Sample records for facility process equipment

  1. PROCESS AND EQUIPMENT CHANGES FOR CLEANER PRODUCTION IN FEDERAL FACILITIES

    EPA Science Inventory

    The paper discusses process and equipment changes for cleaner production in federal facilities. During the 1990s, DoD and EPA conducted joint research and development, aimed at reducing the discharge of hazardous and toxic pollutants from military production and maintenance faci...

  2. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husler, R.O.; Weir, T.J.

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified tomore » include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less

  3. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husler, R.O.; Weir, T.J.

    1991-12-31

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to includemore » process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less

  4. 9 CFR 590.506 - Candling and transfer-room facilities and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Candling and transfer-room facilities... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.506 Candling and transfer-room facilities and equipment. (a) The room shall be so constructed that it can be adequately darkened to assure...

  5. 9 CFR 590.506 - Candling and transfer-room facilities and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Candling and transfer-room facilities... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.506 Candling and transfer-room facilities and equipment. (a) The room shall be so constructed that it can be adequately darkened to assure...

  6. 9 CFR 590.506 - Candling and transfer-room facilities and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Candling and transfer-room facilities... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.506 Candling and transfer-room facilities and equipment. (a) The room shall be so constructed that it can be adequately darkened to assure...

  7. 9 CFR 590.506 - Candling and transfer-room facilities and equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Candling and transfer-room facilities... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.506 Candling and transfer-room facilities and equipment. (a) The room shall be so constructed that it can be adequately darkened to assure...

  8. 46 CFR 160.151-45 - Equipment required for servicing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Equipment required for servicing facilities. 160.151-45 Section 160.151-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT...) § 160.151-45 Equipment required for servicing facilities. Each servicing facility approved by the Coast...

  9. High Vacuum Creep Facility in the Materials Processing Laboratory

    NASA Image and Video Library

    1973-01-21

    Technicians at work in the Materials Processing Laboratory’s Creep Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The technicians supported the engineers’ studies of refractory materials, metals, and advanced superalloys. The Materials Processing Laboratory contained laboratories and test areas equipped to prepare and develop these metals and materials. The ultra-high vacuum lab, seen in this photograph, contained creep and tensile test equipment. Creep testing is used to study a material’s ability to withstand long durations under constant pressure and temperatures. The equipment measured the strain over a long period of time. Tensile test equipment subjects the test material to strain until the material fails. The two tests were used to determine the strength and durability of different materials. The Materials Processing Laboratory also housed arc and electron beam melting furnaces, a hydraulic vertical extrusion press, compaction and forging equipment, and rolling mills and swagers. There were cryogenic and gas storage facilities and mechanical and oil diffusion vacuum pumps. The facility contained both instrumental and analytical chemistry laboratories for work on radioactive or toxic materials and the only shop to machine toxic materials in the Midwest.

  10. Experimental equipment for an advanced ISOL facility[Isotope Separation On-Line Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baktash, C.; Lee, I.Y.; Rehm, K.E.

    This report summarizes the proceedings and recommendations of the Workshop on the Experimental Equipment for an Advanced ISOL Facility which was held at Lawrence Berkeley National Laboratory on July 22--25, 1998. The purpose of this workshop was to discuss the performance requirements, manpower and cost estimates, as well as a schedule of the experimental equipment needed to fully exploit the new physics which can be studied at an advanced ISOL facility. An overview of the new physics opportunities that would be provided by such a facility has been presented in the White Paper that was issued following the Columbus Meeting.more » The reactions and experimental techniques discussed in the Columbus White Paper served as a guideline for the formulation of the detector needs at the Berkeley Workshop. As outlined a new ISOL facility with intense, high-quality beams of radioactive nuclei would provide exciting new research opportunities in the areas of: the nature of nucleonic matter; the origin of the elements; and tests of the Standard Model. After an introductory section, the following equipment is discussed: gamma-ray detectors; recoil separators; magnetic spectrographs; particle detectors; targets; and apparatus using non-accelerated beams.« less

  11. Standards for material handling and facilities equipment proofload testing

    NASA Technical Reports Server (NTRS)

    Bonn, S. P.

    1970-01-01

    Document provides information on verifying the safety of material handling and facilities equipment /MH/FE/, ranging from monorail systems to ladders and non-powered mobile equipment. Seven catagories of MH/FE equipment are defined.

  12. St. Louis demonstration final report: refuse processing plant equipment, facilities, and environmental evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiscus, D.E.; Gorman, P.G.; Schrag, M.P.

    1977-09-01

    The results are presented of processing plant evaluations of the St. Louis-Union Electric Refuse Fuel Project, including equipment and facilities as well as assessment of environmental emissions at both the processing and the power plants. Data on plant material flows and operating parameters, plant operating costs, characteristics of plant material flows, and emissions from various processing operations were obtained during a testing program encompassing 53 calendar weeks. Refuse derived fuel (RDF) is the major product (80.6% by weight) of the refuse processing plant, the other being ferrous metal scrap, a marketable by-product. Average operating costs for the entire evaluation periodmore » were $8.26/Mg ($7.49/ton). The average overall processing rate for the period was 168 Mg/8-h day (185.5 tons/8-h day) at 31.0 Mg/h (34.2 tons/h). Future plants using an air classification system of the type used at the St. Louis demonstration plant will need an emissions control device for particulates from the large de-entrainment cyclone. Also in the air exhaust from the cyclone were total counts of bacteria and viruses several times higher than those of suburban ambient air. No water effluent or noise exposure problems were encountered, although landfill leachate mixed with ground water could result in contamination, given low dilution rates.« less

  13. A Review of the Aging Process and Facilities Topic.

    PubMed

    Jornitz, Maik W

    2015-01-01

    Aging facilities have become a concern in the pharmaceutical and biopharmaceutical manufacturing industry, so much that task forces are formed by trade organizations to address the topic. Too often, examples of aging or obsolete equipment, unit operations, processes, or entire facilities have been encountered. Major contributors to this outcome are the failure to invest in new equipment, disregarding appropriate maintenance activities, and neglecting the implementation of modern technologies. In some cases, a production process is insufficiently modified to manufacture a new product in an existing process that was used to produce a phased-out product. In other instances, manufacturers expanded the facility or processes to fulfill increasing demand and the scaling occurred in a non-uniform manner, which led to non-optimal results. Regulatory hurdles of post-approval changes in the process may thwart companies' efforts to implement new technologies. As an example, some changes have required 4 years to gain global approval. This paper will address cases of aging processes and facilities aside from modernizing options. © PDA, Inc. 2015.

  14. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    NASA Technical Reports Server (NTRS)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  15. Furnace and support equipment for space processing. [space manufacturing - Czochralski method

    NASA Technical Reports Server (NTRS)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Hopkins, R. H.; Roland, G. W.

    1975-01-01

    A core facility capable of performing a majority of materials processing experiments is discussed. Experiment classes are described, the needs peculiar to each experiment type are outlined, and projected facility requirements to perform the experiments are treated. Control equipment (automatic control) and variations of the Czochralski method for use in space are discussed.

  16. 40 CFR 60.5401 - What are the exceptions to the equipment leak standards for affected facilities at onshore...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment leak standards for affected facilities at onshore natural gas processing plants? 60.5401 Section... for affected facilities at onshore natural gas processing plants? (a) You may comply with the... is detected. (4)(i) Any pressure relief device that is located in a nonfractionating plant that is...

  17. 40 CFR 60.5401 - What are the exceptions to the equipment leak standards for affected facilities at onshore...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment leak standards for affected facilities at onshore natural gas processing plants? 60.5401 Section... for affected facilities at onshore natural gas processing plants? (a) You may comply with the... is detected. (4)(i) Any pressure relief device that is located in a nonfractionating plant that is...

  18. 14 CFR 141.89 - Maintenance of personnel, facilities, and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Maintenance of personnel, facilities, and... Maintenance of personnel, facilities, and equipment. The holder of a pilot school certificate or provisional... training unless: (a) Each airport, aircraft, and facility necessary for that training meets the standards...

  19. 14 CFR 141.89 - Maintenance of personnel, facilities, and equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Maintenance of personnel, facilities, and... Maintenance of personnel, facilities, and equipment. The holder of a pilot school certificate or provisional... training unless: (a) Each airport, aircraft, and facility necessary for that training meets the standards...

  20. 14 CFR 141.89 - Maintenance of personnel, facilities, and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Maintenance of personnel, facilities, and... Maintenance of personnel, facilities, and equipment. The holder of a pilot school certificate or provisional... training unless: (a) Each airport, aircraft, and facility necessary for that training meets the standards...

  1. 14 CFR 141.89 - Maintenance of personnel, facilities, and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Maintenance of personnel, facilities, and... Maintenance of personnel, facilities, and equipment. The holder of a pilot school certificate or provisional... training unless: (a) Each airport, aircraft, and facility necessary for that training meets the standards...

  2. 14 CFR 141.89 - Maintenance of personnel, facilities, and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Maintenance of personnel, facilities, and... Maintenance of personnel, facilities, and equipment. The holder of a pilot school certificate or provisional... training unless: (a) Each airport, aircraft, and facility necessary for that training meets the standards...

  3. A Guide for Equipping Industrial Arts Facilities.

    ERIC Educational Resources Information Center

    American Industrial Arts Association, Washington, DC. Equipment Guide Committee.

    A guide for planning new and revising existing industrial arts facilities which gives a listing of tools and equipment recommended for each of the major areas of instruction (automotive and power mechanics, ceramics, drafting, electronics, elementary, general shop, graphic arts, metalworking, plastics, and woodworking). General descriptions and…

  4. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Mathews, Roger E.

    2014-01-01

    This standard establishes requirements and guidance for design and fabrication of ground systems (GS) that includes: ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F GSS) to provide uniform methods and processes for design and development of robust, safe, reliable, maintainable, supportable, and cost-effective GS in support of space flight and institutional programs and projects.

  5. A GUIDE FOR EQUIPPING INDUSTRIAL ARTS FACILITIES.

    ERIC Educational Resources Information Center

    American Industrial Arts Association, Washington, DC. Equipment Guide Committee.

    SCHOOL ARCHITECTS, ADMINISTRATORS, PLANNERS, AND INDUSTRIAL ARTS SUPERVISORS AND TEACHERS MAY USE THIS GUIDE IN PLANNING, REVISING, AND EVALUATING FACILITIES. IN THE FIRST PART, HAND TOOLS, MACHINES, AND GENERAL EQUIPMENT ARE LISTED FOR (1) AUTO AND POWER MECHANICS, (2) CERAMICS, (3) DRAFTING, (4) ELECTRICITY-ELECTRONICS, (5) ELEMENTARY, (6)…

  6. Overview of NORM and activities by a NORM licensed permanent decontamination and waste processing facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirro, G.A.

    1997-02-01

    This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.

  7. 48 CFR 246.270 - Safety of facilities, infrastructure, and equipment for military operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ASSURANCE Contract Quality Requirements 246.270 Safety of facilities, infrastructure, and equipment for... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Safety of facilities, infrastructure, and equipment for military operations. 246.270 Section 246.270 Federal Acquisition Regulations...

  8. Adhesive bonded structural repair. II - Surface preparation procedures, tools, equipment and facilities

    NASA Astrophysics Data System (ADS)

    Wegman, Raymond F.; Tullos, Thomas R.

    1993-10-01

    A development status report is presented on the surface preparation procedures, tools, equipment, and facilities used in adhesively-bonded repair of aerospace and similar high-performance structures. These methods extend to both metallic and polymeric surfaces. Attention is given to the phos-anodize containment system, paint removal processes, tools for cutting composite prepreg and fabric materials, autoclaves, curing ovens, vacuum bagging, and controlled atmospheres.

  9. 75 FR 54025 - Vessel and Facility Response Plans for Oil: 2003 Removal Equipment Requirements and Alternative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ...-AA26 Vessel and Facility Response Plans for Oil: 2003 Removal Equipment Requirements and Alternative... a final rule entitled ``Vessel and Facility Response Plans for Oil: 2003 Removal Equipment... responders for each vessel or facility with appropriate equipment and resources located in each zone of...

  10. 77 FR 70172 - Lifesaving and Fire-Fighting Equipment, Training and Drills Onboard Offshore Facilities and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... Equipment, Training and Drills Onboard Offshore Facilities and Mobile Offshore Drilling Units (MODUs... lifesaving and fire-fighting equipment, training and drills on board offshore facilities and MODUs operating... guidance concerning lifesaving and fire-fighting equipment, training, and drills onboard manned offshore...

  11. 14 CFR 147.37 - Maintenance of facilities, equipment, and material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS... maintenance technician school shall provide facilities, equipment, and material equal to the standards...

  12. 48 CFR 252.246-7004 - Safety of Facilities, Infrastructure, and Equipment for Military Operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: SAFETY OF FACILITIES, INFRASTRUCTURE, AND EQUIPMENT FOR MILITARY OPERATIONS (OCT 2010) (a) Definition... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Safety of Facilities, Infrastructure, and Equipment for Military Operations. 252.246-7004 Section 252.246-7004 Federal Acquisition...

  13. 48 CFR 252.239-7012 - Title to telecommunication facilities and equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Title to telecommunication... CLAUSES Text of Provisions And Clauses 252.239-7012 Title to telecommunication facilities and equipment. As prescribed in 239.7411(b), use the following clause: Title to Telecommunication Facilities and...

  14. 48 CFR 252.239-7012 - Title to telecommunication facilities and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Title to telecommunication... CLAUSES Text of Provisions And Clauses 252.239-7012 Title to telecommunication facilities and equipment. As prescribed in 239.7411(b), use the following clause: Title to Telecommunication Facilities and...

  15. 48 CFR 252.239-7012 - Title to telecommunication facilities and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Title to telecommunication... CLAUSES Text of Provisions And Clauses 252.239-7012 Title to telecommunication facilities and equipment. As prescribed in 239.7411(b), use the following clause: Title to Telecommunication Facilities and...

  16. 20 CFR 638.530 - Emergency use of personnel, equipment and facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... facilities. 638.530 Section 638.530 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR JOB CORPS PROGRAM UNDER TITLE IV-B OF THE JOB TRAINING PARTNERSHIP ACT Center Operations § 638.530 Emergency use of personnel, equipment and facilities. The Job Corps Director may provide emergency...

  17. 48 CFR 252.239-7012 - Title to telecommunication facilities and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Title to telecommunication... CLAUSES Text of Provisions And Clauses 252.239-7012 Title to telecommunication facilities and equipment. As prescribed in 239.7411(b), use the following clause: Title to Telecommunication Facilities and...

  18. 48 CFR 252.239-7012 - Title to telecommunication facilities and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Title to telecommunication... CLAUSES Text of Provisions And Clauses 252.239-7012 Title to telecommunication facilities and equipment. As prescribed in 239.7411(b), use the following clause: Title to Telecommunication Facilities and...

  19. 14 CFR 147.13 - Facilities, equipment, and material requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Facilities, equipment, and material requirements. 147.13 Section 147.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS...

  20. 14 CFR 147.13 - Facilities, equipment, and material requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Facilities, equipment, and material requirements. 147.13 Section 147.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS...

  1. 14 CFR 147.13 - Facilities, equipment, and material requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Facilities, equipment, and material requirements. 147.13 Section 147.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS...

  2. 14 CFR 147.13 - Facilities, equipment, and material requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Facilities, equipment, and material requirements. 147.13 Section 147.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS...

  3. 7 CFR 56.17 - Equipment and facilities for graders.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Equipment and facilities for graders. 56.17 Section 56.17 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS...

  4. 7 CFR 56.17 - Equipment and facilities for graders.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Equipment and facilities for graders. 56.17 Section 56.17 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS...

  5. 7 CFR 56.17 - Equipment and facilities for graders.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Equipment and facilities for graders. 56.17 Section 56.17 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS...

  6. 7 CFR 56.17 - Equipment and facilities for graders.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Equipment and facilities for graders. 56.17 Section 56.17 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS...

  7. 7 CFR 56.17 - Equipment and facilities for graders.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Equipment and facilities for graders. 56.17 Section 56.17 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS...

  8. Health maintenance facility: Dental equipment requirements

    NASA Technical Reports Server (NTRS)

    Young, John; Gosbee, John; Billica, Roger

    1991-01-01

    The objectives were to test the effectiveness of the Health Maintenance Facility (HMF) dental suction/particle containment system, which controls fluids and debris generated during simulated dental treatment, in microgravity; to test the effectiveness of fiber optic intraoral lighting systems in microgravity, while simulating dental treatment; and to evaluate the operation and function of off-the-shelf dental handheld instruments, namely a portable dental hand drill and temporary filling material, in microgravity. A description of test procedures, including test set-up, flight equipment, and the data acquisition system, is given.

  9. Lightning and surge protection, grounding, bonding and shielding requirements for facilities and electronic equipment

    DOT National Transportation Integrated Search

    2002-08-09

    This document mandates standard lightning protection, transient protection, electrostatic discharge (ESD), grounding, bonding and shielding configurations and procedures for new facilities, facility modifications, facility up grades, new equipment in...

  10. The automatic control system and stand-by facilities of the TDMA-40 equipment

    NASA Astrophysics Data System (ADS)

    Gudenko, D. V.; Pankov, G. Kh.; Pauk, A. G.; Tsirlin, V. M.

    1980-10-01

    When a controlling station in a satellite communications system is out of order, a complex algorithm must be carried out for automatic operation of the stand-by equipment. A processor has been developed to perform this algorithm, as well as operations involving the stand-by facilities of the receiving-transmitting equipment of the station. The design principles and solutions to problems in developing the equipment for the monitoring and controlling systems are described. These systems are based on multistation access using time division multiplexing. Algorithms are presented for the operation of the synchronizing processor and the control processor of the equipment. The automatic control system and stand-by facilities make it possible to reduce the service personnel and to design an unattended station.

  11. [Usage survey of care equipment in care service facilities for the elderly].

    PubMed

    Iwakiri, Kazuyuki; Takahashi, Masaya; Sotoyama, Midori; Hirata, Mamoru; Hisanaga, Naomi

    2007-01-01

    Musculoskeletal disorders(MSD)have been increasing recently among care workers. Since providing care workers with appropriate equipment is effective for preventing MSD, we conducted a questionnaire survey in two nursing homes and a healthcare facility for the elderly to clarify equipment usage, problems and points for improvement. A total of 81 care workers(average age 32.2 yr; 63 females, 18 males)participated in the survey. The average number of residents and the average resident's care level were 70.0 and 3.6, respectively. Wheelchair and height adjustable beds were fully available and always used in all facilities. Portable lifts, ceiling lifts and transfer boards were, however, few in all 3 facilities and the proportion of use was 14.8%, 16.0%, and 23.5%, respectively. Participants reported that it is time consuming to move residents from place to place with lifts and there is a danger of dropping a resident. Although approximately 90% of care workers had received education and training on care techniques, the workload on the low back was found to be great. Therefore, we thought that care workers must consistently use care equipment. To achieve such increased usage, we must improve the usability of the equipment.

  12. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins looks over flight equipment in the Orbiter Processing Facility, along with Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins looks over flight equipment in the Orbiter Processing Facility, along with Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  13. 14 CFR 147.37 - Maintenance of facilities, equipment, and material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... material. 147.37 Section 147.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS Operating Rules § 147.37 Maintenance of facilities, equipment, and material. (a) Each certificated aviation...

  14. 14 CFR 147.37 - Maintenance of facilities, equipment, and material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... material. 147.37 Section 147.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS Operating Rules § 147.37 Maintenance of facilities, equipment, and material. (a) Each certificated aviation...

  15. 14 CFR 147.37 - Maintenance of facilities, equipment, and material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... material. 147.37 Section 147.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS Operating Rules § 147.37 Maintenance of facilities, equipment, and material. (a) Each certificated aviation...

  16. 14 CFR 147.37 - Maintenance of facilities, equipment, and material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... material. 147.37 Section 147.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS Operating Rules § 147.37 Maintenance of facilities, equipment, and material. (a) Each certificated aviation...

  17. 20. VIEW OF TEST FACILITY IN 1967 WHEN EQUIPPED FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF TEST FACILITY IN 1967 WHEN EQUIPPED FOR DOSIMETER TEST BY HEALTH PHYSICISTS. CAMERA FACING EAST. INEL PHOTO NUMBER 76-2853, TAKEN MAY 16, 1967. PHOTOGRAPHER: CAPEK. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  18. 21 CFR 226.30 - Equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CURRENT GOOD MANUFACTURING PRACTICE FOR TYPE A MEDICATED ARTICLES Construction and Maintenance of Facilities and Equipment § 226.30 Equipment. Equipment used for the manufacture, processing, packaging, bulk... maintained in a clean and orderly manner and shall be of suitable design, size, construction, and location to...

  19. Een Meetsysteem voor het Testen van Radiocommunicatie-Apparatuur (A measuring Facility for Testing of Radio Communication Equipment)

    DTIC Science & Technology

    1991-08-01

    insert various jamming signals. The criterion for classifying radio equipment under test is the quality of transferred information , that is the SINAD...UNCLASSFED) This report describes a test facility for measuring the behaviour and quality of radio communication equipment in a simulated operational...formation FEL has the disposal of a facility to test the quality of radio equipment in a simulated operational situation. (Y .. ,. -’ , / " " ’ TNO mppon 4

  20. LPT. Shield test facility (TAN645) interior. Mechanical equipment room with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-645) interior. Mechanical equipment room with switchgear and control boards. Photographer: Jack L. Anderson. Date: February 20, 1959. INEEL negative no. 59-858 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. LPT. Shield test facility (TAN645) interior. Mechanical equipment room with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-645) interior. Mechanical equipment room with airwasher and refrigeration compressor. Photographer: Jack L. Anderson. Date: February 20, 1959. INEEL negative no. 59-855 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  2. Development of evaluation models of manpower needs for dismantling the dry conversion process-related equipment in uranium refining and conversion plant (URCP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sari Izumo; Hideo Usui; Mitsuo Tachibana

    Evaluation models for determining the manpower needs for dismantling various types of equipment in uranium refining and conversion plant (URCP) have been developed. The models are widely applicable to other uranium handling facilities. Additionally, a simplified model was developed for easily and accurately calculating the manpower needs for dismantling dry conversion process-related equipment (DP equipment). It is important to evaluate beforehand project management data such as manpower needs to prepare an optimized decommissioning plan and implement effective dismantling activity. The Japan Atomic Energy Agency (JAEA) has developed the project management data evaluation system for dismantling activities (PRODIA code), which canmore » generate project management data using evaluation models. For preparing an optimized decommissioning plan, these evaluation models should be established based on the type of nuclear facility and actual dismantling data. In URCP, the dry conversion process of reprocessed uranium and others was operated until 1999, and the equipment related to the main process was dismantled from 2008 to 2011. Actual data such as manpower for dismantling were collected during the dismantling activities, and evaluation models were developed using the collected actual data on the basis of equipment classification considering the characteristics of uranium handling facility. (authors)« less

  3. Design analysis of levitation facility for space processing applications. [Skylab program, space shuttles

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Kornrumpf, W. P.; Napaluch, L. J.; Harden, J. D., Jr.; Walden, J. P.; Stockhoff, E. H.; Wouch, G.; Walker, L. H.

    1974-01-01

    Containerless processing facilities for the space laboratory and space shuttle are defined. Materials process examples representative of the most severe requirements for the facility in terms of electrical power, radio frequency equipment, and the use of an auxiliary electron beam heater were used to discuss matters having the greatest effect upon the space shuttle pallet payload interfaces and envelopes. Improved weight, volume, and efficiency estimates for the RF generating equipment were derived. Results are particularly significant because of the reduced requirements for heat rejection from electrical equipment, one of the principal envelope problems for shuttle pallet payloads. It is shown that although experiments on containerless melting of high temperature refractory materials make it desirable to consider the highest peak powers which can be made available on the pallet, total energy requirements are kept relatively low by the very fast processing times typical of containerless experiments and allows consideration of heat rejection capabilities lower than peak power demand if energy storage in system heat capacitances is considered. Batteries are considered to avoid a requirement for fuel cells capable of furnishing this brief peak power demand.

  4. Reduction of Environmental Listeria Using Gaseous Ozone in a Cheese Processing Facility.

    PubMed

    Eglezos, Sofroni; Dykes, Gary A

    2018-05-01

    A cheese processing facility seeking to reduce environmental Listeria colonization initiated a regime of ozonation across all production areas as an adjunct to its sanitation regimes. A total of 360 environmental samples from the facility were tested for Listeria over a 12-month period. A total of 15 areas before and 15 areas after ozonation were tested. Listeria isolations were significantly ( P < 0.001) reduced from 15.0% in the preozonation samples to 1.67% in the postozonation samples in all areas. No deleterious effects of ozonation were noted on the wall paneling, seals, synthetic floors, or cheese processing equipment. The ozonation regime was readily incorporated by sanitation staff into the existing good manufacturing practice program. The application of ozone may result in a significant reduction in the prevalence of Listeria in food processing facilities.

  5. Low back pain among workers in care facilities for the elderly after introducing welfare equipment.

    PubMed

    Iwakiri, Kazuyuki; Takahashi, Masaya; Sotoyama, Midori; Liu, Xinxin; Koda, Shigeki

    2016-07-29

    The purpose of this study was to clarify the causes of low back pain among workers in care facilities for the elderly after the introduction of welfare equipment. We conducted anonymous questionnaire surveys among administrators and care workers in eight elderly care facilities. The questionnaires were designed to investigate the status of both the care workers and facility. In reference to the care facility, the questionnaires were comprised items for investigating basic information, occupational safety, and health activities. For care workers, in addition to basic information, occupational safety, and health activities, the questionnaires also comprised items for investigating resident transfer and bathing methods, low back pain, and occupational stress. Completed questionnaires were returned by eight care facility administrators (response rate: 100%) and 373 care workers (response rate: 92.3%), among which 367 were used for analyses. Many care workers participated in a variety of occupational safety and health activities that were conducted in the facilities. Various types of welfare equipment were introduced into the care facilities and subsequently used by many care workers during resident transfer and bathing. As a result, 89.9% of the care workers reported having only slight or no low back pain. The remaining 10.1% reported having serious low back pain that interfered with their work. On the basis of logistic regression analysis, low back pain was associated with the following variables: failure to provide the appropriate method of care to each resident, failure of colleagues to discuss methods for improving care, lack of instructions regarding the use of welfare equipment, and inappropriate job rotation. An association was also found between low back pain and poor posture, poor resident-lifting technique, insufficient time to complete work, and a shortage of workers to assist with resident transfer or bathing. Although care workers received instructions on

  6. Orbiter processing facility: Access platforms Kennedy Space Center, Florida, from challenge to achievement

    NASA Technical Reports Server (NTRS)

    Haratunian, M.

    1985-01-01

    A system of access platforms and equipment within the space shuttle orbiter processing facility at Kennedy Space Center is described. The design challenges of the platforms, including clearance envelopes, load criteria, and movement, are discussed. Various applications of moveable platforms are considered.

  7. Design and Evaluation of Wood Processing Facilities Using Object-Oriented Simulation

    Treesearch

    D. Earl Kline; Philip A. Araman

    1992-01-01

    Managers of hardwood processing facilities need timely information on which to base important decisions such as when to add costly equipment or how to improve profitability subject to time-varying demands. The overall purpose of this paper is to introduce a tool that can effectively provide such timely information. A simulation/animation modeling procedure is described...

  8. KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins talks with workers in the Orbiter Processing Facility. She and other crew members are at KSC to become familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Commander Eileen Collins talks with workers in the Orbiter Processing Facility. She and other crew members are at KSC to become familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  9. KENNEDY SPACE CENTER, FLA. - Ivan Rodriguez, with Bionetics, and Michelle Crouch and Larry Burns, with Dynamac, carry boxes of equipment into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Ivan Rodriguez, with Bionetics, and Michelle Crouch and Larry Burns, with Dynamac, carry boxes of equipment into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  10. The gravitational plant physiology facility-Description of equipment developed for biological research in spacelab

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Chapman, D. K.; Brown, A. H.; Lewis, R. F.

    1994-01-01

    In January 1992, the NASA Suttle mission STS 42 carried a facility designed to perform experiments on plant gravi- and photo-tropic responses. This equipment, the Gravitational Plant Physiology Facility (GPPF) was made up of a number of interconnected units mounted within a Spacelab double rack. The details of these units and the plant growth containers designed for use in GPPF are described. The equipment functioned well during the mission and returned a substantial body of time-lapse video data on plant responses to tropistic stimuli under conditions of orbital microgravity. GPPF is maintained by NASA Ames Research Center, and is flight qualifiable for future spacelab missions.

  11. Developing a Logistics Data Process for Support Equipment for NASA Ground Operations

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Suman

    2010-01-01

    The United States NASA Space Shuttle has long been considered an extremely capable yet relatively expensive rocket. A great part of the roughly US $500 million per launch expense was the support footprint: refurbishment and maintenance of the space shuttle system, together with the long list of resources required to support it, including personnel, tools, facilities, transport and support equipment. NASA determined to make its next rocket system with a smaller logistics footprint, and thereby more cost-effective and quicker turnaround. The logical solution was to adopt a standard Logistics Support Analysis (LSA) process based on GEIA-STD-0007 http://www.logisticsengineers.org/may09pres/GEIASTD0007DEXShortIntro.pdf which is the successor of MIL-STD-1388-2B widely used by U.S., NATO, and other world military services and industries. This approach is unprecedented at NASA: it is the first time a major program of programs, Project Constellation, is factoring logistics and supportability into design at many levels. This paper will focus on one of those levels NASA ground support equipment for the next generation of NASA rockets and on building a Logistics Support Analysis Record (LSAR) for developing and documenting a support solution and inventory of resources for. This LSAR is actually a standards-based database, containing analyses of the time and tools, personnel, facilities and support equipment required to assemble and integrate the stages and umbilicals of a rocket. This paper will cover building this database from scratch: including creating and importing a hierarchical bill of materials (BOM) from legacy data; identifying line-replaceable units (LRUs) of a given piece of equipment; analyzing reliability and maintainability of said LRUs; and therefore making an assessment back to design whether the support solution for a piece of equipment is too much work, i.e., too resource-intensive. If one must replace or inspect an LRU too much, perhaps a modification of

  12. Programs for Infants and Young Children. Part IV: Facilities and Equipment.

    ERIC Educational Resources Information Center

    Sale, June

    This manual is designed to facilitate planning for day care center facilities. Goals and principles of day care are discussed in relation to programs for infants, toddlers, and preschoolers with special attention to staff, parents, and community. Suggestions are presented for indoor and outdoor planning for such topics as equipment, supplies,…

  13. Breast MRI in community practice: equipment and imaging techniques at facilities in the Breast Cancer Surveillance Consortium.

