an outstanding symbol of space science in Bremen the drop tower provides an european unique facility for experiments under conditions of high-quality weightlessness with residual gravitational accelerations in the microgravity regime. The period of maximum 4.74s of each freely falling experiment at the Drop Tower Bremen is only limited by the height of the drop tower vacuum tube, which was fully manufactured of steal and enclosed by an outer concrete shell. Thus, the pure free fall height of each microgravity drop experiment is approximately 110m. By using the later in-stalled catapult system established in 2004 ZARM`s short-term microgravity laboratory is able to nearly double the time of free fall. This world-wide inimitable capsule catapult system meets scientists` demand of extending the period of weightlessness. During the catapult operation the experiment capsule performs a vertical parabolic flight within the drop tower vacuum tube. In this way the time of microgravity can be extended to slightly over 9s. Either in the drop or in the catapult operation routine the repetition rates of microgravity experiments at ZARM`s drop tower facility are the same, generally up to 3 times per day. In comparison to orbital platforms the ground-based laboratory Drop Tower Bremen represents an economic alternative with a permanent access to weightlessness on earth. Moreover, the exceptional high quality of weightlessness in order of 1e-6 g (in the frequency range below 100Hz) demonstrates a perfect experimental environment for unperturbed investigations of scientific phenomena. Motivated by these prospects many national and international groups have initialized research programs taking advantage of this drop tower facility. In respect thereof the spectrum of research fields and technologies in space-related conditions can be continuously enhanced at ZARM. In the first of our two talks we will give you an overview about the inner structure of ZARM, as well as the service and the operation offered by the ZARM Drop Tower Operation and Service Company (ZARM FAB mbH). The ZARM FAB mbH owned by the State Government of Bremen is a public company maintaining the drop tower facility and supporting experimentalists in scientific and technical questions before, during and after their drop or catapult campaigns. In detail, we will present you important technical drop tower informations, our support and the idea, how you can proceed with your microgravity-related experiment including all your requirements to successfully accomplish an entire drop or catapult campaign. In summary, we will illustrate the complete procedure, how to drop or to catapult an experiment capsule at the Drop Tower Bremen.

  3. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Urban, David

    2012-01-01

    From the very early days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center for combustion, complex fluids, and fluid physics; GRC has led the successful implementation of the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion; fire detection; fire extinguishment; soot phenomena; flame liftoff and stability; and material flammability. The fluids experiments have studied capillary flow; magneto-rheological fluids; colloidal systems; extensional rheology; pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years.

  4. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Haddock, Angie T.; Frank, Jeremy; Cornelius, Randy; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify and employ novel software for procedure development and execution. The procedures contained the ground procedure logic and actions as possible to include fault detection and recovery capabilities. The autonomous operations concept includes a reduction of the amount of data a crew operator is required to verify during activation or de-activation, as well as integration of procedure execution status and relevant data in a single integrated display. During execution, the auto-procedures (via Timerliner) provide a step-by-step messaging paradigm and a high-level status upon termination. This messaging and high-level status is the only data generated for operator display. To enhance situational awareness of the operator, the Web-based Procedure Display (WebPD) provides a novel approach to the issues of procedure display and execution tracking. WebPD is a web based application that serves as the user interface for electronic procedure execution. It incorporates several aspects of the HTML5 standard. Procedures are written in a dialect of XML called Procedure Representation Language (PRL). WebPD tracks execution status in the procedure or procedures being displayed. WebPD aggregates and simplifies the auto-sequence execution status information, and formatted to be easily followed and understood by an operator who is not dedicated to actively monitoring the task. WebPD also provides an integrated data and control interface to pause or halt the execution in order to provide a check point of operation and to examine progress before starting the next sequence of activities. For this demonstration, the procedure was initiated and monitored from the ground. As the Timeliner sequences executed, their high-level execution status was written to PLMDM memory. This memory is read and downlinked via Ku-Band at a 1 Hz rate. The data containing the high-level execution status is de-commutated on the ground, and rebroadcast for WebPD consumption. A future demonstration will be performed onboard, with ISS astronauts initiating the operations instead of ground controllers. The AMO EXPRESS experiment demonstrated activation and de-activation of EXPRESS rack 7, providing the capability of future single button activations and deactivations of facility class racks. The experiment achieved numerous technical and operations 'firsts' for the ISS

  5. 76 FR 62868 - Washington State University; Notice of Issuance of Renewed Facility Operating License No. R-76

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ...; Notice of Issuance of Renewed Facility Operating License No. R-76 AGENCY: Nuclear Regulatory Commission. ACTION: Notice of issuance of renewed facility operating license No. R- 76. ADDRESSES: You can access.... Nuclear Regulatory Commission (NRC, the Commission) has issued renewed Facility Operating License No. R-76...

  6. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, J; Matrosov, S; Shupe, M

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phasemore » will begin nominally on 1 November 2010 and extend to approximately early April 2011.« less

  7. HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Quint, W.; Dilling, J.; Djekic, S.; Häffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schönfelder, J.; Sikler, G.; Valenzuela, T.; Verdú, J.; Weber, C.; Werth, G.

    2001-01-01

    HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy.

  8. Present status of the liquid lithium target facility in the international fusion materials irradiation facility (IFMIF)

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroo; Riccardi, B.; Loginov, N.; Ara, K.; Burgazzi, L.; Cevolani, S.; Dell'Orco, G.; Fazio, C.; Giusti, D.; Horiike, H.; Ida, M.; Ise, H.; Kakui, H.; Matsui, H.; Micciche, G.; Muroga, T.; Nakamura, Hideo; Shimizu, K.; Sugimoto, M.; Suzuki, A.; Takeuchi, H.; Tanaka, S.; Yoneoka, T.

    2004-08-01

    During the three year key element technology phase of the International Fusion Materials Irradiation Facility (IFMIF) project, completed at the end of 2002, key technologies have been validated. In this paper, these results are summarized. A water jet experiment simulating Li flow validated stable flow up to 20 m/s with a double reducer nozzle. In addition, a small Li loop experiment validated stable Li flow up to 14 m/s. To control the nitrogen content in Li below 10 wppm will require surface area of a V-Ti alloy getter of 135 m 2. Conceptual designs of diagnostics have been carried out. Moreover, the concept of a remote handling system to replace the back wall based on `cut and reweld' and `bayonet' options has been established. Analysis by FMEA showed safe operation of the target system. Recent activities in the transition phase, started in 2003, and plan for the next phase are also described.

  9. Space transportation system biomedical operations support study

    NASA Technical Reports Server (NTRS)

    White, S. C.

    1983-01-01

    The shift of the Space Transportation System (STS) flight tests of the orbiter vehicle to the preparation and flight of the payloads is discussed. Part of this change is the transition of the medical and life sciences aspects of the STS flight operations to reflect the new state. The medical operations, the life sciences flight experiments support requirements and the intramural research program expected to be at KSC during the operational flight period of the STS and a future space station are analyzed. The adequacy of available facilities, plans, and resources against these future needs are compared; revisions and/or alternatives where appropriate are proposed.

  10. 76 FR 20052 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... Guide 1.149, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License..., ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License Examinations, and... simulation facility for use in operator and senior operator training, license examination operating tests...

  11. Preparing for Harvesting Radioisotopes from FRIB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peaslee, Graham F.; Lapi, Suzanne E.

    2015-02-02

    The Facility for Rare Isotope Beams (FRIB) is the next generation accelerator facility under construction at Michigan State University. FRIB will produce a wide variety of rare isotopes by a process called projectile fragmentation for a broad range of new experiments when it comes online in 2020. The accelerated rare isotope beams produced in this facility will be more intense than any current facility in the world - in many cases by more than 1000-fold. These beams will be available to the primary users of FRIB in order to do exciting new fundamental research with accelerated heavy ions. In themore » standard mode of operation, this will mean one radioisotope will be selected at a time for the user. However, the projectile fragmentation process also yields hundreds of other radioisotopes at these bombarding energies, and many of these rare isotopes are long-lived and could have practical applications in medicine, national security or the environment. This project developed new methods to collect these long-lived rare isotopes that are by-products of the standard FRIB operation. These isotopes are important to many areas of research, thus this project will have a broad impact in several scientific areas including medicine, environment and homeland security.« less

  12. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M.L.; Poirier, Michael; McCabe, Daniel J.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  13. Design Status of the LBNF / DUNE Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadimitriou, Vaia; et al.

    The Long Baseline Neutrino Facility (LBNF) will utilize a beamline located at Fermilab to provide and aim a wide band beam of neutrinos of sufficient intensity and appropriate energy toward DUNE detectors, placed 4850 feet underground at SURF in South Dakota, about 1,300 km away. The primary proton beam (60-120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a four-interaction length solid target and produce mesons which are subsequently focused by a set of three magnetic horns into a 194 m long helium-filled decay pipe where they decay intomore » muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spatial and radiological constraints, extensive simulations and the experience gained by operating the NuMI facility at Fermilab. The Beamline facility is designed for initial operation at a proton-beam power of 1.2 MW, with the capability to support an upgrade to about 2.4 MW. LBNF/DUNE obtained CD-1 approval in November 2015 and CD-3a approval in September 2016. We discuss here the Beamline design status and the associated challenges.« less

  14. Design of the LBNF Beamline Target Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tariq, S.; Ammigan, K.; Anderson, K.

