Small engine components test facility compressor testing cell at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Brokopp, Richard A.; Gronski, Robert S.
1992-01-01
LeRC has designed and constructed a new test facility. This facility, called the Small Engine Components Facility (SECTF) is used to test gas turbines and compressors at conditions similar to actual engine conditions. The SECTF is comprised of a compressor testing cell and a turbine testing cell. Only the compressor testing cell is described. The capability of the facility, the overall facility design, the instrumentation used in the facility, and the data acquisition system are discussed in detail.
Fuel Cell Development and Test Laboratory | Energy Systems Integration
Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel a fuel cell test in the Fuel Cell Development and Test Laboratory. Capability Hubs The Fuel Cell
Facilities | Hydrogen and Fuel Cells | NREL
integration research. Photo of the Hydrogen Infrastructure Testing and Research Facility building, with hydrogen fueling station and fuel cell vehicles. Hydrogen Infrastructure Testing and Research Facility The Hydrogen Infrastructure Testing and Research Facility (HITRF) at the ESIF combines electrolyzers, a
Past and Present Large Solid Rocket Motor Test Capabilities
NASA Technical Reports Server (NTRS)
Kowalski, Robert R.; Owen, David B., II
2011-01-01
A study was performed to identify the current and historical trends in the capability of solid rocket motor testing in the United States. The study focused on test positions capable of testing solid rocket motors of at least 10,000 lbf thrust. Top-level information was collected for two distinct data points plus/minus a few years: 2000 (Y2K) and 2010 (Present). Data was combined from many sources, but primarily focused on data from the Chemical Propulsion Information Analysis Center s Rocket Propulsion Test Facilities Database, and heritage Chemical Propulsion Information Agency/M8 Solid Rocket Motor Static Test Facilities Manual. Data for the Rocket Propulsion Test Facilities Database and heritage M8 Solid Rocket Motor Static Test Facilities Manual is provided to the Chemical Propulsion Information Analysis Center directly from the test facilities. Information for each test cell for each time period was compiled and plotted to produce a graphical display of the changes for the nation, NASA, Department of Defense, and commercial organizations during the past ten years. Major groups of plots include test facility by geographic location, test cells by status/utilization, and test cells by maximum thrust capability. The results are discussed.
Operation of the 25kW NASA Lewis Research Center Solar Regenerative Fuel Cell Tested Facility
NASA Technical Reports Server (NTRS)
Moore, S. H.; Voecks, G. E.
1997-01-01
Assembly of the NASA Lewis Research Center(LeRC)Solar Regenerative Fuel Cell (RFC) Testbed Facility has been completed and system testing has proceeded. This facility includes the integration of two 25kW photovoltaic solar cell arrays, a 25kW proton exchange membrane (PEM) electrolysis unit, four 5kW PEM fuel cells, high pressure hydrogen and oxygen storage vessels, high purity water storage containers, and computer monitoring, control and data acquisition.
Argonne National Laboratory Applied Battery Research for Transportation Program DOE Logo Home ; ABR > About ABR Projects News cell fabrication faciity posttest facility MERF Cell Fabrication Facility Post-Test Facility Materials Engineering Research Facility Battery News Recent Reports Funding
NASA Technical Reports Server (NTRS)
Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.
1971-01-01
The inventory covers free jet and direct connect altitude cells, sea level static thrust stands, sea level test cells with ram air, and propulsion wind tunnels. Free jet altitude cells and propulsion wind tunnels are used for evaluation of complete inlet-engine-exhaust nozzle propulsion systems under simulated flight conditions. These facilities are similar in principal of operation and differ primarily in test section concept. The propulsion wind tunnel provides a closed test section and restrains the flow around the test specimen while the free jet is allowed to expand freely. A chamber of large diameter about the free jet is provided in which desired operating pressure levels may be maintained. Sea level test cells with ram air provide controlled, conditioned air directly to the engine face for performance evaluation at low altitude flight conditions. Direct connect altitude cells provide a means of performance evaluation at simulated conditions of Mach number and altitude with air supplied to the flight altitude conditions. Sea level static thrust stands simply provide an instrumented engine mounting for measuring thrust at zero airspeed. While all of these facilities are used for integrated engine testing, a few provide engine component test capability.
Low thrust rocket test facility
NASA Technical Reports Server (NTRS)
Arrington, Lynn A.; Schneider, Steven J.
1990-01-01
A low thrust chemical rocket test facility has recently become operational at the NASA-Lewis. The new facility is used to conduct both long duration and performance tests at altitude over a thruster's operating envelope using hydrogen and oxygen gas for propellants. The facility provides experimental support for a broad range of objectives, including fundamental modeling of fluids and combustion phenomena, the evaluation of thruster components, and life testing of full rocket designs. The major mechanical and electrical systems are described along with aspects of the various optical diagnostics available in the test cell. The electrical and mechanical systems are designed for low down time between tests and low staffing requirements for test operations. Initial results are also presented which illustrate the various capabilities of the cell.
Power source evaluation capabilities at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doughty, D.H.; Butler, P.C.
1996-04-01
Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.
Extreme Environments Test Capabilities at NASA GRC for Parker Hannifin Visit
NASA Technical Reports Server (NTRS)
Arnett, Lori
2016-01-01
The presentation includes general description on the following test facilities: Fuel Cell Testing Lab, Structural Dynamics Lab, Thermal Vacuum Test Facilities - including a description of the proposed Kinetic High Altitude Simulator concept, EMI Test Lab, and the Creek Road Cryogenic Complex - specifically the Small Multi-purpose Research Facility (SMiRF) and the Cryogenics Components Lab 7 (CCL-7).
Hydrogen Infrastructure Testing and Research Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2017-04-10
Learn about the Hydrogen Infrastructure Testing and Research Facility (HITRF), where NREL researchers are working on vehicle and hydrogen infrastructure projects that aim to enable more rapid inclusion of fuel cell and hydrogen technologies in the market to meet consumer and national goals for emissions reduction, performance, and energy security. As part of NREL’s Energy Systems Integration Facility (ESIF), the HITRF is designed for collaboration with a wide range of hydrogen, fuel cell, and transportation stakeholders.
22. STATIC TEST TOWER VIEW OF TEST CELLS AND F1 ...
22. STATIC TEST TOWER VIEW OF TEST CELLS AND F-1 TEST LOCK DOWN FOR ENGINE. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
20. UNCOVERED TEST CELL AT THE STATIC TEST TOWER ON ...
20. UNCOVERED TEST CELL AT THE STATIC TEST TOWER ON THE WEST SIDE WHERE F-1 ENGINE WAS TESTED. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
Activation of the E1 Ultra High Pressure Propulsion Test Facility at Stennis Space Center
NASA Technical Reports Server (NTRS)
Messer, Bradley; Messer, Elisabeth; Sewell, Dale; Sass, Jared; Lott, Jeff; Dutreix, Lionel, III
2001-01-01
After a decade of construction and a year of activation the El Ultra High Pressure Propulsion Test Facility at NASA's Stennis Space Center is fully operational. The El UHP Propulsion Test Facility is a multi-cell, multi-purpose component and engine test facility . The facility is capable of delivering cryogenic propellants at low, high, and ultra high pressures with flow rates ranging from a few pounds per second up to two thousand pounds per second. Facility activation is defined as a series of tasks required to transition between completion of construction and facility operational readiness. Activating the El UHP Propulsion Test Facility involved independent system checkouts, propellant system leak checks, fluid and gas sampling, gaseous system blow downs, pressurization and vent system checkouts, valve stability testing, valve tuning cryogenic cold flows, and functional readiness tests.
Biological shielding test of hot cells with high active source 60Co (300 TBq)
NASA Astrophysics Data System (ADS)
Švrčula, P.; Zoul, D.; Zimina, M.; Petříčková, A.; Adamíková, T.; Schulc, M.; Srba, O.
2017-11-01
This article describes a method for testing of the efficiency of the biological shielding of the hot cell facility, which were constructed as a part of the project SUSEN. Ten hot cells and one semi-hot cell are present in the facility Radiochemistry II. The shielding is made from steel plates. In order to demonstrate sufficient efficiency of the biological shielding of the hot cells and a correspondence between measured and contractual values at selected points. The test was done using sealed high activity 60Co sources. The results are also used as a proof of the optimization of radiation protection for the workplace of this type. The results confirm significant optimization of radiation protection at the workplace. The dose received by a staff do not exceed one tens of annual limit during active service. Obtained results fulfill general requirements of radiation protection and will be used for further active service of hot cells facility.
Evaluation program for secondary spacecraft cells
NASA Technical Reports Server (NTRS)
Christy, D. E.
1972-01-01
The life cycle test of secondary spacecraft electric cells is discussed. The purpose of the tests is to insure that all cells put into the life cycle test meet the required specifications. The evaluation program gathers statistical information concerning cell performance characteristics and limitations. Weaknesses in cell design which are discovered during the tests are reported to research facilities in order to increase the service life of the cells.
LPT. Aerial of low power test facility (TAN640 and 641) ...
LPT. Aerial of low power test facility (TAN-640 and -641) and shield test facility (TAN-645 and -646). Camera facing south. Low power reactor cells at left, then one-story control building; diagonal fence; shield test control building, then (high-bay) pool room. In foreground are electrical pad, water tanks and guard house. Photographer: Lowin. Date: February 24, 1965. INEEL negative no. 65-987 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1968-12-12
The purpose of this Conceptual Facility Design Description (CFDD) is to provide a technical description of the Inert Gas Cell Examination Facility such that agreement with RDT on a Conceptual Design can be reached . The CFDD also serves to establish a common understanding of the facility concept among all responsible FFTF Project parties including the Architect Engineer and Reactor Designer. Included are functions and design requirements, a physical description of the facility, safety considerations, principles of operation, and maintenance principles.
The ERDA/LeRC photovoltaic systems test facility
NASA Technical Reports Server (NTRS)
Forestieri, A. F.
1977-01-01
A test facility was designed, and built to provide a place where photovoltaic systems may be assembled and electrically configured, to evaluate system performance and characteristics. The facility consists of a solar cell array of an initial 10-kW peak power rating, test hardware for several alternate methods of power conditioning, a variety of loads, an electrical energy storage system, and an instrumentation and data acquisition system.
Improvements in safety testing of lithium cells
NASA Astrophysics Data System (ADS)
Stinebring, R. C.; Krehl, P.
1985-07-01
A systematic approach was developed for evaluating the basic safety parameters of high power lithium soluble cathode cells. This approach consists of performing a series of tests on each cell model during the design, prototype and production phases. Abusive testing is performed in a facility where maximum protection is given to test personnel.
Improvements in safety testing of lithium cells
NASA Technical Reports Server (NTRS)
Stinebring, R. C.; Krehl, P.
1985-01-01
A systematic approach was developed for evaluating the basic safety parameters of high power lithium soluble cathode cells. This approach consists of performing a series of tests on each cell model during the design, prototype and production phases. Abusive testing is performed in a facility where maximum protection is given to test personnel.
Investigation of long term storage effects on aerospace nickel-cadmium cell performance
NASA Technical Reports Server (NTRS)
Yi, T. Y.
1986-01-01
A study on evaluation of the long term storage effects on aerospace nickel-cadmium cells currently being performed at NASA/Goddard Space Flight Center (GSFC) is described. A number of cells of 6 Ah and 12 Ah capacities which were stored in shorted condition for 8 to 9 years at the GSFC were selected for this study. These cells will undergo electrical acceptance testing the the GSFC, and life cycling at the NASA Battery Test Facility at the Naval Weapons Facility at the Naval Weapons Support Center (NWSC) in Crane, Indiana; in addition, some cells from the study will undergo destructive analyses.
Investigation of long term storage effects on aerospace nickel-cadmium cell performance
NASA Astrophysics Data System (ADS)
Yi, T. Y.
1986-09-01
A study on evaluation of the long term storage effects on aerospace nickel-cadmium cells currently being performed at NASA/Goddard Space Flight Center (GSFC) is described. A number of cells of 6 Ah and 12 Ah capacities which were stored in shorted condition for 8 to 9 years at the GSFC were selected for this study. These cells will undergo electrical acceptance testing the the GSFC, and life cycling at the NASA Battery Test Facility at the Naval Weapons Facility at the Naval Weapons Support Center (NWSC) in Crane, Indiana; in addition, some cells from the study will undergo destructive analyses.
A Versatile Rocket Engine Hot Gas Facility
NASA Technical Reports Server (NTRS)
Green, James M.
1993-01-01
The capabilities of a versatile rocket engine facility, located in the Rocket Laboratory at the NASA Lewis Research Center, are presented. The gaseous hydrogen/oxygen facility can be used for thermal shock and hot gas testing of materials and structures as well as rocket propulsion testing. Testing over a wide range of operating conditions in both fuel and oxygen rich regimes can be conducted, with cooled or uncooled test specimens. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods with rapid turnaround between programs.
10. INTERIOR VIEW TO THE SOUTHEAST OF INSTRUMENTS AND EQUIPMENT ...
10. INTERIOR VIEW TO THE SOUTHEAST OF INSTRUMENTS AND EQUIPMENT IN ROOM 1. - Nevada Test Site, Test Cell A Facility, Test Cell A Building & Addition, Area 25, Jackass Flats, Road F, Mercury, Nye County, NV
11. INTERIOR VIEW TO THE SOUTH OF INSTRUMENTS AND EQUIPMENT ...
11. INTERIOR VIEW TO THE SOUTH OF INSTRUMENTS AND EQUIPMENT IN ROOM 1. - Nevada Test Site, Test Cell A Facility, Test Cell A Building & Addition, Area 25, Jackass Flats, Road F, Mercury, Nye County, NV
17. Building 202, observation room for test cell, showing panel, ...
17. Building 202, observation room for test cell, showing panel, abort button, phones, and observation window. View looking northwest. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Hot Cell Installation and Demonstration of the Severe Accident Test Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linton, Kory D.; Burns, Zachary M.; Terrani, Kurt A.
A Severe Accident Test Station (SATS) capable of examining the oxidation kinetics and accident response of irradiated fuel and cladding materials for design basis accident (DBA) and beyond design basis accident (BDBA) scenarios has been successfully installed and demonstrated in the Irradiated Fuels Examination Laboratory (IFEL), a hot cell facility at Oak Ridge National Laboratory. The two test station modules provide various temperature profiles, steam, and the thermal shock conditions necessary for integral loss of coolant accident (LOCA) testing, defueled oxidation quench testing and high temperature BDBA testing. The installation of the SATS system restores the domestic capability to examinemore » postulated and extended LOCA conditions on spent fuel and cladding and provides a platform for evaluation of advanced fuel and accident tolerant fuel (ATF) cladding concepts. This document reports on the successful in-cell demonstration testing of unirradiated Zircaloy-4. It also contains descriptions of the integral test facility capabilities, installation activities, and out-of-cell benchmark testing to calibrate and optimize the system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martino, C.
An evaluation of the previous Chemical Processing Cell (CPC) testing was performed to determine whether the planned concurrent operation, or “coupled” operations, of the Defense Waste Processing Facility (DWPF) with the Salt Waste Processing Facility (SWPF) has been adequately covered. Tests with the nitricglycolic acid flowsheet, which were both coupled and uncoupled with salt waste streams, included several tests that required extended boiling times. This report provides the evaluation of previous testing and the testing recommendation requested by Savannah River Remediation. The focus of the evaluation was impact on flammability in CPC vessels (i.e., hydrogen generation rate, SWPF solvent components,more » antifoam degradation products) and processing impacts (i.e., acid window, melter feed target, rheological properties, antifoam requirements, and chemical composition).« less
13. INTERIOR VIEW TO THE WEST OF EQUIPMENT IN ROOM ...
13. INTERIOR VIEW TO THE WEST OF EQUIPMENT IN ROOM 2, RADIATION EFFECTS ROOM. - Nevada Test Site, Test Cell A Facility, Test Cell A Building & Addition, Area 25, Jackass Flats, Road F, Mercury, Nye County, NV
3. EXTERIOR VIEW TO THE SOUTHEAST OF THE NORTH AND ...
3. EXTERIOR VIEW TO THE SOUTHEAST OF THE NORTH AND WEST ELEVATIONS OF THE TEST CELL. - Nevada Test Site, Test Cell C Facility, Building No. 3210, Area 25, Jackass Flats, Road J, Mercury, Nye County, NV
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce
2001-01-01
The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.
Integrated gas analyzer for complete monitoring of turbine engine test cells.