    PubMed

    DeMartini, Wendy B; Ichikawa, Laura; Yankaskas, Bonnie C; Buist, Diana; Kerlikowske, Karla; Geller, Berta; Onega, Tracy; Rosenberg, Robert D; Lehman, Constance D

    2010-11-01

    MRI is increasingly used for the detection of breast carcinoma. Little is known about breast MRI techniques among community practice facilities. The aim of this study was to evaluate equipment and acquisition techniques used by community facilities across the United States, including compliance with minimum standards by the ACRIN® 6667 Trial and the European Society of Breast Imaging. Breast Cancer Surveillance Consortium facilities performing breast MRI were identified and queried by survey regarding breast MRI equipment and technical parameters. Variables included scanner field strength, coil type, acquisition coverage, slice thickness, and the timing of the initial postcontrast sequence. Results were tallied and percentages of facilities meeting ACRIN® and European Society of Breast Imaging standards were calculated. From 23 facilities performing breast MRI, results were obtained from 14 (61%) facilities with 16 MRI scanners reporting 18 imaging parameters. Compliance with equipment recommendations of ≥1.5-T field strength was 94% and of a dedicated breast coil was 100%. Eighty-three percent of acquisitions used bilateral postcontrast techniques, and 78% used slice thickness≤3 mm. The timing of initial postcontrast sequences ranged from 58 seconds to 8 minutes 30 seconds, with 63% meeting recommendations for completion within 4 minutes. Nearly all surveyed facilities met ACRIN and European Society of Breast Imaging standards for breast MRI equipment. The majority met standards for acquisition parameters, although techniques varied, in particular for the timing of initial postcontrast imaging. Further guidelines by the ACR Breast MRI Accreditation Program will be of importance in facilitating standardized and high-quality breast MRI. Copyright © 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  14. Payload/GSE/data system interface: Users guide for the VPF (Vertical Processing Facility)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Payload/GSE/data system interface users guide for the Vertical Processing Facility is presented. The purpose of the document is three fold. First, the simulated Payload and Ground Support Equipment (GSE) Data System Interface, which is also known as the payload T-0 (T-Zero) System is described. This simulated system is located with the Cargo Integration Test Equipment (CITE) in the Vertical Processing Facility (VPF) that is located in the KSC Industrial Area. The actual Payload T-0 System consists of the Orbiter, Mobile Launch Platforms (MLPs), and Launch Complex (LC) 39A and B. This is referred to as the Pad Payload T-0 System (Refer to KSC-DL-116 for Pad Payload T-0 System description). Secondly, information is provided to the payload customer of differences between this simulated system and the actual system. Thirdly, a reference guide of the VPF Payload T-0 System for both KSC and payload customer personnel is provided.

  15. Dialysis Facility Safety: Processes and Opportunities.

    PubMed

    Garrick, Renee; Morey, Rishikesh

    2015-01-01

    Unintentional human errors are the source of most safety breaches in complex, high-risk environments. The environment of dialysis care is extremely complex. Dialysis patients have unique and changing physiology, and the processes required for their routine care involve numerous open-ended interfaces between providers and an assortment of technologically advanced equipment. Communication errors, both within the dialysis facility and during care transitions, and lapses in compliance with policies and procedures are frequent areas of safety risk. Some events, such as air emboli and needle dislodgments occur infrequently, but are serious risks. Other adverse events include medication errors, patient falls, catheter and access-related infections, access infiltrations and prolonged bleeding. A robust safety system should evaluate how multiple, sequential errors might align to cause harm. Systems of care can be improved by sharing the results of root cause analyses, and "good catches." Failure mode effects and analyses can be used to proactively identify and mitigate areas of highest risk, and methods drawn from cognitive psychology, simulation training, and human factor engineering can be used to advance facility safety. © 2015 Wiley Periodicals, Inc.

  16. 76 FR 72902 - Materials Processing Equipment Technical Advisory Committee;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical... questions that affect the level of export controls applicable to materials processing equipment and related...

  17. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean roommore » facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.« less

  18. 45 CFR 205.170 - State standards for office space, equipment, and facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 2 2011-10-01 2011-10-01 false State standards for office space, equipment, and facilities. 205.170 Section 205.170 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN...

  19. 45 CFR 205.170 - State standards for office space, equipment, and facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false State standards for office space, equipment, and facilities. 205.170 Section 205.170 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN...

  20. 45 CFR 205.170 - State standards for office space, equipment, and facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 2 2012-10-01 2012-10-01 false State standards for office space, equipment, and facilities. 205.170 Section 205.170 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN...

  1. 45 CFR 205.170 - State standards for office space, equipment, and facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 2 2013-10-01 2012-10-01 true State standards for office space, equipment, and facilities. 205.170 Section 205.170 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN...

  2. 45 CFR 205.170 - State standards for office space, equipment, and facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 2 2014-10-01 2012-10-01 true State standards for office space, equipment, and facilities. 205.170 Section 205.170 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN...

  3. 21 CFR 212.30 - What requirements must my facilities and equipment meet?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false What requirements must my facilities and equipment meet? 212.30 Section 212.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR POSITRON EMISSION TOMOGRAPHY...

  4. 21 CFR 212.30 - What requirements must my facilities and equipment meet?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false What requirements must my facilities and equipment meet? 212.30 Section 212.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR POSITRON EMISSION TOMOGRAPHY...

  5. The relative patient costs and availability of dental services, materials and equipment in public oral care facilities in Tanzania.

    PubMed

    Nyamuryekung'e, Kasusu K; Lahti, Satu M; Tuominen, Risto J

    2015-07-01

    Patient charges and availability of dental services influence utilization of dental services. There is little available information on the cost of dental services and availability of materials and equipment in public dental facilities in Africa. This study aimed to determine the relative cost and availability of dental services, materials and equipment in public oral care facilities in Tanzania. The local factors affecting availability were also studied. A survey of all district and regional dental clinics in selected regions was conducted in 2014. A total of 28/30 facilities participated in the study. A structured interview was undertaken amongst practitioners and clinic managers within the facilities. Daily resources for consumption (DRC) were used for estimation of patients' relative cost. DRC are the quantified average financial resources required for an adult Tanzanian's overall consumption per day. Tooth extractions were found to cost four times the DRC whereas restorations were 9-10 times the DRC. Studied facilities provided tooth extractions (100%), scaling (86%), fillings (79%), root canal treatment (46%) and fabrication of removable partial dentures (32%). The ratio of tooth fillings to extractions in the facilities was 1:16. Less than 50% of the facilities had any of the investigated dental materials consistently available throughout the year, and just three facilities had all the investigated equipment functional and in use. Dental materials and equipment availability, skills of the practitioners and the cost of services all play major roles in provision and utilization of comprehensive oral care. These factors are likely to be interlinked and should be taken into consideration when studying any of the factors individually.

  6. Spacelab Data Processing Facility

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The capabilities of the Spacelab Data Processing Facility (SPDPF) are highlighted. The capturing, quality monitoring, processing, accounting, and forwarding of vital Spacelab data to various user facilities around the world are described.

  7. Space processing applications payload equipment study. Volume 2E: Commercial equipment utility

    NASA Technical Reports Server (NTRS)

    Smith, A. G. (Editor)

    1974-01-01

    Examination of commercial equipment technologies revealed that the functional performance requirements of space processing equipment could generally be met by state-of-the-art design practices. Thus, an apparatus could be evolved from a standard item or derived by custom design using present technologies. About 15 percent of the equipment needed has no analogous commercial base of derivation and requires special development. This equipment is involved primarily with contactless heating and position control. The derivation of payloads using commercial equipment sources provides a broad and potentially cost-effective base upon which to draw. The derivation of payload equipment from commercial technologies poses other issues beyond that of the identifiable functional performance, but preliminary results on testing of selected equipment testing appear quite favorable. During this phase of the SPA study, several aspects of commercial equipment utility were assessed and considered. These included safety, packaging and structural, power conditioning (electrical/electronic), thermal and materials of construction.

  8. Hardware development process for Human Research facility applications

    NASA Astrophysics Data System (ADS)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. .

  9. The Influence of Process Equipment on the Properties of Suspension Plasma Sprayed Yttria-Stabilized Zirconia Coatings

    NASA Astrophysics Data System (ADS)

    Marr, Michael; Waldbillig, David; Kesler, Olivera

    2013-03-01

    Suspension plasma-sprayed YSZ coatings were deposited at lab-scale and production-type facilities to investigate the effect of process equipment on coating properties. The target application for these coatings is solid oxide fuel cell (SOFC) electrolytes; hence, dense microstructures with low permeability values were preferred. Both facilities had the same torch but different suspension feeding systems, torch robots, and substrate holders. The lab-scale facility had higher torch-substrate relative speeds compared with the production-type facility. On porous stainless steel substrates, permeabilities and microstructures were comparable for coatings from both facilities, and no segmentation cracks were observed. Coating permeability was further reduced by increasing substrate temperatures during deposition or reducing suspension feed rates. On SOFC cathode substrates, coatings made in the production-type facility had higher permeabilities and more segmentation cracks compared with coatings made in the lab-scale facility. Increased cracking in coatings from the production-type facility was likely caused mainly by its lower torch-substrate relative speed.

  10. 48 CFR 252.246-7004 - Safety of Facilities, Infrastructure, and Equipment for Military Operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., Infrastructure, and Equipment for Military Operations. As prescribed in 246.270-4, use the following clause... contract comply with Unified Facilities Criteria (UFC) 1-200-01 for— (1) Fire protection; (2) Structural...

  11. 48 CFR 252.246-7004 - Safety of Facilities, Infrastructure, and Equipment for Military Operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., Infrastructure, and Equipment for Military Operations. As prescribed in 246.270-4, use the following clause... contract comply with Unified Facilities Criteria (UFC) 1-200-01 for— (1) Fire protection; (2) Structural...

  12. 48 CFR 252.246-7004 - Safety of Facilities, Infrastructure, and Equipment for Military Operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., Infrastructure, and Equipment for Military Operations. As prescribed in 246.270-4, use the following clause... contract comply with Unified Facilities Criteria (UFC) 1-200-01 for— (1) Fire protection; (2) Structural...

  13. The Establishment of a New Friction Stir Welding Process Development Facility at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Carter, Robert W.

    2009-01-01

    Full-scale weld process development is being performed at MSFC to develop the tools, fixtures, and facilities necessary for Ares I production. Full scale development in-house at MSFC fosters technical acuity within the NASA engineering community, and allows engineers to identify and correct tooling and equipment shortcomings before they become problems on the production floor. Finally, while the new weld process development facility is currently being outfitted in support of Ares I development, it has been established to support all future Constellation Program needs. In particular, both the RWT and VWT were sized with the larger Ares V hardware in mind.

  14. Web-Based Requesting and Scheduling Use of Facilities

    NASA Technical Reports Server (NTRS)

    Yeager, Carolyn M.

    2010-01-01

    Automated User's Training Operations Facility Utilization Request (AutoFUR) is prototype software that administers a Web-based system for requesting and allocating facilities and equipment for astronaut-training classes in conjunction with scheduling the classes. AutoFUR also has potential for similar use in such applications as scheduling flight-simulation equipment and instructors in commercial airplane-pilot training, managing preventive- maintenance facilities, and scheduling operating rooms, doctors, nurses, and medical equipment for surgery. Whereas requesting and allocation of facilities was previously a manual process that entailed examination of documents (including paper drawings) from different sources, AutoFUR partly automates the process and makes all of the relevant information available via the requester s computer. By use of AutoFUR, an instructor can fill out a facility-utilization request (FUR) form on line, consult the applicable flight manifest(s) to determine what equipment is needed and where it should be placed in the training facility, reserve the corresponding hardware listed in a training-hardware inventory database, search for alternative hardware if necessary, submit the FUR for processing, and cause paper forms to be printed. Auto-FUR also maintains a searchable archive of prior FURs.

  15. Facilities and Equipment for Home Economics Education: Consumer and Homemaking, Occupational Home Economics.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Home Economics Education Section.

    Suggestions and recommendations presented in this guide are intended to provide teachers, administrators, and architects who plan and equip home economics departments with the objectives and an overview of home economics education programs so that functional facilities will be designed. The first section, consumer and homemaking education, lists…

  16. 40 CFR 270.310 - What equipment information must I keep at my facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (e.g., identify the hazardous waste management unit on a facility plot plan). (3) Type of equipment... compliance test required by 40 CFR 264.1033(j). (3) A design analysis, specifications, drawings, schematics... acceptable to the Director that present basic control device design information. The design analysis must...

  17. FACILITIES AND EQUIPMENT AVAILABLE FOR TEACHING SCIENCE IN PUBLIC HIGH SCHOOLS, 1958-59.

    ERIC Educational Resources Information Center

    KOELSCHE, CHARLES L.; SOLBERG, ARCHIE N.

    SURVEYS WERE CONDUCTED TO DETERMINE THE AVAILABILITY OF HIGH SCHOOL SCIENCE FACILITIES AND EQUIPMENT IN SEVEN STATES. THIS WAS ACCOMPLISHED THROUGH PERSONAL INSPECTIONS BY A PROJECT COMMITTEE, USING CHECKLISTS OF APPROXIMATELY 850 SCHOOLS SELECTED AT RANDOM. AN ANALYSIS OF THE DATA WAS THEN MADE, AND SOME GENERAL IMPLICATIONS WERE SUGGESTED.…

  18. Development of an Industry Dynamometer/Spin Test Facility--Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-05-164

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDade, Mark

    2016-12-01

    The Department of Energy/National Renewable Energy Laboratory (DOE/NREL) owns and operates a megawatt-scale dynamometer used for testing wind turbine drive trains up to 1.5 megawatt (MW) in rated capacity. At this time, this unit is the only unit of its type in the United States, available for use by the American Wind Industry. Currently this dynamometer is heavily backlogged and unavailable to provide testing needed by various wind industry members. DOE/NREL is in possession of two critical pieces of equipment that may be used to develop an alternative Dynamometer facility, but does not have the funds or other resources necessarymore » to develop such a facility. The Participant possesses complimentary facilities and infrastructure that when combined with the NREL equipment can create such a test facility. The Participant is also committed to expending funds to develop and operate such a facility to the subsequent benefit of the Wind Industry and DOE Wind Energy program. In exchange for DOE/NREL providing the critical equipment, the Participant will grant DOE/NREL a minimum of 90 days of testing time per year in the new facility while incurring no facilities fees.« less

  19. Dance Facilities.

    ERIC Educational Resources Information Center

    Ashton, Dudley, Ed.; Irey, Charlotte, Ed.

    This booklet represents an effort to assist teachers and administrators in the professional planning of dance facilities and equipment. Three chapters present the history of dance facilities, provide recommended dance facilities and equipment, and offer some adaptations of dance facilities and equipment, for elementary, secondary and college level…

  20. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...

  1. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...

  2. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...

  3. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...

  4. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes. b...

  5. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.

    2014-01-01

    KSC-DE-512-SM establishes overall requirements and best design practices to be used at the John F. Kennedy Space Center (KSC) for the development of ground systems (GS) in support of operations at launch, landing, and retrieval sites. These requirements apply to the design and development of hardware and software for ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F-GSS) used to support the KSC mission for transportation, receiving, handling, assembly, test, checkout, servicing, and launch of space vehicles and payloads and selected flight hardware items for retrieval. This standards manual supplements NASA-STD-5005 by including KSC-site-specific and local environment requirements. These requirements and practices are optional for equipment used at manufacturing, development, and test sites.

  6. Brief, Why the Launch Equipment Test Facility Needs a Laser Tracker

    NASA Technical Reports Server (NTRS)

    Yue, Shiu H.

    2011-01-01

    The NASA Kennedy Space Center Launch Equipment Test Facility (LETF) supports a wide spectrum of testing and development activities. This capability was originally established in the 1970's to allow full-scale qualification of Space Shuttle umbilicals and T-O release mechanisms. The LETF has leveraged these unique test capabilities to evolve into a versatile test and development area that supports the entire spectrum of operational programs at KSC. These capabilities are historically Aerospace related, but can certainly can be adapted for other industries. One of the more unique test fixtures is the Vehicle Motion Simulator or the VMS. The VMS simulates all of the motions that a launch vehicle will experience from the time of its roll-out to the launch pad, through roughly the first X second of launch. The VMS enables the development and qualification testing of umbilical systems in both pre-launch and launch environments. The VMS can be used to verify operations procedures, clearances, disconnect systems performance &margins, and vehicle loads through processing flow motion excursions.

  7. A Guide for Developing Standard Operating Job Procedures for the Screening & Grinding Process Wastewater Treatment Facility. SOJP No. 1.

    ERIC Educational Resources Information Center

    Deal, Gerald A.; Montgomery, James A.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  8. A Guide for Developing Standard Operating Job Procedures for the Sludge Thickening Process Wastewater Treatment Facility. SOJP No. 9.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  9. 40 CFR 63.11089 - What requirements must I meet for equipment leak inspections if my facility is a bulk gasoline...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Source Category: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities Emission... equipment leak inspections if my facility is a bulk gasoline terminal, bulk plant, pipeline breakout station... if my facility is a bulk gasoline terminal, bulk plant, pipeline breakout station, or pipeline...

  10. The role of engineering in the flight equipment purchasing process

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The role of the airline engineering department in the flight equipment acquisition process is examined. The data for the study was collected from six airlines. The principal findings of the study include: (1) engineering activities permeate, but do not dominate the airline flight equipment decision process. (2) The principal criterion for the flight equipment acquisition decision is return on investment. (3) The principal sources of information for the airline engineering departments in the monitoring process are the manufacturers of equipment. Subsidiary information sources include NASA publications and conferences, among others and (4) The engineering department is the principal communication channel for technical information.

  11. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    The energy consumed in manufacturing silicon solar cell modules was calculated for the current process, as well as for 1982 and 1986 projected processes. In addition, energy payback times for the above three sequences are shown. The module manufacturing energy was partitioned two ways. In one way, the silicon reduction, silicon purification, sheet formation, cell fabrication, and encapsulation energies were found. In addition, the facility, equipment, processing material and direct material lost-in-process energies were appropriated in junction formation processes and full module manufacturing sequences. A brief methodology accounting for the energy of silicon wafers lost-in-processing during cell manufacturing is described.

  12. Ground Handling of Batteries at Test and Launch-site Facilities

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Hohl, Alan R.

    2008-01-01

    Ground handling of flight as well as engineering batteries at test facilities and launch-site facilities is a safety critical process. Test equipment interfacing with the batteries should have the required controls to prevent a hazardous failure of the batteries. Test equipment failures should not induce catastrophic failures on the batteries. Transportation requirements for batteries should also be taken into consideration for safe transportation. This viewgraph presentation includes information on the safe handling of batteries for ground processing at test facilities as well as launch-site facilities.

  13. Defense Waste Processing Facility Process Enhancements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bricker, Jonathan

    2010-11-01

    Jonathan Bricker provides an overview of process enhancements currently being done at the Defense Waste Processing Facility (DWPF) at SRS. Some of these enhancements include: melter bubblers; reduction in water use, and alternate reductant.

  14. Qualification of safety-related electrical equipment in France. Methods, approach and test facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raimondo, E.; Capman, J.L.; Herovard, M.

    1985-05-01

    Requirements for qualification of electrical equipment used in French-built nuclear power plants are stated in a national code, the RCC-E, or Regles de Construction et de Conception des Materiels Electriques. Under the RCC-E, safety related equipment is assigned to one of three different categories, according to location in the plant and anticipated normal, accident and post-accident behavior. Qualification tests differ for each category and procedures range in scope from the standard seismic test to the highly stringent VISA program, which specifies a predetermined sequence of aging, radiation, seismic and simulated accident testing. A network of official French test facilities wasmore » developed specifically to meet RCC-E requirements.« less

  15. [A design of software for management of hospital equipment maintenance process].

    PubMed

    Xie, Haiyuan; Liu, Yiqing

    2010-03-01

    According to the circumstance of hospital equipment maintenance, we designed a computer program for management of hospital equipment maintenance process by Java programming language. This program can control the maintenance process, increase the efficiency; and be able to fix the equipment location.

  16. 75 FR 53457 - Lifesaving Equipment: Production Testing and Harmonization With International Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... approval process for all lifesaving equipment required under the various vessel and facility regulations in... buoyant apparatuses. If the proposed rule is made final, all equipment approved after the effective date... Equipment: Production Testing and Harmonization With International Standards; Proposed Rule #0;#0;Federal...

  17. Automatic methods of the processing of data from track detectors on the basis of the PAVICOM facility

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. B.; Goncharova, L. A.; Davydov, D. A.; Publichenko, P. A.; Roganova, T. M.; Polukhina, N. G.; Feinberg, E. L.

    2007-02-01

    New automatic methods essentially simplify and increase the rate of the processing of data from track detectors. This provides a possibility of processing large data arrays and considerably improves their statistical significance. This fact predetermines the development of new experiments which plan to use large-volume targets, large-area emulsion, and solid-state track detectors [1]. In this regard, the problem of training qualified physicists who are capable of operating modern automatic equipment is very important. Annually, about ten Moscow students master the new methods, working at the Lebedev Physical Institute at the PAVICOM facility [2 4]. Most students specializing in high-energy physics are only given an idea of archaic manual methods of the processing of data from track detectors. In 2005, on the basis of the PAVICOM facility and the physicstraining course of Moscow State University, a new training work was prepared. This work is devoted to the determination of the energy of neutrons passing through a nuclear emulsion. It provides the possibility of acquiring basic practical skills of the processing of data from track detectors using automatic equipment and can be included in the educational process of students of any physical faculty. Those who have mastered the methods of automatic data processing in a simple and pictorial example of track detectors will be able to apply their knowledge in various fields of science and technique. Formulation of training works for pregraduate and graduate students is a new additional aspect of application of the PAVICOM facility described earlier in [4].

  18. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Wendy Lawrence autographs the sign presented to workers in the Orbiter Processing Facility. Lawrence is a new addition to the crew. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Wendy Lawrence autographs the sign presented to workers in the Orbiter Processing Facility. Lawrence is a new addition to the crew. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  19. 40 CFR 52.279 - Food processing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Food processing facilities. 52.279... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities... emissions from food processing facilities without any accompanying analyses demonstrating that these...

  20. 40 CFR 52.279 - Food processing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Food processing facilities. 52.279... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities... emissions from food processing facilities without any accompanying analyses demonstrating that these...

  1. 40 CFR 52.279 - Food processing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Food processing facilities. 52.279... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities... emissions from food processing facilities without any accompanying analyses demonstrating that these...

  2. 40 CFR 52.279 - Food processing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emissions from food processing facilities without any accompanying analyses demonstrating that these... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Food processing facilities. 52.279... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities...

  3. Spacelab Data Processing Facility

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Spacelab Data Processing Facility (SDPF) processes, monitors, and accounts for the payload data from Spacelab and other Shuttle missions and forwards relevant data to various user facilities worldwide. The SLDPF is divided into the Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS). The SIPS division demultiplexes, synchronizes, time tags, quality checks, accounts for the data, and formats the data onto tapes. The SOPS division further edits, blocks, formats, and records the data on tape for shipment to users. User experiments must conform to the Spacelab's onboard High Rate Multiplexer (HRM) format for maximum process ability. Audio, analog, instrumentation, high density, experiment data, input/output data, quality control and accounting, and experimental channel tapes along with a variety of spacelab ancillary tapes are provided to the user by SLDPF.

  4. KENNEDY SPACE CENTER, FLA. - A KSC employee wipes down some of the hoses of the ground support equipment in the Orbiter Processing Facility (OPF) where Space Shuttle Atlantis is being processed for flight. Preparations are under way for the next launch of Atlantis on mission STS-114, a utilization and logistics flight to the International Space Station.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - A KSC employee wipes down some of the hoses of the ground support equipment in the Orbiter Processing Facility (OPF) where Space Shuttle Atlantis is being processed for flight. Preparations are under way for the next launch of Atlantis on mission STS-114, a utilization and logistics flight to the International Space Station.

  5. Simulation Environment Synchronizing Real Equipment for Manufacturing Cell

    NASA Astrophysics Data System (ADS)

    Inukai, Toshihiro; Hibino, Hironori; Fukuda, Yoshiro

    Recently, manufacturing industries face various problems such as shorter product life cycle, more diversified customer needs. In this situation, it is very important to reduce lead-time of manufacturing system constructions. At the manufacturing system implementation stage, it is important to make and evaluate facility control programs for a manufacturing cell, such as ladder programs for programmable logical controllers (PLCs) rapidly. However, before the manufacturing systems are implemented, methods to evaluate the facility control programs for the equipment while mixing and synchronizing real equipment and virtual factory models on the computers have not been developed. This difficulty is caused by the complexity of the manufacturing system composed of a great variety of equipment, and stopped precise and rapid support of a manufacturing engineering process. In this paper, a manufacturing engineering environment (MEE) to support manufacturing engineering processes using simulation technologies is proposed. MEE consists of a manufacturing cell simulation environment (MCSE) and a distributed simulation environment (DSE). MCSE, which consists of a manufacturing cell simulator and a soft-wiring system, is emphatically proposed in detail. MCSE realizes making and evaluating facility control programs by using virtual factory models on computers before manufacturing systems are implemented.

  6. Establishing a cGMP pancreatic islet processing facility: the first experience in Iran.

    PubMed

    Larijani, Bagher; Arjmand, Babak; Amoli, Mahsa M; Ao, Ziliang; Jafarian, Ali; Mahdavi-Mazdah, Mitra; Ghanaati, Hossein; Baradar-Jalili, Reza; Sharghi, Sasan; Norouzi-Javidan, Abbas; Aghayan, Hamid Reza

    2012-12-01

    It has been predicted that one of the greatest increase in prevalence of diabetes will happen in the Middle East bear in the next decades. The aim of standard therapeutic strategies for diabetes is better control of complications. In contrast, some new strategies like cell and gene therapy have aimed to cure the disease. In recent years, significant progress has occurred in beta-cell replacement therapies with a progressive improvement of short-term and long term outcomes. In year 2005, considering the impact of the disease in Iran and the promising results of the Edmonton protocol, the funding for establishing a current Good Manufacturing Practice (cGMP) islet processing facility by Endocrinology and Metabolism Research Center was approved by Tehran University of Medical Sciences. Several islet isolations were performed following establishment of cGMP facility and recruitment of all required equipments for process validation and experimental purpose. Finally the first successful clinical islet isolation and transplantation was performed in September 2010. In spite of a high cost of the procedure it is considered beneficial and may prevent long term complications and the costs associated with secondary cares. In this article we will briefly describe our experience in setting up a cGMP islet processing facility which can provide valuable information for regional countries interested to establish similar facilities.

  7. Process cost and facility considerations in the selection of primary cell culture clarification technology.

    PubMed

    Felo, Michael; Christensen, Brandon; Higgins, John

    2013-01-01

    The bioreactor volume delineating the selection of primary clarification technology is not always easily defined. Development of a commercial scale process for the manufacture of therapeutic proteins requires scale-up from a few liters to thousands of liters. While the separation techniques used for protein purification are largely conserved across scales, the separation techniques for primary cell culture clarification vary with scale. Process models were developed to compare monoclonal antibody production costs using two cell culture clarification technologies. One process model was created for cell culture clarification by disc stack centrifugation with depth filtration. A second process model was created for clarification by multi-stage depth filtration. Analyses were performed to examine the influence of bioreactor volume, product titer, depth filter capacity, and facility utilization on overall operating costs. At bioreactor volumes <1,000 L, clarification using multi-stage depth filtration offers cost savings compared to clarification using centrifugation. For bioreactor volumes >5,000 L, clarification using centrifugation followed by depth filtration offers significant cost savings. For bioreactor volumes of ∼ 2,000 L, clarification costs are similar between depth filtration and centrifugation. At this scale, factors including facility utilization, available capital, ease of process development, implementation timelines, and process performance characterization play an important role in clarification technology selection. In the case study presented, a multi-product facility selected multi-stage depth filtration for cell culture clarification at the 500 and 2,000 L scales of operation. Facility implementation timelines, process development activities, equipment commissioning and validation, scale-up effects, and process robustness are examined. © 2013 American Institute of Chemical Engineers.

  8. Hyperbaric Chamber Equipment: A Consolidated Equipment List from Selected Multiplace Hyperbaric Facilities.

    DTIC Science & Technology

    1983-12-01

    carbon dioxide scrubbers , air conditioning, communications, lighting, and fire detecting and fire extinguishing systems. Medical support equipment was...10 14 Humidity...............................11 5. Hydrocarb on...........................11 B. Carbon Dioxide Scrubbers .....................11 C...and ancillary equipment included gas/vapor monitoring equipment, carbon dioxide scrubbers , air conditioning, communications, lighting, and fire

  9. DOE Coal Gasification Multi-Test Facility: fossil fuel processing technical/professional services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hefferan, J.K.; Lee, G.Y.; Boesch, L.P.

