Sample records for facility spdf project

  1. Things That Work: Roles and Services of SPDF

    NASA Technical Reports Server (NTRS)

    McGuire, R. E.; Bilitza, D.; Candey, R. M.; Chimiak, R. A.; Cooper, J. F.; Garcia, L. N.; Han, D. B.; Harris, B. T.; Johnson, R. C.; King, J. H.; hide

    2010-01-01

    The current Heliophysics Science Data Management Policy (HpSDMP) defines the roles of the Space Physics Data Facility (SPDF) project as a heliophysics active Final Archive (aFA), a focus for critical data infrastructure services and a center of excellence for data and ancillary information services. This presentation will highlight (1) select current SPDF activities, (2) the lessons we are continuing to learn in how to usefully serve the the heliophysics science community and (3)SPDF's programmatic emphasis in the coming year. In cooperation with the Heliophysics Virtual discipline Observatories (VxOs), we are working closely with current, and with upcoming missions such as RBSP and MMS, to define effective approaches to ensure the long-term availability and archiving of mission data, as well as how SPDF services can complement active mission capabilities. We are working to make the Virtual Space Physics Observatory (VSPO) service comprehensive in all significant and NASA relevant heliophysics data. We will highlight a new CDAWeb interface, a faster SSCWeb, availability of our data through VxO services such as Autoplot, a new capability to easily access our data from within IDL and continuing improvements to CDF including better handling of leap seconds.

  2. Access and Use of MMS Data through SPDF Services

    NASA Astrophysics Data System (ADS)

    McGuire, R. E.; Bilitza, D.; Boardsen, S. A.; Candey, R. M.; Chimiak, R.; Cooper, J. F.; Garcia, L. N.; Harris, B. T.; Johnson, R. C.; Kovalick, T. J.; Lal, N.; Leckner, H. A.; Liu, M. H.; Papitashvili, N. E.; Rao, U. R.; Roberts, D. A.; Yurow, R. E.

    2016-12-01

    In its role as a Heliophysics Active Final Archive and in close cooperation with the MMS project and its Science Data Center, the Space Physics Data Facility (SPDF) now serves a full set of public MMS data and QuickLook plots. All SPDF services for this data and all data are available via links from the SPDF home page (http://spdf.gsfc.nasa.gov). SPDF's CDAWeb features MMS Level-2 survey and burst mode data with graphics, listing and data superset/subset functions. These capabilities are available (1) through our html user interface, (2) through calls to our CDAS web services API, and (3) through other interfaces and libraries using the CDAS web services or that otherwise access our holdings including SPDF's Heliophysics Data Portal and several external systems. As context in use of the MMS data, CDAWeb also serves current data from many other current missions. These include the Van Allen Probes 1/2 and the five THEMIS/ARTEMIS spacecraft, as well as e.g. ACE, Cluster 1/2/3/4, DMSP 16/17/18, Geotail, GOES 13/14/15, NOAA/POES 15/16/18/19, MetOP POES 1/2, Stereo A/B, TWINS 1/2, Wind and >120 Ground-Based investigations). This full set of public MMS Level-2 science data and QuickLook plots, and all other public data held by SPDF, are also available for direct file download by HTTP or FTP links from the SPDF home page above. As a reminder, MMS Level-2 data are publicly available about 30 days after data is taken, and QuickLook survey plots are available about a day after data is taken). MMS orbits (current and predictive) are served through SPDF's SSCWeb service and our Java-based interactive 4D Orbit Viewer, also with orbits of many other current missions). Our presentation will discuss recent enhancements to CDAWeb and other services and our plans to support new MMS data products and upcoming heliophysics missions including ICON, GOLD and Solar Probe Plus.

  3. SPDF Data and Orbit Services Supporting Open Access, Use and Archiving of MMS Data

    NASA Astrophysics Data System (ADS)

    McGuire, R. E.; Bilitza, D.; Candey, R. M.; Chimiak, R.; Cooper, J. F.; Garcia, L. N.; Harris, B. T.; Johnson, R. C.; Kovalick, T. J.; Lal, N.; Leckner, H. A.; Liu, M. H.; Papitashvili, N. E.; Roberts, D. A.; Yurow, R. E.

    2015-12-01

    NASA's Space Physics Data Facility (SPDF) project is now serving MMS definitive and predictive interactive orbit plots, listings and conjunction calculations through our SSCWeb and 4D Orbit Viewer services. In March 2016 and in parallel with the MMS Science Data Center (SDC) at LASP, SPDF will begin publicly serving a complete set of MMS Level-2 and higher, survey and burst-mode science data products from all four spacecraft and all instruments. The initial Level-2 data available will be from September 2015 to early February 2016, with Level-2 products subsequently validated and publicly available with an approximate one month lag. All MMS Level-2 and higher data products are produced in standard CDF format with standard ISTP/SPDF metadata and will be served by SPDF through our CDAWeb data service, including our web services and associated APIs for IDL and Matlab users, and through direct FTP/HTTP directory browse and file downloads. SPDF's ingest, archival preservation and active serving of current MMS science data is part of our role as an active heliophysics final archive. SPDF's ingest of complete and current science data products from other active heliophysics missions with SPDF services will help enable coordinated and correlative MMS science analysis by the open international science community with current data from THEMIS, the Van Allen Probes and other missions including TWINS, Cluster, ACE, Wind, >120 ground magnetometer stations as well as instruments on the NOAA GOES and POES spacecraft. Please see the related Candey et.al. paper on "SPDF Ancillary Services and Technologies Supporting Open Access, Use and Archiving of MMS Data" for other aspects of what SPDF is doing. All SPDF data and services are available from the SPDF home page at http://spdf.gsfc.nasa.gov .

  4. Putting Space Physics Data Facility (SPDF) Services to Good Use

    NASA Astrophysics Data System (ADS)

    Candey, R. M.; Bilitza, D.; Chimiak, R.; Cooper, J. F.; Garcia, L. N.; Harris, B.; Johnson, R. C.; King, J. H.; Kovalick, T.; Leckner, H.; Liu, M.; McGuire, R. E.; Papitashvili, N. E.; Roberts, A.

    2009-12-01

    The Space Physics Data Facility (SPDF) project provides heliophysics science-enabling information services and is the most widely used single access point to heliophysics science data and orbits from NASA's solar-heliospheric satellite missions. Our emphasis has been on active service of the best digital data products and key ancillary information with graphics, listings and production of subsetted or merged files (mass downloads or parameter-specific selections). Our services today include the: (1) Heliophysics Resource Gateway (HRG) data finding service (also known as the Virtual Space Physics Observatory or VSPO); (2) Data services including the Coordinated Data Analysis Web (CDAWeb), OMNIweb compilation of interplanetary parameters (mapped to the Earth's bow shock) and related indices, and their large underlying collection of datasets; (3) Orbit information and display services including the Satellite Situation Center (SSCweb) and the 4D Orbit Viewer interactive Java client; and the (4) Common Data Format (CDF) software library and file format and science file format translation suite. (5) Upcoming is the Heliospheric Event List Manager (HELM) to coordinate lists of interesting events and provide a mechanism for tying together the above services and others. We describe several research projects that heavily used SPDF's services and resulted in publications. Although not actually all used at once, the following research scenario shows how SPDF and VxO services can be combined for studying solar events that produce energetic particles and effects at Earth: use the HRG/VPSO to locate data of interest, perhaps query OMNIWeb for times when energetic particle solar activity is high and query the SSCWeb orbit location service for when Cluster, Geotail, Polar/IMAGE are in position to measure the cusp, magnetotail and the Earth's aurora, respectively. Also query SSCweb for times when Polar and magnetometer ground stations are on the same field lines. Using these times

  5. Scientific Uses and Directions of SPDF Data Services

    NASA Technical Reports Server (NTRS)

    Fung, Shing

    2007-01-01

    From a science user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project perform as a working and highly functional heliophysics virtual observatory. CDAWeb enables plots, listings and file downloads for current data across the boundaries of missions and instrument types (and now including data from THEMIS and STEREO), VSPO access to a wide range of distributed data sources. SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently-important to heliophysics science. OMNIWeb with its new extension to 1- and 5- minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. To enable easier integrated use of our capabilities by developers and by the emerging heliophysics VxOs, our data and services are available through webservices-based APls as well as through our direct user interfaces. SPDF has also now developed draft descriptions of its holdings in SPASE-compliant XML In addition to showcasing recent enhancements to SPDF capabilities, we will use these systems and our experience in developing them: to demonstrate a few typical science use cases; to discuss key scope and design issues among users, service providers and end data providers; and to identify key areas where existing capabilities and effective interface design are still inadequate to meet community needs.

  6. New SPDF Directions and Evolving Services Supporting Heliophysics Research

    NASA Technical Reports Server (NTRS)

    McGuire, Robert E.; Candey, Robert M.; Bilitza, D.; Chimiak, Reine A.; Cooper, John F.; Fung, Shing F.; Han, David B.; Harris, Bernie; Johnson R.; Klipsch, C.; hide

    2006-01-01

    The next advances in Heliophysics science and its paradigm of a Great Observatory require an increasingly integrated and transparent data environment, where data can be easily accessed and used across the boundaries of both missions and traditional disciplines. The Space Physics Data Facility (SPDF) project includes uniquely important multi-mission data services with current data from most operating space physics missions. This paper reviews the capabilities of key services now available and the directions in which they are expected to evolve to enable future multi-mission correlative research. The Coordinated Data Analysis Web (CDAWeb) and Satellite Situation Center Web (SSCWeb), critically supported by the Common Data Format (CDF) effort and supplemented by more focused science services such as OMNIWeb and technical services such as data format translations are important operational capabilities serving the international community today (and cited last year by 20% of the papers published in JGR Space Physics). These services continue to add data from most current missions as SPDF works with new missions such as THEMIS to help enable their unique science goals and the meaningful sharing of their data in a multi-mission correlative context. Recent enhancements to CDF, our 3D Java interactive orbit viewer (TIPSOD), the CDAWeb Plus system, increasing automation of data service population, the new folding of the VSPO effort into SPDF and our continuing thrust towards fully-functional web services APIs to allow ready invocation from distributed external middleware and clients will be shown.

  7. A Union of Inner Magnetosphere Data from the Van Allen Probes and Related Missions at NASA's Space Physics Data Facility (SPDF)

    NASA Astrophysics Data System (ADS)

    McGuire, R. E.; Bilitza, D.; Candey, R. M.; Chimiak, R. A.; Cooper, J. F.; Garcia, L. N.; Harris, B. T.; Johnson, R. C.; King, J. H.; Kovalick, T. J.; Lal, N.; Leckner, H. A.; Liu, M. H.; Papitashvili, N. E.; Roberts, D.

    2013-12-01

    A wide range of current, public, science-quality particle and field data from the Van Allen Probes and related missions is being ingested, archived and served to the international science community by SPDF. As an active heliophysics archive, SPDF now serves some eighty Level-2 (and increasingly Level-3) data products that fully span the range of measurements from particles-plasma (RBSPICE, ECT) through magnetic-electric fields and waves (EMFISIS, EFW). This coherent collection of mission data, in a standard format (CDF) with standard metadata, is available through SPDF's CDAWeb user interface, CDAWeb's web services and associated APIs for IDL and Matlab users, as well as through direct FTP/HTTP download access supplemented with orbit displays through our SSCWeb and 4D Orbit Viewer services and HDP/VSPO direct links to investigator sites/resources. With the dedicated work of the project and instrument teams, these data products are of increasingly high quality and typically current within 2 months or less. Having this range of data in CDAWeb makes comparison of data among instruments and spacecraft much easier, as well as comparisons and analysis of these data with current data from other missions including THEMIS, TWINS, Cluster, ACE, Wind and now >120 ground magnetometer stations. In addition, SPDF supports data from the BARREL Antarctic balloon program and recent data from instruments on the NOAA GOES spacecraft. SPDF will also support public data from the MMS mission when launched in later 2014.

  8. Multi-Point Observations of the Inner Magnetosphere from the Van Allen Probes and Related Missions at NASA's Space Physics Data Facility (SPDF)

    NASA Astrophysics Data System (ADS)

    McGuire, R. E.; Bilitza, D.; Candey, R. M.; Chimiak, R.; Cooper, J. F.; Garcia, L. N.; Harris, B. T.; Johnson, R. C.; Kovalick, T.; Lal, N.; Leckner, H.; Liu, M.; Papitashvili, N. E.; Roberts, D. A.

    2014-12-01

    A wide range of current, public, science-quality particle and field data from the Van Allen Probes and related missions is ingested, archived and served to the international science community by SPDF. As an active heliophysics final archive, SPDF now serves 100+ Level-2 and Level-3 data products that fully span the range of measurements from particles and plasmas (RBSPICE, ECT) through magnetic-electric fields and waves (EMFISIS, EFW). This collection of mission data (in a standard CDF format with standard ISTP/SPDF) is available through SPDF's CDAWeb user interface, through CDAWeb's web services and associated APIs for IDL and Matlab users, and through direct FTP/HTTP download access. These data are supplemented with orbit displays through our SSCWeb and 4D Orbit Viewer services and HDP/VSPO direct links to investigator sites/resources. This range of data in CDAWeb makes comparison of data among instruments and spacecraft much easier, as well as comparisons and analysis of these data with current data from other missions including THEMIS, TWINS, Cluster, ACE, Wind and now >120 ground magnetometer stations. In addition, SPDF supports data from the BARREL Antarctic balloon program and new data from instruments on the NOAA GOES and POES spacecraft. SPDF will add public data from the MMS mission to this collection when launched in 2015.

  9. Science Enabling Roles and Services of SPDF

    NASA Technical Reports Server (NTRS)

    McGuire, Robert E.; Bilitza, Dieter; Candey, Robert M.; Chimiak, Reine A.; Cooper, John F.; Garcia, Leonard N.; Harris, Bernard T.; Johnson, Rita C.; King, Joseph H.; Kovalick, Tamara J.; hide

    2011-01-01

    The current Heliophysics Science Data Management Policy defines the roles of the Space Physics Data Facility (SPDF) project as a heliophysics active Final Archive, a focus for critical data infrastructure services and a center of excellence for data and ancillary information services. This presentation will highlight some of our current activities and our understanding of why and how our services are useful to researchers, as well as SPDF's programmatic emphasis in the coming year. We will discuss how. in cooperation with the Heliophysics Virtual discipline Observatories (VxOs), we are working closely with the RBSP and MMS mission teams to support their decisions to use CDF as a primary format for their public data products, to leverage the ongoing data flows and capabilities of CDAWeb (directly and through external clients such as Autoplot) to serve their data in a multi-mission context and to use SSCWeb to assist community science planning and analysis. Among other current activities, we will also discuss and demonstrate our continuing effort to make the Virtual Space Physics Observatory (VSPO) service comprehensive in all significant and NASA relevant heliophysics data. The OMNI and OMNI High Resolution datasets remain current and heavily cited in publications. We are expanding our FTP file services to include online archived non-CDF data from all active missions, which is a re-hosting of this function from NSSDC's FTP site. We have extended the definitions of time in CDF to unambiguously and consistently handle leap seconds. We are improving SSCWeb for much faster per1ormance, more capabilities and a web services inter1ace to Query functionality. We will also review how CDAWeb data can be easily accessed within IDL and new features in CDAWeb.

  10. The NASA Heliophysics Active Final Archive at the Space Physics Data Facility

    NASA Technical Reports Server (NTRS)

    McGuire, Robert E.

    2012-01-01

    The 2009 NASA Heliophysics Science Data Management Policy re-defined and extended the responsibilities of the Space Physics Data Facility (SPDF) project. Building on SPDF's established capabilities, the new policy assigned the role of active "Final Archive" for non-solar NASA Heliophysics data to SPDF. The policy also recognized and formalized the responsibilities of SPDF as a source for critical infrastructure services such as VSPO to the overall Heliophysics Data Environment (HpDE) and as a Center of Excellence for existing SPDF science-enabling services and software including CDAWeb, SSCWeb/4D Orbit Viewer, OMNIweb and CDF. We will focus this talk to the principles, strategies and planned SPDF architecture to effectively and efficiently perform these roles, with special emphasis on how SPDF will ensure the long-term preservation and ongoing online community access to all the data entrusted to SPDF. We will layout our archival philosophy and what we are advocating in our work with NASA missions both current and future, with potential providers of NASA and NASA-relevant archival data, and to make the data and metadata held by SPDF accessible to other systems and services within the overall HpOE. We will also briefly review our current services, their metrics and our current plans and priorities for their evolution.

  11. Space Physics Data Facility Web Services

    NASA Technical Reports Server (NTRS)

    Candey, Robert M.; Harris, Bernard T.; Chimiak, Reine A.

    2005-01-01

    The Space Physics Data Facility (SPDF) Web services provides a distributed programming interface to a portion of the SPDF software. (A general description of Web services is available at http://www.w3.org/ and in many current software-engineering texts and articles focused on distributed programming.) The SPDF Web services distributed programming interface enables additional collaboration and integration of the SPDF software system with other software systems, in furtherance of the SPDF mission to lead collaborative efforts in the collection and utilization of space physics data and mathematical models. This programming interface conforms to all applicable Web services specifications of the World Wide Web Consortium. The interface is specified by a Web Services Description Language (WSDL) file. The SPDF Web services software consists of the following components: 1) A server program for implementation of the Web services; and 2) A software developer s kit that consists of a WSDL file, a less formal description of the interface, a Java class library (which further eases development of Java-based client software), and Java source code for an example client program that illustrates the use of the interface.

  12. The User Community and a Multi-Mission Data Project: Services, Experiences and Directions of the Space Physics Data Facility

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Bilitza, D.; Candey, R.; Chimiak, R.; Cooper, John; Fung, Shing; Harris, B.; Johnson R.; King, J.; Kovalick, T.; hide

    2008-01-01

    From a user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer a unique range of important data and services highly complementary to other services presently available or now evolving in the international heliophysics data environment. The VSP (Virtual Space Physics Observatory) service is an active portal to a wide range of distributed data sources. CDAWeb (Coordinate Data Analysis Web) enables plots, listings and file downloads for current data cross the boundaries of missions and instrument types (and now including data from THEMIS and STEREO). SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently important to heliophysics science. OMNIWeb with its new extension to 1- and 5-minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. SPDF also maintains NASA's CDF (common Data Format) standard and a range of associated tools including translation services. These capabilities are all now available through webservices-based APIs as well as through our direct user interfaces. In this paper, we will demonstrate the latest data and capabilities now supported in these multi-mission services, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.

  13. Services, Perspective and Directions of the Space Physics Data Facility

    NASA Technical Reports Server (NTRS)

    McGuire, Robert E.; Bilitza, Dieter; Candey, Reine A.; Chimiak, Reine A.; Cooper, John F.; Fung, Shing F.; Harris, Bernard T.; Johnson, Rita C.; King, Joseph H.; Kovalick, Tamara; hide

    2008-01-01

    The multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer unique capabilities supporting science of the Heliophysics Great Observatory and that are highly complementary to other services now evolving in the international heliophysics data environment. The VSPO (Virtual Space Physics Observatory) service is an active portal to a wide rage of distributed data sources. CDAWeb (Coordinated Data Analysis Web) offers plots, listings and file downloads for current data from many missions across the boundaries of missions and instrument types. CDAWeb now includes extensive new data from STEREO and THEMIS, plus new ROCSAT IPEI data, the latest data from all four TIMED instruments and high-resolution data from all DE-2 experiments. SSCWeb, Helioweb and out 3D Animated Orbit Viewer (TIPSOD) provide position data and identification of spacecraft and ground conjunctions. OMNI Web, with its new extension to 1- and 5-minute resolution, provides interplanetary parameters at the Earth's bow shock. SPDF maintains NASA's CDF (Common Data Format) standard and a range of associated tools including format translation services. These capabilities are all now available through web services based APIs, one element in SPDF's ongoing work to enable heliophysics community development of Virtual discipline Observatories (e.g. VITMO). We will demonstrate out latest data and capabilities, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.

  14. Solar-Heliospheric-Interstellar Cosmic Ray Tour with the NASA Virtual Energetic Particle Observatory and the Space Physics Data Facility

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Papitashvili, Natalia E.; Johnson, Rita C.; Lal, Nand; McGuire, Robert E.

    2015-04-01

    NASA now has a large collection of solar, heliospheric, and local interstellar (Voyager 1) cosmic ray particle data sets that can be accessed through the data system services of the NASA Virtual Energetic Particle Observatory (VEPO) in collaboration with the NASA Space Physics Data Facility SPDF), respectively led by the first and last authors. The VEPO services were developed to enhance the long-existing OMNIWeb solar wind and energetic particle services of SPDF for on-line browse, correlative, and statistical analysis of NASA and ESA mission fields, plasma, and energetic particle data. In this presentation we take of tour through VEPO and SPDF of SEP reservoir events, the outer heliosphere earlier surveyed by the Pioneer, Voyager, and Ulysses spacecraft and now being probed by New Horizons, and the heliosheath-heliopause-interstellar regions now being explored by the Voyagers and IBEX. Implications of the latter measurements are also considered for the flux spectra of low to high energy cosmic rays in interstellar space.

  15. ISTP CDF Skeleton Editor

    NASA Technical Reports Server (NTRS)

    Chimiak, Reine; Harris, Bernard; Williams, Phillip

    2013-01-01

    Basic Common Data Format (CDF) tools (e.g., cdfedit) provide no specific support for creating International Solar-Terrestrial Physics/Space Physics Data Facility (ISTP/SPDF) standard files. While it is possible for someone who is familiar with the ISTP/SPDF metadata guidelines to create compliant files using just the basic tools, the process is error-prone and unreasonable for someone without ISTP/SPDF expertise. The key problem is the lack of a tool with specific support for creating files that comply with the ISTP/SPDF guidelines. There are basic CDF tools such as cdfedit and skeletoncdf for creating CDF files, but these have no specific support for creating ISTP/ SPDF compliant files. The SPDF ISTP CDF skeleton editor is a cross-platform, Java-based GUI editor program that allows someone with only a basic understanding of the ISTP/SPDF guidelines to easily create compliant files. The editor is a simple graphical user interface (GUI) application for creating and editing ISTP/SPDF guideline-compliant skeleton CDF files. The SPDF ISTP CDF skeleton editor consists of the following components: A swing-based Java GUI program, JavaHelp-based manual/ tutorial, Image/Icon files, and HTML Web page for distribution. The editor is available as a traditional Java desktop application as well as a Java Network Launching Protocol (JNLP) application. Once started, it functions like a typical Java GUI file editor application for creating/editing application-unique files.

  16. Campania Region's Educational Quality Facilities Project

    ERIC Educational Resources Information Center

    Ponti, Giorgio

    2009-01-01

    This article describes the Educational Quality Facilities project undertaken by Italy's Campania Region to provide quality facilities to all of its communities basing new spaces on the "Flexible Learning Module". The objectives of the five-year project are to: build and equip new educational spaces; improve the quality of existing…

  17. Chemical facility vulnerability assessment project.

    PubMed

    Jaeger, Calvin D

    2003-11-14

    Sandia National Laboratories, under the direction of the Office of Science and Technology, National Institute of Justice, conducted the chemical facility vulnerability assessment (CFVA) project. The primary objective of this project was to develop, test and validate a vulnerability assessment methodology (VAM) for determining the security of chemical facilities against terrorist or criminal attacks (VAM-CF). The project also included a report to the Department of Justice for Congress that in addition to describing the VAM-CF also addressed general observations related to security practices, threats and risks at chemical facilities and chemical transport. In the development of the VAM-CF Sandia leveraged the experience gained from the use and development of VAs in other areas and the input from the chemical industry and Federal agencies. The VAM-CF is a systematic, risk-based approach where risk is a function of the severity of consequences of an undesired event, the attack potential, and the likelihood of adversary success in causing the undesired event. For the purpose of the VAM-CF analyses Risk is a function of S, L(A), and L(AS), where S is the severity of consequence of an event, L(A) is the attack potential and L(AS) likelihood of adversary success in causing a catastrophic event. The VAM-CF consists of 13 basic steps. It involves an initial screening step, which helps to identify and prioritize facilities for further analysis. This step is similar to the prioritization approach developed by the American Chemistry Council (ACC). Other steps help to determine the components of the risk equation and ultimately the risk. The VAM-CF process involves identifying the hazardous chemicals and processes at a chemical facility. It helps chemical facilities to focus their attention on the most critical areas. The VAM-CF is not a quantitative analysis but, rather, compares relative security risks. If the risks are deemed too high, recommendations are developed for

  18. The South African isotope facility project

    NASA Astrophysics Data System (ADS)

    Bark, R. A.; Barnard, A. H.; Conradie, J. L.; de Villiers, J. G.; van Schalkwyk, P. A.

    2018-05-01

    The South African Isotope Facility (SAIF) is a project in which iThemba LABS plans to build a radioactive-ion beam (RIB) facility. The project is divided into the Accelerator Centre of Exotic Isotopes (ACE Isotopes) and the Accelerator Centre for Exotic Beams (ACE Beams). For ACE Isotopes, a high-current, 70 MeV cyclotron will be acquired to take radionuclide production off the existing Separated Sector Cyclotron (SSC). A freed up SSC will then be available for an increased tempo of nuclear physics research and to serve as a driver accelerator for the ACE Beams project, in which protons will be used for the direct fission of Uranium, producing beams of fission fragments. The ACE Beams project has begun with "LeRIB" - a Low Energy RIB facility, now under construction. In a collaboration with INFN Legnaro, the target/ion-source "front-end" will be a copy of the front-end developed for the SPES project. A variety of targets may be inserted into the SPES front-end; a uranium-carbide target has been designed to produce up to 2 × 1013 fission/s using a 70 MeV proton beam of 150 µA intensity.

  19. National Ignition Facility project acquisition plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callaghan, R.W.

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertialmore » Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.« less

  20. Space infrared telescope facility project

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    1988-01-01

    The functions undertaken during this reporting period were: to inform the planetary science community of the progress and status of the Space Infrared Telescope Facility (SIRTF) Project; to solicit input from the planetary science community on needs and requirements of planetary science in the use of SIRTF at such time that it becomes an operational facility; and a white paper was prepared on the use of the SIRTF for solar system studies.

  1. Heritage Park Facilities PV Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobaica, Mark

    Project Objective: To procure a photovoltaic array (PV) system which will generate approximately 256kW of power to be used for the operations of the Aquatic Complex and the adjacent Senior Facility at the Heritage Park. This project complies with the EERE’s work and objectives by promoting the development and deployment of an energy system that will provide current and future generations with clean, efficient, affordable, and reliable energy.

  2. Concentrating Solar Power Projects - National Solar Thermal Power Facility

    Science.gov Websites

    | Concentrating Solar Power | NREL National Solar Thermal Power Facility Status Date: February 13, 2014 Project Overview Project Name: National Solar Thermal Power Facility Country: India Location Capacity (Net): 1.0 MW Output Type: Steam Rankine Thermal Storage Storage Type: None

  3. Report on Collaborative Facilities Projects.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Office of the Chancellor.

    California's community colleges develop their own requests in concert with their district five-year master plan. They then submit those requests to the State Chancellor's Office for review. This document discusses the current process of submitting proposals for collaborative facilities projects, and outlines and discusses five recommendations for…

  4. National Ignition Facility project acquisition plan revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clobes, A.R.

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager.

  5. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austad, Stephanie Lee

    2015-09-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  6. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austad, S. L.

    2015-05-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  7. National Biomedical Tracer Facility: Project definition study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heaton, R.; Peterson, E.; Smith, P.

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPFmore » to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.« less

  8. Congressional hearing reviews NSF major research and facilities projects

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-03-01

    An 8 March congressional hearing about the U.S. National Science Foundation's Major Research Equipment and Facilities Construction (NSF MREFC) account focused on fiscal management and accountability of projects in that account and reviewed concerns raised by NSF's Office of Inspector General (OIG). NSF established the MREFC account in 1995 to better plan and manage investments in major equipment and facilities projects, which can cost from tens of millions to hundreds of millions of dollars, and the foundation has funded 17 MREFC projects since then. The Obama administration's proposed fiscal year (FY) 2013 budget includes funding for four MREFC projects: Advanced Laser Gravitational-Wave Observatory (AdvLIGO), Advanced Technology Solar Telescope (ATST), National Ecological Observatory (NEON), and Ocean Observatories Initiative (OOI). The hearing, held by a subcommittee of the House of Representatives' Committee on Science, Space, and Technology, reviewed management oversight throughout the life cycles of MREFC projects and concerns raised in recent OIG reports about the use of budget contingency funds. NSF's February 2012 manual called "Risk management guide for large facilities" states that cost contingency is "that portion of the project budget required to cover `known unknowns,'" such as planning and estimating errors and omissions, minor labor or material price fluctuations, and design developments and changes within the project scope. Committee members acknowledged measures that NSF has made to improve the MREFC oversight process, but they also urged the agency to continue to take steps to ensure better project management.

  9. School Facility Projects in Latin America

    ERIC Educational Resources Information Center

    Berk, Jeffrey; de Cassia Alves Vaz, Rita; Honorio, Joao; Baza, Jadille; Origel, Ricardo; Gomez, Fredys

    2004-01-01

    Many Latin American countries are undertaking projects, in line with practices disseminated by PEB, to share school facilities with the local community, to adapt traditional schools for students with disabilities, and to collaborate with private companies to finance educational buildings. The articles below describe current initiatives in five…

  10. VOCATIONAL-TECHNICAL FACILITIES PROJECT. PROGRESS REPORT.

    ERIC Educational Resources Information Center

    CONRAD, M.J.; VALENTINE, I.E.

    IN THE FIRST PHASE OF A PROJECT FOR DEVELOPING PLANNING GUIDES FOR VOCATIONAL FACILITIES, THE OVERALL DIRECTION OF A SERIES OF PLANNING GUIDES IS BEING DETERMINED. IN THE SECOND PHASE AT LEAST ONE PLANNING MANUAL WILL BE DEVELOPED TO SERVE AS A MODEL FOR THE FULL SERIES. A LOCAL WORKING GROUP COMPOSED OF THREE SPECIALISTS FROM THE CENTER FOR…

  11. Special Education Evaluation Project for University Affiliated Facilities. Final Report.

    ERIC Educational Resources Information Center

    Burrello, Leonard C.; And Others

    The final report of the Special Education Evaluation Project for 16 University Affiliated Facilities (UAF) centers provides a chronological review of the project which focused on the training of persons to work with mentally retarded or other handicapped individuals. Outlined are project objectives including the development of descriptors useful…

  12. Project Nuclotron-based Ion Collider fAcility at JINR

    NASA Astrophysics Data System (ADS)

    Kekelidze, V. D.; Matveev, V. A.; Meshkov, I. N.; Sorin, A. S.; Trubnikov, G. V.

    2017-09-01

    The project of Nuclotron-based Ion Collider fAcility (NICA) that is under development at JINR (Dubna) is presented. The general goals of the project are experimental studies of both hot and dense baryonic matter and spin physics (in collisions of polarized protons and deuterons). The first program requires providing of heavy ion collisions in the energy range of √ {{s_{NN}}} = 4-11 Gev at average luminosity of L = 1 × 1027 cm-2 s-1 for 197Au79+ nuclei. The polarized beams mode is proposed to be used in energy range of √ {{s_{NN}}} = 12-27 Gev (protons at luminosity of L ≥ 1 × 1030 cm-2 s-1. The report contains description of the facility scheme and its characteristics in heavy ion operation mode. The Collider will be equipped with two detectors—MultiPurpose Detector (MPD), which is in an active stage of construction, and Spin Physics Detector (SPD) that is in the stage of conceptual design. Fixed target experiment "Baryonic matter at Nuclotron" (BM@N) will be performed in very beginning of the project. The wide program of applied researches at NICA facility is being developed as well.

  13. Overview of the NASA Dryden Flight Research Facility aeronautical flight projects

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.

    1992-01-01

    Several principal aerodynamics flight projects of the NASA Dryden Flight Research Facility are discussed. Key vehicle technology areas from a wide range of flight vehicles are highlighted. These areas include flight research data obtained for ground facility and computation correlation, applied research in areas not well suited to ground facilities (wind tunnels), and concept demonstration.

  14. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  15. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, andmore » the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.« less

  16. The Ohio School Facilities Commission. Revamping the State's School Construction Projects.

    ERIC Educational Resources Information Center

    De Patta, Joe

    2001-01-01

    Presents an interview with the Ohio School Facilities Commission's (OSFC) Executive Director who discusses the OSFC's history and its work in managing K-12 school facilities throughout the state. Topics include its efforts to help school districts get bond measures on ballets, funding projects, and its "Partnering Program" for construction…

  17. National Ignition Facility Project: An Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, W J; Moses, E; Warner, B

    2000-12-07

    The National Ignition Facility (NIF) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This papermore » will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.« less

  18. Modeling Tool to Quantify Metal Sources in Stormwater Discharges at Naval Facilities (NESDI Project 455)

    DTIC Science & Technology

    2014-06-01

    TECHNICAL REPORT 2077 June 2014 Modeling Tool to Quantify Metal Sources in Stormwater Discharges at Naval Facilities (NESDI Project 455... Stormwater Discharges at Naval Facilities (NESDI Project 455) Final Report and Guidance C. Katz K. Sorensen E. Arias SSC Pacific R. Pitt L. Talebi...demonstration/validation project to assess the use of the urban stormwater model Windows Source Loading and Management Model (WinSLAMM) to characterize

  19. Environmental Projects. Volume 9: Construction of hazardous materials storage facilities

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards. This report is one in a series of reports describing environmental projects at GDSCC. The construction of two hazardous materials and wastes storage facilities and an acid-wash facility is described. An overview of the Goldstone complex is also presented along with a description of the environmental aspects of the GDSCC site.

  20. 76 FR 20707 - Cle Elum Dam Fish Passage Facilities and Fish Reintroduction Project; Kittitas County, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation [INT-FES 11-02] Cle Elum Dam Fish Passage Facilities and Fish Reintroduction Project; Kittitas County, WA AGENCY: Bureau of Reclamation, Interior... Fish Passage Facilities and Fish Reintroduction Project. SUMMARY: The Bureau of Reclamation...

  1. Evaluation of Nuclear Facility Decommissioning Projects program: a reference research reactor. Project summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, B.L.; Miller, R.L.

    1983-10-01

    This document presents, in summary form, generic conceptual information relevant to the decommissioning of a reference research reactor (RRR). All of the data presented were extracted from NUREG/CR-1756 and arranged in a form that will provide a basis for future comparison studies for the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program.

  2. The National Ignition Facility Project: An Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, W.J.; Moses, E.; Warner, B.

    2000-12-07

    The National Ignition Facility (NIT) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beam path infrastructure has been reconsidered and a new approach has been developed. Thismore » paper will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.« less

  3. Enhanced Spectral Analysis of SEP Reservoir Events by OMNIWeb Multi-Source Browse Services of the Space Physics Data Facility and the Virtual Energetic Particle Observatory

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Papitashvili, Natalia E.; Johnson, Rita C.; McGuire, Robert

    2015-04-01

    The NASA Space Physics Data Facility and Virtual Energetic Particle Observatory (VEPO) have jointly upgraded the highly used OMNIWeb services for heliospheric solar wind data to also include energetic electron, proton, and heavier ion data in a variety of graphical browse formats. The underlying OMNI and VEPO data now span just over a half century from 1963 to the present. The new services include overlay of differential flux spectra from multiple instruments and spacecraft, scatter plots of fluxes from two user-selected energy channels, distribution function histograms of selected parameters, and spectrograms of flux vs. energy and time. Users can also overlay directional flux spectra from different angular channels. Data from most current and some past (Helios 1&2, Pioneer 10&11) heliospheric spacecraft and instruments are wholly or partially covered by these evolving new services. The traditional OMNI service of correlating magnetic field and plasma data from L1 to 1 AU solar wind sources is also being extended for other spacecraft, e.g. Voyager 1 and 2, to correlations with energetic particle channels. The user capability is, for example, demonstrated to rapidly scan through particle flux spectra from consecutive time periods for so-called “reservoir” events, in which solar energetic particle flux spectra converge in shape and amplitude from multiple spacecraft sources within the inner heliosphere. Such events are important for understanding spectral evolution of global heliospheric events and for intercalibration of flux data from multiple instruments of the same and different spacecraft. These services are accessible at http://omniweb.gsfc.nasa.gov/. SPDF and VEPO are separately accessible at http://spdf.gsfc.nasa.gov/ and http://vepo.gsfc.nasa.gov/.In the future we will propose to extend OMNIWeb particle flux data coverage to the plasma and suprathermal energy range.

  4. Manhattan Project buildings and facilities at the Hanford Site: A construction history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, M.S.

    1993-09-01

    This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

  5. The DE-PHARM Project: A Pharmacist-Driven Deprescribing Initiative in a Nursing Facility.

    PubMed

    Pruskowski, Jennifer; Handler, Steven M

    2017-08-01

    Many residents with life-limiting illnesses are being prescribed and taking potentially inappropriate medications (PIMs) and questionably beneficial medications either near or at the end of life. These medications can contribute to adverse drug reactions, increase morbidity, and increase unnecessary burden and cost. It is crucial that the process of deprescribing be incorporated into the care of these residents. After developing a clinical pharmacist-driven deprescribing initiative in the nursing facility, the objective of this project was to reduce the number of PIMs via accepted recommendations from the clinical pharmacist to the primary team. The Discussion to Ensure the Patient-centered, Health-focused, prognosis-Appropriate, and Rational Medication regimen (DE-PHARM) quality improvement-approved project was conducted in an urban, academic nursing facility in Pittsburgh, Pennsylvania. The pilot phase occurred between October 2015 and April 2016. To be included in this study, participants had to be a custodial resident of the nursing facility with a previously documented comfort-focused treatment plan. All medications used for the management of chronic comorbid diseases were eligible for review. Forty-seven residents managed by eight different primary teams met inclusion criteria. Thirty-nine recommendations for 23 residents were made by the clinical pharmacist, with an average of 0.82 and range of 0-5 recommendations per resident, respectively. Of those, only 10 (26%) were accepted, 1 (3%) was modified, 3 (7%) were rejected, and 25 (64%) had no response within the 120-day response period. Additionally, two residents died during the project, and one resident was readmitted to the hospital for a prolonged period of time. The pilot phase of the DE-PHARM project, a clinical pharmacist-driven deprescribing initiative, was designed and assessed. This project demonstrated the feasibility of such an initiative. Because of the complexity of such a process, special

  6. Purdue University National Biomedical Tracer Facility: Project definition phase. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, M.A.

    The proposed National Biomedical Tracer Facility (NBTF) will house a high-current accelerator dedicated to production of short-lived radionuclides for biomedical and scientific research. The NBTF will play a vital role in repairing and maintaining the United States` research infrastructure for generation of essential accelerator-based radioisotopes. If properly designed and managed, the NBTF should also achieve international recognition as a Center-of-Excellence for research on radioisotope production methods and for associated education and training. The current report documents the results of a DOE-funded NBTF Project Definition Phase study carried out to better define the technical feasibility and projected costs of establishing andmore » operating the NBTF. This report provides an overview of recommended Facility Design and Specifications, including Accelerator Design, Building Design, and the associated Construction Cost Estimates and Schedule. It is recommended that the NBTF be established as an integrated, comprehensive facility for meeting the diverse production, research, and educational missions set forth in previous documents. Based on an analysis of the projected production demands that will be placed on the NBTF, it appears that a 70 MeV, 1 mA, negative ion cyclotron will offer a good balance between production capabilities and the costs of accelerator purchase and operation. A preliminary architectural plan is presented for a facility designed specifically to fulfill the functions of the NBTF in a cost-effective manner. This report also presents a detailed analysis of the Required Federal State, and Local Permits that may be needed to establish the NBTF, along with schedules and cost estimates for obtaining these permits. The Handling, Storage, and Disposal of Radioactive Waste will pose some significant challenges in the operation of the NBTF, but at this stage of planning the associated problems do not appear to be prohibitive.« less

  7. The ISOLDE facility and the HIE-HISOLDE project: Recent highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borge, M. J. G.