Markham, James R; Bush, Patrick M; Bonzani, Peter J; Scire, James J; Zaccardi, Vincent A; Jalbert, Paul A; Bryant, M Denise; Gardner, Donald G
2004-01-01
Fourier transform infrared (FT-IR) spectroscopy is proving to be reliable and economical for the quantification of many gas-phase species during testing and development of gas turbine engines in ground-based facilities such as sea-level test cells and altitude test cells. FT-IR measurement applications include engine-generated exhaust gases, facility air provided as input to engines, and ambient air in and around test cells. Potentially, the traditionally used assembly of many gas-specific single gas analyzers will be eliminated. However, the quest for a single instrument capable of complete gas-phase monitoring at turbine engine test cells has previously suffered since the FT-IR method cannot measure infrared-inactive oxygen molecules, a key operational gas to both air-breathing propulsion systems and test cell personnel. To further the quest, the FT-IR sensor used for the measurements presented in this article was modified by integration of a miniature, solid-state electrochemical oxygen sensor. Embedded in the FT-IR unit at a location near the long-effective-optical-path-length gas sampling cell, the amperometric oxygen sensor provides simultaneous, complementary information to the wealth of spectroscopic data provided by the FT-IR method.
6. EXTERIOR VIEW TO THE NORTHWEST OF THE SOUTHEAST CORNER ...
6. EXTERIOR VIEW TO THE NORTHWEST OF THE SOUTHEAST CORNER OF THE EAST ELEVATION OF THE TEST CELL. - Nevada Test Site, Test Cell C Facility, Building No. 3210, Area 25, Jackass Flats, Road J, Mercury, Nye County, NV
5. EXTERIOR VIEW TO THE WEST OF THE EAST ELEVATION ...
5. EXTERIOR VIEW TO THE WEST OF THE EAST ELEVATION OF THE TEST CELL, WITH DEWARS IN THE BACKGROUND. - Nevada Test Site, Test Cell C Facility, Building No. 3210, Area 25, Jackass Flats, Road J, Mercury, Nye County, NV
4. EXTERIOR VIEW TO THE NORTH OF THE WESTERN PORTION ...
4. EXTERIOR VIEW TO THE NORTH OF THE WESTERN PORTION OF THE SOUTH ELEVATION OF THE TEST CELL. - Nevada Test Site, Test Cell C Facility, Building No. 3210, Area 25, Jackass Flats, Road J, Mercury, Nye County, NV
49. Historic photo of Building 202 test cell interior, test ...
49. Historic photo of Building 202 test cell interior, test stand A with engineer examining damage to test engine, October 21, 1966. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-66-4064. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Incident Involving 30-Ah Li-ion Cell at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bennett, William
2006-01-01
The key lesson learned from the February 17, 2006 cell explosion incident is that PC-based test-systems, even those having built-in watchdog monitors, can lose control and malfunction. In the case of lithiumion cell/battery testing, the stored energy can be released explosively causing considerable injury and damage to facilities. The investigation showed that although the Arbin system has a built-in watchdog monitor, the circumstances of the incident defeated the action of the watchdog and allowed the cycler to continue operation without control. An upgrade to the most recent version of Arbin software (version 4) was provided as a fix to the presumed control problem. This upgrade included newer EPROM s for the cycler microprocessor. Investigation revealed that similar incidents have occurred at other NASA centers with a variety of PC-based test instruments. JPL suffered an incident with Maccor testers and the GRC fuel cell group observed similar problems with LabView software. This is not exclusively an Arbin problem, but an issue with all PC-based systems. In this incident, it was fortunate that the event occurred after-hours with no-one in the room. The facility arrangement placed control consoles adjacent to the test chamber doors. Had someone been in the room during the event, they would have been exposed to hot debris and toxic combustion products. It was also fortunate that the exploded cell stayed inside the chamber after the door was forced open. If the cell had been ejected into the room it could have caused serious facility damage by impact and possibly caused a fire in the facility.
Credit BG. View looking west down into Test Stand "D" ...
Credit BG. View looking west down into Test Stand "D" vertical vacuum cell with top removed. Access to cell is normally through large round port seen in view. Piping and cradling toward bottom of cell was last used in tests of Viking space probe engines - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
15. INTERIOR VIEW TO THE NORTHEAST OF EQUIPMENT IN ROOM ...
15. INTERIOR VIEW TO THE NORTHEAST OF EQUIPMENT IN ROOM 4, EQUIPMENT AND GENERATOR ROOM, BUILDING 3113/3113A. - Nevada Test Site, Test Cell A Facility, Test Cell A Building & Addition, Area 25, Jackass Flats, Road F, Mercury, Nye County, NV
14. INTERIOR VIEW TO THE EAST OF EQUIPMENT IN ROOM ...
14. INTERIOR VIEW TO THE EAST OF EQUIPMENT IN ROOM 3, FLOW CONTROL ROOM, BUILDING 3113/3113A. - Nevada Test Site, Test Cell A Facility, Test Cell A Building & Addition, Area 25, Jackass Flats, Road F, Mercury, Nye County, NV
2. EXTERIOR VIEW TO THE SOUTH OF THE PIPING ON ...
2. EXTERIOR VIEW TO THE SOUTH OF THE PIPING ON THE ROOF OF AND NEXT TO THE BUILDING. - Nevada Test Site, Test Cell A Facility, Test Cell A Building & Addition, Area 25, Jackass Flats, Road F, Mercury, Nye County, NV
Cell module and fuel conditioner
NASA Technical Reports Server (NTRS)
Hoover, D. Q., Jr.
1980-01-01
Measurements of stack height changes with temperature and cell material characteristics were made. Stack 559 was assembled and components were fabricated for 560, 561, and 562. Stack 425 was transferred from the parallel DOE program and installed in the OS/IES simulation loop for mechanical and electrical testing. Construction and preliminary checkout of the 2 kW test facility was completed and design and procurement of the 8 kW test facility was initiated. The fuel conditioning subsystem design continued to evolve and the state points for the current design were calculated at full and part load conditions. Steam reforming catalyst activity tests were essentially completed and aging tests and CO shift converter tests were initiated.
Engine Propeller Research Building at the Lewis Flight Propulsion Laboratory
1955-02-21
The Engine Propeller Research Building, referred to as the Prop House, emits steam from its acoustic silencers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. In 1942 the Prop House became the first completed test facility at the new NACA laboratory in Cleveland, Ohio. It contained four test cells designed to study large reciprocating engines. After World War II, the facility was modified to study turbojet engines. Two of the test cells were divided into smaller test chambers, resulting in a total of six engine stands. During this period the NACA Lewis Materials and Thermodynamics Division used four of the test cells to investigate jet engines constructed with alloys and other high temperature materials. The researchers operated the engines at higher temperatures to study stress, fatigue, rupture, and thermal shock. The Compressor and Turbine Division utilized another test cell to study a NACA-designed compressor installed on a full-scale engine. This design sought to increase engine thrust by increasing its airflow capacity. The higher stage pressure ratio resulted in a reduction of the number of required compressor stages. The last test cell was used at the time by the Engine Research Division to study the effect of high inlet densities on a jet engine. Within a couple years of this photograph the Prop House was significantly altered again. By 1960 the facility was renamed the Electric Propulsion Research Building to better describe its new role in electric propulsion.
46. Historic photo of Building 202 test cell interior, detail ...
46. Historic photo of Building 202 test cell interior, detail of test stand A with engine severely damaged during testing, September 7, 1961. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-57837. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
47. Historic photo of Building 202 test cell interior, test ...
47. Historic photo of Building 202 test cell interior, test stand A with technician working on zone injector engine, June 3, 1996. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-66-2396. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
23. Construction view of Building 202 test cell, 1956. On ...
23. Construction view of Building 202 test cell, 1956. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-952D-1956. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
42. Historic photo of exterior of Building 202 test cell, ...
42. Historic photo of exterior of Building 202 test cell, January 26, 1960. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-52534. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
2012-06-01
AFRL facility was well suited for the Themis cold flow experiment. A test cell was selected that contained an insulated cryogenic oxygen tank that...could be used for the LN2 supply. Adjacent to the test cell is a cryogenic storage bunker that contained a helium supply tank with existing high...venturi to the fuel bunker tank was very low (less than 25 psi) while the helium pressure drop from the cryogenic storage bunker was almost 2000 psi
2017-06-29
This video shows the Space Launch System liquid hydrogen tank structural qualification test article being moved to Building 110, Cell at NASA's Michoud Assembly Facility in New Orleans. The rocket's liquid hydrogen tank, which is the propellant tank that joins to the engine section of the 212-foot tall core stage, will carry cryogenic liquid hydrogen that propels the rocket. This test article build at Michoud is being prepared for testing at NASA's Marshall Space Flight Center in Huntsville, Alabama. There, it will be subjected to millions of pounds of force during testing to ensure the hardware can withstand the incredible stresses of launch.
Testing activities at the National Battery Test Laboratory
NASA Astrophysics Data System (ADS)
Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.
The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.
Work with Us | Hydrogen and Fuel Cells | NREL
agreements. Use our cutting-edge research facilities to develop, test, and evaluate hydrogen and fuel cell science behind emerging hydrogen and fuel cell technologies and develop, test, and validate new for qualified partners to participate in cooperative research and development agreement (CRADA
51. Historic photo of Building 202 test cell interior, with ...
51. Historic photo of Building 202 test cell interior, with longablative rocket engine mounted on test stand A, May 18, 1967. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-66-4084. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
34. Historic photo of Building 202 test cell with damage ...
34. Historic photo of Building 202 test cell with damage from fire or explosion during rocket engine testing, May 17, 1958. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-47965. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
54. Historic photo of Building 202 test cell interior, with ...
54. Historic photo of Building 202 test cell interior, with engine mounted on test stand A, September 13, 1967. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-67-3274. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
52. Historic photo of Building 202 test cell interior, with ...
52. Historic photo of Building 202 test cell interior, with engine mounted on test stand A, May 18, 1967 On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-67-1740. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
37. Historic photo of Building 202 test cell interior, with ...
37. Historic photo of Building 202 test cell interior, with damage related to hydrogen fire during rocket engine testing, April 25, 1959. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-50473. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
40. Historic photo of Building 202 test cell interior, with ...
40. Historic photo of Building 202 test cell interior, with engineers working on rocket engine mounted on test stand A, June 26, 1959. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-51026. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
44. Historic photo of interior of Building 202 test cell, ...
44. Historic photo of interior of Building 202 test cell, showing rocket engine on test stand and camera set up for filming tests, September 1960. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-54464. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
50. Historic photo of Building 202 test cell interior, closeup ...
50. Historic photo of Building 202 test cell interior, closeup of test stand A, with engineer examining damage to test engine, October 21, 1966. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-66-4063. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel
2008-01-01
Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Design Support of the feasibility of operating conditions and procedures is critical in such cases due to the possibility of startup/shutdown transients, moving shock structures, unsteady shock-boundary layer interactions and engine and diffuser unstart modes that can result in catastrophic failure. Analyses of such systems is difficult due to resolution requirements needed to accurately capture moving shock structures, shock-boundary layer interactions, two-phase flow regimes and engine unstart modes. In a companion paper, we will demonstrate with the use of CFD, steady analyses advanced capability to evaluate supersonic diffuser and steam ejector performance in the sub-scale A-3 facility. In this paper we will address transient issues with the operation of the facility especially at startup and shutdown, and assess risks related to afterburning due to the interaction of a fuel rich plume with oxygen that is a by-product of the steam ejectors. The primary areas that will be addressed in this paper are: (1) analyses of unstart modes due to flow transients especially during startup/ignition, (2) engine safety during the shutdown process (3) interaction of steam ejectors with the primary plume i.e. flow transients as well as probability of afterburning. In this abstract we discuss unsteady analyses of the engine shutdown process. However, the final paper will include analyses of a staged startup, drawdown of the engine test cell pressure, and risk assessment of potential afterburning in the facility. Unsteady simulations have been carried out to study the engine shutdown process in the facility and understand the physics behind the interactions between the steam ejectors, the test cell and the supersonic diffuser. As a first approximation, to understand the dominant unsteady mechanisms in the engine test cell and the supersonic diffuser, the turning duct in the facility was removed. As the engine loses power a rarefaction wave travels downstream that disrupts the shock cell structure in the supersonic diffuser. Flow from the test cell is seen to expand into the supersonic diffuser section and re-pressurizes the area around the nozzle along with a upstream traveling compression wave that emanates from near the first stage ejectors. Flow from the first stage ejector expands to the center of the duct and a new shock train is formed between the first and second stage ejectors. Both stage ejectors keep the facility pressurized and prevent any large amplitude pressure fluctuations from affecting the engine nozzle. The resultant pressure loads the nozzle experiences in the shutdown process are small.
18. STATIC TEST TOWER VIEW FROM REMOVABLE LEVEL DOWN ...
18. STATIC TEST TOWER - VIEW FROM REMOVABLE LEVEL DOWN TOWARDS GANTRY CRANE AND THREE TEST CELLS. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
Development of Background-Oriented Schlieren for NASA Langley Research Center Ground Test Facilities
NASA Technical Reports Server (NTRS)
Bathel, Brett F.; Borg, Stephen; Jones, Stephen; Overmeyer, Austin; Walker, Eric; Goad, William; Clem, Michelle; Schairer, Edward T.; Mizukaki, Toshiharu
2015-01-01
This paper provides an overview of recent wind tunnel tests performed at the NASA Langley Research Center where the Background-Oriented Schlieren (BOS) technique was used to provide information pertaining to flow-field density disturbances. The facilities in which the BOS technique was applied included the National Transonic Facility (NTF), Transonic Dynamics Tunnel (TDT), 31-Inch Mach 10 Air Tunnel, 15-Inch Mach 6 High-Temperature Air Tunnel, Rotor Test Cell at the 14 by 22 Subsonic Tunnel, and a 13-Inch Low-Speed Tunnel.
Design and Testing of Scaled Ejector-Diffusers for Jet Engine Test Facility Applications.
1983-09-01
the test cell such that the exhaust will be vented into an augmenting tube which acts as an ejector -diffuser assembly. 11 The kinetic energy of the...OF STANDARDS-1963-A ..’I -Dy , - 77 *4********* Z 7.77- NAVAL POSTGRADUATE SCHOOL Monterey, California W I THESIS DESIGN AND TESTING OF SCALED EJECTOR ...PERIOD COVERED Design and Testing of Scaled Ejector - "flglfeerls Thesis~ Diffusers for Jet Engine Test Facility Spebr18 S. PERFORMING ORG. REPORT
NASA Glenn Research Center's Fuel Cell Stack, Ancillary and System Test and Development Laboratory
NASA Technical Reports Server (NTRS)
Loyselle, Patricia L.; Prokopius, Kevin P.; Becks, Larry A.; Burger, Thomas H.; Dick, Joseph F.; Rodriguez, George; Bremenour, Frank; Long, Zedock
2011-01-01
At the NASA Glenn Research Center, a fully operational fuel cell test and evaluation laboratory is available which is capable of evaluating fuel cell components and systems for future NASA missions. Components and subsystems of various types can be operated and monitored under a variety of conditions utilizing different reactants. This fuel cell facility can test the effectiveness of various component and system designs to meet NASA's needs.
48. Historic photo of Building 202 test cell interior, test ...
48. Historic photo of Building 202 test cell interior, test stand A with zone injector engine; technician is working on equipment panel in foreground, June 3, 1966. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-66-2397. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
39. Historic photo of Building 202 test cell exterior, showing ...
39. Historic photo of Building 202 test cell exterior, showing fiberglass cladding blown out by hydrogen fire during rocket engine testing, April 27, 1959. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-50472. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
38. Historic photo of Building 202 test cell interior, showing ...
38. Historic photo of Building 202 test cell interior, showing damage to test stand A and rocket engine after failure and explosion of engine, December 12, 1958. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-49376. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
57. Historic photo of interior of test cell at Building ...
57. Historic photo of interior of test cell at Building 202, showing test stand A with engine and D.T. support ring, February 24, 1969. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-69--3187. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Lithium cell tests at Langley Research Center. [for the long duration exposure facility
NASA Technical Reports Server (NTRS)
Bene, J.
1977-01-01
The long duration exposure facility mission places temperature requirements of from -30 F to +150 F on the batteries to be used. A hermetically sealed lithium sulfur dioxide cell was tested to predict what the temperature of the battery would be over a given spectrum of temperatures of operation. Near the end of cell discharge, as the voltage started collapsing, a very high heat output rise due to chemical reaction took place. However, if the cells were thermally insulated, they vented, ignited, and burned if an attempt was made to discharge them all the way. The cells do not go into reversal. It was determined that the root of the problem was probably the chemical reaction between the lithium and the acetonitrite solvent. A redesigned cell is discussed as well as some alternates.
SP-100 ground engineering system test site description and progress update
NASA Astrophysics Data System (ADS)
Baxter, William F.; Burchell, Gail P.; Fitzgibbon, Davis G.; Swita, Walter R.