    1979-07-13

    A conceptual design, including process descriptions, heat and material balances, process flow diagrams, utility requirements, schedule, capital and operating cost estimate, and alternative design considerations, is presented for the DOE Coal Gasification Multi-Test Facility (GMTF). The GMTF, an engineering scale facility, is to provide a complete plant into which different types of gasifiers and conversion/synthesis equipment can be readily integrated for testing in an operational environment at relatively low cost. The design allows for operation of several gasifiers simultaneously at a total coal throughput of 2500 tons/day; individual gasifiers operate at up to 1200 tons/day and 600 psig using airmore » or oxygen. Ten different test gasifiers can be in place at the facility, but only three can be operated at one time. The GMTF can produce a spectrum of saleable products, including low Btu, synthesis and pipeline gases, hydrogen (for fuel cells or hydrogasification), methanol, gasoline, diesel and fuel oils, organic chemicals, and electrical power (potentially). In 1979 dollars, the base facility requires a $288 million capital investment for common-use units, $193 million for four gasification units and four synthesis units, and $305 million for six years of operation. Critical reviews of detailed vendor designs are appended for a methanol synthesis unit, three entrained flow gasifiers, a fluidized bed gasifier, and a hydrogasifier/slag-bath gasifier.« less

  10. 77 FR 6915 - Medical Diagnostic Equipment Accessibility Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... Israel Deaconess Medical Center (October 22, 2009) accessible facilities and accessible medical equipment... of types of accessible medical equipment required in different types of health care facilities. If... facilities, accessible medical equipment, and auxiliary aids and services; University of Southern California...

  11. Safeguards Approaches for Black Box Processes or Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John

    2013-09-25

    The objective of this study is to determine whether a safeguards approach can be developed for “black box” processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. Thismore » analysis identified the necessary conditions for safeguardability of black box processes and facilities.« less

  12. UOE Pipe Manufacturing Process Simulation: Equipment Designing and Construction

    NASA Astrophysics Data System (ADS)

    Delistoian, Dmitri; Chirchor, Mihael

    2017-12-01

    UOE pipe manufacturing process influence directly on pipeline resilience and operation capacity. At present most spreaded pipe manufacturing method is UOE. This method is based on cold forming. After each technological step appears a certain stress and strain level. For pipe stress strain study is designed and constructed special equipment that simulate entire technological process.UOE pipe equipment is dedicated for manufacturing of longitudinally submerged arc welded DN 400 (16 inch) steel pipe.

  13. Intelligent Processing Equipment Within the Environmental Protection Agency

    NASA Technical Reports Server (NTRS)

    Greathouse, Daniel G.; Nalesnik, Richard P.

    1992-01-01

    Protection of the environment and environmental remediation requires the cooperation, at all levels, of government and industry. Intelligent processing equipment, in addition to other artificial intelligence based tools, was used by the Environmental Protection Agency to provide personnel safety and improve the efficiency of those responsible for protection and remediation of the environment. These exploratory efforts demonstrate the feasibility and utility of expanding development and widespread use of these tools. A survey of current intelligent processing equipment applications in the Agency is presented and is followed by a brief discussion of possible uses in the future.

  14. High data volume and transfer rate techniques used at NASA's image processing facility

    NASA Technical Reports Server (NTRS)

    Heffner, P.; Connell, E.; Mccaleb, F.

    1978-01-01

    Data storage and transfer operations at a new image processing facility are described. The equipment includes high density digital magnetic tape drives and specially designed controllers to provide an interface between the tape drives and computerized image processing systems. The controller performs the functions necessary to convert the continuous serial data stream from the tape drive to a word-parallel blocked data stream which then goes to the computer-based system. With regard to the tape packing density, 1.8 times 10 to the tenth data bits are stored on a reel of one-inch tape. System components and their operation are surveyed, and studies on advanced storage techniques are summarized.

  15. Planning and Equipping Industrial Arts Facilities.

    ERIC Educational Resources Information Center

    Maine State Dept. of Educational and Cultural Services, Augusta. Bureau of Vocational Education.

    Architectural details, planning, and facility guidelines for industrial arts facilities are given, with data on planning the number, shape, size, and location of school shops. Industrial art programing and performance criteria for varying levels of education are discussed with regard for the different shop curriculums. The facility planning is…

  16. Intelligent Processing Equipment Projects at DLA

    NASA Technical Reports Server (NTRS)

    Obrien, Donald F.

    1992-01-01

    The Defense Logistics Agency is successfully incorporating Intelligent Processing Equipment (IPE) into each of its Manufacturing Technology thrust areas. Several IPE applications are addressed in the manufacturing of two 'soldier support' items: combat rations and military apparel. In combat rations, in-line sensors for food processing are being developed or modified from other industries. In addition, many process controls are being automated to achieve better quality and to gain higher use (soldier) acceptance. IPE applications in military apparel include: in-process quality controls for identification of sewing defects, use of robots in the manufacture of shirt collars, and automated handling of garments for pressing.

  17. Intelligent processing equipment projects at DLA

    NASA Astrophysics Data System (ADS)

    Obrien, Donald F.

    1992-04-01

    The Defense Logistics Agency is successfully incorporating Intelligent Processing Equipment (IPE) into each of its Manufacturing Technology thrust areas. Several IPE applications are addressed in the manufacturing of two 'soldier support' items: combat rations and military apparel. In combat rations, in-line sensors for food processing are being developed or modified from other industries. In addition, many process controls are being automated to achieve better quality and to gain higher use (soldier) acceptance. IPE applications in military apparel include: in-process quality controls for identification of sewing defects, use of robots in the manufacture of shirt collars, and automated handling of garments for pressing.

  18. HYNOL PROCESS ENGINEERING: PROCESS CONFIGURATION, SITE PLAN, AND EQUIPMENT DESIGN

    EPA Science Inventory

    The report describes the design of the hydropyrolysis reactor system of the Hynol process. (NOTE: A bench scale methanol production facility is being constructed to demonstrate the technical feasibility of producing methanol from biomass using the Hynol process. The plant is bein...

  19. 9 CFR 590.506 - Candling and transfer-room facilities and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Candling and transfer-room facilities... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.506 Candling and transfer-room... containers are furnished daily. (h) Shell egg conveyors shall be constructed so that they can be thoroughly...

  20. 15 CFR 923.13 - Energy facility planning process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities...

  1. 15 CFR 923.13 - Energy facility planning process.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities...

  2. 15 CFR 923.13 - Energy facility planning process.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities...

  3. 15 CFR 923.13 - Energy facility planning process.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities...

  4. 15 CFR 923.13 - Energy facility planning process.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities...

  5. Illustrated glossary of process equipment. Chinese/English/French edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paruit, B.

    1984-01-01

    Here is a volume of process equipment and terms in standard Mandarin Chinese, English, and French. As with the English/French/Spanish edition, each page illustrates a particular piece of equipment, with captions identifying the key components. Glossaries at the end of each major section include the Romanized pronunciation of the Chinese.

  6. 48 CFR 252.239-7011 - Special construction and equipment charges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the Contractor stops using facilities or equipment which the Government has, in whole or part... equipment attributable to the Government's contribution. Determine the value of the facilities and equipment...— (1) Recurring charges for the services, facilities, and equipment do not include in the rate base any...

  7. Food Service Equipment. Third Edition.

    ERIC Educational Resources Information Center

    Jernigan, Anna Katherine; Ross, Lynne Nannen

    This book provides information that will help in purchasing the kind of food service equipment most useful in any given facility. Hence, it should be of value to architects, contractors, administrators, dietitians, managers, and others involved in remodeling a facility, replacing equipment, and/or improving the efficiency of food service…

  8. 76 FR 20949 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  9. 75 FR 47546 - Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  10. 75 FR 66356 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  11. 78 FR 13625 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  12. 77 FR 65857 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  13. 77 FR 42483 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  14. 78 FR 24160 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  15. 77 FR 25960 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  16. 78 FR 42754 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  17. 76 FR 42678 - Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  18. 78 FR 63161 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  19. The Federal Conference on Intelligent Processing Equipment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Research and development projects involving intelligent processing equipment within the following U.S. agencies are addressed: Department of Agriculture, Department of Commerce, Department of Energy, Department of Defense, Environmental Protection Agency, Federal Emergency Management Agency, NASA, National Institutes of Health, and the National Science Foundation.

  20. 40 CFR 60.480 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart. (c) Addition or replacement of equipment for the purpose of process improvement which is... all equipment (defined in § 60.481) within a process unit is an affected facility. (b) Any affected... the definition of “process unit” in § 60.481 and the requirements in § 60.482-1(g) of this subpart...

  1. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Wendy Lawrence manipulates part of a Multi-Purpose Logistics Module. Lawrence is a new addition to the mission crew. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Wendy Lawrence manipulates part of a Multi-Purpose Logistics Module. Lawrence is a new addition to the mission crew. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  2. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers (in protective clothing) brief STS-117 Mission Specialist James Reilly (center) and STS-115 Mission Specialist Joseph Tanner (right) about the Japanese Experiment Module (JEM). Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-21

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers (in protective clothing) brief STS-117 Mission Specialist James Reilly (center) and STS-115 Mission Specialist Joseph Tanner (right) about the Japanese Experiment Module (JEM). Equipment familiarization is a routine part of astronaut training and launch preparations.

  3. 21 CFR 225.30 - Equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CURRENT GOOD MANUFACTURING PRACTICE FOR MEDICATED FEEDS Construction and Maintenance of Facilities and Equipment § 225.30 Equipment. (a) Equipment which is designed to perform its intended function and is properly installed and used is essential to the manufacture of medicated feeds. Such equipment permits...

  4. Laser materials processing facility

    NASA Technical Reports Server (NTRS)

    Haggerty, J. S.

    1982-01-01

    The laser materials processing facility and its capabilities are described. A CO2 laser with continuous wave, repetitive pulse, and shaped power-time cycles is employed. The laser heated crystal growth station was used to produce metal and metal oxide single crystals and for cutting and shaping experiments using Si3N4 to displace diamond shaping processes.

  5. 49 CFR 1242.46 - Computers and data processing equipment (account XX-27-46).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REPORTS SEPARATION OF COMMON OPERATING EXPENSES BETWEEN FREIGHT SERVICE AND PASSENGER SERVICE FOR RAILROADS 1 Operating Expenses-Equipment § 1242.46 Computers and data processing equipment (account XX-27-46... 49 Transportation 9 2012-10-01 2012-10-01 false Computers and data processing equipment (account...

  6. 49 CFR 1242.46 - Computers and data processing equipment (account XX-27-46).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REPORTS SEPARATION OF COMMON OPERATING EXPENSES BETWEEN FREIGHT SERVICE AND PASSENGER SERVICE FOR RAILROADS 1 Operating Expenses-Equipment § 1242.46 Computers and data processing equipment (account XX-27-46... 49 Transportation 9 2013-10-01 2013-10-01 false Computers and data processing equipment (account...

  7. 49 CFR 1242.46 - Computers and data processing equipment (account XX-27-46).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REPORTS SEPARATION OF COMMON OPERATING EXPENSES BETWEEN FREIGHT SERVICE AND PASSENGER SERVICE FOR RAILROADS 1 Operating Expenses-Equipment § 1242.46 Computers and data processing equipment (account XX-27-46... 49 Transportation 9 2011-10-01 2011-10-01 false Computers and data processing equipment (account...

  8. 49 CFR 1242.46 - Computers and data processing equipment (account XX-27-46).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REPORTS SEPARATION OF COMMON OPERATING EXPENSES BETWEEN FREIGHT SERVICE AND PASSENGER SERVICE FOR RAILROADS 1 Operating Expenses-Equipment § 1242.46 Computers and data processing equipment (account XX-27-46... 49 Transportation 9 2014-10-01 2014-10-01 false Computers and data processing equipment (account...

  9. 49 CFR 1242.46 - Computers and data processing equipment (account XX-27-46).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REPORTS SEPARATION OF COMMON OPERATING EXPENSES BETWEEN FREIGHT SERVICE AND PASSENGER SERVICE FOR RAILROADS 1 Operating Expenses-Equipment § 1242.46 Computers and data processing equipment (account XX-27-46... 49 Transportation 9 2010-10-01 2010-10-01 false Computers and data processing equipment (account...

  10. 21 CFR 864.3010 - Tissue processing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3010...

  11. 21 CFR 864.3010 - Tissue processing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3010...

  12. 21 CFR 864.3010 - Tissue processing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3010...

  13. 21 CFR 864.3010 - Tissue processing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3010...

  14. 21 CFR 864.3010 - Tissue processing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3010...

  15. Floor vibration evaluations for medical facilities

    NASA Astrophysics Data System (ADS)

    Himmel, Chad N.

    2003-10-01

    The structural floor design for new medical facilities is often selected early in the design phase and in renovation projects, the floor structure already exists. Because the floor structure can often have an influence on the location of vibration sensitive medical equipment and facilities, it is becoming necessary to identify the best locations for equipment and facilities early in the design process. Even though specific criteria for vibration-sensitive uses and equipment may not always be available early in the design phase, it should be possible to determine compatible floor structures for planned vibration-sensitive uses by comparing conceptual layouts with generic floor vibration criteria. Relatively simple evaluations of planned uses and generic criteria, combined with on-site vibration and noise measurements early in design phase, can significantly reduce future design problems and expense. Concepts of evaluation procedures and analyses will be presented in this paper. Generic floor vibration criteria and appropriate parameters to control resonant floor vibration and noise will be discussed for typical medical facilities and medical research facilities. Physical, economic, and logistical limitations that affect implementation will be discussed through case studies.

  16. Status of Activities to Implement a Sustainable System of MC&A Equipment and Methodological Support at Rosatom Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.D. Sanders

    Under the U.S.-Russian Material Protection, Control and Accounting (MPC&A) Program, the Material Control and Accounting Measurements (MCAM) Project has supported a joint U.S.-Russian effort to coordinate improvements of the Russian MC&A measurement system. These efforts have resulted in the development of a MC&A Equipment and Methodological Support (MEMS) Strategic Plan (SP), developed by the Russian MEM Working Group. The MEMS SP covers implementation of MC&A measurement equipment, as well as the development, attestation and implementation of measurement methodologies and reference materials at the facility and industry levels. This paper provides an overview of the activities conducted under the MEMS SP,more » as well as a status on current efforts to develop reference materials, implement destructive and nondestructive assay measurement methodologies, and implement sample exchange, scrap and holdup measurement programs across Russian nuclear facilities.« less

  17. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency, looks at the inside of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. He and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency, looks at the inside of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. He and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  18. Space processing applications payload equipment study. Volume 2A: Experiment requirements

    NASA Technical Reports Server (NTRS)

    Smith, A. G.; Anderson, W. T., Jr.

    1974-01-01

    An analysis of the space processing applications payload equipment was conducted. The primary objective was to perform a review and an update of the space processing activity research equipment requirements and specifications that were derived in the first study. The analysis is based on the six major experimental classes of: (1) biological applications, (2) chemical processes in fluids, (3) crystal growth, (4) glass technology, (5) metallurgical processes, and (6) physical processes in fluids. Tables of data are prepared to show the functional requirements for the areas of investigation.

  19. Data mining for rapid prediction of facility fit and debottlenecking of biomanufacturing facilities.

    PubMed

    Yang, Yang; Farid, Suzanne S; Thornhill, Nina F

    2014-06-10

    Higher titre processes can pose facility fit challenges in legacy biopharmaceutical purification suites with capacities originally matched to lower titre processes. Bottlenecks caused by mismatches in equipment sizes, combined with process fluctuations upon scale-up, can result in discarding expensive product. This paper describes a data mining decisional tool for rapid prediction of facility fit issues and debottlenecking of biomanufacturing facilities exposed to batch-to-batch variability and higher titres. The predictive tool comprised advanced multivariate analysis techniques to interrogate Monte Carlo stochastic simulation datasets that mimicked batch fluctuations in cell culture titres, step yields and chromatography eluate volumes. A decision tree classification method, CART (classification and regression tree) was introduced to explore the impact of these process fluctuations on product mass loss and reveal the root causes of bottlenecks. The resulting pictorial decision tree determined a series of if-then rules for the critical combinations of factors that lead to different mass loss levels. Three different debottlenecking strategies were investigated involving changes to equipment sizes, using higher capacity chromatography resins and elution buffer optimisation. The analysis compared the impact of each strategy on mass output, direct cost of goods per gram and processing time, as well as consideration of extra capital investment and space requirements. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Robot Would Reconfigure Modular Equipment

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R.

    1993-01-01

    Special-purpose sets of equipment, packaged in identical modules with identical interconnecting mechanisms, attached to or detached from each other by specially designed robot, according to proposal. Two-arm walking robot connects and disconnects modules, operating either autonomously or under remote supervision. Robot walks along row of connected modules by grasping successive attachment subassemblies in hand-over-hand motion. Intended application for facility or station in outer space; robot reconfiguration scheme makes it unnecessary for astronauts to venture outside spacecraft or space station. Concept proves useful on Earth in assembly, disassembly, or reconfiguration of equipment in such hostile environments as underwater, near active volcanoes, or in industrial process streams.

  1. Particle monitoring and control in vacuum processing equipment

    NASA Astrophysics Data System (ADS)

    Borden, Peter G., Dr.; Gregg, John

    1989-10-01

    Particle contamination during vacuum processes has emerged as the largest single source of yield loss in VLSI manufacturing. While a number of tools have been available to help understand the sources and nature of this contamination, only recently has it been possible to monitor free particle levels within vacuum equipment in real-time. As a result, a better picture is available of how particle contamination can affect a variety of processes. This paper reviews some of the work that has been done to monitor particles in vacuum loadlocks and in processes such as etching, sputtering and ion implantation. The aim has been to make free particles in vacuum equipment a measurable process parameter. Achieving this allows particles to be controlled using statistical process control. It will be shown that free particle levels in load locks correlate to wafer surface counts, device yield and process conditions, but that these levels are considerable higher during production than when dummy wafers are run to qualify a system. It will also be shown how real-time free particle monitoring can be used to monitor and control cleaning cycles, how major episodic events can be detected, and how data can be gathered in a format suitable for statistical process control.

  2. 40 CFR 60.590 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or replacement of equipment (defined in § 60.591) for the purpose of process improvement which is... in § 60.591) within a process unit is an affected facility. (b) Any affected facility under paragraph... “process unit” in § 60.590 of this subpart until the EPA takes final action to require compliance and...

  3. Software and Hardware System for Fast Processes Study When Preparing Foundation Beds of Oil and Gas Facilities

    NASA Astrophysics Data System (ADS)

    Gruzin, A. V.; Gruzin, V. V.; Shalay, V. V.

    2018-04-01

    Analysis of existing technologies for preparing foundation beds of oil and gas buildings and structures has revealed the lack of reasoned recommendations on the selection of rational technical and technological parameters of compaction. To study the nature of the dynamics of fast processes during compaction of foundation beds of oil and gas facilities, a specialized software and hardware system was developed. The method of calculating the basic technical parameters of the equipment for recording fast processes is presented, as well as the algorithm for processing the experimental data. The performed preliminary studies confirmed the accuracy of the decisions made and the calculations performed.

  4. Integrated Biorefinery Research Facility | Bioenergy | NREL

    Science.gov Websites

    industrial, two-story building with high-bay, piping, and large processing equipment. Three workers in hard intellectual property and helping industrial partners commercialize technologies. Testing Facilities and

  5. Optimizing process and equipment efficiency using integrated methods

    NASA Astrophysics Data System (ADS)

    D'Elia, Michael J.; Alfonso, Ted F.

    1996-09-01

    The semiconductor manufacturing industry is continually riding the edge of technology as it tries to push toward higher design limits. Mature fabs must cut operating costs while increasing productivity to remain profitable and cannot justify large capital expenditures to improve productivity. Thus, they must push current tool production capabilities to cut manufacturing costs and remain viable. Working to continuously improve mature production methods requires innovation. Furthermore, testing and successful implementation of these ideas into modern production environments require both supporting technical data and commitment from those working with the process daily. At AMD, natural work groups (NWGs) composed of operators, technicians, engineers, and supervisors collaborate to foster innovative thinking and secure commitment. Recently, an AMD NWG improved equipment cycle time on the Genus tungsten silicide (WSi) deposition system. The team used total productive manufacturing (TPM) to identify areas for process improvement. Improved in-line equipment monitoring was achieved by constructing a real time overall equipment effectiveness (OEE) calculator which tracked equipment down, idle, qualification, and production times. In-line monitoring results indicated that qualification time associated with slow Inspex turn-around time and machine downtime associated with manual cleans contributed greatly to reduced availability. Qualification time was reduced by 75% by implementing a new Inspex monitor pre-staging technique. Downtime associated with manual cleans was reduced by implementing an in-situ plasma etch back to extend the time between manual cleans. A designed experiment was used to optimize the process. Time between 18 hour manual cleans has been improved from every 250 to every 1500 cycles. Moreover defect density realized a 3X improvement. Overall, the team achieved a 35% increase in tool availability. This paper details the above strategies and accomplishments.

  6. 42 CFR 37.43 - Protection against radiation emitted by roentgenographic equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... specified in § 37.41, roentgenographic equipment, its use and the facilities (including mobile facilities... facilities (including mobile facilities) in which such equipment is used shall conform to the recommendations... roentgenographic equipment. 37.43 Section 37.43 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN...

  7. Facility and Laboratory Equipment | Energy Systems Integration Facility |

    Science.gov Websites

    Energy Systems Integration Facility is its infrastructure. In addition to extensive fixed laboratory . Photo of researchers testing building loads and power networks in the Systems Performance Laboratory

  8. Laboratory Equipment Criteria.

    ERIC Educational Resources Information Center

    State Univ. Construction Fund, Albany, NY.

    Requirements for planning, designing, constructing and installing laboratory furniture are given in conjunction with establishing facility criteria for housing laboratory equipment. Furniture and equipment described include--(1) center tables, (2) reagent racks, (3) laboratory benches and their mechanical fixtures, (4) sink and work counters, (5)…

  9. 78 FR 37760 - Electrical Equipment in Hazardous Locations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... floating facilities engaged in OCS activities, however, equipment could be installed in hazardous locations... composition and the extent of equipment replacement. The myriad types of MODUs and facilities operating on the.... USCG-2012-0850] RIN 1625-AC00 Electrical Equipment in Hazardous Locations AGENCY: Coast Guard, DHS...

  10. Industrial Technology Modernization Program. Project 44. Modernize Facility Equipment and Processes. Volume 2. Revision 2. Phase 2

    DTIC Science & Technology

    1988-05-01

    not be implemented. A change in foreign exchange rates (which increase the equipment cost) and a reduction in marketing forecast resulted in an...project will not be implemented due to unfavorable changes in foreign exchange rates (which increase the equipment costs) and a reduction in market

  11. 9 CFR 71.7 - Means of conveyance, facilities, premises, and cages and other equipment; methods of cleaning and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Means of conveyance, facilities, premises, and cages and other equipment; methods of cleaning and disinfecting. 71.7 Section 71.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE...

  12. 9 CFR 71.7 - Means of conveyance, facilities, premises, and cages and other equipment; methods of cleaning and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Means of conveyance, facilities, premises, and cages and other equipment; methods of cleaning and disinfecting. 71.7 Section 71.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE...

  13. 9 CFR 71.7 - Means of conveyance, facilities, premises, and cages and other equipment; methods of cleaning and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Means of conveyance, facilities, premises, and cages and other equipment; methods of cleaning and disinfecting. 71.7 Section 71.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE...

  14. 9 CFR 71.7 - Means of conveyance, facilities, premises, and cages and other equipment; methods of cleaning and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Means of conveyance, facilities, premises, and cages and other equipment; methods of cleaning and disinfecting. 71.7 Section 71.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE...

  15. 9 CFR 71.7 - Means of conveyance, facilities, premises, and cages and other equipment; methods of cleaning and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Means of conveyance, facilities, premises, and cages and other equipment; methods of cleaning and disinfecting. 71.7 Section 71.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE...

  16. Extraterrestrial processing and manufacturing of large space systems. Volume 3: Executive summary

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Facilities and equipment are defined for refining processes to commercial grade of lunar material that is delivered to a 'space manufacturing facility' in beneficiated, primary processed quality. The manufacturing facilities and the equipment for producing elements of large space systems from these materials and providing programmatic assessments of the concepts are also defined. In-space production processes of solar cells (by vapor deposition) and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, converters, and others are described.

  17. Deep Space Network equipment performance, reliability, and operations management information system

    NASA Technical Reports Server (NTRS)

    Cooper, T.; Lin, J.; Chatillon, M.

    2002-01-01

    The Deep Space Mission System (DSMS) Operations Program Office and the DeepSpace Network (DSN) facilities utilize the Discrepancy Reporting Management System (DRMS) to collect, process, communicate and manage data discrepancies, equipment resets, physical equipment status, and to maintain an internal Station Log. A collaborative effort development between JPL and the Canberra Deep Space Communication Complex delivered a system to support DSN Operations.

  18. 9 CFR 592.95 - Facilities and equipment to be furnished for use of inspection program personnel in performing...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Facilities and equipment to be furnished for use of inspection program personnel in performing service. 592.95 Section 592.95 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION...

  19. 30 CFR 585.815 - What must I do if I have facility damage or an equipment failure?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Conducted Under SAPs, COPs and GAPs Equipment Failure and Adverse Environmental Effects § 585.815 What must... failure under § 585.831, BOEM may require you to revise your SAP, COP, or GAP to describe how you will address the facility damage or failure as required by § 585.634 (COP), § 585.617 (SAP), § 585.655 (GAP...

  20. 30 CFR 285.815 - What must I do if I have facility damage or an equipment failure?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Assessments for Activities Conducted Under SAPs, COPs and GAPs Equipment Failure and Adverse Environmental... damage or failure under § 285.831, MMS may require you to revise your SAP, COP, or GAP to describe how you will address the facility damage or failure as required by § 285.634 (COP), § 285.617 (SAP), § 285...

  1. 30 CFR 585.815 - What must I do if I have facility damage or an equipment failure?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Conducted Under SAPs, COPs and GAPs Equipment Failure and Adverse Environmental Effects § 585.815 What must... failure under § 585.831, BOEM may require you to revise your SAP, COP, or GAP to describe how you will address the facility damage or failure as required by § 585.634 (COP), § 585.617 (SAP), § 585.655 (GAP...

  2. 30 CFR 585.815 - What must I do if I have facility damage or an equipment failure?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Conducted Under SAPs, COPs and GAPs Equipment Failure and Adverse Environmental Effects § 585.815 What must... failure under § 585.831, BOEM may require you to revise your SAP, COP, or GAP to describe how you will address the facility damage or failure as required by § 585.634 (COP), § 585.617 (SAP), § 585.655 (GAP...

  3. Feasibility Study for a Plasma Dynamo Facility to Investigate Fundamental Processes in Plasma Astrophysics. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forest, Cary B.

    The scientific equipment purchased on this grant was used on the Plasma Dynamo Prototype Experiment as part of Professor Forest's feasibility study for determining if it would be worthwhile to propose building a larger plasma physics experiment to investigate various fundamental processes in plasma astrophysics. The initial research on the Plasma Dynamo Prototype Experiment was successful so Professor Forest and Professor Ellen Zweibel at UW-Madison submitted an NSF Major Research Instrumentation proposal titled "ARRA MRI: Development of a Plasma Dynamo Facility for Experimental Investigations of Fundamental Processes in Plasma Astrophysics." They received funding for this project and the Plasma Dynamomore » Facility also known as the "Madison Plasma Dynamo Experiment" was constructed. This experiment achieved its first plasma in the fall of 2012 and U.S. Dept. of Energy Grant No. DE-SC0008709 "Experimental Studies of Plasma Dynamos," now supports the research.« less

  4. INTELLIGENT PROCESSING EQUIPMENT WITHIN THE ENVIRONMENTAL PROTECTION AGENCY

    EPA Science Inventory

    Protection of the environment and environmental remediation requires the cooperation -at all levels- of government and industry. ntelligent processing equipment, in addition to other artificial intelligence based tools, has been used by the Environmental Protection Agency to prov...

  5. The Facilities Audit. A Process for Improving Facilities Conditions.

    ERIC Educational Resources Information Center

    Kaiser, Harvey H.

    The problems of deferred maintenance and decaying campus infrastructure have troubled higher education for the past two decades. This book, designed to be a tool for facilities managers, describes a process for inspecting and reporting conditions of buildings and infrastructure. The audit process is meant to be a routine part of maintenance…

  6. Lunar surface mining for automated acquisition of helium-3: Methods, processes, and equipment

    NASA Technical Reports Server (NTRS)

    Li, Y. T.; Wittenberg, L. J.

    1992-01-01

    In this paper, several techniques considered for mining and processing the regolith on the lunar surface are presented. These techniques have been proposed and evaluated based primarily on the following criteria: (1) mining operations should be relatively simple; (2) procedures of mineral processing should be few and relatively easy; (3) transferring tonnages of regolith on the Moon should be minimized; (4) operations outside the lunar base should be readily automated; (5) all equipment should be maintainable; and (6) economic benefit should be sufficient for commercial exploitation. The economic benefits are not addressed in this paper; however, the energy benefits have been estimated to be between 250 and 350 times the mining energy. A mobile mining scheme is proposed that meets most of the mining objectives. This concept uses a bucket-wheel excavator for excavating the regolith, several mechanical electrostatic separators for beneficiation of the regolith, a fast-moving fluidized bed reactor to heat the particles, and a palladium diffuser to separate H2 from the other solar wind gases. At the final stage of the miner, the regolith 'tailings' are deposited directly into the ditch behind the miner and cylinders of the valuable solar wind gases are transported to a central gas processing facility. During the production of He-3, large quantities of valuable H2, H2O, CO, CO2, and N2 are produced for utilization at the lunar base. For larger production of He-3 the utilization of multiple-miners is recommended rather than increasing their size. Multiple miners permit operations at more sites and provide redundancy in case of equipment failure.

  7. Lunar surface mining for automated acquisition of helium-3: Methods, processes, and equipment

    NASA Astrophysics Data System (ADS)

    Li, Y. T.; Wittenberg, L. J.