    2014-07-23

    The ISOLDE facility at CERN has as objective the production, study and research of nuclei far from stability. The facility provides low energy radioactive beams and post-accelerated beams. In the last 45 years the ISOLDE facility has gathered unique expertise in research with radioactive beams. Over 700 isotopes of more than 70 elements have been used in a wide range of research domains, including cutting edge studies in nuclear structure, atomic physics, nuclear astrophysics, and fundamental interactions. These nuclear probes are also used to do frontier research in solid state and life sciences. There is an on-going upgrade of themore » facility, the HIE-ISOLDE project, which aims to improve the ISOLDE capabilities in a wide front, from an energy increase of the post-accelerated beam to improvements in beam quality and beam purity. The first phase of HIE-ISOLDE will start for physics in the autumn of 2015 with an upgrade of energy for all post-accelerated ISOLDE beams up to 5.5 MeV/u. In this contribution the most recent highlights of the facility are presented.« less

  8. Heliophysics Legacy Data Restoration

    NASA Astrophysics Data System (ADS)

    Candey, R. M.; Bell, E. V., II; Bilitza, D.; Chimiak, R.; Cooper, J. F.; Garcia, L. N.; Grayzeck, E. J.; Harris, B. T.; Hills, H. K.; Johnson, R. C.; Kovalick, T. J.; Lal, N.; Leckner, H. A.; Liu, M. H.; McCaslin, P. W.; McGuire, R. E.; Papitashvili, N. E.; Rhodes, S. A.; Roberts, D. A.; Yurow, R. E.

    2016-12-01

    The Space Physics Data Facility (SPDF) spdf.gsfc.nasa.gov>, in collaboration with the National Space Science Data Coordinated Archive (NSSDCA), is converting datasets from older NASA missions to online storage. Valuable science is still buried within these datasets, particularly by applying modern algorithms on computers with vastly more storage and processing power than available when originally measured, and when analyzed in conjunction with other data and models. The data were also not readily accessible as archived on 7- and 9-track tapes, microfilm and microfiche and other media. Although many datasets have now been moved online in formats that are readily analyzed, others will still require some deciphering to puzzle out the data values and scientific meaning. There is an ongoing effort to convert the datasets to a modern Common Data Format (CDF) and add metadata for use in browse and analysis tools such as CDAWeb .

  9. Educational Facility Design and Project Based Learning: "The Real Connection"

    ERIC Educational Resources Information Center

    Schrader, David L.; Sole, John

    2009-01-01

    There is a case to be made for the integration of the Project Based Service Learning (PBSL) process and the design and construction of educational facilities. A growing body of research supports the notion that the formulaic educational system of the last hundred years may no longer serve the learning styles of new and future generations. Their…

  10. Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollar, Lenka; Mathews, Caroline E.

    This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In ordermore » to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.« less

  11. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, N.

    1995-05-02

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

  12. Education & Collection Facility GSHP Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joplin, Jeff

    The Denver Museum of Nature & Science (DMNS) designed and implemented an innovative ground source heat pump (GSHP) system for heating and cooling its new Education and Collection Facility (ECF) building addition. The project goal was to successfully design and install an open-loop GSHP system that utilized water circulating within an underground municipal recycled (non-potable) water system as the heat sink/source as a demonstration project. The expected results were to significantly reduce traditional GSHP installation costs while increasing system efficiency, reduce building energy consumption, require significantly less area and capital to install, and be economically implemented wherever access to amore » recycled water system is available. The project added to the understanding of GSHP technology by implementing the first GSHP system in the United States utilizing a municipal recycled water system as a heat sink/source. The use of this fluid through a GSHP system has not been previously documented. This use application presents a new opportunity for local municipalities to develop and expand the use of underground municipal recycled (non-potable) water systems. The installation costs for this type of technology in the building structure would be a cost savings over traditional GSHP costs, provided the local municipal infrastructure was developed. Additionally, the GSHP system functions as a viable method of heat sink/source as the thermal characteristics of the fluid are generally consistent throughout the year and are efficiently exchanged through the GSHP system and its components. The use of the recycled water system reduces the area required for bore or loop fields; therefore, presenting an application for building structures that have little to no available land use or access. This GSHP application demonstrates the viability of underground municipal recycled (non-potable) water systems as technically achievable, environmentally supportive, and an

  13. [Interdisciplinary Cooperation as a Characteristic of Successful Rehabilitation Facilities--Results from the Project MeeR].

    PubMed

    Kleineke, V; Stamer, M; Zeisberger, M; Brandes, I; Meyer, T

    2015-08-01

    To determine if there is a difference between successful and less successful rehabilitation facilities concerning their extent and quality of interdisciplinary cooperation? This analysis is part of the project MeeR, that aims to identify characteristics of rehabilitation facilities related to successful rehabilitation. 6 facilities were recruited based on a quantitative analysis; 3 facilities that ranked as above average and 3 as below average in terms of their success in rehabilitating patients. Comprehensive qualitative data were collected on these 6 facilities. In above average rehabilitation facilities, the extent of interdisciplinary cooperation was higher than in below average facilities; the position of the medical profession was less dominant and there was a wider access to team meetings. Promotion of interdisciplinary cooperation is an important component for the improvement of the success of rehabilitation facilities. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Influence of computational fluid dynamics on experimental aerospace facilities: A fifteen year projection

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An assessment was made of the impact of developments in computational fluid dynamics (CFD) on the traditional role of aerospace ground test facilities over the next fifteen years. With improvements in CFD and more powerful scientific computers projected over this period it is expected to have the capability to compute the flow over a complete aircraft at a unit cost three orders of magnitude lower than presently possible. Over the same period improvements in ground test facilities will progress by application of computational techniques including CFD to data acquisition, facility operational efficiency, and simulation of the light envelope; however, no dramatic change in unit cost is expected as greater efficiency will be countered by higher energy and labor costs.

  15. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36more » was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  16. The radioactive ion beams facility project for the legnaro laboratories

    NASA Astrophysics Data System (ADS)

    Tecchio, Luigi B.

    1999-04-01

    In the frame work of the Italian participation to the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involving in the design and construction of prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has been already financially supported and the work is actually in progress. In this context, the LNL has been proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by using the ISOL method. The final goal consists in the production of neutron rich RIBs with masses ranging from 80 to 160 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is proposed to be developed in about 10 years from now and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). In such period of time is proposed the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production, to the BNCT applications and to the neutron physics. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed.

  17. Space Station Furnace Facility Preliminary Project Implementation Plan (PIP). Volume 2, Appendix 2

    NASA Technical Reports Server (NTRS)

    Perkey, John K.

    1992-01-01

    The Space Station Furnace Facility (SSFF) is an advanced facility for materials research in the microgravity environment of the Space Station Freedom and will consist of Core equipment and various sets of Furnace Module (FM) equipment in a three-rack configuration. This Project Implementation Plan (PIP) document was developed to satisfy the requirements of Data Requirement Number 4 for the SSFF study (Phase B). This PIP shall address the planning of the activities required to perform the detailed design and development of the SSFF for the Phase C/D portion of this contract.

  18. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    PubMed

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry. © The Author(s) 2016.

  19. Project Village conceptual plans. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project, Converse County, Wyoming; proposed housing facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    The WyCoal Project Village is a housing facility proposed adjacent to the Wyoming Coal Gasification Project plant construction site that would accommodate single workers in dormitory units and singles or couples at a recreation vehicle park. Centralized services and recreational facilities are also to be provided. The provision for some mobile home units to be used in lieu of RV spaces has been considered but would be developed only if a strong demonstrated demand from singles and couples required such a provision. No children will be allowed at the Project Village as accommodations for families will be available in themore » town of Douglas. The development program for the Project Village calls for a total plan capacity of 225 living units: 1500 dormitory rooms and 750 recreational vehicle spaces. However, the total units to be developed will not exceed 1800 with peak employment, including couples at the Recreational Vehicle Park, not anticipated to exceed 2000. The flexibility within the maximum plan capacity of 2250 will allow for the development of an appropriate balance of housing units geared to the on-site project demands as plant construction occurs. At this time a mix of approximately 1200 dormitory rooms and 600 RV spaces appears appropriate for planning purposes.« less

  20. [Psychiatric residential care facilities in the Puglia region. Phase 1 results of the PROGRES project].

    PubMed

    Germinario, Cinzia; Semisa, Domenico; Picoco, Fulvio; Prato, Rosa; Lopalco, Pietro Luigi; Quarto, Michele

    2004-01-01

    One of the more important aspects of the psychiatric care reform in Italy has been the opening of a great number of psychiatric Non-Hospital Residential Facilities (NHRF). However, 22 years have elapsed since the reform and there are still very scarce data regarding such facilities, the type of patients being accomodated, and the types of treatments provided. The "PROGRES" (PROGetto RESidenze - Residential Project) project is the first national study regarding NHRFs ever carried out in Italy. The objectives of "PROGRES" are to make a survey of all NHRFs in Italy (Phase 1) and to perform a detailed assessment of 20% of the surveyed facilities and of the type of patients being treated (Phase 2). This paper reports the survey (Phase 1) results for the Puglia Region. As of March 31, 2003, 113 psychiatric residential facilities were present in Puglia, with a total of 1.479 beds. This results in an average of 13,08 beds per facility and a rate of 3,86 beds per 10.000 inhabitants. The number of NHRFs present in the territory of each Local Health Unit in Puglia is very variable. Most NHRFs (57%) opened after January 1997. Eighty-three percent have a 24-hour staff coverage while only 5,3% has a 2-hour staff coverage. Eighty five percent of the residential facilities are financed by the Italian National Healthcare System, while a small percentage is privately funded. In over half (69,93%) of the NHRFs the predominant patient age group is 40-59 years; 26,4% of the residential facilities accommodate patients below age 40 and only 3,53% accommodate patients over 60 years old.

  1. Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1995-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate themore » facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.« less

  2. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krabacher, J.E.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52more » was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  3. Considerations on Facilities Planning

    ERIC Educational Resources Information Center

    Baule, Steven

    2007-01-01

    Most facilities renovation projects occur because someone at the executive or board level has lobbied successfully for them. Often in public schools, the voters have agreed to the project as well via a building referendum. Therefore, facilities projects are highly visible to the community. Unlike many other issues in schools, facilities projects…

  4. Enhancing resiliency for elderly populations : Shelter-in-place planning and training at facilities serving elderly populations through the Rhode Island Senior Resiliency Project.

    PubMed

    Smith, Richard; Mozzer, Michael; Albanese, Joseph; Paturas, James; Gold, Julia

    2017-06-01

    Elderly populations are disproportionately affected by disasters. In part, this is true because for many older adults, special assistance is needed to mitigate the consequences of disasters on their health and wellbeing. In addition, many older adults may reside in diverse living complexes such as long-term care facilities, assisted living facilities and independent-living senior housing complexes. Planning for each type of facility is different and the unique features of these facilities must be considered to develop readiness to deal with disasters. Based on this, the Rhode Island Department of Health established the Senior Resiliency Project to bolster the level of resiliency for the types of living facilities housing older adults. The project involves performing onsite assessments of energy resources, developing site-specific sheltering-inplace and energy resiliency plans, and educating and training facility employees and residents on these plans and steps they can take to be better prepared. Based on the feasibility of conducting these activities within a variety of facilities housing older adults, the project is segmented into three phases. This paper describes survey findings, outcomes of interventions, challenges and recommendations for bridging gaps observed in phases 1 and 2 of the project.

  5. Evaluation of Nuclear Facility Decommissioning Projects program: a reference test reactor. Project summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boing, L.E.; Miller, R.L.

    1983-10-01

    This document presents, in summary form, generic conceptual information relevant to the decommissioning of a reference test reactor (RTR). All of the data presented were extracted from NUREG/CR-1756 and arranged in a form that will provide a basis for future comparison studies for the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program. During the data extraction process no attempt was made to challenge any of the assumptions used in the original studies nor was any attempt made to update assumed methods or processes to state-of-the-art decommissioning techniques. In a few instances obvious errors were corrected after consultation with the studymore » author.« less

  6. Final report of the decontamination and decommissioning of Building 34 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, was also the remedialmore » action contractor. Building 34 was radiologically contaminated and the building was demolished in 1996. The soil area within the footprint of the building was analyzed and found to be not contaminated. The area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual closeout report for each contaminated GJPO building.« less

  7. Final report of the decontamination and decommissioning of Building 44 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial actionmore » contractor. Building 44 was radiologically contaminated and the building was demolished in 1994. The soil area within the footprint of the building was not contaminated; it complies with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  8. 75 FR 877 - Cancellation of the South Valley Facilities Expansion Project-Clark County, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... DEPARTMENT OF INTERIOR Bureau of Reclamation Cancellation of the South Valley Facilities Expansion Project-- Clark County, NV AGENCY: Bureau of Reclamation, Interior. ACTION: Cancellation of Notice of Intent to prepare the Environmental Impact Statement. SUMMARY: The Bureau of Reclamation, together with...

  9. Management aspects of Gemini's base facility operations project

    NASA Astrophysics Data System (ADS)

    Arriagada, Gustavo; Nitta, Atsuko; Adamson, A. J.; Nunez, Arturo; Serio, Andrew; Cordova, Martin

    2016-08-01

    Gemini's Base Facilities Operations (BFO) Project provided the capabilities to perform routine nighttime operations without anyone on the summit. The expected benefits were to achieve money savings and to become an enabler of the future development of remote operations. The project was executed using a tailored version of Prince2 project management methodology. It was schedule driven and managing it demanded flexibility and creativity to produce what was needed, taking into consideration all the constraints present at the time: Time available to implement BFO at Gemini North (GN), two years. The project had to be done in a matrix resources environment. There were only three resources assigned exclusively to BFO. The implementation of new capabilities had to be done without disrupting operations. And we needed to succeed, introducing the new operational model that implied Telescope and instrumentation Operators (Science Operations Specialists - SOS) relying on technology to assess summit conditions. To meet schedule we created a large number of concurrent smaller projects called Work Packages (WP). To be reassured that we would successfully implement BFO, we initially spent a good portion of time and effort, collecting and learning about user's needs. This was done through close interaction with SOSs, Observers, Engineers and Technicians. Once we had a clear understanding of the requirements, we took the approach of implementing the "bare minimum" necessary technology that would meet them and that would be maintainable in the long term. Another key element was the introduction of the "gradual descent" concept. In this, we increasingly provided tools to the SOSs and Observers to prevent them from going outside the control room during nighttime operations, giving them the opportunity of familiarizing themselves with the new tools over a time span of several months. Also, by using these tools at an early stage, Engineers and Technicians had more time for debugging

  10. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2015-01-01

    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  11. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. For the purposes of this Guide, large-scale Federal renewable energy projects are defined as renewable energy facilities larger than 10 megawatts (MW) that are sited on Federal property and lands and typically financed and owned by third parties.1 The U.S. Department of Energy’s Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessarymore » private capital to complete them. This Guide is intended to provide a general resource that will begin to develop the Federal employee’s awareness and understanding of the project developer’s operating environment and the private sector’s awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this Guide has been organized to match Federal processes with typical phases of commercial project development. FEMP collaborated with the National Renewable Energy Laboratory (NREL) and professional project developers on this Guide to ensure that Federal projects have key elements recognizable to private sector developers and investors. The main purpose of this Guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project. This framework begins the translation between the Federal and private sector operating environments. When viewing the overall« less

  12. Finding, Browsing and Getting Data Easily Using SPDF Web Services

    NASA Technical Reports Server (NTRS)

    Candey, R.; Chimiak, R.; Harris, B.; Johnson, R.; Kovalick, T.; Lal, N.; Leckner, H.; Liu, M.; McGuire, R.; Papitashvili, N.; hide

    2010-01-01

    The NASA GSFC Space Physics Data Facility (5PDF) provides heliophysics science-enabling information services for enhancing scientific research and enabling integration of these services into the Heliophysics Data Environment paradigm, via standards-based approach (SOAP) and Representational State Transfer (REST) web services in addition to web browser, FTP, and OPeNDAP interfaces. We describe these interfaces and the philosophies behind these web services, and show how to call them from various languages, such as IDL and Perl. We are working towards a "one simple line to call" philosophy extolled in the recent VxO discussions. Combining data from many instruments and missions enables broad research analysis and correlation and coordination with other experiments and missions.

  13. Final report of the decontamination and decommission of Building 31 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krabacher, J.E.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial actionmore » contractor. Radiological contamination was identified in Building 31 and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This area was addressed in the summary final report of the remediation of the exterior areas of the GJPO facility. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  14. Metrology for decommissioning nuclear facilities: Partial outcomes of joint research project within the European Metrology Research Program.

    PubMed

    Suran, Jiri; Kovar, Petr; Smoldasova, Jana; Solc, Jaroslav; Van Ammel, Raf; Garcia Miranda, Maria; Russell, Ben; Arnold, Dirk; Zapata-García, Daniel; Boden, Sven; Rogiers, Bart; Sand, Johan; Peräjärvi, Kari; Holm, Philip; Hay, Bruno; Failleau, Guillaume; Plumeri, Stephane; Laurent Beck, Yves; Grisa, Tomas

    2018-04-01

    Decommissioning of nuclear facilities incurs high costs regarding the accurate characterisation and correct disposal of the decommissioned materials. Therefore, there is a need for the implementation of new and traceable measurement technologies to select the appropriate release or disposal route of radioactive wastes. This paper addresses some of the innovative outcomes of the project "Metrology for Decommissioning Nuclear Facilities" related to mapping of contamination inside nuclear facilities, waste clearance measurement, Raman distributed temperature sensing for long term repository integrity monitoring and validation of radiochemical procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Final report of the decontamination and decommissioning of Building 1 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 1more » was found to be radiologically contaminated and was demolished in 1996. The soil beneath and adjacent to the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  16. EERC pilot-scale CFBC evaluation facility Project CFB test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, M.D.; Hajicek, D.R.; Henderson, A.K.

    Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors' designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvaniamore » bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550[degree]F, with low-rank coals having optimal sulfur capture approximately 100[degree]F lower.« less

  17. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J.

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility tomore » meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)« less

  18. Final report of the decontamination and decommissioning of Building 6 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial actionmore » contractor. Radiological contamination was identified in Building 6, and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  19. Final report of the decontamination and decommissioning of Building 39 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. The soilmore » beneath Building 39 was radiologically contaminated and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  20. Final report of the decontamination and decommissioning of Building 18 at the Grand Junction Projects Office Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. The soilmore » beneath Building 18 was found to be radiologically contaminated; the building was not contaminated. The soil was remediated in accordance with identified standards. Building 18 and the underlying soil can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.« less

  1. Modernizing sports facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dustin, R.

    Modernization and renovation of sports facilities challenge the design team to balance a number of requirements: spectator and owner expectations, existing building and site conditions, architectural layouts, code and legislation issues, time constraints and budget issues. System alternatives are evaluated and selected based on the relative priorities of these requirements. These priorities are unique to each project. At Alexander Memorial Coliseum, project schedules, construction funds and facility usage became the priorities. The ACC basketball schedule and arrival of the Centennial Olympics dictated the construction schedule. Initiation and success of the project depended on the commitment of the design team tomore » meet coliseum funding levels established three years ago. Analysis of facility usage and system alternative capabilities drove the design team to select a system that met the project requirements and will maximize the benefits to the owner and spectators for many years to come.« less

  2. Report: American Recovery and Reinvestment Act Site Visit of the Wastewater Treatment Facility Improvements Project, Perkins, Oklahoma

    EPA Pesticide Factsheets

    Report #11-R-0214, May 2, 2011. We conducted an unannounced visit of the construction site of the Perkins Public Works Authority’s wastewater treatment facility improvements project in Perkins, Oklahoma, on April 19–22, 2010.

  3. Energy Savings and Sustainability Opportunities at US Army Corps of Engineers Facilities: A Guide to Identify, Prioritize, and Estimate Projects at Complexes That Have Not Conducted a Facility-Level Energy and Water Evaluation

    DTIC Science & Technology

    2012-06-16

    Engineers to help identify and develop energy and water conservation projects in the facilities for which they are responsible. DISCLAIMER: The...and water throughout their facility. To identify energy and water conservation measures (ECMs), an energy manager would generally start by performing...an Energy and Water Conservation Assessment, essentially a facility-level evaluation of the en- ergy and water consuming equipment and systems that

  4. National Biomedical Tracer Facility. Project definition study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafer, R.

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research:more » fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.« less

  5. The NTF as a national facility. [project planning

    NASA Technical Reports Server (NTRS)

    Nicks, O. W.

    1977-01-01

    Activities which led to the definition of the National Transonic Facility and the general agreements reached regarding its use and operations are reviewed. Topics discussed include: redefinition of test requirements, development of low cost options, consideration of a single transonic facility using existing hardware if feasible, facility concept recommendations, and acquisition schedule proposals.

  6. 7 CFR Appendix D to Subpart E of... - Alcohol Production Facilities Planning, Performing, Development and Project Control

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... imposed by construction, equipment, material or service contracts, penalty payments, damage claims, awards... consultants with suitable experience, training and professional competence in the design and construction of... engineering services for design and construction inspection for all project facilities. Resident inspection by...

  7. 7 CFR Appendix D to Subpart E of... - Alcohol Production Facilities Planning, Performing, Development and Project Control

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... imposed by construction, equipment, material or service contracts, penalty payments, damage claims, awards... consultants with suitable experience, training and professional competence in the design and construction of... engineering services for design and construction inspection for all project facilities. Resident inspection by...

  8. Waste receiving and processing facility module 1 data management system software project management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, R.E.

    1994-11-02

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  9. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael R. Kruzic

    2007-09-16

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facilitymore » Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.« less

  10. 30 CFR 285.651 - When may I construct complex or significant OCS facilities on my limited lease or any facilities...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and Information... facilities on my limited lease or any facilities on my project easement proposed under my GAP? 285.651... facilities on my limited lease or any facilities on my project easement proposed under my GAP? If you are...

  11. Making of the NSTX Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Neumeyer; M. Ono; S.M. Kaye

    1999-11-01

    The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.

  12. [Educational Facilities for Pregnant School-Age Girls in Districts 3, 4, 12, 13, and 18. Project No. 1369. Evaluation of ESEA Title I Projects in New York City 1968-69.

    ERIC Educational Resources Information Center

    Appel, Yetta; Berken, Ruth R.

    This project for pregnant school age girls is an ESEA Title I program operating in five facilities in Manhattan, Bronx, and Brooklyn. The primary objective of the project was to assist pregnant school age girls complete their education by being able to attend school. Additional objectives included provision of information and training in personal…

  13. Common Data Format (CDF) and Coordinated Data Analysis Web (CDAWeb)

    NASA Technical Reports Server (NTRS)

    Candey, Robert M.

    2010-01-01

    The Coordinated Data Analysis Web (CDAWeb) data browsing system provides plotting, listing and open access v ia FTP, HTTP, and web services (REST, SOAP, OPeNDAP) for data from mo st NASA Heliophysics missions and is heavily used by the community. C ombining data from many instruments and missions enables broad resear ch analysis and correlation and coordination with other experiments a nd missions. Crucial to its effectiveness is the use of a standard se lf-describing data format, in this case, the Common Data Format (CDF) , also developed at the Space Physics Data facility spdf.gsfc.nasa.gov> , and the use of metadata standa rds (easily edited with SKTeditor ). CDAweb is based on a set of IDL routines, CDAWlib . . The CDF project also maintains soft ware and services for translating between many standard formats (CDF. netCDF, HDF, FITS, XML) .

  14. Materials sciences research. [research facilities, research projects, and technical reports of materials tests

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Research projects involving materials research conducted by various international test facilities are reported. Much of the materials research is classified in the following areas: (1) acousto-optic, acousto-electric, and ultrasonic research, (2) research for elucidating transport phenomena in well characterized oxides, (3) research in semiconductor materials and semiconductor devices, (4) the study of interfaces and interfacial phenomena, and (5) materials research relevant to natural resources. Descriptions of the individual research programs are listed alphabetically by the name of the author and show all personnel involved, resulting publications, and associated meeting speeches.

  15. Project for the development of the linac based NCT facility in University of Tsukuba.

    PubMed

    Kumada, H; Matsumura, A; Sakurai, H; Sakae, T; Yoshioka, M; Kobayashi, H; Matsumoto, H; Kiyanagi, Y; Shibata, T; Nakashima, H

    2014-06-01

    A project team headed by University of Tsukuba launched the development of a new accelerator based BNCT facility. In the project, we have adopted Radio-Frequency Quadrupole (RFQ)+Drift Tube Linac (DTL) type linac as proton accelerators. Proton energy generated from the linac was set to 8MeV and average current was 10mA. The linac tube has been constructed by Mitsubishi Heavy Industry Co. For neutron generator device, beryllium is selected as neutron target material; high intensity neutrons are generated by the reaction with beryllium and the 80kW proton beam. Our team chose beryllium as the neutron target material. At present beryllium target system is being designed with Monte-Carlo estimations and heat analysis with ANSYS. The neutron generator consists of moderator, collimator and shielding. It is being designed together with the beryllium target system. We also acquired a building in Tokai village; the building has been renovated for use as BNCT treatment facility. It is noteworthy that the linac tube had been installed in the facility in September 2012. In BNCT procedure, several medical devices are required for BNCT treatment such as treatment planning system, patient positioning device and radiation monitors. Thus these are being developed together with the linac based neutron source. For treatment planning system, we are now developing a new multi-modal Monte-Carlo treatment planning system based on JCDS. The system allows us to perform dose estimation for BNCT as well as particle radiotherapy and X-ray therapy. And the patient positioning device can navigate a patient to irradiation position quickly and properly. Furthermore the device is able to monitor movement of the patient׳s position during irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A Program Management Framework for Facilities Managers

    ERIC Educational Resources Information Center

    King, Dan

    2012-01-01

    The challenge faced by senior facility leaders is not how to execute a single project, but rather, how to successfully execute a large program consisting of hundreds of projects. Senior facilities officers at universities, school districts, hospitals, airports, and other organizations with extensive facility inventories, typically manage project…

  17. Optimizing charge breeding techniques for ISOL facilities in Europe: Conclusions from the EMILIE project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delahaye, P., E-mail: delahaye@ganil.fr; Jardin, P.; Maunoury, L.

    The present paper summarizes the results obtained from the past few years in the framework of the Enhanced Multi-Ionization of short-Lived Isotopes for Eurisol (EMILIE) project. The EMILIE project aims at improving the charge breeding techniques with both Electron Cyclotron Resonance Ion Sources (ECRIS) and Electron Beam Ion Sources (EBISs) for European Radioactive Ion Beam (RIB) facilities. Within EMILIE, an original technique for debunching the beam from EBIS charge breeders is being developed, for making an optimal use of the capabilities of CW post-accelerators of the future facilities. Such a debunching technique should eventually resolve duty cycle and time structuremore » issues which presently complicate the data-acquisition of experiments. The results of the first tests of this technique are reported here. In comparison with charge breeding with an EBIS, the ECRIS technique had lower performance in efficiency and attainable charge state for metallic ion beams and also suffered from issues related to beam contamination. In recent years, improvements have been made which significantly reduce the differences between the two techniques, making ECRIS charge breeding more attractive especially for CW machines producing intense beams. Upgraded versions of the Phoenix charge breeder, originally developed by LPSC, will be used at SPES and GANIL/SPIRAL. These two charge breeders have benefited from studies undertaken within EMILIE, which are also briefly summarized here.« less

  18. Planning and managing future space facility projects. [management by objectives and group dynamics

    NASA Technical Reports Server (NTRS)

    Sieber, J. E.; Wilhelm, J. A.; Tanner, T. A.; Helmreich, R. L.; Burgenbauch, S. F.

    1979-01-01

    To learn how ground-based personnel of a space project plan and organize their work and how such planning and organizing relate to work outcomes, longitudinal study of the management and execution of the Space Lab Mission Development Test 3 (SMD 3) was performed at NASA Ames Research Center. A view of the problems likely to arise in organizations and some methods of coping with these problems are presented as well as the conclusions and recommendations that pertain strictly to SMD 3 management. Emphasis is placed on the broader context of future space facility projects and additional problems that may be anticipated. A model of management that may be used to facilitate problem solving and communication - management by objectives (MBO) is presented. Some problems of communication and emotion management that MBO does not address directly are considered. Models for promoting mature, constructive and satisfying emotional relationships among group members are discussed.

  19. Facilities for US Radioastronomy.

    ERIC Educational Resources Information Center

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  20. Empowering Facilities Teams through Technology

    ERIC Educational Resources Information Center

    Cormier, Scott

    2013-01-01

    Facilities departments at colleges and universities are facing the same challenge: how not to do just the most projects, but also the right projects with the limited funds they are given. In order to make the best decisions, they need more control over the capital planning process, which requires accurate, current facility condition data. Each…

  1. Complementary and Integrative Healthcare in a Long-term Care Facility: A Pilot Project.

    PubMed

    Evans, Roni; Vihstadt, Corrie; Westrom, Kristine; Baldwin, Lori

    2015-01-01

    The world's population is aging quickly, leading to increased challenges of how to care for individuals who can no longer independently care for themselves. With global social and economic pressures leading to declines in family support, increased reliance is being placed on community- and government-based facilities to provide long-term care (LTC) for many of society's older citizens. Complementary and integrative healthcare (CIH) is commonly used by older adults and may offer an opportunity to enhance LTC residents' wellbeing. Little work has been done, however, rigorously examining the safety and effectiveness of CIH for LTC residents. The goal of this work is to describe a pilot project to develop and evaluate one model of CIH in an LTC facility in the Midwestern United States. A prospective, mixed-methods pilot project was conducted in two main phases: (1) preparation and (2) implementation and evaluation. The preparation phase entailed assessment, CIH model design and development, and training. A CIH model including acupuncture, chiropractic, and massage therapy, guided by principles of collaborative integration, evidence informed practice, and sustainability, was applied in the implementation and evaluation phase. CIH services were provided for 16 months in the LTC facility. Quantitative data collection included pain, quality of life, and adverse events. Qualitative interviews of LTC residents, their family members, and LTC staff members queried perceptions of CIH services. A total of 46 LTC residents received CIH care, most commonly for musculoskeletal pain (61%). Participants were predominantly female (85%) and over the age of 80 years (67%). The median number of CIH treatments was 13, with a range of 1 to 92. Residents who were able to provide self-report data demonstrated, on average, a 15% decline in pain and a 4% improvement in quality of life. No serious adverse events related to treatment were documented; the most common mild and expected side effect

  2. Designing Facilities for Collaborative Operations

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey; Powell, Mark; Backes, Paul; Steinke, Robert; Tso, Kam; Wales, Roxana

    2003-01-01

    A methodology for designing operational facilities for collaboration by multiple experts has begun to take shape as an outgrowth of a project to design such facilities for scientific operations of the planned 2003 Mars Exploration Rover (MER) mission. The methodology could also be applicable to the design of military "situation rooms" and other facilities for terrestrial missions. It was recognized in this project that modern mission operations depend heavily upon the collaborative use of computers. It was further recognized that tests have shown that layout of a facility exerts a dramatic effect on the efficiency and endurance of the operations staff. The facility designs (for example, see figure) and the methodology developed during the project reflect this recognition. One element of the methodology is a metric, called effective capacity, that was created for use in evaluating proposed MER operational facilities and may also be useful for evaluating other collaboration spaces, including meeting rooms and military situation rooms. The effective capacity of a facility is defined as the number of people in the facility who can be meaningfully engaged in its operations. A person is considered to be meaningfully engaged if the person can (1) see, hear, and communicate with everyone else present; (2) see the material under discussion (typically data on a piece of paper, computer monitor, or projection screen); and (3) provide input to the product under development by the group. The effective capacity of a facility is less than the number of people that can physically fit in the facility. For example, a typical office that contains a desktop computer has an effective capacity of .4, while a small conference room that contains a projection screen has an effective capacity of around 10. Little or no benefit would be derived from allowing the number of persons in an operational facility to exceed its effective capacity: At best, the operations staff would be underutilized

  3. Phased Demolition of an Occupied Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brede, Lawrence M.; Lauterbach, Merl J.; Witt, Brandon W.

    2008-01-15

    The U.S. government constructed the K-1401 facility in the late 1940's as a support building for various projects supporting the uranium gaseous diffusion process. In 2004 the U.S. Department of Energy authorized Bechtel Jacobs Company, LLC (BJC) to decontaminate and demolish the facility. The K-1401 facility was used for a variety of industrial purposes supporting the gaseous diffusion process. Many different substances were used to support these processes over the years and as a result different parts of the facility were contaminated with fluorine, chlorine trifluoride, uranium and technetium radiological contamination, asbestos, and mercury. The total facility area is 46,015more » m{sup 2} (495,000 sf) including a 6,800 m{sup 2} basement (73,200 sf). In addition to the contamination areas in the facility, a large portion was leased to businesses for re-industrialization when the D and D activities began. The work scope associated with the facility included purging and steam cleaning the former fluorine and chlorine trifluoride systems, decontaminating loose radiologically contaminated and mercury spill areas, dismantling former radiological lines contaminated with uranium oxide compounds and technetium, abating all asbestos containing material, and demolishing the facility. These various situations contributed to the challenge of successfully conducting D and D tasks on the facility. In order to efficiently utilize the work force, demolition equipment, and waste hauling trucks the normal approach of decontaminating the facility of the hazardous materials, and then conducting demolition in series required a project schedule of five years, which is not cost effective. The entire project was planned with continuous demolition as the goal end state. As a result, the first activities, Phase 1, required to prepare sections for demolition, including steam cleaning fluorine and chlorine trifluoride process lines in basement and facility asbestos abatement, were

  4. Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Jerel G.; Kruzic, Michael; Castillo, Carlos

    2013-07-01

    Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing ofmore » facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)« less

  5. Hot Corrosion Test Facility at the NASA Lewis Special Projects Laboratory

    NASA Technical Reports Server (NTRS)

    Robinson, Raymond C.; Cuy, Michael D.

    1994-01-01

    The Hot Corrosion Test Facility (HCTF) at the NASA Lewis Special Projects Laboratory (SPL) is a high-velocity, pressurized burner rig currently used to evaluate the environmental durability of advanced ceramic materials such as SiC and Si3N4. The HCTF uses laboratory service air which is preheated, mixed with jet fuel, and ignited to simulate the conditions of a gas turbine engine. Air, fuel, and water systems are computer-controlled to maintain test conditions which include maximum air flows of 250 kg/hr (550 lbm/hr), pressures of 100-600 kPa (1-6 atm), and gas temperatures exceeding 1500 C (2732 F). The HCTF provides a relatively inexpensive, yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials, and the injection of a salt solution provides the added capability of conducting hot corrosion studies.

  6. TA 55 Reinvestment Project II Phase C Update Project Status May 23, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giordano, Anthony P.

    The TA-55 Reinvestment Project (TRP) II Phase C is a critical infrastructure project focused on improving safety and reliability of the Los Alamos National Laboratory (LANL) TA-55 Complex. The Project recapitalizes and revitalizes aging and obsolete facility and safety systems providing a sustainable nuclear facility for National Security Missions.

  7. Variation in infection prevention practices in dialysis facilities: results from the national opportunity to improve infection control in ESRD (End-Stage Renal Disease) project.

    PubMed

    Chenoweth, Carol E; Hines, Stephen C; Hall, Kendall K; Saran, Rajiv; Kalbfleisch, John D; Spencer, Teri; Frank, Kelly M; Carlson, Diane; Deane, Jan; Roys, Erik; Scholz, Natalie; Parrotte, Casey; Messana, Joseph M

    2015-07-01

    OBJECTIVE To observe patient care across hemodialysis facilities enrolled in the National Opportunity to Improve Infection Control in ESRD (end-stage renal disease) (NOTICE) project in order to evaluate adherence to evidence-based practices aimed at prevention of infection. SETTING AND PARTICIPANTS Thirty-four hemodialysis facilities were randomly selected from among 772 facilities in 4 end-stage renal disease participating networks. Facility selection was stratified on dialysis organization affiliation, size, socioeconomic status, and urban/rural status. MEASUREMENTS Trained infection control evaluators used an infection control worksheet to observe 73 distinct infection control practices at the hemodialysis facilities, from October 1, 2011, through January 31, 2012. RESULTS There was considerable variation in infection control practices across enrolled facilities. Overall adherence to recommended practices was 68% (range, 45%-92%) across all facilities. Overall adherence to expected hand hygiene practice was 72% (range, 10%-100%). Compliance to hand hygiene before and after procedures was high; however, during procedures hand hygiene compliance averaged 58%. Use of chlorhexidine as the specific agent for exit site care was 19% overall but varied from 0% to 35% by facility type. The 8 checklists varied in the frequency of perfect performance from 0% for meeting every item on the checklist for disinfection practices to 22% on the arteriovenous access practices at initiation. CONCLUSIONS Our findings suggest that there are many areas for improvement in hand hygiene and other infection prevention practices in end-stage renal disease. These NOTICE project findings will help inform the development of a larger quality improvement initiative at dialysis facilities.

  8. ENGINEERING STUDY FOR THE 200 AREA EFFLUENT TREATMENT FACILITY (ETF) SECONDARY WASTE TREATMENT OF PROJECTED FUTURE WASTE FEEDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUECK, K.J.

    2004-10-18

    This report documents an engineering study conducted to evaluate alternatives for treating secondary waste in the secondary treatment train (STT) of the Hanford Site 200 Area Effluent Treatment Facility (ETF). The study evaluates ETF STT treatment alternatives and recommends preferred alternatives for meeting the projected future missions of the ETF. The preferred alternative(s) will process projected future ETF influents to produce a solid waste acceptable for final disposal on the Hanford Site. The main text of this report summarizes the ETF past and projected operations, lists the assumptions about projected operations that provide the basis for the engineering evaluation, andmore » summarizes the evaluation process. The evaluation process includes identification of available modifications to the current ETF process, screens those modifications for technical viability, evaluates the technically viable alternatives, and provides conclusions and recommendations based on that evaluation.« less

  9. Microseisms Generated by Super Typhoon Megi in the Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Lin, Jianmin; Lin, Jian; Xu, Min

    2017-12-01

    Microseisms generated by the super typhoon Megi (13-24 October 2010) were detected on both land-based and island-based seismic stations. We applied temporal frequency spectrum analysis to investigate the temporal evolution of the microseisms. When Megi was over the deep basins of the Philippine Sea, only weak microseisms with short-period double frequency (SPDF, ˜0.20-0.40 Hz) were observed. However, after Megi traveled into the shallower waters of the South China Sea, microseisms with both long-period double frequency (LPDF, ˜0.12-0.20 Hz) and SPDF were recorded. The excitation source regions of the microseisms were analyzed using seismic waveform records and synthetic modeling in frequency domain. Results reveal that part of the LPDF microseisms were excited in coastal source regions, while the intensity of both LPDF and SPDF microseisms correlated well with the distance from seismic stations to the typhoon center. Synthetic computations of equivalent surface pressure and corresponding microseisms show that the wave-to-wave interaction induced by coastal reflection has primary effects on microseismic frequency band of ˜0.10-0.20 Hz. The coastal generation of the dispersive LPDF microseisms is also supported by the observation of ocean swells induced by Megi through the images of C-band ENVISAT-ASAR satellite during its migration process. Two source regions of the microseisms during the life span of Megi are finally distinguished: One was mainly located in the left-rear quadrant of the typhoon center that generated both LPDF and SPDF microseisms at shallow seas, while the other one was near the coasts that generated mostly LPDF microseisms.