1991-01-01
The SP-100 Ground Engineering System Test Site will provide the facilities for the testing of an SP-100 reactor, which is technically prototypic of the generic design for producing 100 kilowatts of electricity. This effort is part of the program to develop a compact, space-based power system capable of producing several hundred kilowatts of electrical power. The test site is located on the U.S. Department of Energy's Hanford Site near Richland, Washington. The site is minimizing capital equipment costs by utilizing existing facilities and equipment to the maximum extent possible. The test cell is located in a decommissioned reactor containment building, and the secondary sodium cooling loop will use equipment from the Fast Flux Test Facility plant which has never been put into service. Modifications to the facility and special equipment are needed to accommodate the testing of the SP-100 reactor. Definitive design of the Ground Engineering System Test Site facility modifications and systems is in progress. The design of the test facility and the testing equipment will comply with the regulations and specifications of the U.S. Department of Energy and the State of Washington.
41. Historic photo of Building 202 test cell interior, Robert ...
41. Historic photo of Building 202 test cell interior, Robert J. Gardener checking fuel implinging qualities of a twenty-thousand-pound-thrust rocket engine injector. Setting appears to be a platform mounted on top of scrubber tank underneath test cell floor, December 1959. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-52166. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
In-house fabrication and testing capabilities for Li and Li-ion 18650 cells
NASA Astrophysics Data System (ADS)
Nagasubramanian, G.
2010-04-01
For over 10 years Sandia Labs have been involved in an US DOE-funded program aimed at developing electric vehicle batteries for transportation applications. Currently this program is called "Advanced Battery Research (ABR)." In this effort we were preparing 18650 cells with electrodes supplied by or purchased from private companies for thermal abuse and electrical characterization studies. Lately, we are coating our own electrodes, building cells and evaluating performance. This paper describes our extensive in-house facilities for slurry making, electrode coating, cell winding etc. In addition, facilities for electrical testing and thermal abuse will be described. This facility allows us to readjust our focus quickly to the changing demands of the still evolving ABR program. Additionally, we continue to make cells for our internal use. We made several 18650 cells both primary (Li-CFx) and secondary (Li-ion) and evaluated performance. For example Li-CFx cells gave ~2.9Ahr capacity at room temperature. Our high voltage Li-ion cells consisting of carbon anode and cathode based on LiNi 0.4Mn 0.3Co 0.3O2 in organic electrolytes exhibited reproducible behavior and gave capacity on the order of 1Ahr. Performance of Li-ion cells at different temperatures and thermal abuse characteristics will be presented.
NASA Astrophysics Data System (ADS)
Arbeiter, Frederik; Baluc, Nadine; Favuzza, Paolo; Gröschel, Friedrich; Heidinger, Roland; Ibarra, Angel; Knaster, Juan; Kanemura, Takuji; Kondo, Hiroo; Massaut, Vincent; Saverio Nitti, Francesco; Miccichè, Gioacchino; O'hira, Shigeru; Rapisarda, David; Sugimoto, Masayoshi; Wakai, Eiichi; Yokomine, Takehiko
2018-01-01
As part of the engineering validation and engineering design activities (EVEDA) phase for the international fusion materials irradiation facility IFMIF, major elements of a lithium target facility and the test facility were designed, prototyped and validated. For the lithium target facility, the EVEDA lithium test loop was built at JAEA and used to test the stability (waves and long term) of the lithium flow in the target, work out the startup procedures, and test lithium purification and analysis. It was confirmed by experiments in the Lifus 6 plant at ENEA that lithium corrosion on ferritic martensitic steels is acceptably low. Furthermore, complex remote handling procedures for the remote maintenance of the target in the test cell environment were successfully practiced. For the test facility, two variants of a high flux test module were prototyped and tested in helium loops, demonstrating their good capabilities of maintaining the material specimens at the desired temperature with a low temperature spread. Irradiation tests were performed for heated specimen capsules and irradiation instrumentation in the BR2 reactor at SCK-CEN. The small specimen test technique, essential for obtaining material test results with limited irradiation volume, was advanced by evaluating specimen shape and test technique influences.
A Space Testbed for Photovoltaics
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Bailey, Sheila G.
1998-01-01
The Ohio Aerospace Institute and the NASA Lewis Research Center are designing and building a solar-cell calibration facility, the Photovoltaic Engineering Testbed (PET) to fly on the International Space Station to test advanced solar cell types in the space environment. A wide variety of advanced solar cell types have become available in the last decade. Some of these solar cells offer more than twice the power per unit area of the silicon cells used for the space station power system. They also offer the possibilities of lower cost, lighter weight, and longer lifetime. The purpose of the PET facility is to reduce the cost of validating new technologies and bringing them to spaceflight readiness. The facility will be used for three primary functions: calibration, measurement, and qualification. It is scheduled to be launched in June of 2002.
Test Stand at the Rocket Engine Test Facility
1973-02-21
The thrust stand in the Rocket Engine Test Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Rocket Engine Test Facility was constructed in the mid-1950s to expand upon the smaller test cells built a decade before at the Rocket Laboratory. The $2.5-million Rocket Engine Test Facility could test larger hydrogen-fluorine and hydrogen-oxygen rocket thrust chambers with thrust levels up to 20,000 pounds. Test Stand A, seen in this photograph, was designed to fire vertically mounted rocket engines downward. The exhaust passed through an exhaust gas scrubber and muffler before being vented into the atmosphere. Lewis researchers in the early 1970s used the Rocket Engine Test Facility to perform basic research that could be utilized by designers of the Space Shuttle Main Engines. A new electronic ignition system and timer were installed at the facility for these tests. Lewis researchers demonstrated the benefits of ceramic thermal coatings for the engine’s thrust chamber and determined the optimal composite material for the coatings. They compared the thermal-coated thrust chamber to traditional unlined high-temperature thrust chambers. There were more than 17,000 different configurations tested on this stand between 1973 and 1976. The Rocket Engine Test Facility was later designated a National Historic Landmark for its role in the development of liquid hydrogen as a propellant.
53. Historic photo of Building 202 test cell interior, with ...
53. Historic photo of Building 202 test cell interior, with engine mounted on test stand A, showing surrounding fuel and oxidant delivery systems and instruments, May 18, 1967. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-67-1739. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
A fuel cell balance of plant test facility
NASA Astrophysics Data System (ADS)
Dicks, A. L.; Martin, P. A.
Much attention is focused in the fuel cell community on the development of reliable stack technology, but to successfully exploit fuel cells, they must form part of integrated power generation systems. No universal test facilities exist to evaluate SOFC stacks and comparatively little research has been undertaken concerning the issues of the rest of the system, or balance of plant (BOP). BG, in collaboration with Eniricerche, has therefore recently designed and built a test facility to evaluate different configurations of the BOP equipment for a 1-5 kWe solid oxide fuel cell (SOFC) stack. Within this BOP project, integrated, dynamic models have been developed. These have shown that three characteristic response times exist when the stack load is changed and that three independent control loops are required to manage the almost instantaneous change in power output from an SOFC stack, maintain the fuel utilisation and control the stack temperature. Control strategies and plant simplifications, arising from the dynamic modelling, have also been implemented in the BOP test facility. An SOFC simulator was designed and integrated into the control system of the test rig to behave as a real SOFC stack, allowing the development of control strategies without the need for a real stack. A novel combustor has been specifically designed, built and demonstrated to be capable of burning the low calorific anode exhaust gas from an SOFC using the oxygen depleted cathode stream. High temperature, low cost, shell and tube heat exchangers have been shown to be suitable for SOFC systems. Sealing of high temperature anode recirculation fans has, however, been shown to be a major issue and identified as a key area for further investigation.
20. Building 202, detail of stand A, rocket test stand ...
20. Building 202, detail of stand A, rocket test stand in test cell. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
45. Historic photo of Building 202 test cell interior, with ...
45. Historic photo of Building 202 test cell interior, with engine mounted on test stand A. Close-up view of a twenty-thousand-pound-thrust engine being tested in relation with combustion oscillation studies, October 12, 1960. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-54595. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
77 FR 27277 - FTA Supplemental Fiscal Year 2012 Apportionments, Allocations, and Program Information
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-09
... allocates Section 5309 Bus and Bus Facilities funds to bus testing and the Fuel Cell program. Tables... Fuel Cell program. FTA will issue a supplemental notice at a later date if additional contract... allocated CA, GA, MA E2012-BUSP-018 Fuel Cell Bus Program..... $13,500,000 PA E2012-BUSP-019 Bus Testing 3...
Credit BG. West elevation of Test Stand "D" tower, with ...
Credit BG. West elevation of Test Stand "D" tower, with workshop on left, and tunnel entrance at right. Tower is accessed by exterior steel stairway; the vertical vacuum cell (Dv Cell) is obscured behind large square sunscreen. Below the sunscreen can be seen the end of the horizontal vacuum duct leading from the vacuum cell - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
HOT CELL BUILDING, TRA632. CONTEXTUAL VIEW ALONG WALLEYE AVENUE, CAMERA ...
HOT CELL BUILDING, TRA-632. CONTEXTUAL VIEW ALONG WALLEYE AVENUE, CAMERA FACING EASTERLY. HOT CELL BUILDING IS AT CENTER LEFT OF VIEW; THE LOW-BAY PROJECTION WITH LADDER IS THE TEST TRAIN ASSEMBLY FACILITY, ADDED IN 1968. MTR BUILDING IS IN LEFT OF VIEW. HIGH-BAY BUILDING AT RIGHT IS THE ENGINEERING TEST REACTOR BUILDING, TRA-642. INL NEGATIVE NO. HD46-32-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Hydrogen Infrastructure Testing and Research Facility Video (Text Version)
grid integration, continuous code improvement, fuel cell vehicle operation, and renewable hydrogen stations. NRELs research on hydrogen safety provides guidance for safe operation, handling, and use of standards and testing fuel cell and hydrogen components for operation and safety. Building on NRELs Wind-to
Personalized drug discovery: HCA approach optimized for rare diseases at Tel Aviv University.
Solmesky, Leonardo J; Weil, Miguel
2014-03-01
The Cell screening facility for personalized medicine (CSFPM) at Tel Aviv University in Israel is devoted to screening small molecules libraries for finding new drugs for rare diseases using human cell based models. The main strategy of the facility is based on smartly reducing the size of the compounds collection in similarity clusters and at the same time keeping high diversity of pharmacophores. This strategy allows parallel screening of several patient derived - cells in a personalized screening approach. The tested compounds are repositioned drugs derived from collections of phase III and FDA approved small molecules. In addition, the facility carries screenings using other chemical libraries and toxicological characterizations of nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Kruzic
2007-09-01
Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolitionmore » (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.« less
Altitude Test Cell in the Four Burner Area
1947-10-21
One of the two altitude simulating-test chambers in Engine Research Building at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The two chambers were collectively referred to as the Four Burner Area. NACA Lewis’ Altitude Wind Tunnel was the nation’s first major facility used for testing full-scale engines in conditions that realistically simulated actual flight. The wind tunnel was such a success in the mid-1940s that there was a backlog of engines waiting to be tested. The Four Burner chambers were quickly built in 1946 and 1947 to ease the Altitude Wind Tunnel’s congested schedule. The Four Burner Area was located in the southwest wing of the massive Engine Research Building, across the road from the Altitude Wind Tunnel. The two chambers were 10 feet in diameter and 60 feet long. The refrigeration equipment produced the temperatures and the exhauster equipment created the low pressures present at altitudes up to 60,000 feet. In 1947 the Rolls Royce Nene was the first engine tested in the new facility. The mechanic in this photograph is installing a General Electric J-35 engine. Over the next ten years, a variety of studies were conducted using the General Electric J-47 and Wright Aeronautical J-65 turbojets. The two test cells were occasionally used for rocket engines between 1957 and 1959, but other facilities were better suited to the rocket engine testing. The Four Burner Area was shutdown in 1959. After years of inactivity, the facility was removed from the Engine Research Building in late 1973 in order to create the High Temperature and Pressure Combustor Test Facility.
Hydrogen Infrastructure Testing and Research Facility | Energy Systems
hydrogen production through renewable electrolysis, fuel cell manufacturing and testing, high-pressure system provides hydrogen to fill fuel cell forklifts and feeds the high pressure compressor. View Photos High Pressure Storage The high pressure hydrogen storage system consists of four Type II hydrogen tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paguio, R. R.; Smith, G. E.; Taylor, J. L.
Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less
Cell module and fuel conditioner
NASA Technical Reports Server (NTRS)
Hoover, D. Q., Jr.
1980-01-01
The computer code for the detailed analytical model of the MK-2 stacks is described. An ERC proprietary matrix is incorporated in the stacks. The mechanical behavior of the stack during thermal cycles under compression was determined. A 5 cell stack of the MK-2 design was fabricated and tested. Designs for the next three stacks were selected and component fabrication initiated. A 3 cell stack which verified the use of wet assembly and a new acid fill procedure were fabricated and tested. Components for the 2 kW test facility were received or fabricated and construction of the facility is underway. The definition of fuel and water is used in a study of the fuel conditioning subsystem. Kinetic data on several catalysts, both crushed and pellets, was obtained in the differential reactor. A preliminary definition of the equipment requirements for treating tap and recovered water was developed.
Paguio, R. R.; Smith, G. E.; Taylor, J. L.; ...
2017-12-04
Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael R. Kruzic
2007-09-16
Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facilitymore » Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.« less
14. VIEW IN THE WEST OPERATING GALLERY OF POSTMORTEM CELL ...
14. VIEW IN THE WEST OPERATING GALLERY OF POST-MORTEM CELL WORK STATION AND MANIPULATOR ARMS. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV
Design and Installation of a Disposal Cell Cover Field Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, C.H.; Waugh, W.J.; Albright, W.H.
2011-02-27
The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed atmore » the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
.... Title: NESHAP for Engine Test Cells/Stands (40 CFR Part 63, Subpart PPPPP). ICR Numbers: EPA ICR Number.... Title: NESHAP for Steel Pickling, HCL Process Facilities and Hydrochloric Acid Regeneration Plants (40... Engine Test Cells/Stands (40 CFR Part 63, Subpart PPPPP); Learia Williams of the Office of Compliance...
Detailed results of ASTP experiment MA-011. [biological processing facility in space
NASA Technical Reports Server (NTRS)
Seaman, G. V. F.; Allen, R. E.; Barlow, G. H.; Bier, M.
1976-01-01
This experiment was developed in order to conduct engineering and operational tests of electrokinetic equipment in a micro-gravity environment. The experimental hardware in general functioned as planned and electrophoretic separations were obtained in space. The results indicated the development of satisfactory sample collection, return, and preservation techniques. The application of a near-zero zeta potential interior wall coating to the experimental columns, confirmation of biocompatibility of all appropriate hardware components, and use of a sterile operating environment provided a significant step forward in the development of a biological processing facility in space. A separation of a test of aldehyde-fixed rabbit, human, and horse red blood cells was obtained. Human kidney cells were separated into several components and viable cells returned to earth. The isotachophoretic separation of red cells was also demonstrated. Problems associated with the hardware led to a lack of success in the attempt to separate subpopulations of human lymphocytes.
Design of horizontal test cryostat for testing two 650 MHz cavities: cryogenic considerations
NASA Astrophysics Data System (ADS)
Khare, P.; Gilankar, S.; Kush, P. K.; Lakshminarayanan, A.; Choubey, R.; Ghosh, R.; Jain, A.; Patel, H.; Gupta, P. D.; Hocker, A.; Ozelis, J. P.; Geynisman, M.; Reid, C.; Poloubotko, V.; Mitchell, D.; Peterson, T. J.; Nicol, T. H.
2017-02-01
Horizontal Test Cryostat has been designed for testing two 650 MHz "dressed" Superconducting Radio Frequency (SCRF) cavities in a single testing cycle at Raja Ramanna Centre for Advanced Technology, India (RRCAT) in collaboration with Fermi National Accelerator Laboratory, USA (FNAL). This cryostat will facilitate testing of two 5-cell 650 MHz SCRF cavities, in CW or pulsed regime, for upcoming High Intensity Superconducting Proton Accelerator projects at both countries. Two such HTS facilities are planned, one at RRCAT for Indian Spallation Neutron Source project (ISNS), which is on the horizon, and the other at FNAL, USA. A test cryostat, a part of horizontal test stand-2 (HTS-2) will be set up at RRCAT for Indian project. In order to maximize the utility of this facility, it can also be used to test two dressed 9-cell 1.3 GHz cavities and other similarly-sized devices. The facility assumes, as an input, the availability of liquid nitrogen at 80 K and liquid helium at 4.5 K and 2 K, with a refrigeration capacity of approximately 50 W at 2 K. Design work of cryostat has been completed and now procurement process is in progress. This paper discusses salient features of the cryostat. It also describes different design calculations and ANSYS analysis for cool down of few subsystems like cavity support system and liquid nitrogen cooled thermal radiation shield of horizontal test cryostat..