    1992-09-01

    In this paper, several techniques considered for mining and processing the regolith on the lunar surface are presented. These techniques have been proposed and evaluated based primarily on the following criteria: (1) mining operations should be relatively simple; (2) procedures of mineral processing should be few and relatively easy; (3) transferring tonnages of regolith on the Moon should be minimized; (4) operations outside the lunar base should be readily automated; (5) all equipment should be maintainable; and (6) economic benefit should be sufficient for commercial exploitation. The economic benefits are not addressed in this paper; however, the energy benefits have been estimated to be between 250 and 350 times the mining energy. A mobile mining scheme is proposed that meets most of the mining objectives. This concept uses a bucket-wheel excavator for excavating the regolith, several mechanical electrostatic separators for beneficiation of the regolith, a fast-moving fluidized bed reactor to heat the particles, and a palladium diffuser to separate H2 from the other solar wind gases. At the final stage of the miner, the regolith 'tailings' are deposited directly into the ditch behind the miner and cylinders of the valuable solar wind gases are transported to a central gas processing facility. During the production of He-3, large quantities of valuable H2, H2O, CO, CO2, and N2 are produced for utilization at the lunar base. For larger production of He-3 the utilization of multiple-miners is recommended rather than increasing their size. Multiple miners permit operations at more sites and provide redundancy in case of equipment failure.

  8. Medical equipment donations in Haiti: flaws in the donation process.

    PubMed

    Dzwonczyk, Roger; Riha, Chris

    2012-04-01

    The magnitude 7.0 earthquake that struck Haiti on 12 January 2010 devastated the capital city of Port-au-Prince and the surrounding area. The area's hospitals suffered major structural damage and material losses. Project HOPE sought to rebuild the medical equipment and clinical engineering capacity of the country. A team of clinical engineers from the United States of America and Haiti conducted an inventory and assessment of medical equipment at seven public hospitals affected by the earthquake. The team found that only 28% of the equipment was working properly and in use for patient care; another 28% was working, but lay idle for technical reasons; 30% was not working, but repairable; and 14% was beyond repair. The proportion of equipment in each condition category was similar regardless of whether the equipment was present prior to the earthquake or was donated afterwards. This assessment points out the flaws that existed in the medical equipment donation process and reemphasizes the importance of the factors, as delineated by the World Health Organization more than a decade ago, that constitute a complete medical equipment donation.

  9. 49 CFR 605.12 - Use of project equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., facilities or equipment funded under the Acts. A grantee or operator may, however, use such buses, facilities... 49 Transportation 7 2010-10-01 2010-10-01 false Use of project equipment. 605.12 Section 605.12..., DEPARTMENT OF TRANSPORTATION SCHOOL BUS OPERATIONS School Bus Agreements § 605.12 Use of project equipment...

  10. 40 CFR 1068.20 - May EPA enter my facilities for inspections?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., manufacturing processes, storage facilities (including port facilities for imported engines and equipment or... inspect if we learn that local law prohibits it, but we may suspend your certificate if we are not allowed...

  11. Planning and Equipping a New Machine Shop

    ERIC Educational Resources Information Center

    Bloom, Nick

    1978-01-01

    The author describes the planning and equipping of a new machine shop facility at the East Los Angeles Occupational Center. Lists of machine shop and classroom equipment, a floor plan of the facility, and some new shop curriculum approaches are included. (MF)

  12. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 Mission Specialist Wendy Lawrence looks at an reinforced carbon-carbon panel ready to be installed on Atlantis. Lawrence is a new addition to the mission crew, who are at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 Mission Specialist Wendy Lawrence looks at an reinforced carbon-carbon panel ready to be installed on Atlantis. Lawrence is a new addition to the mission crew, who are at KSC to take part in crew equipment and orbiter familiarization.

  13. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 Pilot James Kelly (center) and Mission Specialist Wendy Lawrence, who was recently added to the mission crew, look at the nose cap recently removed from Atlantis. The STS-114 crew is at KSC to take part in equipment familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 Pilot James Kelly (center) and Mission Specialist Wendy Lawrence, who was recently added to the mission crew, look at the nose cap recently removed from Atlantis. The STS-114 crew is at KSC to take part in equipment familiarization.

  14. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 Mission Specialists Charles Camarda and Andy Thomas, who were recently added to the crew, look at the nose cap recently removed from Atlantis. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 Mission Specialists Charles Camarda and Andy Thomas, who were recently added to the crew, look at the nose cap recently removed from Atlantis. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  15. Equipment for Microgravity Research

    NASA Technical Reports Server (NTRS)

    Fountain, J. A.

    1986-01-01

    Illustrated catalog describes equipment and facilities available for experiments under low-gravity conditions. Catalog encourages scientific and commercial organizations to investigate benefits of conducting research and manufacturing activities in microgravity environment. Catalog covers equipment ranging from containers to spacecraft.

  16. Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities.

    PubMed

    Garcia, Fernando A; Vandiver, Michael W

    2017-01-01

    In order to operate profitably under different product demand scenarios, biopharmaceutical companies must design their facilities with mass output flexibility in mind. Traditional biologics manufacturing technologies pose operational challenges in this regard due to their high costs and slow equipment turnaround times, restricting the types of products and mass quantities that can be processed. Modern plant design, however, has facilitated the development of lean and efficient bioprocessing facilities through footprint reduction and adoption of disposable and continuous manufacturing technologies. These development efforts have proven to be crucial in seeking to drastically reduce the high costs typically associated with the manufacturing of recombinant proteins. In this work, mathematical modeling is used to optimize annual production schedules for a single-product commercial facility operating with a continuous upstream and discrete batch downstream platform. Utilizing cell culture duration and volumetric productivity as process variables in the model, and annual plant throughput as the optimization objective, 3-D surface plots are created to understand the effect of process and facility design on expected mass output. The model shows that once a plant has been fully debottlenecked it is capable of processing well over a metric ton of product per year. Moreover, the analysis helped to uncover a major limiting constraint on plant performance, the stability of the neutralized viral inactivated pool, which may indicate that this should be a focus of attention during future process development efforts. LAY ABSTRACT: Biopharmaceutical process modeling can be used to design and optimize manufacturing facilities and help companies achieve a predetermined set of goals. One way to perform optimization is by making the most efficient use of process equipment in order to minimize the expenditure of capital, labor and plant resources. To that end, this paper introduces a

  17. Hynol Process Engineering: Process Configuration, Site Plan, and Equipment Design

    DTIC Science & Technology

    1996-02-01

    feed stock. Compared with other methanol production processes, direct emissions of carbon dioxide can be substantially reduced by using the Hynol...A bench scale methanol production facility is being constructed to demonstrate the technical feasibility of producing methanol from biomass using the ...Hynol process. The plant is being designed to convert 50 lb./hr of biomass to methanol. The biomass consists of wood, and natural gas is used as a co

  18. Biofilms associated with poultry processing equipment.

    PubMed

    Lindsay, D; Geornaras, I; von Holy, A

    1996-01-01

    Aerobic and Gram-negative bacteria were enumerated on non-metallic surfaces and stainless steel test pieces attached to equipment surfaces by swabbing and a mechanical dislodging procedure, respectively, in a South African grade B poultry processing plant. Changes in bacterial numbers were also monitored over time on metal test pieces. The highest bacterial counts were obtained from non-metallic surfaces such as rubber fingered pluckers and plastic defeathering curtains which exceeded the highest counts found on the metal surfaces by at least 1 log CFU cm-2. Gram-negative bacterial counts on all non-metallic surface types were at least 2 log CFU cm-2 lower than corresponding aerobic plate counts. On metal surfaces, the highest microbial numbers were obtained after 14 days exposure, with aerobic plate counts ranging from 3.57 log CFU cm-2 to 5.13 log CFU cm-2, and Gram-negative counts from 0.70 log CFU cm-2 to 3.31 log CFU cm-2. Scanning electron microscopy confirmed the presence of bacterial cells on non-metallic and metallic surfaces associated with poultry processing. Rubber 'fingers', plastic curtains, conveyor belt material and stainless steel test surfaces placed on the scald tank overflow and several chutes revealed extensive and often confluent bacterial biofilms. Extracellular polymeric substances, but few bacterial cells were visible on test pieces placed on evisceration equipment, spinchiller blades and the spinchiller outlet.

  19. Predictive maintenance of critical equipment in industrial processes

    NASA Astrophysics Data System (ADS)

    Hashemian, Hashem M.

    This dissertation is an account of present and past research and development (R&D) efforts conducted by the author to develop and implement new technology for predictive maintenance and equipment condition monitoring in industrial processes. In particular, this dissertation presents the design of an integrated condition-monitoring system that incorporates the results of three current R&D projects with a combined funding of $2.8 million awarded to the author by the U.S. Department of Energy (DOE). This system will improve the state of the art in equipment condition monitoring and has applications in numerous industries including chemical and petrochemical plants, aviation and aerospace, electric power production and distribution, and a variety of manufacturing processes. The work that is presented in this dissertation is unique in that it introduces a new class of condition-monitoring methods that depend predominantly on the normal output of existing process sensors. It also describes current R&D efforts to develop data acquisition systems and data analysis algorithms and software packages that use the output of these sensors to determine the condition and health of industrial processes and their equipment. For example, the output of a pressure sensor in an operating plant can be used not only to indicate the pressure, but also to verify the calibration and response time of the sensor itself and identify anomalies in the process such as blockages, voids, and leaks that can interfere with accurate measurement of process parameters or disturb the plant's operation, safety, or reliability. Today, process data are typically collected at a rate of one sample per second (1 Hz) or slower. If this sampling rate is increased to 100 samples per second or higher, much more information can be extracted from the normal output of a process sensor and then used for condition monitoring, equipment performance measurements, and predictive maintenance. A fast analog-to-digital (A

  20. Orbital ATK's Ground Support Equipment (GSE) Delivery for OA-7

    NASA Image and Video Library

    2016-12-15

    Sealed in its shipping container, the ground support equipment for the Orbital ATK OA-7 commercial resupply services mission has arrived at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The container will be moved inside the low bay of the facility. The Orbital ATK CRS-7 with the Cygnus cargo module will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.

  1. 10 CFR 1016.9 - Processing security facility approval.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Processing security facility approval. 1016.9 Section 1016... § 1016.9 Processing security facility approval. The following receipt of an acceptable request for... granted pursuant to § 1016.6 of this part. ...

  2. 10 CFR 1016.9 - Processing security facility approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Processing security facility approval. 1016.9 Section 1016... § 1016.9 Processing security facility approval. The following receipt of an acceptable request for... granted pursuant to § 1016.6 of this part. ...

  3. 9 CFR 592.95 - Facilities and equipment to be furnished for use of inspection program personnel in performing...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Facilities and equipment to be furnished for use of inspection program personnel in performing service. 592.95 Section 592.95 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Performanc...

  4. 9 CFR 592.95 - Facilities and equipment to be furnished for use of inspection program personnel in performing...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Facilities and equipment to be furnished for use of inspection program personnel in performing service. 592.95 Section 592.95 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Performanc...

  5. 9 CFR 592.95 - Facilities and equipment to be furnished for use of inspection program personnel in performing...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Facilities and equipment to be furnished for use of inspection program personnel in performing service. 592.95 Section 592.95 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Performanc...

  6. 9 CFR 592.95 - Facilities and equipment to be furnished for use of inspection program personnel in performing...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Facilities and equipment to be furnished for use of inspection program personnel in performing service. 592.95 Section 592.95 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Performanc...

  7. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and laboratory reports, Part 2 of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigo, H.G.; Chandler, A.J.

    Volume II (part 2 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the field and laboratory reports, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

  8. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and Laboratory Reports, Part 1 of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigo, H.G.; Chandler, A.J.

    1996-04-01

    Volume II (part 1 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the documentation and raw data, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

  9. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew spend time in the Orbiter Processing Facility becoming familiar with Shuttle and mission equipment. Mission Specialists Stephen Robinson (left) and Wendy Lawrence (right) look at an engine eyelet, which serves as part of the thermal protection system on an orbiter. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment and the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew spend time in the Orbiter Processing Facility becoming familiar with Shuttle and mission equipment. Mission Specialists Stephen Robinson (left) and Wendy Lawrence (right) look at an engine eyelet, which serves as part of the thermal protection system on an orbiter. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment and the external stowage platform to the International Space Station.

  10. Hyperspectral imaging technique for detection of poultry fecal residues on food processing equipments

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Kwan; Kim, Moon S.; Chen, Yud-Ren

    2005-11-01

    Emerging concerns about safety and security in current mass production of food products necessitate rapid and reliable inspection for contaminant-free products. Diluted fecal residues on poultry processing plant equipment surface, not easily discernable from water by human eye, are contamination sources for poultry carcasses. Development of sensitive detection methods for fecal residues is essential to ensure safe production of poultry carcasses. Hyperspectral imaging techniques have shown good potential for detecting of the presence of fecal and other biological substances on food and processing equipment surfaces. In this study, use of high spatial resolution hyperspectral reflectance and fluorescence imaging (with UV-A excitation) is presented as a tool for selecting a few multispectral bands to detect diluted fecal and ingesta residues on materials used for manufacturing processing equipment. Reflectance and fluorescence imaging methods were compared for potential detection of a range of diluted fecal residues on the surfaces of processing plant equipment. Results showed that low concentrations of poultry feces and ingesta, diluted up to 1:100 by weight with double distilled water, could be detected using hyperspectral fluorescence images with an accuracy of 97.2%. Spectral bands determined in this study could be used for developing a real-time multispectral inspection device for detection of harmful organic residues on processing plant equipment.

  11. An analysis of workplace exposures to benzene over four decades at a petrochemical processing and manufacturing facility (1962-1999).

    PubMed

    Sahmel, J; Devlin, K; Burns, A; Ferracini, T; Ground, M; Paustenbach, D

    2013-01-01

    Benzene, a known carcinogen, can be generated as a by-product during the use of petroleum-based raw materials in chemical manufacturing. The aim of this study was to analyze a large data set of benzene air concentration measurements collected over nearly 40 years during routine employee exposure monitoring at a petrochemical manufacturing facility. The facility used ethane, propane, and natural gas as raw materials in the production of common commercial materials such as polyethylene, polypropylene, waxes, adhesives, alcohols, and aldehydes. In total, 3607 benzene air samples were collected at the facility from 1962 to 1999. Of these, in total 2359 long-term (>1 h) personal exposure samples for benzene were collected during routine operations at the facility between 1974 and 1999. These samples were analyzed by division, department, and job title to establish employee benzene exposures in different areas of the facility over time. Sampling data were also analyzed by key events over time, including changes in the occupational exposure limits (OELs) for benzene and key equipment process changes at the facility. Although mean benzene concentrations varied according to operation, in nearly all cases measured benzene quantities were below the OEL in place at the time for benzene (10 ppm for 1974-1986 and 1 ppm for 1987-1999). Decreases in mean benzene air concentrations were also found when data were evaluated according to 7- to 10-yr periods following key equipment process changes. Further, an evaluation of mortality rates for a retrospective employee cohort (n = 3938) demonstrated that the average personal benzene exposures at this facility (0.89 ppm for the period 1974-1986 and 0.125 ppm for the period 1987-1999) did not result in increased standardized mortality ratio (SMRs) for diseases or malignancies of the lymphatic system. The robust nature of this data set provides comprehensive exposure information that may be useful for assessing human benzene exposures at

  12. Development of Army Facility Functionality Assessment Criteria and Procedures

    DTIC Science & Technology

    2010-09-01

    critical facility types: the Tactical Equipment Main- tenance Facility (TEMF), the Company Operations Facility (COF), the Bat- talion Headquarters...Criteria for Company Operations Facilities (COF) ................ 56 Appendix G: Army Standard Design Criteria for Tactical Equipment Maintenance...1 mission-critical facility types: the Tactical Equipment Mainten- ance Facility (TEMF), the Company Operations Facility (COF), the Batta- lion

  13. Workers in SSPF monitor Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in the Space Station Processing Facility control room check documentation during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny. Members of the STS-98 crew are taking part in the MEIT checking out some of the equipment in the Lab. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The crew comprises five members: Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  14. Workers in SSPF monitor Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in the Space Station Processing Facility control room monitor computers during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny. Members of the STS-98 crew are taking part in the MEIT checking out some of the equipment in the Lab. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The crew comprises five members: Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  15. Economically dispatching cogeneration facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, E.

    Economic dispatching has been used by utilities to meet the energy demands of their customers for decades. The objective was to first load those units which cost the least to run and slowly increase the loading of more expensive units as the incremental energy price increased. Although this concept worked well for utility based systems where incremental costs rose with peak demand, the independent power producers(IPPs) and the power purchase agreements (PPAs) have drastically changed this notion. Most PPAs structured for the IPP environment have negotiated rates which remain the same during peak periods and base their electrical generation onmore » specific process steam requirements. They also must maintain the required production balance of process steam and electrical load in order to qualify as a Public Utility Regulatory Policies Act (PURPA) facility. Consequently, economically dispatching Cogeneration facilities becomes an exercise in adhering to contractual guidelines while operating the equipment in the most efficient manner possible for the given condition. How then is it possible to dispatch a Cogeneration facility that maintains the electrical load demand of JFK Airport while satisfying all of its heating and cooling needs? Contractually, Kennedy International Airport Cogen (KIAC) has specific obligations concerning electrical and thermal energy exported to JFK Airport. The facility`s impressive array of heating and cooling apparatuses together with the newly installed cogen fulfilled the airport`s needs by utilizing an endless combination of new and previously installed equipment. Moreover, in order to economically operate the plant a well structured operating curriculum was necessary.« less

  16. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (left) and STS-117 Mission Specialist James Reilly (right) are donning protective clothing to interface with the Japanese Experiment Module (JEM), in the background. Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-21

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (left) and STS-117 Mission Specialist James Reilly (right) are donning protective clothing to interface with the Japanese Experiment Module (JEM), in the background. Equipment familiarization is a routine part of astronaut training and launch preparations.

  17. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 Mission Specialist Wendy Lawrence takes a close look at the some of the tiles underneath Atlantis. Lawrence is a new addition to the mission crew. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 Mission Specialist Wendy Lawrence takes a close look at the some of the tiles underneath Atlantis. Lawrence is a new addition to the mission crew. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  18. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 Mission Specialist Andy Thomas takes a close look at the some of the tiles underneath Atlantis. Thomas is a new addition to the mission crew. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 Mission Specialist Andy Thomas takes a close look at the some of the tiles underneath Atlantis. Thomas is a new addition to the mission crew. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  19. 77 FR 18151 - Discharge Removal Equipment for Vessels Carrying Oil

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... Facility Response Plans for Oil: 2003 Removal Equipment Requirements and Alternative Technology Revisions... ``Vessel and Facility Response Plans for Oil: 2003 Removal Equipment Requirements and Alternative... CGD 90-068] RIN 1625-AA02, Formerly 2115-AD66 Discharge Removal Equipment for Vessels Carrying Oil...

  20. 46 CFR 162.050-15 - Designation of facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (2) Each type of equipment the facility proposes to test. (3) A description of the facility's... concentrations and the values obtained by the facility with their equipment. The value of X d for the 12... conduct approval tests— (1) A facility must have the management organization, equipment for conducting...

  1. Interim Stabilization Equipment Essential and Support Drawing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KOCH, M.R.

    The purpose of this document is to list the Interim Stabilization equipment drawings that are classified as Essential or Support drawings. Essential Drawings: Those drawings identified by the facility staff as necessary to directly support the safe operation of the facility or equipment. Support Drawings: Those drawings identified by the facility staff that further describe the design details of structures, systems or components shown on essential drawings.

  2. TEMPUS: A facility for containerless electromagnetic processing onboard spacelab

    NASA Technical Reports Server (NTRS)

    Lenski, H.; Willnecker, R.

    1990-01-01

    The electromagnetic containerless processing facility TEMPUS was recently assigned for a flight on the IML-2 mission. In comparison to the TEMPUS facility already flown on a sounding rocket, several improvements had to be implemented. These are in particular related to: safety; resource management; and the possibility to process different samples with different requirements in one mission. The basic design of this facility as well as the expected processing capabilities are presented. Two operational aspects turned out to strongly influence the facility design: control of the sample motion (first experimental results indicate that crew or ground interaction will be necessary to minimize residual sample motions during processing); and exchange of RF-coils (during processing in vacuum, evaporated sample materials will condense at the cold surface and may force a coil exchange, when a critical thickness is exceeded).

  3. Automated space processing payloads study. Volume 3: Equipment development resource requirements. [instrument packages and the space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Facilities are described on which detailed preliminary design was undertaken and which may be used on early space shuttle missions in the 1979-1982 time-frame. The major hardware components making up each facility are identified, and development schedules for the major hardware items and the payload buildup are included. Cost data for the facilities, and the assumptions and ground rules supporting these data are given along with a recommended listing of supporting research and technology needed to ensure confidence in the ability to achieve successful development of the equipment and technology.

  4. Ground facility for information reception, processing, dissemination and scientific instruments management setup in the CORONAS-PHOTON space project

    NASA Astrophysics Data System (ADS)

    Buslov, A. S.; Kotov, Yu. D.; Yurov, V. N.; Bessonov, M. V.; Kalmykov, P. A.; Oreshnikov, E. M.; Alimov, A. M.; Tumanov, A. V.; Zhuchkova, E. A.

    2011-06-01

    This paper deals with the organizational structure of ground-based receiving, processing, and dissemination of scientific information created by the Astrophysics Institute of the Scientific Research Nuclear University, Moscow Engineering Physics Institute. Hardware structure and software features are described. The principles are given for forming sets of control commands for scientific equipment (SE) devices, and statistics data are presented on the operation of facility during flight tests of the spacecraft (SC) in the course of one year.

  5. Quick counting method for estimating the number of viable microbes on food and food processing equipment.

    PubMed

    Winter, F H; York, G K; el-Nakhal, H

    1971-07-01

    A rapid method for estimating the extent of microbial contamination on food and on food processing equipment is described. Microbial cells are rinsed from food or swab samples with sterile diluent and concentrated on the surface of membrane filters. The filters are incubated on a suitable bacteriological medium for 4 hr at 30 C, heated at 105 C for 5 min, and stained. The membranes are then dried at 60 C for 15 min, rendered transparent with immersion oil, and examined microscopically. Data obtained by the rapid method were compared with counts of the same samples determined by the standard plate count method. Over 60 comparisons resulted in a correlation coefficient of 0.906. Because the rapid technique can provide reliable microbiological count information in extremely short times, it can be a most useful tool in the routine evaluation of microbial contamination of food processing facilities and for some foods.

  6. Overall equipment efficiency of Flexographic Printing process: A case study

    NASA Astrophysics Data System (ADS)

    Zahoor, S.; Shehzad, A.; Mufti, NA; Zahoor, Z.; Saeed, U.

    2017-12-01

    This paper reports the efficiency improvement of a flexographic printing machine by reducing breakdown time with the help of a total productive maintenance measure called overall equipment efficiency (OEE). The methodology is comprised of calculating OEE of the machine before and after identifying the causes of the problems. Pareto diagram is used to prioritize main problem areas and 5-whys analysis approach is used to identify the root cause of these problems. OEE of the process is improved from 34% to 40.2% for a 30 days time period. It is concluded that OEE and 5-whys analysis techniques are useful in improving effectiveness of the equipment and for the continuous process improvement as well.

  7. Listeria monocytogenes in Food-Processing Facilities, Food Contamination, and Human Listeriosis: The Brazilian Scenario.

    PubMed

    Camargo, Anderson Carlos; Woodward, Joshua John; Call, Douglas Ruben; Nero, Luís Augusto

    2017-11-01

    Listeria monocytogenes is a foodborne pathogen that contaminates food-processing environments and persists within biofilms on equipment, utensils, floors, and drains, ultimately reaching final products by cross-contamination. This pathogen grows even under high salt conditions or refrigeration temperatures, remaining viable in various food products until the end of their shelf life. While the estimated incidence of listeriosis is lower than other enteric illnesses, infections caused by L. monocytogenes are more likely to lead to hospitalizations and fatalities. Despite the description of L. monocytogenes occurrence in Brazilian food-processing facilities and foods, there is a lack of consistent data regarding listeriosis cases and outbreaks directly associated with food consumption. Listeriosis requires rapid treatment with antibiotics and most drugs suitable for Gram-positive bacteria are effective against L. monocytogenes. Only a minority of clinical antibiotic-resistant L. monocytogenes strains have been described so far; whereas many strains recovered from food-processing facilities and foods exhibited resistance to antimicrobials not suitable against listeriosis. L. monocytogenes control in food industries is a challenge, demanding proper cleaning and application of sanitization procedures to eliminate this foodborne pathogen from the food-processing environment and ensure food safety. This review focuses on presenting the L. monocytogenes distribution in food-processing environment, food contamination, and control in the food industry, as well as the consequences of listeriosis to human health, providing a comparison of the current Brazilian situation with the international scenario.

  8. An Application of Business Process Management to Health Care Facilities.

    PubMed

    Hassan, Mohsen M D

    The purpose of this article is to help health care facility managers and personnel identify significant elements of their facilities to address, and steps and actions to follow, when applying business process management to them. The ABPMP (Association of Business Process Management Professionals) life-cycle model of business process management is adopted, and steps from Lean, business process reengineering, and Six Sigma, and actions from operations management are presented to implement it. Managers of health care facilities can find in business process management a more comprehensive approach to improving their facilities than Lean, Six Sigma, business process reengineering, and ad hoc approaches that does not conflict with them because many of their elements can be included under its umbrella. Furthermore, the suggested application of business process management can guide and relieve them from selecting among these approaches, as well as provide them with specific steps and actions that they can follow. This article fills a gap in the literature by presenting a much needed comprehensive application of business process management to health care facilities that has specific steps and actions for implementation.

  9. Test results: Halon 1301 versus water sprinkler fire protection for essential electronic equipment

    NASA Astrophysics Data System (ADS)

    Reichelt, E. F.; Walker, J. L.; Vickers, R. N.; Kwan, A. J.

    1982-07-01

    This report describes results of testing two contending extinguishants, Halon 1301 and water, for fire protection of essential electronic equipment. A series of controlled fires in a facility housing an operational electronic data processing system sought to establish immediate and long term effects of exposure of sensitive electronic equipment and stored data to fire extinguishment atmospheres. Test results lead to the conclusion that Halon 1301 is superior to water as an extinguishant for fires occurring in essential electronic equipment installations.

  10. Integration Process for Payloads in the Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Free, James M.; Nall, Marsha M.

    2001-01-01

    The Fluids and Combustion Facility (FCF) is an ISS research facility located in the United States Laboratory (US Lab), Destiny. The FCF is a multi-discipline facility that performs microgravity research primarily in fluids physics science and combustion science. This facility remains on-orbit and provides accommodations to multi-user and Principal investigator (PI) unique hardware. The FCF is designed to accommodate 15 PI's per year. In order to allow for this number of payloads per year, the FCF has developed an end-to-end analytical and physical integration process. The process includes provision of integration tools, products and interface management throughout the life of the payload. The payload is provided with a single point of contact from the facility and works with that interface from PI selection through post flight processing. The process utilizes electronic tools for creation of interface documents/agreements, storage of payload data and rollup for facility submittals to ISS. Additionally, the process provides integration to and testing with flight-like simulators prior to payload delivery to KSC. These simulators allow the payload to test in the flight configuration and perform final facility interface and science verifications. The process also provides for support to the payload from the FCF through the Payload Safety Review Panel (PSRP). Finally, the process includes support in the development of operational products and the operation of the payload on-orbit.

  11. Meat and Poultry Processing. Teacher Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This curriculum guide contains instructional materials for a program that provides students with job skills in meat and poultry processing. The curriculum consists of 10 units that cover the following material: orientation to meat and poultry processing; maintaining plant facilities; equipment and equipment maintenance; purchasing livestock for…

  12. KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Neil Yorio carry boxes of hardware into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Neil Yorio carry boxes of hardware into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  13. 77 FR 823 - Guidance for Fuel Cycle Facility Change Processes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0262] Guidance for Fuel Cycle Facility Change Processes... Fuel Cycle Facility Change Processes.'' This regulatory guide describes the types of changes for which fuel cycle facility licensees should seek prior approval from the NRC and discusses how licensees can...

  14. 48 CFR 215.404-71-4 - Facilities capital employed.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., and equipment, as derived in DD Form 1861, Contract Facilities Capital Cost of Money. (i) In addition... facilities capital, the allocated facilities capital attributable to the buildings and equipment of those... Equipment 17.5 10 to 25 (g) Evaluation criteria. (1) In evaluating facilities capital employed, the...

  15. Status of pre-processing of waste electrical and electronic equipment in Germany and its influence on the recovery of gold.

    PubMed

    Chancerel, Perrine; Bolland, Til; Rotter, Vera Susanne

    2011-03-01

    Waste electrical and electronic equipment (WEEE) contains gold in low but from an environmental and economic point of view relevant concentration. After collection, WEEE is pre-processed in order to generate appropriate material fractions that are sent to the subsequent end-processing stages (recovery, reuse or disposal). The goal of this research is to quantify the overall recovery rates of pre-processing technologies used in Germany for the reference year 2007. To achieve this goal, facilities operating in Germany were listed and classified according to the technology they apply. Information on their processing capacity was gathered by evaluating statistical databases. Based on a literature review of experimental results for gold recovery rates of different pre-processing technologies, the German overall recovery rate of gold at the pre-processing level was quantified depending on the characteristics of the treated WEEE. The results reveal that - depending on the equipment groups - pre-processing recovery rates of gold of 29 to 61% are achieved in Germany. Some practical recommendations to reduce the losses during pre-processing could be formulated. Defining mass-based recovery targets in the legislation does not set incentives to recover trace elements. Instead, the priorities for recycling could be defined based on other parameters like the environmental impacts of the materials. The implementation of measures to reduce the gold losses would also improve the recovery of several other non-ferrous metals like tin, nickel, and palladium.