    2016-10-01

    The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding inmore » a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilab’s NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station.« less

  15. Overview of ten-year operation of the superconducting linear accelerator at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Kim, S.-H.; Afanador, R.; Barnhart, D. L.; Crofford, M.; Degraff, B. D.; Doleans, M.; Galambos, J.; Gold, S. W.; Howell, M. P.; Mammosser, J.; McMahan, C. J.; Neustadt, T. S.; Peters, C.; Saunders, J. W.; Strong, W. H.; Vandygriff, D. J.; Vandygriff, D. M.

    2017-04-01

    The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenance activities for cryomodules are introduced.

  16. Overview of ten-year operation of the superconducting linear accelerator at the Spallation Neutron Source

    DOE PAGES

    Kim, Sang-Ho; Afanador, Ralph; Barnhart, Debra L.; ...

    2017-02-04

    The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenancemore » activities for cryomodules are introduced.« less

  17. Overview of ten-year operation of the superconducting linear accelerator at the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sang-Ho; Afanador, Ralph; Barnhart, Debra L.

    The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenancemore » activities for cryomodules are introduced.« less

  18. 76 FR 59158 - Notice of Availability of Draft General Management Plan/Environmental Impact Statement for Effigy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... Management Plan/ Environmental Impact Statement for Effigy Mounds National Monument, Iowa AGENCY: National... Protection Agency. Public meetings will be held during the 60-day review period on the GMP/EIS in the Harpers... experience, to the socioeconomic environment, and to monument operations and facilities. The preferred...

  19. HOMEMAKING IN THE ELEMENTARY SCHOOLS, A RESOURCE GUIDE FOR CLASSROOM TEACHERS.

    ERIC Educational Resources Information Center

    SICKLER, SUZANNE

    THIS GUIDE PROVIDES BASIC INFORMATION ON ORGANIZATION, OPERATION, CURRICULUM, FACILITIES, AND RESOURCES FOR THE DEVELOPMENT OF A HOMEMAKING EXPERIENCE-CENTERED PROGRAM IN ELEMENTARY SCHOOLS. IT MAY BE USED BY A HOMEROOM TEACHER WITH A VISITING HOMEMAKING TEACHER CONSULTANT OR BY A HOMEMAKING TEACHER IN SCHEDULED CLASSES. IT WAS DEVELOPED BY A…

  20. Cronus, A Distributed Operating System: Functional Definition and System Concept.

    DTIC Science & Technology

    1984-02-01

    55 Report No 5041 Bolt Beranek and Neman Inc 3 7 Interprocess Communication The objective of the DOS interprocess communication HIPCi facility is to...comprehensive enough to support performance monitcr:n: experiments - 63- AA~ Report No 5041 ol t Beranek and Neman n2 4 System Integrity and Survivability Users

  1. Automatic Rejection Of Multimode Laser Pulses

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.; Esproles, Carlos

    1991-01-01

    Characteristic modulation detected, enabling rejection of multimode signals. Monitoring circuit senses multiple longitudinal mode oscillation of transversely excited, atmospheric-pressure (TEA) CO2 laser. Facility developed for inclusion into coherent detection laser radar (LIDAR) system. However, circuit described of use in any experiment where desireable to record data only when laser operates in single longitudinal mode.

  2. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    distribution feeder models for use in hardware-in-the-loop (HIL) experiments. Using this method, a full feeder ; proposes an additional control loop to improve frequency support while ensuring stable operation. The and Frequency Deviation," also proposes an additional control loop, this time to smooth the wind

  3. A Volunteer Program for Abnormal Psychology Students: Eighteen Years and Still Going Strong.

    ERIC Educational Resources Information Center

    Scogin, Forrest; Rickard, Henry C.

    1987-01-01

    A volunteer experience in abnormal psychology is described. The program has been operating for 18 years, and student reactions have been quite positive. The program augments the traditional course offerings and provides reciprocal service for the University of Alabama and mental health facilities. Guidelines for implementing a volunteer program…

  4. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019318 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  5. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019300 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  6. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019312 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  7. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019307 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  8. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019299 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  9. Nutrition: blood sample collection

    NASA Image and Video Library

    2007-03-20

    ISS014-E-17550 (20 March 2007) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, prepares to insert a test sample in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) as part of the Nutritional Status Assessment (NUTRITION) experiment in the Destiny laboratory of the International Space Station. MELFI is a low temperature freezer facility with nominal operating temperatures of -80, -26 and +4 degrees Celsius that will preserve experiment materials over long periods.

  10. Nutrition: blood sample collection

    NASA Image and Video Library

    2007-03-20

    ISS014-E-17547 (20 March 2007) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, prepares to insert a test sample in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) as part of the Nutritional Status Assessment (NUTRITION) experiment in the Destiny laboratory of the International Space Station. MELFI is a low temperature freezer facility with nominal operating temperatures of -80, -26 and +4 degrees Celsius that will preserve experiment materials over long periods.

  11. STS-40 MS Jernigan works at SLS-1 Rack 1 workstation with intravenous system

    NASA Image and Video Library

    1991-06-14

    STS040-30-008 (5-14 June 1991) --- Astronaut Tamara E. Jernigan, after applying a blood pressure cuff to an experiment, watches it in operation. The experiment is the intravenous infusion pump. The device is being considered for use on Space Station Freedom's Health Maintenance Facility. Dr. Jernigan is one of seven crew members supporting the nine-day Spacelab Life Sciences (SLS-1) mission aboard the Earth-orbiting Space Shuttle Columbia.

  12. The LUX Experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Bernard, E.; Bernstein, A.; Bradley, A.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; de Viveiros, L.; Dobi, A.; Dobson, J.; Druszkiewicz, E.; Edwards, B.; Faham, C. H.; Fiorucci, S.; Flores, C.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C.; Hertel, S. A.; Horn, M.; Huang, D. Q.; Ihm, M.; Jacobsen, R. G.; Kazkaz, K.; Knoche, R.; Larsen, N. A.; Lee, C.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Mannino, R.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H.; Neves, F.; Ott, R. A.; Pangilinan, M.; Parker, P. D.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Shutt, T.; Silva, C.; Solovov, V. N.; Sorensen, P.; O'Sullivan, K.; Sumner, T. J.; Szydagis, M.; Taylor, D.; Tennyson, B.; Tiedt, D. R.; Tripathi, M.; Uvarov, S.; Verbus, J. R.; Walsh, N.; Webb, R.; White, J. T.; Witherell, M. S.; Wolfs, F. L. H.; Woods, M.; Zhang, C.

    We present the status and prospects of the LUX experiment, which employs approximately 300 kg of two-phase xenon to search for WIMP dark matter interactions. The LUX detector was commissioned at the surface laboratory of the Sanford Underground Research Facility in Lead, SD, between December 2011 and February 2012 and the detector has been operating underground since January, 2013. These proceedings review the results of the commissioning run as well as the status of underground data-taking through the summer of 2013.

  13. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    NASA Astrophysics Data System (ADS)

    Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Yadava, Ratnakar; Chakraborty, A. K.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-09-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1×1018/m3, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  14. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2016-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear bum in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm3-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIP's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY20l0 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  15. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY: Nuclear Regulatory Commission... Commission (NRC or the Commission) has issued renewed Facility Operating License No. R- 112, held by Reed... License No. R-112 will expire 20 years from its date of issuance. The renewed facility operating license...

  16. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  17. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE PAGES

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; ...

    2017-03-06

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  18. Future Operations of HAARP with the UAF's Geophysical Institute

    NASA Astrophysics Data System (ADS)

    McCoy, R. P.

    2015-12-01

    The High frequency Active Aurora Research Program (HAARP) in Gakona Alaska is the world's premier facility for active experimentation in the ionosphere and upper atmosphere. The ionosphere affects communication, navigation, radar and a variety of other systems depending on, or affected by, radio propagation through this region. The primary component of HAARP, the Ionospheric Research Instrument (IRI), is a phased array of 180 HF antennas spread across 33 acres and capable of radiating 3.6 MW into the upper atmosphere and ionosphere. The array is fed by five 2500 kW generators, each driven by a 3600 hp diesel engine (4 + 1 spare). Transmit frequencies are selectable in the range 2.8 to 10 MHz and complex configurations of rapidly slewed single or multiple beams are possible. HAARP was owned by the Air Force Research Laboratory (AFRL/RV) in Albuquerque, NM but recently was transferred to the Geophysical Institute of the University of Alaska Fairbanks (UAF/GI). The transfer of ownership of the facility is being implemented in stages involving a Cooperative Research and Development Agreement (CRADA) and an Educational Partnership Agreement (EPA) which are complete, and future agreements to transfer ownership of the facility land. The UAF/GI plans to operate the facility for continued ionospheric and upper atmospheric experimentation in a pay-per-use model. In their 2013 "Decadal Survey in Solar and Space Physics" the National Research Council (NRC) made the recommendation to "Fully realize the potential of ionospheric modification…" and in their 2013 Workshop Report: "Opportunities for High-Power, High-Frequency Transmitters to Advance Ionospheric/Thermospheric Research" the NRC outlined the broad range of future ionospheric, thermospheric and magnetospheric experiments that could be performed with HAARP. HAARP is contains a variety of RF and optical ionospheric diagnostic instruments to measure the effects of the heater in real time. The UAF/GI encourages the scientific community to plan experiments at HAARP and bring their remote sensing instruments to HAARP for extended or permanent operation. The power and flexibility of HAARP and its unique location in the subarctic will help secure the future of this facility as the foremost laboratory for active experimentation in the ionosphere and upper atmosphere.