Development and fabrication of a solar cell junction processing system
NASA Technical Reports Server (NTRS)
Bunker, S.
1981-01-01
A solar cell junction processing system was developed and fabricated. A pulsed electron beam for the four inch wafers is being assembled and tested, wafers were successfully pulsed, and solar cells fabricated. Assembly of the transport locks is completed. The transport was operated successfully but not with sufficient reproducibility. An experiment test facility to examine potential scaleup problems associated with the proposed ion implanter design was constructed and operated. Cells were implanted and found to have efficiency identical to the normal Spire implant process.
Overview of 10 inch Diameter HTPB Hybrid Motor Testing with Liquid Oxygen at Stennis Space Center
NASA Technical Reports Server (NTRS)
Knowles, Timothy E.; Kearney, Darren; Roberts, Ryan
2005-01-01
To further explore the operation of hybrid rocket motors and to demonstrate the performance characteristics of the motor design Lockheed Martin funded research on a series of 10 inch diameter hybrid motors that produce less than 10 klbf sea level thrust. This test series was given the name "Hybrid Technology Test Program." These motors were fired in the existing test stand at the SSC E-3 complex Cell 1. The fuel and oxidizer for these 10 inch diameter motors are HTPB and LO2, respectively. The original goal of the testing was to verify that the predicted performance matched the actual performance of these 10 inch motors (ref. figure 1) and then confirm that the motors performed acceptably. For this element of testing horizontally fired hybrid motors will be tested using LO2 supplied from the existing facility 100 gallon LO2 tank that is pressurized with facility GN2. The thrust produced by the motor will be measured by a Lockheed Martin supplied load cell.
Posttest examination of Sodium Loop Safety Facility experiments. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, J.W.
In-reactor, safety experiments performed in the Sodium Loop Safety Facility (SLSF) rely on comprehensive posttest examinations (PTE) to characterize the postirradiation condition of the cladding, fuel, and other test-subassembly components. PTE information and on-line instrumentation data, are analyzed to identify the sequence of events and the severity of the accident for each experiment. Following in-reactor experimentation, the SLSF loop and test assembly are transported to the Hot Fuel Examination Facility (HFEF) for initial disassembly. Goals of the HFEF-phase of the PTE are to retrieve the fuel bundle by dismantling the loop and withdrawing the test assembly, to assess the macro-conditionmore » of the fuel bundle by nondestructive examination techniques, and to prepare the fuel bundle for shipment to the Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory.« less
Unique life sciences research facilities at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.
1994-01-01
The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.
NASA Astrophysics Data System (ADS)
Paschero, Anna; McLoughlin, Eve; Moore, Eric
2011-06-01
This article examines some preliminary tests which were performed in order to evaluate the best electrode configuration (width and spacing) for cell culture analyses. Biochips packaged with indium tin oxide (ITO) interdigitated electrodes (IDEs) were used to perform impedance measurements on A549 cells cultured on the surface of the biochip. Several tests were carried out using a 10 mM solution of Sodium Chloride (NaCl), cell medium and the cell culture itself to characterize some of the configurations already fabricated in the facilities at Tyndall National Institute.
Issues on the production and electrochemical separation of oxygen from carbon dioxide
NASA Technical Reports Server (NTRS)
Kaloupis, P.; Sridhar, K. R.
1991-01-01
There is considerable interest in in-situ propellant manufacturing on the moon and Mars. One of the concepts of oxygen production that is being actively pursued is the processing of atmospheric carbon dioxide on Mars to produce oxygen by means of thermal decomposition and electrochemical separation. The key component of such a production facility is the electrochemical separation cell that filters out the oxygen from the gas mixture of carbon dioxide, carbon monoxide, and oxygen. Efficient design of the separation cell and the selection of electrolyte and electrode materials of superior performance for the cell would translate to significant reduction in the power requirement and the mass of the production facility. The objective is to develop the technology required to produce the cells in-house and test various electrolyte and electrode materials systematically until the optimal combination is found. An effective technique was developed for the fabrication of disk shaped cells. Zirconia and Ceria cells were made in-house. Complete modules of the electrochemical cell and housings were designed, fabricated, and tested.
Direct sunlight facility for testing and research in HCPV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sciortino, Luisa, E-mail: luisa.sciortino@unipa.it; Agnello, Simonpietro, E-mail: luisa.sciortino@unipa.it; Bonsignore, Gaetano
2014-09-26
A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in severalmore » locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.« less
1. Exterior view of Components Test Laboratory (T27), looking southeast ...
1. Exterior view of Components Test Laboratory (T-27), looking southeast from hill north of structure. The building wing in the right foreground houses Test Cell 8 (oxidizer) and the oxidizer storage pit or vault. Test Cell 10 is located in the center background, Test Cell 9 is at the far left, and the equipment room is in the immediate left foreground. The control room is in the center of the structure and abuts the aforementioned test cell and equipment room wings. This structure served as a facility for testing, handling, and storage of Titan II's hydrazine- and nitrogen teteroxide-based propellant system components for compatability determinations. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Equivalent electron fluence for space qualification of shallow junction heteroface GaAs solar cells
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Stock, L. V.
1984-01-01
It is desirable to perform qualification tests prior to deployment of solar cells in space power applications. Such test procedures are complicated by the complex mixture of differing radiation components in space which are difficult to simulate in ground test facilities. Although it has been shown that an equivalent electron fluence ratio cannot be uniquely defined for monoenergetic proton exposure of GaAs shallow junction cells, an equivalent electron fluence test can be defined for common spectral components of protons found in space. Equivalent electron fluence levels for the geosynchronous environment are presented.
Alternatives Analysis for the Resumption of Transient Testing Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee Nelson
2013-11-01
An alternatives analysis was performed for resumption of transient testing. The analysis considered eleven alternatives – including both US international facilities. A screening process was used to identify two viable alternatives from the original eleven. In addition, the alternatives analysis includes a no action alternative as required by the National Environmental Policy Act (NEPA). The alternatives considered in this analysis included: 1. Restart the Transient Reactor Test Facility (TREAT) 2. Modify the Annular Core Research Reactor (ACRR) which includes construction of a new hot cell and installation of a new hodoscope. 3. No Action
Hoffman, Susie; Wu, Yingfeng; Lahuerta, Maria; Kulkarni, Sarah Gorrell; Nuwagaba-Biribonwoha, Harriet; Sadr, Wafaa El; Remien, Robert H.; Mugisha, Veronicah; Hawken, Mark; Chuva, Ema; Nash, Denis; Elul, Batya
2015-01-01
Objectives To examine changes between 2006 and 2011 in the proportion of HIV-positive patients newly-enrolled in HIV care with advanced disease and the median CD4+ cell count at enrollment; and identify patient-, facility-, and contextual-level factors associated with late enrollment in care in 2011. Design Cross sectional over time. Methods For time trends analyses, routinely-collected patient-level data (307,110 adults newly-enrolled in 138 HIV clinical care facilities) in Kenya, Mozambique, Rwanda and Tanzania; and for analyses of correlates, patient-level data (46,201 in 195 facilities), and facility- and population-level survey data were used. Late enrollment was defined as CD4+ count ≤350 cells/μl and/or WHO clinical stage 3/4. Results Late enrollment declined from 69.9% to 57.2%, (p<0.0001); median CD4+ count increased from 242 to 292 cells/μL (ptrend<0.0001). In 2011, risk of late enrollment was significantly higher for men and non-pregnant women vs. pregnant women; patients aged >25 vs. 15-25 years; non-married vs. married; and those entering from sites other than prevention of mother to child transmission (PMTCT). More extensive HIV testing coverage in the region of a facility was significantly associated with lower risk of late enrollment. Conclusions Despite improvement, in 2011, 57% of patients entered HIV care already ART-eligible. The lower risk of late enrollment among those referred from PMTCT and in regions where HIV testing coverage was higher suggests that innovative approaches to rapidly increase testing uptake among people living with HIV prior to the development of symptoms have the potential to reduce late enrollment in care. PMID:25136842
Laboratories | Energy Systems Integration Facility | NREL
laboratories to be safely divided into multiple test stand locations (or "capability hubs") to enable Fabrication Laboratory Energy Systems High-Pressure Test Laboratory Energy Systems Integration Laboratory Energy Systems Sensor Laboratory Fuel Cell Development and Test Laboratory High-Performance Computing
59. Historic elevation and detail drawing of Building 202 test ...
59. Historic elevation and detail drawing of Building 202 test cell, June 29, 1955. NASA GRC drawing no. CE-101341 (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Development of a gas-pressurized high-pressure μSR setup at the RIKEN-RAL Muon Facility
NASA Astrophysics Data System (ADS)
Watanabe, I.; Ishii, Y.; Kawamata, T.; Suzuki, T.; Pratt, F. L.; Done, R.; Chowdhury, M.; Goodway, C.; Dreyer, J.; Smith, C.; Southern, M.
2009-04-01
The development and testing of a gas-pressurized μSR setup for the RIKEN-RAL Muon Facility is reported. In collaboration with the high-pressure group of the ISIS Facility at the Rutherford Appleton Laboratory, a gas-pressurized setup for a pulsed muon beam at the RIKEN-RAL Muon Facility has been constructed in 2008. The sample is pressurized by helium gas and the designed maximum pressure is 6.4 kbar. The high-pressure cell can be cooled down to 2 K using an existing cryostat. Tests were made injecting the double-pulsed muon beam into a high-purity sample of Sn powder, which confirmed that the maximum pressure achieved at 2 K was close to the designed pressure.
Rocket Propellant Talk at the 1957 NACA Lewis Inspection
1957-10-21
A researcher works a demonstration board in the Rocket Engine Test Facility during the 1957 Inspection of the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland, Ohio. Representatives from the military, aeronautical industry, universities, and the press were invited to the laboratory to be briefed on the NACA’s latest research efforts and tour the test facilities. Over 1700 people visited the Lewis during the October 7-10, 1957 Inspection. The Soviet Union launched their first Sputnik satellite just days before on October 4. NACA Lewis had been involved in small rockets and propellants research since 1945, but the NACA leadership was wary of involving itself too deeply with the work since ballistics traditionally fell under the military’s purview. The Lewis research was performed by the High Temperature Combustion section in the Fuels and Lubricants Division in a series of small cinderblock test cells. The rocket group was expanded in 1952 and made several test runs in late 1954 using liquid hydrogen as a propellant. A larger test facility, the Rocket Engine Test Facility, was approved and became operational just in time for the Inspection.
NASA Technical Reports Server (NTRS)
Wong, Kin C.
2003-01-01
This paper documents the derivation of the data reduction equations for the calibration of the six-component thrust stand located in the CE-22 Advanced Nozzle Test Facility. The purpose of the calibration is to determine the first-order interactions between the axial, lateral, and vertical load cells (second-order interactions are assumed to be negligible). In an ideal system, the measurements made by the thrust stand along the three coordinate axes should be independent. For example, when a test article applies an axial force on the thrust stand, the axial load cells should measure the full magnitude of the force, while the off-axis load cells (lateral and vertical) should read zero. Likewise, if a lateral force is applied, the lateral load cells should measure the entire force, while the axial and vertical load cells should read zero. However, in real-world systems, there may be interactions between the load cells. Through proper design of the thrust stand, these interactions can be minimized, but are hard to eliminate entirely. Therefore, the purpose of the thrust stand calibration is to account for these interactions, so that necessary corrections can be made during testing. These corrections can be expressed in the form of an interaction matrix, and this paper shows the derivation of the equations used to obtain the coefficients in this matrix.
NASA Astrophysics Data System (ADS)
de Angelis, E.; di Lellis, A. M.; Orsini, S.; Zanza, V.; Maggi, M.; Vertolli, N.; D'Amicis, R.; Tilia, B.; Sibio, A.
2003-04-01
An Energetic Neutral Atoms facility to test and calibrate Neutral Atoms Analyzers has been developed in the Scientific Technical Unit of Fusion at the ENEA Research Center in Frascati (Rome-Italy). In the last years a collaboration with IFSI (Interplanetary Space and Physics Institute, CNR-Rome-Italy) has allowed to use this facility for space sensors and for characterization of crucial instruments elements. The ENA beam is realized with an ion source and a neutralization cell, and allows to test any instrument in the energy range 300eV-110keV with the available masses of Hydrogen, Deuterium or Helium. At the moment, the critical elements of ELENA (Emitted Low Energy Neutral Atoms) instrument proposed for BepiColombo ESA cornerstone mission to Mercury is under development testing. The facility, its potentiality and the instrument characterization progresses are presented.
Waterjet processes for coating removal
NASA Technical Reports Server (NTRS)
Burgess, Fletcher; Cosby, Steve; Hoppe, David
1995-01-01
USBI and NASA have been testing and investigating the use of high pressure water for coating removal for approximately the past 12 years at the Automated TPS (Thermal Protection System - ablative materials used for thermal protection during ascent and descent of the solid rocket boosters) Removal Facility located in the Productivity Enhancement Complex at Marshall Space Flight Center. Originally the task was to develop and automate the removal process and transfer the technology to a production facility at Kennedy Space Center. Since that time more and more applications and support roles for the waterjet technology have been realized. The facility has become a vital part of development activities ongoing at MSFC. It supports the development of environmentally compliant insulations, sealants, and coatings. It also supports bonding programs, test motors, and pressure vessels. The most recent role of the cell is supporting Thiokol Corporation's solid rocket motor program in the development of waterjet degreasing and paint stripping methods. Currently vapor degreasing methods use 500,000 lbs. of ozone depleting chemicals per year. This paper describes the major cell equipment, test methods practiced, and coatings that have been removed.
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Graham, Jason S.; Ahuja, Vineet; Hosangadi, Ashvin
2008-01-01
Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. Advanced numerical tools assume greater significance in supporting testing and design of high altitude testing facilities and plume induced testing environments of high thrust engines because of the greater inter-dependence and synergy in the functioning of the different sub-systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Facility designs in this case will require a complex network of diffuser ducts, steam ejector trains, fast operating valves, cooling water systems and flow diverters that need to be characterized for steady state performance. In this paper, we will demonstrate with the use of CFD analyses s advanced capability to evaluate supersonic diffuser and steam ejector performance in a sub-scale A-3 facility at NASA Stennis Space Center (SSC) where extensive testing was performed. Furthermore, the focus in this paper relates to modeling of critical sub-systems and components used in facilities such as the A-3 facility. The work here will address deficiencies in empirical models and current CFD analyses that are used for design of supersonic diffusers/turning vanes/ejectors as well as analyses for confined plumes and venting processes. The primary areas that will be addressed are: (1) supersonic diffuser performance including analyses of thermal loads (2) accurate shock capturing in the diffuser duct; (3) effect of turning duct on the performance of the facility (4) prediction of mass flow rates and performance classification for steam ejectors (5) comparisons with test data from sub-scale diffuser testing and assessment of confidence levels in CFD based flowpath modeling of the facility. The analyses tools used here expand on the multi-element unstructured CFD which has been tailored and validated for impingement dynamics of dry plumes, complex valve/feed systems, and high pressure propellant delivery systems used in engine and component test stands at NASA SSC. The analyses performed in the evaluation of the sub-scale diffuser facility explored several important factors that influence modeling and understanding of facility operation such as (a) importance of modeling the facility with Real Gas approximation, (b) approximating the cluster of steam ejector nozzles as a single annular nozzle, (c) existence of mixed subsonic/supersonic flow downstream of the turning duct, and (d) inadequacy of two-equation turbulence models in predicting the correct pressurization in the turning duct and expansion of the second stage steam ejectors. The procedure used for modeling the facility was as follows: (i) The engine, test cell and first stage ejectors were simulated with an axisymmetric approximation (ii) the turning duct, second stage ejectors and the piping downstream of the second stage ejectors were analyzed with a three-dimensional simulation utilizing a half-plane symmetry approximation. The solution i.e. primitive variables such as pressure, velocity components, temperature and turbulence quantities were passed from the first computational domain and specified as a supersonic boundary condition for the second simulation. (iii) The third domain comprised of the exit diffuser and the region in the vicinity of the facility (primary included to get the correct shock structure at the exit of the facility and entrainment characteristics). The first set of simulations comprising the engine, test cell and first stage ejectors was carried out both as a turbulent real gas calculation as well as a turbulent perfect gas calculation. A comparison for the two cases (Real Turbulent and Perfect gas turbulent) of the Ma Number distribution and temperature distributions are shown in Figures 1 and 2 respectively. The Mach Number distribution shows small yet distinct differences between the two cases such as locations of shocks/shock reflections and a slightly different impingement point on the wall of the diffuser from the expansion at the exit of the nozzle. Similarly the temperature distribution indicates different flow recirculation patterns in the test cell. Both cases capture all the essential flow phenomena such as the shock-boundary layer interaction, plume expansion, expansion of the first stage ejectors, mixing between the engine plume and the first stage ejector flow and pressurization due to the first stage ejectors. The final paper will discuss thermal loads on the walls of the diffuser and cooling mechanisms investigated.