  16. Selection of a Non-ODC Solvent for Rubber Processing Equipment Cleaning

    NASA Technical Reports Server (NTRS)

    Morgan, R. E.; Thornton, T. N.; Semmel, L.; Selvidge, S. A.; Cash, Steve (Technical Monitor)

    2002-01-01

    NASA/MSFC has recently acquired new equipment for the manufacture and processing of rubber and rubber containing items that are used in the RSRM (Reusable Solid Rocket Motor) system. Work with a previous generation of rubber equipment at MSFC (Marshall Space Flight Center) in the 1970's had involved the use of ODC's such as 1,1,1-Trichloroethane or VOC's such as Toluene as the solvents of choice in cleaning the equipment. Neither of these options is practical today. This paper addresses the selection and screening of candidate cleaning solvents that are not only effective, but also meet the new environmental standards.

  17. Selection of a Non-ODC Solvent for Rubber Processing Equipment Cleaning

    NASA Technical Reports Server (NTRS)

    Morgan, R. E.; Thornton, T. N.; Semmel, L.; Selvidge, S. A.

    2003-01-01

    NASA/MSFC has recently acquired new equipment for the manufacture and processing of rubber and rubber containing items that are used in the Redesigned Solid Rocket Motor (RSRM) system. Work with a previous generation of rubber equipment at MSFC in the 1970's had involved the use of Oxygen Deficient Center (ODC's) such as 1,1,1-Trichloroethane or VOC's such as Toluene as the solvents of choice in cleaning the equipment. Neither of these options is practical today. This paper addresses the selection and screening of candidate cleaning solvents that are not only effective, but also meet the new environmental standards.

  18. A Handbook for Automatic Data Processing Equipment Acquisition.

    DTIC Science & Technology

    1981-12-01

    Navy ADPE Procurement Policies (Automatic Data Processing Equipment (ADPE) procurement by federal agencies is governed by an interlocking network of...ADPE) procurement by federal agencies is governed by an interlocking network of policies and directives issued by federal agencies, the Department...SECNAVINST) and local procedures governing the acquisition of ADPE. Obtaining and understanding this interlocking network of policies is often difficult

  19. KENNEDY SPACE CENTER, FLA. - - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) learns about the Japanese Experiment Module (JEM) from Jennifer Goldsmith (center), with United Space Alliance at Johnson Space Center, and Louise Kleba (right), with USA at KSC. Crew members are at KSC to become familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) learns about the Japanese Experiment Module (JEM) from Jennifer Goldsmith (center), with United Space Alliance at Johnson Space Center, and Louise Kleba (right), with USA at KSC. Crew members are at KSC to become familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  20. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (right) learns about the Japanese Experiment Module (JEM) from Louise Kleba (left), with United Space Alliance at KSC, and Jennifer Goldsmith (center), with USA at Johnson Space Center. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (right) learns about the Japanese Experiment Module (JEM) from Louise Kleba (left), with United Space Alliance at KSC, and Jennifer Goldsmith (center), with USA at Johnson Space Center. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  1. 49 CFR 192.171 - Compressor stations: Additional safety equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Compressor stations: Additional safety equipment... Pipeline Components § 192.171 Compressor stations: Additional safety equipment. (a) Each compressor station must have adequate fire protection facilities. If fire pumps are a part of these facilities, their...

  2. REPORT ON TWO PROCESS EQUIPMENT CHANGES FOR FEDERAL PAINTING FACILITIES

    EPA Science Inventory

    EPA's National Risk Management Research Laboratory (NRMRL) has actively participated in the Strategic Environmental Research and Development Program (SERDP) to develop innovative technologies and processes for the reduction of environmental pollution. Technology developments fro...

  3. Process and equipment development for hot isostatic pressing treatability study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP withinmore » INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.« less

  4. 33 CFR 127.601 - Fire equipment: General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.601 Fire equipment: General. (a) Fire... Laboratories, Inc., the Factory Mutual Research Corp., or the Coast Guard. ...

  5. 33 CFR 127.601 - Fire equipment: General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.601 Fire equipment: General. (a) Fire... Laboratories, Inc., the Factory Mutual Research Corp., or the Coast Guard. ...

  6. 40 CFR 264.32 - Required equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Preparedness and Prevention § 264.32 Required equipment. All facilities must be equipped with the following... referred to above must do so with part B of the permit application.] [45 FR 33221, May 19, 1980, as amended...

  7. 46 CFR 108.653 - Helicopter facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  8. 46 CFR 108.653 - Helicopter facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  9. 46 CFR 108.653 - Helicopter facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  10. 46 CFR 108.653 - Helicopter facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  11. 46 CFR 108.653 - Helicopter facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...

  12. 46 CFR 108.239 - Fuel transfer equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fuel transfer equipment. 108.239 Section 108.239 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.239 Fuel transfer equipment. (a...

  13. 46 CFR 108.239 - Fuel transfer equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fuel transfer equipment. 108.239 Section 108.239 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.239 Fuel transfer equipment. (a...

  14. 46 CFR 108.239 - Fuel transfer equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fuel transfer equipment. 108.239 Section 108.239 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.239 Fuel transfer equipment. (a...

  15. Characterization of microbial growth on processing equipment by electrochemical impedance spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Microbial activity that leads to the formation of biofilms on process equipment can accelerate corrosion, reduce heat transfer rates, and generally decrease process efficiencies. Additional concerns arise in the food and pharma industries where product quality and safety are a high priority. Followi...

  16. [Evaluating the activity of the Italian Mental Health Services inpatient and residential facilities: the PRISM (Process Indicator System for Mental health) indicators].

    PubMed

    Picardi, Angelo; Tarolla, Emanuele; de Girolamo, Giovanni; Gigantesco, Antonella; Neri, Giovanni; Rossi, Elisabetta; Biondi, Massimo

    2014-01-01

    This article describes the activities of a project aimed at developing a system of process and process/outcome indicators suitable to monitor over time the quality of psychiatric care of Italian inpatient and residential psychiatric facilities. This system, named PRISM (Process Indicator System for Mental health), was developed by means of a standardized evaluation made by a panel of experts and a consecutive pilot study in 17 inpatient and 13 residential psychiatric facilities. A total of 28 indicators were selected from a set of 251 candidate indicators developed by the most relevant and qualified Italian and international authorities. These indicators are derived by data from medical records and information about characteristics of facilities, and they cover processes of care, operational equipment of facilities, staff training and working, relationships with external agencies, and sentinel events. The procedure followed for the development of the indicator system was reliable and innovative. The data collected from the pilot study suggested a favourable benefit-cost ratio between the workload associated with regular use of the indicators into the context of daily clinical activities and the advantages related to the information gathered through regular use of the indicators. CONCLUSIONS.:The PRISM system provides additional information about the healthcare processes with respect to the information gathered via routine information systems, and it might prove useful for both continuous quality improvement programs and health services research.

  17. Material Processing Facility - Skylab Experiment M512

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This chart details Skylab's Materials Processing Facility experiment (M512). This facility, located in the Multiple Docking Adapter, was developed for Skylab and accommodated 14 different experiments that were carried out during the three marned missions. The abilities to melt and mix without the contaminating effects of containers, to suppress thermal convection and buoyancy in fluids, and to take advantage of electrostatic and magnetic forces and otherwise masked by gravitation opened the way to new knowledge of material properties and processes. This beginning would ultimately lead to the production of valuable new materials for use on Earth.

  18. 46 CFR 108.239 - Fuel transfer equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fuel transfer equipment. 108.239 Section 108.239... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.239 Fuel transfer equipment. (a... static grounding device. (d) Each electric fuel transfer pump must have a control with a fuel transfer...

  19. 9 CFR 354.230 - Equipment and utensils.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 354.230 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... equipped with facilities for locking and sealing. (m) Freezing rooms should be adequately equipped to... constant as possible. Freezing room should be equipped with floor racks or pallets and fans to insure air...

  20. 33 CFR 143.120 - Floating OCS facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT OCS Facilities § 143.120 Floating OCS facilities... (Marine Engineering) and J (Electrical Engineering) of 46 CFR chapter I and 46 CFR part 108 (Design and Equipment). Where unusual design or equipment needs make compliance impracticable, alternative proposals...

  1. Insect pest management decisions in food processing facilities

    USDA-ARS?s Scientific Manuscript database

    Pest management decision making in food processing facilities such as flour mills, rice mills, human and pet food manufacturing facilities, distribution centers and warehouses, and retail stores is a challenging undertaking. Insect pest management programs require an understanding of the food facili...

  2. Hardware Development Process for Human Research Facility Applications

    NASA Technical Reports Server (NTRS)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. The source of hardware requirements is the science community and HRF program. The HRF Science Working Group, consisting of SCientists from various medical disciplines, defined a basic set of equipment with functional requirements. This established the performance requirements of the hardware. HRF program requirements focus on making the hardware safe and operational in a space environment. This includes structural, thermal, human factors, and material requirements. Science and HRF program requirements are defined in a hardware requirements document which includes verification methods. Once the hardware is fabricated, requirements are verified by inspection, test, analysis, or demonstration. All data is compiled and reviewed to certify the hardware for flight. Obviously, the basis for all hardware development activities is requirement definition. Full and complete requirement definition is ideal prior to initiating the hardware development. However, this is generally not the case, but the hardware team typically has functional inputs as a guide. The first step is for engineers to conduct market research based on the functional inputs provided by scientists. CommerCially available products are evaluated against the science requirements as

  3. Skylab materials processing facility experiment developer's report

    NASA Technical Reports Server (NTRS)

    Parks, P. G.

    1975-01-01

    The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.

  4. Process Evaluation of Communitisation Programme in Public Sector Health Facilities, Mokokchung District, Nagaland, 2015.

    PubMed

    Tushi, Aonungdok; Kaur, Prabhdeep

    2017-01-01

    Public sector health facilities were poorly managed due to a history of conflict in Nagaland, India. Government of Nagaland introduced "Nagaland Communitisation of Public Institutions and Services Act" in 2002. Main objectives of the evaluation were to review the functioning of Health Center Managing Committees (HCMCs), deliver health services in the institutions managed by HCMC, identify strengths as well as challenges perceived by HCMC members in the rural areas of Mokokchung district, Nagaland. The evaluation was made using input, process and output indicators. A doctor, the HCMC Chairman and one member from each of the three community health centers (CHC) and four primary health centers (PHC) were surveyed using a semi-structured questionnaire and an in-depth interview guide. Proportions for quantitative data were computed and key themes from the same were identified. Overall; the infrastructure, equipment and outpatient/inpatient service availability was satisfactory. There was a lack of funds and shortage of doctors, drugs as well as laboratory facilities. HCMCs were in place and carried out administrative activities. HCMCs felt ownership, mobilized community contributions and managed human resources. HCMC members had inadequate funds for their transport and training. They faced challenges in service delivery due to political interference and lack of adequate human, material, financial resources. Communitisation program was operational in the district. HCMC members felt the ownership of health facilities. Administrative, political support and adequate funds from the government are needed for effective functioning of HCMCs and optimal service delivery in public sector facilities.

  5. EQUIPMENT LAYOUT OF MAIN PROCESSING BUILDING (CPP601) LCELL PLAN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EQUIPMENT LAYOUT OF MAIN PROCESSING BUILDING (CPP-601) L-CELL PLAN AND SECTION SHOWS COMPLEXITY OF CELLS. INL DRAWING NUMBER 200-0601-00-098-105687. ALTERNATE ID NUMBER 4289-20-301. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. 47 CFR 74.750 - Transmission system facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Translator, and TV Booster Stations § 74.750 Transmission system facilities. (a) A low power TV, TV translator, or TV booster station shall operate with a transmitter that is either certificated for licensing... rebroadcasting TV booster transmitting equipment using a modulation process must meet the following requirements...

  7. 47 CFR 74.750 - Transmission system facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Translator, and TV Booster Stations § 74.750 Transmission system facilities. (a) A low power TV, TV translator, or TV booster station shall operate with a transmitter that is either certificated for licensing... rebroadcasting TV booster transmitting equipment using a modulation process must meet the following requirements...

  8. 47 CFR 74.750 - Transmission system facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Translator, and TV Booster Stations § 74.750 Transmission system facilities. (a) A low power TV, TV translator, or TV booster station shall operate with a transmitter that is either certificated for licensing... rebroadcasting TV booster transmitting equipment using a modulation process must meet the following requirements...

  9. Evaluation of a heat exchanger for use in the Integrated Equipment Test facility solvent-extraction system

    NASA Astrophysics Data System (ADS)

    Lewis, B. E.

    1982-12-01

    The primary decontamination extraction section product (HAP) heat exchanger will be located between the extracting section (HA) and scrubbing section (HS) of centrifugal solvent extraction contactors in the Integrated Equipment Test (IET) facility. The heat exchanger is required to raise the temperature of the organic product stream from the HA contactor from 40 to 500 C. Tests were conducted under prototypic IET operating conditions to determine the head requirements for gravity flow and the overall heat transfer coefficient for the heat exchanger. Results from the tests indicated that the specified heat exchanger would perform satisfactorily under normal operating conditions.

  10. 45 CFR 1304.53 - Facilities, materials, and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (a) Head Start physical environment and facilities. (1) Grantee and delegate agencies must provide a physical environment and facilities conducive to learning and reflective of the different stages of... delegate agencies must provide a center-based environment free of toxins, such as cigarette smoke, lead...

  11. An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure.

    PubMed

    Mingguang, Zhang; Juncheng, Jiang

    2008-10-30

    Overpressure is one important cause of domino effect in accidents of chemical process equipments. Damage probability and relative threshold value are two necessary parameters in QRA of this phenomenon. Some simple models had been proposed based on scarce data or oversimplified assumption. Hence, more data about damage to chemical process equipments were gathered and analyzed, a quantitative relationship between damage probability and damage degrees of equipment was built, and reliable probit models were developed associated to specific category of chemical process equipments. Finally, the improvements of present models were evidenced through comparison with other models in literatures, taking into account such parameters: consistency between models and data, depth of quantitativeness in QRA.

  12. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over Shuttle equipment in the Orbiter Processing Facility. In the foreground is Mission Specialist Wendy Lawrence, who is a new addition to the crew. Behind her are (left to right) Commander Eileen Collins and Mission Specialists Andy Thomas and Stephen Robinson. At the rear is Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over Shuttle equipment in the Orbiter Processing Facility. In the foreground is Mission Specialist Wendy Lawrence, who is a new addition to the crew. Behind her are (left to right) Commander Eileen Collins and Mission Specialists Andy Thomas and Stephen Robinson. At the rear is Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  13. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center, Mission Specialists Soichi Noguchi, Andy Thomas, Charles Camarda and Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Mission Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center, Mission Specialists Soichi Noguchi, Andy Thomas, Charles Camarda and Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Mission Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  14. STS-93 crew takes part in a Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Orbiter Processing Facility Bay 3, during the Crew Equipment Interface Test (CEIT), Mission Specialist Catherine G. Coleman (left) and Mission Commander Eileen M. Collins (right) check equipment that will fly on mission STS-93. The STS-93 mission will deploy the Advanced X-ray Astrophysics Facility (AXAF) which comprises three major elements: the spacecraft, the telescope, and the science instrument module (SIM). AXAF will allow scientists from around the world to obtain unprecedented X- ray images of a variety of high-energy objects to help understand the structure and evolution of the universe. Collins is the first woman to serve as a shuttle mission commander. The other STS-93 crew members are Pilot Jeffrey S. Ashby, Mission Specialist Steven A. Hawley and Mission Specialist Michel Tognini of France. Targeted date for the launch of STS-93 is March 18, 1999.

  15. Furniture and Equipment in Schools: A Purchasing Guide. Managing School Facilities, Guide 7.

    ERIC Educational Resources Information Center

    Wadsworth, Alison

    This document offers advice on the processes that should be followed when schools in the United Kingdom buy their furniture and equipment (F&E). Sections 1 and 2 examine the first steps, prior to purchasing, such as curriculum analysis and market exploration; and sections 3 and 4 explore the importance of creating a clear specification for…

  16. 76 FR 44049 - Guidance for Fuel Cycle Facility Change Processes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0262] Guidance for Fuel Cycle Facility Change Processes...-issued Draft Regulatory Guide, DG- 3037, ``Guidance for Fuel Cycle Facility Change Processes'' in the...-3037 from August 12, 2011 to September 16, 2011. DG-3037 describes the types of changes for fuel cycle...

  17. KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Michelle Crouch talk in a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Michelle Crouch talk in a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  18. KENNEDY SPACE CENTER, FLA. - Dynamac employees Debbie Wells, Michelle Crouch and Larry Burns are silhouetted as they talk inside a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Dynamac employees Debbie Wells, Michelle Crouch and Larry Burns are silhouetted as they talk inside a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  19. Space Station Furnace Facility. Experiment/Facility Requirements Document (E/FRD), volume 2, appendix 5

    NASA Technical Reports Server (NTRS)

    Kephart, Nancy

    1992-01-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidifcation conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment, and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace.

  20. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    At the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida, members of the news media photograph the process as cranes are used to lift one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket. The Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  1. Detailed results of ASTP experiment MA-011. [biological processing facility in space

    NASA Technical Reports Server (NTRS)

    Seaman, G. V. F.; Allen, R. E.; Barlow, G. H.; Bier, M.

    1976-01-01

    This experiment was developed in order to conduct engineering and operational tests of electrokinetic equipment in a micro-gravity environment. The experimental hardware in general functioned as planned and electrophoretic separations were obtained in space. The results indicated the development of satisfactory sample collection, return, and preservation techniques. The application of a near-zero zeta potential interior wall coating to the experimental columns, confirmation of biocompatibility of all appropriate hardware components, and use of a sterile operating environment provided a significant step forward in the development of a biological processing facility in space. A separation of a test of aldehyde-fixed rabbit, human, and horse red blood cells was obtained. Human kidney cells were separated into several components and viable cells returned to earth. The isotachophoretic separation of red cells was also demonstrated. Problems associated with the hardware led to a lack of success in the attempt to separate subpopulations of human lymphocytes.

  2. Using Facility Condition Assessments to Identify Actions Related to Infrastructure

    NASA Technical Reports Server (NTRS)

    Rubert, Kennedy F.

    2010-01-01

    To support cost effective, quality research it is essential that laboratory and testing facilities are maintained in a continuous and reliable state of availability at all times. NASA Langley Research Center (LaRC) and its maintenance contractor, Jacobs Technology, Inc. Research Operations, Maintenance, and Engineering (ROME) group, are in the process of implementing a combined Facility Condition Assessment (FCA) and Reliability Centered Maintenance (RCM) program to improve asset management and overall reliability of testing equipment in facilities such as wind tunnels. Specific areas are being identified for improvement, the deferred maintenance cost is being estimated, and priority is being assigned against facilities where conditions have been allowed to deteriorate. This assessment serves to assist in determining where to commit available funds on the Center. RCM methodologies are being reviewed and enhanced to assure that appropriate preventive, predictive, and facilities/equipment acceptance techniques are incorporated to prolong lifecycle availability and assure reliability at minimum cost. The results from the program have been favorable, better enabling LaRC to manage assets prudently.

  3. Materials Science Clean Room Facility at Tulane University (Final Technical Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altiero, Nicholas

    2010-09-30

    The project involves conversion of a 3,000 sq. ft. area into a clean room facility for materials science research. It will be accomplished in phases. Phase I will involve preparation of the existing space, acquisition and installation of clean room equipped with a pulsed laser deposition (PLD) processing system, and conversion of ancillary space to facilitate the interface with the clean room. From a capital perspective, Phases II and III will involve the acquisition of additional processing, fabrication, and characterization equipment and capabilities.

  4. 75 FR 66683 - Defense Federal Acquisition Regulation Supplement; Safety of Facilities, Infrastructure, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... operation of facilities, infrastructure, and equipment for use by DoD military or civilian should be...-7004, Safety of Facilities, Infrastructure, and Equipment for Military Operations. DFARS 246.270-1... operation of facilities. This includes contracts for facilities, infrastructure, and equipment configured...

  5. Application of the Deming management method to equipment-inspection processes.

    PubMed

    Campbell, C A

    1996-01-01

    The Biomedical Engineering staff at the Washington Hospital Center has designed an inspection process that optimizes timely completion of scheduled equipment inspections. The method used to revise the process was primarily Deming, but certainly the method incorporates the re-engineering concept of questioning the basic assumptions around which the original process was designed. This effort involved a review of the existing process in its entirety by task groups made up of representatives from all involved departments. Complete success in all areas has remained elusive. However, the lower variability of inspection completion ratios follows Deming's description of a successfully revised process. Further CQI efforts targeted at specific areas with low completion ratios will decrease this variability even further.

  6. Orbital ATK's Ground Support Equipment (GSE) Delivery for OA-7

    NASA Image and Video Library

    2016-12-15

    Sealed in its shipping container, the ground support equipment for the Orbital ATK OA-7 commercial resupply services mission was moved inside the low bay of the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The Orbital ATK CRS-7 with the Cygnus cargo module will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.

  7. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    The right-hand aft skirt, one part of the aft booster assembly for NASA’s Space Launch System solid rocket boosters, is in view in a processing cell inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida. Orbital ATK is a contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS rocket boosters. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft for deep-space missions and the journey to Mars.

  8. Estimating and bidding for the Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    Brown, Joseph A.

    1993-01-01

    This new, unique Cost Engineering Report introduces the 800-page, C-100 government estimate for the Space Station Processing Facility (SSPF) and Volume IV Aerospace Construction Price Book. At the January 23, 1991, bid opening for the SSPF, the government cost estimate was right on target. Metric, Inc., Prime Contractor, low bid was 1.2 percent below the government estimate. This project contains many different and complex systems. Volume IV is a summary of the cost associated with construction, activation and Ground Support Equipment (GSE) design, estimating, fabrication, installation, testing, termination, and verification of this project. Included are 13 reasons the government estimate was so accurate; abstract of bids, for 8 bidders and government estimate with additive alternates, special labor and materials, budget comparison and system summaries; and comments on the energy credit from local electrical utility. This report adds another project to our continuing study of 'How Does the Low Bidder Get Low and Make Money?' which was started in 1967, and first published in the 1973 AACE Transaction with 10 more ways the low bidder got low. The accuracy of this estimate proves the benefits of our Kennedy Space Center (KSC) teamwork efforts and KSC Cost Engineer Tools which are contributing toward our goals of the Space Station.

  9. A facility to study the particles released by ion sputtering process

    NASA Astrophysics Data System (ADS)

    de Angelis, E.; di Lellis, A. M.; Vannaroni, G.; Orsini, S.; Mangano, V.; Milillo, A.; Massetti, S.; Mura, A.; Vertolli, N.

    2007-08-01

    Research on the planetary surface erosion and planetary evolution could be enriched with the detection of the escaping material, in terms of energy and direction, caused by ions sputtering. A complete study of emitted neutral distribution from which infers the processes occurring on the impacted surface requires dedicated instrumentation, tailored on the peculiarity on the low energy profile of the sputtered signal. We propose a comprehensive facility at INAF/IFSI in Rome intended to provide the opportunity to investigate the interaction of selectable ion beam with planetary analogues through the detection of sputtered neutral atoms. The laboratory is equipped with a high volume UHV chamber, ion selectable sources in the range 0 to 10 keV, a set of 3D sample/sensor orientation motion actuation motors down to 1/100 deg resolution. The laboratory will support a set of neutral sensor heads sets derived from the Emitted for Low Energetic Neutral Atoms (ELENA) instrument under development for the ESA BepiColombo Mercury mission able to detect neutral atoms (few eV-up to 5 keV).

  10. 76 FR 14590 - Defense Federal Acquisition Regulation Supplement; Safety of Facilities, Infrastructure, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... facilities, infrastructure, and equipment that are intended for use by military or civilian personnel of the..., maintenance, or operation of facilities, infrastructure, and equipment for use by DoD military or civilian... facilities. This includes contracts for facilities, infrastructure, and equipment configured for occupancy...

  11. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William

    1987-01-01

    Spacelab Data Processing Facility (SLDPF) expert system prototypes were developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. The SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.

  12. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William

    1987-01-01

    Spacelab Data Processing Facility (SLDPF) expert system prototypes have been developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.

  13. The ESA Laboratory Support Equipment for the ISS.

    PubMed

    Petrivelli, A

    2002-02-01

    The Laboratory Support Equipment (LSE) for the International Space Station (ISS) is a suite of general-purpose items that will be available onboard the Station either as self-standing facilities or as equipment that can be used at defined locations. Dedicated to supporting system maintenance and payload operations, some LSE items are derived from commercial equipment, while others have been specifically developed for the ISS. ESA is currently engaged in developing three pressurised facilities and one pointing mechanism that will become part of the LSE complement, namely: the Minus Eighty degree centigrade Laboratory Freezer for the ISS (MELFI), the Microgravity Science Glovebox (MSG), the cryogenic storage and quick/snap freezer system (Cryosystem), the external-payload pointing system (Hexapod).

  14. Playground Facilities and Equipment. ACSA School Management Digest, Series 1, Number 7. ERIC/CEM Research Analysis Series, Number 34.

    ERIC Educational Resources Information Center

    Coursen, David

    Modern educators and playground designers are increasingly recognizing that play is a part, perhaps the decisive part, of the entire learning process. Theories of playground equipment design, planning the playground, financial considerations, and equipment suggestions are featured in this review. Examples of playgrounds include innovative…

  15. Use of personal protective equipment for respiratory protection.

    PubMed

    Sargent, Edward V; Gallo, Frank

    2003-01-01

    Management of hazards in biomedical research facilities requires the application of the traditional industrial hygiene responsibilities of anticipation, recognition, evaluation, and control to characterize the work environment, evaluate tasks and equipment, identify hazards, define exposure groups, and recommend controls. Generally, the diversity and unique characteristics of hazards faced by laboratory and animal facility employees and the short-term and low-level nature of the exposures factor into the selection of proper exposure control measures in the laboratory. The proper selection of control measures is based on a hierarchy of elimination and minimization by engineering controls, followed last by personal protective equipment when exposures cannot be eliminated. Once it is decided that personal protective equipment is needed, specific regulations and guidelines define safety standards for research facilities, including the elements of a sound respiratory protection program. These elements include respirator selection (including appropriate protection factors), medical evaluation, fit testing, training, inspection, maintenance and care, quality, quantity and flow of breathing air, and routine and emergency use procedures.

  16. Equipment upgrades for the Pu-238 program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J.W.; Stephens, W.D.; Marra, J.E.

    1990-02-14

    Much of the equipment and instrumentation in the Pu-238 production facilities is more than 15 years old. Significant improvements have been made in the available instrumentation, in particular, due to the application of microprocessors and lasers. The Actinide Technology Section of SRL has selected and is in the process of evaluating several state-of-the-art instruments which have potential applications in the Pu-238 program. The ease of operation and the accuracy of the instruments have been improved and, in most cases, the cost of the instruments have decreased. 5 refs.

  17. Making equipment to process paddy water for providing drinking water by using Ozone-UVC& Ultrafiltration

    NASA Astrophysics Data System (ADS)

    Styani, E.; Dja'var, N.; Irawan, C.; Hanafi

    2018-01-01

    This study focuses on making equipment which is useful to process paddy water to be consumable as drinking water by using ozone-UVC and ultrafiltration. The equipment which is made by the process of ozone-UVC and ultrafiltration or reverse osmosis is driven by electric power generated from solar panels. In the experiment, reverse osmosis system with ozone-UVC reactor proves to be good enough in producing high quality drinking water.

  18. Improving animal research facility operations through the application of lean principles.

    PubMed

    Khan, Nabeel; Umrysh, Brian M

    2008-06-01

    Animal research is a vital component of US research and well-functioning animal research facilities are critical both to the research itself and to the housing and feeding of the animals. The Office of Animal Care (OAC) at Seattle Children's Hospital Research Institute realized it had to improve the efficiency and safety of its animal research facility (ARF) to prepare for expansion and to advance the Institute's mission. The main areas for improvement concerned excessive turnaround time to process animal housing and feeding equipment; the movement and flow of equipment and inventory; and personnel safety. To address these problems, management held two process improvement workshops to educate employees about lean principles. In this article we discuss the application of these principles and corresponding methods to advance Children's Research Institute's mission of preventing, treating, and eliminating childhood diseases.

  19. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Mission Commander Eileen Collins; Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center; and Mission Specialists Soichi Noguchi and Charles Camarda. In the foreground is Mission Specialist Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Pilot James Kelly and Mission Specialists Andy Thomas and Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Mission Commander Eileen Collins; Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center; and Mission Specialists Soichi Noguchi and Charles Camarda. In the foreground is Mission Specialist Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Pilot James Kelly and Mission Specialists Andy Thomas and Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  20. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) looks at an area overhead in the Japanese Experiment Module (JEM). In the center is Jennifer Goldsmith, with United Space Alliance at Johnson Space Center, and at right is Louise Kleba, with USA at KSC. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) looks at an area overhead in the Japanese Experiment Module (JEM). In the center is Jennifer Goldsmith, with United Space Alliance at Johnson Space Center, and at right is Louise Kleba, with USA at KSC. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  1. 26 CFR 49.4252-7 - Wire and equipment service.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Wire and equipment service. 49.4252-7 Section 49... EXCISE TAXES FACILITIES AND SERVICES EXCISE TAXES Communications § 49.4252-7 Wire and equipment service. (a) In general. The term “wire and equipment service” includes stock quotation and information...

  2. 26 CFR 49.4252-7 - Wire and equipment service.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Wire and equipment service. 49.4252-7 Section...) MISCELLANEOUS EXCISE TAXES FACILITIES AND SERVICES EXCISE TAXES Communications § 49.4252-7 Wire and equipment service. (a) In general. The term “wire and equipment service” includes stock quotation and information...

  3. 12 CFR 7.5006 - Data processing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... services, facilities (including equipment, technology, and personnel), data bases, advice and access to such services, facilities, data bases and advice, for itself and for others, where the data is banking... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Data processing. 7.5006 Section 7.5006 Banks...

  4. 12 CFR 7.5006 - Data processing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... services, facilities (including equipment, technology, and personnel), data bases, advice and access to such services, facilities, data bases and advice, for itself and for others, where the data is banking... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Data processing. 7.5006 Section 7.5006 Banks...

  5. 12 CFR 7.5006 - Data processing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... services, facilities (including equipment, technology, and personnel), data bases, advice and access to such services, facilities, data bases and advice, for itself and for others, where the data is banking... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Data processing. 7.5006 Section 7.5006 Banks...