  10. MINIMUM AREAS FOR ELEMENTARY SCHOOL BUILDING FACILITIES.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Public Instruction, Harrisburg.

    MINIMUM AREA SPACE REQUIREMENTS IN SQUARE FOOTAGE FOR ELEMENTARY SCHOOL BUILDING FACILITIES ARE PRESENTED, INCLUDING FACILITIES FOR INSTRUCTIONAL USE, GENERAL USE, AND SERVICE USE. LIBRARY, CAFETERIA, KITCHEN, STORAGE, AND MULTIPURPOSE ROOMS SHOULD BE SIZED FOR THE PROJECTED ENROLLMENT OF THE BUILDING IN ACCORDANCE WITH THE PROJECTION UNDER THE…

  11. Computational and Experimental Characterization of the Mach 6 Facility Nozzle Flow for the Enhanced Injection and Mixing Project at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Cabell, Karen F.; Passe, Bradley J.; Baurle, Robert A.

    2017-01-01

    Computational fluid dynamics analyses and experimental data are presented for the Mach 6 facility nozzle used in the Arc-Heated Scramjet Test Facility for the Enhanced Injection and Mixing Project (EIMP). This project, conducted at the NASA Langley Research Center, aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics relevant to flight Mach numbers greater than 8. The EIMP experiments use a two-dimensional Mach 6 facility nozzle to provide the high-speed air simulating the combustor entrance flow of a scramjet engine. Of interest are the physical extent and the thermodynamic properties of the core flow at the nozzle exit plane. The detailed characterization of this flow is obtained from three-dimensional, viscous, Reynolds-averaged simulations. Thermodynamic nonequilibrium effects are also investigated. The simulations are compared with the available experimental data, which includes wall static pressures as well as in-stream static pressure, pitot pressure and total temperature obtained via in-stream probes positioned just downstream of the nozzle exit plane.

  12. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground-testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  13. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalosky, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  14. RH-LLW Disposal Facility Project CD-2/3 to Design/Build Proposal Reconciliation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annette L. Schafer

    2012-06-01

    A reconciliation plan was developed and implemented to address potential gaps and responses to gaps between the design/build vendor proposals and the Critical Decision-2/3 approval request package for the Remote-Handled Low Level Waste Disposal Facility Project. The plan and results of the plan implementation included development of a reconciliation team comprised of subject matter experts from Battelle Energy Alliance and the Department of Energy Idaho Operations Office, identification of reconciliation questions, reconciliation by the team, identification of unresolved/remaining issues, and identification of follow-up actions and subsequent approvals of responses. The plan addressed the potential for gaps to exist in themore » following areas: • Department of Energy Order 435.1, “Radioactive Waste Management,” requirements, including the performance assessment, composite analysis, monitoring plan, performance assessment/composite analysis maintenance plan, and closure plan • Environmental assessment supporting the National Environmental Policy Act • Nuclear safety • Safeguards and security • Emplacement operations • Requirements for commissioning • General project implementation. The reconciliation plan and results of the plan implementation are provided in a business-sensitive project file. This report provides the reconciliation plan and non-business sensitive summary responses to identified gaps.« less

  15. High color rendering index of remote-type white LEDs with multi-layered quantum dot-phosphor films and short-wavelength pass dichroic filters

    NASA Astrophysics Data System (ADS)

    Yoon, Hee Chang; Oh, Ji Hye; Do, Young Rag

    2014-09-01

    This paper introduces high color rendering index (CRI) white light-emitting diodes (W-LEDs) coated with red emitting (Sr,Ca)AlSiN3:Eu phosphors and yellowish-green emitting AgIn5S8/ZnS (AIS/ZS) quantum dots (QDs) on glass or a short-wavelength pass dichroic filter (SPDF), which transmit blue wavelength regions and reflect yellow wavelength regions. The red emitting (Sr,Ca)AlSiN3:Eu phosphor film is coated on glass and a SPDF using a screen printing method, and then the yellowish-green emitting AIS/ZS QDs are coated on the red phosphor (Sr,Ca)AlSiN3:Eu film-coated glass and SPDF using the electrospray (e-spray) method.To fabricate the red phosphor film, the optimum amount of phosphor is dispersed in a silicon binder to form a red phosphor paste. The AIS/ZS QDs are mixed with dimethylformamide (DMF), toluene, and poly(methyl methacrylate) (PMMA) for the e-spray coating. The substrates are spin-coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to fabricate a conductive surface. The CRI of the white LEDs is improved through inserting the red phosphor film between the QD layer and the glass substrate. Furthermore, the light intensities of the multi-layered phosphor films are enhanced through changing the glass substrate to the SPDF. The correlated color temperatures (CCTs) vary as a function of the phosphor concentration in the phosphor paste. The optical properties of the yellowish-green AIS/ZS QDs and red (Sr,Ca)AlSiN3:Eu phosphors are characterized using photoluminescence (PL), and the multi-layered QD-phosphor films are measured using electroluminescence (EL) with an InGaN blue LED (λmax = 450 nm) at 60 mA.

  16. Using OBS Data to Constrain the Characteristics of Microseisms in South China Sea

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Xue, M.; Yang, T.; Liu, C.; Hua, Q.; Xia, S.; Huo, D.; Huang, H.; Le, B. M.; Pan, M.; Li, L.

    2016-12-01

    It has long been recognized that ocean gravity waves can generate microseisms through the coupling with the solid earth. Their generation mechanisms, wave types and propagation have been studied and debated intensively. In this study, we are aiming to study microseisms in South China Sea. We use six OBS data from an OBS array experiment supported by Natural Science Foundation of China, all available land broadband seismic data, and all available global satellite data from May 01, 2012 through August 20, 2012 (UTC). We mainly apply four techniques, i.e., power spectrum density (PSD), correlation, temporal frequency spectrum, and frequency dependent polarization analysis to study microseisms in South China Sea. We found that 1) the energy level of microseisms observed on OBSs are higher than land stations and there is no SF (0.05-0.08Hz) on OBSs; 2) SPDF is predominant on both the DF band (0.1-0.5Hz) as well as the whole band of microseisms (0.05-0.5Hz) for both OBSs and Land stations; 3) DF microseisms are significantly intensified by typhoons; 4) the variations of microseisms correlate well with the variations of nearby significant ocean wave height; 5) LPDF microseisms and SPDF microseisms have different polarization directions at most stations, suggesting they are generated from different source area; 6) the predominant directions of SPDF microseisms are much more scattered than those of LPDF microseisms, probably implying that SPDF microseisms have multiple sources; 7) most of microseisms are probably a mixture of P, Love and Rayleigh waves in this region. From our study, we found that the source regions for microseisms observed near marginal seas such as South China Sea are local and do not overlap with the source regions for global microseisms.

  17. The Low Temperature Microgravity Physics Facility Project

    NASA Technical Reports Server (NTRS)

    Chui, T.; Holmes, W.; Lai, A.; Croonquist, A.; Eraker, J.; Abbott, R.; Mills, G.; Mohl, J.; Craig, J.; Balachandra, B.; hide

    2000-01-01

    We describe the design and development of the Low Temperature Microgravity Physics Facility, which is intended to provide a unique environment of low temperature and microgravity for the scientists to perform breakthrough investigations on board the International Space Station.

  18. Statewide Publc Facilities section, Alaska Department of Transportation &

    Science.gov Websites

    &PF> Statewide Public Facilities Welcome to the Statewide Public Facilities Jack Hernandez Sport Fish Hatchery Anchorage Sport Fish Hatchery Statewide Public Facilities provides project management

  19. Constellation Training Facility Support

    NASA Technical Reports Server (NTRS)

    Flores, Jose M.

    2008-01-01

    The National Aeronautics and Space Administration is developing the next set of vehicles that will take men back to the moon under the Constellation Program. The Constellation Training Facility (CxTF) is a project in development that will be used to train astronauts, instructors, and flight controllers on the operation of Constellation Program vehicles. It will also be used for procedure verification and validation of flight software and console tools. The CxTF will have simulations for the Crew Exploration Vehicle (CEV), Crew Module (CM), CEV Service Module (SM), Launch Abort System (LAS), Spacecraft Adapter (SA), Crew Launch Vehicle (CLV), Pressurized Cargo Variant CM, Pressurized Cargo Variant SM, Cargo Launch Vehicle, Earth Departure Stage (EDS), and the Lunar Surface Access Module (LSAM). The Facility will consist of part-task and full-task trainers, each with a specific set of mission training capabilities. Part task trainers will be used for focused training on a single vehicle system or set of related systems. Full task trainers will be used for training on complete vehicles and all of its subsystems. Support was provided in both software development and project planning areas of the CxTF project. Simulation software was developed for the hydraulic system of the Thrust Vector Control (TVC) of the ARES I launch vehicle. The TVC system is in charge of the actuation of the nozzle gimbals for navigation control of the upper stage of the ARES I rocket. Also, software was developed using C standards to send and receive data to and from hand controllers to be used in CxTF cockpit simulations. The hand controllers provided movement in all six rotational and translational axes. Under Project Planning & Control, support was provided to the development and maintenance of integrated schedules for both the Constellation Training Facility and Missions Operations Facilities Division. These schedules maintain communication between projects in different levels. The Cx

  20. Concentrating Solar Power Projects - Parabolic Trough Projects |

    Science.gov Websites

    Project Godawari Solar Project Gujarat Solar One Gulang 100MW Thermal Oil Parabolic Trough project Guzmán Kuraymat (ISCC Kuraymat) Kathu Solar Park KaXu Solar One KVK Energy Solar Project La Africana La Dehesa La Power Facility Nevada Solar One (NSO) NOOR I NOOR II Olivenza 1 Orellana Palma del Río I Palma del Río

  1. Reducing hospital-acquired heel ulcer rates in an acute care facility: an evaluation of a nurse-driven performance improvement project.

    PubMed

    McElhinny, Mary Louise; Hooper, Christine

    2008-01-01

    A nurse-driven performance improvement project designed to reduce the incidence of hospital-acquired ulcers of the heel in an acute care setting was evaluated. This was a descriptive evaluative study using secondary data analysis. Data were collected in 2004, prior to implementation of the prevention project and compared to results obtained in 2006, after the project was implemented. Data were collected in a 172-bed, not-for-profit inpatient acute care facility in North Central California. All medical-surgical inpatients aged 18 years and older were included in the samples. Data were collected on 113 inpatients prior to implementation of the project in 2004. Data were also collected on a sample of 124 inpatients in 2006. The prevalence and incidence of heel pressure ulcers were obtained through skin surveys prior to implementation of the prevention program and following its implementation. Results from 2004 were compared to data collected in 2006 after introduction of the Braden Scale for Predicting Pressure Sore Risk. Heel pressure ulcers were staged using the National Pressure Ulcer Advisory Panel (NPUAP) staging system and recommendations provided by the Agency for Health Care Quality Research (AHRQ) clinical practice guidelines. The incidence of hospital-acquired heel pressure ulcers in 2004 was 13.5% (4 of 37 patients). After implementation of the program in 2006, the incidence of hospital-acquired heel pressure ulcers was 13.8% (5 of 36 patients). The intervention did not appear to receive adequate staff nurse support needed to make the project successful. Factors that influenced the lack of support may have included: (1) educational method used, (2) lack of organization approved, evidenced-based standardized protocols for prevention and treatment of heel ulcers, and (3) failure of facility management to convey the importance as well as their support for the project.

  2. Spent nuclear fuel project cold vacuum drying facility operations manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IRWIN, J.J.

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of themore » CVDF until the CVDF final ORR is approved.« less

  3. A Microsoft Project-Based Planning, Tracking, and Management Tool for the National Transonic Facility's Model Changeover Process

    NASA Technical Reports Server (NTRS)

    Vairo, Daniel M.

    1998-01-01

    The removal and installation of sting-mounted wind tunnel models in the National Transonic Facility (NTF) is a multi-task process having a large impact on the annual throughput of the facility. Approximately ten model removal and installation cycles occur annually at the NTF with each cycle requiring slightly over five days to complete. The various tasks of the model changeover process were modeled in Microsoft Project as a template to provide a planning, tracking, and management tool. The template can also be used as a tool to evaluate improvements to this process. This document describes the development of the template and provides step-by-step instructions on its use and as a planning and tracking tool. A secondary role of this document is to provide an overview of the model changeover process and briefly describe the tasks associated with it.

  4. Environmental Assessment (EA): Proposed Software Facilities, Hill Air Force Base, Utah

    DTIC Science & Technology

    2011-04-19

    retention facilities ; • connections to adjacent buried utilities consisting of water, electricity, natural gas, telephone/ data , sanitary sewer, and storm...engineering, development, and testing workloads for F-22 and F-35 aircraft. Military construction (MILCON) project data explain existing facilities ...Existing Facilities MILCON project data state there are no facilities on Hill AFB with adequate security to house the specialized laboratory space or

  5. FY11 Facility Assessment Study for Aeronautics Test Program

    NASA Technical Reports Server (NTRS)

    Loboda, John A.; Sydnor, George H.

    2013-01-01

    This paper presents the approach and results for the Aeronautics Test Program (ATP) FY11 Facility Assessment Project. ATP commissioned assessments in FY07 and FY11 to aid in the understanding of the current condition and reliability of its facilities and their ability to meet current and future (five year horizon) test requirements. The principle output of the assessment was a database of facility unique, prioritized investments projects with budgetary cost estimates. This database was also used to identify trends for the condition of facility systems.

  6. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 104 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  7. 75 FR 23843 - Discretionary Bus and Bus Facilities Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... transit facilities and equipment. d. For facilities, evidence of proposed project compliance with ``Green Building'' certification. 3. For transit asset management system projects: If asset management system...-New York, Administrator, Region 7-Kansas One Bowling Green, Room 429, New City, MO, 901 Locust Street...

  8. The Optimizing Patient Transfers, Impacting Medical Quality, andImproving Symptoms:Transforming Institutional Care approach: preliminary data from the implementation of a Centers for Medicare and Medicaid Services nursing facility demonstration project.

    PubMed

    Unroe, Kathleen T; Nazir, Arif; Holtz, Laura R; Maurer, Helen; Miller, Ellen; Hickman, Susan E; La Mantia, Michael A; Bennett, Merih; Arling, Greg; Sachs, Greg A

    2015-01-01

    The Optimizing Patient Transfers, Impacting Medical Quality, and Improving Symptoms: Transforming Institutional Care (OPTIMISTIC) project aims to reduce avoidable hospitalizations of long-stay residents enrolled in 19 central Indiana nursing facilities. This clinical demonstration project, funded by the Centers for Medicare and Medicaid Services Innovations Center, places a registered nurse in each nursing facility to implement an evidence-based quality improvement program with clinical support from nurse practitioners. A description of the model is presented, and early implementation experiences during the first year of the project are reported. Important elements include better medical care through implementation of Interventions to Reduce Acute Care Transfers tools and chronic care management, enhanced transitional care, and better palliative care with a focus on systematic advance care planning. There were 4,035 long-stay residents in 19 facilities enrolled in OPTIMISTIC between February 2013 and January 2014. Root-cause analyses were performed for all 910 acute transfers of these long stay residents. Of these transfers, the project RN evaluated 29% as avoidable (57% were not avoidable and 15% were missing), and opportunities for quality improvement were identified in 54% of transfers. Lessons learned in early implementation included defining new clinical roles, integrating into nursing facility culture, managing competing facility priorities, communicating with multiple stakeholders, and developing a system for collecting and managing data. The success of the overall initiative will be measured primarily according to reduction in avoidable hospitalizations of long-stay nursing facility residents. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.

  9. EERC pilot-scale CFBC evaluation facility Project CFB test results. Topical report, Task 7.30

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, M.D.; Hajicek, D.R.; Henderson, A.K.

    Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors` designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvaniamore » bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550{degree}F, with low-rank coals having optimal sulfur capture approximately 100{degree}F lower.« less

  10. Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities

    NASA Technical Reports Server (NTRS)

    Sydnor, George Honeycutt

    2012-01-01

    In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.

  11. The National Ignition Facility and Industry

    NASA Astrophysics Data System (ADS)

    Harri, J. G.; Paisner, J. A.; Lowdermilk, W. H.; Boyes, J. D.; Kumpan, S. A.; Sorem, M. S.

    1994-09-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of our construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project.

  12. Project definition study for the National Biomedical Tracer Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roozen, K.

    The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel`s Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendationsmore » for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization.« less

  13. Quality Assurance Project Plan for Closure of the Central Facilities Area Sewage Treatment Plant Lagoon 3 and Land Application Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Michael G.

    This quality assurance project plan describes the technical requirements and quality assurance activities of the environmental data collection/analyses operations to close Central Facilities Area Sewage treatment Plant Lagoon 3 and the land application area. It describes the organization and persons involved, the data quality objectives, the analytical procedures, and the specific quality control measures to be employed. All quality assurance project plan activities are implemented to determine whether the results of the sampling and monitoring performed are of the right type, quantity, and quality to satisfy the requirements for closing Lagoon 3 and the land application area.

  14. Construction Cost Growth for New Department of Energy Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubic, Jr., William L.

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facilitymore » (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.« less

  15. Project management; considerations for success.

    PubMed

    Maas, Jos

    2013-01-01

    During the past two years the author was a project leader for three Information Communication Technology (ICT) security related systems projects for a newly built healthcare facility. These projects were: a CCTV system, an Access Control system and an Identity & Access Management system. During those two years he gained experiences on how to coop with ICT projects related to security and healthcare as well as some pitfalls to be contended with along the way. With this article, he shares his experiences so that colleagues can benefit from them when they are a project leaders for their health facility and need to better decide how or how not to address their project and project issues.

  16. Solar project cost report for Ingham County, Medical Care Facility, Okemos, Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The solar energy system supplies service hot water for a 204 bed medical and geriatric care facility with laundry and kitchen. The system was designed at the time the building was designed. The 9,374 ft/sup 2/ of collectors were manufactured by Revere Copper and Brass, Inc., and are mounted at grade level behind the building. Solar heated water for use in heating service water is stored in a 5000 gallon hot water storage tank. The heaviest use of hot water occurs during the day so the requirement for thermal storage is modest. The construction costs of this solar project aremore » presented. Category costs are listed by materials, direct labor, ad subcontract costs. The subcontract costs include both materials, labor, overhead and profit for electrical, control and other minor subcontractors. The installed cost of the system was $312,825 not including prime contractor overhead and profit and general and administrative costs. (MHR)« less

  17. The Molecular Structure of cis-FONO

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Rice, Julia E.; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The molecular structure of cis-FONO has been determined with the CCSD(T) correlation method using an spdf quality basis set. In agreement with previous coupled-cluster calculations but in disagreement with density functional theory, cis-FONO is found to exhibit normal bond distances. The quadratic and cubic force fields of cis-FONO have also been determined in order to evaluate the effect of vibrational averaging on the molecular geometry. Vibrational averaging is found to increase bond distances, as expected, but it does not affect the qualitative nature of the bonding. The CCSD(T)/spdf harmonic frequencies of cis-FONO support our previous assertion that a band observed at 1200 /cm is a combination band (upsilon(sub 3) + upsilon(sub 4)), and not a fundamental.

  18. Accurate ab initio quartic force fields for the ions HCO(+) and HOC(+)

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Taylor, Peter R.; Lee, Timothy J.

    1993-01-01

    The quartic force fields of HCO(+) and HOC(+) have been computed using augmented coupled cluster methods and basis sets of spdf and spdfg quality. Calculations on HCN, CO, and N2 have been performed to assist in calibrating the computed results. Going from an spdf to an spdfg basis shortens triple bonds by about 0.004 A, and increases the corresponding harmonic frequency by 10-20/cm, leaving bond distances about 0.003 A too long and triple bond stretching frequencies about 5/cm too low. Accurate estimates for the bond distances, fundamental frequencies, and thermochemical quantities are given. HOC(+) lies 37.8 +/- 0.5 kcal/mol (0 K) above HCO(+); the classical barrier height for proton exchange is 76.7 +/- 1.0 kcal/mol.

  19. The Revolutionary Vertical Lift Technology (RVLT) Project

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.

    2018-01-01

    The Revolutionary Vertical Lift Technology (RVLT) Project is one of six projects in the Advanced Air Vehicles Program (AAVP) of the NASA Aeronautics Research Mission Directorate. The overarching goal of the RVLT Project is to develop and validate tools, technologies, and concepts to overcome key barriers for vertical lift vehicles. The project vision is to enable the next generation of vertical lift vehicles with aggressive goals for efficiency, noise, and emissions, to expand current capabilities and develop new commercial markets. The RVLT Project invests in technologies that support conventional, non-conventional, and emerging vertical-lift aircraft in the very light to heavy vehicle classes. Research areas include acoustic, aeromechanics, drive systems, engines, icing, hybrid-electric systems, impact dynamics, experimental techniques, computational methods, and conceptual design. The project research is executed at NASA Ames, Glenn, and Langley Research Centers; the research extensively leverages partnerships with the US Army, the Federal Aviation Administration, industry, and academia. The primary facilities used by the project for testing of vertical-lift technologies include the 14- by 22-Ft Wind Tunnel, Icing Research Tunnel, National Full-Scale Aerodynamics Complex, 7- by 10-Ft Wind Tunnel, Rotor Test Cell, Landing and Impact Research facility, Compressor Test Facility, Drive System Test Facilities, Transonic Turbine Blade Cascade Facility, Vertical Motion Simulator, Mobile Acoustic Facility, Exterior Effects Synthesis and Simulation Lab, and the NASA Advanced Supercomputing Complex. To learn more about the RVLT Project, please stop by booth #1004 or visit their website at https://www.nasa.gov/aeroresearch/programs/aavp/rvlt.

  20. User Facilities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  1. Biotechnology Protein Expression and Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The purpose of the Project Scientist Core Facility is to provide purified proteins, both recombinant and natural, to the Biotechnology Science Team Project Scientists and the NRA-Structural Biology Test Investigators. Having a core facility for this purpose obviates the need for each scientist to develop the necessary expertise and equipment for molecular biology, protein expression, and protein purification. Because of this, they are able to focus their energies as well as their funding on the crystallization and structure determination of their target proteins.

  2. 30 CFR 285.651 - When may I construct complex or significant OCS facilities on my limited lease or any facilities...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facilities on my limited lease or any facilities on my project easement proposed under my GAP? 285.651 Section 285.651 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER...

  3. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  4. Life Sciences Centrifuge Facility assessment

    NASA Technical Reports Server (NTRS)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  5. DOE passive solar commercial buildings program: project summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    The 23 projects participating in this program comprise a wide range of building types including offices, retail establishments, educational facilities, public service facilities, community and visitor centers, and private specialized-use facilities, located throughout the United States. Summary data and drawings are presented for each project. (MHR)

  6. Northeast Oregon Hatchery Project, Final Siting Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Montgomery

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and directmore » release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.« less

  7. Facility Accounting: Hammering Out a Capital Replacement Budget.

    ERIC Educational Resources Information Center

    Readinger, Jay

    1996-01-01

    Most facility and finance managers cannot adequately handle school infrastructure issues because they lack the tools to describe the problem appropriately. Facility accounting gives managers accurate deferral and projected replacement costs, using nationally recognized life-cycle and cost data. Facility accounting enables proper management of…

  8. Process Evaluation of a Quality Improvement Project to Decrease Hospital Readmissions From Skilled Nursing Facilities.

    PubMed

    Meehan, Thomas P; Qazi, Daniel J; Van Hoof, Thomas J; Ho, Shih-Yieh; Eckenrode, Sheila; Spenard, Ann; Pandolfi, Michelle; Johnson, Florence; Quetti, Deborah

    2015-08-01

    To describe and evaluate the impact of quality improvement (QI) support provided to skilled nursing facilities (SNFs) by a Quality Improvement Organization (QIO). Retrospective, mixed-method, process evaluation of a QI project intended to decrease preventable hospital readmissions from SNFs. Five SNFs in Connecticut. SNF Administrators, Directors of Nursing, Assistant Directors of Nursing, Admissions Coordinators, Registered Nurses, Certified Nursing Assistants, Receptionists, QIO Quality Improvement Consultant. QIO staff provided training and technical assistance to SNF administrative and clinical staff to establish or enhance QI infrastructure and implement an established set of QI tools [Interventions to Reduce Acute Care Transfers (INTERACT) tools]. Baseline SNF demographic, staffing, and hospital readmission data; baseline and follow-up SNF QI structure (QI Committee), processes (general and use of INTERACT tools), and outcome (30-day all-cause hospital readmission rates); details of QIO-provided training and technical assistance; QIO-perceived barriers to quality improvement; SNF leadership-perceived barriers, accomplishments, and suggestions for improvement of QIO support. Success occurred in establishing QI Committees and targeting preventable hospital readmissions, as well as implementing INTERACT tools in all SNFs; however, hospital readmission rates decreased in only 2 facilities. QIO staff and SNF leaders noted the ongoing challenge of engaging already busy SNF staff and leadership in QI activities. SNF leaders reported that they appreciated the training and technical assistance that their institutions received, although most noted that additional support was needed to bring about improvement in readmission rates. This process evaluation documented mixed clinical results but successfully identified opportunities to improve recruitment of and provision of technical support to participating SNFs. Recommendations are offered for others who wish to conduct

  9. 30 CFR 585.651 - When may I construct complex or significant OCS facilities on my limited lease or any facilities...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... facilities on my limited lease or any facilities on my project easement proposed under my GAP? 585.651 Section 585.651 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and...

  10. 30 CFR 585.651 - When may I construct complex or significant OCS facilities on my limited lease or any facilities...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... facilities on my limited lease or any facilities on my project easement proposed under my GAP? 585.651 Section 585.651 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and...

  11. 30 CFR 585.651 - When may I construct complex or significant OCS facilities on my limited lease or any facilities...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... facilities on my limited lease or any facilities on my project easement proposed under my GAP? 585.651 Section 585.651 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Plans and...

  12. FAST FLUX TEST FACILITY CONCEPTUAL FACILTY DESIGN DESCRIPTION FOR THE INERT GAS CELL EXAMINATION FACILITY NO. 71

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1968-12-12

    The purpose of this Conceptual Facility Design Description (CFDD) is to provide a technical description of the Inert Gas Cell Examination Facility such that agreement with RDT on a Conceptual Design can be reached . The CFDD also serves to establish a common understanding of the facility concept among all responsible FFTF Project parties including the Architect Engineer and Reactor Designer. Included are functions and design requirements, a physical description of the facility, safety considerations, principles of operation, and maintenance principles.

  13. Nuclotron-Based Ion Collider Facility (nica)

    NASA Astrophysics Data System (ADS)

    Meshkov, I.; Sissakian, A.; Sorin, A.

    2008-09-01

    The project of an ion collider accelerator complex NICA that is under development at JINR is presented. The article is based on the Conceptual Design Report (CDR)1 of the NICA project delivered in January 2008. The article contains NICA facility scheme, the facility operation scenario, its elements parameters, the proposed methods of intense ion beam acceleration and achievement of the required luminosity of the collider. The symmetric mode of the collider operation is considered here and most attention is concentrated on the luminosity provision in collisions of uranium ions (nuclei).

  14. [Residential facilities for the elderly in five Italian regions. The Progres-Anziani Project].

    PubMed

    de Girolamo, Giovanni; Tempestini, Antonella; Cavrini, Giulia; Argentino, Paola; Federici, Stefano; Putzu, Paolo; Scocco, Paolo; Zappia, Mario; Morosini, Pierluigi; Cascavilla, Isabella; Sgadari, Antonio; Azzarito, Caterina; Brancati, Giacomo; Spalletta, Gianfranco; Pasini, Augusto

    2005-01-01

    To survey all Residential Facilities (RFs) for the elderly in five Italian Regions (Calabria, Sardinia, Sicily. Umbria and Veneto), and to evaluate their logistic and organizational characteristics, staff and residents' features. Structured interviews were conducted with RF managers. All RFs operating in the five Italian Regions. In the five Regions there are 853 RFs with an average of 198.0 beds per 10000 elderly inhabitants; this rate shows a marked variability between different Regions. The mean number of beds in the RFs is 59.8 (median: 34). The large majority (96%) have a 24-hour staff cover. In terms of management, the RFs are handled by local municipalities (29%), religious non-profit associations (24%), and other non-profit organizations (21%). In the 754 RFs surveyed (91.1% of the sample) there were 24.456 workers employed, even the number of staff in each facility shows a great variability. The mean number of workers directly involved in residents' care is 27.8, and the ratio residents/staff is 2.1, which becomes lower (1.8) if we consider the ratio non-independent residents/staff. In the 754 RFs there were 42,687 residents, with an average of 53.5 elderly residents for each facility and 3.2 residents below the age of 65; the mean age of the resident sample was 79.3 years, and there is an high proportion of residents with neurological (including dementia), psychiatric or medical disorders. There is marked variability in the provision of residential places between different Regions; many other characteristics of RFs for the elderly, including staff/residents ratios, show a similar variability Most RFs host elderly with a variety of neurological, psychiatric and medical disorders. The future waves of the project will shed light on many features of these institutions, which care for 2.1% of the elderly population in Italy and may serve larger proportions of the elderly in the future.

  15. Determination of the Microbial Diversity of Spacecraft Assembly Facilities: First Results of the Project MiDiv

    NASA Astrophysics Data System (ADS)

    Rettberg, P.; Horneck, G.; Fritze, D.; Stackebrandt, E.; Kminek, G.

    The first step in the implementation of planetary protection guidelines encompasses a qualitative and quantitative inventory of the bioburden of spacecraft assembly facilities. In such an artificial environment mainly microorganisms are to be expected that are brought in by the humans themselves and that are able to withstand the controlled air circulation, the low relative humidity, the moderately high temperature and the low-nutrient conditions in the clean rooms of the assembly facilities. With informations about the composition of these microbial communities the development and/or optimization of adequate cleaning and sterilization procedures for spacecraft preparation before launch will be possible. The bioburden assessment in spacecraft assembly facilities requires a standardized procedure for sampling the air and surfaces in the facilities as well as of the spacecraft, a transfer of the biological samples under controlled conditions to the analyzing laboratory and a scientifically approved set of methods for analysis. In the ESA project MiDiv we started to investigate the bioburden of spacecrafts using the satellites SMART-1 and ROSETTA as test objects. The analysis of the samples included so far cultivation on different media at different pH and temperatures with and without oxygen with and without pasteurization, establishment of a culture collection of bacteria and partial 16S rRNA gene analysis. The results of these preliminary measurements, the total number of microorganisms, the numbers of colony forming units, differentiated according to the subgroups of aerobes, facultative anaerobes and anaerobes, and the phylogenetic classification, will be assessed with respect to the physiological potential of the identified microorganisms to withstand the different cleaning and sterilizing procedures used up to now for planetary protection measures. In the next step the ability of selected microorganisms to survive has to tested under environmental conditions as

  16. Life Sciences Centrifuge Facility review

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.

    1994-01-01

    The Centrifuge Facility Project at ARC was reviewed by a code U team to determine appropriateness adequacy for the ISSA. This report represents the findings of one consultant to this team and concentrates on scientific and technical risks. This report supports continuation of the project to the next phase of development.

  17. CHP Project Development

    EPA Pesticide Factsheets

    Access information and tools to support the CHP project development process, including identifying if your facility is a good fit for CHP, the steps involved with CHP project development, and policies and incentives supportive of CHP.

  18. Capabilities of NASA's Space Physics Data Facility as Resources to Enable the Heliophysics Virtual discipline Observatories (VxOs)

    NASA Technical Reports Server (NTRS)

    McGuire, Robert E.; Candey, Robert M.

    2007-01-01

    SPDF now supports a broad range of data, user services and other activities. These include: CDAWeb current multi-mission data graphics, listings, file subsetting and supersetting by time and parameters; SSCWeb and 3-D Java client orbit graphics, listings and conjunction queries; OMNIWeb 1/5/60 minute interplanetary parameters at Earth; product-level SPASE descriptions of data including holdings of nssdcftp; VSPO SPASE-based heliophysics-wide product site finding and data use;, standard Data format Translation Webservices (DTWS); metrics software and others. These data and services are available through standard user and application webservices interfaces, so middleware services such as the Heliophysics VxOs, and externally-developed clients or services, can readily leverage our data and capabilities. Beyond a short summary of the above, we will then conduct the talk as a conversation to evolving VxO needs and planned approach to leverage such existing and ongoing services.

  19. United States Advanced Ultra-Supercritical Component Test Facility for 760°C Steam Power Plants ComTest Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, Horst; Purgert, Robert Michael

    Following the successful completion of a 15-year effort to develop and test materials that would allow coal-fired power plants to be operated at advanced ultra-supercritical (A-USC) steam conditions, a United States-based consortium is presently engaged in a project to build an A-USC component test facility (ComTest). A-USC steam cycles have the potential to improve cycle efficiency, reduce fuel costs, and reduce greenhouse gas emissions. Current development and demonstration efforts are focused on enabling the construction of A-USC plants, operating with steam temperatures as high as 1400°F (760°C) and steam pressures up to 5000 psi (35 MPa), which can potentially increasemore » cycle efficiencies to 47% HHV (higher heating value), or approximately 50% LHV (lower heating value), and reduce CO 2 emissions by roughly 25%, compared to today’s U.S. fleet. A-USC technology provides a lower-cost method to reduce CO 2 emissions, compared to CO 2 capture technologies, while retaining a viable coal option for owners of coal generation assets. Among the goals of the ComTest facility are to validate that components made from advanced nickel-based alloys can operate and perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty of cost estimates for future A-USC power plants. The configuration of the ComTest facility would include the key A-USC technology components that were identified for expanded operational testing, including a gas-fired superheater, high-temperature steam piping, steam turbine valve, and cycling header component. Membrane walls in the superheater have been designed to operate at the full temperatures expected in a commercial A-USC boiler, but at a lower (intermediate) operating pressure. This superheater has been designed to increase the temperature of the steam supplied by the host utility boiler up to 1400°F (760°C). The steam turbine

  20. Recent Developments at the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2011-01-01

    Several upgrade projects have been completed or are just getting started at the NASA Langley Research Center National Transonic Facility. These projects include a new high capacity semi-span balance, model dynamics damping system, semi-span model check load stand, data acquisition system upgrade, facility automation system upgrade and a facility reliability assessment. This presentation will give a brief synopsis of each of these efforts.

  1. Preliminary Plans Presented for Construction of John F. Kennedy School and Community Center- 1966 Bond Fund Project No. PS42-62-785-7 and Neighborhood Facilities Grant Project No. GA. N-7.

    ERIC Educational Resources Information Center

    Atlanta Board of Education, GA.

    A proposed project which is a result of the cooperative efforts of many agencies is described. The planned facility will offer to residents of the community, a multitude of needed services which have never been brought together under one roof. The center will include a middle school of grades six to eight for approximately 1,050 students. The…

  2. Ground-water monitoring compliance projects for Hanford Site facilities: Volume 1, The report and Appendix A, Progress report for the period October 1 to December 31, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report documents recent progress on ground-water monitoring projects for four Hanford Site facilities: the 300 Area Process Trenches, the 183-H Solar Evaporation Basins, the 200 Area Low-Level Burial Grounds, and the Nonradioactive Dangerous Waste (NRDW) Landfill. The existing ground-water monitoring projects for the first two facilities named in the paragraph above are currently being expanded by adding new wells to the networks. During the reporting period, sampling of the existing wells continued on a monthly basis, and the analytical results for samples collected from September through November 1986 are included and discussed in this document. 8 refs., 41 figs.,more » 7 tabs.« less

  3. University of Alaska 1997 Facilities Inventory.

    ERIC Educational Resources Information Center

    Alaska Univ., Fairbanks. Statewide Office of Institutional Research.

    This facilities inventory report presents a comprehensive listing of physical assets owned and operated by the University of Alaska and includes, for each asset, data on average age, weighted average age, gross square footage, original total project funding, and the asset's plant investment value adjusted to the current year. Facilities are listed…

  4. ATR National Scientific User Facility 2009 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd R. Allen; Mitchell K. Meyer; Frances Marshall

    2010-11-01

    This report describes activities of the ATR NSUF from FY-2008 through FY-2009 and includes information on partner facilities, calls for proposals, users week and education programs. The report also contains project information on university research projects that were awarded by ATR NSUF in the fiscal years 2008 & 2009. This research is university-proposed researcher under a user facility agreement. All intellectual property from these experiments belongs to the university per the user agreement.

  5. Pre-Project Planning of Capital Facilities at NASA

    DTIC Science & Technology

    1999-12-01

    recognize the unfailing love and support of my extended family; Jim and Nancy Marasco , Dan and Monica Mustard, Jimmy and Jodi Marasco , Irene Brekelmans...completion Attachment B 116 Bibliography/References Dumont, Peter R. (1995). Project Definition Rating Index (PDRI) for Industrial Projects. Austin

  6. Facilities Policies and Procedures Manual. South Carolina Commission on Higher Education. Division of Finance, Facilities, and Statistical Services.

    ERIC Educational Resources Information Center

    South Carolina Commission on Higher Education, Columbia.

    This manual outlines the policies and procedures related to the submission and review of facilities projects at South Carolina's public colleges and universities. It provides an overview of the South Carolina Commission on Higher Education's role and responsibilities and its general policy regarding permanent improvements to facilities. The report…

  7. Implications of system usability on intermodal facility design.

    DOT National Transportation Integrated Search

    2010-08-01

    Ensuring good design of intermodal transportation facilities is critical for effective and : satisfactory operation. Passenger use of the facilities is often hindered by inadequate space, a poor : layout, or lack of signage. This project aims to impr...

  8. 340 Facility secondary containment and leak detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendixsen, R.B.

    1995-01-31

    This document presents a preliminary safety evaluation for the 340 Facility Secondary Containment and Leak Containment system, Project W-302. Project W-302 will construct Building 340-C which has been designed to replace the current 340 Building and vault tank system for collection of liquid wastes from the Pacific Northwest Laboratory buildings in the 300 Area. This new nuclear facility is Hazard Category 3. The vault tank and related monitoring and control equipment are Safety Class 2 with the remainder of the structure, systems and components as Safety Class 3 or 4.

  9. Code JEF Facilities Engineering Home Page for the Internet

    NASA Technical Reports Server (NTRS)

    Mahaffey, Valerie A.; Harrison, Marla J. (Technical Monitor)

    1995-01-01

    There are always many activities going on in JEF. We work on and manage the Construction of Facilities (C of F) projects at NASA-Ames. We are constantly designing or analyzing a new facility or project, or a modification to an existing facility. Every day we answer numerous questions about engineering policy, codes and standards, we attend design reviews, we count dollars and we make sure that everything at the Center is designed and built according to good engineering judgment. In addition, we study literature and attend conferences to make sure that we keep current on new legislation and standards.

  10. Facilities Standards and Planning Manual for New Jersey County Community Colleges.

    ERIC Educational Resources Information Center

    New Jersey State Dept. of Higher Education, Trenton. Office of Community Coll. Programs.

    After some general comments concerning all guidelines, planning standards are described for--(1) various types of new facilities, (2) expansion of present facilities, (3) minimum space requirements for a college, (4) net-to-gross space ratios, and (5) total project costs. Information regarding capital construction project submissions procedure is…

  11. Guidebook to the School Facility Program.

    ERIC Educational Resources Information Center

    California State Dept. of General Services, Sacramento. Office of Public School Construction.