  19. Design of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.; Forest, C. B.; O'Connell, R.; Nornberg, M. D.; Spence, E. J.

    2004-11-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid-sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of 100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. The temperature of the vessel is maintained through an actively-heated-and-cooled oil heat-exchange system. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities near 15 m/s. Each shaft is sealed with an oil-buffered dual mechanical cartridge seal. The experiment is automated for remote operation and data logging. The melting and transfer of one metric ton of sodium to a storage vessel is discussed. Operating parameters and performance of the experiment are presented.

  20. The Drop Tower Bremen -Experiment Operation

    NASA Astrophysics Data System (ADS)

    Könemann, Thorben; von Kampen, Peter; Rath, Hans J.

    The idea behind the drop tower facility of the Center of Applied Space Technology and Micro-gravity (ZARM) in Bremen is to provide an inimitable technical opportunity of a daily access to short-term weightlessness on earth. In this way ZARM`s european unique ground-based microgravity laboratory displays an excellent economic alternative for research in space-related conditions at low costs comparable to orbital platforms. Many national and international ex-perimentalists motivated by these prospects decide to benefit from the high-quality and easy accessible microgravity environment only provided by the Drop Tower Bremen. Corresponding experiments in reduced gravity could open new perspectives of investigation methods and give scientists an impressive potential for a future technology and multidisciplinary applications on different research fields like Fundamental Physics, Astrophysics, Fluid Dynamics, Combus-tion, Material Science, Chemistry and Biology. Generally, realizing microgravity experiments at ZARM`s drop tower facility meet new requirements of the experimental hardware and may lead to some technical constraints in the setups. In any case the ZARM Drop Tower Operation and Service Company (ZARM FAB mbH) maintaining the drop tower facility is prepared to as-sist experimentalists by offering own air-conditioned laboratories, clean rooms, workshops and consulting engineers, as well as scientific personal. Furthermore, ZARM`s on-site apartment can be used for accommodations during the experiment campaigns. In terms of approaching drop tower experimenting, consulting of experimentalists is mandatory to successfully accomplish the pursued drop or catapult capsule experiment. For this purpose there will be a lot of expertise and help given by ZARM FAB mbH in strong cooperation to-gether with the experimentalists. However, in comparison to standard laboratory setups the drop or catapult capsule setup seems to be completely different at first view. While defining a microgravity project at the Drop Tower Bremen, interesting experimentalists should keep in mind generally reducing dimensions and masses of their common laboratory setups to meet the capsule constraints: overall payload height 980mm/1730mm (short/long drop capsule) and 950mm (catapult capsule); area of each capsule platform 0,359sqm; maximum payload mass 274kg/234kg (short/long drop capsule) and 163,8kg (catapult capsule). The base equipments of each capsule are the Capsule Control System (CCS) to remote control the experiment and the rechargeable battery pack (24V/40A) for the experiment operation. Moreover, the exper-iment components must be able to withstand maximum decelerations of 50g while the short capsule impact of about 200ms, and maximum accelerations of 30g while catapult launch with a duration of about 300ms. In our second talk concerning ZARM`s drop tower facility we will go on with detailed infor-mations about the technical base setups of the drop and the catapult capsule structure to completely handle a freely falling experiment. Furthermore, we will summarize interesting current drop tower projects as an outlook to present you the range of opportunities at the ground-based short-term microgravity laboratory of ZARM.

  1. Development and fabrication of a solar cell junction processing system

    NASA Technical Reports Server (NTRS)

    Bunker, S.

    1981-01-01

    A solar cell junction processing system was developed and fabricated. A pulsed electron beam for the four inch wafers is being assembled and tested, wafers were successfully pulsed, and solar cells fabricated. Assembly of the transport locks is completed. The transport was operated successfully but not with sufficient reproducibility. An experiment test facility to examine potential scaleup problems associated with the proposed ion implanter design was constructed and operated. Cells were implanted and found to have efficiency identical to the normal Spire implant process.

  2. New Platforms for Suborbital Astronomical Observations and In Situ Atmospheric Measurements: Spacecraft, Instruments, and Facilities

    NASA Astrophysics Data System (ADS)

    Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.

    2014-12-01

    Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers, accelerometers, etc. This low-cost, customizable platform provides researchers the ability to design immediately responsive, repeatable, high resolution experiments.

  3. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blasing, T.J.; Brown, R.A.; Cada, G.F.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production ofmore » medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.« less

  4. The F-15B Propulsion Flight Test Fixture: A New Flight Facility For Propulsion Research

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Vachon, M. Jake; Palumbo, Nathan; Diebler, Corey; Tseng, Ting; Ginn, Anthony; Richwine, David

    2001-01-01

    The design and development of the F-15B Propulsion Flight Test Fixture (PFTF), a new facility for propulsion flight research, is described. Mounted underneath an F-15B fuselage, the PFTF provides volume for experiment systems and attachment points for propulsion devices. A unique feature of the PFTF is the incorporation of a six-degree-of-freedom force balance. Three-axis forces and moments can be measured in flight for experiments mounted to the force balance. The NASA F-15B airplane is described, including its performance and capabilities as a research test bed aircraft. The detailed description of the PFTF includes the geometry, internal layout and volume, force-balance operation, available instrumentation, and allowable experiment size and weight. The aerodynamic, stability and control, and structural designs of the PFTF are discussed, including results from aerodynamic computational fluid dynamic calculations and structural analyses. Details of current and future propulsion flight experiments are discussed. Information about the integration of propulsion flight experiments is provided for the potential PFTF user.

  5. Optimization of Treatment to Conserve Water at the US Naval Academy

    DTIC Science & Technology

    2009-05-06

    Established 1845 • 1,160 Acres • 3.46 MGD Iron Removal WTP : • Constructed 1971 • Modifications in 1998 & 2004 5/6/2009 Source Water: • 3 wells...5/6/2009 5/6/2009 Title 5/6/2009 WTP Operations: • Manned 24/7 but operated 14 hrs/day • 1.8 MGD average production • 50,000 g/hr blow-down from...experience for future on-site facility 16 Title/Group/Section,etc. 5/6/2009 5/6/2009 Minimize Plant Shutdowns: • Most WTPs operate best 24/7 • Ea. shut-down

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Hansheng

    The ICF Program in China has made significant progress with multilabs' efforts in the past years. The eight-beam SG-II laser facility, upgraded from the two-beam SG-I facility, is nearly completed for 1.05 {mu}m light output and is about to be operated for experiments. Some benchmark experiments have been conducted for disk targets. Advanced diagnostic techniques, such as an x-ray microscope with a 7-{mu}m spatial resolution and x-ray framing cameras with a temporal resolution better than 65ps, have been developed. Lower energy pumping with prepulse technique for Ne-like Ti laser at 32.6nm has succeeded and shadowgraphy of a fine mesh hasmore » been demonstrated with the Ti laser beam. A national project, SG-III laser facility, has been proposed to produce 60 kJ blue light for target physics experiments and is being conceptually designed. New laser technology, including maltipass amplification, large aperture plasma electrode switches and laser glass with fewer platinum grains have been developed to meet the requirements of the SG-III Project. The Technical Integration Line (TIL) as a scientific prototype beamlet of SG-III will be first built in the next few years.« less

  7. A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH).

    PubMed

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N(2) can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140 degrees C), low atmospheric pressure (5-10 mbar), and a gas composition like that of Mars during long-term experiments.

  8. A Facility for Long-Term Mars Simulation Experiments: The Mars Environmental Simulation Chamber (MESCH)

    NASA Astrophysics Data System (ADS)

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N2 can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140°C), low atmospheric pressure (5 10 mbar), and a gas composition like that of Mars during long-term experiments.