  6. The relationship between science classroom facility conditions and ninth grade students' attitudes toward science

    NASA Astrophysics Data System (ADS)

    Ford, Angela Y.

    Over half of the school facilities in America are in poor condition. Unsatisfactory school facilities have a negative impact on teaching and learning. The purpose of this correlational study was to identify the relationship between high school science teachers' perceptions of the school science environment (instructional equipment, demonstration equipment, and physical facilities) and ninth grade students' attitudes about science through their expressed enjoyment of science, importance of time spent on science, and boredom with science. A sample of 11,523 cases was extracted, after a process of data mining, from a databank of over 24,000 nationally representative ninth graders located throughout the United States. The instrument used to survey these students was part of the High School Longitudinal Study of 2009 (HSLS:2009). The research design was multiple linear regression. The results showed a significant relationship between the science classroom conditions and students' attitudes. Demonstration equipment and physical facilities were the best predictors of effects on students' attitudes. Conclusions based on this study and recommendations for future research are made.

  7. Assessment of Intelligent Processing Equipment in the National Aeronautics and Space Administration, 1991

    NASA Technical Reports Server (NTRS)

    Jones, C. S.

    1992-01-01

    Summarized here is an assessment of intelligent processing equipment (IPE) within NASA. An attempt is made to determine the state of IPE development and research in specific areas where NASA might contribute to the national capability. Mechanisms to transfer NASA technology to the U.S. private sector in this critical area are discussed. It was concluded that intelligent processing equipment is finding extensive use in the manufacture of space hardware, especially in the propulsion components of the shuttle. The major benefits are found in improved process consistency, which lowers cost as it reduces rework. Advanced feedback controls are under development and being implemented gradually into shuttle manufacturing. Implementation is much more extensive in new programs, such as in the advanced solid rocket motor and the Space Station Freedom.

  8. Explosion Clad for Upstream Oil and Gas Equipment

    NASA Astrophysics Data System (ADS)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO2 and/or H2S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  9. Variations in status of preparation of personal protective equipment for preventing norovirus gastroenteritis in long-term care facilities for the elderly.

    PubMed

    Fujiki, Saori; Ishizaki, Tatsuro; Nakayama, Takeo

    2017-12-01

    Residents of long-term care facilities are highly susceptible to norovirus gastroenteritis, and each facility is concerned about the need to implement norovirus infection control. Among control measures, personal protective equipment (PPE), such as disposable gloves and masks, plays a major role in reducing infectious spread. However, the preparation status of PPE in facilities before infection outbreaks has not been reported. The aim was to clarify the implementation status of preventive measures for norovirus gastroenteritis and the cost of preparing the necessary PPE in long-term care facilities. A questionnaire survey of facilities affiliated with the Kyoto Prefecture and Osaka Prefecture branches of the Japan Association of Geriatric Health Services Facilities was conducted. The survey items were the characteristics of the facility, whether preventive measures had been implemented for norovirus gastroenteritis from October through the following March in both 2009 and 2010, and the quantities and unit prices of PPE prepared for preventive measures. Twenty-six (11.2%) of 232 surveyed facilities (as of August 2011) answered the survey. Among them, 24 (92.3%) in 2009 and 25 (96.2%) in 2010 reported having implemented preventive measures for norovirus gastroenteritis, while 21 facilities (80.8%) in 2009 and 22 facilities (84.6%) in 2010 had prepared PPE. The median total cost for preparing the PPE needed for the preventive measures was US $2601 (range US $221-9192) in 2009 and US $3904 (range US $305-6427) in 2010. Although the results need careful interpretation because of the low response rate, most of the surveyed long-term care facilities had implemented preventive measures for norovirus gastroenteritis. However, the cost of preparing the PPE needed for the preventive measures varied among the facilities. © 2017 John Wiley & Sons, Ltd.

  10. Thermal Vacuum Control Systems Options for Test Facilities

    NASA Technical Reports Server (NTRS)

    Marchetti, John

    2008-01-01

    This presentation suggests several Thermal Vacuum System (TVAC) control design approach methods for TVAC facilities. Over the past several years many aerospace companies have or are currently upgrading their TVAC testing facilities whether it be by upgrading old equipment or purchasing new. In doing so they are updating vacuum pumping and thermal capabilities of their chambers as well as their control systems. Although control systems are sometimes are considered second to the vacuum or thermal system upgrade process, they should not be taken lightly and must be planned and implemented with the equipment it is to control. Also, emphasis should be placed on how the operators will use the system as well as the requirements of "their" customers. Presented will be various successful methods of TVAC control systems from Programmable Logic Controller (PLC) based to personal computer (PC) based control.

  11. 20 CFR 416.1023 - Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Facilities. 416.1023 Section 416.1023... Facilities. (a) Space, equipment, supplies, and other services. Subject to appropriate Federal funding, the... and prompt disability determinations. (b) Location of facilities. Subject to appropriate Federal...

  12. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside a darkened U.S. Lab module, in the Space Station Processing Facility (SSPF), astronaut James Voss (left) joins STS-98 crew members Commander Kenneth D. Cockrell (foreground), and Pilot Mark Polansky (right) to check out equipment in the Lab. They are taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. Also participating in the MEIT is STS-98 Mission Specialist Thomas D. Jones (Ph.D.). Voss is assigned to mission STS-102 as part of the second crew to occupy the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  13. PROCESS WATER BUILDING, TRA605, INTERIOR. FIRST FLOOR. ELECTRICAL EQUIPMENT IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605, INTERIOR. FIRST FLOOR. ELECTRICAL EQUIPMENT IN LEFT HALF OF VIEW. CAMERA IS IN NORTHWEST CORNER FACING SOUTHEAST. INL NEGATIVE NO. HD46-27-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. Automated Heat-Flux-Calibration Facility

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    Computer control speeds operation of equipment and processing of measurements. New heat-flux-calibration facility developed at Lewis Research Center. Used for fast-transient heat-transfer testing, durability testing, and calibration of heat-flux gauges. Calibrations performed at constant or transient heat fluxes ranging from 1 to 6 MW/m2 and at temperatures ranging from 80 K to melting temperatures of most materials. Facility developed because there is need to build and calibrate very-small heat-flux gauges for Space Shuttle main engine (SSME).Includes lamp head attached to side of service module, an argon-gas-recirculation module, reflector, heat exchanger, and high-speed positioning system. This type of automated heat-flux calibration facility installed in industrial plants for onsite calibration of heat-flux gauges measuring fluxes of heat in advanced gas-turbine and rocket engines.

  15. Shell Chemical LP To Install $10 Million In Pollution Monitoring And Control Equipment At Norco Chemical Facility In Louisiana To Resolve Alleged Federal And State Clean Air Violations

    EPA Pesticide Factsheets

    EPA News Release: Shell Chemical LP To Install $10 Million In Pollution Monitoring And Control Equipment At Norco Chemical Facility In Louisiana To Resolve Alleged Federal And State Clean Air Violations

  16. Proposal for a new categorization of aseptic processing facilities based on risk assessment scores.

    PubMed

    Katayama, Hirohito; Toda, Atsushi; Tokunaga, Yuji; Katoh, Shigeo

    2008-01-01

    Risk assessment of aseptic processing facilities was performed using two published risk assessment tools. Calculated risk scores were compared with experimental test results, including environmental monitoring and media fill run results, in three different types of facilities. The two risk assessment tools used gave a generally similar outcome. However, depending on the tool used, variations were observed in the relative scores between the facilities. For the facility yielding the lowest risk scores, the corresponding experimental test results showed no contamination, indicating that these ordinal testing methods are insufficient to evaluate this kind of facility. A conventional facility having acceptable aseptic processing lines gave relatively high risk scores. The facility showing a rather high risk score demonstrated the usefulness of conventional microbiological test methods. Considering the significant gaps observed in calculated risk scores and in the ordinal microbiological test results between advanced and conventional facilities, we propose a facility categorization based on risk assessment. The most important risk factor in aseptic processing is human intervention. When human intervention is eliminated from the process by advanced hardware design, the aseptic processing facility can be classified into a new risk category that is better suited for assuring sterility based on a new set of criteria rather than on currently used microbiological analysis. To fully benefit from advanced technologies, we propose three risk categories for these aseptic facilities.

  17. 34 CFR 395.6 - Vendor ownership of vending facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... facility in good repair and in an attractive condition and replace worn-out or obsolete equipment; and if... facility in good repair and in an attractive condition and replace worn-out or obsolete equipment, or...

  18. 34 CFR 395.6 - Vendor ownership of vending facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facility in good repair and in an attractive condition and replace worn-out or obsolete equipment; and if... facility in good repair and in an attractive condition and replace worn-out or obsolete equipment, or...

  19. Pesticide-sampling equipment, sample-collection and processing procedures, and water-quality data at Chicod Creek, North Carolina, 1992

    USGS Publications Warehouse

    Manning, T.K.; Smith, K.E.; Wood, C.D.; Williams, J.B.

    1994-01-01

    Water-quality samples were collected from Chicod Creek in the Coastal Plain Province of North Carolina during the summer of 1992 as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Chicod Creek is in the Albemarle-Pamlico drainage area, one of four study units designated to test equipment and procedures for collecting and processing samples for the solid-phase extraction of selected pesticides, The equipment and procedures were used to isolate 47 pesticides, including organonitrogen, carbamate, organochlorine, organophosphate, and other compounds, targeted to be analyzed by gas chromatography/mass spectrometry. Sample-collection and processing equipment equipment cleaning and set-up procedures, methods pertaining to collecting, splitting, and solid-phase extraction of samples, and water-quality data resulting from the field test are presented in this report Most problems encountered during this intensive sampling exercise were operational difficulties relating to equipment used to process samples.

  20. Free-world microelectronic manufacturing equipment

    NASA Astrophysics Data System (ADS)

    Kilby, J. S.; Arnold, W. H.; Booth, W. T.; Cunningham, J. A.; Hutcheson, J. D.; Owen, R. W.; Runyan, W. R.; McKenney, Barbara L.; McGrain, Moira; Taub, Renee G.

    1988-12-01

    Equipment is examined and evaluated for the manufacture of microelectronic integrated circuit devices and sources for that equipment within the Free World. Equipment suitable for the following are examined: single-crystal silicon slice manufacturing and processing; required lithographic processes; wafer processing; device packaging; and test of digital integrated circuits. Availability of the equipment is also discussed, now and in the near future. Very adequate equipment for most stages of the integrated circuit manufacturing process is available from several sources, in different countries, although the best and most widely used versions of most manufacturing equipment are made in the United States or Japan. There is also an active market in used equipment, suitable for manufacture of capable integrated circuits with performance somewhat short of the present state of the art.

  1. Dynamics of the process boom machine working equipment under the real law of the hydraulic distributor electric spool control

    NASA Astrophysics Data System (ADS)

    Tarasov, V. N.; Boyarkina, I. V.

    2017-06-01

    Analytical calculation methods of dynamic processes of the self-propelled boom hydraulic machines working equipment are more preferable in comparison with numerical methods. The analytical research method of dynamic processes of the boom hydraulic machines working equipment by means of differential equations of acceleration and braking of the working equipment is proposed. The real control law of a hydraulic distributor electric spool is considered containing the linear law of the electric spool activation and stepped law of the electric spool deactivation. Dependences of dynamic processes of the working equipment on reduced mass, stiffness of hydraulic power cylinder, viscous drag coefficient, piston acceleration, pressure in hydraulic cylinders, inertia force are obtained. Definite recommendations relative to the reduction of dynamic loads, appearing during the working equipment control are considered as the research result. The nature and rate of parameter variations of the speed and piston acceleration dynamic process depend on the law of the ports opening and closure of the hydraulic distributor electric spool. Dynamic loads in the working equipment are decreased during a smooth linear activation of the hydraulic distributor electric spool.

  2. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    NASA Technical Reports Server (NTRS)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  3. Poster - Thur Eve - 02: Regulatory oversight of the robotic radiosurgery facilities.

    PubMed

    Broda, K

    2012-07-01

    Following a recent review of the Class II Nuclear Facilities and Prescribed Equipment Regulations and regulatory oversight of particle accelerators, the Canadian Nuclear Safety Commission (CNSC) has changed its policy concerning the regulation of particle accelerators. In November 2011, the CNSC began to exercise its regulatory authority with respect to all particle accelerators operating at a beam energy of 1 (one) MeV or greater. The CNSC already licences and inspects particle accelerators capable of operating at or above 10 MeV. The decision to now include low energy particle accelerators (i.e., those operating at or above 1 MeV) ensures adequate, uniform and consistent regulatory oversight for all Class II accelerators. The CNSC expects these facilities to comply with CNSC requirements by December 2013. Besides conventional linear accelerators of lower energy (6 MeV or below) typically found in cancer clinics, two types of equipment now fall under the CNSC's regulatory oversight as a result of the above change: robotic radiosurgery and tomotherapy equipment and facilities. A number of clinics in Canada already operates these types of equipment and facilities. The safety aspects of radiosurgery equipment differ slightly from those for conventional linear accelerators. This poster aims to present an approach taken by the CNSC to regulate robotic radiosurgery equipment and facilities. The presentation will explain how to meet regulatory requirements of the Class II Nuclear Facilities and Prescribed Equipment Regulations by licensees operating or planning to acquire these types of equipment and facilities. © 2012 American Association of Physicists in Medicine.

  4. 7 CFR 51.57 - Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Facilities. 51.57 Section 51.57 Agriculture... Requirements for Plants Operating Under Continuous Inspection on A Contract Basis § 51.57 Facilities. Each packing plant shall be equipped with adequate sanitary facilities and accommodations, including but not...

  5. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghajanzadeh, Arian; Wray, Craig; McKane, Aimee

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered processmore » equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.« less

  6. EUPHORE: Research facility to study tropospheric transformation processes

    NASA Astrophysics Data System (ADS)

    Wirtz, K.

    2003-04-01

    The EUPHORE simulation chamber consists of two half-spherical Teflon bags, each with a volume of 200 m^3 and a base diameter of 9.2 m. The FEP Teflon has a transmission of about 75% at 280 nm and of more than 80% above 300 nm. Purified and dried ambient air is used to fill the chamber and flush it between experiments. The humidity in the chamber is measured by a dew point hygrometer, and the temperature is monitored by several thermocouples located at different positions inside the chamber. The solar flux is monitored with spectral resolution in the photochemically active spectral region. The simulation chamber is equipped with a number of analytical instruments for the measurement of single VOC components, NO, NO_2, O_3 and other species. In-situ measurements in the ppb range are performed using long-path absorption spectroscopy, in the UV/VIS by DOAS and in the IR by FT-IR. A GC-MS system is used for the sensitive analysis of a variety of reaction products. A newly installed LIF technique allows the in situ measurement of OH and HO_2 radicals during the reaction processes. The technological concept and the organisation structure of the EUPHORE facility will be presented. The integration of quality control measures is an obvious and necessary second step for the successful exploitation of the technically advanced outdoor smog chamber EUPHORE as a research tool. This will underline the leadership of the European scientific community in the important research areas of investigating transformation processes in the troposphere and tracking the influence of human activities on photooxidant formation and its interaction with processes related to global change. In the coming years the main scientific focus will be on testing chemical mechanisms in order to improve the models which describe the atmospheric processes of complex chemical systems. The collaborative work at the EUPHORE outdoor simulation chamber will provide all the users of the installation with a basic

  7. 48 CFR 245.608-72 - Screening excess automatic data processing equipment (ADPE).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... data processing equipment (ADPE). 245.608-72 Section 245.608-72 Federal Acquisition Regulations System... Reporting, Redistribution, and Disposal of Contractor Inventory 245.608-72 Screening excess automatic data... Agency, Defense Automation Resources Management Program Division (DARMP). DARMP does all required...

  8. Experiment/facility requirements document for the Space Station Furnace Facility. Section 1: Integrated configuration

    NASA Astrophysics Data System (ADS)

    1992-05-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).

  9. Experiment/facility requirements document for the Space Station Furnace Facility. Section 1: Integrated configuration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).

  10. On-orbit technology experiment facility definition

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Buchan, Robert W.; Gates, Richard M.

    1988-01-01

    A study was conducted to identify on-orbit integrated facility needs to support in-space technology experiments on the Space Station and associated free flyers. In particular, the first task was to examine the proposed technology development missions (TDMX's) from the model mission set and other proposed experimental facilities, both individually and by theme, to determine how and if the experiments might be combined, what equipment might be shared, what equipment might be used as generic equipment for continued experimentation, and what experiments will conflict with the conduct of other experiments or Space Station operations. Then using these results, to determine on-orbit facility needs to optimize the implementation of technology payloads. Finally, to develop one or more scenarios, design concepts, and outfitting requirements for implementation of onboard technology experiments.

  11. 33 CFR 149.655 - What are the requirements for helicopter fueling facilities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...

  12. 33 CFR 149.655 - What are the requirements for helicopter fueling facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...

  13. 33 CFR 149.655 - What are the requirements for helicopter fueling facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...

  14. 33 CFR 149.655 - What are the requirements for helicopter fueling facilities?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...

  15. 33 CFR 149.655 - What are the requirements for helicopter fueling facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...

  16. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    At the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida, members of the news media watch as cranes are used to lift one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket. The Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  17. Modification and Validation of an Automotive Data Processing Unit, Compessed Video System, and Communications Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, R.J.

    1997-04-01

    The primary purpose of the "modification and validation of an automotive data processing unit (DPU), compressed video system, and communications equipment" cooperative research and development agreement (CRADA) was to modify and validate both hardware and software, developed by Scientific Atlanta, Incorporated (S-A) for defense applications (e.g., rotary-wing airplanes), for the commercial sector surface transportation domain (i.e., automobiles and trucks). S-A also furnished a state-of-the-art compressed video digital storage and retrieval system (CVDSRS), and off-the-shelf data storage and transmission equipment to support the data acquisition system for crash avoidance research (DASCAR) project conducted by Oak Ridge National Laboratory (ORNL). In turn,more » S-A received access to hardware and technology related to DASCAR. DASCAR was subsequently removed completely and installation was repeated a number of times to gain an accurate idea of complete installation, operation, and removal of DASCAR. Upon satisfactory completion of the DASCAR construction and preliminary shakedown, ORNL provided NHTSA with an operational demonstration of DASCAR at their East Liberty, OH test facility. The demonstration included an on-the-road demonstration of the entire data acquisition system using NHTSA'S test track. In addition, the demonstration also consisted of a briefing, containing the following: ORNL generated a plan for validating the prototype data acquisition system with regard to: removal of DASCAR from an existing vehicle, and installation and calibration in other vehicles; reliability of the sensors and systems; data collection and transmission process (data integrity); impact on the drivability of the vehicle and obtrusiveness of the system to the driver; data analysis procedures; conspicuousness of the vehicle to other drivers; and DASCAR installation and removal training and documentation. In order to identify any operational problems not captured by the systems

  18. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  19. Providing security for automated process control systems at hydropower engineering facilities

    NASA Astrophysics Data System (ADS)

    Vasiliev, Y. S.; Zegzhda, P. D.; Zegzhda, D. P.

    2016-12-01

    This article suggests the concept of a cyberphysical system to manage computer security of automated process control systems at hydropower engineering facilities. According to the authors, this system consists of a set of information processing tools and computer-controlled physical devices. Examples of cyber attacks on power engineering facilities are provided, and a strategy of improving cybersecurity of hydropower engineering systems is suggested. The architecture of the multilevel protection of the automated process control system (APCS) of power engineering facilities is given, including security systems, control systems, access control, encryption, secure virtual private network of subsystems for monitoring and analysis of security events. The distinctive aspect of the approach is consideration of interrelations and cyber threats, arising when SCADA is integrated with the unified enterprise information system.

  20. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... management system to evaluate, implement, and track each change to the site, structures, processes, systems, equipment, components, computer programs, and activities of personnel. This system must be documented in... licensed material; (3) Modifications to existing operating procedures including any necessary training or...

  1. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... management system to evaluate, implement, and track each change to the site, structures, processes, systems, equipment, components, computer programs, and activities of personnel. This system must be documented in... licensed material; (3) Modifications to existing operating procedures including any necessary training or...

  2. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... management system to evaluate, implement, and track each change to the site, structures, processes, systems, equipment, components, computer programs, and activities of personnel. This system must be documented in... licensed material; (3) Modifications to existing operating procedures including any necessary training or...

  3. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... management system to evaluate, implement, and track each change to the site, structures, processes, systems, equipment, components, computer programs, and activities of personnel. This system must be documented in... licensed material; (3) Modifications to existing operating procedures including any necessary training or...

  4. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... management system to evaluate, implement, and track each change to the site, structures, processes, systems, equipment, components, computer programs, and activities of personnel. This system must be documented in... licensed material; (3) Modifications to existing operating procedures including any necessary training or...

  5. A combined approach of simulation and analytic hierarchy process in assessing production facility layouts

    NASA Astrophysics Data System (ADS)

    Ramli, Razamin; Cheng, Kok-Min

    2014-07-01

    One of the important areas of concern in order to obtain a competitive level of productivity in a manufacturing system is the layout design and material transportation system (conveyor system). However, changes in customers' requirements have triggered the need to design other alternatives of the manufacturing layout for existing production floor. Hence, this paper discusses effective alternatives of the process layout specifically, the conveyor system layout. Subsequently, two alternative designs for the conveyor system were proposed with the aims to increase the production output and minimize space allocation. The first proposed layout design includes the installation of conveyor oven in the particular manufacturing room based on priority, and the second one is the one without the conveyor oven in the layout. Simulation technique was employed to design the new facility layout. Eventually, simulation experiments were conducted to understand the performance of each conveyor layout design based on operational characteristics, which include predicting the output of layouts. Utilizing the Analytic Hierarchy Process (AHP), the newly and improved layout designs were assessed before the final selection was done. As a comparison, the existing conveyor system layout was included in the assessment process. Relevant criteria involved in this layout design problem were identified as (i) usage of space of each design, (ii) operator's utilization rates, (iii) return of investment (ROI) of the layout, and (iv) output of the layout. In the final stage of AHP analysis, the overall priority of each alternative layout was obtained and thus, a selection for final use by the management was made based on the highest priority value. This efficient planning and designing of facility layout in a particular manufacturing setting is able to minimize material handling cost, minimize overall production time, minimize investment in equipment, and optimize utilization of space.

  6. [Organization of medical equipment and stock supply of military medical facilities and groups of Disaster Medicine Service of the Russian Defense Ministry in emergency situations].

    PubMed

    Korniushko, I G; Iakovlev, S V; Krasavin, K D; Lemeshkin, R N

    2011-10-01

    The article outlined the modern concept of medical equipment and stock supply of medical facilities and groups of Disaster Medicine Service of the Russian Defense Ministry involved into the remedial of the medical actions of emergency situations. The structure of the units of medical supplies in these conditions is presented.

  7. Development and Validation of Pathogen Environmental Monitoring Programs for Small Cheese Processing Facilities.

    PubMed

    Beno, Sarah M; Stasiewicz, Matthew J; Andrus, Alexis D; Ralyea, Robert D; Kent, David J; Martin, Nicole H; Wiedmann, Martin; Boor, Kathryn J

    2016-12-01

    Pathogen environmental monitoring programs (EMPs) are essential for food processing facilities of all sizes that produce ready-to-eat food products exposed to the processing environment. We developed, implemented, and evaluated EMPs targeting Listeria spp. and Salmonella in nine small cheese processing facilities, including seven farmstead facilities. Individual EMPs with monthly sample collection protocols were designed specifically for each facility. Salmonella was detected in only one facility, with likely introduction from the adjacent farm indicated by pulsed-field gel electrophoresis data. Listeria spp. were isolated from all nine facilities during routine sampling. The overall Listeria spp. (other than Listeria monocytogenes ) and L. monocytogenes prevalences in the 4,430 environmental samples collected were 6.03 and 1.35%, respectively. Molecular characterization and subtyping data suggested persistence of a given Listeria spp. strain in seven facilities and persistence of L. monocytogenes in four facilities. To assess routine sampling plans, validation sampling for Listeria spp. was performed in seven facilities after at least 6 months of routine sampling. This validation sampling was performed by independent individuals and included collection of 50 to 150 samples per facility, based on statistical sample size calculations. Two of the facilities had a significantly higher frequency of detection of Listeria spp. during the validation sampling than during routine sampling, whereas two other facilities had significantly lower frequencies of detection. This study provides a model for a science- and statistics-based approach to developing and validating pathogen EMPs.

  8. Planning the School Food Service Facilities. Revised 1967.

    ERIC Educational Resources Information Center

    Utah State Board of Education, Salt Lake City.

    Evaluations of food service equipment, kitchen design and food service facilities are comprehensively reviewed for those concerned with the planning and equipping of new school lunchrooms or the remodeling of existing facilities. Information is presented in the form of general guides adaptable to specific local situations and needs, and is…

  9. Powder Metallurgy Reconditioning of Food and Processing Equipment Components

    NASA Astrophysics Data System (ADS)

    Nafikov, M. Z.; Aipov, R. S.; Konnov, A. Yu.

    2017-12-01

    A powder metallurgy method is developed to recondition the worn surfaces of food and processing equipment components. A combined additive is composed to minimize the powder losses in sintering. A technique is constructed to determine the powder consumption as a function of the required metallic coating thickness. A rapid method is developed to determine the porosity of the coating. The proposed technology is used to fabricate a wear-resistant defectless metallic coating with favorable residual stresses, and the adhesive strength of this coating is equal to the strength of the base metal.

  10. Automotive Manufacturing Processes. Volume V - Manufacturing Processes and Equipment for the Mass Production and Assembly of Motor Vehicles

    DOT National Transportation Integrated Search

    1981-02-01

    Extensive material substitution and resizing of the domestic automotive fleet, as well as the introduction of new technologies, will require major changes in the techniques and equipment used in the various manufacturing processes employed in the pro...

  11. Equipment characterization to mitigate risks during transfers of cell culture manufacturing processes.

    PubMed

    Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael

    2016-08-01

    The production of monoclonal antibodies by mammalian cell culture in bioreactors up to 25,000 L is state of the art technology in the biotech industry. During the lifecycle of a product, several scale up activities and technology transfers are typically executed to enable the supply chain strategy of a global pharmaceutical company. Given the sensitivity of mammalian cells to physicochemical culture conditions, process and equipment knowledge are critical to avoid impacts on timelines, product quantity and quality. Especially, the fluid dynamics of large scale bioreactors versus small scale models need to be described, and similarity demonstrated, in light of the Quality by Design approach promoted by the FDA. This approach comprises an associated design space which is established during process characterization and validation in bench scale bioreactors. Therefore the establishment of predictive models and simulation tools for major operating conditions of stirred vessels (mixing, mass transfer, and shear force.), based on fundamental engineering principles, have experienced a renaissance in the recent years. This work illustrates the systematic characterization of a large variety of bioreactor designs deployed in a global manufacturing network ranging from small bench scale equipment to large scale production equipment (25,000 L). Several traditional methods to determine power input, mixing, mass transfer and shear force have been used to create a data base and identify differences for various impeller types and configurations in operating ranges typically applied in cell culture processes at manufacturing scale. In addition, extrapolation of different empirical models, e.g. Cooke et al. (Paper presented at the proceedings of the 2nd international conference of bioreactor fluid dynamics, Cranfield, UK, 1988), have been assessed for their validity in these operational ranges. Results for selected designs are shown and serve as examples of structured

  12. 33 CFR 106.255 - Security systems and equipment maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maintained according to manufacturers' recommendations. (b) Security systems must be regularly tested in... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Security systems and equipment... Shelf (OCS) Facility Security Requirements § 106.255 Security systems and equipment maintenance. (a...

  13. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissley, Paul; Berry, Joanne

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operatedmore » waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By

  14. Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham; Don Konoyer

    2009-11-01

    The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the reroutingmore » and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be

  15. 44 CFR 302.7 - Use of funds, materials, supplies, equipment, and personnel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... use of civil defense personnel, organizational equipment, materials, and facilities, in preparation..., supplies, equipment, and personnel. 302.7 Section 302.7 Emergency Management and Assistance FEDERAL... EMERGENCY MANAGEMENT ASSISTANCE PROGRAM (EMA) § 302.7 Use of funds, materials, supplies, equipment, and...

  16. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media watch as a crane is used to move one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket to a test stand in the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida. Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will prepare the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  17. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media view forward booster segments (painted green) for NASA’s Space Launch System rocket boosters inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida. Orbital ATK is a contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS rocket boosters. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft for deep-space missions and the journey to Mars.

  18. Construction bidding cost of KSC's space shuttle facilities

    NASA Technical Reports Server (NTRS)

    Brown, Joseph Andrew

    1977-01-01

    The bidding cost of the major Space Transportation System facilities constructed under the responsibility of the John F. Kennedy Space Center (KSC) is described and listed. These facilities and Ground Support Equipment (GSE) are necessary for the receiving, assembly, testing, and checkout of the Space Shuttle for launch and landing missions at KSC. The Shuttle launch configuration consists of the Orbiter, the External Tank, and the Solid Rocket Boosters (SRB). The reusable Orbiter and SRB's is the major factor in the program that will result in lowering space travel costs. The new facilities are the Landing Facility; Orbiter Processing Facility; Orbiter Approach and Landing Test Facility (Dryden Test Center, California); Orbiter Mating Devices; Sound Suppression Water System; and Emergency Power System for LC-39. Also, a major factor was to use as much Apollo facilities and hardware as possible to reduce the facilities cost. The alterations to existing Apollo facilities are the VAB modifications; Mobile Launcher Platforms; Launch Complex 39 Pads A and B (which includes a new concept - the Rotary Service Structure), which was featured in ENR, 3 Feb. 1977, 'Hinged Space Truss will Support Shuttle Cargo Room'; Launch Control Center mods; External Tank and SRB Processing and Storage; Fluid Test Complex mods; O&C Spacelab mods; Shuttle mods for Parachute Facility; SRB Recovery and Disassembly Facility at Hangar 'AF'; and an interesting GSE item - the SRB Dewatering Nozzle Plug Sets (Remote Controlled Submarine System) used to inspect and acquire for reuse of SRB's.