    This guidebook assists California school districts in applying for and obtaining "grant" funds for new construction and modernization projects of its public schools under the provisions of the Leroy F. Greene School Facilities Act of 1998. It provides direction on accessing the processes leading to project approvals, insight into the various…

  12. Design of the Long-term Waste Management Facility for Historic LLRW Port Hope Project - 13322

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Don; Barton, David; Case, Glenn

    2013-07-01

    The Municipality of Port Hope is located on the northern shores of Lake Ontario approximately 100 km east of Toronto, Ontario, Canada. Starting in the 1930's, radium and later uranium processing by Eldorado Gold Mines Limited (subsequently Eldorado Nuclear Limited) (Eldorado) at their refinery in Port Hope resulted in the generation of process residues and wastes that were disposed of indiscriminately throughout the Municipality until about the mid-1950's. These process residues contained radium (Ra- 226), uranium, arsenic and other contaminants. Between 1944 and 1988, Eldorado was a Federal Crown Corporation, and as such, the Canadian Federal Government has assumed responsibilitymore » for the clean-up and long-term management of the historic waste produced by Eldorado during this period. The Port Hope Project involves the construction and development of a new long-term waste management facility (LTWMF), and the remediation and transfer of the historic wastes located within the Municipality of Port Hope to the new LTWMF. The new LTWMF will consist of an engineered above-ground containment mound designed to contain and isolate the wastes from the surrounding environment for the next several hundred years. The design of the engineered containment mound consists of a primary and secondary composite base liner system and composite final cover system, made up of both natural materials (e.g., compacted clay, granular materials) and synthetic materials (e.g., geo-synthetic clay liner, geo-membrane, geo-textiles). The engineered containment mound will cover an area of approximately 13 hectares and will contain the estimated 1.2 million cubic metres of waste that will be generated from the remedial activities within Port Hope. The LTWMF will also include infrastructure and support facilities such as access roads, administrative offices, laboratory, equipment and personnel decontamination facilities, waste water treatment plant and other ancillary facilities. Preliminary

  13. The Current Status of the Space Station Biological Research Project: a Core Facility Enabling Multi-Generational Studies under Slectable Gravity Levels

    NASA Astrophysics Data System (ADS)

    Santos, O.

    2002-01-01

    The Space Station Biological Research Project (SSBRP) has developed a new plan which greatly reduces the development costs required to complete the facility. This new plan retains core capabilities while allowing for future growth. The most important piece of equipment required for quality biological research, the 2.5 meter diameter centrifuge capable of accommodating research specimen habitats at simulated gravity levels ranging from microgravity to 2.0 g, is being developed by NASDA, the Japanese space agency, for the SSBRP. This is scheduled for flight to the ISS in 2007. The project is also developing a multi-purpose incubator, an automated cell culture unit, and two microgravity habitat holding racks, currently scheduled for launch in 2005. In addition the Canadian Space Agency is developing for the project an insect habitat, which houses Drosophila melanogaster, and provides an internal centrifuge for 1 g controls. NASDA is also developing for the project a glovebox for the contained manipulation and analysis of biological specimens, scheduled for launch in 2006. This core facility will allow for experimentation on small plants (Arabidopsis species), nematode worms (C. elegans), fruit flies (Drosophila melanogaster), and a variety of microorganisms, bacteria, yeast, and mammalian cells. We propose a plan for early utilization which focuses on surveys of changes in gene expression and protein structure due to the space flight environment. In the future, the project is looking to continue development of a rodent habitat and a plant habitat that can be accommodated on the 2.5 meter centrifuge. By utilizing the early phases of the ISS to broadly answer what changes occur at the genetic and protein level of cells and organisms exposed to the ISS low earth orbit environment, we can generate interest for future experiments when the ISS capabilities allow for direct manipulation and intervention of experiments. The ISS continues to hold promise for high quality, long

  14. X-ray Cryogenic Facility (XRCF) Handbook

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey R.

    2016-01-01

    The X-ray & Cryogenic Facility (XRCF) Handbook is a guide for planning operations at the facility. A summary of the capabilities, policies, and procedures is provided to enhance project coordination between the facility user and XRCF personnel. This handbook includes basic information that will enable the XRCF to effectively plan and support test activities. In addition, this handbook describes the facilities and systems available at the XRCF for supporting test operations. 1.2 General Facility Description The XRCF was built in 1989 to meet the stringent requirements associated with calibration of X-ray optics, instruments, and telescopes and was subsequently modified in 1999 & 2005 to perform the challenging cryogenic verification of Ultraviolet, Optical, and Infrared mirrors. These unique and premier specialty capabilities, coupled with its ability to meet multiple generic thermal vacuum test requirements for large payloads, make the XRCF the most versatile and adaptable space environmental test facility in the Agency. XRCF is also recognized as the newest, most cost effective, most highly utilized facility in the portfolio and as one of only five NASA facilities having unique capabilities. The XRCF is capable of supporting and has supported missions during all phases from technology development to flight verification. Programs/projects that have benefited from XRCF include Chandra, Solar X-ray Imager, Hinode, and James Webb Space Telescope. All test programs have been completed on-schedule and within budget and have experienced no delays due to facility readiness or failures. XRCF is currently supporting Strategic Astrophysics Technology Development for Cosmic Origins. Throughout the years, XRCF has partnered with and continues to maintain positive working relationships with organizations such as ATK, Ball Aerospace, Northrop Grumman Aerospace, Excelis (formerly Kodak/ITT), Smithsonian Astrophysical Observatory, Goddard Space Flight Center, University of Alabama

  15. An accurate ab initio quartic force field for ammonia

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Lee, Timothy J.; Taylor, Peter R.

    1992-01-01

    The quartic force field of ammonia is computed using basis sets of spdf/spd and spdfg/spdf quality and an augmented coupled cluster method. After correcting for Fermi resonance, the computed fundamentals and nu 4 overtones agree on average to better than 3/cm with the experimental ones except for nu 2. The discrepancy for nu 2 is principally due to higher-order anharmonicity effects. The computed omega 1, omega 3, and omega 4 confirm the recent experimental determination by Lehmann and Coy (1988) but are associated with smaller error bars. The discrepancy between the computed and experimental omega 2 is far outside the expected error range, which is also attributed to higher-order anharmonicity effects not accounted for in the experimental determination. Spectroscopic constants are predicted for a number of symmetric and asymmetric top isotopomers of NH3.

  16. 24 CFR 232.902 - Eligible project.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Eligible project. 232.902 Section... FACILITIES Insurance of Mortgages Covering Existing Projects § 232.902 Eligible project. Existing projects... for insurance under this subpart. The project must not require substantial rehabilitation and three...

  17. 24 CFR 232.902 - Eligible project.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Eligible project. 232.902 Section... FACILITIES Insurance of Mortgages Covering Existing Projects § 232.902 Eligible project. Existing projects... for insurance under this subpart. The project must not require substantial rehabilitation and three...

  18. 24 CFR 232.902 - Eligible project.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Eligible project. 232.902 Section... FACILITIES Insurance of Mortgages Covering Existing Projects § 232.902 Eligible project. Existing projects... for insurance under this subpart. The project must not require substantial rehabilitation and three...

  19. 24 CFR 232.902 - Eligible project.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Eligible project. 232.902 Section... FACILITIES Insurance of Mortgages Covering Existing Projects § 232.902 Eligible project. Existing projects... for insurance under this subpart. The project must not require substantial rehabilitation and three...

  20. Data management integration for biomedical core facilities

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Qiang; Szymanski, Jacek; Wilson, David

    2007-03-01

    We present the design, development, and pilot-deployment experiences of MIMI, a web-based, Multi-modality Multi-Resource Information Integration environment for biomedical core facilities. This is an easily customizable, web-based software tool that integrates scientific and administrative support for a biomedical core facility involving a common set of entities: researchers; projects; equipments and devices; support staff; services; samples and materials; experimental workflow; large and complex data. With this software, one can: register users; manage projects; schedule resources; bill services; perform site-wide search; archive, back-up, and share data. With its customizable, expandable, and scalable characteristics, MIMI not only provides a cost-effective solution to the overarching data management problem of biomedical core facilities unavailable in the market place, but also lays a foundation for data federation to facilitate and support discovery-driven research.

  1. Shock wave facilities at Pulter Laboratory of SRI international

    NASA Astrophysics Data System (ADS)

    Murri, W. J.

    1982-04-01

    Shock wave research in the Poulter Laboratory covers two broad areas: dynamic material response and dynamic structural response. Workers in both areas use common facilities. The Laboratory has several guns and the facilities to perform various types of high explosive loading experiments. The use of these facilities and experimental techniques is illustrated with examples from research projects.

  2. MANUAL OF STANDARDS FOR REHABILITATION CENTERS AND FACILITIES.

    ERIC Educational Resources Information Center

    CANIFF, CHARLES E.; AND OTHERS

    A 5-YEAR PROJECT TO SPECIFY STANDARDS OF REHABILITATION CENTERS AND FACILITIES RESULTED IN THREE PUBLICATIONS. THIS MANUAL INCLUDES THE CHARACTERISTICS AND GOALS OF REHABILITATION FACILITIES. THE STANDARDS FOR ORGANIZATION, SERVICES THAT SHOULD BE PROVIDED, PERSONNEL INCLUDED, RECORDS AND REPORTS, FISCAL MANAGEMENT, AND THE PHYSICAL PLANT ARE…

  3. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    NASA Technical Reports Server (NTRS)

    Beck, David F.

    1993-01-01

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  4. 23 CFR 810.102 - Eligible projects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Eligible projects. 810.102 Section 810.102 Highways... SPECIAL USE HIGHWAY PROJECTS Highway Public Transportation Projects and Special Use Highway Facilities § 810.102 Eligible projects. Under this subpart the Federal Highway Administrator may approve on any...

  5. 23 CFR 810.102 - Eligible projects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Eligible projects. 810.102 Section 810.102 Highways... SPECIAL USE HIGHWAY PROJECTS Highway Public Transportation Projects and Special Use Highway Facilities § 810.102 Eligible projects. Under this subpart the Federal Highway Administrator may approve on any...

  6. 23 CFR 810.102 - Eligible projects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Eligible projects. 810.102 Section 810.102 Highways... SPECIAL USE HIGHWAY PROJECTS Highway Public Transportation Projects and Special Use Highway Facilities § 810.102 Eligible projects. Under this subpart the Federal Highway Administrator may approve on any...

  7. 23 CFR 810.102 - Eligible projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Eligible projects. 810.102 Section 810.102 Highways... SPECIAL USE HIGHWAY PROJECTS Highway Public Transportation Projects and Special Use Highway Facilities § 810.102 Eligible projects. Under this subpart the Federal Highway Administrator may approve on any...

  8. 75 FR 30421 - Central Utah Project Completion Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... facilities of the Wasatch County Water Efficiency Project (WCWEP), Bonneville Unit, Central Utah Project (CUP... conservation and wise use of water, all of which are objectives of the CUP Completion Act. The proposed action would allow recycled water to be conveyed and used in WCWEP facilities and through exchange become CUP...

  9. ESIF Call for High-Impact Integrated Projects | Energy Systems Integration

    Science.gov Websites

    Integrated Projects As a U.S. Department of Energy user facility, the Energy Systems Integration Facility concepts, tools, and technologies needed to measure, analyze, predict, protect, and control the grid of the Facility | NREL ESIF Call for High-Impact Integrated Projects ESIF Call for High-Impact

  10. 23 CFR 810.108 - Designation of existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....108 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Highway Public Transportation Projects and Special Use Highway... designate existing parking facilities (such as at shopping centers or other public or private locations) for...

  11. Concentrating Solar Power Projects by Project Name | Concentrating Solar

    Science.gov Websites

    Tower Plant Gujarat Solar One Gulang 100MW Thermal Oil Parabolic Trough project Guzmán Hami 50 MW CSP ¼lich Solar Tower Kathu Solar Park KaXu Solar One Khi Solar One Kimberlina Solar Thermal Power Plant Solar Plant MINOS Mojave Solar Project Morón National Solar Thermal Power Facility Nevada Solar One

  12. Benchmarking facilities providing care: An international overview of initiatives

    PubMed Central

    Thonon, Frédérique; Watson, Jonathan; Saghatchian, Mahasti

    2015-01-01

    We performed a literature review of existing benchmarking projects of health facilities to explore (1) the rationales for those projects, (2) the motivation for health facilities to participate, (3) the indicators used and (4) the success and threat factors linked to those projects. We studied both peer-reviewed and grey literature. We examined 23 benchmarking projects of different medical specialities. The majority of projects used a mix of structure, process and outcome indicators. For some projects, participants had a direct or indirect financial incentive to participate (such as reimbursement by Medicaid/Medicare or litigation costs related to quality of care). A positive impact was reported for most projects, mainly in terms of improvement of practice and adoption of guidelines and, to a lesser extent, improvement in communication. Only 1 project reported positive impact in terms of clinical outcomes. Success factors and threats are linked to both the benchmarking process (such as organisation of meetings, link with existing projects) and indicators used (such as adjustment for diagnostic-related groups). The results of this review will help coordinators of a benchmarking project to set it up successfully. PMID:26770800

  13. 23 CFR 810.102 - Eligible projects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Highway Public Transportation Projects and Special Use Highway Facilities... Federal-aid system projects which facilitate the use of high occupancy vehicles and public mass...

  14. The Impact of Pollution Prevention on Toxic Environmental Releases from U.S. Manufacturing Facilities.

    PubMed

    Ranson, Matthew; Cox, Brendan; Keenan, Cheryl; Teitelbaum, Daniel

    2015-11-03

    Between 1991 and 2012, the facilities that reported to the U.S. Environmental Protection Agency's Toxic Release Inventory (TRI) Program conducted 370,000 source reduction projects. We use this data set to conduct the first quasi-experimental retrospective evaluation of how implementing a source reduction (pollution prevention) project affects the quantity of toxic chemicals released to the environment by an average industrial facility. We use a differences-in-differences methodology, which measures how implementing a source reduction project affects a facility's releases of targeted chemicals, relative to releases of (a) other untargeted chemicals from the same facility, or (b) the same chemical from other facilities in the same industry. We find that the average source reduction project causes a 9-16% decrease in releases of targeted chemicals in the year of implementation. Source reduction techniques vary in effectiveness: for example, raw material modification causes a large decrease in releases, while inventory control has no detectable effect. Our analysis suggests that in aggregate, the source reduction projects carried out in the U.S. since 1991 have prevented between 5 and 14 billion pounds of toxic releases.

  15. Stochastic modeling and control system designs of the NASA/MSFC Ground Facility for large space structures: The maximum entropy/optimal projection approach

    NASA Technical Reports Server (NTRS)

    Hsia, Wei-Shen

    1986-01-01

    In the Control Systems Division of the Systems Dynamics Laboratory of the NASA/MSFC, a Ground Facility (GF), in which the dynamics and control system concepts being considered for Large Space Structures (LSS) applications can be verified, was designed and built. One of the important aspects of the GF is to design an analytical model which will be as close to experimental data as possible so that a feasible control law can be generated. Using Hyland's Maximum Entropy/Optimal Projection Approach, a procedure was developed in which the maximum entropy principle is used for stochastic modeling and the optimal projection technique is used for a reduced-order dynamic compensator design for a high-order plant.

  16. 49 CFR 605.12 - Use of project equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., facilities or equipment funded under the Acts. A grantee or operator may, however, use such buses, facilities... 49 Transportation 7 2010-10-01 2010-10-01 false Use of project equipment. 605.12 Section 605.12..., DEPARTMENT OF TRANSPORTATION SCHOOL BUS OPERATIONS School Bus Agreements § 605.12 Use of project equipment...

  17. The Great Plains Wind Power Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, John

    2014-01-30

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texasmore » Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.« less

  18. Pinon Pine power project nears start-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatar, G.A.; Gonzalez, M.; Mathur, G.K.

    1997-12-31

    The IGCC facility being built by Sierra Pacific Power Company (SPPCo) at their Tracy Station in Nevada is one of three IGCC facilities being cost-shared by the US Department of Energy (DOE) under their Clean Coal Technology Program. The specific technology to be demonstrated in SPPCo`s Round Four Project, known as the Pinon Pine IGCC Project, includes the KRW air blown pressurized fluidized bed gasification process with hot gas cleanup coupled with a combined cycle facility based on a new GE 6FA gas turbine. Construction of the 100 MW IGCC facility began in February 1995 and the first firing ofmore » the gas turbine occurred as scheduled on August 15, 1996 with natural gas. Mechanical completion of the gasifier and other outstanding work is due in January 1997. Following the startup of the plant, the project will enter a 42 month operating and testing period during which low sulfur western and high sulfur eastern or midwestern coals will be processed.« less

  19. Facility shows benefit of staying single.

    PubMed

    Baillie, Jonathan

    2010-08-01

    Construction of the new 513-bed PFI-funded hospital in Pembury near Tunbridge Wells in Kent, a pound 227 million acute healthcare facility that, on its completion in the autumn of 2011, will be the UK's first to offer 100% single-bed en suite accommodation, is ahead of schedule, "thanks to excellent teamwork and careful planning". During a visit to the now rapidly emerging healthcare facility, located in an Area of Outstanding Natural Beauty (AONB) in a wooded hillside location in the Weald of Kent which Nigel Keen, general manager for the PFI project company, described as "the most attractive site for a hospital I have ever worked on", HEJ editor Jonathan Baillie met key project personnel and discussed the impressive progress made to date.

  20. Los Alamos Science Facilities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  1. Shared Facilities Canadian Style.

    ERIC Educational Resources Information Center

    Galonski, Mark A.

    1998-01-01

    Describes two projects arising from an Ontario (Canada) Ministry of Education initiative that combined school and nonschool capital funds to build joint facilities. The Stratford Education and Recreation Centre and the Humberwood Community Centre demonstrate that government agencies can cooperate to benefit the community. Success depends on having…

  2. New Turbulent Multiphase Flow Facilities for Simulation Benchmarking

    NASA Astrophysics Data System (ADS)

    Teoh, Chee Hau; Salibindla, Ashwanth; Masuk, Ashik Ullah Mohammad; Ni, Rui

    2017-11-01

    The Fluid Transport Lab at Penn State has devoted last few years on developing new experimental facilities to unveil the underlying physics of coupling between solid-gas and gas-liquid multiphase flow in a turbulent environment. In this poster, I will introduce one bubbly flow facility and one dusty flow facility for validating and verifying simulation results. Financial support for this project was provided by National Science Foundation under Grant Number: 1653389 and 1705246.

  3. The radioactive beam facility ALTO

    NASA Astrophysics Data System (ADS)

    Essabaa, Saïd; Barré-Boscher, Nicole; Cheikh Mhamed, Maher; Cottereau, Evelyne; Franchoo, Serge; Ibrahim, Fadi; Lau, Christophe; Roussière, Brigitte; Saïd, Abdelhakim; Tusseau-Nenez, Sandrine; Verney, David

    2013-12-01

    The Transnational Access facility ALTO (TNA07-ENSAR/FP7) has been commissioned and received from the French safety authorities, the operation license. It is allowed to run at nominal intensity to produce 1011 fissions/s in a thick uranium carbide target by photo-fission using a 10 μA, 50 MeV electron beam. In addition the recent success in operating the selective laser ion source broadens the physics program with neutron-rich nuclear beams possible at this facility installed at IPN Orsay. The facility also aims at being a test bench for the SPIRAL2 project. In that framework an ambitious R&D program on the target ion source system is being developed.

  4. Data-Linking Requirements in Facilities Condition Audit RFPs.

    ERIC Educational Resources Information Center

    DeFranco, Randall W.

    2002-01-01

    Discusses why, when preparing a Request for Proposal (RFP) for Facilities Condition Audit (FCA)--including software-based delivery of findings--facilities managers should avoid complicating the bidding process with nondescript data-linking requirements. Presents ways to get an apples-to-apples comparison of bids for a proposed FCA project and…

  5. Feasibility Investigation for a Solar Power Generation Facility

    NASA Technical Reports Server (NTRS)

    Nathan, Lakshmi

    2010-01-01

    The Energy Policy Act of 2005 states that by fiscal year 2013, at least 7.5% of the energy consumed by the government must be renewable energy. In an effort to help meet this goal, Johnson Space Center (JSC) is considering installing a solar power generation facility. The purpose of this project is to conduct a feasibility investigation for such a facility. Because Kennedy Space Center (KSC) has a solar power generation facility, the first step in this investigation is to learn about KSC's facility and obtain information on how it was constructed. After collecting this information, the following must be determined: the amount of power desired, the size of the facility, potential locations for it, and estimated construction and maintenance costs. Contacts with JSC's energy provider must also be established to determine if a partnership would be agreeable to both parties. Lastly, all of this data must be analyzed to decide whether or not JSC should construct the facility. The results from analyzing the data collected indicate that a 200 kW facility would provide enough energy to meet 1% of JSC's energy demand. This facility would require less than 1 acre of land. In the map below, potential locations are shown in green. The solar power facility is projected to cost $2 M. So far, the information collected indicates that such a facility could be constructed. The next steps in this investigation include contacting JSC's energy provider, CenterPoint Energy, to discuss entering a partnership; developing a life cycle cost analysis to determine payback time; developing more detailed plans; and securing funding.

  6. Sandia, California Tritium Research Laboratory transition and reutilization project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, T.B.

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  7. Therapeutic Use of Space: One Agency's Transformation Project

    ERIC Educational Resources Information Center

    Goelitz, Ann; Stewart-Kahn, Abigail

    2007-01-01

    The project described in this article addresses the therapeutic use of physical space in an outpatient counseling facility. It was theorized that an improved facility environment could be used as a practice tool when working with a vulnerable population. The authors undertook the project with limited time and finances. The process of the change…

  8. Indian LSSC (Large Space Simulation Chamber) facility

    NASA Technical Reports Server (NTRS)

    Brar, A. S.; Prasadarao, V. S.; Gambhir, R. D.; Chandramouli, M.

    1988-01-01

    The Indian Space Agency has undertaken a major project to acquire in-house capability for thermal and vacuum testing of large satellites. This Large Space Simulation Chamber (LSSC) facility will be located in Bangalore and is to be operational in 1989. The facility is capable of providing 4 meter diameter solar simulation with provision to expand to 4.5 meter diameter at a later date. With such provisions as controlled variations of shroud temperatures and availability of infrared equipment as alternative sources of thermal radiation, this facility will be amongst the finest anywhere. The major design concept and major aspects of the LSSC facility are presented here.

  9. Hanford Spent Nuclear Fuel Project recommended path forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, J.C.

    The Spent Nuclear Fuel Project (the Project), in conjunction with the U.S. Department of Energy-commissioned Independent Technical Assessment (ITA) team, has developed engineered alternatives for expedited removal of spent nuclear fuel, including sludge, from the K Basins at Hanford. These alternatives, along with a foreign processing alternative offered by British Nuclear Fuels Limited (BNFL), were extensively reviewed and evaluated. Based on these evaluations, a Westinghouse Hanford Company (WHC) Recommended Path Forward for K Basins spent nuclear fuel has been developed and is presented in Volume I of this document. The recommendation constitutes an aggressive series of projects to construct andmore » operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. The overall processing and storage scheme is based on the ITA team`s proposed passivation and vault storage process. A dual purpose staging and vault storage facility provides an innovative feature which allows accelerated removal of fuel and sludge from the basins and minimizes programmatic risks beyond any of the originally proposed alternatives. The projects fit within a regulatory and National Environmental Policy Act (NEPA) overlay which mandates a two-phased approach to construction and operation of the needed facilities. The two-phase strategy packages and moves K Basins fuel and sludge to a newly constructed Staging and Storage Facility by the year 2000 where it is staged for processing. When an adjoining facility is constructed, the fuel is cycled through a stabilization process and returned to the Staging and Storage Facility for dry interim (40-year) storage. The estimated total expenditure for this Recommended Path Forward, including necessary new construction, operations, and deactivation of Project facilities through 2012, is approximately $1,150 million (unescalated).« less

  10. Landlord project multi-year program plan, fiscal year 1999, WBS 1.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallas, M.D.

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The mission of Landlord Project is to provide more maintenance replacement of general infrastructure facilities and systems to facilitate the Hanford Site cleanup mission. Also, once an infrastructure facility or system is no longer needed the Landlord Project transitions the facility to final closure/removal through excess, salvage or demolition. Landlord Project activities will be performed in an environmentally sound, safe, economical, prudent, and reliable manner. The Landlord Project consists of the following facilities systems: steam, water, liquid sanitary waste,more » electrical distribution, telecommunication, sanitary landfill, emergency services, general purpose offices, general purpose shops, general purpose warehouses, environmental supports facilities, roads, railroad, and the site land. The objectives for general infrastructure support are reflected in two specific areas, (1) Core Infrastructure Maintenance, and (2) Infrastructure Risk Mitigation.« less

  11. 24 CFR 891.315 - Prohibited facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... advances under the Section 811 Program, as well as loans financed under subpart E of this part. Project facilities may not include infirmaries, nursing stations, spaces dedicated to the delivery of medical...

  12. 24 CFR 891.315 - Prohibited facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... advances under the Section 811 Program, as well as loans financed under subpart E of this part. Project facilities may not include infirmaries, nursing stations, spaces dedicated to the delivery of medical...

  13. 24 CFR 891.315 - Prohibited facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... advances under the Section 811 Program, as well as loans financed under subpart E of this part. Project facilities may not include infirmaries, nursing stations, spaces dedicated to the delivery of medical...

  14. 24 CFR 891.315 - Prohibited facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... advances under the Section 811 Program, as well as loans financed under subpart E of this part. Project facilities may not include infirmaries, nursing stations, spaces dedicated to the delivery of medical...

  15. 24 CFR 891.315 - Prohibited facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... advances under the Section 811 Program, as well as loans financed under subpart E of this part. Project facilities may not include infirmaries, nursing stations, spaces dedicated to the delivery of medical...

  16. 42 CFR 136.105 - Project elements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Project elements. 136.105 Section 136.105 Public... Facilities and Services § 136.105 Project elements. A project supported under this subpart must: (a) Have sufficient, adequately trained staff in relation to the scope of the project. (b) Maintain a mechanism for...

  17. 42 CFR 136.105 - Project elements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Project elements. 136.105 Section 136.105 Public... Facilities and Services § 136.105 Project elements. A project supported under this subpart must: (a) Have sufficient, adequately trained staff in relation to the scope of the project. (b) Maintain a mechanism for...

  18. 42 CFR 136.105 - Project elements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Project elements. 136.105 Section 136.105 Public... Facilities and Services § 136.105 Project elements. A project supported under this subpart must: (a) Have sufficient, adequately trained staff in relation to the scope of the project. (b) Maintain a mechanism for...

  19. 42 CFR 136.105 - Project elements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Project elements. 136.105 Section 136.105 Public... Facilities and Services § 136.105 Project elements. A project supported under this subpart must: (a) Have sufficient, adequately trained staff in relation to the scope of the project. (b) Maintain a mechanism for...

  20. 42 CFR 136.105 - Project elements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Project elements. 136.105 Section 136.105 Public... Facilities and Services § 136.105 Project elements. A project supported under this subpart must: (a) Have sufficient, adequately trained staff in relation to the scope of the project. (b) Maintain a mechanism for...

  1. Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack Q. Richardson

    2012-06-28

    Final Technical Report for the Recovery Act Project for the Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility. The Abiquiu hydroelectric facility existed with two each 6.9 MW vertical flow Francis turbine-generators. This project installed a new 3.1 MW horizontal flow low flow turbine-generator. The total plant flow range to capture energy and generate power increased from between 250 and 1,300 cfs to between 75 and 1,550 cfs. Fifty full time equivalent (FTE) construction jobs were created for this project - 50% (or 25 FTE) were credited to ARRA funding due to the ARRA 50% project costmore » match. The Abiquiu facility has increased capacity, increased efficiency and provides for an improved aquatic environment owing to installed dissolved oxygen capabilities during traditional low flow periods in the Rio Chama. A new powerhouse addition was constructed to house the new turbine-generator equipment.« less

  2. Surveying School Facilities Needs.

    ERIC Educational Resources Information Center

    Weichel, Harry J.; Dennell, James

    1990-01-01

    Ralston (Nebraska) Public School District's communitywide survey helped set school facilities priorities while keeping the district's finite resources firmly in mind. With an outline of maintenance costs for the next 10 years, the district can develop a strategic construction schedule. The board also has the option of financing projects through a…

  3. Project Title: Nuclear Astrophysics Data from Radioactive Beam Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan A. Chen

    The scientific aims of this project have been the evaluation and dissemination of key nuclear reactions in nuclear astrophysics, with a focus on ones to be studied at new radioactive beam facilities worldwide. These aims were maintained during the entire funding period from 2003 - 2006. In the following, a summary of the reactions evaluated during this period is provided. Year 1 (2003-04): {sup 21}Na(p,{gamma}){sup 22}Mg and {sup 18}Ne({alpha},p){sup 21}Na - The importance of the {sup 21}Na(p,{gamma}){sup 22}Mg and the {sup 18}Ne({alpha},p){sup 21}Na reactions in models of exploding stars has been well documented: the first is connected to the productionmore » of the radioisotope {sup 22}Na in nova nucleosynthesis, while the second is a key bridge between the Hot-CNO cycles and the rp-process in X-ray bursts. By the end of Summer 2004, our group had updated these reaction rates to include all published data up to September 2004, and cast the reaction rates into standard analytical and tabular formats with the assistance of Oak Ridge National Laboratory's computational infrastructure for reaction rates. Since September 2004, ongoing experiments on these two reactions have been completed, with our group's participation in both: {sup 21}Na(p,{gamma}){sup 22}Mg at the TRIUMF-ISAC laboratory (DRAGON collaboration), and 18Ne({alpha},p){sup 21}Na at Argonne National Laboratory (collaboration with Ernst Rehm, Argonne). The data from the former was subsequently published and included in our evaluation. Publication from the latter still awaits independent confirmation of the experimental results. Year 2 (2004-05): The 25Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma})14O reactions - For Year 2, we worked on evaluations of the {sup 25}Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma}){sup 14}O reactions, in accordance with our proposed deliverables and following similar standard procedures to those used in Year 1. The {sup 25}Al(p,{gamma}){sup 26}Si reaction is a key

  4. High-Explosives Applications Facility (HEAF)

    NASA Astrophysics Data System (ADS)

    Morse, J. L.; Weingart, R. C.

    1989-03-01

    This Safety Analysis Report (SAR) reviews the safety and environmental aspects of the High Explosives Applications Facility (HEAF). Topics covered include the site selected for the HEAF, safety design criteria, operations planned within the facility, and the safety and environmental analyses performed on this project to date. Provided in the Summary section is a review of hazards and the analyses, conclusions, and operating limits developed in this SAR. Appendices provide supporting documents relating to this SAR. This SAR is required by the LLNL Health and Safety Manual and DOE Order 5481.1B(2) to document the safety analysis efforts. The SAR was assembled by the Hazards Control Department, B-Division, and HEAF project personnel. This document was reviewed by B Division, the Chemistry Department, the Hazards Control Department, the Laboratory Associate Director for Administration and Operations, and the Associate Directors ultimately responsible for HEAF operations.

  5. A model for evaluating the environmental benefits of elementary school facilities.

    PubMed

    Ji, Changyoon; Hong, Taehoon; Jeong, Kwangbok; Leigh, Seung-Bok

    2014-01-01

    In this study, a model that is capable of evaluating the environmental benefits of a new elementary school facility was developed. The model is composed of three steps: (i) retrieval of elementary school facilities having similar characteristics as the new elementary school facility using case-based reasoning; (ii) creation of energy consumption and material data for the benchmark elementary school facility using the retrieved similar elementary school facilities; and (iii) evaluation of the environmental benefits of the new elementary school facility by assessing and comparing the environmental impact of the new and created benchmark elementary school facility using life cycle assessment. The developed model can present the environmental benefits of a new elementary school facility in terms of monetary values using Environmental Priority Strategy 2000, a damage-oriented life cycle impact assessment method. The developed model can be used for the following: (i) as criteria for a green-building rating system; (ii) as criteria for setting the support plan and size, such as the government's incentives for promoting green-building projects; and (iii) as criteria for determining the feasibility of green building projects in key business sectors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. How to Select a Project Delivery Method for School Facilities

    ERIC Educational Resources Information Center

    Kalina, David

    2007-01-01

    In this article, the author discusses and explains three project delivery methods that are commonly used today in the United States. The first project delivery method mentioned is the design-bid-build, which is still the predominant method of project delivery for public works and school construction in the United States. The second is the…

  7. Design and Development of a New Facility for Teaching and Research in Clinical Anatomy

    ERIC Educational Resources Information Center

    Greene, John Richard T.

    2009-01-01

    This article discusses factors in the design, commissioning, project management, and intellectual property protection of developments within a new clinical anatomy facility in the United Kingdom. The project was aimed at creating cost-effective facilities that would address widespread concerns over anatomy teaching, and support other activities…

  8. Hydrogen Infrastructure Testing and Research Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-04-10

    Learn about the Hydrogen Infrastructure Testing and Research Facility (HITRF), where NREL researchers are working on vehicle and hydrogen infrastructure projects that aim to enable more rapid inclusion of fuel cell and hydrogen technologies in the market to meet consumer and national goals for emissions reduction, performance, and energy security. As part of NREL’s Energy Systems Integration Facility (ESIF), the HITRF is designed for collaboration with a wide range of hydrogen, fuel cell, and transportation stakeholders.

  9. The Use of Environmental Test Facilities for Purposes Beyond Their Original Design

    NASA Technical Reports Server (NTRS)

    Fisher, Terry C.; Marner, W. J.

    2000-01-01

    Increasing demands from space flight project offices are requiring environmental testing facilities to become more versatile with increased capabilities. At the same time, maintaining a cost-effective approach to test operations has driven efforts to use these facilities for purposes beyond their original design. This paper presents an overview of the Jet Propulsion Laboratory's efforts to provide JPL's space flight projects with test facilities to meet unique test requirements and to serve the needs of selected outside customers. The large number of recent Mars Missions, including the Mars Pathfinder project, have required testing of components and systems in a Martian surface environment in facilities originally designed for deep space testing. The unique problems associated with performing these tests are discussed, along with practical solutions. Other unique test requirements are discussed including the use of space simulation chambers for testing high altitude balloon gondolas and the use of vacuum chambers for system level test firing of an ion propulsion engine.

  10. Thomas Jefferson National Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. Themore » technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.« less

  11. The Antaeus Project - An orbital quarantine facility for analysis of planetary return samples

    NASA Technical Reports Server (NTRS)

    Sweet, H. C.; Bagby, J. R.; Devincenzi, D. L.

    1983-01-01

    A design is presented for an earth-orbiting facility for the analysis of planetary return samples under conditions of maximum protection against contamination but minimal damage to the sample. The design is keyed to a Mars sample return mission profile, returning 1 kg of documented subsamples, to be analyzed in low earth orbit by a small crew aided by automated procedures, tissue culture and microassay. The facility itself would consist of Spacelab shells, formed into five modules of different sizes with purposes of power supply, habitation, supplies and waste storage, the linking of the facility, and both quarantine and investigation of the samples. Three barriers are envisioned to protect the biosphere from any putative extraterrestrial organisms: sealed biological containment cabinets within the Laboratory Module, the Laboratory Module itself, and the conditions of space surrounding the facility.

  12. Project Delivery Methods.

    ERIC Educational Resources Information Center

    Dolan, Thomas G.

    2003-01-01

    Describes project delivery methods that are replacing the traditional Design/Bid/Build linear approach to the management, design, and construction of new facilities. These variations can enhance construction management and teamwork. (SLD)

  13. Vibration and noise criteria used to evaluate environmental impacts of transportation projects on sensitive facilities

    NASA Astrophysics Data System (ADS)

    Busch, Todd; Gendreau, Michael; Amick, Hal

    2005-08-01

    The paper examines the methodologies and evaluation criteria advocated by the U.S. Federal Transit Administration (FTA) and Federal Rail Administration (FRA) used to determine whether or not a proposed alignment for a transportation project adversely impacts affected land uses, such as research & development and high-technology manufacturing. The criteria in question are applied as limits on vibration and noise at sensitive receiver locations. Both short-term construction and long-term transportation operations are typically considered, with the latter being the focus of this paper. A case study is presented of a proposed transit system that passes through four different soil zones, the operational characteristics that are required to generate a vibration level equal to the FTA/FRA advocated level of 65 VdB re: 1 micro-inch/sec, and the range of variability of the acceptability of the vibration conditions when considered in terms of third-octave bands compared to vibration criterion (VC) curves that are used as the design performance targets of vibration-sensitive facilities.

  14. Study protocol for the translating research in elder care (TREC): building context – an organizational monitoring program in long-term care project (project one)

    PubMed Central

    Estabrooks, Carole A; Squires, Janet E; Cummings, Greta G; Teare, Gary F; Norton, Peter G

    2009-01-01

    Background While there is a growing awareness of the importance of organizational context (or the work environment/setting) to successful knowledge translation, and successful knowledge translation to better patient, provider (staff), and system outcomes, little empirical evidence supports these assumptions. Further, little is known about the factors that enhance knowledge translation and better outcomes in residential long-term care facilities, where care has been shown to be suboptimal. The project described in this protocol is one of the two main projects of the larger five-year Translating Research in Elder Care (TREC) program. Aims The purpose of this project is to establish the magnitude of the effect of organizational context on knowledge translation, and subsequently on resident, staff (unregulated, regulated, and managerial) and system outcomes in long-term care facilities in the three Canadian Prairie Provinces (Alberta, Saskatchewan, Manitoba). Methods/Design This study protocol describes the details of a multi-level – including provinces, regions, facilities, units within facilities, and individuals who receive care (residents) or work (staff) in facilities – and longitudinal (five-year) research project. A stratified random sample of 36 residential long-term care facilities (30 urban and 6 rural) from the Canadian Prairie Provinces will comprise the sample. Caregivers and care managers within these facilities will be asked to complete the TREC survey – a suite of survey instruments designed to assess organizational context and related factors hypothesized to be important to successful knowledge translation and to achieving better resident, staff, and system outcomes. Facility and unit level data will be collected using standardized data collection forms, and resident outcomes using the Resident Assessment Instrument-Minimum Data Set version 2.0 instrument. A variety of analytic techniques will be employed including descriptive analyses

  15. Designing for Education: Compendium of Exemplary Educational Facilities 2011

    ERIC Educational Resources Information Center

    OECD Publishing (NJ3), 2011

    2011-01-01

    "Designing for Education: Compendium of Exemplary Educational Facilities 2011" showcases over 60 recently built or refurbished educational facilities from 28 countries. Collectively, these projects demonstrate state-of-the-art design in this field and each one is lavishly illustrated with colour photos, plans and descriptions. [A free PDF is…

  16. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 3: Long-Baseline Neutrino Facility for DUNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strait, James; McCluskey, Elaine; Lundin, Tracy

    2016-01-21

    This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  17. Ingham County Medical Care Facility solar energy project (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    A complete set of as-built drawings for the Ingham County Geriatric Medical Care Facility's solar water heating system is included. These drawings accompany report No. DOE/CS/32382-T1 and DOE/CS/32382-T2. (LS)

  18. Femtosecond Electron and Photon Pulses Facility in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimjaem, S.; Thongbai, C.; Jinamoon, V.

    Femtosecond electron and photon pulses facility has been established as SURIYA project at the Fast Neutron Research Facility (FNRF). Femtosecond electron bunches can be generated from a system consisting of an RF gun with a thermionic cathode, an alpha magnet as an magnetic bunch compressor, and a linear accelerator as a post acceleration section. Femtosecond electron pulses can be used directly or used as a source to produce equally short electromagnetic (EM) radiation pulses via certain kind of radiation production processes. At SURIYA project, we are interested especially in production of radiation in Far-infrared (FIR) regime. At these wavelengths, themore » radiation from femtosecond electron pulses is emitted coherently resulting in high intensity radiation. Overview of the facility, the generation of femtosecond electron bunches, the theoretical background of coherent transition radiation and the recent experimental results will be presented and discussed in this paper.« less

  19. Water quality facility investigation : summary report.

    DOT National Transportation Integrated Search

    2006-12-01

    The genesis for this research project was a desire to comply with the National Pollutant Discharge Elimination : System (NPDES) as cost effectively as possible. The construction of stormwater handling and treatment facilities is : costly because of t...