  9. Slow positron applications at slow positron facility of institute of materials structure science, KEK

    NASA Astrophysics Data System (ADS)

    Hyodo, Toshio; Mochizuki, Izumi; Wada, Ken; Toge, Nobukazu; Shidara, Tetsuo

    2018-05-01

    Slow Positron Facility at High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy-tunable (0.1 - 35 keV) slow positron beam created by a dedicated ˜ 50 MeV linac. It operates in a short pulse (width 1-12 ns, variable, 5×106 e+/s) and a long pulse (width 1.2 µs, 5×107 e+/s) modes of 50 Hz. High energy positrons from pair creation are moderated by reemission after thermalization in W foils. The reemitted positrons are then electrostatically accelerated to a desired energy up to 35 keV and magnetically transported. A pulse-stretching section (pulse stretcher) is installed in the middle of the beamline. It stretches the slow positron pulse for the experiments where too many positrons annihilating in the sample at the same time has to be avoided. Four experiment stations for TRHEPD (total-reflection high-energy positron diffraction), LEPD (low-energy positron diffraction), Ps- (positronium negative ion), and Ps-TOF (positronium time-of-flight) experiments are connected to the beamline branches, SPF-A3, SPF-A4, SPF-B1 and SPF-B2, respectively. Recent results of these stations are briefly described.

  10. Alternative Fuel Research in Fischer-Tropsch Synthesis

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.

    2011-01-01

    NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.

  11. Orbital transfer vehicle launch operations study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The purpose was to use the operational experience at the launch site to identify, describe and quantify the operational impacts of the various configurations on the Kennedy Space Center (KSC) and/or space station launch sites. Orbital Transfer Vehicle (OTV) configurations are being developed/defined by contractor teams. Lacking an approved configuration, the KSC Study Team defined a Reference Configuration to be used for this study. This configuration then become the baseline for the identification of the facilities, personnel and crew skills required for processing the OTV in a realistic manner that would help NASA achieve the lowest possible OTV life cycle costs. As the study progressed, researchers' initial apraisal that the vehicle, when delivered, would be a sophisticated, state-of-the-art vehicle was reinforced. It would be recovered and reused many times so the primary savings to be gained would be in the recurring-cycle of the vehicle operations--even to the point where it would be beneficial to break from tradition and make a significant expenditure in the development of processing facilities at the beginning of the program.

  12. Implementation of the MPC and A Operations Monitoring (MOM) System at IRT-T FSRE Nuclear Power Institute (NPI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitdikov,I.; Zenkov, A.; Tsibulnikov, Y.

    The Material Protection, Control and Accounting (MPC&A) Program has been working since 1994 with nuclear sites in Russia to upgrade the physical protection (PP) and material control and accounting (MC&A) functions at facilities containing weapons usable nuclear material. In early 2001, the MPC&A program initiated the MPC&A Operations Monitoring (MOM) Project to monitor facilities where MPC&A upgrades have been installed to provide increased confidence that personnel are present and vigilant, provide confidence that security procedures are being properly performed and provide additional assurance that nuclear materials have not been stolen. The MOM project began as a pilot project at themore » Moscow State Engineering Physics Institute (MEPhI) and a MOM system was successfully installed in October 2001. Following the success of the MEPhI pilot project, the MPC&A Program expanded the installation of MOM systems to several other Russian facilities, including the Nuclear Physics Institute (NPI) in Tomsk. The MOM system was made operational at NPI in October 2004. This paper is focused on the experience gained from operation of this system and the objectives of the MOM system. The paper also describes how the MOM system is used at NPI and, in particular, how the data is analyzed. Finally, potential expansion of the MOM system at NPI is described.« less

  13. Scientific investigations at a lunar base

    NASA Technical Reports Server (NTRS)

    Duke, M. B.; Mendell, W. W.

    1988-01-01

    Scientific investigations to be carried out at a lunar base can have significant impact on the location, extent, and complexity of lunar surface facilities. Among the potential research activities to be carried out are: (1) Lunar Science: Studies of the origin and history of the Moon and early solar system, based on lunar field investigations, operation of networks of seismic and other instruments, and collection and analysis of materials; (2) Space Plasma Physics: Studies of the time variation of the charged particles of the solar wind, solar flares and cosmic rays that impact the Moon as it moves in and out of the magnetotail of the Earth; (3) Astronomy: Utilizing the lunar environment and stability of the surface to emplace arrays of astronomical instruments across the electromagnetic spectrum to improve spectral and spatial resolution by several orders of magnitude beyond the Hubble Space Telescope and other space observatories; (4) Fundamental physics and chemistry: Research that takes advantage of the lunar environment, such as high vacuum, low magnetic field, and thermal properties to carry out new investigations in chemistry and physics. This includes material sciences and applications; (5) Life Sciences: Experiments, such as those that require extreme isolation, highly sterile conditions, or very low natural background of organic materials may be possible; and (6) Lunar environmental science: Because many of the experiments proposed for the lunar surface depend on the special environment of the Moon, it will be necessary to understand the mechanisms that are active and which determine the major aspects of that environment, particularly the maintenance of high-vacuum conditions. From a large range of experiments, investigations and facilities that have been suggested, three specific classes of investigations are described in greater detail to show how site selection and base complexity may be affected: (1) Extended geological investigation of a complex region up to 250 kilometers from the base requires long range mobility, with transportable life support systems and laboratory facilities for the analysis of rocks and soil. Selection of an optimum base site would depend heavily on an evaluation of the degree to which science objectives could be met. These objectives could include lunar cratering, volcanism, resource surveys or other investigations; (2) An astronomical observatory initially instrumented with a VLF radio telescope, but later expanding to include other instruments, requires site preparation capability, "line shack" life support systems, instrument maintenance and storage facilities, and sortie mode transportation. A site perpetually shielded from Earth is optimum for the advanced stages of a lunar observatory; (3) an experimental physics laboratory conducting studies requiring high vacuum facilities and heavily instrumented experiments, is not highly dependent on lunar location, but will require much more flexibility in experiment operation and EVA capability, and more sophisticated instrument maintenance and fabrication facilities.

  14. Design and Testing of a Breadboard Electrical Power Control Unit for the Fluid Combustion Facility Experiment

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Lebron, Ramon C.

    1999-01-01

    The Fluid Combustion Facility (FCF) Project and the Power Technology Division at the NASA Glenn Research Center (GRC) at Lewis Field in Cleveland, OH along with the Sundstrand Corporation in Rockford, IL are jointly developing an Electrical Power Converter Unit (EPCU) for the Fluid Combustion Facility to be flown on the International Space Station (ISS). The FCF facility experiment contains three racks: A core rack, a combustion rack, and a fluids rack. The EPCU will be used as the power interface to the ISS 120V(sub dc) power distribution system by each FCF experiment rack which requires 28V(sub dc). The EPCU is a modular design which contains three 120V(sub dc)-to-28V(sub dc) full-bridge, power converters rated at 1 kW(sub e) each bus transferring input relays and solid-state, current-limiting input switches, 48 current-limiting, solid-state, output switches; and control and telemetry hardware. The EPCU has all controls required to autonomously share load demand between the power feeds and--if absolutely necessary--shed loads. The EPCU, which maximizes the usage of allocated ISS power and minimizes loss of power to loads, can be paralleled with other EPCUs. This paper overviews the electrical design and operating characteristics of the EPCU and presents test data from the breadboard design.

  15. TU-G-BRCD-01: Will the High Cost of Proton Therapy Facilities Limit the Availability of Proton Therapy Treatment?

    PubMed

    Maughan, R

    2012-06-01

    The potential dose distribution advantages associated with proton therapy, and particularly with pencil beam scanning (PBS) techniques, have lead to considerable interest in this modality in recent years. However, the large capital expenditure necessary for such a project requires careful financial consideration and business planning. The complexity of the beam delivery systems impacts the capital expenditure and the PBS only systems presently being advocated can reduce these costs. Also several manufacturers are considering "one-room" facilities as less expensive alternatives to multi-room facilities. This presentation includes a brief introduction to beam delivery options (passive scattering, uniform and modulated scanning) and some of the new technologies proposed for providing less expensive proton therapy systems. Based on current experience, data on proton therapy center start-up costs, running costs and the financial challenges associated with making this highly conformal therapy more widely available will be discussed. Issues associated with proton therapy implementation that are key to project success include strong project management, vendor cooperation and collaboration, staff recruitment and training. Time management during facility start up is a major concern, particularly in multi-room systems, where time must be shared between continuing vendor system validation, verification and acceptance testing, and user commissioning and patient treatments. The challenges associated with facility operation during this period and beyond are discussed, focusing on how standardization of process, downtime and smart scheduling can influence operational efficiency. 1. To understand the available choices for proton therapy facilities, the different beam delivery systems and the financial implications associated with these choices. 2. To understand the key elements necessary for successfully implementing a proton therapy program. 3. To understand the challenges associated with on-going facility management to achieve an efficient fully operational system. © 2012 American Association of Physicists in Medicine.