  19. 33 CFR 154.1130 - Requirements for prepositioned response equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Additional Response Plan Requirements for a Trans-Alaska Pipeline Authorization Act (TAPAA) Facility...: (a) On-water recovery equipment with a minimum effective daily recovery rate of 30,000 barrels... of a discharge. (c) On-water recovery equipment with a minimum effective daily recovery rate of 40...

  20. 33 CFR 154.1130 - Requirements for prepositioned response equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Additional Response Plan Requirements for a Trans-Alaska Pipeline Authorization Act (TAPAA) Facility...: (a) On-water recovery equipment with a minimum effective daily recovery rate of 30,000 barrels... of a discharge. (c) On-water recovery equipment with a minimum effective daily recovery rate of 40...

  1. 33 CFR 154.1130 - Requirements for prepositioned response equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Additional Response Plan Requirements for a Trans-Alaska Pipeline Authorization Act (TAPAA) Facility...: (a) On-water recovery equipment with a minimum effective daily recovery rate of 30,000 barrels... of a discharge. (c) On-water recovery equipment with a minimum effective daily recovery rate of 40...

  2. 33 CFR 154.1130 - Requirements for prepositioned response equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Additional Response Plan Requirements for a Trans-Alaska Pipeline Authorization Act (TAPAA) Facility...: (a) On-water recovery equipment with a minimum effective daily recovery rate of 30,000 barrels... of a discharge. (c) On-water recovery equipment with a minimum effective daily recovery rate of 40...

  3. The presence of biofilm forming microorganisms on hydrotherapy equipment and facilities.

    PubMed

    Jarząb, Natalia; Walczak, Maciej

    2017-10-01

    Hydrotherapy equipment provides a perfect environment for the formation and growth of microbial biofilms. Biofilms may reduce the microbiological cleanliness of hydrotherapy equipment and harbour opportunistic pathogens and pathogenic bacteria. The aims of this study were to investigate the ability of microorganisms that colonize hydrotherapy equipment to form biofilms, and to assess the influence of temperature and nutrients on the rate of biofilm formation. Surface swab samples were collected from the whirlpool baths, inhalation equipment and submerged surfaces of a brine pool at the spa center in Ciechocinek, Poland. We isolated and identified microorganisms from the swab samples and measured their ability to form biofilms. Biofilm formation was observed at a range of temperatures, in both nutrient-deficient and nutrient-rich environments. We isolated and identified microorganisms which are known to form biofilms on medical devices (e.g. Stenotrophomonas maltophilia). All isolates were classified as opportunistic pathogens, which can cause infections in humans with weakened immunity systems. All isolates showed the ability to form biofilms in the laboratory conditions. The potential for biofilm formation was higher in the presence of added nutrients. In addition, the hydrolytic activity of the biofilm was connected with the presence of nutrients.

  4. Development of experimental facilities for processing metallic crystals in orbit

    NASA Technical Reports Server (NTRS)

    Duncan, Bill J.

    1990-01-01

    This paper discusses the evolution, current status, and planning for facilities to exploit the microgravity environment of earth orbit in applied metallic materials science. Space-Shuttle based facilities and some precursor flight programs are reviewed. Current facility development programs and planned Space Station furnace capabilities are described. The reduced gravity levels available in earth orbit allow the processing of metallic materials without the disturbing influence of gravitationally induced thermal convection, stratification due to density differences in sample components, or the effects of hydrostatic pressure.

  5. Integration of Biosafety into Core Facility Management

    PubMed Central

    Fontes, Benjamin

    2013-01-01

    This presentation will discuss the implementation of biosafety policies for small, medium and large core laboratories with primary shared objectives of ensuring the control of biohazards to protect core facility operators and assure conformity with applicable state and federal policies, standards and guidelines. Of paramount importance is the educational process to inform core laboratories of biosafety principles and policies and to illustrate the technology and process pathways of the core laboratory for biosafety professionals. Elevating awareness of biohazards and the biosafety regulatory landscape among core facility operators is essential for the establishment of a framework for both project and material risk assessment. The goal of the biohazard risk assessment process is to identify the biohazard risk management parameters to conduct the procedure safely and in compliance with applicable regulations. An evaluation of the containment, protective equipment and work practices for the procedure for the level of risk identified is facilitated by the establishment of a core facility registration form for work with biohazards and other biological materials with potential risk. The final step in the biocontainment process is the assumption of Principal Investigator role with full responsibility for the structure of the site-specific biosafety program plan by core facility leadership. The presentation will provide example biohazard protocol reviews and accompanying containment measures for core laboratories at Yale University.

  6. A national facility for biological cryo-electron microscopy

    PubMed Central

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback. PMID:25615867

  7. Cost containment and KSC Shuttle facilities or cost containment and aerospace construction

    NASA Technical Reports Server (NTRS)

    Brown, J. A.

    1985-01-01

    This presentation has the objective to show examples of Cost Containment of Aerospace Construction at Kennedy Space Center (KSC), taking into account four major levels of Project Development of the Space Shuttle Facilities. The levels are related to conceptual criteria and site selection, the design of construction and ground support equipment, the construction of facilities and ground support equipment (GSE), and operation and maintenance. Examples of cost containment are discussed. The continued reduction of processing time from landing to launching represents a demonstration of the success of the cost containment methods. Attention is given to the factors which led to the selection of KSC, the use of Cost Engineering, the employment of the Construction Management Concept, and the use of Computer Aided Design/Drafting.

  8. 15. INTERIOR VIEW TO THE NORTHEAST OF EQUIPMENT IN ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR VIEW TO THE NORTHEAST OF EQUIPMENT IN ROOM 4, EQUIPMENT AND GENERATOR ROOM, BUILDING 3113/3113A. - Nevada Test Site, Test Cell A Facility, Test Cell A Building & Addition, Area 25, Jackass Flats, Road F, Mercury, Nye County, NV

  9. Oil Pharmacy at the Thermal Protection System Facility

    NASA Image and Video Library

    2017-08-08

    An overall view of the Oil Pharmacy operated under the Test and Operations Support Contract, or TOSC. The facility consolidated storage and distribution of petroleum products used in equipment maintained under the contract. This included standardized naming, testing processes and provided a central location for distribution of oils used in everything from simple machinery to the crawler-transporter and cranes in the Vehicle Assembly Building.

  10. Energy Efficiency in Water and Wastewater Facilities

    EPA Pesticide Factsheets

    Learn how local governments have achieved sustained energy improvements at their water and wastewater facilities through equipment upgrades, operational modifications, and modifications to facility buildings.

  11. Emission measurement and safety assessment for the production process of silicon nanoparticles in a pilot-scale facility

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Asbach, Christof; Fissan, Heinz; Hülser, Tim; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Pui, David Y. H.

    2012-03-01

    Emission into the workplace was measured for the production process of silicon nanoparticles in a pilot-scale facility at the Institute of Energy and Environmental Technology e.V. (IUTA). The silicon nanoparticles were produced in a hot-wall reactor and consisted of primary particles around 60 nm in diameter. We employed real-time aerosol instruments to measure particle number and lung-deposited surface area concentrations and size distribution; airborne particles were also collected for off-line electron microscopic analysis. Emission of silicon nanoparticles was not detected during the processes of synthesis, collection, and bagging. This was attributed to the completely closed production system and other safety measures against particle release which will be discussed briefly. Emission of silicon nanoparticles significantly above the detection limit was only observed during the cleaning process when the production system was open and manually cleaned. The majority of the detected particles was in the size range of 100-400 nm and were silicon nanoparticle agglomerates first deposited in the tubing then re-suspended during the cleaning process. Appropriate personal protection equipment is recommended for safety protection of the workers during cleaning.

  12. Nuclear Waste: Defense Waste Processing Facility-Cost, Schedule, and Technical Issues.

    DTIC Science & Technology

    1992-06-17

    gallons of high-level radioactive waste stored in underground tanks at the savannah major facility involved Is the Defense Waste Processing Facility ( DwPF ...As a result of concerns about potential problems with the DWPF and delays in its scheduled start-up, the Chairman of the Environment, Energy, and...Natural Resources Subcommittee, House Committee on Government Operations, asked GAO to review the status of the DWPF and other facilities. This report

  13. Reduction of Life Cycle CO2 Emission in Public Welfare Facilities Equipped with PV/Solar Heat/Cogeneration System

    NASA Astrophysics Data System (ADS)

    Oke, Shinichiro; Kemmoku, Yoshishige; Takikawa, Hirofumi; Sakakibara, Tateki

    The reduction effect of life cycle CO2 emission is examined in case of introducing a PV/solar heat/cogeneration system into public welfare facilities(hotel and hospital). Life cycle CO2 emission is calculated as the sum of that when operating and that when manufacturing equipments. The system is operated with the dynamic programming method, into which hourly data of electric and heat loads, solar insolation, and atmospheric temperature during a year are input. The proposed system is compared with a conventional system and a cogeneration system. The life cycle CO2 emission of the PV/solar heat/cogeneration system is lower than that of the conventional system by 20% in hotel and by 14% in hospital.

  14. Hot conditioning equipment conceptual design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hotmore » Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.« less

  15. 27 CFR 22.92 - Storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...

  16. 27 CFR 22.92 - Storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...

  17. 27 CFR 22.92 - Storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...

  18. 27 CFR 22.92 - Storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...

  19. 27 CFR 22.92 - Storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...

  20. Planning and Equipping School Lunchrooms. Bulletin, 1946, No. 19

    ERIC Educational Resources Information Center

    US Office of Education, Federal Security Agency, 1946

    1946-01-01

    In many schools, plans are underway to expand facilities to include necessary space and equipment for providing adequate school lunch programs. This bulletin furnishes basic materials on which school people may plan space and equipment for new school lunch programs or appraise existing programs to determine what improvements in arrangement or…

  1. An inventory of aeronautical ground research facilities. Volume 4: Engineering flight simulation facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.

    1971-01-01

    The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.

  2. Renovation of the hot press in the Plutonium Experimental Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J.W.; Nelson, G.H.

    1990-03-05

    The Plutonium Experimental Facility (PEF) will be used to develop a new fuel pellet fabrication process and to evaluate equipment upgrades. The facility was used from 1978 until 1982 to optimize the parameters for fuel pellet production using a process which was developed at Los Alamos National Laboratory. The PEF was shutdown and essentially abandoned until mid-1987 when the facility renovations were initiated by the Actinide Technology Section (ATS) of SRL. A major portion of the renovation work was related to the restart of the hot press system. This report describes the renovations and modifications which were required to restartmore » the PEF hot press. The primary purpose of documenting this work is to help provide a basis for Separations to determine the best method of renovating the hot press in the Plutonium Fuel Fabrication (PuFF) facility. This report also includes several SRL recommendations concerning the renovation and modification of the PuFF hot press. 4 refs.« less

  3. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 crew members look at the tiles on the wing of Atlantis. In the foreground is Mission Specialist Wendy Lawrence, who is a new addition to the mission crew. Behind her is Mission Specialist Charles Camarda, also a new addition. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 crew members look at the tiles on the wing of Atlantis. In the foreground is Mission Specialist Wendy Lawrence, who is a new addition to the mission crew. Behind her is Mission Specialist Charles Camarda, also a new addition. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  4. The design and implementation of the Technical Facilities Controller (TFC) for the Goldstone deep space communications complex

    NASA Technical Reports Server (NTRS)

    Killian, D. A.; Menninger, F. J.; Gorman, T.; Glenn, P.

    1988-01-01

    The Technical Facilities Controller is a microprocessor-based energy management system that is to be implemented in the Deep Space Network facilities. This system is used in conjunction with facilities equipment at each of the complexes in the operation and maintenance of air-conditioning equipment, power generation equipment, power distribution equipment, and other primary facilities equipment. The implementation of the Technical Facilities Controller was completed at the Goldstone Deep Space Communications Complex and is now operational. The installation completed at the Goldstone Complex is described and the utilization of the Technical Facilities Controller is evaluated. The findings will be used in the decision to implement a similar system at the overseas complexes at Canberra, Australia, and Madrid, Spain.

  5. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media view the high bay inside the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida. Inside the RPSF, engineers and technicians with Jacobs Engineering on the Test and Operations Support Contract, explain the various test stands. In the far corner is one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket. The Ground Systems Development and Operations Program and Jacobs are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  6. Process capability determination of new and existing equipment

    NASA Technical Reports Server (NTRS)

    Mcclelland, H. T.; Su, Penwen

    1994-01-01

    The objective of this paper is to illustrate a method of determining the process capability of new or existing equipment. The method may also be modified to apply to testing laboratories. Long term changes in the system may be determined by periodically making new test parts or submitting samples from the original set to the testing laboratory. The technique described has been developed through a series of projects in special topics manufacturing courses and graduate student projects. It will be implemented as a standard experiment in an advanced manufacturing course in a new Manufacturing Engineering program at the University of Wisconsin-Stout campus. Before starting a project of this nature, it is important to decide on the exact question to be answered. In this case, it is desired to know what variation can be reasonably expected in the next part, feature, or test result produced. Generally, this question is answered by providing the process capability or the average value of a measured characteristic of the part or process plus or minus three standard deviations. There are two general cases to be considered: the part or test is made in large quantities with little change, or the process is flexible and makes a large variety of parts. Both cases can be accommodated; however, the emphasis in this report is on short run situations.

  7. Experimental Fuels Facility Re-categorization Based on Facility Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiss, Troy P.; Andrus, Jason

    The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excessmore » of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required

  8. Critical Protection Item classification for a waste processing facility at Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ades, M.J.; Garrett, R.J.

    1993-10-01

    This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are notmore » required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed.« less

  9. INNOVATIONS IN EQUIPMENT AND TECHNIQUES FOR THE BIOLOGY TEACHING LABORATORY.

    ERIC Educational Resources Information Center

    BARTHELEMY, RICHARD E.; AND OTHERS

    LABORATORY TECHNIQUES AND EQUIPMENT APPROPRIATE FOR TEACHING BIOLOGICAL SCIENCE CURRICULUM STUDY BIOLOGY ARE EMPHASIZED. MAJOR CATEGORIES INCLUDE (1) LABORATORY FACILITIES, (2) EQUIPMENT AND TECHNIQUES FOR CULTURE OF MICRO-ORGANISMS, (3) LABORATORY ANIMALS AND THEIR HOUSING, (4) TECHNIQUES FOR STUDYING PLANT GROWTH, (5) TECHNIQUES FOR STUDYING…

  10. Particulates and fine dust removal: processes and equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sittig, M.

    1977-01-01

    Particulates and fine dust created by man's activities contribute significantly to all major aspects of air pollution. While the generation of natural fine dusts is also very large in some parts of the earth, industrially generated, particle-loaded air emissions may push the particulate level to a point where acceptable air quality standards are exceeded continuously. How to reduce such emissions at the source, and what processes and equipment to use, is the subject of this book, which is based on reports of federally-financed air pollution studies as well as U.S. patents. Following an introduction with an overview of industrial particulatemore » emissions, emission data and emission control processes are discussed for the following specific industries: airlines; asphalt; cement; coal; electric utilities; ferrous metals; fertilizer; food; forest products; paper; chemicals; nonferrous metals; nuclear; petroleum refining; stone and clay; and textiles. Conventional and innovative particle removal devices are described. The disposal of collected particles is discussed. The economic and energy consumption aspects of particulate control are presented. (LCL)« less

  11. 10 CFR 1016.8 - Approval for processing access permittees for security facility approval.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Approval for processing access permittees for security facility approval. 1016.8 Section 1016.8 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.8 Approval for processing access permittees for security facility...

  12. 10 CFR 1016.8 - Approval for processing access permittees for security facility approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Approval for processing access permittees for security facility approval. 1016.8 Section 1016.8 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.8 Approval for processing access permittees for security facility...

  13. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primarymore » fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.« less

  14. Pyroprocessing of fast flux test facility nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primarymore » fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)« less

  15. Mechanical recycling of waste electric and electronic equipment: a review.

    PubMed

    Cui, Jirang; Forssberg, Eric

    2003-05-30

    The production of electric and electronic equipment (EEE) is one of the fastest growing areas. This development has resulted in an increase of waste electric and electronic equipment (WEEE). In view of the environmental problems involved in the management of WEEE, many counties and organizations have drafted national legislation to improve the reuse, recycling and other forms of recovery of such wastes so as to reduce disposal. Recycling of WEEE is an important subject not only from the point of waste treatment but also from the recovery of valuable materials.WEEE is diverse and complex, in terms of materials and components makeup as well as the original equipment's manufacturing processes. Characterization of this waste stream is of paramount importance for developing a cost-effective and environmentally friendly recycling system. In this paper, the physical and particle properties of WEEE are presented. Selective disassembly, targeting on singling out hazardous and/or valuable components, is an indispensable process in the practice of recycling of WEEE. Disassembly process planning and innovation of disassembly facilities are most active research areas. Mechanical/physical processing, based on the characterization of WEEE, provides an alternative means of recovering valuable materials. Mechanical processes, such as screening, shape separation, magnetic separation, Eddy current separation, electrostatic separation, and jigging have been widely utilized in recycling industry. However, recycling of WEEE is only beginning. For maximum separation of materials, WEEE should be shredded to small, even fine particles, generally below 5 or 10mm. Therefore, a discussion of mechanical separation processes for fine particles is highlighted in this paper. Consumer electronic equipment (brown goods), such as television sets, video recorders, are most common. It is very costly to perform manual dismantling of those products, due to the fact that brown goods contain very low

  16. The NHERI RAPID Facility: Enabling the Next-Generation of Natural Hazards Reconnaissance

    NASA Astrophysics Data System (ADS)

    Wartman, J.; Berman, J.; Olsen, M. J.; Irish, J. L.; Miles, S.; Gurley, K.; Lowes, L.; Bostrom, A.

    2017-12-01

    The NHERI post-disaster, rapid response research (or "RAPID") facility, headquartered at the University of Washington (UW), is a collaboration between UW, Oregon State University, Virginia Tech, and the University of Florida. The RAPID facility will enable natural hazard researchers to conduct next-generation quick response research through reliable acquisition and community sharing of high-quality, post-disaster data sets that will enable characterization of civil infrastructure performance under natural hazard loads, evaluation of the effectiveness of current and previous design methodologies, understanding of socio-economic dynamics, calibration of computational models used to predict civil infrastructure component and system response, and development of solutions for resilient communities. The facility will provide investigators with the hardware, software and support services needed to collect, process and assess perishable interdisciplinary data following extreme natural hazard events. Support to the natural hazards research community will be provided through training and educational activities, field deployment services, and by promoting public engagement with science and engineering. Specifically, the RAPID facility is undertaking the following strategic activities: (1) acquiring, maintaining, and operating state-of-the-art data collection equipment; (2) developing and supporting mobile applications to support interdisciplinary field reconnaissance; (3) providing advisory services and basic logistics support for research missions; (4) facilitating the systematic archiving, processing and visualization of acquired data in DesignSafe-CI; (5) training a broad user base through workshops and other activities; and (6) engaging the public through citizen science, as well as through community outreach and education. The facility commenced operations in September 2016 and will begin field deployments beginning in September 2018. This poster will provide an overview

  17. Guidelines for Planning Industrial Education Facilities and Equipment.

    ERIC Educational Resources Information Center

    Stallsmith, Douglas D.

    This guide presents alternatives, resources, and specifications for industrial education teachers to use in preparing a facilities proposal to present to administrators, boards of education, the community, and architects. Developed to reflect the objectives of industrial education as outlined in the "Wisconsin Guide to Local Curriculum…

  18. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (second from left, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-22

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (second from left, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.

  19. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (center, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-22

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (center, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.

  20. KENNEDY SPACE CENTER, FLA. - The STS-114 crew stands underneath Discovery in the Orbiter Processing Facility. From left are Mission Specialist Stephen Robinson, Pilot James Kelly, Mission Specialist Charles Camarda, astronaut John Young, Commander Eileen Collins and Mission Specialists Andrew Thomas, Wendy Lawrence and Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency. Young is associate director, Technical, at Johnson Space Center. The crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - The STS-114 crew stands underneath Discovery in the Orbiter Processing Facility. From left are Mission Specialist Stephen Robinson, Pilot James Kelly, Mission Specialist Charles Camarda, astronaut John Young, Commander Eileen Collins and Mission Specialists Andrew Thomas, Wendy Lawrence and Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency. Young is associate director, Technical, at Johnson Space Center. The crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  1. KENNEDY SPACE CENTER, FLA. - - In the Orbiter Processing Facility, STS-114 Mission Specialists Andrew Thomas, Soichi Noguchi and Charles Camarda greet astronaut John Young (far right), who flew on the first flight of Space Shuttle Columbia with Robert Crippen. Behind Camarda is Pilot James Kelly. Young is associate director, Technical, at Johnson Space Center. Noguchi represents the Japanese Aerospace and Exploration Agency. The STS-114 crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - - In the Orbiter Processing Facility, STS-114 Mission Specialists Andrew Thomas, Soichi Noguchi and Charles Camarda greet astronaut John Young (far right), who flew on the first flight of Space Shuttle Columbia with Robert Crippen. Behind Camarda is Pilot James Kelly. Young is associate director, Technical, at Johnson Space Center. Noguchi represents the Japanese Aerospace and Exploration Agency. The STS-114 crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  2. KENNEDY SPACE CENTER, FLA. - A worker in the Orbiter Processing Facility checks the open hatch of the airlock in Discovery’s payload bay. The airlock is normally located inside the middeck of the spacecraft’s pressurized crew cabin. The airlock is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

    NASA Image and Video Library

    2004-01-22

    KENNEDY SPACE CENTER, FLA. - A worker in the Orbiter Processing Facility checks the open hatch of the airlock in Discovery’s payload bay. The airlock is normally located inside the middeck of the spacecraft’s pressurized crew cabin. The airlock is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

  3. Evaluation of the antipsychotic medication review process at four long-term facilities in Alberta.

    PubMed

    Birney, Arden; Charland, Paola; Cole, Mollie; Aslam Arain, Mubashir

    2016-01-01

    The goal of this evaluation was to understand how four long-term care (LTC) facilities in Alberta have implemented medication reviews for the Appropriate Use of Antipsychotics (AUA) initiative. We aimed to determine how interprofessional (IP) collaboration was incorporated in the antipsychotic medication reviews and how the reviews had been sustained. Four LTC facilities in Alberta participated in this evaluation. We conducted semistructured interviews with 18 facility staff and observed one antipsychotic medication review at each facility. We analyzed data according to the following key components that we identified as relevant to the antipsychotic medication reviews: the structure of the reviews, IP interactions between the staff members, and strategies for sustaining the reviews. The duration of antipsychotic medication reviews ranged from 1 to 1.5 hours. The number of professions in attendance ranged from 3 to 9; a pharmacist led the review at two sites, while a registered nurse led the review at one site and a nurse practitioner at the remaining site. The number of residents discussed during the review ranged from 6 to 20. The process at some facilities was highly IP, demonstrating each of the six IP competencies. Other facilities conducted the review in a less IP manner due to challenges of physician involvement and staff workload, particularly of health care aides. Facilities that had an nurse practitioner on site were more efficient with the process of implementing recommendations resulting from the medication reviews. The LTC facilities were successful in implementing the medication review process and the process seemed to be sustainable. A few challenges were observed in the implementation process at two facilities. IP practice moved forward the goals of the AUA initiative to reduce the inappropriate use of antipsychotics.

  4. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media view the high bay inside the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida. Kerry Chreist, with Jacobs Engineering on the Test and Operations Support Contract, talks with a reporter about the booster segments for NASA’s Space Launch System (SLS) rocket. In the far corner, in the vertical position, is one of two pathfinders, or test versions, of solid rocket booster segments for the SLS rocket. The Ground Systems Development and Operations Program and Jacobs are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  5. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida, members of the news media photograph a frustrum that will be stacked atop a forward skirt for one of NASA’s Space Launch System (SLS) solid rocket boosters. Orbital ATK is a contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS solid rocket boosters. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft on deep-space missions and the journey to Mars.

  6. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida, Jeff Cook, a thermal protection system specialist with Orbital ATK, displays a sample of the painted thermal protection system that is being applied to booster segments. Members of the news media toured the BFF. Orbital ATK is a contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS rocket boosters. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft for deep-space missions and the journey to Mars.

  7. Process control and dosimetry in a multipurpose irradiation facility

    NASA Astrophysics Data System (ADS)

    Cabalfin, E. G.; Lanuza, L. G.; Solomon, H. M.

    1999-08-01

    Availability of the multipurpose irradiation facility at the Philippine Nuclear Research Institute has encouraged several local industries to use gamma radiation for sterilization or decontamination of various products. Prior to routine processing, dose distribution studies are undertaken for each product and product geometry. During routine irradiation, dosimeters are placed at the minimum and maximum dose positions of a process load.

  8. Fuel conditioning facility electrorefiner start-up results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, K.M.; Mariani, R.D.; Vaden, D.

    1996-05-01

    At ANL-West, there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Conditioning Facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. The treatment operations will make use of an electrometallurgical process employing molten salts and liquid metals. The treatment equipment is presently undergoing testing with depleted uranium. Operations with irradiated fuel will commence when the environmental evaluation for FCF is complete.

  9. 40 CFR 264.32 - Required equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... supply water hose streams, or foam producing equipment, or automatic sprinklers, or water spray systems... communications or alarm system capable of providing immediate emergency instruction (voice or signal) to facility...-held two-way radio, capable of summoning emergency assistance from local police departments, fire...

  10. 40 CFR 264.32 - Required equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... supply water hose streams, or foam producing equipment, or automatic sprinklers, or water spray systems... communications or alarm system capable of providing immediate emergency instruction (voice or signal) to facility...-held two-way radio, capable of summoning emergency assistance from local police departments, fire...

  11. 40 CFR 264.32 - Required equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... supply water hose streams, or foam producing equipment, or automatic sprinklers, or water spray systems... communications or alarm system capable of providing immediate emergency instruction (voice or signal) to facility...-held two-way radio, capable of summoning emergency assistance from local police departments, fire...

  12. 40 CFR 264.32 - Required equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... supply water hose streams, or foam producing equipment, or automatic sprinklers, or water spray systems... communications or alarm system capable of providing immediate emergency instruction (voice or signal) to facility...-held two-way radio, capable of summoning emergency assistance from local police departments, fire...

  13. Testing of electrical equipment for a commercial grade dedication program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.L.; Srinivas, N.

    1995-10-01

    The availability of qualified safety related replacement parts for use in nuclear power plants has decreased over time. This has caused many nuclear power plants to purchase commercial grade items (CGI) and utilize the commercial grade dedication process to qualify the items for use in nuclear safety related applications. The laboratories of Technical and Engineering Services (the testing facility of Detroit Edison) have been providing testing services for verification of critical characteristics of these items. This paper presents an overview of the experience in testing electrical equipment with an emphasis on fuses.

  14. Facilities | Advanced Manufacturing Research | NREL

    Science.gov Websites

    , and black building with two people walking in front of it. Energy Systems Integration Facility Its projects. Photo of a large, warehouse-like, lab space with several people in hard hats operating equipment with a few people and manufacturing equipment, including spools and web lines. Manufacturing Laboratory

  15. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  16. Automated processing of forensic casework samples using robotic workstations equipped with nondisposable tips: contamination prevention.

    PubMed

    Frégeau, Chantal J; Lett, C Marc; Elliott, Jim; Yensen, Craig; Fourney, Ron M

    2008-05-01

    An automated process has been developed for the analysis of forensic casework samples using TECAN Genesis RSP 150/8 or Freedom EVO liquid handling workstations equipped exclusively with nondisposable tips. Robot tip cleaning routines have been incorporated strategically within the DNA extraction process as well as at the end of each session. Alternative options were examined for cleaning the tips and different strategies were employed to verify cross-contamination. A 2% sodium hypochlorite wash (1/5th dilution of the 10.8% commercial bleach stock) proved to be the best overall approach for preventing cross-contamination of samples processed using our automated protocol. The bleach wash steps do not adversely impact the short tandem repeat (STR) profiles developed from DNA extracted robotically and allow for major cost savings through the implementation of fixed tips. We have demonstrated that robotic workstations equipped with fixed pipette tips can be used with confidence with properly designed tip washing routines to process casework samples using an adapted magnetic bead extraction protocol.

  17. A national facility for biological cryo-electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saibil, Helen R., E-mail: h.saibil@mail.cryst.bbk.ac.uk; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided ofmore » the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.« less

  18. Summit Equipment & Supplies, Inc. Five-Year Reviews

    EPA Pesticide Factsheets

    The Summit Equipment & Supplies site in Akron, OH is a former salvage yard and scrap metal facility with PCB contamination of soil on-site, off-site movement of the PCBs, and ground water contamination under the site.

  19. 75 FR 49506 - Recovery Policy, RP9525.16, Research-Related Equipment and Furnishings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ...] Recovery Policy, RP9525.16, Research-Related Equipment and Furnishings AGENCY: Federal Emergency Management... Management Agency (FEMA) is accepting comments on Recovery Policy RP9525.16 Research-related Equipment and... function such as an educational or medical function in order for the facilities, equipment and/or...

  20. 48 CFR 252.239-7011 - Special construction and equipment charges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... this clause, the Government shall have the right to terminate the service under the Cancellation or...) The Government will not directly reimburse the Contractor for the cost of constructing any facilities... the Contractor stops using facilities or equipment which the Government has, in whole or part...

  1. Applications of Modeling and Simulation for Flight Hardware Processing at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Marshall, Jennifer L.