  20. Physical-Education Facilities/Recreation Centers.

    ERIC Educational Resources Information Center

    American School & University, 2003

    2003-01-01

    Presents K-12 and college physical education/recreation facilities considered outstanding in a competition, which judged the most outstanding learning environments at educational institutions nationwide. Jurors spent two days reviewing projects, highlighting unique concepts and ideas. For each citation, the article offers information on the firm,…

  1. Using Executive Information Systems to Manage Capital Projects and Facilities.

    ERIC Educational Resources Information Center

    Kaynor, Robert

    1993-01-01

    In higher education, facilities data are essential for long-term capital and financial planning and for testing assumptions underlying anticipated policy change. Executive information systems should incorporate life-cycle considerations (planning, construction, renovation, and management) and resource linkages (describing interrelationships of…

  2. Satellite remote sensing facility for oceanograhic applications

    NASA Technical Reports Server (NTRS)

    Evans, R. H.; Kent, S. S.; Seidman, J. B.

    1980-01-01

    The project organization, design process, and construction of a Remote Sensing Facility at Scripps Institution of Oceanography at LaJolla, California are described. The facility is capable of receiving, processing, and displaying oceanographic data received from satellites. Data are primarily imaging data representing the multispectral ocean emissions and reflectances, and are accumulated during 8 to 10 minute satellite passes over the California coast. The most important feature of the facility is the reception and processing of satellite data in real time, allowing investigators to direct ships to areas of interest for on-site verifications and experiments.

  3. New radiation protection calibration facility at CERN.

    PubMed

    Brugger, Markus; Carbonez, Pierre; Pozzi, Fabio; Silari, Marco; Vincke, Helmut

    2014-10-01

    The CERN radiation protection group has designed a new state-of-the-art calibration laboratory to replace the present facility, which is >20 y old. The new laboratory, presently under construction, will be equipped with neutron and gamma sources, as well as an X-ray generator and a beta irradiator. The present work describes the project to design the facility, including the facility placement criteria, the 'point-zero' measurements and the shielding study performed via FLUKA Monte Carlo simulations. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Truck facility access design guidelines statewide.

    DOT National Transportation Integrated Search

    2011-06-01

    The overall purpose of this project is to develop design guidelines for truck access to truck stop facilities adjoining interstate highways and accessed by interchanges in Louisiana. The specific objectives of the research are to: 1. Identify existin...

  5. THE COMPUTER AS A MANAGEMENT TOOL--PHYSICAL FACILITIES INVENTORIES, UTILIZATION, AND PROJECTIONS. 11TH ANNUAL MACHINE RECORDS CONFERENCE PROCEEDINGS (UNIVERSITY OF TENNESSEE, KNOXVILLE, APRIL 25-27, 1966).

    ERIC Educational Resources Information Center

    WITMER, DAVID R.

    WISCONSIN STATE UNIVERSITIES HAVE BEEN USING THE COMPUTER AS A MANAGEMENT TOOL TO STUDY PHYSICAL FACILITIES INVENTORIES, SPACE UTILIZATION, AND ENROLLMENT AND PLANT PROJECTIONS. EXAMPLES ARE SHOWN GRAPHICALLY AND DESCRIBED FOR DIFFERENT TYPES OF ANALYSIS, SHOWING THE CARD FORMAT, CODING SYSTEMS, AND PRINTOUT. EQUATIONS ARE PROVIDED FOR DETERMINING…

  6. CVD facility electrical system captor/dapper study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SINGH, G.

    1999-10-28

    Project W-441, CVD Facility Electrical System CAPTOWDAPPER Study validates Meier's hand calculations. This study includes Load flow, short circuit, voltage drop, protective device coordination, and transient motor starting (TMS) analyses.

  7. Space exploration initiative candidate nuclear propulsion test facilities

    NASA Technical Reports Server (NTRS)

    Baldwin, Darrell; Clark, John S.

    1993-01-01

    One-page descriptions for approximately 200 existing government, university, and industry facilities which may be available in the future to support SEI nuclear propulsion technology development and test program requirements are provided. To facilitate use of the information, the candidate facilities are listed both by location (Index L) and by Facility Type (Index FT). The included one-page descriptions provide a brief narrative description of facility capability, suggest potential uses for each facility, and designate a point of contact for additional information that may be needed in the future. The Nuclear Propulsion Office at NASA Lewis presently plans to maintain, expand, and update this information periodically for use by NASA, DOE, and DOD personnel involved in planning various phases of the SEI Nuclear Propulsion Project.

  8. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  9. Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Emami, Saied

    2001-01-01

    Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.

  10. Recent health sciences library building projects.

    PubMed Central

    Ludwig, L

    1993-01-01

    The Medical Library Association's third annual survey of recent health sciences library building projects identified fourteen libraries planning, expanding, or constructing new library facilities. Three of five new library buildings are freestanding structures where the library occupies all or a major portion of the space. The two other new facilities are for separately administered units where the library is a major tenant. Nine projects involve additions to or renovations of existing space. Six projects are in projected, predesign, or design stages or are awaiting funding approval. This paper describes four projects that illustrate technology's growing effect on librarians and libraries. They are designed to accommodate change, a plethora of electronic gear, and easy use of technology. Outwardly, they do not look much different than many other modern buildings. But, inside, the changes have been dramatic although they have evolved slowly as the building structure has been adapted to new conditions. Images PMID:8251970

  11. Development of the advanced life support Systems Integration Research Facility at NASA's Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.; Thompson, Clifford D.

    1992-01-01

    Future NASA manned missions to the moon and Mars will require development of robust regenerative life support system technologies which offer high reliability and minimal resupply. To support the development of such systems, early ground-based test facilities will be required to demonstrate integrated, long-duration performance of candidate regenerative air revitalization, water recovery, and thermal management systems. The advanced life support Systems Integration Research Facility (SIRF) is one such test facility currently being developed at NASA's Johnson Space Center. The SIRF, when completed, will accommodate unmanned and subsequently manned integrated testing of advanced regenerative life support technologies at ambient and reduced atmospheric pressures. This paper provides an overview of the SIRF project, a top-level description of test facilities to support the project, conceptual illustrations of integrated test article configurations for each of the three SIRF systems, and a phased project schedule denoting projected activities and milestones through the next several years.

  12. Manpower and project planning

    NASA Technical Reports Server (NTRS)

    Johnson, David W.

    1991-01-01

    The purpose was to study how manpower and projects are planned at the Facilities Engineering Division (FENGD) within the Systems Engineering and Operations Directorate of the LaRC and to make recommendations for improving the effectiveness and productivity ot the tools that are used. The existing manpower and project planning processes (including the management plan for the FENGD, existing manpower planning reports, project reporting to LaRC and NASA Headquarters, employee time reporting, financial reporting, and coordination/tracking reports for procurement) were discussed with several people, and project planning software was evaluated.

  13. A novel image database analysis system maintenance of transportation facility.

    DOT National Transportation Integrated Search

    2009-01-01

    The current project was funded by MIOH-UTC in the Spring of 2008 to investigate efficient : maintenance methods for transportation facilities. To achieve the objectives of the project, the : PIs undertook the research of various technologies of image...

  14. 34 CFR 75.683 - Health or safety standards for facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Conditions Must Be Met by a Grantee? Other Requirements for Certain Projects § 75.683 Health or safety... to the facilities that the grantee uses for the project. (Authority: 20 U.S.C. 1221e-3 and 3474) ...

  15. Development and Use of a Virtual NMR Facility

    NASA Astrophysics Data System (ADS)

    Keating, Kelly A.; Myers, James D.; Pelton, Jeffrey G.; Bair, Raymond A.; Wemmer, David E.; Ellis, Paul D.

    2000-03-01

    We have developed a "virtual NMR facility" (VNMRF) to enhance access to the NMR spectrometers in Pacific Northwest National Laboratory's Environmental Molecular Sciences Laboratory (EMSL). We use the term virtual facility to describe a real NMR facility made accessible via the Internet. The VNMRF combines secure remote operation of the EMSL's NMR spectrometers over the Internet with real-time videoconferencing, remotely controlled laboratory cameras, real-time computer display sharing, a Web-based electronic laboratory notebook, and other capabilities. Remote VNMRF users can see and converse with EMSL researchers, directly and securely control the EMSL spectrometers, and collaboratively analyze results. A customized Electronic Laboratory Notebook allows interactive Web-based access to group notes, experimental parameters, proposed molecular structures, and other aspects of a research project. This paper describes our experience developing a VNMRF and details the specific capabilities available through the EMSL VNMRF. We show how the VNMRF has evolved during a test project and present an evaluation of its impact in the EMSL and its potential as a model for other scientific facilities. All Collaboratory software used in the VNMRF is freely available from http://www.emsl.pnl.gov:2080/docs/collab.

  16. Baseline process description for simulating plutonium oxide production for precalc project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, J. A.

    Savannah River National Laboratory (SRNL) started a multi-year project, the PreCalc Project, to develop a computational simulation of a plutonium oxide (PuO 2) production facility with the objective to study the fundamental relationships between morphological and physicochemical properties. This report provides a detailed baseline process description to be used by SRNL personnel and collaborators to facilitate the initial design and construction of the simulation. The PreCalc Project team selected the HB-Line Plutonium Finishing Facility as the basis for a nominal baseline process since the facility is operational and significant model validation data can be obtained. The process boundary as wellmore » as process and facility design details necessary for multi-scale, multi-physics models are provided.« less

  17. The Sanford Underground Research Facility at Homestake (SURF)

    DOE PAGES

    Lesko, K. T.

    2015-03-24

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the Majorana Demonstrator neutrinoless double-beta decay experiment and the Berkeley and CUBED low-background counters. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark mattermore » experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability. These plans include a Generation-2 Dark Matter experiment and the US flagship neutrino experiment, LBNE.« less

  18. The 1990-1991 project summaries

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Project summaries for 1990-91 at the Georgia Institute of Technology are presented. The following research projects were studied: a lunar surface vehicle model; lunar loader/transporter; trenching and cable-laying device for the lunar surface; a lunar vehicle system for habitat transport and placement; and lunar storage facility.

  19. Capsule review of the DOE research and development and field facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses,more » and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)« less

  20. Development of an Integrated Leachate Treatment Solution for the Port Granby Waste Management Facility - 12429

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Kevin W.; Vandergaast, Gerald

    2012-07-01

    The Port Granby Project (the Project) is located near the north shore of Lake Ontario in the Municipality of Clarington, Ontario, Canada. The Project consists of relocating approximately 450,000 m{sup 3} of historic Low-Level Radioactive Waste (LLRW) and contaminated soil from the existing Port Granby Waste Management Facility (WMF) to a proposed Long-Term Waste Management Facility (LTWMF) located adjacent to the WMF. The LTWMF will include an engineered waste containment facility, a Wastewater Treatment Plant (WTP), and other ancillary facilities. A series of bench- and pilot-scale test programs have been conducted to identify preferred treatment processes to be incorporated intomore » the WTP to treat wastewater generated during the construction, closure and post-closure periods at the WMF/LTWMF. (authors)« less

  1. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Arbacher, Becca

    2011-01-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst < -200 nT). These scale-height changes suggest a large heat input to the topside ionosphere at this time. The topside profiles were derived from ISIS-1 digital ionograms obtained from the NASA Space Physics Data Facility (SPDF) Coordinated Data Analysis Web (CDA Web). Solar-wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  2. 7 CFR 1942.115 - Reasonable project costs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 13 2013-01-01 2013-01-01 false Reasonable project costs. 1942.115 Section 1942.115...) PROGRAM REGULATIONS (CONTINUED) ASSOCIATIONS Fire and Rescue and Other Small Community Facilities Projects § 1942.115 Reasonable project costs. Applicants are responsible for determining that prices paid for...

  3. 7 CFR 1942.115 - Reasonable project costs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 13 2014-01-01 2013-01-01 true Reasonable project costs. 1942.115 Section 1942.115...) PROGRAM REGULATIONS (CONTINUED) ASSOCIATIONS Fire and Rescue and Other Small Community Facilities Projects § 1942.115 Reasonable project costs. Applicants are responsible for determining that prices paid for...

  4. 7 CFR 1942.115 - Reasonable project costs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 13 2011-01-01 2009-01-01 true Reasonable project costs. 1942.115 Section 1942.115...) PROGRAM REGULATIONS (CONTINUED) ASSOCIATIONS Fire and Rescue and Other Small Community Facilities Projects § 1942.115 Reasonable project costs. Applicants are responsible for determining that prices paid for...

  5. 7 CFR 1942.115 - Reasonable project costs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 13 2012-01-01 2012-01-01 false Reasonable project costs. 1942.115 Section 1942.115...) PROGRAM REGULATIONS (CONTINUED) ASSOCIATIONS Fire and Rescue and Other Small Community Facilities Projects § 1942.115 Reasonable project costs. Applicants are responsible for determining that prices paid for...

  6. 7 CFR 1942.115 - Reasonable project costs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Reasonable project costs. 1942.115 Section 1942.115...) PROGRAM REGULATIONS (CONTINUED) ASSOCIATIONS Fire and Rescue and Other Small Community Facilities Projects § 1942.115 Reasonable project costs. Applicants are responsible for determining that prices paid for...

  7. Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals.

    PubMed

    Holtz, Barry R; Berquist, Brian R; Bennett, Lindsay D; Kommineni, Vally J M; Munigunti, Ranjith K; White, Earl L; Wilkerson, Don C; Wong, Kah-Yat I; Ly, Lan H; Marcel, Sylvain

    2015-10-01

    Rapid, large-scale manufacture of medical countermeasures can be uniquely met by the plant-made-pharmaceutical platform technology. As a participant in the Defense Advanced Research Projects Agency (DARPA) Blue Angel project, the Caliber Biotherapeutics facility was designed, constructed, commissioned and released a therapeutic target (H1N1 influenza subunit vaccine) in <18 months from groundbreaking. As of 2015, this facility was one of the world's largest plant-based manufacturing facilities, with the capacity to process over 3500 kg of plant biomass per week in an automated multilevel growing environment using proprietary LED lighting. The facility can commission additional plant grow rooms that are already built to double this capacity. In addition to the commercial-scale manufacturing facility, a pilot production facility was designed based on the large-scale manufacturing specifications as a way to integrate product development and technology transfer. The primary research, development and manufacturing system employs vacuum-infiltrated Nicotiana benthamiana plants grown in a fully contained, hydroponic system for transient expression of recombinant proteins. This expression platform has been linked to a downstream process system, analytical characterization, and assessment of biological activity. This integrated approach has demonstrated rapid, high-quality production of therapeutic monoclonal antibody targets, including a panel of rituximab biosimilar/biobetter molecules and antiviral antibodies against influenza and dengue fever. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. OIL AND GAS FACILITY EMERGENCY AWARENESS PARTNERSHIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tod Bryant

    2002-08-31

    Energy Education Partnership, Inc. (EEPI) is a 501(c) (3) subsidiary of the Interstate Oil and Gas Compact Commission (IOGCC). The organization was formed four years ago for charitable, educational, and scientific purposes. EEPI adheres to the same mission of IOGCC, and that is to promote conservation and efficient recovery of domestic oil and natural gas resources while protecting health, safety and the environment. The membership of EEPI/IOCGG is composed of the governors of the 30 oil and gas producing states, seven associate member states, and five international affiliates. The governors appoint official representatives and committee members to participate in themore » programs. The membership of EEPI/IOGCC is dedicated to the conservation and prudent utilization of oil and natural gas resources through education and training. Engineers, geologist, environmental scientists and researchers who perform the majority of fossil energy research in the United States all work with EEPI/IOGCC on projects. The ''Oil and Gas Facility Emergency Awareness Program'' consists of three main parts, with two optional projects for the states involved in the pilot program. The three main parts of the program consist of the following: (1) Create a generic publication using the Ohio Oil and Gas Energy Education Program's publication, ''Responding to Oilfield Emergencies'', which is not state-specific. (2) Prepare a training program for emergency response teams, state and federal regulators, oil and gas facility owners and operators, and local citizens. The program will be developed as a PowerPoint presentation and will assist the students in becoming more aware of emergency situations at an oil or gas facility. The students learn who is the designated ''first responder'' in charge, how all people can work together in preventing and controlling problems at an oil or gas facility, and what to do during an emergency. Familiarity with equipment and hazardous substances are introduced

  9. Design philosophy of the Jet Propulsion Laboratory infrared detector test facility

    NASA Technical Reports Server (NTRS)

    Burns, R.; Blessinger, M. A.

    1983-01-01

    To support the development of advanced infrared remote sensing instrumentation using line and area arrays, a test facility has been developed to characterize the detectors. The necessary performance characteristics of the facility were defined by considering current and projected requirements for detector testing. The completed facility provides the desired level of detector testing capability as well as providing ease of human interaction.

  10. Meeting the challenges of bringing a new base facility operation model to Gemini Observatory

    NASA Astrophysics Data System (ADS)

    Nitta, Atsuko; Arriagada, Gustavo; Adamson, A. J.; Cordova, Martin; Nunez, Arturo; Serio, Andrew; Kleinman, Scot

    2016-08-01

    The aim of the Gemini Observatory's Base Facilities Project is to provide the capabilities to perform routine night time operations with both telescopes and their instruments from their respective base facilities without anyone present at the summit. Tightening budget constraints prompted this project as both a means to save money and an opportunity to move toward increasing remote operations in the future. We successfully moved Gemini North nighttime operation to our base facility in Hawaii in Nov., 2015. This is the first 8mclass telescope to completely move night time operations to base facility. We are currently working on implementing BFO to Gemini South. Key challenges for this project include: (1) This is a schedule driven project. We have to implement the new capabilities by the end of 2015 for Gemini North and end of 2016 for Gemini South. (2) The resources are limited and shared with operations which has the higher priority than our project. (3) Managing parallel work within the project. (4) Testing, commissioning and introducing new tools to operational systems without adding significant disruptions to nightly operations. (5) Staff buying to the new operational model. (6) The staff involved in the project are spread on two locations separated by 10,000km, seven time zones away from each other. To overcome these challenges, we applied two principles: "Bare Minimum" and "Gradual Descent". As a result, we successfully completed the project ahead of schedule at Gemini North Telescope. I will discuss how we managed the cultural and human aspects of the project through these concepts. The other management aspects will be presented by Gustavo Arriagada [2], the Project Manager of this project. For technical details, please see presentations from Andrew Serio [3] and Martin Cordova [4].

  11. Fabulous Facilities: New Constructions and Renovations.

    ERIC Educational Resources Information Center

    American Libraries, 1997

    1997-01-01

    Renovation and construction projects in 18 public and academic libraries across the United States are showcased, with 23 photographs illustrating library interiors and exteriors. Discussion centers on architecture, costs, technology infrastructure and equipment, preservation of old facilities, furniture, and library functions. (AEF)

  12. 7 CFR 1942.17 - Community facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... economic purposes a single community having a contiguous boundary. (2) Project selection process. The... efficient management and economical service; and/or enlarge, extend, or otherwise modify existing facilities... account for items such as geographic distribution of funds and emergency conditions caused by economic...

  13. 7 CFR 1942.17 - Community facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... economic purposes a single community having a contiguous boundary. (2) Project selection process. The... efficient management and economical service; and/or enlarge, extend, or otherwise modify existing facilities... account for items such as geographic distribution of funds and emergency conditions caused by economic...

  14. 7 CFR 1942.17 - Community facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... economic purposes a single community having a contiguous boundary. (2) Project selection process. The... efficient management and economical service; and/or enlarge, extend, or otherwise modify existing facilities... account for items such as geographic distribution of funds and emergency conditions caused by economic...

  15. 7 CFR 1942.17 - Community facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... economic purposes a single community having a contiguous boundary. (2) Project selection process. The... efficient management and economical service; and/or enlarge, extend, or otherwise modify existing facilities... account for items such as geographic distribution of funds and emergency conditions caused by economic...

  16. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  17. International Interdisciplinary Research Institute Project in Senegal

    NASA Astrophysics Data System (ADS)

    Gueye, Paul

    2010-02-01

    The project of an interdisciplinary research institute in Senegal was initiated in 1993 in Senegal (West Africa) and became a template for a similar project in the US in 1999. Since then, numerous meetings and presentations have been held at various national and international institutions, workshops and conferences. The current development of this partnership includes drafts for a full design of all systems at each facility, as well as the physics, applied health and educational programs to be implemented. The Senegal facility was conceived for scientific capacity building and equally to act as a focal point aimed at using the local scientific expertise. An anticipated outcome would be a contribution to the reduction of an ever-growing brain drain process suffered by the country, and the African continent in general. The development of the project led also to a strong African orientation of the facility: built for international collaboration, it is to be a pan-African endeavor and to serve primarily African countries. The facility received a presidential approval in a 2003 meeting and will develop an interdisciplinary program centered on a strong materials science research which will also allow for the establishment of an advanced analytical (physical chemistry) laboratory. A central part of the facility will be linked to state-of-the art accelerator mass spectrometry, cyclotron and low energy electromagnetic accelerator systems. )

  18. National Ignition Facility Laser System Performance

    DOE PAGES

    Spaeth, Mary L.; Manes, Kenneth R.; Bowers, M.; ...

    2017-03-23

    The National Ignition Facility (NIF) laser is the culmination of more than 40 years of work at Lawrence Livermore National Laboratory dedicated to the delivery of laser systems capable of driving experiments for the study of high-energy-density physics. Although NIF was designed to support a number of missions, it was clear from the beginning that its biggest challenge was to meet the requirements for pursuit of inertial confinement fusion. Meeting the Project Completion Criteria for NIF in 2009 and for the National Ignition Campaign (NIC) in 2012 included meeting the NIF Functional Requirements and Primary Criteria that were established formore » the project in 1994. Finally, during NIC and as NIF transitioned to a user facility, its goals were expanded to include requirements defined by the broader user community as well as by laser system designers and operators.« less

  19. National facilities study. Volume 5: Space research and development facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With the beginnings of the U.S. space program, there was a pressing need to develop facilities that could support the technology research and development, testing, and operations of evolving space systems. Redundancy in facilities that was once and advantage in providing flexibility and schedule accommodation is instead fast becoming a burden on scarce resources. As a result, there is a clear perception in many sectors that the U.S. has many space R&D facilities that are under-utilized and which are no longer cost-effective to maintain. At the same time, it is clear that the U.S. continues to possess many space R&D facilities which are the best -- or among the best -- in the world. In order to remain world class in key areas, careful assessment of current capabilities and planning for new facilities is needed. The National Facility Study (NFS) was initiated in 1992 to develop a comprehensive and integrated long-term plan for future aerospace facilities that meets current and projected government and commercial needs. In order to assess the nation's capability to support space research and development (R&D), a Space R&D Task Group was formed. The Task Group was co-chaired by NASA and DOD. The Task Group formed four major, technologically- and functionally- oriented working groups: Human and Machine Operations; Information and Communications; Propulsion and Power; and Materials, Structures, and Flight Dynamics. In addition to these groups, three supporting working groups were formed: Systems Engineering and Requirements; Strategy and Policy; and Costing Analysis. The Space R&D Task Group examined several hundred facilities against the template of a baseline mission and requirements model (developed in common with the Space Operations Task Group) and a set of excursions from the baseline. The model and excursions are described in Volume 3 of the NFS final report. In addition, as a part of the effort, the group examined key strategic issues associated with space R

  20. Solidification under zero gravity: A Long Duration Exposure Facility (LDEF) experiment for an early space shuttle mission. [project planning

    NASA Technical Reports Server (NTRS)

    Bailey, J. A.

    1976-01-01

    Project planning for two series of simple experiments on the effect of zero gravity on the melting and freezing of metals and nonmetals is described. The experiments will be performed in the Long Duration Exposure Facility, and their purpose will be to study: (1) the general morphology of metals and nonmetals during solidification, (2) the location of ullage space (liquid-vapor interfaces), and (3) the magnitude of surface tension driven convection during solidification of metals and nonmetals. The preliminary design of the experiments is presented. Details of the investigative approach, experimental procedure, experimental hardware, data reduction and analysis, and anticipated results are given. In addition a work plan and cost analysis are provided.

  1. Facilities | Advanced Manufacturing Research | NREL

    Science.gov Websites

    , and black building with two people walking in front of it. Energy Systems Integration Facility Its projects. Photo of a large, warehouse-like, lab space with several people in hard hats operating equipment with a few people and manufacturing equipment, including spools and web lines. Manufacturing Laboratory

  2. Crowder College MARET Center Facility Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rand, Amy

    This project was a research facility construction project and did not include actual research. The new facility will benefit the public by providing training opportunities for students, as well as incubator and laboratory space for entrepreneurs in the areas of alternative and renewable energies. The 9,216 -square-foot Missouri Alternative and Renewable Energy Technology (MARET) Center was completed in late 2011. Classes in the MARET Center began in the spring 2012 semester. Crowder College takes pride in the MARET Center, a focal point of the campus, as the cutting edge in education, applied research and commercial development in the growing fieldmore » of green technology.« less

  3. Maryland Health and Higher Educational Facilities Authority. 1996 Annual Report.

    ERIC Educational Resources Information Center

    Maryland State Health and Higher Educational Facilities Authority, Baltimore.

    The Maryland Health and Higher Educational Facilities Authority performs various functions including: issuing bonds and bond anticipation notes; fixing rates and collecting user rents and fees; constructing, acquiring, and maintaining institutional projects; contracting for operation and maintenance of projects; establishing rules and regulations…

  4. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... related facilities required for the rural water supply project; (f) Equipment and management tools for... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included...

  5. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean roommore » facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.« less

  6. Overview of Particle Production Facilities Available in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kugler, Andrej

    2007-11-26

    A brief overview of particle production facilities available in Czech Republic is given. In particular are described the facilities at the Nuclear Physics Institute in Rez near Prague, namely: an isochronous cyclotron, an electrostatic accelerator tandetron and a microtron. An outline of the main research projects carried out is included.

  7. The Nuclotron-based Ion Collider Facility Project. The Physics Programme for the Multi-Purpose Detector

    NASA Astrophysics Data System (ADS)

    Geraksiev, N. S.; MPD Collaboration

    2018-05-01

    The Nuclotron-based Ion Collider fAcility (NICA) is a new accelerator complex being constructed at the Joint Institute for Nuclear Research (JINR). The general objective of the project is to provide beams for the experimental study of hot and dense strongly interacting QCD matter. The heavy ion programme includes two planned detectors: BM@N (Baryonic Matter at Nuclotron) a fixed target experiment with extracted Nuclotron beams; and MPD (MultiPurpose Detector) a collider mode experiment at NICA. The accelerated particles can range from protons and light nuclei to gold ions. Beam energies will span\\sqrt{s}=12-27 GeV with luminosity L ≥ 1 × 1030 cm‑2s‑1 and \\sqrt{{s}NN}=4-11 GeV and average luminosity L = 1 × 1027cm‑2 s ‑1(for 197Au79+), respectively. A third experiment for spin physics is planned with the SPD (Spin Physics Detector) at the NICA collider in polarized beams mode. A brief overview of the MPD is presented along with several observables in the MPD physics programme.

  8. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tommasini, R.; Bailey, C.; Bradley, D. K.

    High-resolution, high-energy X-ray backlighters are very active area of research for radiography experiments at the National Ignition Facility (NIF) [Miller et al., Nucl. Fusion 44, S228 (2004)], in particular those aiming at obtaining Compton-scattering produced radiographs from the cold, dense fuel surrounding the hot spot. We report on experiments to generate and characterize point-projection-geometry backlighters using short pulses from the advanced radiographic capability (ARC) [Crane et al., J. Phys. 244, 032003 (2010); Di Nicola et al., Proc. SPIE 2015, 93450I-12], at the NIF, focused on Au micro-wires. We show the first hard X-ray radiographs, at photon energies exceeding 60 keV,more » of static objects obtained with 30 ps-long ARC laser pulses, and the measurements of strength of the X-ray emission, the pulse duration and the source size of the Au micro-wire backlighters. For the latter, a novel technique has been developed and successfully applied.« less

  9. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Tommasini, R.; Bailey, C.; Bradley, D. K.; Bowers, M.; Chen, H.; Di Nicola, J. M.; Di Nicola, P.; Gururangan, G.; Hall, G. N.; Hardy, C. M.; Hargrove, D.; Hermann, M.; Hohenberger, M.; Holder, J. P.; Hsing, W.; Izumi, N.; Kalantar, D.; Khan, S.; Kroll, J.; Landen, O. L.; Lawson, J.; Martinez, D.; Masters, N.; Nafziger, J. R.; Nagel, S. R.; Nikroo, A.; Okui, J.; Palmer, D.; Sigurdsson, R.; Vonhof, S.; Wallace, R. J.; Zobrist, T.

    2017-05-01

    High-resolution, high-energy X-ray backlighters are very active area of research for radiography experiments at the National Ignition Facility (NIF) [Miller et al., Nucl. Fusion 44, S228 (2004)], in particular those aiming at obtaining Compton-scattering produced radiographs from the cold, dense fuel surrounding the hot spot. We report on experiments to generate and characterize point-projection-geometry backlighters using short pulses from the advanced radiographic capability (ARC) [Crane et al., J. Phys. 244, 032003 (2010); Di Nicola et al., Proc. SPIE 2015, 93450I-12], at the NIF, focused on Au micro-wires. We show the first hard X-ray radiographs, at photon energies exceeding 60 keV, of static objects obtained with 30 ps-long ARC laser pulses, and the measurements of strength of the X-ray emission, the pulse duration and the source size of the Au micro-wire backlighters. For the latter, a novel technique has been developed and successfully applied.

  10. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility

    DOE PAGES

    Tommasini, R.; Bailey, C.; Bradley, D. K.; ...

    2017-05-09

    High-resolution, high-energy X-ray backlighters are very active area of research for radiography experiments at the National Ignition Facility (NIF) [Miller et al., Nucl. Fusion 44, S228 (2004)], in particular those aiming at obtaining Compton-scattering produced radiographs from the cold, dense fuel surrounding the hot spot. We report on experiments to generate and characterize point-projection-geometry backlighters using short pulses from the advanced radiographic capability (ARC) [Crane et al., J. Phys. 244, 032003 (2010); Di Nicola et al., Proc. SPIE 2015, 93450I-12], at the NIF, focused on Au micro-wires. We show the first hard X-ray radiographs, at photon energies exceeding 60 keV,more » of static objects obtained with 30 ps-long ARC laser pulses, and the measurements of strength of the X-ray emission, the pulse duration and the source size of the Au micro-wire backlighters. For the latter, a novel technique has been developed and successfully applied.« less

  11. Obtaining Life-Cycle Cost-Effective Facilities in the Department of Defense

    DTIC Science & Technology

    2013-01-01

    8 Step 3: Regional, Service- Level , and OSD Project Ranking...13 2.3. Actors and Barriers to Life-Cycle Cost-Effective Facilities in the Regional, Service- Level , and OSD Project Ranking...Congressional authorization and appropriation OMB evaluation Regional, service- level , and OSD project ranking Economic analysis and DD form 1391 completed

  12. Vulnerability Assessments and Resilience Planning at Federal Facilities. Preliminary Synthesis of Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, R. H.; Blohm, A. J.; Delgado, A.

    2015-08-15

    U.S. government agencies are now directed to assess the vulnerability of their operations and facilities to climate change and to develop adaptation plans to increase their resilience. Specific guidance on methods is still evolving based on the many different available frameworks. Agencies have been experimenting with these frameworks and approaches. This technical paper synthesizes lessons and insights from a series of research case studies conducted by the investigators at facilities of the U.S. Department of Energy and the Department of Defense. The purpose of the paper is to solicit comments and feedback from interested program managers and analysts before finalmore » conclusions are published. The paper describes the characteristics of a systematic process for prioritizing needs for adaptation planning at individual facilities and examines requirements and methods needed. It then suggests a framework of steps for vulnerability assessments at Federal facilities and elaborates on three sets of methods required for assessments, regardless of the detailed framework used. In a concluding section, the paper suggests a roadmap to further develop methods to support agencies in preparing for climate change. The case studies point to several preliminary conclusions; (1) Vulnerability assessments are needed to translate potential changes in climate exposure to estimates of impacts and evaluation of their significance for operations and mission attainment, in other words into information that is related to and useful in ongoing planning, management, and decision-making processes; (2) To increase the relevance and utility of vulnerability assessments to site personnel, the assessment process needs to emphasize the characteristics of the site infrastructure, not just climate change; (3) A multi-tiered framework that includes screening, vulnerability assessments at the most vulnerable installations, and adaptation design will efficiently target high-risk sites and

  13. 75 FR 53332 - San Carlos Irrigation Project, Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation San Carlos Irrigation Project, Arizona AGENCY..., as amended, on the rehabilitation of San Carlos Irrigation Project (SCIP) water delivery facilities... convey irrigation water from the Gila River and Central Arizona Project (CAP) to agricultural lands in...

  14. Gemini Observatory base facility operations: systems engineering process and lessons learned

    NASA Astrophysics Data System (ADS)

    Serio, Andrew; Cordova, Martin; Arriagada, Gustavo; Adamson, Andy; Close, Madeline; Coulson, Dolores; Nitta, Atsuko; Nunez, Arturo

    2016-08-01

    Gemini North Observatory successfully began nighttime remote operations from the Hilo Base Facility control room in November 2015. The implementation of the Gemini North Base Facility Operations (BFO) products was a great learning experience for many of our employees, including the author of this paper, the BFO Systems Engineer. In this paper we focus on the tailored Systems Engineering processes used for the project, the various software tools used in project support, and finally discuss the lessons learned from the Gemini North implementation. This experience and the lessons learned will be used both to aid our implementation of the Gemini South BFO in 2016, and in future technical projects at Gemini Observatory.

  15. Skilled nursing facilities reform.

    PubMed

    1998-06-01

    The Medicare prospective payment system for skilled nursing facilities will take effect with cost reporting years beginning on or after July 1, 1998. HCFA is working on the implementation details. While final details are not expected to be published until Summer 1998, the following information has been provided through HCFA and/or the Nursing Home Case-Mix and Quality (NHCMQ) Demonstration project (RUGs-III) procedures.

  16. Risks Associated with Federal Construction Projects

    DTIC Science & Technology

    2011-06-01

    awarding contracts for construction projects (USACE, 2010). BIM offers a method to effectively design a facility while maximizing work performance during...includes Requirements, Programming, Funding, Solicitation, AEC Evaluation, Award , Project Validation, Design and Construction, and Project Management...includes the Solicitation, AEC Evaluation, and Award Steps. In this Phase, BIM is only used in the Solicitation and the AEC Evaluation steps

  17. Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, P.K.; Freemerman, R.L.

    1989-11-01

    On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as themore » Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.« less

  18. Strengthening TB infection control in specialized health facilities in Romania--using a participatory approach.

    PubMed

    Turusbekova, N; Popa, C; Dragos, M; van der Werf, M J; Dinca, I

    2016-02-01

    In 2012, the tuberculosis (TB) notification rate among Romanian TB facility doctors and nurses was 7.2 times higher than in the general population. This indicates that transmission is ongoing inside TB facilities and that TB infection control measures are insufficient. To help prevent nosocomial TB transmission a project was implemented that aimed at providing nationwide tailor-made technical assistance in TB infection control (TB-IC) in TB treatment facilities, including the development of TB infection control plans. The objective of the present article is to describe the implementation of the project and to discuss successes and challenges. The project was an implementation study using two methods of evaluation: (1) a cross sectional questionnaire study; and (2) collection of information, during the training, on challenges related to infection control and to the project implementation. The project team developed a TB facility infection control (TB-IC) plan template, together with the Romanian experts. The template was discussed and agreed upon with the experts at a meeting and thereafter distributed by email to all TB facilities. Afterwards, a training of trainers (TOT) seminar was organized which included the provision of information about different training methods, as well as information about TB-IC. The TOT was followed by training for key TB-IC providers. Information about use of the TB-IC template was gathered through a self-administered questionnaire sent to all participants of the expert meeting and the training (42 people). Additionally, non-systematized discussions were held on broader challenges in TB-IC implementation during the training. Within the project 42 key TB-IC service providers were trained in TB-IC, including 9 who were trained at a TOT seminar. The trainees were specialists working at the national level, such as country TB coordinators, or at the TB facility level: TB doctors, epidemiologists, laboratory specialists and maintenance

  19. A case study of collaborative facilities use in engineering design

    NASA Astrophysics Data System (ADS)

    Monroe, Laura; Pugmire, David

    2010-01-01

    In this paper we describe the use of visualization tools and facilities in the collaborative design of a replacement weapons system, the Reliable Replacement Warhead (RRW). We used not only standard collaboration methods but also a range of visualization software and facilities to bring together domain specialists from laboratories across the country to collaborate on the design and integrate this disparate input early in the design. This was the first time in U.S. weapons history that a weapon had been designed in this collaborative manner. Benefits included projected cost savings, design improvements and increased understanding across the project.

  20. Analysis of renewable energy projects' implementation in Russia

    NASA Astrophysics Data System (ADS)

    Ratner, S. V.; Nizhegorodtsev, R. M.

    2017-06-01

    With the enactment in 2013 of a renewable energy scheme by contracting qualified power generation facilities working on renewable energy sources (RES), the process of construction and connection of such facilities to the Federal Grid Company has intensified in Russia. In 2013-2015, 93 projects of solar, wind, and small hydropower energy were selected on the basis of competitive bidding in the country with the purpose of subsequent support. Despite some technical and organizational problems and a time delay of some RES projects, in 2014-2015 five solar generating facilities with total capacity of 50 MW were commissioned, including 30 MW in Orenburg oblast. However, the proportion of successful projects is low and amounts to approximately 30% of the total number of announced projects. The purpose of this paper is to analyze the experience of implementation of renewable energy projects that passed through a competitive selection and gained the right to get a partial compensation for the construction and commissioning costs of RES generating facilities in the electric power wholesale market zone. The informational background for the study is corporate reports of project promoters, analytical and information materials of the Association NP Market Council, and legal documents for the development of renewable energy. The methodological base of the study is a theory of learning curves that assumes that cost savings in the production of high-tech products depends on the production growth rate (economy of scale) and gaining manufacturing experience (learning by doing). The study has identified factors that have a positive and a negative impact on the implementation of RES projects. Improvement of promotion measures in the renewable energy development in Russia corresponding to the current socio-economic situation is proposed.

  1. JPL Facilities and Software for Collaborative Design: 1994 - Present

    NASA Technical Reports Server (NTRS)

    DeFlorio, Paul A.

    2004-01-01

    The viewgraph presentation provides an overview of the history of the JPL Project Design Center (PDC) and, since 2000, the Center for Space Mission Architecture and Design (CSMAD). The discussion includes PDC objectives and scope; mission design metrics; distributed design; a software architecture timeline; facility design principles; optimized design for group work; CSMAD plan view, facility design, and infrastructure; and distributed collaboration tools.

  2. DSN Aperture Enhancement Project Office

    NASA Technical Reports Server (NTRS)

    Marina, Miguel

    2012-01-01

    All contracts are underway for antennas, associated facilities modifications and new transmitters. High risk CPI 100kW klystron and JPL high power uplink microwave components have been designed, prototyped and successfully tested at GDSCC to support the 80kW transmitter implementation and testing at vendor facility. Open issues, which might affect project delivery date, have plans in place or are being created, to maintain DSS-35 Operational Date. There are no known open issues that affect performance. Overall good progress has been made in all areas (procurements, contracts, design and development) and the project is confident that DSS-35 & 36 antennas and the three 80kW Uplink systems will be delivered according to plan.