  16. Updates on HRF Payloads Operations in Columbus ATCS

    NASA Technical Reports Server (NTRS)

    DePalo, Savino; Wright, Bruce D.; La,e Robert E.; Challis, Simon; Davenport, Robert; Pietrafesa, Donata

    2011-01-01

    The NASA developed Human Research Facility 1 (HRF1) and Human Research Facility (HRF2) experiment racks have been operating in the European Space Agency (ESA) Columbus module of the International Space Station (ISS) since Summer 2008. The two racks are of the same design. Since the start of operations, unexpected pressure spikes were observed in the Columbus module's thermal-hydraulic system during the racks activation sequence. The root cause of these spikes was identified in the activation command sequence in the Rack Interface Controller (RIC), which controls the flow of thermal-hydraulic system fluid through the rack. A new Common RIC Software (CRS) release fixed the bug and was uploaded on both racks in late 2009. This paper gives a short introduction to the topic, describes the Columbus module countermeasures to mitigate the spikes, describes the ground validation test of the new software, and describes the flight checks performed before and after the final upload. Finally, the new on-orbit test designed to further simplify the racks hydraulic management is presented.

  17. Gravity Plant Physiology Facility (GPPF) Team in the Spacelab Payload Operations Control Center (SL

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Gravity Plant Physiology Facility (GPPF) team in the SL POCC during the IML-1 mission.

  18. Two-bunch operation with ns temporal separation at the FERMI FEL facility

    NASA Astrophysics Data System (ADS)

    Penco, Giuseppe; Allaria, Enrico; Bassanese, Silvano; Cinquegrana, Paolo; Cleva, Stefano; Danailov, Miltcho B.; Demidovich, Alexander; Ferianis, Mario; Gaio, Giulio; Giannessi, Luca; Masciovecchio, Claudio; Predonzani, Mauro; Rossi, Fabio; Roussel, Eleonore; Spampinati, Simone; Trovò, Mauro

    2018-05-01

    In the last decade, a continuous effort has been dedicated to extending the capabilities of existing free-electron lasers (FELs) operating in the x-ray and vacuum ultraviolet regimes. In this framework, the generation of two-color (or multi-color) temporally separated FEL pulses, has paved the way to new x-ray pump and probe experiments and several two-color two-pulse schemes have been implemented at the main facilities, but with a generally limited time-separation between the pulses, from 0 to few hundreds of fs. This limitation may be overcome by generating light with two independent electron bunches, temporally separated by integral multiples of the radio-frequency period. This solution was investigated at FERMI, measurements and characterization of this two-bunch mode of operation are presented, including trajectory control, impact of longitudinal and transverse wakefields, manipulation of the longitudinal phase space and finally a demonstration of suitability of the scheme to provide extreme ultraviolet light by using both bunches.

  19. The European XFEL Free Electron Laser at DESY

    ScienceCinema

    Weise, Hans [Deutsches Elektronen-Synchrotron, Germany

    2017-12-09

    The European X-ray Free-Electron laser Facility (XFEL) is going to be built in an international collaboration at the Deutsches Elektronen-Synchrotron (DESY), Germany, and the Technical Design Report was published in 2006. The official project is expected for summer 2007. This new facility will offer photon beams at wavelengths as short as 1 angstrom with highest peak brilliance being more than 100 million times higher than present day synchrotron radiation sources. The radiation has a high degree of transverse coherence and the pulse duration is reduced from {approx}100 picoseconds (typ. for SR light sources) down to the {approx}10 femtosecond time domain. The overall layout of the XFEL will be described. This includes the envisaged operation parameters for the linear accelerator using superconducting TESLA technology. The complete design is based on the actually operated FLASH free-electron laser at DESY. Experience with the operation during first long user runs at wavelengths from 30 to 13 nm will be described in detail.

  20. Critical Point Facility (CPE) Group in the Spacelab Payload Operations Control Center (SL POCC)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Critical Point Facility (CPE) group in the SL POCC during STS-42, IML-1 mission.

  1. 14 CFR 171.327 - Operational records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.327 Operational... operational records at the indicated time to the appropriate FAA regional office where the facility is located... facility and two copies must be sent to the appropriate FAA regional office. The owner or his maintenance...

  2. 14 CFR 171.327 - Operational records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.327 Operational... operational records at the indicated time to the appropriate FAA regional office where the facility is located... facility and two copies must be sent to the appropriate FAA regional office. The owner or his maintenance...

  3. Study of energetic particle dynamics in Harbin Dipole eXperiment (HDX) on Space Plasma Environment Research Facility (SPERF)

    NASA Astrophysics Data System (ADS)

    Zhibin, W.; Xiao, Q.; Wang, X.; Xiao, C.; Zheng, J.; E, P.; Ji, H.; Ding, W.; Lu, Q.; Ren, Y.; Mao, A.

    2015-12-01

    Zhibin Wang1, Qingmei Xiao1, Xiaogang Wang1, Chijie Xiao2, Jinxing Zheng3, Peng E1, Hantao Ji1,5, Weixing Ding4, Quaming Lu6, Y. Ren1,5, Aohua Mao11 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, China 150001 2 State Key Lab of Nuclear Physics & Technology, and School of Physics, Peking University, Beijing, China 100871 3ASIPP, Hefei, China, 230031 4University of California at Los Angeles, Los Angeles, CA, 90095 5Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 6University of Science and Technology of China, Hefei, China, 230026 A new terrella device for laboratory studies of space physics relevant to the inner magnetospheric plasmas, Harbin Dipole eXperiment (HDX), is scheduled to be built at Harbin Institute of Technology (HIT), China. HDX is one of two essential parts of Space Plasma Environment Research Facility (SPERF), which is a major national research facility for space physics studies. HDX is designed to provide a laboratory experimental platform to reproduce the earth's magnetospheric structure for investigations on the mechanism of acceleration/loss and wave-particle interaction of energetic particles in radiation belt, and on the influence of magnetic storms on the inner magnetosphere. It can be operated together with Harbin Reconnection eXperiment (HRX), which is another part of SPERF, to study the fundamental processes during interactions between solar wind and Earth's magnetosphere. In this presentation, the scientific goals and experimental plans for HDX, together with the means applied to generate the plasma with desired parameters, including multiple plasma sources and different kinds of coils with specific functions, as well as advanced diagnostics designed to be equipped to the facility for multi-functions, are reviewed. Three typical scenarios of HDX with operations of various coils and plasma sources to study specific physical processes in space plasmas will also be presented.

  4. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The facility provides all the necessary infrastructure to conduct the research flights in a safe and efficient manner. This paper gives a comprehensive overview of the development of the AirSTAR testbed.

  5. The Homestake Interim Laboratory and Homestake DUSEL

    NASA Astrophysics Data System (ADS)

    Lesko, Kevin T.

    2011-12-01

    The former Homestake gold mine in Lead South Dakota is proposed for the National Science Foundation's Deep Underground Science and Engineering Laboratory (DUSEL). The gold mine provides expedient access to depths in excess of 8000 feet below the surface (>7000 mwe). Homestake's long history of promoting scientific endeavours includes the Davis Solar Neutrino Experiment, a chlorine-based experiment that was hosted at the 4850 Level for more than 30 years. As DUSEL, Homestake would be uncompromised by competition with mining interests or other shared uses. The facility's 600-km of drifts would be available for conversion for scientific and educational uses. The State of South Dakota, under Governor Rounds' leadership, has demonstrated exceptionally strong support for Homestake and the creation of DUSEL. The State has provided funding totalling $46M for the preservation of the site for DUSEL and for the conversion and operation of the Homestake Interim Laboratory. Motivated by the strong educational and outreach potential of Homestake, the State contracted a Conversion Plan by world-recognized mine-engineering contractor to define the process of rehabilitating the facility, establishing the appropriate safety program, and regaining access to the facility. The State of South Dakota has established the South Dakota Science and Technology Authority to oversee the transfer of the Homestake property to the State and the rehabilitation and preservation of the facility. The Homestake Scientific Collaboration and the State of South Dakota's Science and Technology Authority has called for Letters of Interest from scientific, educational and engineering collaborations and institutions that are interested in hosting experiments and uses in the Homestake Interim Facility in advance of the NSF's DUSEL, to define experiments starting as early as 2007. The Homestake Program Advisory Committee has reviewed these Letters and their initial report has been released. Options for developing the Homestake Interim Laboratory and evolving this facility into DUSEL are presented.

  6. Experience in Innovative Technologies Application to Change Urban Space for Sustainable Territory Development

    NASA Astrophysics Data System (ADS)

    Budarova, V.; Cherezova, N.; Rodina, O.

    2017-11-01

    Linear objects can be cause environmental impact, and therefore, they require special protection for normal operation and accident prevention. For this purpose, special exclusion zones are established. Their size and operation mode depend on the type of a facility and a hazard class. The study object of the paper is a power cable located in the city of Tyumen, the Tyumen region. The article contains a detailed consideration of three challenges. The first one was to establish an exclusion zone for the facility mentioned above. The second one was registration of a land management file with the use of the GIS technologies. The third challenge was related to the cadastral registration of a land lot under the exclusion zone using the online portal “Rosreestr” (Federal Service for State Registration, Cadastre and Cartography).