    2010-01-01

    The Boeing Design Visualization Group (DVG) is responsible for the creation of highly-detailed representations of both on-site facilities and flight hardware using computer-aided design (CAD) software, with a focus on the ground support equipment (GSE) used to process and prepare the hardware for space. Throughout my ten weeks at this center, I have had the opportunity to work on several projects: the modification of the Multi-Payload Processing Facility (MPPF) High Bay, weekly mapping of the Space Station Processing Facility (SSPF) floor layout, kinematics applications for the Orion Command Module (CM) hatches, and the design modification of the Ares I Upper Stage hatch for maintenance purposes. The main goal of each of these projects was to generate an authentic simulation or representation using DELMIA V5 software. This allowed for evaluation of facility layouts, support equipment placement, and greater process understanding once it was used to demonstrate future processes to customers and other partners. As such, I have had the opportunity to contribute to a skilled team working on diverse projects with a central goal of providing essential planning resources for future center operations.

  2. Dismantling of Highly Contaminated Process Installations of the German Reprocessing Facility (WAK) - Status of New Remote Handling Technology - 13287

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dux, Joachim; Friedrich, Daniel; Lutz, Werner

    2013-07-01

    Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to themore » hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)« less

  3. Oil Pharmacy at the Thermal Protection System Facility

    NASA Image and Video Library

    2017-08-08

    Tim King of Jacobs at NASA's Kennedy Space Center in Florida, explains operations in the Oil Pharmacy operated under the Test and Operations Support Contract, or TOSC. The facility consolidated storage and distribution of petroleum products used in equipment maintained under the contract. This included standardized naming, testing processes and provided a central location for distribution of oils used in everything from simple machinery to the crawler-transporter and cranes in the Vehicle Assembly Building.

  4. 40 CFR 270.25 - Specific part B information requirements for equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for equipment. 270.25 Section 270.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... subpart BB of part 264 applies: (1) Equipment identification number and hazardous waste management unit identification. (2) Approximate locations within the facility (e.g., identify the hazardous waste management unit...

  5. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolutionmore » of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been

  6. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida, members of the news media view a forward skirt that will be used on a solid rocket booster for NASA’s Space Launch System (SLS) rocket. Orbital ATK is a contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS solid rocket boosters. Rick Serfozo, Orbital ATK Florida site director, talks to the media. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft for deep-space missions and the journey to Mars.

  7. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media view the high bay inside the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida. Kerry Chreist, with Jacobs Engineering on the Test and Operations Support Contract, explains the various test stands and how they will be used to prepare booster segments for NASA’s Space Launch System (SLS) rocket. In the far corner, in the vertical position, is one of two pathfinders, or test versions, of solid rocket booster segments for the SLS rocket. The Ground Systems Development and Operations Program and Jacobs are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  8. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Members of the news media watch as two cranes are used to lift one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System (SLS) rocket into the vertical position inside the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida. The pathfinder booster segment will be moved to the other end of the RPSF and secured on a test stand. The Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will prepare the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.

  9. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  10. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  11. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  12. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  13. Promoting the Construction of an Optimal Nurse's Office Facility: One School District's Experience.

    ERIC Educational Resources Information Center

    McKibben, Cynthia; DiPaolo, Sonja J.

    1997-01-01

    Details recommendations for updating or constructing nurses' offices based upon a descriptive study done in one midwestern school district. Suggestions are provided on size, location, and equipment needed. Also addressed is the communication process needed to persuade a board of education and school administrators that nursing facilities must be a…

  14. Gravitational Biology Facility on Space Station: Meeting the needs of space biology

    NASA Technical Reports Server (NTRS)

    Allen, Katherine; Wade, Charles

    1992-01-01

    The Gravitational Biology Facility (GBF) is a set of generic laboratory equipment needed to conduct research on Space Station Freedom (SSF), focusing on Space Biology Program science (Cell and Developmental Biology and Plant Biology). The GBF will be functional from the earliest utilization flights through the permanent manned phase. Gravitational biology research will also make use of other Life Sciences equipment on the space station as well as existing equipment developed for the space shuttle. The facility equipment will be developed based on requirements derived from experiments proposed by the scientific community to address critical questions in the Space Biology Program. This requires that the facility have the ability to house a wide variety of species, various methods of observation, and numerous methods of sample collection, preservation, and storage. The selection of the equipment will be done by the members of a scientific working group (5 members representing cell biology, 6 developmental biology, and 6 plant biology) who also provide requirements to design engineers to ensure that the equipment will meet scientific needs. All equipment will undergo extensive ground based experimental validation studies by various investigators addressing a variety of experimental questions. Equipment will be designed to be adaptable to other space platforms. The theme of the Gravitational Biology Facility effort is to provide optimal and reliable equipment to answer the critical questions in Space Biology as to the effects of gravity on living systems.

  15. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamolla, Meritxell Martell

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. Thismore » paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)« less

  16. 9 CFR 590.502 - Equipment and utensils; PCB-containing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Equipment and utensils; PCB-containing equipment. 590.502 Section 590.502 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG PRODUCTS INSPECTION ACT) Sanitary, Processing, and Facilit...

  17. Structures and Materials Experimental Facilities and Capabilities Catalog

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G. (Compiler); Kurtz-Husch, Jeanette D. (Compiler)

    2000-01-01

    The NASA Center of Excellent for Structures and Materials at Langley Research Center is responsible for conducting research and developing useable technology in the areas of advanced materials and processing technologies, durability, damage tolerance, structural concepts, advanced sensors, intelligent systems, aircraft ground operations, reliability, prediction tools, performance validation, aeroelastic response, and structural dynamics behavior for aerospace vehicles. Supporting the research activities is a complementary set of facilities and capabilities documented in this report. Because of the volume of information, the information collected was restricted in most cases to one page. Specific questions from potential customers or partners should be directed to the points of contacts provided with the various capabilities. Grouping of the equipment is by location as opposed to function. Geographical information of the various buildings housing the equipment is also provided. Since this is the first time that such an inventory is ever collected at Langley it is by no means complete. It is estimated that over 90 percent of the equipment capabilities at hand are included but equipment is continuously being updated and will be reported in the future.

  18. Case study project: The use of low-VOC/HAP coatings at wood furniture manufacturing facilities. Report for March 1995--March 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, A.M.; Jones, J.W.; Fields, J.L.

    1999-07-01

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted to low-VOC/HAP coatings and to develop case studies for those facilities. The case studies include a discussion of the types of products each facility manufactures; the types of low-VOC/HAP coatings each facility is using; problems encountered in converting to low-VOC/HAP coatings; equipment changes that were required; costs associated with the conversion process, including capital costs associated with equipment purchases, research and developmentmore » costs, and operating costs such as operator training in new application techniques;advantages/ disadvantages of the low-VOC/HAP coatings; and customer feedback on products finished with the low-VOC/HAP coatings. The paper discusses the progress of the study and pollution prevention options at wood furniture manufacturing facilities.« less

  19. Detection of organic residues on poultry processing equipment surfaces by LED-induced fluorescence imaging

    USDA-ARS?s Scientific Manuscript database

    Organic residues on equipment surfaces in poultry processing plants can generate cross- contamination and increase the risk of unsafe food for consumers. This research was aimed to investigate the potential of LED-induced fluorescence imaging technique for rapid inspection of stainless steel proces...

  20. A facility for training Space Station astronauts

    NASA Technical Reports Server (NTRS)

    Hajare, Ankur R.; Schmidt, James R.

    1992-01-01

    The Space Station Training Facility (SSTF) will be the primary facility for training the Space Station Freedom astronauts and the Space Station Control Center ground support personnel. Conceptually, the SSTF will consist of two parts: a Student Environment and an Author Environment. The Student Environment will contain trainers, instructor stations, computers and other equipment necessary for training. The Author Environment will contain the systems that will be used to manage, develop, integrate, test and verify, operate and maintain the equipment and software in the Student Environment.

  1. Impact of Salt Waste Processing Facility Streams on the Nitric-Glycolic Flowsheet in the Chemical Processing Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C.

    An evaluation of the previous Chemical Processing Cell (CPC) testing was performed to determine whether the planned concurrent operation, or “coupled” operations, of the Defense Waste Processing Facility (DWPF) with the Salt Waste Processing Facility (SWPF) has been adequately covered. Tests with the nitricglycolic acid flowsheet, which were both coupled and uncoupled with salt waste streams, included several tests that required extended boiling times. This report provides the evaluation of previous testing and the testing recommendation requested by Savannah River Remediation. The focus of the evaluation was impact on flammability in CPC vessels (i.e., hydrogen generation rate, SWPF solvent components,more » antifoam degradation products) and processing impacts (i.e., acid window, melter feed target, rheological properties, antifoam requirements, and chemical composition).« less

  2. Technology Readiness Assessment of Department of Energy Waste Processing Facilities

    DTIC Science & Technology

    2007-09-11

    Must Be Reliable, Robust, Flexible, and Durable 6 EM Is Piloting the TRA/AD2 Process Hanford Waste Treatment Plant ( WTP ) – The Initial Pilot Project...Evaluation WTP can only treat ~ ½ of the LAW in the time it will take to treat all the HLW. • There is a need for tank space that will get more urgent with...Facility before the WTP Pretreatment and High-Level Waste (HLW) Vitrification Facilities are available (Requires tank farm pretreatment capability) TRAs

  3. Facility siting as a decision process at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wike, L.D.

    1995-12-31

    Site selection for new facilities at Savannah River Site (SRS) historically has been a process dependent only upon specific requirements of the facility. While this approach is normally well suited to engineering and operational concerns, it can have serious deficiencies in the modern era of regulatory oversight and compliance requirements. There are many issues related to the site selection for a facility that are not directly related to engineering or operational requirements; such environmental concerns can cause large schedule delays and budget impact,s thereby slowing or stopping the progress of a project. Some of the many concerns in locating amore » facility include: waste site avoidance, National Environmental Policy Act requirements, Clean Water Act, Clean Air Act, wetlands conservation, US Army Corps of Engineers considerations, US Fish and Wildlife Service statutes including threatened and endangered species issues, and State of South Carolina regulations, especially those of the Department of Health and Environmental Control. In addition, there are SRS restrictions on research areas set aside for National Environmental Research Park (NERP), Savannah River Ecology Laboratory, Savannah River Forest Station, University of South Carolina Institute of Archaeology and Anthropology, Southeastern Forest Experimental Station, and Savannah River Technology Center (SRTC) programs. As with facility operational needs, all of these siting considerations do not have equal importance. The purpose of this document is to review recent site selection exercises conducted for a variety of proposed facilities, develop the logic and basis for the methods employed, and standardize the process and terminology for future site selection efforts.« less

  4. SU-E-J-189: Credentialing of IGRT Equipment and Processes for Clinical Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Court, L; Aristophanous, M; Followill, D

    2014-06-01

    Purpose: Current dosimetry phantoms used for clinical trial credentialing do not directly assess IGRT processes. This work evaluates a custom-built IGRT phantom for credentialing of multiple IGRT modalities and processes. Methods: An IGRT phantom was built out of a low-density body with two inserts. Insert A is used for the CT simulation. Insert B is used for the actual treatment. The inserts contain identical targets in different locations. Relative positions are unknown to the user. The user simulates the phantom (with insert A) as they would a patient, including marking the phantom. A treatment plan is created and sent tomore » the treatment unit. The phantom (with insert B) is then positioned using local IGRT practice. Shifts (planned isocenter, if applicable, and final isocenter) are marked on the phantom using room lasers. The mechanical reproducibility of re-inserting the inserts within the phantom body was tested using repeat high-resolution CT scans. The phantom was tested at 7 centers, selected to include a wide variety of imaging equipment. Results: Mechanical reproducibility was measured as 0.5-0.9mm, depending on the direction. Approaches tested to mark (and transfer) simulation isocenter included lasers, fiducials and reflective markers. IGRT approaches included kV imaging (Varian Trilogy, Brainlab ExacTrac), kV CT (CT-on-rails), kV CBCT (Varian Trilogy, Varian Truebeam, Elekta Agility) and MV CT (Tomotherapy). Users were able to successfully use this phantom for all combinations of equipment and processes. IGRT-based shifts agreed with the truth within 0.8mm, 0.8mm and 1.9mm in the LR, AP, and SI directions, respectively. Conclusion: Based on these preliminary results, the IGRT phantom can be used for credentialing of clinical trials with an action level of 1mm in AP and LR directions, and 2mm in the SI direction, consistent with TG142. We are currently testing with additional institutions with different equipment and processes, including

  5. Operating environmental laboratories--an overview of analysis equipment procurement and management.

    PubMed

    Pandya, G H; Shinde, V M; Kanade, G S; Kondawar, V K

    2003-10-01

    Management of equipment in an environmental laboratory requires planning involving assessment of the workload on a particular equipment, establishment of criteria and specification for the purchase of equipment, creation of infrastructure for installation and testing of the equipment, optimization of analysis conditions, development of preventive maintenance procedures and establishment of in-house repair facilities. The paper reports the results of such an analysis carried for operating environmental laboratories associated with R& D work, serving as an Govt. laboratory or attached to an Industry for analysing industrial emissions.

  6. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks over documents as part of a Multi-Equipment Interface Test (MEIT) on the U.S. Lab Destiny. Other crew members taking part in the MEIT are Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are and Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  7. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth.. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  8. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks at electrical connections on the U.S. Lab Destiny as part of a Multi-Equipment Interface Test (MEIT). Other crew members taking part in the MEIT are Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  9. STS-98 crew takes part in Multi-Equipment Interface Test.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) gets a closeup view of the cover on the window of the U.S. Lab Destiny. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.

  10. SRB Processing Facilities Media Event

    NASA Image and Video Library

    2016-03-01

    Inside the Booster Fabrication Facility (BFF) at NASA’s Kennedy Space Center in Florida, members of the news media view the right-hand aft skirt that will be used on a solid rocket booster for NASA’s Space Launch System (SLS) rocket. Orbital ATK is contractor for NASA’s Marshall Space Flight Center in Alabama, and operates the BFF to prepare aft booster segments and hardware for the SLS solid rocket boosters. At far right, in the royal blue shirt, Rick Serfozo, Orbital ATK Florida site director, talks to the media. The SLS rocket and Orion spacecraft will launch on Exploration Mission-1 in 2018. The Ground Systems Development and Operations Program is preparing the infrastructure to process and launch spacecraft for deep-space missions and the journey to Mars.

  11. Electromagnetic Test-Facility characterization: an identification approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zicker, J.E.; Candy, J.V.

    The response of an object subjected to high energy, transient electromagnetic (EM) fields sometimes called electromagnetic pulses (EMP), is an important issue in the survivability of electronic systems (e.g., aircraft), especially when the field has been generated by a high altitude nuclear burst. The characterization of transient response information is a matter of national concern. In this report we discuss techniques to: (1) improve signal processing at a test facility; and (2) parameterize a particular object response. First, we discuss the application of identification-based signal processing techniques to improve signal levels at the Lawrence Livermore National Laboratory (LLNL) EM Transientmore » Test Facility. We identify models of test equipment and then use these models to deconvolve the input/output sequences for the object under test. A parametric model of the object is identified from this data. The model can be used to extrapolate the response to these threat level EMP. Also discussed is the development of a facility simulator (EMSIM) useful for experimental design and calibration and a deconvolution algorithm (DECONV) useful for removing probe effects from the measured data.« less

  12. NASA Construction of Facilities Validation Processes - Total Building Commissioning (TBCx)

    NASA Technical Reports Server (NTRS)

    Hoover, Jay C.

    2004-01-01

    Key Atributes include: Total Quality Management (TQM) System that looks at all phases of a project. A team process that spans boundaries. A Commissioning Authority to lead the process. Commissioning requirements in contracts. Independent design review to verify compliance with Facility Project Requirements (FPR). Formal written Commissioning Plan with Documented Results. Functional performance testing (FPT) against the requirements document.

  13. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.

    PubMed

    Yu, Xiaowei; Shou, Wan; Mahajan, Bikram K; Huang, Xian; Pan, Heng

    2018-05-07

    Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility make final adjustments to the Flight Support System (FSS) for STS-82, the second Hubble Space Telescope servicing mission. The FSS is reusable flight hardware that provides the mechanical, structural and electrical interfaces between HST, the space support equipment and the orbiter for payload retrieval and on-orbit servicing. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.

    NASA Image and Video Library

    1997-01-16

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility make final adjustments to the Flight Support System (FSS) for STS-82, the second Hubble Space Telescope servicing mission. The FSS is reusable flight hardware that provides the mechanical, structural and electrical interfaces between HST, the space support equipment and the orbiter for payload retrieval and on-orbit servicing. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.

  15. KENNEDY SPACE CENTER, FLA. - STS-82 crew members examine part of the Flight Support System during the Crew Equipment Integration Test (CEIT) in KSC's Vertical Processing Facility. From left are Mission Specialists Steven L. Smith and Gregory J. Harbaugh and Payload Commander Mark C. Lee. Liftoff of STS-82, the second Hubble Space Telescope (HST) servicing mission, is scheduled Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-22

    KENNEDY SPACE CENTER, FLA. - STS-82 crew members examine part of the Flight Support System during the Crew Equipment Integration Test (CEIT) in KSC's Vertical Processing Facility. From left are Mission Specialists Steven L. Smith and Gregory J. Harbaugh and Payload Commander Mark C. Lee. Liftoff of STS-82, the second Hubble Space Telescope (HST) servicing mission, is scheduled Feb. 11 aboard Discovery with a crew of seven.

  16. Canadian macromolecular crystallography facility: a suite of fully automated beamlines.

    PubMed

    Grochulski, Pawel; Fodje, Michel; Labiuk, Shaunivan; Gorin, James; Janzen, Kathryn; Berg, Russ

    2012-06-01

    The Canadian light source is a 2.9 GeV national synchrotron radiation facility located on the University of Saskatchewan campus in Saskatoon. The small-gap in-vacuum undulator illuminated beamline, 08ID-1, together with the bending magnet beamline, 08B1-1, constitute the Canadian Macromolecular Crystallography Facility (CMCF). The CMCF provides service to more than 50 Principal Investigators in Canada and the United States. Up to 25% of the beam time is devoted to commercial users and the general user program is guaranteed up to 55% of the useful beam time through a peer-review process. CMCF staff provides "Mail-In" crystallography service to users with the highest scored proposals. Both beamlines are equipped with very robust end-stations including on-axis visualization systems, Rayonix 300 CCD series detectors and Stanford-type robotic sample auto-mounters. MxDC, an in-house developed beamline control system, is integrated with a data processing module, AutoProcess, allowing full automation of data collection and data processing with minimal human intervention. Sample management and remote monitoring of experiments is enabled through interaction with a Laboratory Information Management System developed at the facility.

  17. 7 CFR 58.406 - Starter facility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... precaution shall be taken to prevent contamination of the facility, equipment and the air therein. A filtered air supply with a minimum average efficiency of 90 percent when tested in accordance with the ASHRAE....406 Starter facility. A separate starter room or properly designed starter tanks and satisfactory air...

  18. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  19. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  20. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  1. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  2. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  3. Comparison of the incidence of Listeria on equipment versus environmental sites within dairy processing plants.

    PubMed

    Pritchard, T J; Flanders, K J; Donnelly, C W

    1995-08-01

    This study was undertaken to compare the incidence of Listeria contamination of processing equipment with that of the general dairy processing environment. A total of 378 sponge samples obtained from 21 dairy plants were analyzed for Listeria using three different enrichment media. Use of extended microbiological analysis allowed us to identify 26 Listeria positive sites which would have not been identified had a single test format been employed. Eighty (80) of 378 sites (21.2%) were identified as Listeria positive. Listeria innocua was isolated from 59 of the 80 (73.8%) positive samples, L. monocytogenes was identified in 35 (43.8%) of the positive samples, and L. seeligeri was isolated from 5 (6.3%) of the Listeria positive samples. Positive equipment samples were obtained from 6 of the 21 (28.6%) plants and 19 of the 21 (90.5%) plants had positive environmental sites. Seventeen of the 215 (7.9%) samples from equipment were positive for Listeria species. Eleven of these sites, including 3 holding tanks, 2 table tops, 3 conveyor/chain systems, a pasta filata wheel, a pint milk filler and a brine pre-filter machine, were positive for L. monocytogenes. Nineteen of the 21 (90.5%) plants had positive environmental sites. Sixty-three of the 163 (41.1%) samples from environmental sites were Listeria positive and 24 were positive for L. monocytogenes. Two-tailed student t-test analysis of the mean frequencies indicated that the level of contamination was significantly higher (p < 0.001) in 'environmental' (49.7%) as opposed to 'equipment' samples (7.0%). Our study indicates that environmental contamination with Listeria does not necessarily translate into contamination of equipment within the same plant, and that greater emphasis needs to be placed on the cleaning and sanitizing of the plant environment.

  4. Biomedical equipment and medical services in India.

    PubMed

    Sahay, K B; Saxena, R K

    Varieties of Biomedical Equipment (BME) are now used for quick diagnosis, flawless surgery and therapeutics etc. Use of a malfunctioning BME could result in faulty diagnosis and wrong treatment and can lead to damaging or even devastating aftermath. Modern Biomedical Equipments inevitably employ highly sophisticated technology and use complex systems and instrumentation for best results. To the best of our knowledge the medical education in India does not impart any knowledge on the theory and design of BME and it is perhaps not possible also. Hence there is need for a permanent mechanism which can maintain and repair the biomedical equipments routinely before use and this can be done only with the help of qualified Clinical Engineers. Thus there is a genuine need for well organized cadre of Clinical Engineers who would be persons with engineering background with specialization in medical instrumentation. These Clinical engineers should be made responsible for the maintenance and proper functioning of BME. Every hospital or group of hospitals in the advanced countries has a clinical engineering unit that takes care of the biomedical equipments and systems in the hospital by undertaking routine and preventive maintenance, regular calibration of equipments and their timely repairs. Clinical engineers should be thus made an essential part of modern health care system and services. Unfortunately such facilities and mechanism do not exist in India. To make BME maintenance efficient and flawless in India, study suggests following measures and remedies: (i) design and development of comprehensive computerized database for BME (ii) cadre of Clinical engineers (iii) online maintenance facility and (iv) farsighted managerial skill to maximize accuracy, functioning and cost effectiveness.

  5. Phased Demolition of an Occupied Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brede, Lawrence M.; Lauterbach, Merl J.; Witt, Brandon W.

    2008-01-15

    The U.S. government constructed the K-1401 facility in the late 1940's as a support building for various projects supporting the uranium gaseous diffusion process. In 2004 the U.S. Department of Energy authorized Bechtel Jacobs Company, LLC (BJC) to decontaminate and demolish the facility. The K-1401 facility was used for a variety of industrial purposes supporting the gaseous diffusion process. Many different substances were used to support these processes over the years and as a result different parts of the facility were contaminated with fluorine, chlorine trifluoride, uranium and technetium radiological contamination, asbestos, and mercury. The total facility area is 46,015more » m{sup 2} (495,000 sf) including a 6,800 m{sup 2} basement (73,200 sf). In addition to the contamination areas in the facility, a large portion was leased to businesses for re-industrialization when the D and D activities began. The work scope associated with the facility included purging and steam cleaning the former fluorine and chlorine trifluoride systems, decontaminating loose radiologically contaminated and mercury spill areas, dismantling former radiological lines contaminated with uranium oxide compounds and technetium, abating all asbestos containing material, and demolishing the facility. These various situations contributed to the challenge of successfully conducting D and D tasks on the facility. In order to efficiently utilize the work force, demolition equipment, and waste hauling trucks the normal approach of decontaminating the facility of the hazardous materials, and then conducting demolition in series required a project schedule of five years, which is not cost effective. The entire project was planned with continuous demolition as the goal end state. As a result, the first activities, Phase 1, required to prepare sections for demolition, including steam cleaning fluorine and chlorine trifluoride process lines in basement and facility asbestos abatement, were

  6. National Transonic Facility Fan Blade prepreg material characterization tests

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Richards, W. H.; Ahl, E. L., Jr.

    1981-01-01

    The test program for the basic prepreg materials used in process development work and planned fabrication of the national transonic facility fan blade is presented. The basic prepreg materials and the design laminate are characterized at 89 K, room temperature, and 366 K. Characterization tests, test equipment, and test data are discussed. Material tests results in the warp direction are given for tensile, compressive, fatigue (tension-tension), interlaminar shear and thermal expansion.

  7. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Basile, Lisa R.; Kelly, Angelita C.

    1987-01-01

    The Spacelab Data Processing Facility (SLDPF) is an integral part of the Space Shuttle data network for missions that involve attached scientific payloads. Expert system prototypes were developed to aid in the performance of the quality assurance function of the Spacelab and/or Attached Shuttle Payloads processed telemetry data. The Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS), two expert systems, were developed to determine their feasibility and potential in the quality assurance of processed telemetry data. The capabilities and performance of these systems are discussed.

  8. Study of the Acquisition of Peripheral Equipment for Use with Automatic Data Processing Systems.

    ERIC Educational Resources Information Center

    Comptroller General of the U.S., Washington, DC.

    The General Accounting Office (GAO) performed this study because: preliminary indications showed that significant savings could be achieved in the procurement of selected computer components; the Federal Government is investing increasing amounts of money in Automatic Data Processing (ADP) equipment; and there is a widespread congressional…

  9. Evaluation of mercury in the liquid waste processing facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  10. Cutting the Cost of New Community College Facilities: Streamlining the Facilities Approval Process. Commission on Innovation Policy Discussion Paper Number 3.

    ERIC Educational Resources Information Center

    BW Associates, Berkeley, CA.

    Intended to provide background information and preliminary options for the California Community Colleges' Commission on Innovation, this document proposes that approval processes for new facilities be simplified and that restrictions on the lease or purchase of off-campus facilities be eased. Following introductory materials detailing the…

  11. THE SITE DEMONSTRATION OF CHEMFIX SOLIDIFICATION/ STABILIZATION PROCESS AT THE PORTABLE EQUIPMENT SALVAGE COMPANY SITE

    EPA Science Inventory

    A demonstration of the GHEMFIX solidification/stabilization process was conducted under the United States Environmental Protection Agency`s (EPA) Superfund Innovative Technology Evaluation (SITE) program. The demonstration was conducted in March 1989, at the Portable Equipment Sa...

  12. Campania Region's Educational Quality Facilities Project

    ERIC Educational Resources Information Center

    Ponti, Giorgio

    2009-01-01

    This article describes the Educational Quality Facilities project undertaken by Italy's Campania Region to provide quality facilities to all of its communities basing new spaces on the "Flexible Learning Module". The objectives of the five-year project are to: build and equip new educational spaces; improve the quality of existing…

  13. Building Information Modeling (BIM) Primer. Report 1: Facility Life-Cycle Process and Technology Innovation

    DTIC Science & Technology

    2012-08-01

    Building Information Modeling ( BIM ) Primer Report 1: Facility Life-cycle Process and Technology Innovation In fo...is unlimited. ERDC/ITL TR-12-2 August 2012 Building Information Modeling ( BIM ) Primer Report 1: Facility Life-cycle Process and Technology...and to enhance the quality of projects through the design, construction, and handover phases. Building Information Modeling ( BIM ) is a

  14. KSC facilities status and planned management operations. [for Shuttle launches

    NASA Technical Reports Server (NTRS)

    Gray, R. H.; Omalley, T. J.

    1979-01-01

    A status report is presented on facilities and planned operations at the Kennedy Space Center with reference to Space Shuttle launch activities. The facilities are essentially complete, with all new construction and modifications to existing buildings almost finished. Some activity is still in progress at Pad A and on the Mobile Launcher due to changes in requirements but is not expected to affect the launch schedule. The installation and testing of the ground checkout equipment that will be used to test the flight hardware is now in operation. The Launch Processing System is currently supporting the development of the applications software that will perform the testing of this flight hardware.

  15. 46 CFR 160.151-47 - Requirements for owners or operators of servicing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... facilities. 160.151-47 Section 160.151-47 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Inflatable Liferafts (SOLAS) § 160.151-47 Requirements for owners or operators of servicing facilities. To maintain...

  16. Future trends in metal forming—equipment, materials and processes in automotive applications

    NASA Astrophysics Data System (ADS)

    Hitz, D.; Duggirala, R.

    1995-10-01

    Global competition in the automotive market has made a significant impact in the materials, processes, tools, and equipment used to make components. Steels are being replaced by other materials, such as aluminum, composites, and plastics, that meet the demand for a higher performance per weight ratio. From a processing viewpoint, the customers demand production of parts to near-net shape with little or no machining. Competition in business depends on understanding the needs of the customer in the coming years in the area of metal forming. A workshop was conducted using a novel approach to address the above issue. This presentation describes the approach and the results of the study.

  17. Economy in Government: Automatic Data Processing Equipment; Report of the Subcommittee on Priorities and Economy in Government . . . Together with Supplemental Views.

    ERIC Educational Resources Information Center

    Joint Economic Committee, Washington, DC.

    This report is based on hearings that the subcommittee held on July 1, 1970, entitled "Economy in Government Property Management--Procurement of Data Processing Equipment" as well as General Accounting Office and General Services Administration reports. It focuses upon the phenomenal growth in the use of automatic data processing equipment by the…

  18. 50 CFR 260.102 - Equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Equipment. 260.102 Section 260.102... Products for Human Consumption Requirements for Plants Operating Under Continuous Inspection on A Contract Basis 1 § 260.102 Equipment. All equipment used for receiving, washing, segregating, picking, processing...

  19. 46 CFR 160.151-45 - Equipment required for servicing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and bulletins in effect as indicated on the annual list issued in accordance with § 160.151-35(b)(2...) A source of clean, dry, pressurized air; hoses; and attachments for inflating liferafts; (h) A..., except for items of equipment that are readily available; (p) A means for load-testing davit-launched...

  20. Nuclear data for r-process models from ion trap measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Jason, E-mail: jclark@anl.gov

    2016-06-21

    To truly understand how elements are created in the universe via the astrophysical r process, accurate nuclear data are required. Historically, the isotopes involved in the r process have been difficult to access for study, but the development of new facilities and measurement techniques have put many of the r-process isotopes within reach. This paper will discuss the new CARIBU facility at Argonne National Laboratory and two pieces of experimental equipment, the Beta-decay Paul Trap and the Canadian Penning Trap, that will dramatically increase the nuclear data available for models of the astrophysical r process.