  3. Concentrating Solar Power Projects in India | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. Abhijeet Solar Project ACME Solar Tower Dadri ISCC Plant Dhursar Diwakar Godawari Solar Project Gujarat Solar One KVK Energy Solar Project Megha Solar Plant National Solar Thermal Power Facility

  4. 40 CFR 256.41 - Recommendations for assessing the need for facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Recommendations for assessing the need for facilities. 256.41 Section 256.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... their impact on facility needs should be assessed. (3) Current and projected movement of solid and...

  5. 40 CFR 256.41 - Recommendations for assessing the need for facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Recommendations for assessing the need for facilities. 256.41 Section 256.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... their impact on facility needs should be assessed. (3) Current and projected movement of solid and...

  6. Geologic evaluation of six nonwelded tuff sites in the vicinity of Yucca Mountain, Nevada for a surface-based test facility for the Yucca Mountain Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broxton, D.E.; Chipera, S.J.; Byers, F.M. Jr.

    1993-10-01

    Outcrops of nonwelded tuff at six locations in the vicinity of Yucca Mountain, Nevada, were examined to determine their suitability for hosting a surface-based test facility for the Yucca Mountain Project. Investigators will use this facility to test equipment and procedures for the Exploratory Studies Facility and to conduct site characterization field experiments. The outcrops investigated contain rocks that include or are similar to the tuffaceous beds of Calico Hills, an important geologic and hydrologic barrier between the potential repository and the water table. The tuffaceous beds of Calico Hills at the site of the potential repository consist of bothmore » vitric and zeolitic tuffs, thus three of the outcrops examined are vitric tuffs and three are zeolitic tuffs. New data were collected to determine the lithology, chemistry, mineralogy, and modal petrography of the outcrops. Some preliminary data on hydrologic properties are also presented. Evaluation of suitability of the six sites is based on a comparison of their geologic characteristics to those found in the tuffaceous beds of Calico Hills within the exploration block.« less

  7. 7 CFR Appendix A to Subpart E of... - Hazard Potential Classification for Civil Works Projects

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... essential facilities and access Disruption of critical facilities and access. Property Losses 4 Private..., communications, power supply, etc. 4 Direct economic impact of value of property damages to project facilities and down stream property and indirect economic impact due to loss of project services, i.e., impact on...

  8. Digital imaging technology assessment: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes.

  9. Shielding and Activation Analyses for BTF Facility at SNS

    NASA Astrophysics Data System (ADS)

    Popova, Irina; Gallmeier, Franz X.

    2017-09-01

    The beam test facility (BTF), which simulates front end of the Spallation Neutron Source (SNS), has been built at the SNS, and is preparing for commissioning. The BTF has been assembled and will operate in one of service buildings at the site. The 2.5 MeV proton beam, produced in the facility, will be stopped in the beam dump. In order to support BTF project from radiation protection site, neutronics simulations and activation analyses were performed to evaluate the necessary shielding around the facility and radionuclide inventory of the beam stop.

  10. Holifield Heavy-Ion Research Facility at Oak Ridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, C.M.

    1977-01-01

    A new heavy-ion accelerator facility is now under construction at the Oak Ridge National Laboratory. A brief description of the scope and schedule of this project is given, and the new large tandem accelerator, which will be a major element of the facility is discussed in some detail. Several studies which have been made or are in progress in Oak Ridge in preparation for operation of the tandem accelerator are briefly described.

  11. 25 CFR 173.12 - Services from project.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... or any other type of service to the permittee, the cost of connecting the project facilities shall be... approved, at a rate to be approved by the Secretary which will reasonably reimburse the project for the... 25 Indians 1 2010-04-01 2010-04-01 false Services from project. 173.12 Section 173.12 Indians...

  12. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included in an eligible rural water supply project? A rural water supply project may include, but is not...

  13. 12 strategies for managing capital projects.

    PubMed

    Stoudt, Richard L

    2013-05-01

    To reduce the amount of time and cost associated with capital projects, healthcare leaders should: Begin the project with a clear objective and a concise master facilities plan. Select qualified team members who share the vision of the owner. Base the size of the project on a conservative business plan. Minimize incremental program requirements. Evaluate the cost impact of the building footprint. Consider alternative delivery methods.

  14. Project nurse manager: an intrapreneurial role.

    PubMed

    Risner, P B; Anderson, M L

    1994-01-01

    Nurse intrapreneurs are the key to innovation and cost-effective health care in the 1990s. A project nurse manager, acting as a liaison between service departments, can provide the vision and insight for the successful outcome of such projects as product evaluation, unit renovation, and the development of a new facility. The role, benefits, and outcomes of one project nurse manager are described.

  15. Quinault Indian Nation Comprehensive Biomass Strategic Planning Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Jesus

    The overall purposes of the Quinault Indian Nation’s Comprehensive Biomass Strategic Planning Project were to: (1) Identify and confirm community and tribal energy needs; (2) Conducting an inventory of sustainable biomass feedstock availability; (3) Development of a biomass energy vision statement with goals and objectives; (4) Identification and assessment of biomass options for both demand-side and supply side that are viable to the Quinault Indian Nation (QIN); and (5) Developing a long-term biomass strategy consistent with the long-term overall energy goals of the QIN. This Comprehensive Biomass Strategic Planning Project is consistent with the QIN’s prior two-year DOE Renewable Energymore » Study from 2004 through 2006. That study revealed that the most viable options to the QIN’s renewable energy options were biomass and energy efficiency best practices. QIN's Biomass Strategic Planning Project is focused on using forest slash in chipped form as feedstock for fuel pellet manufacturing in support of a tribal biomass heating facility. This biomass heating facility has been engineered and designed to heat existing tribal facilities as well as tribal facilities currently being planned including a new K-12 School.« less

  16. 42 CFR 136.110 - Facilities construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... application: (1) Provide its assessment of the environmental impact of the project as called for by section... 42 Public Health 1 2014-10-01 2014-10-01 false Facilities construction. 136.110 Section 136.110 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES INDIAN HEALTH SERVICE...

  17. 42 CFR 136.110 - Facilities construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... application: (1) Provide its assessment of the environmental impact of the project as called for by section... 42 Public Health 1 2011-10-01 2011-10-01 false Facilities construction. 136.110 Section 136.110 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES INDIAN HEALTH SERVICE...

  18. 42 CFR 136.110 - Facilities construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... application: (1) Provide its assessment of the environmental impact of the project as called for by section... 42 Public Health 1 2013-10-01 2013-10-01 false Facilities construction. 136.110 Section 136.110 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES INDIAN HEALTH SERVICE...

  19. 42 CFR 136.110 - Facilities construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... application: (1) Provide its assessment of the environmental impact of the project as called for by section... 42 Public Health 1 2012-10-01 2012-10-01 false Facilities construction. 136.110 Section 136.110 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES INDIAN HEALTH SERVICE...

  20. Ground-water monitoring compliance projects for Hanford Site facilities: Progress Report for the Period July 1 to September 30, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-11-01

    This report documents the progress of four Hanford Site ground-water monitoring projects for the period from July 1 to September 310, 1987. The four disposal facilities are the 300 Area Process Trenches, 183-H Solar Evaporation Basins, 200 Area Low-Level Burial Grounds, and Nonradioactive Dangerous Waste (NRDW) Landfill. This report is the fifth in a series of periodic status reports. During this reporting period, field activities consisted of completing repairs on five monitoring wells originally present around the 183-H Basins and completing construction of 25 monitoring wells around the 200 Area Burial Grounds. The 14 wells in the 200 East Areamore » were completed by Kaiser Engineers Hanford (KEH) and the 11 wells in the 200 West Area were compelted by ONWEGO Well Drilling. The NRDW Landfill interim characterization report was submitted to the WDOE and the USEPA in August 1987. Analytical results for the 300 Area, 183-H, and the NRDW Landfill indicate no deviations from previously established trends. Results from the NRDW Land-fill indiate that the facility has no effect on the ground-water quality beneath the facility, except for the detection of coliform bacteria. A possible source of this contamination is the solid-waste lanfill (SWL) adjacent to the NRDW Landfill. Ground-water monitoring data for the NRDW and SWL will be evaluated together in the future. Aquifer testing was completed in the 25 new wells surrounding the 200 Area buiral grounds. 13 refs., 19 refs., 13 tabs.« less

  1. Virtual Facility at Fermilab: Infrastructure and Services Expand to Public Clouds

    DOE PAGES

    Timm, Steve; Garzoglio, Gabriele; Cooper, Glenn; ...

    2016-02-18

    In preparation for its new Virtual Facility Project, Fermilab has launched a program of work to determine the requirements for running a computation facility on-site, in public clouds, or a combination of both. This program builds on the work we have done to successfully run experimental workflows of 1000-VM scale both on an on-site private cloud and on Amazon AWS. To do this at scale we deployed dynamically launched and discovered caching services on the cloud. We are now testing the deployment of more complicated services on Amazon AWS using native load balancing and auto scaling features they provide. Themore » Virtual Facility Project will design and develop a facility including infrastructure and services that can live on the site of Fermilab, off-site, or a combination of both. We expect to need this capacity to meet the peak computing requirements in the future. The Virtual Facility is intended to provision resources on the public cloud on behalf of the facility as a whole instead of having each experiment or Virtual Organization do it on their own. We will describe the policy aspects of a distributed Virtual Facility, the requirements, and plans to make a detailed comparison of the relative cost of the public and private clouds. Furthermore, this talk will present the details of the technical mechanisms we have developed to date, and the plans currently taking shape for a Virtual Facility at Fermilab.« less

  2. Virtual Facility at Fermilab: Infrastructure and Services Expand to Public Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timm, Steve; Garzoglio, Gabriele; Cooper, Glenn

    In preparation for its new Virtual Facility Project, Fermilab has launched a program of work to determine the requirements for running a computation facility on-site, in public clouds, or a combination of both. This program builds on the work we have done to successfully run experimental workflows of 1000-VM scale both on an on-site private cloud and on Amazon AWS. To do this at scale we deployed dynamically launched and discovered caching services on the cloud. We are now testing the deployment of more complicated services on Amazon AWS using native load balancing and auto scaling features they provide. Themore » Virtual Facility Project will design and develop a facility including infrastructure and services that can live on the site of Fermilab, off-site, or a combination of both. We expect to need this capacity to meet the peak computing requirements in the future. The Virtual Facility is intended to provision resources on the public cloud on behalf of the facility as a whole instead of having each experiment or Virtual Organization do it on their own. We will describe the policy aspects of a distributed Virtual Facility, the requirements, and plans to make a detailed comparison of the relative cost of the public and private clouds. Furthermore, this talk will present the details of the technical mechanisms we have developed to date, and the plans currently taking shape for a Virtual Facility at Fermilab.« less

  3. Evaluation and Selection of Renewable Energy Technologies for Highway Maintenance Facilities

    NASA Astrophysics Data System (ADS)

    Andrews, Taylor

    The interest in renewable energy has been increasing in recent years as attempts to reduce energy costs as well the consumption of fossil fuels are becoming more common. Companies and organizations are recognizing the increasing reliance on limited fossil fuels' resources, and as competition and costs for these resources grow, alternative solutions are becoming more appealing. Many federally run buildings and associations also have the added pressure of meeting the mandates of federal energy policies that dictate specific savings or reductions. Federal highway maintenance facilities run by the Department of Transportation fall into this category. To help meet energy saving goals, an investigation into potential renewable energy technologies was completed for the Ohio Department of Transportation. This research examined several types of renewable energy technologies and the major factors that affect their performance and evaluated their potential for implementation at highway maintenance facilities. Facilities energy usage data were provided, and a facility survey and site visits were completed to enhance the evaluation of technologies and the suitability for specific projects. Findings and technology recommendations were presented in the form of selection matrices, which were designed to help make selections in future projects. The benefits of utilization of other tools such as analysis software and life cycle assessments were also highlighted. These selection tools were designed to be helpful guides when beginning the pursuit of a renewable energy technology for highway maintenance facilities, and can be applied to other similar building types and projects. This document further discusses the research strategies and findings as well as the recommendations that were made to the personnel overseeing Ohio's highway maintenance facilities.

  4. Structural and Functional Concepts in Current Mouse Phenotyping and Archiving Facilities

    PubMed Central

    Kollmus, Heike; Post, Rainer; Brielmeier, Markus; Fernández, Julia; Fuchs, Helmut; McKerlie, Colin; Montoliu, Lluis; Otaegui, Pedro J; Rebelo, Manuel; Riedesel, Hermann; Ruberte, Jesús; Sedlacek, Radislav; de Angelis, Martin Hrabě; Schughart, Klaus

    2012-01-01

    Collecting and analyzing available information on the building plans, concepts, and workflow from existing animal facilities is an essential prerequisite for most centers that are planning and designing the construction of a new animal experimental research unit. Here, we have collected and analyzed such information in the context of the European project Infrafrontier, which aims to develop a common European infrastructure for high-throughput systemic phenotyping, archiving, and dissemination of mouse models. A team of experts visited 9 research facilities and 3 commercial breeders in Europe, Canada, the United States, and Singapore. During the visits, detailed data of each facility were collected and subsequently represented in standardized floor plans and descriptive tables. These data showed that because the local needs of scientists and their projects, property issues, and national and regional laws require very specific solutions, a common strategy for the construction of such facilities does not exist. However, several basic concepts were apparent that can be described by standardized floor plans showing the principle functional units and their interconnection. Here, we provide detailed information of how individual facilities addressed their specific needs by using different concepts of connecting the principle units. Our analysis likely will be valuable to research centers that are planning to design new mouse phenotyping and archiving facilities. PMID:23043807

  5. Clemson University Wind Turbine Drivetrain Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuten, James Maner; Haque, Imtiaz; Rigas, Nikolaos

    In November of 2009, Clemson University was awarded a competitive grant from the U.S. Department of Energy to design, build and operate a facility for full-scale, highly accelerated mechanical testing of next-generation wind turbine drivetrain technologies. The primary goal of the project was to design, construct, commission, and operate a state-of-the-art sustainable facility that permits full-scale highly accelerated testing of advanced drivetrain systems for large wind turbines. The secondary goal was to meet the objectives of the American Recovery and Reinvestment Act of 2009, especially in job creation, and provide a positive impact on economically distressed areas in the Unitedmore » States, and preservation and economic recovery in an expeditious manner. The project was executed according to a managed cooperative agreement with the Department of Energy and was an extraordinary success. The resultant new facility is located in North Charleston, SC, providing easy transportation access by rail, road or ship and operates on an open access model such that it is available to the U.S. Wind Industry for research, analysis, and evaluation activities. The 72 m by 97 m facility features two mechanical dynamometer test bays for evaluating the torque and blade dynamic forces experienced by the rotors of wind turbine drivetrains. The dynamometers are rated at 7.5 MW and 15 MW of low speed shaft power and are configured as independent test areas capable of simultaneous operation. All six degrees of freedom, three linear and three rotational, for blade and rotor dynamics are replicated through the combination of a drive motor, speed reduction gearbox and a controllable hydraulic load application unit (LAU). This new LAU setup readily supports accelerated lifetime mechanical testing and load analysis for the entire drivetrain system of the nacelle and easily simulates a wide variety of realistic operating scenarios in a controlled laboratory environment. The development

  6. Improving heart failure disease management in skilled nursing facilities: lessons learned.

    PubMed

    Dolansky, Mary A; Hitch, Jeanne A; Piña, Ileana L; Boxer, Rebecca S

    2013-11-01

    The purpose of the study was to design and evaluate an improvement project that implemented HF management in four skilled nursing facilities (SNFs). Kotter's Change Management principles were used to guide the implementation. In addition, half of the facilities had an implementation coach who met with facility staff weekly for 4 months and monthly for 5 months. Weekly and monthly audits were performed that documented compliance with eight key aspects of the protocol. Contextual factors were captured using field notes. Adherence to the HF management protocols was variable ranging from 17% to 82%. Facilitators of implementation included staff who championed the project, an implementation coach, and physician involvement. Barriers were high staff turnover and a hierarchal culture. Opportunities exist to integrate HF management protocols to improve SNF care.

  7. Evaluating building performance in healthcare facilities: an organizational perspective.

    PubMed

    Steinke, Claudia; Webster, Lynn; Fontaine, Marie

    2010-01-01

    Using the environment as a strategic tool is one of the most cost-effective and enduring approaches for improving public health; however, it is one that requires multiple perspectives. The purpose of this article is to highlight an innovative methodology that has been developed for conducting comprehensive performance evaluations in public sector health facilities in Canada. The building performance evaluation methodology described in this paper is a government initiative. The project team developed a comprehensive building evaluation process for all new capital health projects that would respond to the aforementioned need for stakeholders to be more accountable and to better integrate the larger organizational strategy of facilities. The Balanced Scorecard, which is a multiparadigmatic, performance-based business framework, serves as the underlying theoretical framework for this initiative. It was applied in the development of the conceptual model entitled the Building Performance Evaluation Scorecard, which provides the following benefits: (1) It illustrates a process to link facilities more effectively to the overall mission and goals of an organization; (2) It is both a measurement and a management system that has the ability to link regional facilities to measures of success and larger business goals; (3) It provides a standardized methodology that ensures consistency in assessing building performance; and (4) It is more comprehensive than traditional building evaluations. The methodology presented in this paper is both a measurement and management system that integrates the principles of evidence-based design with the practices of pre- and post-occupancy evaluation. It promotes accountability and continues throughout the life cycle of a project. The advantage of applying this framework is that it engages health organizations in clarifying a vision and strategy for their facilities and helps translate those strategies into action and measurable performance

  8. Institutional environmental impact statement, Michoud Assembly Facility, New Orleans, Louisiana

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A description and analysis of Michoud Assembly Facility as an operational base for both NASA and NASA-related programs and various government tenant-agencies and their contractors is given. Tenant-agencies are governmental agencies or governmental agency contractors which are not involved in a NASA program, but utilize office or manufacturing space at the Michoud Assembly Facility. The statements represent the full description of the likely environmental effects of the facility and are used in the process of making program and project decisions.

  9. Facility Master Plans: An Essential First Step in the Building Development Process.

    ERIC Educational Resources Information Center

    Wickerham, Wendell E.

    2002-01-01

    Discusses the importance of the facility master plan (FMP) in defining project scope and validating or challenging the work of consultants. Offers three case studies illustrating how facility master plans averted problems or led to unanticipated benefits for the colleges involved. (EV)

  10. Factors predictive of increased influenza and pneumococcal vaccination coverage in long-term care facilities: the CMS-CDC standing orders program Project.

    PubMed

    Bardenheier, Barbara H; Shefer, Abigail; McKibben, Linda; Roberts, Henry; Rhew, David; Bratzler, Dale

    2005-01-01

    Between 1999 and 2002, a multistate demonstration project was conducted in long-term care facilities (LTCFs) to encourage implementation of standing orders programs (SOP) as evidence-based vaccine delivery strategies to increase influenza and pneumococcal vaccination coverage in LTCFs. Examine predictors of increase in influenza and pneumococcal vaccination coverage in LTCFs. Intervention study. Self-administered surveys of LTCFs merged with data from OSCAR (On-line Survey Certification and Reporting System) and immunization coverage was abstracted from residents' medical charts in LTCFs. Twenty LTCFs were sampled from 9 intervention and 5 control states in the 2000 to 2001 influenza season for baseline and during the 2001 to 2002 influenza season for postintervention. Each state's quality improvement organization (QIO) promoted the use of standing orders for immunizations as well as other strategies to increase immunization coverage among LTCF residents. Multivariate analysis included Poisson regression to determine independent predictors of at least a 10 percentage-point increase in facility influenza and pneumococcal vaccination coverage. Forty-two (20%) and 59 (28%) of the facilities had at least a 10 percentage-point increase in influenza and pneumococcal immunizations, respectively. In the multivariate analysis, predictors associated with increase in influenza vaccination coverage included adoption of requirement in written immunization protocol to document refusals, less-demanding consent requirements, lower baseline influenza coverage, and small facility size. Factors associated with increase in pneumococcal vaccination coverage included adoption of recording pneumococcal immunizations in a consistent place, affiliation with a multifacility chain, and provision of resource materials. To improve the health of LTCF residents, strategies should be considered that increase immunization coverage, including written protocol for immunizations and documentation of

  11. Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based onmore » current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for material and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment 111-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VI - Alternatives Study, presents a study of the different storage/containment options considered for NMSF.« less

  12. BNL accelerator-based radiobiology facilities

    NASA Technical Reports Server (NTRS)

    Lowenstein, D. I.

    2001-01-01

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40-3000 MeV/nucleon with maximum beam intensities of 10(10) to 10(11) ions per pulse. The BAF Project will be described and the future AGS and BAF operation plans will be presented.

  13. BNL accelerator-based radiobiology facilities.

    PubMed

    Lowenstein, D I

    2001-01-01

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40-3000 MeV/nucleon with maximum beam intensities of 10(10) to 10(11) ions per pulse. The BAF Project will be described and the future AGS and BAF operation plans will be presented.

  14. Floor vibration evaluations for medical facilities

    NASA Astrophysics Data System (ADS)

    Himmel, Chad N.

    2003-10-01

    The structural floor design for new medical facilities is often selected early in the design phase and in renovation projects, the floor structure already exists. Because the floor structure can often have an influence on the location of vibration sensitive medical equipment and facilities, it is becoming necessary to identify the best locations for equipment and facilities early in the design process. Even though specific criteria for vibration-sensitive uses and equipment may not always be available early in the design phase, it should be possible to determine compatible floor structures for planned vibration-sensitive uses by comparing conceptual layouts with generic floor vibration criteria. Relatively simple evaluations of planned uses and generic criteria, combined with on-site vibration and noise measurements early in design phase, can significantly reduce future design problems and expense. Concepts of evaluation procedures and analyses will be presented in this paper. Generic floor vibration criteria and appropriate parameters to control resonant floor vibration and noise will be discussed for typical medical facilities and medical research facilities. Physical, economic, and logistical limitations that affect implementation will be discussed through case studies.

  15. Acoustical Design of Music Education Facilities.

    ERIC Educational Resources Information Center

    McCue, Edward, Ed.; Talaske, Richard H., Ed.

    This publication provides essays on the acoustical design of music education facilities and reproductions of posters describing 50 projects presented at the 117th Meeting of the Acoustical Society of American held in Syracuse, New York in May 1989. Essays are as follows: "Introduction to the Design Process" (Richard Talaske); "The…

  16. A Gender Perspective on Educational Facilities

    ERIC Educational Resources Information Center

    Lang, Sara

    2010-01-01

    This article explores how to adopt a gender perspective in the analysis of educational facilities. It argues that social relations are influenced by the physical environment, and that social and physical aspects are often interlinked. Although difficult to measure, including a gender perspective in international research and other projects on…

  17. Walla Walla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, James P.; Duke, Bill; Loffink, Ken

    2008-12-30

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. Migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival ofmore » migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage and trapping facility design, operation, and criteria. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. Beginning in March of 2007, two work elements from the Walla Walla Fish Passage Operations Project were transferred to other projects. The work element Enumeration of Adult Migration at Nursery Bridge Dam is now conducted under the Walla Walla Basin Natural Production Monitoring and Evaluation Project and the work element Provide Transportation Assistance is conducted under the Umatilla Satellite Facilities Operation and Maintenance Project. Details of these activities can be found in those project's respective annual reports.« less

  18. High Intensity Proton Accelerator Project in Japan (J-PARC).

    PubMed

    Tanaka, Shun-ichi

    2005-01-01

    The High Intensity Proton Accelerator Project, named as J-PARC, was started on 1 April 2001 at Tokai-site of JAERI. The accelerator complex of J-PARC consists of three accelerators: 400 MeV Linac, 3 GeV rapid cycle synchrotron and 50 GeV synchrotron; and four major experimental facilities: Material and Life Science Facility, Nuclear and Particle Physics Facility, Nuclear Transmutation Experiment Facility and Neutrino Facility. The outline of the J-PARC is presented with the current status of construction.

  19. NICA project management information system

    NASA Astrophysics Data System (ADS)

    Bashashin, M. V.; Kekelidze, D. V.; Kostromin, S. A.; Korenkov, V. V.; Kuniaev, S. V.; Morozov, V. V.; Potrebenikov, Yu. K.; Trubnikov, G. V.; Philippov, A. V.

    2016-09-01

    The science projects growth, changing of the efficiency criteria during the project implementation require not only increasing of the management specialization level but also pose the problem of selecting the effective planning methods, monitoring of deadlines and interaction of participants involved in research projects. This paper is devoted to choosing the project management information system for the new heavy-ion collider NICA (Nuclotron based Ion Collider fAcility). We formulate the requirements for the project management information system with taking into account the specifics of the Joint Institute for Nuclear Research (JINR, Dubna, Russia) as an international intergovernmental research organization, which is developed on the basis of a flexible and effective information system for the NICA project management.

  20. ATR National Scientific User Facility 2013 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrich, Julie A.; Robertson, Sarah

    2015-03-01

    This is the 2013 Annual Report for the Advanced Test Reactor National Scientific User Facility. This report includes information on university-run research projects along with a description of the program and the capabilities offered researchers.

  1. Evaluation of Supported Placements in Integrated Community Environments Project (SPICE). Final Report.

    ERIC Educational Resources Information Center

    Wilson, Leslie; And Others

    This evaluation project was designed to assess 37 persons (ages 21-72) who had moved from intermediate care facilities or skilled nursing facilities into innovative one-person or two-person community integrated living arrangements as a result of the Supported Placements in Integrated Community Environments project. The 37 persons had severe or…

  2. Atmospheric Radiation Measurement Program Facilities Newsletter - September 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdridge, D. J., ed

    The Atmospheric Radiation Measurement Program September 1999 Facilities Newsletter discusses the several Intensive Observation Periods (IOPs) that the ARM SGP CART site will host in the near future. Two projects of note are the International Pyrgeometer Intercomparison and the Fall Single Column Model (SCM)/Nocturnal Boundary Layer (NBL) IOP. Both projects will bring many US and international scientists to the SGP CART site to participate in atmospheric research.

  3. Gemini base facility operations environmental monitoring: key systems and tools for the remote operator

    NASA Astrophysics Data System (ADS)

    Cordova, Martin; Serio, Andrew; Meza, Francisco; Arriagada, Gustavo; Swett, Hector; Ball, Jesse; Collins, Paul; Masuda, Neal; Fuentes, Javier

    2016-07-01

    In 2014 Gemini Observatory started the base facility operations (BFO) project. The project's goal was to provide the ability to operate the two Gemini telescopes from their base facilities (respectively Hilo, HI at Gemini North, and La Serena, Chile at Gemini South). BFO was identified as a key project for Gemini's transition program, as it created an opportunity to reduce operational costs. In November 2015, the Gemini North telescope started operating from the base facility in Hilo, Hawaii. In order to provide the remote operator the tools to work from the base, many of the activities that were normally performed by the night staff at the summit were replaced with new systems and tools. This paper describes some of the key systems and tools implemented for environmental monitoring, and the design used in the implementation at the Gemini North telescope.

  4. Distant Operational Care Centre: Design Project Report

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The goal of this project is to outline the design of the Distant Operational Care Centre (DOCC), a modular medical facility to maintain human health and performance in space, that is adaptable to a range of remote human habitats. The purpose of this project is to outline a design, not to go into a complete technical specification of a medical facility for space. This project involves a process to produce a concise set of requirements, addressing the fundamental problems and issues regarding all aspects of a space medical facility for the future. The ideas presented here are at a high level, based on existing, researched, and hypothetical technologies. Given the long development times for space exploration, the outlined concepts from this project embodies a collection of identified problems, and corresponding proposed solutions and ideas, ready to contribute to future space exploration efforts. In order to provide a solid extrapolation and speculation in the context of the future of space medicine, the extent of this project's vision is roughly within the next two decades. The Distant Operational Care Centre (DOCC) is a modular medical facility for space. That is, its function is to maintain human health and performance in space environments, through prevention, diagnosis, and treatment. Furthermore, the DOCC must be adaptable to meet the environmental requirements of different remote human habitats, and support a high quality of human performance. To meet a diverse range of remote human habitats, the DOCC concentrates on a core medical capability that can then be adapted. Adaptation would make use of the DOCC's functional modularity, providing the ability to replace, add, and modify core functions of the DOCC by updating hardware, operations, and procedures. Some of the challenges to be addressed by this project include what constitutes the core medical capability in terms of hardware, operations, and procedures, and how DOCC can be adapted to different remote

  5. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. The U.S. Department of Energy's Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This guide is intended to provide a general resource that will begin to develop the Federal employee's awareness and understanding of the project developer's operating environment and the private sector's awareness and understandingmore » of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this guide has been organized to match Federal processes with typical phases of commercial project development. The main purpose of this guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project.« less

  6. Tomcat-Projects_RF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warrant, Marilyn M.; Garcia, Rudy J.; Zhang, Pengchu

    2004-09-15

    Tomcat-Projects_RF is a software package for analyzing sensor data obtained from a database and displaying the results with Java Servlet Pages (JSP). SQL Views into the dataset are tailored for personnel having different roles in monitoring the items in a storage facility. For example, an inspector, a host treaty compliance officer, a system engineer and software developers were the users identified that would need to access data at different levels of detail, The analysis provides a high level status of the storage facility and allows the user to go deeper into the data details if the user desires.

  7. The NOXSO clean coal project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% ofmore » the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).« less

  8. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consentmore » Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  9. Water quality facility investigation report : final summary of project and evaluation of monitoring plan implementation.

    DOT National Transportation Integrated Search

    2005-07-05

    The Oregon Department of Transportation (ODOT) has installed several stormwater : treatment facilities throughout the State to improve the quality of runoff discharged from : highways. These facilities include a variety of both above ground and below...

  10. 76 FR 61689 - FirstEnergy Generation Corporation Project No. 13889-000

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    ... the Allegheny Reservoir near the City of Warren, in Warren County, Pennsylvania. The project occupies... containing a description of the existing project and proposed project facilities and mode of operation, a...

  11. Drainage facility management system : final report, June 2009.

    DOT National Transportation Integrated Search

    2009-06-01

    This research project identified requirements for a drainage facility management system for the Oregon Department of Transportation. It also estimated the personnel resources needed to collect the inventory to populate such a system with data. A tota...

  12. College and University Facilities Survey. Part 4: College and University Enrollment and Facilities Survey 1961-65.

    ERIC Educational Resources Information Center

    Robbins, Leslie F.; Bokelman, W. Robert

    As Part 4 of a series of five studies, data is provided by colleges and universities on what capital facilities were planned, per square foot costs, and how they were financed during 1960-61, plus how they proposed to do so up to 1965-66. Comprehensive data is presented on existing, potential, and projected enrollments, plans for constructing…

  13. 43 CFR 404.10 - Are there certain types of infrastructure and facilities that may not be included in a rural...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and facilities that may not be included in a rural water supply project? 404.10 Section 404.10 Public... RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.10 Are there certain types of infrastructure and facilities that may not be included in a rural water supply project? Yes. A rural water supply project may...

  14. Universal Test Facility

    NASA Technical Reports Server (NTRS)

    Laughery, Mike

    1994-01-01

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  15. Universal Test Facility

    NASA Astrophysics Data System (ADS)

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  16. Parallel machine architecture and compiler design facilities

    NASA Technical Reports Server (NTRS)

    Kuck, David J.; Yew, Pen-Chung; Padua, David; Sameh, Ahmed; Veidenbaum, Alex

    1990-01-01

    The objective is to provide an integrated simulation environment for studying and evaluating various issues in designing parallel systems, including machine architectures, parallelizing compiler techniques, and parallel algorithms. The status of Delta project (which objective is to provide a facility to allow rapid prototyping of parallelized compilers that can target toward different machine architectures) is summarized. Included are the surveys of the program manipulation tools developed, the environmental software supporting Delta, and the compiler research projects in which Delta has played a role.

  17. The New Facilities for Neutron Radiography at the LVR-15 Reactor

    NASA Astrophysics Data System (ADS)

    Soltes, J.; Viererbl, L.; Vacik, J.; Tomandl, I.; Krejci, F.; Jakubek, J.

    2016-09-01

    Neutron radiography is an imaging method often used at research reactor sites. Back in 2011 a project was started with the goal to build a neutron radiography facility at the site of the LVR-15 research reactor in Rez, Czech Republic. In the scope of the project two horizontal channels were adapted for the needs of neutron radiography. This comprises the HC1 channel which offers an intense thermal neutron beam with a diameter of 10 cm, which can be used for imaging of larger samples, and the HC3 channel which beam is restricted just to 4x80 mm2, but is highly thermalized, collimated and reduced from gamma background, thus capable of providing better radiograph resolution. Both facilities are equipped with newest Timepix based detectors, with thin 6LiF converters for neutron detection capable of delivering high resolution. Both facilities offer a unique opportunity for non-destructive testing in the Czech region. In 2015 both facilities were put into test operation and several radiographs were acquired, which are presented in the following text.

  18. Long-term storage facility for reactor compartments in Sayda Bay - German support for utilization of nuclear submarines in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Dietmar; Voelzke, Holger; Weber, Wolfgang

    2007-07-01

    The German-Russian project that is part of the G8 initiative on Global Partnership Against the Spread of Weapons and Materials of Mass Destruction focuses on the speedy construction of a land-based interim storage facility for nuclear submarine reactor compartments at Sayda Bay near Murmansk. This project includes the required infrastructure facilities for long-term storage of about 150 reactor compartments for a period of about 70 years. The interim storage facility is a precondition for effective activities of decommissioning and dismantlement of almost all nuclear-powered submarines of the Russian Northern Fleet. The project also includes the establishment of a computer-assisted wastemore » monitoring system. In addition, the project involves clearing Sayda Bay of other shipwrecks of the Russian navy. On the German side the project is carried out by the Energiewerke Nord GmbH (EWN) on behalf of the Federal Ministry of Economics and Labour (BMWi). On the Russian side the Kurchatov Institute holds the project management of the long-term interim storage facility in Sayda Bay, whilst the Nerpa Shipyard, which is about 25 km away from the storage facility, is dismantling the submarines and preparing the reactor compartments for long-term interim storage. The technical monitoring of the German part of this project, being implemented by BMWi, is the responsibility of the Federal Institute for Materials Research and Testing (BAM). This paper gives an overview of the German-Russian project and a brief description of solutions for nuclear submarine disposal in other countries. At Nerpa shipyard, being refurbished with logistic and technical support from Germany, the reactor compartments are sealed by welding, provided with biological shielding, subjected to surface treatment and conservation measures. Using floating docks, a tugboat tows the reactor compartments from Nerpa shipyard to the interim storage facility at Sayda Bay where they will be left on the on

  19. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oilymore » wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.« less

  20. 77 FR 37074 - License Amendment Request From the Alan J. Blotcky Reactor Facility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... the Alan J. Blotcky Reactor Facility AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... section of this document. FOR FURTHER INFORMATION CONTACT: Theodore Smith, Project Manager, Reactor... provided the first time that a document is referenced. The Alan J. Blotcky Reactor Facility Decommissioning...

  1. CASE STUDY PROJECT: THE USE OF LOW-VOC/HAP COATINGS AT WOOD FURNITURE MANUFACTURING FACILITIES

    EPA Science Inventory

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted...

  2. TAC Proton Accelerator Facility: The Status and Road Map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algin, E.; Akkus, B.; Caliskan, A.

    2011-06-28

    Proton Accelerator (PA) Project is at a stage of development, working towards a Technical Design Report under the roof of a larger-scale Turkish Accelerator Center (TAC) Project. The project is supported by the Turkish State Planning Organization. The PA facility will be constructed in a series of stages including a 3 MeV test stand, a 55 MeV linac which can be extended to 100+ MeV, and then a full 1-3 GeV proton synchrotron or superconducting linac. In this article, science applications, overview, and current status of the PA Project will be given.

  3. Sandia National Laboratories Facilities Management and Operations Center Design Standards Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Timothy L.

    2014-09-01

    At Sandia National Laboratories in New Mexico (SNL/NM), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/NM applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. Themore » safety and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule. These design standards generally apply to all disciplines on all SNL/NM projects. Architectural and engineering design must be both functional and cost-effective. Facility design must be tailored to fit its intended function, while emphasizing low-maintenance, energy-efficient, and energy-conscious design. Design facilities that can be maintained easily, with readily accessible equipment areas, low maintenance, and quality systems. To promote an orderly and efficient appearance, architectural features of new facilities must complement and enhance the existing architecture at the site. As an Architectural and Engineering (A/E) professional, you must advise the Project Manager when this approach is prohibitively expensive. You are encouraged to use professional judgment and ingenuity to produce a coordinated interdisciplinary design that is cost-effective, easily contractible or buildable, high-performing, aesthetically pleasing, and compliant with applicable building codes. Close coordination and development of civil, landscape, structural, architectural

  4. 78 FR 45268 - Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... decommission the Ocotillo Sol Solar Project, a solar photovoltaic (PV) power plant facility, on approximately... Applicant's Proposed Project to construct, operate, maintain, and decommission a 100-acre solar PV facility...] Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Final Environmental...

  5. Great Lakes Steel -- PCI facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silomore » at Great Lakes Steel, and is injected into three blast furnaces.« less

  6. 24 CFR 891.310 - Special project standards.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... living facility (or all bedrooms and bathrooms in a group home) must be designed to be accessible or... projects funded under §§ 891.655 through 891.790: (a) Minimum group home standards. Each group home must... independent living facility (or 10 percent of all bedrooms and bathrooms in a group home, but at least one of...

  7. FEANICS: A Multi-User Facility For Conducting Solid Fuel Combustion Experiments On ISS

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Tofil, Todd A.

    2001-01-01

    The Destiny Module on the International Space Station (ISS) will soon be home for the Fluids and Combustion Facility's (FCF) Combustion Integrated Rack (CIR), which is being developed at the NASA Glenn Research Center in Cleveland, Ohio. The CIR will be the platform for future microgravity combustion experiments. A multi-user mini-facility called FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) will also be built at NASA Glenn. This mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct basic and applied scientific investigations in fire-safety to support NASA's Bioastronautics Initiative. The FEANICS project team will work in conjunction with the CIR project team to develop upgradeable and reusable hardware to meet the science requirements of current and future investigators. Currently, there are six experiments that are candidates to use the FEANICS mini-facility. This paper will describe the capabilities of this mini-facility and the type of solid combustion testing and diagnostics that can be performed.

  8. Electric power generation using geothermal brine resources for a proof of concept facility

    NASA Technical Reports Server (NTRS)

    Hankin, J. W.

    1974-01-01

    An exploratory systems study of a geothermal proof-of-concept facility is being conducted. This study is the initial phase (Phase 0) of a project to establish the technical and economic feasibility of using hot brine resources for electric power production and other industrial applications. Phase 0 includes the conceptual design of an experimental test-bed facility and a 10-MWe power generating facility.

  9. NASA Construction of Facilities Validation Processes - Total Building Commissioning (TBCx)

    NASA Technical Reports Server (NTRS)

    Hoover, Jay C.

    2004-01-01

    Key Atributes include: Total Quality Management (TQM) System that looks at all phases of a project. A team process that spans boundaries. A Commissioning Authority to lead the process. Commissioning requirements in contracts. Independent design review to verify compliance with Facility Project Requirements (FPR). Formal written Commissioning Plan with Documented Results. Functional performance testing (FPT) against the requirements document.