  7. Early Results from Solar Dynamic Space Power System Testing

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Mason, Lee S.

    1996-01-01

    A government/industry team designed, built and tested a 2-kWe solar dynamic space power system in a large thermal vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum and solar flux as encountered in low-Earth orbit. The solar dynamic system includes a Brayton power conversion unit integrated with a solar receiver which is designed to store energy for continuous power operation during the eclipse phase of the orbit. This paper reviews the goals and status of the Solar Dynamic Ground Test Demonstration project and describes the initial testing, including both operational and performance data. System testing to date has accumulated over 365 hours of power operation (ranging from 400 watts to 2.0-W(sub e)), including 187 simulated orbits, 16 ambient starts and 2 hot restarts. Data are shown for an orbital startup, transient and steady-state orbital operation and shutdown. System testing with varying insolation levels and operating speeds is discussed. The solar dynamic ground test demonstration is providing the experience and confidence toward a successful flight demonstration of the solar dynamic technologies on the Space Station Mir in 1997.

  8. ISS Microgravity Research Payload Training Methodology

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Geveden, Rex (Technical Monitor)

    2001-01-01

    The NASA Microgravity Research Discipline has multiple categories of science payloads that are being planned and currently under development to operate on various ISS on-orbit increments. The current program includes six subdisciplines; Materials Science, Fluids Physics, Combustion Science, Fundamental Physics, Cellular Biology and Macromolecular Biotechnology. All of these experiment payloads will require the astronaut various degrees of crew interaction and science observation. With the current programs planning to build various facility class science racks, the crew will need to be trained on basic core operations as well as science background. In addition, many disciplines will use the Express Rack and the Microgravity Science Glovebox (MSG) to utilize the accommodations provided by these facilities for smaller and less complex type hardware. The Microgravity disciplines will be responsible to have a training program designed to maximize the experiment and hardware throughput as well as being prepared for various contingencies both with anomalies as well as unexpected experiment observations. The crewmembers will need various levels of training from simple tasks as power on and activate to extensive training on hardware mode change out to observing the cell growth of various types of tissue cultures. Sample replacement will be required for furnaces and combustion type modules. The Fundamental Physics program will need crew EVA support to provide module change out of experiment. Training will take place various research centers and hardware development locations. It is expected that onboard training through various methods and video/digital technology as well as limited telecommunication interaction. Since hardware will be designed to operate from a few weeks to multiple research increments, flexibility must be planned in the training approach and procedure skills to optimize the output as well as the equipment maintainability. Early increment lessons learned will be addressed.

  9. National facilities study. Volume 4: Space operations facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The principal objectives of the National Facilities Study (NFS) were to: (1) determine where U.S. facilities do not meet national aerospace needs; (2) define new facilities required to make U.S. capabilities 'world class' where such improvements are in the national interest; (3) define where consolidation and phase-out of existing facilities is appropriate; and (4) develop a long-term national plan for world-class facility acquisition and shared usage. The Space Operations Facilities Task Group defined discrete tasks to accomplish the above objectives within the scope of the study. An assessment of national space operations facilities was conducted to determine the nation's capability to meet the requirements of space operations during the next 30 years. The mission model used in the study to define facility requirements is described in Volume 3. Based on this model, the major focus of the Task Group was to identify any substantive overlap or underutilization of space operations facilities and to identify any facility shortfalls that would necessitate facility upgrades or new facilities. The focus of this initial study was directed toward facility recommendations related to consolidations, closures, enhancements, and upgrades considered necessary to efficiently and effectively support the baseline requirements model. Activities related to identifying facility needs or recommendations for enhancing U.S. international competitiveness and achieving world-class capability, where appropriate, were deferred to a subsequent study phase.

  10. 75 FR 29785 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... Guide, DG-1248, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License..., ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License Examinations, and... or acceptance of a nuclear power plant simulation facility for use in operator and senior operator...

  11. Theory versus experiment for the rotordynamic coefficients of annular gas seals. I - Test facility and apparatus

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Nelson, C. E.; Nicks, C.; Scharrer, J.; Elrod, D.

    1985-01-01

    A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cmn (6 in.). The air supply unit yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency are discussed.

  12. Hardware development process for Human Research facility applications

    NASA Astrophysics Data System (ADS)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. .

  13. Phase 0 study for a geothermal superheated water proof of concept facility

    NASA Technical Reports Server (NTRS)

    Douglass, R. H.; Pearson, R. O.

    1974-01-01

    A Phase 0 study for the selection of a representative liquid-dominated geothermal resource of moderate salinity and temperature is discussed. Selection and conceptual design of a nominal 10-MWe energy conversion system, and implementation planning for Phase 1: subsystem (component, experiments) and Phase 2: final design, construction, and operation of experimental research facilities are reported. The objective of the overall program is to demonstrate the technical and economic viability of utilizing moderate temperature and salinity liquid-dominated resources with acceptable environmental impact, and thus encourage commercial scale development of geothermal electrical power generation.

  14. KSC-04pd0591

    NASA Image and Video Library

    2004-03-18

    KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., drives past the Vehicle Assembly Building (background, left) and Operations Support Building (background, right) on its way to the KSC Shuttle Landing Facility (SLF). Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the SLF and during transport of the payloads to other facilities.

  15. Campaign for Levitation in LDX

    NASA Astrophysics Data System (ADS)

    Garnier, D. T.; Hansen, A. K.; Mauel, M. E.; Ortiz, E. E.; Boxer, A. C.; Ellsworth, J. L.; Karim, I.; Kesner, J.; Michael, P. C.; Zhukovsky, A.

    2006-10-01

    In the past year, preparations have been made for the first flight of the Levitated Dipole Experiment (LDX). LDX, which consists of a 560 kg superconducting coil floating within a 5 m diameter vacuum chamber, is designed to study fusion relevant plasmas confined in a dipole magnetic field. During the spring, a high temperature superconducting levitation coil was integrated into the LDX facility. Testing was undertaken to verify the thermal performance of the coil under expected levitation conditions. In addition, a real-time operating system digital control system was developed that will be used for the levitation control. In July, plasma experiments were conducted with all superconducting magnets in operation. While still supported, roughly 75% of the weight of the floating coil was magnetically lifted by the levitation coil above. A series of plasma experiments were conducted with the same magnetic geometry as will be the case during levitation. During August, the second generation launcher system will be installed. The launcher, which retracts beyond the plasma's last closed field lines during operation, is designed to safely catch the floating coil following an unexpected loss of control. After this installation, levitation experiments will commence.

  16. Expected Results From Channeling Radiation Experiments at Fast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Tanaji; Broemmelsiek, Daniel; Edstrom, Dean

    2016-06-01

    The photoinjector at the new Fermilab FAST facility will accelerate electron beams to about 50 GeV. After initial beam commissioning, channeling radiation experiments to generate hard X-rays will be performed. In the initial stage, low bunch charge beams will be used to keep the photon count rate low and avoid pile up in the detector. We report here on the optics solutions, the expected channaling spectrum including background from bremmstrahlung and the use of a Compton scatterer for higher bunch charge operation.

  17. ACHP | Historic Preservation in Technical or Scientific Facilities

    Science.gov Websites

    with the Operation of Highly Technical or Scientific Facilities Balancing Historic Preservation Needs with the Operation of Highly Technical or Scientific Facilities 1991; 79 pages; excerpt available Needs with the Operation of Highly Technical or Scientific Facilities considers the appropriate role of

  18. 75 FR 19428 - Palisades Nuclear Plant; Notice of Consideration of Issuance of Amendment to Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... of Consideration of Issuance of Amendment to Facility Operating License, Proposed No Significant... (NRC or the Commission) is considering issuance of an amendment to Facility Operating License No. DPR... (SSC) or change the way any SSC is operated. The proposed license condition does not involve operation...

  19. Kelly with CIR

    NASA Image and Video Library

    2010-10-26

    ISS025-E-009308 (26 Oct. 2010) --- NASA astronaut Scott Kelly, Expedition 25 flight engineer, works on the Combustion Integrated Rack (CIR) Multi-user Drop Combustion Apparatus (MDCA) in the Destiny laboratory of the International Space Station. Kelly set up an experiment run on the Fluids & Combustion Facility (FCF) with a new fuel reservoir, ground-assisted by Payload Operations Integration Center/Huntsville (POIC).

  20. NASA Facts. An Educational Publication of the National Aeronautics and Space Administration: Space Shuttle

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The versatility of space shuttle, its heat shieldings, principal components, and facilities for various operations are described as well as the accomodations for the spacecrew and experiments. The capabilities of an improved space suit and a personal rescue enclosure containing life support and communication systems are highlighted. A typical mission is described.