13. VIEW OF EAST OPERATING GALLERY ALONG THE POSTMORTEM CELLS. ...
13. VIEW OF EAST OPERATING GALLERY ALONG THE POST-MORTEM CELLS. A NUMBER OF MANIPULATOR ARMS COVERED WITH PLASTIC ARE ON THE LEFT WALL. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV
29. Historic view of twentythousandpound rocket test stand with engine ...
29. Historic view of twenty-thousand-pound rocket test stand with engine installation in test cell of Building 202, September 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45870. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Severe Accident Test Station Design Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Mary A.; Yan, Yong; Howell, Michael
The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure tomore » provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.« less
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Graham, Jason S.; Ahuja, Vineet; Hosangadi, Ashvin
2010-01-01
Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. Advanced numerical tools assume greater significance in supporting testing and design of high altitude testing facilities and plume induced testing environments of high thrust engines because of the greater inter-dependence and synergy in the functioning of the different sub-systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Facility designs in this case will require a complex network of diffuser ducts, steam ejector trains, fast operating valves, cooling water systems and flow diverters that need to be characterized for steady state performance. In this paper, we will demonstrate with the use of CFD analyses s advanced capability to evaluate supersonic diffuser and steam ejector performance in a sub-scale A-3 facility at NASA Stennis Space Center (SSC) where extensive testing was performed. Furthermore, the focus in this paper relates to modeling of critical sub-systems and components used in facilities such as the A-3 facility. The work here will address deficiencies in empirical models and current CFD analyses that are used for design of supersonic diffusers/turning vanes/ejectors as well as analyses for confined plumes and venting processes. The primary areas that will be addressed are: (1) supersonic diffuser performance including analyses of thermal loads (2) accurate shock capturing in the diffuser duct; (3) effect of turning duct on the performance of the facility (4) prediction of mass flow rates and performance classification for steam ejectors (5) comparisons with test data from sub-scale diffuser testing and assessment of confidence levels in CFD based flowpath modeling of the facility. The analyses tools used here expand on the multi-element unstructured CFD which has been tailored and validated for impingement dynamics of dry plumes, complex valve/feed systems, and high pressure propellant delivery systems used in engine and component test stands at NASA SSC. The analyses performed in the evaluation of the sub-scale diffuser facility explored several important factors that influence modeling and understanding of facility operation such as (a) importance of modeling the facility with Real Gas approximation, (b) approximating the cluster of steam ejector nozzles as a single annular nozzle, (c) existence of mixed subsonic/supersonic flow downstream of the turning duct, and (d) inadequacy of two-equation turbulence models in predicting the correct pressurization in the turning duct and expansion of the second stage steam ejectors. The procedure used for modeling the facility was as follows: (i) The engine, test cell and first stage ejectors were simulated with an axisymmetric approximation (ii) the turning duct, second stage ejectors and the piping downstream of the second stage ejectors were analyzed with a three-dimensional simulation utilizing a half-plane symmetry approximation. The solution i.e. primitive variables such as pressure, velocity components, temperature and turbulence quantities were passed from the first computational domain and specified as a supersonic boundary condition for the second simulation. (iii) The third domain comprised of the exit diffuser and the region in the vicinity of the facility (primary included to get the correct shock structure at the exit of the facility and entrainment characteristics). The first set of simulations comprising the engine, test cell and first stage ejectors was carried out both as a turbulent real gas calculation as well as a turbulent perfect gas calculation. A comparison for the two cases (Real Turbulent and Perfect gas turbulent) of the Ma Number distribution and temperature distributions are shown in Figures 1 and 2 respectively.
Battery development and testing at ESA
NASA Technical Reports Server (NTRS)
Verniolle, Jean
1987-01-01
The principal activities of the Energy Storage Section of the Space Research and Technology Center (ESTEC) of the European Space Agency are presented. Nickel-hydrogen and fuel cell systems development are reported. The European Space Battery Test Center (ESBTC) facilities are briefly described along with the current test programs and results obtained.
Test of a coaxial blade tuner at HTS FNAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pischalnikov, Y.; Barbanotti, S.; Harms, E.
2011-03-01
A coaxial blade tuner has been selected for the 1.3GHz SRF cavities of the Fermilab SRF Accelerator Test Facility. Results from tuner cold tests in the Fermilab Horizontal Test Stand are presented. Fermilab is constructing the SRF Accelerator Test Facility, a facility for accelerator physics research and development. This facility will contain a total of six cryomodules, each containing eight 1.3 GHz nine-cell elliptical cavities. Each cavity will be equipped with a Slim Blade Tuner designed by INFN Milan. The blade tuner incorporates both a stepper motor and piezo actuators to allow for both slow and fast cavity tuning. Themore » stepper motor allows the cavity frequency to be statically tuned over a range of 500 kHz with an accuracy of several Hz. The piezos provide up to 2 kHz of dynamic tuning for compensation of Lorentz force detuning and variations in the He bath pressure. The first eight blade tuners were built at INFN Milan, but the remainder are being manufactured commercially following the INFN design. To date, more than 40 of the commercial tuners have been delivered.« less
High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.E. O'Brien; X. Zhang; K. DeWall
2012-09-01
This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Hoover, D. Q., Jr.
1981-01-01
The design features and plans for fabrication of Stacks 564 and 800 are described. The results of the OS/IES loop testing of Stack 562, endurance testing of Stack 560 and the post test analysis of Stack 561 are reported. Progress on construction and modification of the fuel cell test facilities and the 10 kW reformer test station is described. Efforts to develop the technical data base for the fuel conditioning system included vendor contacts, packed bed heat transfer tests, development of the BOLTAR computer program, and work on the detailed design of the 10 kW reformer are described.
Nickel-hydrogen cell low-Earth life test update
NASA Technical Reports Server (NTRS)
Frate, David T.
1991-01-01
When individual pressure vessel (IPV) nickel-hydrogen (Ni/H2) cells were selected as the energy storage system for the Space Station Freedom in March of 1986, a limited database existed on life and performance characteristics of these cells in a low earth orbit (LEO) regime. Therefore, NASA LeRC initiated a Ni/H2 cell test program with the primary objectives of building a test facility, procuring cells from existing NASA contracts, and screening several cell designs by life testing in a LEO 35 percent depth of discharge (DOD) scenario. A total of 40 cells incorporating 13 designs were purchased from Yardney, Hughes, and Eagle-Picher. Thirty-two of the cells purchased were 65 A-hr nameplate capacity and eight cells were 50 A-hr. Yardney and Eagle-Picher cells were built with both the Air Force recirculating and the advanced back-to-back electrode stack configurations and incorporated 31 and 26 percent KOH. Acceptance testing of the first delivered cells began in March of 1988, with life testing following in September of that year.Performance comparisons of these cells are made here while specifically addressing life test data relative to the design differences.
Nickel-hydrogen cell low-earth-orbit life test update
NASA Technical Reports Server (NTRS)
Frate, David T.
1991-01-01
When individual pressure vessel (IPV) nickel-hydrogen (Ni/H2) cells were selected as the energy storage system for Space Station Freedom in March of 1986, a limited database existed on life and performance characteristics of these cells in a low earth orbit (LEO) regime. Therefore, NASA LeRC initiated a Ni/H2 cell test program with the primary objectives of building a test facility, procuring cells from existing NASA contracts, and screening several cell designs by life testing in a LEO 35 percent depth of discharge (DOD) scenario. A total of 40 cells incorporating 13 designs were purchased from Yardney, Hughes, and Eagle-Picher. Thirty-two of the cells purchased were 65 A-hr nameplate capacity and eight cells were 50 A-Hr. Yardney and Eagle-Picher cells were built with both the Air Force recirculating and the advanced back-to-back electrode stack configurations and incorporated 31 and 26 percent KOH. Acceptance testing of the first delivered cells began in March of 1988, with life testing following in September of that year. Performance comparisons of these cells are made here while specifically addressing life test data relative to the design differences.
30. Historic view of twentythousandpound rocket test stand with engine ...
30. Historic view of twenty-thousand-pound rocket test stand with engine installation in test cell of Building 202, looking down from elevated location, September 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45872. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Develop and test fuel cell powered on-site integrated total energy system
NASA Technical Reports Server (NTRS)
Kaufman, A.; Johnson, G. K.
1982-01-01
Satisfactory performance is reported for the first 12-cell sub-stack of the 5 kW rebuild using improved ABA reactant distribution plates. Construction and test results are described for the first full-sized single-cell test (0.33 m x 0.56 m). Test duration was 450 hours. Plans are outlined for construction and testing of two methanol reformer units based on commercially-available shell-and-tube heat exchangers. A 5 kW-equivalent precursor and a 50 kW-equivalent prototype will be built. Supporting design and single-tube experimental data are presented. Stack support efforts are summarized on corrosion currents of graphite materials and acid-management of single-cell test facilities. Comparative properties are summarized for the two methanol/steam reforming catalysts evauated under Task V (now completed); T2107RS and C70-2RS.
The new postirradiation examination facility of the Atomic Energy Corporation of South Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walt, P.L. van der; Aspeling, J.C.; Jonker, W.D.
1992-01-01
The Pelindaba Hot Cell Complex (HCC) forms an important part of the infrastructure and support services of the Atomic Energy Corporation (AEC) of South Africa. It is a comprehensive, one-stop facility designed to make South Africa self-sufficient in the fields of spent-fuel qualification and verification, reactor pressure vessel surveillance program testing, ad hoc failure analyses for the nuclear power industry, and research and development studies in conjunction with the Safari I material test reactor (MTR) and irradiation rigs. Local technology and expertise was used for the design and construction of the HCC, which start up in 1980. The facility wasmore » commissioned in 1990.« less
Beam test of a superconducting cavity for the Fermilab high-brightness electron photo-injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. Hartung, J.P. Carneiro, M. Champion, H. Edwards, J. Fuest, K. Koepke and M. Kuchnir
1999-05-04
An electron photo-injector facility has been constructed at Fermilab for the purpose of providing a 14�18 MeV elec-tron beam with high charge per bunch (8 nC), short bunch length (1 mm RMS), and small transverse emittance [1]. The facility was used to commission a second-generation photo-cathode RF gun for the TeSLA Test Facility (TTF) Linac at DESY [2, 3]; in the future, the Fermilab electron beam will be used for R & D in bunch length compres-sion, beam diagnostics, and new acceleration techniques. Acceleration beyond 4 MeV is provided by a 9-cell super-conducting cavity (see Figure 1). The cavity alsomore » provides a longitudinal position-momentum correlation for subse-quent bunch length compression. We report on the RF tests and a first beam test of this cavity.« less
Battery-cell thermal test facility
NASA Technical Reports Server (NTRS)
Sanders, J. A.
1976-01-01
Vacuum-enclosed system is used to analyze instantaneous thermal and electrical characteristics of batteries. Data can be used to determine efficiency and provide for more effective utilization of available power.
Performance of the 2 × 4-cell superconducting linac module for the THz-FEL facility
NASA Astrophysics Data System (ADS)
Kui, Zhou; Chenglong, Lao; Dai, Wu; Xing, Luo; Jianxin, Wang; Dexin, Xiao; Lijun, Shan; Tianhui, He; Xuming, Shen; Sifen, Lin; Linde, Yang; Hanbin, Wang; Xingfan, Yang; Ming, Li; Xiangyang, Lu
2018-07-01
A high average power THz radiation facility has been developed by the China Academy of Engineering Physics. It is the first CW THz user facility based on superconducting accelerator technology in China. The superconducting linac module, which contains two 4-cell 1.3 GHz TESLA-like superconducting radio frequency cavities, is a major component of this facility. The expected electron energy gain is 6-8 MeV with a field gradient of 8-10 MV/m. The design and fabrication of the linac module is complete. This paper discusses its assembly and results from cyromodule tests and beam commissioning. At 2 K, the cryomodule works smoothly and stably. Both cavities have achieved effective field gradients of 10 MV/m. In beam loading experiments, 8 MeV, 5 mA electron beams with an energy spread less than 0.2% have been produced, which satisfies our requirements.
NASA Astrophysics Data System (ADS)
Lee, J. H.; Walker, D.; Mann, C. J.; Yue, Y.; Nocerino, J. C.; Smith, B. S.; Mulligan, T.
2016-12-01
Space solar cells are responsible for powering the majority of heliospheric space missions. This paper will discuss methods for characterizing space solar cell technologies for on-orbit operations that rely on a series of laboratory tests that include measuring the solar cells' beginning of life performance under simulated (e.g. AM0 or air mass zero) sunlight over different operating temperatures and observing their end of life performance following exposure to laboratory-generated charged particle radiation (protons and electrons). The Aerospace Corporation operates a proton implanter as well as electron gun facilities and collaborates with external radiation effects facilities to expose space solar cells or other space technologies to representative space radiation environments (i.e. heliosphere or magnetosphere of Earth or other planets), with goals of characterizing how the technologies perform over an anticipated space mission timeline and, through the application of precision diagnostic capabilities, understanding what part of the solar cell is impacted by varying space radiation environments. More recently, Aerospace has been hosting solar cell flight tests on its previously-flown CubeSat avionics bus, providing opportunities to compare the laboratory tests to on-orbit observations. We hope through discussion of the lessons learned and methods we use to characterize how solar cells perform after space radiation exposure that similar methodology could be adopted by others to improve the state of knowledge on the survivability of other space technologies required for future space missions.
Calculating maximum frost depths at Mn/ROAD : winters 1993-94, 1994-95 and 1995-96
DOT National Transportation Integrated Search
1997-03-01
This effort involved calculating maximum frost penetration depths for each of the 40 test cells at Mn/ROAD, the Minnesota Department of Transportation's pavement testing facility, for the 1993-94, 1994-95, and 1995-96 winters. The report compares res...
58. Historic plan, section, and detail drawing of Building 202 ...
58. Historic plan, section, and detail drawing of Building 202 test cell, June 29, 1955. NASA GRC drawing no. CE-101340 (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Frequency choice of eRHIC SRF linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, W.; Ben-Zvi, I.; Roser, T.
2016-01-05
eRHIC is a FFAG lattice-based multipass ERL. The eRHIC SRF linac has been decided to change from 422 MHz 5-cell cavity to 647 MHz 5-cell cavity. There are several considerations affecting the frequency choice for a high-current multipass-ERL: the beam structure, bunch length, energy spread, beam-break-up (BBU) threshold, SRF loss considerations. Beyond the physics considerations, cost and complexity or risk is an important consideration for the frequency choice, especially when we are designing a machine to be built in a few years. Although there are some benefits of using a 422 MHz cavity for eRHIC ERL, however, there are somemore » very critical drawbacks, including lack of facilities to fabricate a 422 MHz 5-cell cavity, very few facilities to process such a cavity and no existing facility to test the cavity anywhere. As the cavity size is big and its weight is large, it is difficult to handle it during fabrication, processing and testing, and no one has experience in this area. As the cavity size is large, the cryomodule becomes big as well. All of these considerations drive the risk of building eRHIC ERL with 422 MHz cavities to a very high level. Therefore, a decision was made to change the frequency of main linac to be 647 MHz 5-cell cavities. This note will compare these two linacs: 422MHz 5-cell cavity linac and 647Mz 5-cell cavity SRF linac, from both practical point of view and physics point of view.« less
NASA Technical Reports Server (NTRS)
Hill, David C.; Rose, M. Frank
1994-01-01
The results of the postflight analysis of the solar cell assemblies from the LDEF (Long Duration Exposure facility) experiment A0171 is provided in this NASA sponsored research project. The following data on this research are provided as follows: (1) solar cell description, including, substrate composition and thickness, crystal orientation, anti-reflective coating composition and thickness; (2) preflight characteristics of the solar cell assemblies with respect to current and voltage; and (3) post-flight characteristics of the solar cell assemblies with respect to voltage and current. These solar cell assemblies are part of the Goddard Space Flight Center test plate which was designed to test the space environment effects (radiation, atomic oxygen, thermal cycling, meteoroid and debris) on conductively coated solar cell coversheets, various electrical bond materials, solar cell performance, and other material properties where feasible.