  10. Science facilities and stakeholder management: how a pan-European research facility ended up in a small Swedish university town

    NASA Astrophysics Data System (ADS)

    Thomasson, Anna; Carlile, Colin

    2017-06-01

    This is the story of how a large research facility of broad European and global interest, the European Spallation Source (ESS), ended up in the small university town of Lund in Sweden. This happened in spite of the fact that a number of influential European countries were at one time or another competitors to host the facility. It is also a story about politics which attempts to illustrate how closely intertwined politics and science are, and how the interplay between those interests affects scientific progress. ESS became an arena for individual ambitions and political manoeuvring. The different stakeholders, in their striving to ensure that their own interests were realised, in various ways and with different degrees of success over the years, have influenced the key decisions that, during the already 30 year history of ESS, have driven the course that this project has taken. What emerges is that the interests of the stakeholders and the interests of the project itself are frequently not in harmony. This imposes challenges on the management of large research facilities as they have to not only navigate in the scientific landscape, which they often are more familiar with, but also in the political landscape. This story is therefore an attempt to shed light on the role of managers of large research facilities and the often delicate balancing act they have to perform when trying to comply with the different and often conflicting stakeholder interests. What is especially worthwhile examining, as we do in this paper, is the role that individuals, and the interaction between individuals, have played in the process. This shows that the focus of stakeholder theory on organisations, rather than the people in the organisations, needs to be redirected on to the individuals representing those organisations and their inter-relationships. At the same time it is clear that the developing field of stakeholder management theory has not emerged into the consciousness of science

  11. Simulation Facilities and Test Beds for Galileo

    NASA Astrophysics Data System (ADS)

    Schlarmann, Bernhard Kl.; Leonard, Arian

    2002-01-01

    Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to

  12. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transportmore » and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy

  13. Spacelab Life Sciences 3 biomedical research using the Rhesus Research Facility

    NASA Technical Reports Server (NTRS)

    Ballard, R. W.; Searby, N. D.; Stone, L. S.; Hogan, R. P.; Viso, M.; Venet, M.

    1992-01-01

    In 1985, a letter of agreement was signed between the French space agency, CNES, and NASA, formally initiating a joint venture called the RHESUS Project. The goal of this project is to provide a facility to fly rhesus monkeys (Macaca mulatta) to support spaceflight experiments which are applicable but not practical to carry out on human subjects. Biomedical investigations in behavior/performance, immunology/microbiology, muscle physiology, cardiopulmonary physiology, bone/calcium physiology, regulatory physiology, and neurophysiology disciplines will be performed. The Rhesus Research Facility, hardware capable of supporting two adult rhesus monkeys in a microgravity environment, is being developed for a first flight on Spacelab Life Sciences in early 1996.

  14. 77 FR 28618 - Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... project, a solar photovoltaic (PV) power plant facility, on approximately 115 acres of BLM-administered... Proposed Project to construct, operate, maintain, and decommission a 100-acre solar PV facility on BLM...] Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Draft Environmental...

  15. Hurricane risk mitigation - High Pressure Gas Facility

    NASA Image and Video Library

    2008-07-29

    A worker pours concrete as part of a nitrogen risk mitigation project at the High Pressure Gas Facility at Stennis Space Center. The concrete slab will provide the foundation needed to place new pumps at the site and is part of ongoing hurricane-related mitigation work at Stennis.

  16. Hurricane risk mitigation - High Pressure Gas Facility

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A worker pours concrete as part of a nitrogen risk mitigation project at the High Pressure Gas Facility at Stennis Space Center. The concrete slab will provide the foundation needed to place new pumps at the site and is part of ongoing hurricane-related mitigation work at Stennis.

  17. Planning and Managing School Facilities for Agriculture

    ERIC Educational Resources Information Center

    Staller, Bernie

    1976-01-01

    The Agribusiness Department at Janesville Parker Senior High in Wisconsin involves 360 students and three instructors in three different buildings. Facilities were provided through a variety of methods with major emphasis on utilizing the urban setting. Future Farmers of America students operate projects in orchards, greenhouse, gardens, and…

  18. Port Granby Project Overview - 13208

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, David W.; Vandergaast, Gary; Sungaila, Mark

    2013-07-01

    The Port Granby Project is an integral part of the Port Hope Area Initiative (PHAI), and is located approximately 14 kilometres west of the Municipality of Port Hope in the adjacent Municipality of Clarington, Ontario. The principal objective of the project is the excavation and relocation of low-level radioactive waste (LLRW) and marginally contaminated soils, which were deposited at the Port Granby Waste Management Facility (PGWMF) by Eldorado Nuclear Limited during the period 1955 to 1988, to a new, highly engineered above-ground Long-term Waste Management Facility (LTWMF) to be constructed on a nearby site. The Environmental Assessment for the Projectmore » was approved in 2009 August and the required Waste Nuclear Substance License was received in 2011 November. Once the detailed engineering design was completed, in 2011 March, the Port Granby Project was divided into three major contracts for construction implementation purposes. The first of these contracts was completed in late 2012 and the second is planned to start in early 2013. The contracting process for the third major contract is also expected to be completed during 2013. This paper provides an overview of the Port Granby Project as well as discussion on the status of the Project, including the regulatory approvals process, the approach to contracting the construction works and an update of work recently completed and soon to get underway. (authors)« less

  19. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, P.H.

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

  20. A PLANNED COMMUNITY FOR MIGRATORY FARM WORKERS--A PROPOSAL FOR A DEMONSTRATION PROJECT.

    ERIC Educational Resources Information Center

    PEERY, A.B.

    A DEMONSTRATION PROJECT FOR MIGRATORY FARM LABORERS HOME-BASED IN SOUTH TEXAS IS PROPOSED. THE PURPOSE IS TO DESIGN A PLANNED COMMUNITY CONTAINING HOUSING, HEALTH FACILITIES, ORIENTATION AND EDUCATIONAL FACILITIES, JOB-PLACEMENT FACILITIES, AND SOCIAL, RECREATIONAL, AND COMMERCIAL FACILITIES. THE PLANNED COMMUNITY WOULD PROVIDE SAFE, SANITARY, AND…

  1. Science minister unveils reforms to facilities council

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2010-04-01

    The UK's science minister Lord Dray son has announced a series of measures to prevent the Science and Technology Facilities Council (STFC) from being dogged by further financial crises. They include a plan for the STFC's budget for large facilities, such as the Diamond synchrotron and the ISIS neutron-scattering lab, to be allocated and managed separately from its budget for grants. Drayson was forced to review the STFC after the council announced last December that the UK would have to pull out of 25 international science projects because of a £40m shortfall in funding.

  2. Facility Composer (Trademark) and PACES (Trademark) Integration: Development of an XML Interface Based on Industry Foundation Classes

    DTIC Science & Technology

    2007-11-01

    Engineer- ing Research Laboratory is currently developing a set of facility ‘architec- tural’ programming tools , called Facility ComposerTM (FC). FC...requirements in the early phases of project development. As the facility program, crite- ria, and requirements are chosen, these tools populate the IFC...developing a set of facility “ar- chitectural” programming tools , called Facility Composer (FC), to support the capture and tracking of facility criteria

  3. 15 CFR 2301.7 - Eligible and ineligible project costs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Eligible and ineligible project costs... TELECOMMUNICATIONS FACILITIES PROGRAM Application Requirements § 2301.7 Eligible and ineligible project costs. (a... wherever the two types of apparatus interface. (c) Total project costs do not include the value of eligible...

  4. 15 CFR 2301.7 - Eligible and ineligible project costs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Eligible and ineligible project costs... TELECOMMUNICATIONS FACILITIES PROGRAM Application Requirements § 2301.7 Eligible and ineligible project costs. (a... wherever the two types of apparatus interface. (c) Total project costs do not include the value of eligible...

  5. 15 CFR 2301.7 - Eligible and ineligible project costs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Eligible and ineligible project costs... TELECOMMUNICATIONS FACILITIES PROGRAM Application Requirements § 2301.7 Eligible and ineligible project costs. (a... wherever the two types of apparatus interface. (c) Total project costs do not include the value of eligible...

  6. 15 CFR 2301.7 - Eligible and ineligible project costs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Eligible and ineligible project costs... TELECOMMUNICATIONS FACILITIES PROGRAM Application Requirements § 2301.7 Eligible and ineligible project costs. (a... wherever the two types of apparatus interface. (c) Total project costs do not include the value of eligible...

  7. 15 CFR 2301.7 - Eligible and ineligible project costs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Eligible and ineligible project costs... TELECOMMUNICATIONS FACILITIES PROGRAM Application Requirements § 2301.7 Eligible and ineligible project costs. (a... wherever the two types of apparatus interface. (c) Total project costs do not include the value of eligible...

  8. NREL Advances Wells Fargo Innovation Incubator Projects | Energy Systems

    Science.gov Websites

    Integration Facility | NREL NREL Advances Wells Fargo Innovation Incubator Projects NREL Advances Wells Fargo Innovation Incubator Projects NREL has provided technical support and validation testing at the ESIF to help advance Wells Fargo Innovation Incubator (IN2) projects. The IN2 program helps

  9. The Characteristics of Project Managers: An Exploration of Complex Projects in the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M.

    2000-01-01

    Study of characteristics and relationships of project managers of complex projects in the National Aeronautics and Space Administration. Study is based on Research Design, Data Collection, Interviews, Case Studies, and Data Analysis across varying disciplines such as biological research, space research, advanced aeronautical test facilities, aeronautic flight demonstrations, and projects at different NASA centers to ensure that findings were not endemic to one type of project management, or to one Center's management philosophies. Each project is treated as a separate case with the primary data collected during semi-structured interviews with the project manager responsible for the overall project. Results of the various efforts show some definite similarities of characteristics and relationships among the project managers in the study. A model for how the project managers formulated and managed their projects is included.

  10. UMTRA project list of reportable occurrences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    This UMTRA Project List of Reportable occurrences is provided to facilitate efficient categorization of reportable occurrences. These guidelines have been established in compliance with DOE minimum reporting requirements under DOE Order 5000.3B. Occurrences are arranged into nine groups relating to US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project operations for active sites. These nine groupings are provided for reference to determined whether an occurrence meets reporting requirement criteria in accordance with the minimum reporting requirements. Event groups and significance categories that cannot or will not occur, and that do not apply to UMTRA Project operations, aremore » omitted. Occurrence categorization shall be as follows: Group 1. Facility Condition; Group 2. Environmental; Group 3. Personnel Safety; Group 4. Personnel Radiation Protection; Group 5. Safeguards and Security; Group 6. Transportation; Group 7. Value Basis Reporting; Group 8. Facility Status; and Group 9. Cross-Category Items.« less

  11. The grand challenge of managing the petascale facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aiken, R. J.; Mathematics and Computer Science

    2007-02-28

    This report is the result of a study of networks and how they may need to evolve to support petascale leadership computing and science. As Dr. Ray Orbach, director of the Department of Energy's Office of Science, says in the spring 2006 issue of SciDAC Review, 'One remarkable example of growth in unexpected directions has been in high-end computation'. In the same article Dr. Michael Strayer states, 'Moore's law suggests that before the end of the next cycle of SciDAC, we shall see petaflop computers'. Given the Office of Science's strong leadership and support for petascale computing and facilities, wemore » should expect to see petaflop computers in operation in support of science before the end of the decade, and DOE/SC Advanced Scientific Computing Research programs are focused on making this a reality. This study took its lead from this strong focus on petascale computing and the networks required to support such facilities, but it grew to include almost all aspects of the DOE/SC petascale computational and experimental science facilities, all of which will face daunting challenges in managing and analyzing the voluminous amounts of data expected. In addition, trends indicate the increased coupling of unique experimental facilities with computational facilities, along with the integration of multidisciplinary datasets and high-end computing with data-intensive computing; and we can expect these trends to continue at the petascale level and beyond. Coupled with recent technology trends, they clearly indicate the need for including capability petascale storage, networks, and experiments, as well as collaboration tools and programming environments, as integral components of the Office of Science's petascale capability metafacility. The objective of this report is to recommend a new cross-cutting program to support the management of petascale science and infrastructure. The appendices of the report document current and projected DOE computation facilities

  12. Project Morpheus: Lessons Learned in Lander Technology Development

    NASA Technical Reports Server (NTRS)

    Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.

    2013-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Designed, developed, manufactured and operated in-house by engineers at Johnson Space Center, the initial flight test campaign began on-site at JSC less than one year after project start. After two years of testing, including two major upgrade periods, and recovery from a test crash that caused the loss of a vehicle, flight testing will evolve to executing autonomous flights simulating a 500m lunar approach trajectory, hazard avoidance maneuvers, and precision landing, incorporating the Autonomous Landing and Hazard Avoidance (ALHAT) sensor suite. These free-flights are conducted at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. The Morpheus Project represents a departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper expands on the project perspective that technologies offer promise, but capabilities offer solutions. It documents the integrated testing campaign, the infrastructure and testing facilities, and the technologies being evaluated in this testbed. The paper also describes the fast pace of the project, rapid prototyping, frequent testing, and lessons learned during this departure from the traditional engineering development process at NASA's Johnson Space Center.

  13. Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2008-01-01

    Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2's support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed in the early 1960s to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Exhaust system performance, including understanding the present facility capabilities, is the primary focus of this work. A variety of approaches and analytical tools are being employed to gain this understanding. This presentation discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

  14. Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2007-01-01

    Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2 s support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed 4 decades ago to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Instrumental in this task is understanding the present facility capabilities and identifying what reasonable changes can be implemented. A variety of approaches and analytical tools are being employed to gain this understanding. This paper discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

  15. Integrated Facilities and Infrastructure Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisz Westlund, Jennifer Jill

    Our facilities and infrastructure are a key element of our capability-based science and engineering foundation. The focus of the Integrated Facilities and Infrastructure Plan is the development and implementation of a comprehensive plan to sustain the capabilities necessary to meet national research, design, and fabrication needs for Sandia National Laboratories’ (Sandia’s) comprehensive national security missions both now and into the future. A number of Sandia’s facilities have reached the end of their useful lives and many others are not suitable for today’s mission needs. Due to the continued aging and surge in utilization of Sandia’s facilities, deferred maintenance has continuedmore » to increase. As part of our planning focus, Sandia is committed to halting the growth of deferred maintenance across its sites through demolition, replacement, and dedicated funding to reduce the backlog of maintenance needs. Sandia will become more agile in adapting existing space and changing how space is utilized in response to the changing requirements. This Integrated Facilities & Infrastructure (F&I) Plan supports the Sandia Strategic Plan’s strategic objectives, specifically Strategic Objective 2: Strengthen our Laboratories’ foundation to maximize mission impact, and Strategic Objective 3: Advance an exceptional work environment that enables and inspires our people in service to our nation. The Integrated F&I Plan is developed through a planning process model to understand the F&I needs, analyze solution options, plan the actions and funding, and then execute projects.« less

  16. The Long-Baseline Neutrino Facility: Building the Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fermilab

    The Long-Baseline Neutrino Facility (LBNF) will be the world’s flagship science project to unlock the mysteries of neutrinos, the particles that could be the key to explaining why matter exists in our universe. It will house the infrastructure and particle detectors for the Deep Underground Neutrino Experiment (DUNE) and will use the world’s most intense neutrino beam. LBNF will be hosted at the U.S. Department of Energy’s Fermi National Accelerator Laboratory in Illinois and the Sanford Underground Research Facility in South Dakota. About 1,000 scientists from more than 160 laboratories and universities in 30 countries are contributing to this internationalmore » mega-science project. In addition to direct economic benefits to the states of Illinois and South Dakota, LBNF will foster STEM education nationwide and keep the United States at the leading edge of global science and innovation.« less

  17. Refining the W1 and SE1 Facilities

    NASA Technical Reports Server (NTRS)

    Chambers, Rodney D.

    2004-01-01

    The Engine Research Building (ERB) houses more than 60 test rigs that study all aspects of engine development. By working with Mary Gibson in the SE1 and W1A Turbine Facilities, I became aware of her responsibilities and better acquainted with the inner workings of the ERB. The SE1 Supersonic/Subsonic Wind Tunnel Facility contains 2 small wind tunnels. The first tunnel uses an atmospheric inlet, while the second uses treated 40-psig air. Both of the tunnels are capable of subsonic and supersonic operation. An auxiliary air supply and exhaust piping providing both test sections with suction, blowing, and crossfire capabilities. The current configuration of SE1 consists of a curved diffuser that studies the blockage along the endwalls. The W1A Low Speed Compressor Facility provides insight for the complex flow phenomena within its 4-stage axial compressor, sand the data obtained from W 1A is used to develop advanced models for fluid dynamic assessment. W1A is based off of a low speed research compressor developed by GE in the 1950's. This compressor has a removable casing treatment under rotor 1, which allows for various tip treatment studies. The increased size and low speed allows instrumentation to be located in the compressor s complex flow paths. Air enters the facility through a filtered roof vent, conditioned for temperature and turbulence, and then passed through the compressor W1A is described as a dynamic facility with many projects taking place simultaneously. This current environment makes it challenging to follow the various affairs that are taking place within the area. During my first 4 weeks at the NASA Glenn Research Center, I have assisted Mary Gibson in multiple tasks such as facility documents, record keeping, maintenance and upgrades. The facility has lube systems for its gearbox and compressor. These systems are critical in the successful operation of the facility. I was assigned the task of creating a facility estimate list, which included the

  18. White Mountain Research Station: 25 years of high-altitude research. [organization and functions of test facility for high altitude research

    NASA Technical Reports Server (NTRS)

    Pace, N.

    1973-01-01

    The organization and functions of a test facility for conducting research projects at high altitudes are discussed. The projects conducted at the facility include the following: (1) bird physiology, (2) cardiorespiratory physiology, (3) endocrinological studies, (4) neurological studies, (5) metabolic studies, and (6) geological studies.

  19. Yucca Mountain Project Subsurface Facilities Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Linden; R.S. Saunders; R.J. Boutin

    2002-11-19

    Four units of the Topopah Springs formation (volcanic tuff) are considered for the proposed repository: the upper lithophysal, the middle non-lithophysal, the lower lithophysal, and the lower non-lithophysal. Yucca Mountain was recently designated the site for a proposed repository to dispose of spent nuclear fuel and high-level radioactive waste. Work is proceeding to advance the design of subsurface facilities to accommodate emplacing waste packages in the proposed repository. This paper summarized recent progress in the design of subsurface layout of the proposed repository. The original Site Recommendation (SR) concept for the subsurface design located the repository largely within the lowermore » lithophysal zone (approximately 73%) of the Topopah The Site Recommendation characterized area suitable for emplacement consisted of the primary upper block, the lower block and the southern upper block extension. The primary upper block accommodated the mandated 70,000 metric tons of heavy metal (MTHM) at a 1.45 kW/m hear heat load. Based on further study of the Site Recommendation concept, the proposed repository siting area footprint was modified to make maximum use of available site characterization data, and thus, reduce uncertainties associated with performance assessment. As a result of this study, a modified repository footprint has been proposed and is presently being review for acceptance by the DOE. A panel design concept was developed to reduce overall costs and reduce the overall emplacement schedule. This concept provides flexibility to adjust the proposed repository subsurface layout with time, as it makes it unnecessary to ''commit'' to development of a large single panel at the earliest stages of construction. A description of the underground layout configuration and influencing factors that affect the layout configuration are discussed in the report.« less

  20. Achieving and documenting closure in plant growth facilities

    NASA Technical Reports Server (NTRS)

    Knott, W. M.; Sager, John C.; Wheeler, Ray

    1992-01-01

    As NASA proceeds with its effort to develop a Controlled Ecological Life Support System (CELSS) that will provide life support to crews during long duration space missions, it must address the question of facility and system closure. The concept of closure as it pertains to CELSS and engineering specifications, construction problems and monitoring procedures used in the development and operation of a closed plant growth facility for the CELSS program are described. A plant growth facility is one of several modules required for a CELSS. A prototype of this module at Kennedy Space Center is the large (7m tall x 3.5m diameter) Biomass Production Chamber (BPC), the central facility of the CELSS Breadboard Project. The BPC is atmospherically sealed to a leak rate of approximately 5 percent of its total volume per 24 hours. This paper will discuss the requirements for atmospheric closure in the facility, present CO2 and trace gas data from initial tests of the BPC with and without plants, and describe how the chamber was sealed atmospherically. Implications that research conducted in this type of facility will have for the CELSS program are discussed.

  1. PROGRESS REPORT: COFIRING PROJECTS FOR WILLOW ISLAND AND ALBRIGHT GENERATING STATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period April 1, 2001--June 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) accelerated construction of the Willow Island cofiring project, completed the installation of foundations for the fuel storage facility, the fuel receiving facility, and the processing building. Allegheny received all processing equipment to be installed at Willow Island. Allegheny completed the combustion modeling for the Willow Island project. During this time period construction of the Albright Generating Station cofiring facility was completed, with few items left for final action. The facility was dedicated at a ceremony on June 29. Initial testing of cofiring at the facility commenced.more » This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.« less

  2. Weightless Environment Training Facility (WETF) materials coating evaluation, volume 2

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This volume consists of Appendices A and B to the report on the Weightless Environment Training Facility Materials Coating Evaluation project. The project selected 10 coating systems to be evaluated in six separate exposure environments, and subject to three tests for physical properties. Appendix A holds the coating system, surface preparation, and application data. Appendix B holds the coating material infrared spectra.

  3. XML Based Scientific Data Management Facility

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush; Zubair, M.; Ziebartt, John (Technical Monitor)

    2001-01-01

    The World Wide Web consortium has developed an Extensible Markup Language (XML) to support the building of better information management infrastructures. The scientific computing community realizing the benefits of HTML has designed markup languages for scientific data. In this paper, we propose a XML based scientific data management facility, XDMF. The project is motivated by the fact that even though a lot of scientific data is being generated, it is not being shared because of lack of standards and infrastructure support for discovering and transforming the data. The proposed data management facility can be used to discover the scientific data itself, the transformation functions, and also for applying the required transformations. We have built a prototype system of the proposed data management facility that can work on different platforms. We have implemented the system using Java, and Apache XSLT engine Xalan. To support remote data and transformation functions, we had to extend the XSLT specification and the Xalan package.

  4. XML Based Scientific Data Management Facility

    NASA Technical Reports Server (NTRS)

    Mehrotra, P.; Zubair, M.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The World Wide Web consortium has developed an Extensible Markup Language (XML) to support the building of better information management infrastructures. The scientific computing community realizing the benefits of XML has designed markup languages for scientific data. In this paper, we propose a XML based scientific data management ,facility, XDMF. The project is motivated by the fact that even though a lot of scientific data is being generated, it is not being shared because of lack of standards and infrastructure support for discovering and transforming the data. The proposed data management facility can be used to discover the scientific data itself, the transformation functions, and also for applying the required transformations. We have built a prototype system of the proposed data management facility that can work on different platforms. We have implemented the system using Java, and Apache XSLT engine Xalan. To support remote data and transformation functions, we had to extend the XSLT specification and the Xalan package.

  5. SNL/CA Facilities Management Design Standards Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabb, David; Clark, Eva

    2014-12-01

    At Sandia National Laboratories in California (SNL/CA), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/CA applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. The safetymore » and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule.« less

  6. Documenting and determining distributions, trends, and relations in truck times at international border crossing facilities.

    DOT National Transportation Integrated Search

    2017-01-20

    Documenting the times trucks incur when crossing an international border facility is valuable both to the private freight industry and to gateway facility operators and planners. : Members of the project team previously developed and implemented an a...

  7. LSST summit facility construction progress report: reacting to design refinements and field conditions

    NASA Astrophysics Data System (ADS)

    Barr, Jeffrey D.; Gressler, William; Sebag, Jacques; Seriche, Jaime; Serrano, Eduardo

    2016-07-01

    The civil work, site infrastructure and buildings for the summit facility of the Large Synoptic Survey Telescope (LSST) are among the first major elements that need to be designed, bid and constructed to support the subsequent integration of the dome, telescope, optics, camera and supporting systems. As the contracts for those other major subsystems now move forward under the management of the LSST Telescope and Site (T and S) team, there has been inevitable and beneficial evolution in their designs, which has resulted in significant modifications to the facility and infrastructure. The earliest design requirements for the LSST summit facility were first documented in 2005, its contracted full design was initiated in 2010, and construction began in January, 2015. During that entire development period, and extending now roughly halfway through construction, there continue to be necessary modifications to the facility design resulting from the refinement of interfaces to other major elements of the LSST project and now, during construction, due to unanticipated field conditions. Changes from evolving interfaces have principally involved the telescope mount, the dome and mirror handling/coating facilities which have included significant variations in mass, dimensions, heat loads and anchorage conditions. Modifications related to field conditions have included specifying and testing alternative methods of excavation and contending with the lack of competent rock substrate where it was predicted to be. While these and other necessary changes are somewhat specific to the LSST project and site, they also exemplify inherent challenges related to the typical timeline for the design and construction of astronomical observatory support facilities relative to the overall development of the project.

  8. Facility Activation and Characterization for IPD Turbopump Testing at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; Pace, J. S.; Raines, N. G.; Meredith, T. O.; Taylor, S. A.; Ryan, H. M.

    2005-01-01

    The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is, in part, supported by NASA. IPD is also supported through the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today's state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The IPD Program recently achieved two major milestones. The first was the successful completion of the IPD Oxidizer Turbopump (OTP) hot-fire test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in June 2003. A total of nine IPD Workhorse Preburner tests were completed, and subsequently 12 IPD OTP hot-fire tests were completed. The second major milestone was the successful completion of the IPD Fuel Turbopump (FTP) cold-flow test project at the NASA SSC E-1 test facility in November 2003. A total of six IPD FTP cold-flow tests were completed. The next phase of development involves IPD integrated engine system testing also at the NASA SSC E-1 test facility scheduled to begin in early 2005. Following and overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and testing of the IPD oxidizer and fuel turbopumps. In addition, some of the facility challenges encountered and the lessons learned during the test projects shall be detailed.

  9. Development of a Simplified Sustainable Facilities Guide

    DTIC Science & Technology

    2003-04-18

    Government Through Efficient Energy Management , June 3, 1999 EO 13148 Greening the Government Through Leadership in Environmental Management ...architects, engineers, and project managers . - The United States Green Building Council (USGBC) has created the " Leadership in Energy and...SIMPLIFIED SUSTAINABLE FACILITIES GUIDE THESIS Presented to the Faculty Department of Systems and Engineering Management

  10. The Appraisal of Investments in Educational Facilities.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France). Programme on Educational Building.

    This collection of papers covers, from a European perspective, the basic aspects of investments in physical educational facilities, as well as important issues in the economics of education. Four themes are covered. The first presents the art of the economic analysis of educational projects. The second focuses on the contribution of performance…

  11. Supporting the Future Air Traffic Control Projection Process

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John, Jr.

    2002-01-01

    In air traffic control, projecting what the air traffic situation will be over the next 30 seconds to 30 minutes is a key process in identifying conflicts that may arise so that evasive action can be taken upon discovery of these conflicts. A series of field visits in the Boston and New York terminal radar approach control (TRACON) facilities and in the oceanic air traffic control facilities in New York and Reykjavik, Iceland were conducted to investigate the projection process in two different ATC domains. The results from the site visits suggest that two types of projection are currently used in ATC tasks, depending on the type of separation minima and/or traffic restriction and information display used by the controller. As technologies improve and procedures change, care should be taken by designers to support projection through displays, automation, and procedures. It is critical to prevent time/space mismatches between interfaces and restrictions. Existing structure in traffic dynamics could be utilized to provide controllers with useful behavioral models on which to build projections. Subtle structure that the controllers are unable to internalize could be incorporated into an ATC projection aid.

  12. Flat-plate solar array project. Volume 8: Project analysis and integration

    NASA Technical Reports Server (NTRS)

    Mcguire, P.; Henry, P.

    1986-01-01

    Project Analysis and Integration (PA&I) performed planning and integration activities to support management of the various Flat-Plate Solar Array (FSA) Project R&D activities. Technical and economic goals were established by PA&I for each R&D task within the project to coordinate the thrust toward the National Photovoltaic Program goals. A sophisticated computer modeling capability was developed to assess technical progress toward meeting the economic goals. These models included a manufacturing facility simulation, a photovoltaic power station simulation and a decision aid model incorporating uncertainty. This family of analysis tools was used to track the progress of the technology and to explore the effects of alternative technical paths. Numerous studies conducted by PA&I signaled the achievement of milestones or were the foundation of major FSA project and national program decisions. The most important PA&I activities during the project history are summarized. The PA&I planning function is discussed and how it relates to project direction and important analytical models developed by PA&I for its analytical and assessment activities are reviewed.

  13. Weldon Spring Site Remedial Action Project Federal Facilities Agreement: Quarterly environmental data summary for third quarter 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-11-06

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the third quarter of 1998 is enclosed. The data presented in this letter and attachment constitute the QEDS. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the third quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Significant data, defined as data values thatmore » have exceeded defined above normal Level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal Level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits, and other guidelines. The procedures also establish actions to be taken in the event that above normal data occur.« less

  14. Cold Vacuum Drying (CVD) Facility Acceptance for Beneficial Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRISBIN, S.A.

    2000-01-05

    This document provides a checklist of the items required for turnover of the Cold Vacuum Drying Facility from the Construction Projects organization to the Operations organization. This document will be updated periodically to document completion of additional deliverables.

  15. Space Communications Emulation Facility

    NASA Technical Reports Server (NTRS)

    Hill, Chante A.

    2004-01-01

    Establishing space communication between ground facilities and other satellites is a painstaking task that requires many precise calculations dealing with relay time, atmospheric conditions, and satellite positions, to name a few. The Space Communications Emulation Facility (SCEF) team here at NASA is developing a facility that will approximately emulate the conditions in space that impact space communication. The emulation facility is comprised of a 32 node distributed cluster of computers; each node representing a satellite or ground station. The objective of the satellites is to observe the topography of the Earth (water, vegetation, land, and ice) and relay this information back to the ground stations. Software originally designed by the University of Kansas, labeled the Emulation Manager, controls the interaction of the satellites and ground stations, as well as handling the recording of data. The Emulation Manager is installed on a Linux Operating System, employing both Java and C++ programming codes. The emulation scenarios are written in extensible Markup Language, XML. XML documents are designed to store, carry, and exchange data. With XML documents data can be exchanged between incompatible systems, which makes it ideal for this project because Linux, MAC and Windows Operating Systems are all used. Unfortunately, XML documents cannot display data like HTML documents. Therefore, the SCEF team uses XML Schema Definition (XSD) or just schema to describe the structure of an XML document. Schemas are very important because they have the capability to validate the correctness of data, define restrictions on data, define data formats, and convert data between different data types, among other things. At this time, in order for the Emulation Manager to open and run an XML emulation scenario file, the user must first establish a link between the schema file and the directory under which the XML scenario files are saved. This procedure takes place on the command

  16. 57. BUILDING NO. 1071, ORDNANCE FACILITY (CRYSTALLIZATION BUILDING), LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. BUILDING NO. 1071, ORDNANCE FACILITY (CRYSTALLIZATION BUILDING), LOOKING AT SOUTHEAST SIDE. NOTE ESCAPE CHUTES PROJECTING FROM SIDES OF BUILDING. - Picatinny Arsenal, State Route 15 near I-80, Dover, Morris County, NJ

  17. Financing CHP Projects at Wastewater Treatment Facilities with Clean Water State Revolving Funds

    EPA Pesticide Factsheets

    This factsheet provides information about CHP at wastewater treatment facilities, including applications, financial challenges, and financial opportunities, such as the Clean Water State Revolving Fund.

  18. Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet

    1999-01-01

    The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.

  19. Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet

    1998-01-01

    The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.

  20. The status of LILW disposal facility construction in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min-Seok; Chung, Myung-Sub; Park, Kyu-Wan

    2013-07-01

    In this paper, we discuss the experiences during the construction of the first LILW disposal facility in South Korea. In December 2005, the South Korean Government designated Gyeongju-city as a host city of Low- and Intermediate-Level Radioactive Waste(LILW) disposal site through local referendums held in regions whose local governments had applied to host disposal facility in accordance with the site selection procedures. The LILW disposal facility is being constructed in Bongilri, Yangbuk-myeon, Gyeongju. The official name of the disposal facility is called 'Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (LILW Disposal Center)'. It can dispose of 800,000 drumsmore » of radioactive wastes in a site of 2,100,000 square meters. At the first stage, LILW repository of underground silo type with disposal capacity of 100,000 drums is under construction expected to be completed by June of 2014. The Wolsong Low and Intermediate Level Radioactive Waste Disposal Center consists of surface facilities and underground facilities. The surface facilities include a reception and inspection facility, an interim storage facility, a radioactive waste treatment building, and supporting facilities such as main control center, equipment and maintenance shop. The underground facilities consist of a construction tunnel for transport of construction equipment and materials, an operation tunnel for transport of radioactive waste, an entrance shaft for workers, and six silos for final disposal of radioactive waste. As of Dec. 2012, the overall project progress rate is 93.8%. (authors)« less

  1. How to Tackle Tough Facility Design Considerations

    ERIC Educational Resources Information Center

    Kalina, David

    2007-01-01

    This article is part of a series that has offered insight on planning a facilities project, hiring professionals, delivery system options and owner's responsibilities. In this article, the author focuses on some of the planning and design concepts one may be asked to consider in providing direction to his design and construction team. These…

  2. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site.more » The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA

  3. Thermionic system evaluated test (TSET) facility description

    NASA Astrophysics Data System (ADS)

    Fairchild, Jerry F.; Koonmen, James P.; Thome, Frank V.

    1992-01-01

    A consortium of US agencies are involved in the Thermionic System Evaluation Test (TSET) which is being supported by the Strategic Defense Initiative Organization (SDIO). The project is a ground test of an unfueled Soviet TOPAZ-II in-core thermionic space reactor powered by electrical heat. It is part of the United States' national thermionic space nuclear power program. It will be tested in Albuquerque, New Mexico at the New Mexico Engineering Research Institute complex by the Phillips Laboratoty, Sandia National Laboratories, Los Alamos National Laboratory, and the University of New Mexico. One of TSET's many objectives is to demonstrate that the US can operate and test a complete space nuclear power system, in the electrical heater configuration, at a low cost. Great efforts have been made to help reduce facility costs during the first phase of this project. These costs include structural, mechanical, and electrical modifications to the existing facility as well as the installation of additional emergency systems to mitigate the effects of utility power losses and alkali metal fires.

  4. Instructor Guides for Training Food Service Supervisors in Long Term Care Facilities.

    ERIC Educational Resources Information Center

    Eastern Iowa Community Coll. District, Davenport.

    This final report describes a project to develop postsecondary teacher resource guides for supervisor courses in food service management, preparation and service of modified diets, and meal service in long-term care facilities in Iowa. Introductory material includes the following: project objective, a description of how the objective was met, the…

  5. Materials Test Laboratory activities at the NASA-Johnson Space Center White Sands Test Facility (WSTF)

    NASA Technical Reports Server (NTRS)

    Stradling, J.; Pippen, D. L.

    1985-01-01

    The NASA Johnson Space Center White Sands Test Facility (WSTF) performs aerospace materials testing and evaluation. Established in 1963, the facility grew from a NASA site dedicated to the development of space engines for the Apollo project to a major test facility. In addition to propulsion tests, it tests materials and components, aerospace fluids, and metals and alloys in simulated space environments.

  6. University of Wisconsin Oshkosh Anaerobic Dry Digestion Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koker, John; Lizotte, Michael

    The University of Wisconsin Oshkosh Anaerobic Dry Digestion Facility is a demonstration project that supported the first commercial-scale use in the United States of high solids, static pile technology for anaerobic digestion of organic waste to generate biogas for use in generating electricity and heat. The research adds to the understanding of startup, operation and supply chain issues for anaerobic digester technology. Issues and performance were documented for equipment installation and modifications, feedstock availability and quality, weekly loading and unloading of digestion chambers, chemical composition of biogas produced, and energy production. This facility also demonstrated an urban industrial ecology approachmore » to siting such facilities near sewage treatment plants (to capture and use excess biogas generated by the plants) and organic yard waste collection sites (a source of feedstock).« less

  7. Communication Skills Center Project; Detroit, Michigan. It Works.

    ERIC Educational Resources Information Center

    1969

    The Communication Skills Center Project (CSC) in Detroit, Michigan, a Title I project, provided remedial reading services to 2,845 educationally disadvantaged children (80 to 85 percent Negro) in grades 2 through 12 during 1966-67. The facilities included six communication skills centers, three serving elementary and junior high school students…

  8. Energy Engineering Analysis Program, energy survey of Army Industrial Facilities, Western Area Demilitarization Facility, Hawthorne Army Ammunition Plant, Hawthorne, Nevada; Volume 1 - energy report. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-17

    This report summarizes all work for the Energy Survey of Army Industrial Facilities, Energy Engineering Analysis Program (EEAP) at the Western Area Demilitarization Facility (WADF) of the Hawthorne Army Ammunition Plant (HWAAP), Hawthorne, Nevada, authorized under Contract No. DACA05-92-C-0155 with the U.S. Army Corps of Engineers, Sacramento District, California. The purpose of this energy survey is to develop a set of projects and actions that will reduce energy consumption and operating costs of selected facilities at the WADF. A preliminary inspection of facilities at WADF by Keller Gannon that identified potential retrofit opportunities was submitted as the EEAP Study andmore » Criteria Review in December 1993. This document formed the basis of the Detailed Scope of Work for this study. Facilities included in the survey and study, together with operational status.« less

  9. Naval Facilities Engineering Command Needs to Improve Controls Over Task Order Administration

    DTIC Science & Technology

    2015-07-02

    consolidated joint use Submarine Learning Center and Submarine Squadron Headquarters facility that: • includes training space for submarine crews, and...allows frequent and timely interaction between Headquarters personnel, Submarine Learning Center instructors, and waterfront operations personnel...Introduction DODIG-2015-141 │ 3 Project P-528 provides a Torpedo Exercise Support facility that: • supports submarine crew training and certification to

  10. EURO-CARES as Roadmap for a European Sample Curation Facility

    NASA Astrophysics Data System (ADS)

    Brucato, J. R.; Russell, S.; Smith, C.; Hutzler, A.; Meneghin, A.; Aléon, J.; Bennett, A.; Berthoud, L.; Bridges, J.; Debaille, V.; Ferrière, L.; Folco, L.; Foucher, F.; Franchi, I.; Gounelle, M.; Grady, M.; Leuko, S.; Longobardo, A.; Palomba, E.; Pottage, T.; Rettberg, P.; Vrublevskis, J.; Westall, F.; Zipfel, J.; Euro-Cares Team

    2018-04-01

    EURO-CARES is a three-year multinational project funded under the European Commission Horizon2020 research program to develop a roadmap for a European Extraterrestrial Sample Curation Facility for samples returned from solar system missions.