  1. Microgravity

    NASA Image and Video Library

    1991-04-03

    The USML-1 Glovebox (GBX) is a multi-user facility supporting 16 experiments in fluid dynamics, combustion sciences, crystal growth, and technology demonstration. The GBX has an enclosed working space which minimizes the contamination risks to both Spacelab and experiment samples. The GBX supports four charge-coupled device (CCD) cameras (two of which may be operated simultaneously) with three black-and-white and three color camera CCD heads available. The GBX also has a backlight panel, a 35 mm camera, and a stereomicroscope that offers high-magnification viewing of experiment samples. Video data can also be downlinked in real-time. The GBX also provides electrical power for experiment hardware, a time-temperature display, and cleaning supplies.

  2. Microgravity

    NASA Image and Video Library

    1995-08-29

    The USML-1 Glovebox (GBX) is a multi-user facility supporting 16 experiments in fluid dynamics, combustion sciences, crystal growth, and technology demonstration. The GBX has an enclosed working space which minimizes the contamination risks to both Spacelab and experiment samples. The GBX supports four charge-coupled device (CCD) cameras (two of which may be operated simultaneously) with three black-and-white and three color camera CCD heads available. The GBX also has a backlight panel, a 35 mm camera, and a stereomicroscope that offers high-magnification viewing of experiment samples. Video data can also be downlinked in real-time. The GBX also provides electrical power for experiment hardware, a time-temperature display, and cleaning supplies.

  3. HPG operating experience at CEM-UT

    NASA Astrophysics Data System (ADS)

    Gully, J. H.; Aanstoos, T. A.; Nalty, K.; Walls, W. A.

    1986-11-01

    Design and functional features are presented for three homopolar generators (HPG) used in experiments during the last decade at the Center for Electromechanics at the University of Texas. The first, a disk-type, 10 MJ HPG, was built in 1973 as a prototype power source for fusion experiments. A second, compact HPG was built in 1980 for opening switch experiments as part of railgun research. The third device is an iron-core, full-scale, high speed bearing and brush test facility for supplying an energy density of 60 MJ/cu m. Engineering data obtained during studies of armature reactions actively cooled brushes morganite-copper graphite rim brushes, and peak currents, are summarized.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenstermacher, M. E.; Garofalo, A. M.; Gerhardt, S. P.

    The H-mode confinement regime is characterized by a region of good thermal and particle confinement at the edge of the confined plasma, and has generally been envisioned as the operating regime for ITER and other next step devices. This good confinement is often interrupted, however, by edge-localized instabilities, known as ELMs. On the one hand, these ELMs provide particle and impurity flushing from the plasma core, a beneficial effect facilitating density control and stationary operation. On the other hand, the ELMs result in a substantial fraction of the edge stored energy flowing in bursts to the divertor and first wall;more » this impulsive thermal loading would result in unacceptable erosion of these material surfaces if it is not arrested. Hence, developing and understanding operating regimes that have the energy confinement of standard H-mode and the stationarity that is provided by ELMs, while at the same time eliminating the impulsive thermal loading of large ELMs, is the focus of the 2013 FES Joint Research Target (JRT): Annual Target: Conduct experiments and analysis on major fusion facilities, to evaluate stationary enhanced confinement regimes without large Edge Localized Modes (ELMs), and to improve understanding of the underlying physical mechanisms that allow acceptable edge particle transport while maintaining a strong thermal transport barrier. Mechanisms to be investigated can include intrinsic continuous edge plasma modes and externally applied 3D fields. Candidate regimes and techniques have been pioneered by each of the three major US facilities (C-Mod, D3D and NSTX). Coordinated experiments, measurements, and analysis will be carried out to assess and understand the operational space for the regimes. Exploiting the complementary parameters and tools of the devices, joint teams will aim to more closely approach key dimensionless parameters of ITER, and to identify correlations between edge fluctuations and transport. The role of rotation will be investigated. The research will strengthen the basis for extrapolation of stationary regimes which combine high energy confinement with good particle and impurity control, to ITER and other future fusion facilities for which avoidance of large ELMs is a critical issue. Data from the Alcator C-Mod tokamak (MIT), DIII-D tokamak (General Atomics), and NSTX spherical tokamak (PPPL) contribute to this report. Experiments specifically motivated by this research target were conducted on DIII-D, with a national team of researchers from GA, LLNL, PPPL, MIT and ORNL contributing. Both the Alcator C-Mod and NSTX-U teams contributed analysis of previously collected data, as those two facilities did not operate in FY2013. Within each of the three research groups, members from both the host institutions and collaborating institutions made critical contributions. Highlights from these research activities are provided, with additional details.« less

  5. [The organizational characteristics of the medical support for the troops in the first operations at the start of a war (based on the experience of exercises)].

    PubMed

    Iziumtsev, I S

    1995-03-01

    The article summarized the experience of an explorative tactical-special exercise on medical support of Mobile Forces in first military operations of the initial period of war which has studied the following questions: the organic structure and organization of work of the medical service of a motorized infantry brigade in defense; joint direction of organic hospital facilities and field traumatological hospital. The author also studies the deployment peculiarities of a military multipurpose hospital on the basis of a garrison hospital. The experience of these exercises has proved the necessity to update the organic structure and principles of the employment of medical assets in accordance with the requirements of new military doctrine, as well as realize the technical re-equipment of medical service.

  6. A Numerical Study for Groundwater Flow, Heat and Solute Transport Associated with Operation of Open-loop Geothermal System in Alluvial Aquifer

    NASA Astrophysics Data System (ADS)

    Park, D. K.; Bae, G. O.; Lee, K. K.

    2014-12-01

    The open-loop geothermal system directly uses a relatively stable temperature of groundwater for cooling and heating in buildings and thus has been known as an eco-friendly, energy-saving, and cost-efficient technique. The facility for this system was installed at a site located near Paldang-dam in Han-river, Korea. Because of the well-developed alluvium, the site might be appropriate to application of this system requiring extraction and injection of a large amount of groundwater. A simple numerical experiment assuming various hydrogeologic conditions demonstrated that regional groundwater flow direction was the most important factor for efficient operation of facility in this site having a highly permeable layer. However, a comparison of river stage data and groundwater level measurements showed that the daily and seasonal controls of water level at Paldang-dam have had a critical influence on the regional groundwater flow in the site. Moreover, nitrate concentrations measured in the monitoring wells gave indication of the effect of agricultural activities around the facility on the groundwater quality. The facility operation, such as extraction and injection of groundwater, will obviously affect transport of the agricultural contaminant and, maybe, it will even cause serious problems in the normal operation. Particularly, the high-permeable layer in this aquifer must be a preferential path for quick spreadings of thermal and contaminant plumes. The objective of this study was to find an efficient, safe and stable operation plan of the open-loop geothermal system installed in this site having the complicated conditions of highly permeable layer, variable regional groundwater flow, and agricultural contamination. Numerical simulations for groundwater flow, heat and solute transport were carried out to analyze all the changes in groundwater level and flow, temperature, and quality according to the operation, respectively. Results showed that an operation plan for only the thermal efficiency of system cannot be the best in aspect of safe and stable operation related to groundwater quality. All these results concluded that it is essential to understand various and site-specific conditions of the site in a more integrated approach for the successful application of the open-loop geothermal system.

  7. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facilitymore » intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.« less

  8. Maintenance Free Fluidic Transfer and Mixing Devices for Highly Radioactive Applications - Design, Development, Deployment and Operational Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.; Richardson, J. E.; Fallows, P.

    2006-07-01

    Power Fluidics is the generic name for a range of maintenance-free fluid transfer and mixing devices, capable of handling a wide range of highly radioactive fluids, jointly developed by British Nuclear Group, its US-based subsidiary BNG America, and AEA Technology. Power Fluidic devices include Reverse Flow Diverters (RFDs), Vacuum Operated Slug Lifts (VOSLs), and Air Lifts, all of which have an excellent proven record for pumping radioactive liquids and sludges. Variants of the RFD, termed Pulse Jet Mixers (PJMs) are used to agitate and mix tank contents, where maintenance-free equipment is desirable, and where a high degree of homogenization ismore » necessary. The equipment is designed around the common principle of using compressed air to provide the motive force to transfer liquids and sludges. These devices have no moving parts in contact with the radioactive medium and therefore require no maintenance in radioactive areas of processing plants. Once commissioned, Power Fluidic equipment has been demonstrated to operate for the life of the facility. Over 800 fluidic devices continue to operate safely and reliably in British Nuclear Group's nuclear facilities at the Sellafield site in the United Kingdom, and some of these have done so for almost 40 years. More than 400 devices are being supplied by AEA Technology and BNG America for the Waste Treatment Plant (WTP) at the Hanford Site in southeastern Washington State, USA. This paper discusses: - Principles of operation of fluidic pumps and mixers. - Selection criteria and design of fluidic pumps and mixers. - Operational experience of fluidic pumps and mixers in the United Kingdom. - Applications of fluidic pumps and mixers at the U.S. Department of Energy nuclear sites. (authors)« less

  9. Summary of the Optics, IR, Injection, Operations, Reliability and Instrumentation Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wienands, U.; /SLAC; Funakoshi, Y.