Wave Energy Research, Testing and Demonstration Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batten, Belinda
2014-09-30
The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean testmore » berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar environmental considerations. While the non-grid connected testing facility provides an option for WEC developers to prove their technology in a fully-energetic wave environment, the absence of grid connection is somewhat of a limitation. To prove that their technology is commercially viable, developers seek a multi-year grid connected testing option. To address this need, NNMREC is developing a companion grid connected test facility in Newport, Oregon, where small arrays of WECs can be tested as well.« less
Photovoltaic test and demonstration project. [residential energy program
NASA Technical Reports Server (NTRS)
Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.
1976-01-01
The considered project consists of three subprojects related to applications, device performance and diagnostics, and endurance testing. The objectives of the applications subproject include the determination of the operating characteristics for a variety of photovoltaic conversion systems. A system test facility is being constructed in this connection and a prototype residence experiment is to be conducted. Market demand for solar cells is to be stimulated by demonstrating suitability of solar cells for specific near-term applications. Activities conducted in connection with device performance studies and diagnostics are also discussed along with developments in the area of endurance testing.
Preliminary design for a maglev development facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffey, H.T.; He, J.L.; Chang, S.L.
1992-04-01
A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable ofmore » powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.« less
Hydrogen Infrastructure Testing and Research Facility Animation | Hydrogen
at full pressure. This system provides hydrogen to fill fuel cell forklifts and feeds the high pressure compressor. View Photos High Pressure Storage The high pressure hydrogen storage system consists full pressure. This system provides hydrogen to high pressure research projects and for fuel cell
Credit PSR. This view shows the north and west facades ...
Credit PSR. This view shows the north and west facades of the building as seen when looking east southeast (1100). This structure was used to test regenerative fuel cells in 1995 - Jet Propulsion Laboratory Edwards Facility, Weigh & Test Preparation Building, Edwards Air Force Base, Boron, Kern County, CA
Nuclear Thermal Propulsion Ground Test History
NASA Technical Reports Server (NTRS)
Gerrish, Harold P.
2014-01-01
Nuclear Thermal Propulsion (NTP) was started in 1955 under the Atomic Energy Commission as project Rover and was assigned to Los Alamos National Laboratory. The Nevada Test Site was selected in 1956 and facility construction began in 1957. The KIWI-A was tested on July 1, 1959 for 5 minutes at 70MW. KIWI-A1 was tested on July 8, 1960 for 6 minutes at 85MW. KIWI-A3 was tested on October 10, 1960 for 5 minutes at 100MW. The National Aeronautics and Space Administration (NASA) was formed in 1958. On August 31, 1960 the AEC and NASA established the Space Nuclear Propulsion Office and named Harold Finger as Director. Immediately following the formation of SNPO, contracts were awarded for the Reactor In Flight Test (RIFT), master plan for the Nuclear Rocket Engine Development Station (NRDS), and the Nuclear Engine for Rocket Vehicle Application (NERVA). From December 7, 1961 to November 30, 1962, the KIWI-B1A, KIWI-B1B, and KIWI-B4A were tested at test cell A. The last two engines were only tested for several seconds before noticeable failure of the fuel elements. Harold Finger called a stop to any further hot fire testing until the problem was well understood. The KIWI-B4A cold flow test showed the problem to be related to fluid dynamics of hydrogen interstitial flow causing fuel element vibrations. President Kennedy visited the NTS one week after the KIWI-B4A failure and got to see the engine starting to be disassembled in the maintenance facility. The KIWI-B4D and KIWI-B4E were modified to not have the vibration problems and were tested in test cell C. The NERVA NRX program started testing in early 1964 with NRX-A1 cold flow test series (unfueled graphite core), NRX-A2 and NRX-A3 power test series up to 1122 MW for 13 minutes. In March 1966, the NRX-EST (Engine System Test) was the first breadboard using flight functional relationship and total operating time of 116 minutes. The NRX-EST demonstrated the feasibility of a hot bleed cycle. The NRX-A5 had multiple start-ups in May-June 1966 with 30.75 minutes accumulative operating time at or above 1GW. The NRX-A6 was tested in December 1969 and ran for 62 minutes at 1100 MW. Each engine had post-test examination and found various structure anomalies which were identified for correction and the fuel element corrosion rate was reduced. The Phoebus series of research reactors began testing at test cell C, in June 1965 with Phoebus 1A. Phoebus 1A operated for 10.5 minutes at 1100 MW before unexpected loss of propellant and leading to an engine breakdown. Phoebus 1B ran for 30 minutes in February of 1967. Phoebus 2A was the highest steady state reactor built at 5GW. Phoebus 2A ran for 12 minutes at 4100 MW demonstrating sufficient power is available. The Peewee test bed reactor was tested November- December 1968 in test cell C for 40 minutes at 500MW with overall performance close to pre-run predictions. The XE' engine was the only engine tested with close to a flight configuration and fired downward into a diffuser at the Engine Test Stand (ETS) in 1969. The XE' was 1100 MW and had 28 start-ups. The nuclear furnace NF-1 was operated at 44 MW with multiple test runs at 90 minutes in the summer of 1972. The NF-1 was the last NTP reactor tested. The Rover/NERVA program was cancelled in 1973. However, before cancellation, a lot of other engineering work was conducted by Aerojet on a 75, 000 lbf prototype flight engine and by Los Alamos on a 16,000 lbf "Small Engine" nuclear rocket design. The ground test history of NTP at the NRDS also offers many lessons learned on how best to setup, operate, emergency shutdown, and post-test examine NTP engines. The reactor and engine maintenance and disassembly facilities were used for assembly and inspection of radioactive engines after testing. Most reactor/ engines were run at test cell A or test cell C with open air exhaust. The Rover/NERVA program became aware of a new environmental regulation that would restrict the amount of radioactive particulates allowed to be release in open air and successfully demonstrated a scrubber concept with the NF-1. The ETS stand was the only one with a high altitude test chamber used for XE'. The ETS and other test cells showed the effects the engine's radiation had on the facility materials and instrumentation as well as side effects the ground test facility has back on the engine operation. The breakdown of Phoebus 1A at test cell C showed how the site was cleaned up and back to operation for five more engines before the program was cancelled.
Ion, X-ray, UV and Neutron Microbeam Systems for Cell Irradiation.
Bigelow, A W; Randers-Pehrson, G; Garty, G; Geard, C R; Xu, Y; Harken, A D; Johnson, G W; Brenner, D J
2010-08-08
The array of microbeam cell-irradiation systems, available to users at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University, is expanding. The HVE 5MV Singletron particle accelerator at the facility provides particles to two focused ion microbeam lines: the sub-micron microbeam II and the permanent magnetic microbeam (PMM). Both the electrostatic quadrupole lenses on the microbeam II system and the magnetic quadrupole lenses on the PMM system are arranged as compound lenses consisting of two quadrupole triplets with "Russian" symmetry. Also, the RARAF accelerator is a source for a proton-induced x-ray microbeam (undergoing testing) and is projected to supply protons to a neutron microbeam based on the (7)Li(p, n)(7)Be nuclear reaction (under development). Leveraging from the multiphoton microscope technology integrated within the microbeam II endstation, a UV microspot irradiator - based on multiphoton excitation - is available for facility users. Highlights from radiation-biology demonstrations on single living mammalian cells are included in this review of microbeam systems for cell irradiation at RARAF.
Vibration testing of the JE-M-604-4-IUE rocket motor (Thiokol P/N E 28639-03)
NASA Technical Reports Server (NTRS)
Alt, R. E.; Tosh, J. T.
1976-01-01
The NASA International Ultraviolet Explorer (IUE) rocket motor (TE-M-604-4), a solid fuel, spherical rocket motor, was vibration tested in the Impact, Vibration, and Acceleration (IVA) Test Unit of the von Karman Gas Dynamics Facility (VKF). The objective of the test program was to subject the motor to qualification levels of sinusoidal and random vibration prior to the altitude firing of the motor in the Propulsion Development Test Cell (T-3), Engine Test Facility (ETF), AEDC. The vibration testing consisted of a low level sine survey from 5 to 2,000 Hz, followed by a qualification level sine sweep and qualification level random vibration. A second low level sine survey followed the qualification level testing. This sequence of testing was accomplished in each of three orthogonal axes. No motor problems were observed due to the imposition of these dynamic environments.
Design, fabrication and test of prototype furnace for continuous growth of wide silicon ribbon
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.
1976-01-01
A program having the overall objective of growing wide, thin silicon dendritic web crystals quasi-continuously from a semi-automated facility is discussed. The design considerations and fabrication of the facility as well as the test and operation phase are covered; detailed engineering drawings are included as an appendix. During the test and operation phase of the program, more than eighty growth runs and numerous thermal test runs were performed. At the conclusion of the program, 2.4 cm wide web was being grown at thicknesses of 100 to 300 micrometers. As expected, the thickness and growth rate are closely related. Solar cells made from this material were tested at NASA-Lewis and found to have conversion efficiencies comparable to devices fabricated from Czochralski material.
Photovoltaic Engineering Testbed Designed for Calibrating Photovoltaic Devices in Space
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2002-01-01
Accurate prediction of the performance of solar arrays in space requires that the cells be tested in comparison with a space-flown standard. Recognizing that improvements in future solar cell technology will require an ever-increasing fidelity of standards, the Photovoltaics and Space Environment Branch at the NASA Glenn Research Center, in collaboration with the Ohio Aerospace Institute, designed a prototype facility to allow routine calibration, measurement, and qualification of solar cells on the International Space Station, and then the return of the cells to Earth for laboratory use. For solar cell testing, the Photovoltaic Engineering Testbed (PET) site provides a true air-mass-zero (AM0) solar spectrum. This allows solar cells to be accurately calibrated using the full spectrum of the Sun.
Hydrogeology of the area near the J4 test cell, Arnold Air Force Base, Tennessee
Haugh, C.J.
1996-01-01
The U.S. Air Force operates a major aerospace systems testing facility at Arnold Engineering Development Center (AEDC) in Coffee County, Tennessee. Dewatering operations at one of the test facilities, the J4 test cell, has affected the local ground-water hydrology. The J4 test cell is approximately 100 feet in diameter, extends approximately 250 feet below land surface, and penetrates several aquifers. Ground water is pumped continuously from around the test cell to keep the cell structurally intact. Because of the test cell's depth, dewatering has depressed water levels in the aquifers surrounding the site. The depressions that have developed exhibit anisotropy that is controlled by zones of high permeability in the aquifers. Additionally, contaminants - predominately volatile organic compounds - are present in the ground-water discharge from the test cell and in ground water at several other Installation Restoration Program (IRP) sites within the AEDC facility. The dewatering activities at J4 are drawing these contaminants from the nearby sites. The effects of dewatering at the J4 test cell were investigated by studying the lithologic and hydraulic characteristics of the aquifers, investigating the anisotropy and zones of secondary permeability using geophysical techniques, mapping the potentiometric surfaces of the underlying aquifers, and developing a conceptual model of the ground-water-flow system local to the test cell. Contour maps of the potentiometric surfaces in the shallow, Manchester, and Fort Payne aquifers (collectively, part of the Highland Rim aquifer system) show anisotropic water-level depressions centered on the J4 test cell. This anisotropy is the result of features of high permeability such as chert-gravel zones in the regolith and fractures, joints, and bedding planes in the bedrock. The presence of these features of high permeability in the Manchester aquifer results in complex flow patterns in the Highland Rim aquifers near the J4 test cell. The occurrence, distribution, and orientation of these features has a great effect on ground-water flow to the J4 test cell. The depression caused by dewatering extends out horizontally through the aquifers along the most permeable pathways. Since the aquifers above the Chattanooga Shale are not separated by distinct confining units, areas in adjacent aquifers above and below these zones of high permeability in the Manchester aquifer are also dewatered. Conditions in all Highland Rim aquifers approximate steady-state equilibrium because ground-water withdrawal at the test cell has been continuous since the late 1960's. The average ground-water discharge from the dewatering system at the J4 test cell was 105 gallons per minute, for 1992-95. The ground-water capture areas in each aquifer extend into all or parts of landfill #2 and leaching pit #2 (IRP site 1), the main testing area (IRP site 7), and the old fire training area (IRP site 10). IRP sites 8 and 12 are outside the ground-water capture areas. Of the 35 sampled wells in the J4 area, 10 produced water samples containing chlorinated organic compounds such as 1,2-dichloroethane (1,2-DCA), 1,1-dichloroethylene (1,1-DCE), and trichloroethylene (TCE) in concentrations which exceeded the Tennessee Department of Environment and Conservation Maximum Contaminant Levels (MCL's) for public water-supply systems. The highest concentrations were detected in samples from well AEDC-274 with 45 micrograms per liter (mg/L) 1,2-DCA, 320 mg/L 1,1-DCE, and 1,200 mg/L TCE. These compounds are synthetic and do not occur naturally in the environment. A sample of the ground-water discharge from the J4 test cell also contained concentrations of these compounds that exceed MCL's. Chlorinated organic compounds, including 1,2-DCA; 1,1-DCE; and TCE also have been detected at IRP sites 1, 7, 8, nd 10. The six dewatering wells surrounding the J4 test cell penetrate the Chattanooga Shale and are open to the Highland Rim aquifer system, there
40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... each point of a 0.5 meter grid over the entire footprint of the test vehicle at the elevation of one... impractical, air flow of 2 mph or less will be allowed at 0 mph vehicle speed. (3) The fan air flow velocity..., within the test cell, during all phases of the air conditioning test sequence to 95 ±2 °F on average and...
Gen 2.0 Mixer/Ejector Nozzle Test at LSAF June 1995 to July 1996
NASA Technical Reports Server (NTRS)
Arney, L. D.; Sandquist, D. L.; Forsyth, D. W.; Lidstone, G. L.; Long-Davis, Mary Jo (Technical Monitor)
2005-01-01
Testing of the HSCT Generation 2.0 nozzle model hardware was conducted at the Boeing Low Speed Aeroacoustic Facility, LSAF. Concurrent measurements of noise and thrust were made at critical takeoff design conditions for a variety of mixer/ejector model hardware. Design variables such as suppressor area ratio, mixer area ratio, liner type and thickness, ejector length, lobe penetration, and mixer chute shape were tested. Parallel testing was conducted at G.E.'s Cell 41 acoustic free jet facility to augment the LSAF test. The results from the Gen 2.0 testing are being used to help shape the current nozzle baseline configuration and guide the efforts in the upcoming Generation 2.5 and 3.0 nozzle tests. The Gen 2.0 results have been included in the total airplane system studies conducted at MDC and Boeing to provide updated noise and thrust performance estimates.
The Revolutionary Vertical Lift Technology (RVLT) Project
NASA Technical Reports Server (NTRS)
Yamauchi, Gloria K.
2018-01-01
The Revolutionary Vertical Lift Technology (RVLT) Project is one of six projects in the Advanced Air Vehicles Program (AAVP) of the NASA Aeronautics Research Mission Directorate. The overarching goal of the RVLT Project is to develop and validate tools, technologies, and concepts to overcome key barriers for vertical lift vehicles. The project vision is to enable the next generation of vertical lift vehicles with aggressive goals for efficiency, noise, and emissions, to expand current capabilities and develop new commercial markets. The RVLT Project invests in technologies that support conventional, non-conventional, and emerging vertical-lift aircraft in the very light to heavy vehicle classes. Research areas include acoustic, aeromechanics, drive systems, engines, icing, hybrid-electric systems, impact dynamics, experimental techniques, computational methods, and conceptual design. The project research is executed at NASA Ames, Glenn, and Langley Research Centers; the research extensively leverages partnerships with the US Army, the Federal Aviation Administration, industry, and academia. The primary facilities used by the project for testing of vertical-lift technologies include the 14- by 22-Ft Wind Tunnel, Icing Research Tunnel, National Full-Scale Aerodynamics Complex, 7- by 10-Ft Wind Tunnel, Rotor Test Cell, Landing and Impact Research facility, Compressor Test Facility, Drive System Test Facilities, Transonic Turbine Blade Cascade Facility, Vertical Motion Simulator, Mobile Acoustic Facility, Exterior Effects Synthesis and Simulation Lab, and the NASA Advanced Supercomputing Complex. To learn more about the RVLT Project, please stop by booth #1004 or visit their website at https://www.nasa.gov/aeroresearch/programs/aavp/rvlt.
Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poderis, Reed J.; King, Rebecca A.
This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping,more » tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or documented ? Provides instructions for implementing annual S&M inspections and activities The following facilities that were included in Revision 1 of this plan have reached final disposition and are no longer in the S&M program: ? Reactor Maintenance, Assembly, and Disassembly Facility, Building 25-3110 ? Test Cell A Facility, Building 25-3113 ? TCC Facility, Building 25-3210 ? Pluto Disassembly Facility, Building 26-2201 ? Super Kukla Facility, Building 27-5400« less
Credit WCT. Photographic copy of photograph, view looking northeast down ...