  11. Energy Engineering Analysis Program, energy survey of Army Industrial Facilities, Western Area Demilitarization Facility Hawthorne Ermy Ammunition Plant Hawthorne, Nevada. Volume 1. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-17

    This report summarizes all work for the Energy Survey of Army Industrial Facilities, Energy Engineering Analysis Program (EEAP) at the Western Area Demilitarization Facility (WADF) of the Hawthorne Army Ammunition Plant (HWAAP), Hawthorne, Nevada, authorized under Contract No. DACA03-92-C-0155 with the U.S. Army Corps of Engineers, Sacramento District, California. The purpose of this energy survey is to develop a set of projects and actions that will reduce energy consumption and operating costs of selected facilities at the WADF. A preliminary inspection of facilities at WADF by Keller Gannon that identified potential retrofit opportunities was submitted as the EEAP Study andmore » Criteria Review in December 1993. This document formed the basis of the Detailed Scope of Work for this study. Facilities included in the survey and study, together with operational status, are listed in Table 1 - 1. The complete scope of work appears in Appendix.« less

  12. PUREX/UO3 Facilities deactivation lessons learned history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, M.S.

    1996-09-19

    and were accompanied by and were an integral part of sweeping ``culture changes,`` the story of the lessons learned during the PUREX Deactivation Project are worth recounting. Foremost among the lessons is recognizing the benefits of ``right to left`` project planning. A deactivation project must start by identifying its end points, then make every task, budget, and organizational decision based on reaching those end points. Along with this key lesson is the knowledge that project planning and scheduling should be tied directly to costing, and the project status should be checked often (more often than needed to meet mandated reporting requirements) to reflect real-time work. People working on a successful project should never be guessing about its schedule or living with a paper schedule that does not represent the actual state of work. Other salient lessons were learned in the PUREX/UO3 Deactivation Project that support these guiding principles. They include recognizing the value of independent review, teamwork, and reengineering concepts; the need and value of cooperation between the DOE, its contractors, regulators, and stakeholders; and the essential nature of early and ongoing communication. Managing a successful project also requires being willing to take a fresh look at safety requirements and to apply them in a streamlined and sensible manner to deactivating facilities; draw on the enormous value of resident knowledge acquired by people over years and sometimes decades of working in old plants; and recognize the value of bringing in outside expertise for certain specialized tasks.This approach makes possible discovering the savings that can come when many creative options are pursued persistently and the wisdom of leaving some decisions to the future. The essential job of a deactivation project is to place a facility in a safe, stable, low-maintenance mode, for an interim period. Specific end points are identified to recognize and document this state. Keeping

  13. Small Projects Rapid Integration and Test Environment (SPRITE): Application for Increasing Robustness

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Heater, Daniel; Lee, Ashley

    2013-01-01

    Marshall Space Flight Center's (MSFC) Small Projects Rapid Integration and Test Environment (SPRITE) is a Hardware-In-The-Loop (HWIL) facility that provides rapid development, integration, and testing capabilities for small projects (CubeSats, payloads, spacecraft, and launch vehicles). This facility environment focuses on efficient processes and modular design to support rapid prototyping, integration, testing and verification of small projects at an affordable cost, especially compared to larger type HWIL facilities. SPRITE (Figure 1) consists of a "core" capability or "plant" simulation platform utilizing a graphical programming environment capable of being rapidly re-configured for any potential test article's space environments, as well as a standard set of interfaces (i.e. Mil-Std 1553, Serial, Analog, Digital, etc.). SPRITE also allows this level of interface testing of components and subsystems very early in a program, thereby reducing program risk.

  14. Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities

    PubMed Central

    2010-01-01

    Background Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. Results We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. Conclusions The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities. PMID:20482787

  15. Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities.

    PubMed

    Tolopko, Andrew N; Sullivan, John P; Erickson, Sean D; Wrobel, David; Chiang, Su L; Rudnicki, Katrina; Rudnicki, Stewart; Nale, Jennifer; Selfors, Laura M; Greenhouse, Dara; Muhlich, Jeremy L; Shamu, Caroline E

    2010-05-18

    Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.

  16. Transuranic sealed source recovery project.

    PubMed

    Tompkins, J A; Pearson, M W

    2001-11-01

    If you have transuranic sealed sources (239Pu, 238Pu, or 241Am) that have no potential for recycle or commercial disposal, the Off Site Source Recovery Project at LANL can assist in recovering the sealed sources from your facility to a DOE storage site.

  17. Project management practice and its effects on project success in Malaysian construction industry

    NASA Astrophysics Data System (ADS)

    Haron, N. A.; Devi, P.; Hassim, S.; Alias, A. H.; Tahir, M. M.; Harun, A. N.

    2017-12-01

    The rapid economic development has increased the demand for construction of infrastructure and facilities globally. Sustainable development and globalization are the new ‘Zeitgeist’ of the 21st century. In order to implement these projects successfully and to meet the functional aim of the projects within their lifetime, an efficient project management practice is needed. The aim of this study is to identify the critical success factors (CSFs) and the extent of use of project management practice which affects project success, especially during the implementation stage. Data were obtained from self-administered questionnaires with 232 respondents. A mixed method of data collection was adopted using semi-structured interview and questionnaire approach. The result of the analysis of data obtained showed that new and emerging criteria such as customer satisfaction, competency of the project team, and performance of subcontractors/suppliers are becoming measures of success in addition to the classic iron triangle’s view of time, cost and quality. An insight on the extent of use of different project management practice in the industry was also achieved from the study.

  18. Improved E-ELT subsystem and component specifications, thanks to M1 test facility

    NASA Astrophysics Data System (ADS)

    Dimmler, M.; Marrero, J.; Leveque, S.; Barriga, Pablo; Sedghi, B.; Kornweibel, N.

    2014-07-01

    During the last 2 years ESO has operated the "M1 Test Facility", a test stand consisting of a representative section of the E-ELT primary mirror equipped with 4 complete prototype segment subunits including sensors, actuators and control system. The purpose of the test facility is twofold: it serves to study and get familiar with component and system aspects like calibration, alignment and handling procedures and suitable control strategies on real hardware long before the primary mirror (hereafter M1) components are commissioned. Secondly, and of major benefit to the project, it offered the possibility to evaluate component and subsystem performance and interface issues in a system context in such detail, that issues could be identified early enough to feed back into the subsystem and component specifications. This considerably reduces risk and cost of the production units and allows refocusing the project team on important issues for the follow-up of the production contracts. Experiences are presented in which areas the results of the M1 Test Facility particularly helped to improve subsystem specifications and areas, where additional tests were adopted independent of the main test facility. Presented are the key experiences of the M1 Test Facility which lead to improved specifications or identified the need for additional testing outside of the M1 Test Facility.

  19. Cosmic Dust Collection Facility: Scientific objectives and programmatic relations

    NASA Technical Reports Server (NTRS)

    Hoerz, Fred (Editor); Brownlee, D. E.; Bunch, T. E.; Grounds, D.; Grun, E.; Rummel, Y.; Quaide, W. L.; Walker, R. M.

    1990-01-01

    The science objectives are summarized for the Cosmic Dust Collection Facility (CDCF) on Space Station Freedom and these objectives are related to ongoing science programs and mission planning within NASA. The purpose is to illustrate the potential of the CDCF project within the broad context of early solar system sciences that emphasize the study of primitive objects in state-of-the-art analytical and experimental laboratories on Earth. Current knowledge about the sources of cosmic dust and their associated orbital dynamics is examined, and the results are reviewed of modern microanalytical investigations of extraterrestrial dust particles collected on Earth. Major areas of scientific inquiry and uncertainty are identified and it is shown how CDCF will contribute to their solution. General facility and instrument concepts that need to be pursued are introduced, and the major development tasks that are needed to attain the scientific objectives of the CDCF project are identified.

  20. Energy efficiency in California laboratory-type facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, E.; Bell, G.; Sartor, D.

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in themore » overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.« less

  1. Conductor and joint test results of JT-60SA CS and EF coils using the NIFS test facility

    NASA Astrophysics Data System (ADS)

    Obana, Tetsuhiro; Takahata, Kazuya; Hamaguchi, Shinji; Kizu, Kaname; Murakami, Haruyuki; Chikaraishi, Hirotaka; Noguchi, Hiroki; Kobuchi, Takashi; Moriuchi, Sadatomo; Imagawa, Shinsaku; Mito, Toshiyuki; Tsuchiya, Katsuhiko; Natsume, Kyohei; Yoshida, Kiyoshi; Nomoto, Kazuhiro; Kim, Tae-hyun

    2016-01-01

    In 2007, JAEA and NIFS launched the test project to evaluate the performance of cable-in-conduit (CIC) conductors and conductor joints for the JT-60SA CS and EF coils. In this project, conductor tests for four types of coil conductor and joint tests for seven types of conductor joint have been conducted for the past eight years using the NIFS test facility. As a result, the test project indicated that the CIC conductors and conductor joints fulfill the design requirement for the CS and EF coils. In addition, the NIFS test facility is expected to be utilized as the test facility for the development of a conductor and conductor joint for the purpose of the DEMO nuclear fusion power plant, provided that the required magnetic field strength is within 9 T.

  2. Advanced Distributed Measurements and Data Processing at the Vibro-Acoustic Test Facility, GRC Space Power Facility, Sandusky, Ohio - an Architecture and an Example

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.; Evans, Richard K.

    2009-01-01

    A large-scale, distributed, high-speed data acquisition system (HSDAS) is currently being installed at the Space Power Facility (SPF) at NASA Glenn Research Center s Plum Brook Station in Sandusky, OH. This installation is being done as part of a facility construction project to add Vibro-acoustic Test Capabilities (VTC) to the current thermal-vacuum testing capability of SPF in support of the Orion Project s requirement for Space Environments Testing (SET). The HSDAS architecture is a modular design, which utilizes fully-remotely managed components, enables the system to support multiple test locations with a wide-range of measurement types and a very large system channel count. The architecture of the system is presented along with details on system scalability and measurement verification. In addition, the ability of the system to automate many of its processes such as measurement verification and measurement system analysis is also discussed.

  3. Building information models for astronomy projects

    NASA Astrophysics Data System (ADS)

    Ariño, Javier; Murga, Gaizka; Campo, Ramón; Eletxigerra, Iñigo; Ampuero, Pedro

    2012-09-01

    A Building Information Model is a digital representation of physical and functional characteristics of a building. BIMs represent the geometrical characteristics of the Building, but also properties like bills of quantities, definition of COTS components, status of material in the different stages of the project, project economic data, etc. The BIM methodology, which is well established in the Architecture Engineering and Construction (AEC) domain for conventional buildings, has been brought one step forward in its application for Astronomical/Scientific facilities. In these facilities steel/concrete structures have high dynamic and seismic requirements, M&E installations are complex and there is a large amount of special equipment and mechanisms involved as a fundamental part of the facility. The detail design definition is typically implemented by different design teams in specialized design software packages. In order to allow the coordinated work of different engineering teams, the overall model, and its associated engineering database, is progressively integrated using a coordination and roaming software which can be used before starting construction phase for checking interferences, planning the construction sequence, studying maintenance operation, reporting to the project office, etc. This integrated design & construction approach will allow to efficiently plan construction sequence (4D). This is a powerful tool to study and analyze in detail alternative construction sequences and ideally coordinate the work of different construction teams. In addition engineering, construction and operational database can be linked to the virtual model (6D), what gives to the end users a invaluable tool for the lifecycle management, as all the facility information can be easily accessed, added or replaced. This paper presents the BIM methodology as implemented by IDOM with the E-ELT and ATST Enclosures as application examples.

  4. 36 CFR Appendix A to Part 1234 - Minimum Security Standards for Level III Federal Facilities

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... technology and blast standards. Immediate review of ongoing projects may generate savings in the... critical systems (alarm systems, radio communications, computer facilities, etc.) Required. Occupant... all exterior windows (shatter protection) Recommended. Review current projects for blast standards...

  5. 36 CFR Appendix A to Part 1234 - Minimum Security Standards for Level III Federal Facilities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... construction projects should be reviewed if possible, to incorporate current technology and blast standards... critical systems (alarm systems, radio communications, computer facilities, etc.) Required. Occupant... all exterior windows (shatter protection) Recommended. Review current projects for blast standards...

  6. 36 CFR Appendix A to Part 1234 - Minimum Security Standards for Level III Federal Facilities

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... technology and blast standards. Immediate review of ongoing projects may generate savings in the... critical systems (alarm systems, radio communications, computer facilities, etc.) Required. Occupant... all exterior windows (shatter protection) Recommended. Review current projects for blast standards...

  7. Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller

    2012-01-31

    Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model will be used to assess the present-day composite distribution for seismic sources along with their characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined Operating License Applications (COLAs). Applications, Values, and Use Development of a regional CEUS seismic source model will provide value to those who (1) have submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2) will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs to meet design and periodic review requirements for current and future nuclear facilities. This work replaces a previous study performed approximately 25 years ago. Since that study was completed, substantial work has been done to improve the understanding of seismic sources and their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of delays in new plant licensing due to more conservative interpretations in the existing and future literature. Perspective The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE), and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this purpose was composed of distinguished subject matter experts from industry, government, and academia. The resulting model is unique, and because this project has solicited input from the present-day larger technical community, it is not likely that there will be a need for significant revision for a number of years. See also Sponsors Perspective for more details. The goal of this project was to implement the CEUS SSC work

  8. Aerial Flyover of New Research Facilities

    ScienceCinema

    None

    2018-02-14

    The Idaho National Laboratory is focused on continued development of its primary campus areas, including our Idaho Falls campus, to enable the INL to meet DOE expectations as the nations lead nuclear energy laboratory. This video identifies some of the existing Idaho Falls campus facilities and highlights planned and potential future development to support campus growth. You can learn more about INL's energy research projects at http://www.facebook.com/idahonationallaboratory.

  9. NASA's Advanced Life Support Systems Human-Rated Test Facility

    NASA Technical Reports Server (NTRS)

    Henninger, D. L.; Tri, T. O.; Packham, N. J.

    1996-01-01

    Future NASA missions to explore the solar system will be long-duration missions, requiring human life support systems which must operate with very high reliability over long periods of time. Such systems must be highly regenerative, requiring minimum resupply, to enable the crews to be largely self-sufficient. These regenerative life support systems will use a combination of higher plants, microorganisms, and physicochemical processes to recycle air and water, produce food, and process wastes. A key step in the development of these systems is establishment of a human-rated test facility specifically tailored to evaluation of closed, regenerative life supports systems--one in which long-duration, large-scale testing involving human test crews can be performed. Construction of such a facility, the Advanced Life Support Program's (ALS) Human-Rated Test Facility (HRTF), has begun at NASA's Johnson Space Center, and definition of systems and development of initial outfitting concepts for the facility are underway. This paper will provide an overview of the HRTF project plan, an explanation of baseline configurations, and descriptive illustrations of facility outfitting concepts.

  10. The CELSS Test Facility Project - An example of a CELSS flight experiment system

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Straight, C. L.

    1992-01-01

    The design of the facility is described in terms of its use as an investigation tool for evaluating crop growth in space with reference to required emerging technologies. NASA's CELSS Test Facility (CTF) is designed to permit the measurement of crop-plant productivity under microgravity conditions including biomass production, food production, water transpiration, and O2/CO2 exchanges. Crucial hardware tests and qualifications are identified to assure the operation of CTF technologies in space including the nutrient-delivery, water-condensation, and gas-liquid-mixing subsystems. The design concept and related scientific requirements are described and shown to provide microgravity crop research. The CTF is expected to provide data for plant research and for concepts for bioregenerative life-support systems for applications to Martian, lunar, and space-station missions.

  11. Technology Readiness Assessment of Department of Energy Waste Processing Facilities

    DTIC Science & Technology

    2007-09-11

    Must Be Reliable, Robust, Flexible, and Durable 6 EM Is Piloting the TRA/AD2 Process Hanford Waste Treatment Plant ( WTP ) – The Initial Pilot Project...Evaluation WTP can only treat ~ ½ of the LAW in the time it will take to treat all the HLW. • There is a need for tank space that will get more urgent with...Facility before the WTP Pretreatment and High-Level Waste (HLW) Vitrification Facilities are available (Requires tank farm pretreatment capability) TRAs

  12. 36 CFR 327.30 - Shoreline Management on Civil Works Projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Development Areas for ski jumps, floats, boat moorage facilities, duck blinds, and other private floating recreation facilities when they will not create a safety hazard and inhibit public use or enjoyment of project waters or shoreline. A Corps permit is not required for temporary ice fishing shelters or duck...

  13. 36 CFR 327.30 - Shoreline Management on Civil Works Projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Development Areas for ski jumps, floats, boat moorage facilities, duck blinds, and other private floating recreation facilities when they will not create a safety hazard and inhibit public use or enjoyment of project waters or shoreline. A Corps permit is not required for temporary ice fishing shelters or duck...

  14. Conceptual design of the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Paisner, Jeffrey A.; Boyes, John D.; Kumpan, Steven A.; Lowdermilk, W. Howard; Sorem, Michael S.

    1995-12-01

    The Secretary of the U.S. Department of Energy (DOE) commissioned a conceptual design report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a key decision zero (KD0), justification of mission need. Motivated by the progress to date by the inertial confinement fusion (ICF) program in meeting the Nova technical contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 micrometer) of neodymium (Nd) glass. The participating ICF laboratories signed a memorandum of agreement in August 1993, and established a project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE defense program's site, and issued a 7,000-page, 27-volume CDR in May 1994. Over the course of the conceptual design study, several other key documents were generated, including a facilities requirements document, a conceptual design scope and plan, a target physics design document, a laser design cost basis document, a functional requirements document, an experimental plan for indirect drive ignition, and a preliminary hazards analysis (PHA) document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a key decision one (KD1) for the NIF, which approved the project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. In February 1995, the NIF Project was

  15. 75 FR 52054 - Bus and Bus Facilities Discretionary Program Funds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... engaged in public transportation, or private non-profit organizations. FOR FURTHER INFORMATION CONTACT... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Bus and Bus Facilities Discretionary... program announcement of project selections. SUMMARY: The U.S. Department of Transportation's (DOT) Federal...

  16. Legacies of the Manhattan Project

    NASA Astrophysics Data System (ADS)

    Kevles, Daniel

    2017-01-01

    The Manhattan Project of World War II mobilized thousands of people, including many of the nation's leading physicists, and extensive material resources to design, develop, and manufacture the world's first nuclear weapons. It also established sprawling new facilities for the production of fissionable fuels - notably at Oak Ridge, Tennessee, and Hanford, Washington. It left a set of powerful legacies in the context of the Cold War - endowing scientists with conscience-taxing responsibilities in the nuclear arms race; promoting enormous patronage of academic research by defense and defense-related federal agencies, notably the Office of Naval Research and the Atomic Energy Commission; and turning its wartime facilities into major national laboratories that advanced the fields of high-energy and nuclear physics and stimulated local industrial economies but that in some cases, notably at Hanford, severely polluted the surrounding environment with radioactive waste and disrupted the livelihoods of native peoples. ``Legacies of the Manhattan Project''

  17. Facility-Scale Solar Photovoltaic Guidebook: Bureau of Reclamation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiatreungwattana, Kosol; VanGeet, Otto; Stoltenberg, Blaise

    2016-09-01

    This guidebook was written for the U.S. Bureau of Reclamation to explore the use of non-hydro renewable energy resources to meet the U.S. Department of Interior's objectives and Reclamation's mission. This guidebook presents readers with the processes and steps needed to assess and successfully implement facility-scale solar projects.

  18. Upgrades at the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2012-01-01

    Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.

  19. Detroit Metropolitan Library Research and Demonstration Project. Background Data.

    ERIC Educational Resources Information Center

    Kremer, Helen

    The Detroit Metropolitan Region, including six countries in southeastern Michigan, is the focus for the Detroit Metropolitan Library Research and Demonstration Project. This document provides background data on the region for the Project. Data included are (1) population, (2) educational facilities, (3) numbers of elementary and secondary pupils…

  20. Downgrading Nuclear Facilities to Radiological Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy

    2015-08-01

    Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,

  1. Design and operation of an outdoor microalgae test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weissman, J.C.; Tillett, D.M.; Goebel, R.P.

    The objective of the project covered in this report is to establish and operate a facility in the American Southwest to test the concept of producing microalgae on a large scale. This microalgae would then be used as a feedstock for producing liquid fuels. The site chosen for this project was an existing water research station in Roswell, New Mexico; the climate and water resources are representative of those in the Southwest. For this project, researchers tested specific designs, modes of operation, and strains of microalgae; proposed and evaluated modifications to technological concepts; and assessed the progress toward meeting costmore » objectives.« less

  2. The 1994 NASA/USRA/ADP Design Projects

    NASA Technical Reports Server (NTRS)

    Cruse, Thomas; Richardson, Joseph; Tryon, Robert

    1994-01-01

    The NASA/USRA/ADP Design Projects from Vanderbilt University, Department of Mechanical Engineering (1994) are enclosed in this final report. Design projects include: (1) Protein Crystal Growth, both facilities and methodology; (2) ACES Deployable Space Boom; (3) Hybrid Launch System designs for both manned and unmanned systems; (4) LH2 Fuel Tank design (SSTO); (5) SSTO design; and (6) Pressure Tank Feed System design.

  3. 76 FR 51961 - Brown Bear Power, LLC, Topsham Hydroelectric Generating Facility Trust No. 1, Topsham Hydro...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... On August 3, 2011, Brown Bear Power, LLC, Topsham Hydroelectric Generating Facility (Trust No. 1... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 4784-082] Brown Bear Power, LLC, Topsham Hydroelectric Generating Facility Trust No. 1, Topsham Hydro Partners Limited Partnership...

  4. Civil Aviation and Facilities. Aerospace Education II. Instructional Unit IV.

    ERIC Educational Resources Information Center

    Elmer, James D.

    This publication accompanies the textbook entitled "Civil Aviation and Facilities," published in the Aerospace Education II series. It provides teacher guidelines with regard to objectives (traditional and behavioral), suggested outlines, orientation, suggested key points, suggestions for teaching, instructional aids, projects, and…

  5. MaRIE: an experimental facility concept revolutionizing materials in extremes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Cris W

    The Matter-Radiation Interactions in Extremes (MaRIE) project intends to create an experimental facility that will revolutionize the control of materials in extremes. That control extends to extreme regimes where solid material has failed and begins to flow - the regimes of fluid dynamics and turbulent mixing. This presentation introduces the MaRIE facility concept, demonstrates examples of the science case that determine its functional requirements, and kicks-off the discussion of the decadal scientific challenges of mixing in extremes, including those MaRIE might address.

  6. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposalmore » vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several

  7. Efficiency improvement of the investment and innovation activities in the transport facility construction field with public-private partnership involvement

    NASA Astrophysics Data System (ADS)

    Shibayeva, Marina; Serebryakova, Yelena; Shalnev, Oleg

    2017-10-01

    Growing demand to increase the investment volume in modernization and development projects for transport infrastructure define the urgency of the current study. The amount of private sector investments in the field is insufficient to implement the projects for road construction due to their significant capital intensity and long payoff period. The implementation of social significant infrastructure projects on the principles of public-private partnership is one of the key strategic directions of growth for transport facilities. The authors come up with a concept and methodology for modeling the investment and innovation activity in the transport facility construction. Furthermore, there is developed a model to find the balance between public and private sector investments in implementing construction projects for transport infrastructure with involvement of PPP (further - public-private partnership). The suggested concepts aim to improve the efficiency rate of the investment and innovation activity in the field of transport facility construction on the basis of public and private sectors collaboration.

  8. Various advanced design projects promoting engineering education

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.

  9. Regulatory approaches for addressing dissolved oxygen concerns at hydropower facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mark J.; Cada, Glenn F.; Sale, Michael J.

    Low dissolved oxygen (DO) concentrations are a common water quality problem downstream of hydropower facilities. At some facilities, structural improvements (e.g. installation of weir dams or aerating turbines) or operational changes (e.g., spilling water over the dam) can be made to improve DO levels. In other cases, structural and operational approaches are too costly for the project to implement or are likely to be of limited effectiveness. Despite improvements in overall water quality below dams in recent years, many hydropower projects are unable to meet state water quality standards for DO. Regulatory agencies in the U.S. are considering or implementingmore » dramatic changes in their approach to protecting the quality of the Nation’s waters. New policies and initiatives have emphasized flexibility, increased collaboration and shared responsibility among all parties, and market-based, economic incentives. The use of new regulatory approaches may now be a viable option for addressing the DO problem at some hydropower facilities. This report summarizes some of the regulatory-related options available to hydropower projects, including negotiation of site-specific water quality criteria, use of biological monitoring, watershed-based strategies for the management of water quality, and watershed-based trading. Key decision points center on the health of the local biological communities and whether there are contributing impacts (i.e., other sources of low DO effluents) in the watershed. If the biological communities downstream of the hydropower project are healthy, negotiation for site-specific water quality standards or biocriteria (discharge performance criteria based on characteristics of the aquatic biota) might be pursued. If there are other effluent dischargers in the watershed that contribute to low DO problems, watershed-scale strategies and effluent trading may be effective. This report examines the value of regulatory approaches by reviewing their use

  10. Does Nursing Facility Use of Habilitation Therapy Improve Performance on Quality Measures?

    PubMed

    Fitzler, Sandra; Raia, Paul; Buckley, Fredrick O; Wang, Mei

    2016-12-01

    The purpose of the project, Centers for Medicare & Medicaid Services (CMS) Innovation study, was to evaluate the impact on 12 quality measures including 10 Minimum Data Set (MDS) publicly reported measures and 2 nursing home process measures using habilitation therapy techniques and a behavior team to manage dementia-related behaviors. A prospective design was used to assess the changes in the measures. A total of 30 Massachusetts nursing homes participated in the project over a 12-month period. Project participation required the creation of an interdisciplinary behavior team, habilitation therapy training, facility visit by the program coordinator, attendance at bimonthly support and sharing calls, and monthly collection of process measure data. Participating facilities showed improvement in 9 of the 12 reported measures. Findings indicate potential quality improvement in having nursing homes learn habilitation therapy techniques and know how to use the interdisciplinary team to manage problem behaviors. © The Author(s) 2016.

  11. Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research

    DOE PAGES

    Moses, E. I.; Lindl, J. D.; Spaeth, M. L.; ...

    2017-03-23

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besidesmore » the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This study provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. Finally, they are covered in more detail in the papers that follow.« less

  12. Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, E. I.; Lindl, J. D.; Spaeth, M. L.

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besidesmore » the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This study provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. Finally, they are covered in more detail in the papers that follow.« less

  13. Pollution prevention and the use of low-VOC/HAP coatings at wood furniture manufacturing facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, A.M.; Spaight, J.L.; Jones, J.W.

    1999-07-01

    Midwest Research Institute, under a cooperative agreement with the Air Pollution Prevention and Control Division of the U.S. Environmental Protection Agency's (EPA's) National Risk Management Research Laboratory, is conducting a study to identify wood furniture and cabinet manufacturing facilities that have converted to low-volatile organic compound/hazardous air pollutant (VOC/HAP) coatings and to develop case studies for those facilities. The case studies include: (1) a discussion of the types of products each facility manufactures; (2) the types of low-VOC/HAP coatings each facility is using; (3) problems encountered in converting to low-VOC/HAP coatings; (4) equipment changes that were required; (5) the costsmore » associated with the conversion process, including capital costs associated with equipment purchases, research and development costs, and operating costs such as operator training in new application techniques; (6) advantages/disadvantages of the low-VOC/HAP coatings; and (7) customer feedback on products finished with the low-VOC/HAP coatings. The primary goals of the project are (1) to demonstrate that low-VOC/HAP coatings can be used successfully by many wood furniture manufacturing facilities, and (2) to assist other wood furniture manufacturing facilities in their conversion to low-VOC/HAP coatings, in particular facilities that do not have the resources to devote to extensive coatings research. This paper discusses the progress of the project and pollution prevention options at wood furniture manufacturing facilities and the regulatory requirements (e.g., the National Emissions Standards for Hazardous Air Pollutants [NESHAP] for Wood Furniture Manufacturing Operations) that these facilities face.« less

  14. GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES

    EPA Science Inventory

    This document provides guidance to Superfund remedial project managers, on scene coordinators, facility owners, and potentially responsible parties for conducting an air pathway analysis for landfill gas (LFG) emissions under the Comprehensive Environmental Response, Compensation...

  15. A new test facility for the E-ELT infrared detector program

    NASA Astrophysics Data System (ADS)

    Lizon, Jean Louis; Amico, Paola; Brinkmann, Martin; Delabre, Bernard; Finger, Gert; Guidolin, Ivan Maria; Guzman, Ronald; Hinterschuster, Renate; Ives, Derek; Klein, Barbara; Quattri, Marco

    2016-08-01

    During the development of the VLT instrumentation program, ESO acquired considerable expertise in the area of infrared detectors, their testing and optimizing their performance. This can mainly be attributed to a very competent team and most importantly to the availability of a very well suited test facility, namely, IRATEC. This test facility was designed more than 15 years ago, specifically for 1K × 1K detectors such as the Aladdin device, with a maximum field of only 30 mm square. Unfortunately, this facility is no longer suited for the testing of the new larger format detectors that are going to be used to equip the future E-ELT instruments. It is projected that over the next 20 years, there will be of the order of 50-100 very large format detectors to be procured and tested for use with E-ELT first and second generation instruments and VLT third generation instruments. For this reason ESO has initiated the in-house design and construction of a dedicated new IR detector arrays test facility: the Facility for Infrared Array Testing (FIAT). It will be possible to mount up to four 60 mm square detectors in the facility, as well as mosaics of smaller detectors. It is being designed to have a very low thermal background such that detectors with 5.3 μm cut-off material can routinely be tested. The paper introduces the most important use cases for which FIAT is designed: they range from performing routine performance measurements on acquired devices, optimization setups for custom applications (like spot scan intra-pixel response, persistence and surface reflectivity measurements), test of new complex operation modes (e.g. high speed subwindowing mode for low order sensing, flexure control, etc.) and the development of new tests and calibration procedures to support the scientific requirements of the E-ELT and to allow troubleshooting the unexpected challenges that arise when a new detector system is brought online. The facility is also being designed to minimize

  16. 38 CFR 39.62 - Space criteria for support facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Space criteria for... § 39.62 Space criteria for support facilities. These criteria are based on a projected average burial... in total, providing space, as needed, for the following: (1) Cemetery director's office; (2) Other...

  17. 38 CFR 39.62 - Space criteria for support facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Space criteria for... § 39.62 Space criteria for support facilities. These criteria are based on a projected average burial... in total, providing space, as needed, for the following: (1) Cemetery director's office; (2) Other...

  18. Restoration of the Hypersonic Tunnel Facility at NASA Glenn Research Center, Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Woodling, Mark A.

    2000-01-01

    The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF), located at the Plum Brook Station in Sandusky, Ohio, is a non-vitiated, free-jet facility, capable of testing large-scale propulsion systems at Mach Numbers from 5 to 7. As a result of a component failure in September of 1996, a restoration project was initiated in mid- 1997 to repair the damage to the facility. Following the 2-1/2 year effort, the HTF has been returned to an operational condition. Significant repairs and operational improvements have been implemented in order to ensure facility reliability and personnel safety. As of January 2000, this unique, state-of-the-art facility was ready for integrated systems testing.

  19. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnson's arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  20. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay; Wilder, Michael C.; Porter, Barry; Brown, Jeff; Yeung, Dickson; Battazzo, Steve; Brubaker, Tim

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnsons arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  1. Building Information Modeling (BIM) Primer. Report 1: Facility Life-Cycle Process and Technology Innovation

    DTIC Science & Technology

    2012-08-01

    Building Information Modeling ( BIM ) Primer Report 1: Facility Life-cycle Process and Technology Innovation In fo...is unlimited. ERDC/ITL TR-12-2 August 2012 Building Information Modeling ( BIM ) Primer Report 1: Facility Life-cycle Process and Technology...and to enhance the quality of projects through the design, construction, and handover phases. Building Information Modeling ( BIM ) is a

  2. Facility Pollution Prevention Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The U.S. Environmental Protection Agency (U.S. EPA) has developed the Facility Pollution Prevention Guide for those who are interested in and responsible for pollution prevention in industrial or service facilities. It summarizes the benefits of a company-wide pollution prevention program and suggests ways to incorporate pollution prevention in company policies and practices. The Guide describes how to establish a company-wide pollution prevention program. It outlines procedures for conducting a preliminary assessment to identify opportunities for waste reduction or elimination. Then, it describes how to use the results of the preassessment to prioritize areas for detailed assessment, how to use themore » detailed assessment to develop pollution prevention options, and how to implement those options that withstand feasibility analysis. Methods of evaluating, adjusting, and maintaining the program are described. Later chapters deal with cost analysis for pollution prevention projects and with the roles of product design and energy conservation in pollution prevention. Appendices consist of materials that will support the pollution prevention effort: assessment worksheets, sources of additional information, examples of evaluative methods, and a glossary.« less

  3. United Space Alliance LLC Parachute Refurbishment Facility Model

    NASA Technical Reports Server (NTRS)

    Esser, Valerie; Pessaro, Martha; Young, Angela

    2007-01-01

    The Parachute Refurbishment Facility Model was created to reflect the flow of hardware through the facility using anticipated start and delivery times from a project level IV schedule. Distributions for task times were built using historical build data for SFOC work and new data generated for CLV/ARES task times. The model currently processes 633 line items from 14 SFOC builds for flight readiness, 16 SFOC builds returning from flight for defoul, wash, and dry operations, 12 builds for CLV manufacturing operations, and 1 ARES 1X build. Modeling the planned workflow through the PRF is providing a reliable way to predict the capability of the facility as well as the manpower resource need. Creating a real world process allows for real world problems to be identified and potential workarounds to be implemented in a safe, simulated world before taking it to the next step, implementation in the real world.

  4. Gasification Product Improvement Facility (GPIF). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunatemore » that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.« less

  5. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (LIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper will document the latest improvements of the LIF system design and demonstrations of the redeveloped AHF and IHF LIF systems.

  6. Power Up with Methane Gas: Struthers Water Pollution Control Facility

    EPA Pesticide Factsheets

    The city of Struthers received $5.4 million in ARRA funding from the Ohio’s CWSRF for a project that uses methane gas produced at the Struthers Water Pollution Control Facility to power unit treatment processes and offset the facility’s energy footprint.

  7. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Michael F.

    Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separatingmore » fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.« less

  8. Guide to Permitting Hydrogen Motor Fuel Dispensing Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkin, Carl; Buttner, William; Burgess, Robert

    2016-03-28

    The purpose of this guide is to assist project developers, permitting officials, code enforcement officials, and other parties involved in developing permit applications and approving the implementation of hydrogen motor fuel dispensing facilities. The guide facilitates the identification of the elements to be addressed in the permitting of a project as it progresses through the approval process; the specific requirements associated with those elements; and the applicable (or potentially applicable) codes and standards by which to determine whether the specific requirements have been met. The guide attempts to identify all applicable codes and standards relevant to the permitting requirements.

  9. Fort Irwin integrated resource assessment. Volume 3: Sitewide Energy Project identification for buildings and facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, J.M.; Dittmer, A.L.; Elliott, D.B.

    1995-02-01

    The U.S. Army Forces Command (FORSCOM) has tasked the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Irwin facility located near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 2,more » Baseline Detail. The results of the analyses of EROs are presented in 16 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present valve (NPV) and savings-to-investment ratio (SIR) of each ERO.« less

  10. High intensity neutrino oscillation facilities in Europe

    DOE PAGES

    Edgecock, T. R.; Caretta, O.; Davenne, T.; ...

    2013-02-20

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ + and μ – beams in a storage ring. The far detector in thismore » case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. Furthermore, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.« less

  11. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposedmore » Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.« less

  12. [Project to enhance bone bank tissue storage and distribution procedures].

    PubMed

    Huang, Jui-Chen; Wu, Chiung-Lan; Chen, Chun-Chuan; Chen, Shu-Hua

    2011-10-01

    Organ and tissue transplantation are now commonly preformed procedures. Improper organ bank handling procedures may increase infection risks. Execution accuracy in terms of tissue storage and distribution at our bone bank was 80%. We thus proposed an execution improvement project to enhance procedures in order to fulfill the intent of donors and ensure recipient safety. This project was designed to raise nurse professionalism, and ensure patient safety through enhanced tissue storage and distribution procedures. Education programs developed for this project focus on teaching standard operating procedures for bone and ligament storage and distribution, bone bank facility maintenance, trouble shooting and solutions, and periodic inspection systems. Cognition of proper storage and distribution procedures rose from 81% to 100%; Execution accuracy also rose from 80% to 100%. The project successfully conveyed concepts essential to the correct execution of organ storage and distribution procedures and proper organ bank facility management. Achieving and maintaining procedural and management standards is crucial to continued organ donations and the recipient safety.

  13. 36 CFR § 327.30 - Shoreline Management on Civil Works Projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Development Areas for ski jumps, floats, boat moorage facilities, duck blinds, and other private floating recreation facilities when they will not create a safety hazard and inhibit public use or enjoyment of project waters or shoreline. A Corps permit is not required for temporary ice fishing shelters or duck...

  14. Solar energy and conservation technologies for Caribbean Tourist Facilities (CTF)

    NASA Astrophysics Data System (ADS)

    The primary objectives of the Caribbean Tourist Facilities (CTF) project were to develop and publish materials and conduct workshops on solar energy and conservation technologies that would directly address the needs and interests of tourist facilities in the Caribbean basin. Past contacts with the Caribbean and US tourist industries indicated that decision-makers remained unconvinced that renewable technologies could have a significant impact on development and operation costs or that renewable energy products and services suited their needs. In order to assure that the materials and programs developed were responsive to the Caribbean tourist industry and U.S. conservation and renewable energy industries, marketing research with potential end users and the organizations and associations that serve those users was included as an underlying task in the project. The tasks outlined in the CTF Statement of Work included conference planning, gathering of field data, development of educational materials, and conduct of workshop(s). In addition to providing a chronicle of the fulfillment of those tasks, this final report includes suggestions for distributing the documents developed during the project, venues for future workshops, and other technology transfer and market influence strategies.

  15. Conceptual planning for Space Station life sciences human research project

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.

    1986-01-01

    The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.

  16. Sewage sludge pasteurization by gamma radiation: A Canadian demonstration project — 1988-91

    NASA Astrophysics Data System (ADS)

    Swinwood, Jean F.; Wilson, Bruce K.

    Nordion International Inc. and a Canadian city, in cooperation with the Federal & Provincial Ministries of the Environment, began a project in 1988 to construct and operate a commercial-scale sewage sludge pasteurization facility using gamma radiation technology. The facility is scheduled to begin operations in 1991. This paper discusses the objectives and scope of the project, the design of the irradiation system, and the plans to market the pasteurized sludge as a high-value, organic soil conditioner and fertilizer.

  17. Site Studies for the SuperB Collider and Synchrotron Radiation Facility Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomassini, S.; Biagini, M.E.; Raimondi, P.

    2012-04-26

    The SuperB complex project aims at the construction of a very high luminosity (10{sup 36} cm{sup -2}s{sup -1}) asymmetric e{sup +}e{sup -} B-factory and a few X-ray synchrotron beam lines (SR). The project has been recently approved by the Italian Government as part of the National Research Plan. The Tor Vergata University location has been chosen and a Consortium among INFN, University of Rome II Tor Vergata and the Research Ministry is being signed, allowing for the constitution of the 'Cabibbo Laboratory', where the SuperB project will be hosted. This paper presents and describes the status of the preliminary designmore » of the site layout, related issues for the chosen site and the preliminary ground motion (GM) measurement results.« less

  18. Calibration and use of filter test facility orifice plates

    NASA Astrophysics Data System (ADS)

    Fain, D. E.; Selby, T. W.

    1984-07-01

    There are three official DOE filter test facilities. These test facilities are used by the DOE, and others, to test nuclear grade HEPA filters to provide Quality Assurance that the filters meet the required specifications. The filters are tested for both filter efficiency and pressure drop. In the test equipment, standard orifice plates are used to set the specified flow rates for the tests. There has existed a need to calibrate the orifice plates from the three facilities with a common calibration source to assure that the facilities have comparable tests. A project has been undertaken to calibrate these orifice plates. In addition to reporting the results of the calibrations of the orifice plates, the means for using the calibration results will be discussed. A comparison of the orifice discharge coefficients for the orifice plates used at the seven facilities will be given. The pros and cons for the use of mass flow or volume flow rates for testing will be discussed. It is recommended that volume flow rates be used as a more practical and comparable means of testing filters. The rationale for this recommendation will be discussed.

  19. Preliminary technical data summary No. 3 for the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landon, L.F.

    1980-05-01

    This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete. (DLC)

  20. Use of Information Technology for Management of U.S. Postal Service Facilities.

    DTIC Science & Technology

    1996-05-01

    change closeout status, request for proposal log) Projected income and expenses of a U.S. Postal Service facility Direct capitalization model Tax...Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 15. NUMBER OF PAGES 107 16. PRICE CODE 20. LIMITATION OF ABSTRACT UL NSN 7540-01...time and at the right price is a huge and complex job. In any one year, the USPS Facilities organization may acquire more than 100 sites, plan