    2012-04-20

    The facilities reported on are all in a fairly mature state of operation, as evidenced by the very detailed studies and correction schemes that all groups are working on. First- and higher-order aberrations are diagnosed and planned to be corrected. Very detailed beam measurements are done to get a global picture of the beam dynamics. More than other facilities the high-luminosity colliders are struggling with experimental background issues, mitigation of which is a permanent challenge. The working group dealt with a very wide rage of practical issues which limit performance of the machines and compared their techniques of operations andmore » their performance. We anticipate this to be a first attempt. In a future workshop in this series, we propose to attempt more fundamental comparisons of each machine, including design parameters. For example, DAPHNE and KEKB employ a finite crossing angle. The minimum value of {beta}*{sub y} attainable at KEKB seems to relate to this scheme. Effectiveness of compensation solenoids and turn-by-turn BPMs etc. should be examined in more detail. In the near future, CESR-C and VEPP-2000 will start their operation. We expect to hear important new experiences from these machines; in particular VEPP-2000 will be the first machine to have adopted round beams. At SLAC and KEK, next generation B Factories are being considered. It will be worthwhile to discuss the design issues of these machines based on the experiences of the existing factory machines.« less

  10. The Lesotho Hospital PPP experience: catalyst for integrated service delivery.

    PubMed

    Coelho, Carla Faustino; O'Farrell, Catherine Commander

    2011-01-01

    For many years, Lesotho urgently needed to replace its main public hospital, Queen Elizabeth II. The project was initially conceived as a single replacement hospital, but eventually included the design and construction of a new 425 bed public hospital and adjacent primary care clinic, the renovation and expansion of three strategically located primary care clinics in the region and the management of all facilities, equipment and delivery of all clinical services in the health network by a private operator under contract for 18 years. The project's design was influenced by the recognition that a new facility alone would not address the underlying issues in service provision. The creation of this PPP health network and the contracting mechanism has increased accountability for service quality, shifted Government to a more strategic role and may also benefit other public facilities and providers in Lesotho. The county is considering the PPP approach for other health facilities.

  11. Prospects for a Muon Spin Resonance Facility in the MuCool Test Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, John A.

    2017-04-12

    This paper investigates the feasibility of re-purposing the MuCool Test Area beamline and experimental hall to support a Muon Spin Resonance facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application to the MTA facility. Two scenarios were determined feasible. One represents an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that transports the primary beam to an existing high-intensity beam absorber located outside of the hall. Another, upgraded stage, involves an optimized productionmore » target pile and high-intensity absorber installed inside the experimental hall and potentially multiple secondary muon lines. In either scenario, with attention to target design, the MTA can host enabling and competitive Muon Spin Resonance experiments« less

  12. The cryogenics design of the SuperCDMS SNOLAB experiment

    NASA Astrophysics Data System (ADS)

    Hollister, M. I.; Bauer, D. A.; Dhuley, R. C.; Lukens, P.; Martin, L. D.; Ruschman, M. K.; Schmitt, R. L.; Tatkowski, G. L.

    2017-12-01

    The Super Cryogenic Dark Matter Search (SuperCDMS) experiment is a direct detection dark matter experiment intended for deployment to the SNOLAB underground facility in Ontario, Canada. With a payload of up to 186 germanium and silicon crystal detectors operating below 15 mK, the cryogenic architecture of the experiment is complex. Further, the requirement that the cryostat presents a low radioactive background to the detectors limits the materials and techniques available for construction, and heavily influences the design of the cryogenics system. The resulting thermal architecture is a closed cycle (no liquid cryogen) system, with stages at 50 and 4 K cooled with gas and fluid circulation systems and stages at 1 K, 250 mK and 15 mK cooled by the lower temperature stages of a large, cryogen-free dilution refrigerator. This paper describes the thermal design of the experiment, including details of the cooling systems, mechanical designs and expected performance of the system under operational conditions.

  13. Ageing management program for the Spanish low and intermediate level waste disposal and spent fuel and high-level waste centralised storage facilities

    NASA Astrophysics Data System (ADS)

    Zuloaga, P.; Ordoñez, M.; Andrade, C.; Castellote, M.

    2011-04-01

    The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW) disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW), which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.

  14. Adapting federated cyberinfrastructure for shared data collection facilities in structural biology

    PubMed Central

    Stokes-Rees, Ian; Levesque, Ian; Murphy, Frank V.; Yang, Wei; Deacon, Ashley; Sliz, Piotr

    2012-01-01

    Early stage experimental data in structural biology is generally unmaintained and inaccessible to the public. It is increasingly believed that this data, which forms the basis for each macromolecular structure discovered by this field, must be archived and, in due course, published. Furthermore, the widespread use of shared scientific facilities such as synchrotron beamlines complicates the issue of data storage, access and movement, as does the increase of remote users. This work describes a prototype system that adapts existing federated cyberinfra­structure technology and techniques to significantly improve the operational environment for users and administrators of synchrotron data collection facilities used in structural biology. This is achieved through software from the Virtual Data Toolkit and Globus, bringing together federated users and facilities from the Stanford Synchrotron Radiation Lightsource, the Advanced Photon Source, the Open Science Grid, the SBGrid Consortium and Harvard Medical School. The performance and experience with the prototype provide a model for data management at shared scientific facilities. PMID:22514186

  15. Adapting federated cyberinfrastructure for shared data collection facilities in structural biology.

    PubMed

    Stokes-Rees, Ian; Levesque, Ian; Murphy, Frank V; Yang, Wei; Deacon, Ashley; Sliz, Piotr

    2012-05-01

    Early stage experimental data in structural biology is generally unmaintained and inaccessible to the public. It is increasingly believed that this data, which forms the basis for each macromolecular structure discovered by this field, must be archived and, in due course, published. Furthermore, the widespread use of shared scientific facilities such as synchrotron beamlines complicates the issue of data storage, access and movement, as does the increase of remote users. This work describes a prototype system that adapts existing federated cyberinfrastructure technology and techniques to significantly improve the operational environment for users and administrators of synchrotron data collection facilities used in structural biology. This is achieved through software from the Virtual Data Toolkit and Globus, bringing together federated users and facilities from the Stanford Synchrotron Radiation Lightsource, the Advanced Photon Source, the Open Science Grid, the SBGrid Consortium and Harvard Medical School. The performance and experience with the prototype provide a model for data management at shared scientific facilities.

  16. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  17. Study of the Relevance of the Quality of Care, Operating Efficiency and Inefficient Quality Competition of Senior Care Facilities.

    PubMed

    Lin, Jwu-Rong; Chen, Ching-Yu; Peng, Tso-Kwei

    2017-09-11

    The purpose of this research is to examine the relation between operating efficiency and the quality of care of senior care facilities. We designed a data envelopment analysis, combining epsilon-based measure and metafrontier efficiency analyses to estimate the operating efficiency for senior care facilities, followed by an iterative seemingly unrelated regression to evaluate the relation between the quality of care and operating efficiency. In the empirical studies, Taiwan census data was utilized and findings include the following: Despite the greater operating scale of the general type of senior care facilities, their average metafrontier technical efficiency is inferior to that of nursing homes. We adopted senior care facility accreditation results from Taiwan as a variable to represent the quality of care and examined the relation of accreditation results and operating efficiency. We found that the quality of care of general senior care facilities is negatively related to operating efficiency; however, for nursing homes, the relationship is not significant. Our findings show that facilities invest more in input resources to obtain better ratings in the accreditation report. Operating efficiency, however, does not improve. Quality competition in the industry in Taiwan is inefficient, especially for general senior care facilities.

  18. Study of the Relevance of the Quality of Care, Operating Efficiency and Inefficient Quality Competition of Senior Care Facilities

    PubMed Central

    Lin, Jwu-Rong; Chen, Ching-Yu; Peng, Tso-Kwei

    2017-01-01

    The purpose of this research is to examine the relation between operating efficiency and the quality of care of senior care facilities. We designed a data envelopment analysis, combining epsilon-based measure and metafrontier efficiency analyses to estimate the operating efficiency for senior care facilities, followed by an iterative seemingly unrelated regression to evaluate the relation between the quality of care and operating efficiency. In the empirical studies, Taiwan census data was utilized and findings include the following: Despite the greater operating scale of the general type of senior care facilities, their average metafrontier technical efficiency is inferior to that of nursing homes. We adopted senior care facility accreditation results from Taiwan as a variable to represent the quality of care and examined the relation of accreditation results and operating efficiency. We found that the quality of care of general senior care facilities is negatively related to operating efficiency; however, for nursing homes, the relationship is not significant. Our findings show that facilities invest more in input resources to obtain better ratings in the accreditation report. Operating efficiency, however, does not improve. Quality competition in the industry in Taiwan is inefficient, especially for general senior care facilities. PMID:28892019

  19. Production Facility Prototype Blower Installation Report with 1000 Hr Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Olivas, Eric Richard; Dale, Gregory E.

    2016-09-23

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long-term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced.« less

  20. Production Facility Prototype Blower Installation Report with 1000 Hour Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Romero, Frank Patrick

    2016-04-01

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are reported.« less

Top