Credit WCT. Photographic copy of photograph, view looking northeast down onto new Dd test station from Test Stand "D" tower. Hatch of Dd test cell is open, and a test engine sits on a dolly nearby awaiting mounting. Note the water-cooled diffuser on the east end of the test chamber; this was soon replaced with a new diffuser and a steam-driven ejector for simulated high-altitude tests. A closed circuit television camera is mounted on the west end of the test cell. At the lower left of the view are fuel and oxidizer run tanks which supply propellants for test runs. (JPL negative no. 384-2650-A, 8 February 1961) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
DOE Coal Gasification Multi-Test Facility: fossil fuel processing technical/professional services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hefferan, J.K.; Lee, G.Y.; Boesch, L.P.
1979-07-13
A conceptual design, including process descriptions, heat and material balances, process flow diagrams, utility requirements, schedule, capital and operating cost estimate, and alternative design considerations, is presented for the DOE Coal Gasification Multi-Test Facility (GMTF). The GMTF, an engineering scale facility, is to provide a complete plant into which different types of gasifiers and conversion/synthesis equipment can be readily integrated for testing in an operational environment at relatively low cost. The design allows for operation of several gasifiers simultaneously at a total coal throughput of 2500 tons/day; individual gasifiers operate at up to 1200 tons/day and 600 psig using airmore » or oxygen. Ten different test gasifiers can be in place at the facility, but only three can be operated at one time. The GMTF can produce a spectrum of saleable products, including low Btu, synthesis and pipeline gases, hydrogen (for fuel cells or hydrogasification), methanol, gasoline, diesel and fuel oils, organic chemicals, and electrical power (potentially). In 1979 dollars, the base facility requires a $288 million capital investment for common-use units, $193 million for four gasification units and four synthesis units, and $305 million for six years of operation. Critical reviews of detailed vendor designs are appended for a methanol synthesis unit, three entrained flow gasifiers, a fluidized bed gasifier, and a hydrogasifier/slag-bath gasifier.« less
Hypervelocity Impact Testing of Nickel Hydrogen Battery Cells
NASA Technical Reports Server (NTRS)
Frate, David T.; Nahra, Henry K.
1996-01-01
Nickel-Hydrogen (Ni/H2) battery cells have been used on several satellites and are planned for use on the International Space Station. In January 1992, the NASA Lewis Research Center (LeRC) conducted hypervelocity impact testing on Ni/H2 cells to characterize their failure modes. The cell's outer construction was a 24 mil-thick Inconel 718 pressure vessel. A sheet of 1.27 cm thick honeycomb was placed in front of the battery cells during testing to simulate the on-orbit box enclosure. Testing was conducted at the NASA White Sands Test Facility (WSTF). The hypervelocity gun used was a 7.6 mm (0.30 caliber) two-stage light gas gun. Test were performed at speeds of 3, 6, and 7 km/sec using aluminum 2017 spherical particles of either 4.8 or 6.4 mm diameter as the projectile. The battery cells were electrically charged to about 75 percent of capacity, then back-filled with hydrogen gas to 900 psi simulating the full charge condition. High speed film at 10,000 frames/sec was taken of the impacts. Impacts in the dome area (top) and the electrode area (middle) of the battery cells were investigated. Five tests on battery cells were performed. The results revealed that in all of the test conditions investigated, the battery cells simply vented their hydrogen gas and some electrolyte, but did not burst or generate any large debris fragments.
Credit BG. View looking southwest at Test Stand "D" complex. ...
Credit BG. View looking southwest at Test Stand "D" complex. In the background at left is the Steam Generator Plant 4280/E-81 built in 1972 to house four gas-fired Clayton flash boilers. The boilers were later supplemented by the electrically heated steam accumulator (sphere) to supply steam to the various ejectors at Test Stand "D" vacuum test cells - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
18. Photocopy of photograph. VIEW WITHIN POSTMORTEM CELL OF MANIPULATOR ...
18. Photocopy of photograph. VIEW WITHIN POST-MORTEM CELL OF MANIPULATOR ARMS BEING USED TO MOVE METAL BARS FROM ONE LOCATION TO ANOTHER. Photographer unknown, ca. 1965, original photograph and negative on file at the Remote Sensing Laboratory, Department of Energy, Nevada Operations Office. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV
Credit WCT. Photographic copy of photograph, view west into Dd ...
Credit WCT. Photographic copy of photograph, view west into Dd or Dy ejector, showing steam nozzles which drive the ejector to evacuate the test cell to which it is connected. (JPL negative no. 344-2516-B, 29 August 1977) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Measurement of Turbine Engine Transient Airflow in Ground Test Facilities
1980-08-01
REPORT NUMBER 12 GOVT ACCESSION NO. A E D C - T R - 8 0 - 2 1 L 6. T I T L E (aqd Subl l l |e ) MEASUREMENT OF TURBINE ENGINE TRANSIENT AIRFLOW IN...21 ILLUSTRATIONS Figure !. Direct-Connect Turbine Engine Test Cell Installation...26 3. Turbine Engine Transient Airflow Simulator (TETAS) . . . . . . . . . . . . . . . . . . . . . . . . . 27 4
Engineering the Future: Cell 6
NASA Technical Reports Server (NTRS)
Stahl, P. H.
2010-01-01
This slide presentation reviews the development of the James Webb Space Telescope (JWST), explaining the development using a systems engineering methodology. Included are slides showing the organizational chart, the JWST Science Goals, the size of the primary mirror, and full scale mockups of the JSWT. Also included is a review of the JWST Optical Telescope Requirements, a review of the preliminary design and analysis, the technology development required to create the JWST, with particular interest in the specific mirror technology that was required, and views of the mirror manufacturing process. Several slides review the process of verification and validation by testing and analysis, including a diagram of the Cryogenic Test Facility at Marshall, and views of the primary mirror while being tested in the cryogenic facility.
Goel, Meenal; Verma, Abhishek; Gupta, Shalini
2018-07-15
Microarray technology to isolate living cells using external fields is a facile way to do phenotypic analysis at the cellular level. We have used alternating current dielectrophoresis (AC-DEP) to drive the assembly of live pathogenic Salmonella typhi (S.typhi) and Escherichia coli (E.coli) bacteria into miniaturized single cell microarrays. The effects of voltage and frequency were optimized to identify the conditions for maximum cell capture which gave an entrapment efficiency of 90% in 60 min. The chip was used for calibration-free estimation of cellular loads in binary mixtures and further applied for rapid and enhanced testing of cell viability in the presence of drug via impedance spectroscopy. Our results using a model antimicrobial sushi peptide showed that the cell viability could be tested down to 5 μg/mL drug concentration under an hour, thus establishing the utility of our system for ultrafast and sensitive detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Steimke, John L.; Steeper, Timothy J.; Colon-Mercado, Hector R.; ...
2015-09-02
The hybrid sulfur (HyS) cycle is being developed as a technology to generate hydrogen by splitting water, using heat and electrical power from a nuclear or solar power plant. A key component is the SO 2-depolarized electrolysis (SDE) cell, which reacts SO 2 and water to form hydrogen and sulfuric acid. SDE could also be used in once-through operation to consume SO 2 and generate hydrogen and sulfuric acid for sale. A proton exchange membrane (PEM) SDE cell based on a PEM fuel cell design was fabricated and tested. Measured cell potential as a function of anolyte pressure and flowmore » rate, sulfuric acid concentration, and cell temperature are presented for this cell. Sulfur accumulation was observed inside the cell, which could have been a serious impediment to further development. A method to prevent sulfur formation was subsequently developed. As a result, this was made possible by a testing facility that allowed unattended operation for extended periods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steimke, John L.; Steeper, Timothy J.; Colon-Mercado, Hector R.
The hybrid sulfur (HyS) cycle is being developed as a technology to generate hydrogen by splitting water, using heat and electrical power from a nuclear or solar power plant. A key component is the SO 2-depolarized electrolysis (SDE) cell, which reacts SO 2 and water to form hydrogen and sulfuric acid. SDE could also be used in once-through operation to consume SO 2 and generate hydrogen and sulfuric acid for sale. A proton exchange membrane (PEM) SDE cell based on a PEM fuel cell design was fabricated and tested. Measured cell potential as a function of anolyte pressure and flowmore » rate, sulfuric acid concentration, and cell temperature are presented for this cell. Sulfur accumulation was observed inside the cell, which could have been a serious impediment to further development. A method to prevent sulfur formation was subsequently developed. As a result, this was made possible by a testing facility that allowed unattended operation for extended periods.« less
Preliminary flight test results from the advanced photovoltaic experiment
NASA Technical Reports Server (NTRS)
Brinker, David J.; Hickey, John R.
1990-01-01
The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight, limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.
Preliminary results from the advanced photovoltaic experiment flight test
NASA Technical Reports Server (NTRS)
Brinker, David J.; Hart, Russell E., Jr.; Hickey, John R.
1990-01-01
The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight; limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.
Improvement and scale-up of the NASA Redox storage system
NASA Technical Reports Server (NTRS)
Reid, M. A.; Thaller, L. H.
1980-01-01
A preprototype full-function 1.0 kW Redox system (2 kW peak) with 11 kW storage capacity has been built and integrated with the NASA/DOE photovoltaic test facility. The system includes four substacks of 39 cells each (1/3 sq ft active area) which are connected hydraulically in parallel and electrically in series. An open circuit voltage cell and a set of rebalance cells are used to continuously monitor the system state of charge and automatically maintain the anode and cathode reactants electrochemically in balance. Technological advances in membrane and electrodes and results of multicell stack tests are reviewed.
NASA Technical Reports Server (NTRS)
Yamamoto, K.; Brausch, J. F.; Balsa, T. F.; Janardan, B. A.; Knott, P. R.
1984-01-01
Seven single stream model nozzles were tested in the Anechoic Free-Jet Acoustic Test Facility to evaluate the effectiveness of convergent divergent (C-D) flowpaths in the reduction of shock-cell noise under both static and mulated flight conditions. The test nozzles included a baseline convergent circular nozzle, a C-D circular nozzle, a convergent annular plug nozzle, a C-D annular plug nozzle, a convergent multi-element suppressor plug nozzle, and a C-D multi-element suppressor plug nozzle. Diagnostic flow visualization with a shadowgraph and aerodynamic plume measurements with a laser velocimeter were performed with the test nozzles. A theory of shock-cell noise for annular plug nozzles with shock-cells in the vicinity of the plug was developed. The benefit of these C-D nozzles was observed over a broad range of pressure ratiosin the vicinity of their design conditions. At the C-D design condition, the C-D annual nozzle was found to be free of shock-cells on the plug.
Material growth and characterization directed toward improving III-V heterojunction solar cells
NASA Technical Reports Server (NTRS)
Stefanakos, E. K.; Alexander, W. E.; Collis, W.; Abul-Fadl, A.
1979-01-01
In addition to the existing materials growth laboratory, the photolithographic facility and the device testing facility were completed. The majority of equipment for data acquisition, solar cell testing, materials growth and device characterization were received and are being put into operation. In the research part of the program, GaAs and GaA1As layers were grown reproducibly on GaAs substrates. These grown layers were characterized as to surface morphology, thickness and thickness uniformity. The liquid phase epitaxial growth process was used to fabricate p-n junctions in Ga(1-x)A1(x)As. Sequential deposition of two alloy layers was accomplished and detailed analysis of the effect of substrate quality and dopant on the GaA1As layer quality is presented. Finally, solar cell structures were formed by growing a thin p-GaA1As layer upon an epitaxial n-GaA1As layer. The energy gap corresponding to the long wavelength cutoff of the spectral response characteristic was 1.51-1.63 eV. Theoretical calculations of the spectral response were matched to the measured response.
ER-2 High Altitude Solar Cell Calibration Flights
NASA Technical Reports Server (NTRS)
Myers, Matthew G.; Piszczor, Michael F.
2015-01-01
The first flights of the ER-2 solar cell calibration demonstration were conducted during September-October of 2014. Three flights were performed that not only tested out the equipment and operational procedures, but also demonstrated the capability of this unique facility by conducting the first short-circuit measurements on a variety of test solar cells. Very preliminary results of these first flights were presented at the 2014 Space Photovoltaic Research and Technology (SPRAT) Conference in Cleveland, OH shortly following these first flights. At the 2015 Space Power Workshop, a more detailed description of these first ER-2 flights will be presented, along with the final flight data from some of the test cells that were flown and has now been reduced and corrected for ER-2 atmospheric flight conditions. Plans for ER-2 flights during the summer of 2015 will also be discussed.
Systems special investigation group
NASA Technical Reports Server (NTRS)
1991-01-01
An interim report concerning the Long Duration Exposure Facility (LDEF) is presented by a Boeing Systems special investigation group (SIG). The SIG activities were divided into five engineering disciplines: electrical, mechanical, optics, thermal, and batteries/solar cells. The responsibilities of the SIG included the following areas: support de-integration at Kennedy Space Center (KSC); testing of hardware at Boeing; review of principal investigator (PI) test plans and test results; support of test activities at PI labs; and collation of all test results into the SIG database.
Credit BG. Test Stand "D" tower as seen looking northeast ...
Credit BG. Test Stand "D" tower as seen looking northeast (See caption for CA-163-F-18). To the right of the view is the stainless steel dome top for Dv Cell (see CA-163-F-22 for view into cell), behind which rests a spherical accumulator--an electrically heated steam generator for powering the vacuum system at "C" and Test Stand "D." Part of the ejector system can be seen on the right corner of the tower, other connections include electrical ducts (thin, flat metal members) and fire protection systems. Note the stand in the foreground with lights used to indicate safety status of the stand during tests - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
26. INTERIOR VIEW TO THE SOUTH OF ROOM 148, A ...
26. INTERIOR VIEW TO THE SOUTH OF ROOM 148, A POST-MORTEM CELL IN THE HOT DISASSEMBLY AREA. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
29. INTERIOR VIEW TO THE EAST OF ROOM 144, A ...
29. INTERIOR VIEW TO THE EAST OF ROOM 144, A POST-MORTEM CELL IN THE HOT DISASSEMBLY AREA. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
Test Result of 650 MHz, Beta 0.61 Single Cell Niobium Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seth, Sudeshna; Bhattacharyya, Pranab; Dutta Gupta, Anjan
VECC has been involved in the design, analysis and development of 650 MHz, beta 0.61 (LB650), elliptical Superconducting RF linac cavity, as part of research and development activities on SRF cavities and associated technologies under Indian Institutions Fermilab Collaboration (IIFC). A single-cell niobium cavity has been indigenously designed and developed at VECC, with the help of Electron Beam Welding (EBW) facility at IUAC, New Delhi. Various measurements, processing and testing at 2K in Vertical Test Stand (VTS) of the single-cell cavity was carried out at ANL and Fermilab, USA, with active participation of VECC engineers. It achieved a maximum acceleratingmore » gradient(Eacc) of 34.5 MV/m with Quality Factor of 2·10⁹ and 30 MV/m with Quality Factor of 1.5·10¹⁰. This is probably the highest accelerating gradient achieved so far in the world for LB650 cavities. This paper describes the design, fabrication and measurement of the single cell niobium cavity. Cavity processing and test results of Vertical Test of the single-cell niobium cavity are also presented.« less
Hydrogen Fuel Capability Added to Combustor Flametube Rig
NASA Technical Reports Server (NTRS)
Frankenfield, Bruce J.
2003-01-01
Facility capabilities have been expanded at Test Cell 23, Research Combustor Lab (RCL23) at the NASA Glenn Research Center, with a new gaseous hydrogen fuel system. The purpose of this facility is to test a variety of fuel nozzle and flameholder hardware configurations for use in aircraft combustors. Previously, this facility only had jet fuel available to perform these various combustor flametube tests. The new hydrogen fuel system will support the testing and development of aircraft combustors with zero carbon dioxide (CO2) emissions. Research information generated from this test rig includes combustor emissions and performance data via gas sampling probes and emissions measuring equipment. The new gaseous hydrogen system is being supplied from a 70 000-standard-ft3 tube trailer at flow rates up to 0.05 lb/s (maximum). The hydrogen supply pressure is regulated, and the flow is controlled with a -in. remotely operated globe valve. Both a calibrated subsonic venturi and a coriolis mass flowmeter are used to measure flow. Safety concerns required the placement of all hydrogen connections within purge boxes, each of which contains a small nitrogen flow that is vented past a hydrogen detector. If any hydrogen leaks occur, the hydrogen detectors alert the operators and automatically safe the facility. Facility upgrades and modifications were also performed on other fluids systems, including the nitrogen gas, cooling water, and air systems. RCL23 can provide nonvitiated heated air to the research combustor, up to 350 psig at 1200 F and 3.0 lb/s. Significant modernization of the facility control systems and the data acquisition systems was completed. A flexible control architecture was installed that allows quick changes of research configurations. The labor-intensive hardware interface has been removed and changed to a software-based system. In addition, the operation of this facility has been greatly enhanced with new software programming and graphic operator interface stations. Glenn s RCL23 facility systems were successfully checked out in the spring of 2002, and hydrogen combustor research testing began in the summer of 2002.
Credit WCT. Photographic copy of photograph, view looking northwest at ...
Credit WCT. Photographic copy of photograph, view looking northwest at complete Test Stand "D" installation as of January 1962. Note closed-circuit television camera at extreme left, along with MMH (fuel) storage tank. Hatch of Dd test cell is open; nearby stand MMH run tanks for Dd station. (JPL negative no. 384-2591-A, 25 January 1961) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
28. INTERIOR VIEW TO THE SOUTHEAST OF ROOMS 133 AND ...
28. INTERIOR VIEW TO THE SOUTHEAST OF ROOMS 133 AND 134, POST-MORTEM CELLS IN THE HOT DISASSEMBLY AREA. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
Udalova, A A; Geras'kin, S A; Dikarev, V G; Dikareva, N S
2014-01-01
Efficacy of bioassays of "aberrant cells frequency" and "proliferative activity" in root meristem of Allium cepa L. is studied in the present work for a cyto- and genotoxicity assessment of natural waters contaminated with 90Sr and heavy metals in the vicinity of the radioactive waste storage facility in Obninsk, Kaluga region. The Allium-test is shown to be applicable for the diagnostics of environmental media at their combined pollution with chemical and radioactive substances. The analysis of aberration spectrum shows an important role of chemical toxicants in the mutagenic potential of waters collected in the vicinity of the radioactive waste storage facility. Biological effects are not always possible to explain from the knowledge on water contamination levels, which shows limitations of physical-chemical monitoring in providing the adequate risk assessment for human and biota from multicomponent environmental impacts.
NASA Technical Reports Server (NTRS)
Laughery, Mike
1994-01-01
A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.
NASA Astrophysics Data System (ADS)
Laughery, Mike
A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.
NASA Technical Reports Server (NTRS)
Sechkar, Edward A.; Steuber, Thomas J.; Banks, Bruce A.; Dever, Joyce A.
2000-01-01
The Next Generation Space Telescope (NGST) will be placed in an orbit that will subject it to constant solar radiation during its planned 10-year mission. A sunshield will be necessary to passively cool the telescope, protecting it from the Sun s energy and assuring proper operating temperatures for the telescope s instruments. This sunshield will be composed of metalized polymer multilayer insulation with an outer polymer membrane (12 to 25 mm in thickness) that will be metalized on the back to assure maximum reflectance of sunlight. The sunshield must maintain mechanical integrity and optical properties for the full 10 years. This durability requirement is most challenging for the outermost, constantly solar-facing polymer membrane of the sunshield. One of the potential threats to the membrane material s durability is from vacuum ultraviolet (VUV) radiation in wavelengths below 200 nm. Such radiation can be absorbed in the bulk of these thin polymer membrane materials and degrade the polymer s optical and mechanical properties. So that a suitable membrane material can be selected that demonstrates durability to solar VUV radiation, ground-based testing of candidate materials must be conducted to simulate the total 10- year VUV exposure expected during the Next Generation Space Telescope mission. The Steady State Vacuum Ultraviolet exposure facility was designed and fabricated at the NASA Glenn Research Center at Lewis Field to provide unattended 24-hr exposure of candidate materials to VUV radiation of 3 to 5 times the Sun s intensity in the wavelength range of 115 to 200 nm. The facility s chamber, which maintains a pressure of approximately 5 10(exp -6) torr, is divided into three individual exposure cells, each with a separate VUV source and sample-positioning mechanism. The three test cells are separated by a water-cooled copper shield plate assembly to minimize thermal effects from adjacent test cells. Part of the interior sample positioning mechanism of one test cell is shown in the illustration. Of primary concern in VUV exposure is the maintenance of constant measured radiation intensity so that the sample s total exposure can be determined in equivalent Sun hours. This is complicated by the fact that a VUV lamp s intensity degrades over time, necessitating a decrease in the distance between the test samples and the lamp. The facility overcomes this challenge by periodically measuring the lamp s intensity with a cesium-iodide phototube and adjusting the sample distance as required to maintain constant exposure intensity. Sample positioning and periodic phototube location under the lamp are both achieved by a single lead-screw assembly. The lamps can be isolated from the main vacuum chamber for cleaning or replacement so that samples are not exposed to the atmosphere during a test.
Status of the ERDA/NASA photovoltaic tests and applications project
NASA Technical Reports Server (NTRS)
Deyo, J. N.; Brandhorst, H. W., Jr.; Forestieri, A. F.
1976-01-01
The Tests and Applications Project of the ERDA Photovoltaic Program is concerned with the testing of photovoltaic systems and the growth of their use in real terrestrial applications. This activity is an important complement to the development of low cost solar arrays by providing requirements based on application needs and stimulating markets to create demand to absorb increasing production capacity. A photovoltaic system test facility is now operational, market stimulation has been initiated through applications, and standards for terrestrial cell measurements established.
Alhabbab, R.; Blair, P.; Elgueta, R.; Stolarczyk, E.; Marks, E.; Becker, P. D.; Ratnasothy, K.; Smyth, L.; Safinia, N.; Sharif-Paghaleh, E.; O’Connell, S.; Noelle, R. J.; Lord, G. M.; Howard, J. K.; Spencer, J.; Lechler, R. I.; Lombardi, G.
2015-01-01
B cells have been reported to promote graft rejection through alloantibody production. However, there is growing evidence that B cells can contribute to the maintenance of tolerance. Here, we used a mouse model of MHC-class I mismatched skin transplantation to investigate the contribution of B cells to graft survival. We demonstrate that adoptive transfer of B cells prolongs skin graft survival but only when the B cells were isolated from mice housed in low sterility “conventional” (CV) facilities and not from mice housed in pathogen free facilities (SPF). However, prolongation of skin graft survival was lost when B cells were isolated from IL-10 deficient mice housed in CV facilities. The suppressive function of B cells isolated from mice housed in CV facilities correlated with an anti-inflammatory environment and with the presence of a different gut microflora compared to mice maintained in SPF facilities. Treatment of mice in the CV facility with antibiotics abrogated the regulatory capacity of B cells. Finally, we identified transitional B cells isolated from CV facilities as possessing the regulatory function. These findings demonstrate that B cells, and in particular transitional B cells, can promote prolongation of graft survival, a function dependent on licensing by gut microflora. PMID:26109230
Improvement and scale-up of the NASA Redox storage system
NASA Technical Reports Server (NTRS)
Reid, M. A.; Thaller, L. H.
1980-01-01
A preprototype 1.0 kW redox system (2 kW peak) with 11 kWh storage capacity was built and integrated with the NASA/DOE photovoltaic test facility at NASA Lewis. This full function redox system includes four substacks of 39 cells each (1/3 cu ft active area) which are connected hydraulically in parallel and electrically in series. An open circuit voltage cell and a set of rebalance cells are used to continuously monitor the system state of charge and automatically maintain the anode and cathode reactants electrochemically in balance. Recent membrane and electrode advances are summarized and the results of multicell stack tests of 1 cu ft are described.
1964-08-14
Aerial view of Gasdynamics facility in 1964 and the 20 inch helium tunnel Part of the Thermal Protection Laboratory used to research materials for heat shield applications and for aerodynamic heating and materials studies of vehicles in planetary atmospheres. This laboratory is comprised of five separate facilities: an Aerodynamic Heating Tunnel, a Heat Transfer Tunnel, two Supersonic Turbulent Ducts, and a High-Power CO2 Gasdynamic Laser. All these facilities are driven by arc-heaters, with the exception of the large, combustion-type laser. The arc-heated facilities are powered by a 20 Megawatt DC power supply. Their effluent gas stream (test gases; Air, N2, He, CO2 and mixtures; flow rates from 0.05 to 5.0 lbs/sec) discharges into a five-stage stream-ejector-driven vacuum system. The vacuum system and power supply are common to the test faciities in building N-238. All of the facilities have high pressure water available at flow rates up to 4, 000 gals/min. The data obtained from these facilities are recorded on magnetic tape or oscillographs. All forms of data can be handled whether from thermo-couples, pressure cells, pyrometers, or radiometers, etc. in addition, closed circuit T. V. monitors and various film cameras are available. (operational since 1962)
NASA Technical Reports Server (NTRS)
1989-01-01
One of NASA'S agency-wide goals is the commercial development of space. To further this goal NASA is implementing a policy whereby U.S. firms are encouraged to utilize NASA facilities to develop and test concepts having commercial potential. Goddard, in keeping with this policy, will make the facilities and capabilities described in this document available to private entities at a reduced cost and on a noninterference basis with internal NASA programs. Some of these facilities include: (1) the Vibration Test Facility; (2) the Battery Test Facility; (3) the Large Area Pulsed Solar Simulator Facility; (4) the High Voltage Testing Facility; (5) the Magnetic Field Component Test Facility; (6) the Spacecraft Magnetic Test Facility; (7) the High Capacity Centrifuge Facility; (8) the Acoustic Test Facility; (9) the Electromagnetic Interference Test Facility; (10) the Space Simulation Test Facility; (11) the Static/Dynamic Balance Facility; (12) the High Speed Centrifuge Facility; (13) the Optical Thin Film Deposition Facility; (14) the Gold Plating Facility; (15) the Paint Formulation and Application Laboratory; (16) the Propulsion Research Laboratory; (17) the Wallops Range Facility; (18) the Optical Instrument Assembly and Test Facility; (19) the Massively Parallel Processor Facility; (20) the X-Ray Diffraction and Scanning Auger Microscopy/Spectroscopy Laboratory; (21) the Parts Analysis Laboratory; (22) the Radiation Test Facility; (23) the Ainsworth Vacuum Balance Facility; (24) the Metallography Laboratory; (25) the Scanning Electron Microscope Laboratory; (26) the Organic Analysis Laboratory; (27) the Outgassing Test Facility; and (28) the Fatigue, Fracture Mechanics and Mechanical Testing Laboratory.
25. INTERIOR VIEW TO THE NORTH OF ROOM 149, THE ...
25. INTERIOR VIEW TO THE NORTH OF ROOM 149, THE ENTRANCE HALLWAY TO THE POST-MORTEM CELLS IN THE HOT DISASSEMBLY AREA. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
Leaky coaxial cable signal transmission for remote facilities
NASA Astrophysics Data System (ADS)
Smith, S. F.; Crutcher, R. I.
To develop reliable communications methods to meet the rigorous requirements for nuclear hot cells and similar environments, including control of cranes, transporters, and advanced servomanipulators, the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) has conducted extensive tests of numerous technologies to determine their applicability to remote operations. To alleviate the need for large bundles of cables that must accommodate crane/transporter motion relative to the boundaries of the cell, several transmission techniques are available, including slotted-line radio-frequency couplers, infrared beams, fiber-optic cables, free-space microwave, and inductively coupled leaky coaxial cable. This paper discusses the general characteristics, mode of operation, and proposed implementation of leaky coaxial cable technology in a waste-handling facility scheduled to be built in the near future at ORNL. In addition, specific system hardware based around the use of leaky coaxial cable is described in detail. Finally, data from a series of radiation exposure tests conducted by the CFRP on several samples of the basic leaky coaxial cable and associated connectors are presented.
Cell module and fuel conditioner development
NASA Astrophysics Data System (ADS)
Hoover, D. Q., Jr.
1980-01-01
Components for the first 5 cell stack (no cooling plates) of the MK-2 design were fabricated. Preliminary specfications and designs for the components of a 23 cell MK-1 stack with four DIGAS cooling plates were developed. The MK-2 was selected as a bench mark design and a preliminary design of the facilities required for high rate manufacture of fuel cell modules was developed. Two stands for testing 5 cell stacks were built and design work for modifying existing stands and building new stands for 23 and 80 cell stacks was initiated. Design and procurement of components and materials for the catalyst test stand were completed and construction initiated. Work on the specifications of pipeline gas, tap water and recovered water and definition of equipment required for treatment was initiated. An innovative geometry for the reformer was conceived and modifications of the computer program to be used in its design were stated.
An X-Band Gun Test Area at SLAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Limborg-Deprey, C.; Adolphsen, C.; Chu, T.S.
The X-Band Test Area (XTA) is being assembled in the NLCTA tunnel at SLAC to serve as a test facility for new RF guns. The first gun to be tested will be an upgraded version of the 5.6 cell, 200 MV/m peak field X-band gun designed at SLAC in 2003 for the Compton Scattering experiment run in ASTA. This new version includes some features implemented in 2006 on the LCLS gun such as racetrack couplers, increased mode separation and elliptical irises. These upgrades were developed in collaboration with LLNL since the same gun will be used in an injector formore » a LLNL Gamma-ray Source. Our beamline includes an X-band acceleration section which takes the electron beam up to 100 MeV and an electron beam measurement station. Other X-Band guns such as the UCLA Hybrid gun will be characterized at our facility.« less
2007-09-13
Tests begun at Stennis Space Center's E Complex Sept. 13 evaluated a liquid oxygen lead for engine start performance, part of the A-3 Test Facility Subscale Diffuser Risk Mitigation Project at SSC's E-3 Test Facility. Phase 1 of the subscale diffuser project, completed Sept. 24, was a series of 18 hot-fire tests using a 1,000-pound liquid oxygen and gaseous hydrogen thruster to verify maximum duration and repeatability for steam generation supporting the A-3 Test Stand project. The thruster is a stand-in for NASA's developing J-2X engine, to validate a 6 percent scale version of A-3's exhaust diffuser. Testing the J-2X at altitude conditions requires an enormous diffuser. Engineers will generate nearly 4,600 pounds per second of steam to reduce pressure inside A-3's test cell to simulate altitude conditions. A-3's exhaust diffuser has to be able to withstand regulated pressure, temperatures and the safe discharge of the steam produced during those tests. Before the real thing is built, engineers hope to work out any issues on the miniature version. Phase 2 testing is scheduled to begin this month.
De Schacht, Caroline; Lucas, Carlota; Sitoe, Nádia; Machekano, Rhoderick; Chongo, Patrina; Temmerman, Marleen; Tobaiwa, Ocean; Guay, Laura; Kassaye, Seble; Jani, Ilesh V
2015-01-01
Anemia, syphilis and HIV are high burden diseases among pregnant women in sub-Saharan Africa. A quasi-experimental study was conducted in four health facilities in Southern Mozambique to evaluate the effect of point-of-care technologies for hemoglobin quantification, syphilis testing and CD4+ T-cell enumeration performed within maternal and child health services on testing and treatment coverage, and assessing acceptability by health workers. Demographic and testing data on women attending first antenatal care services were extracted from existing records, before (2011; n = 865) and after (2012; n = 808) introduction of point-of-care testing. Study outcomes per health facility were compared using z-tests (categorical variables) and Wilcoxon rank-sum test (continuous variables), while inverse variance weights were used to adjust for possible cluster effects in the pooled analysis. A structured acceptability-assessment interview was conducted with health workers before (n = 22) and after (n = 19). After implementation of point-of-care testing, there was no significant change in uptake of overall hemoglobin screening (67.9% to 83.0%; p = 0.229), syphilis screening (80.8% to 87.0%; p = 0.282) and CD4+ T-cell testing (84.9% to 83.5%; p = 0.930). Initiation of antiretroviral therapy for treatment eligible women was similar in the weighted analysis before and after, with variability among the sites. Time from HIV diagnosis to treatment initiation decreased (median of 44 days to 17 days; p<0.0001). A generally good acceptability for point-of-care testing was seen among health workers. Point-of-care CD4+ T-cell enumeration resulted in a decreased time to initiation of antiretroviral therapy among treatment eligible women, without significant increase in testing coverage. Overall hemoglobin and syphilis screening increased. Despite the perception that point-of-care technologies increase access to health services, the variability in results indicate the potential for detrimental effects in some settings. Local context needs to be considered and services restructured to accommodate innovative technologies in order to improve service delivery to expectant mothers.
UV Spectroradiometric Output Of An F404 Turbojet Aircraft Engine
NASA Astrophysics Data System (ADS)
Schneider, William E.; Spaberg, Gordon H.
1989-09-01
Spectroradiometric measurements of the ultraviolet output of a GE F404 aircraft engine were made over the wavelength range of 200 to 320 nm. The tests were conducted at the GE Lynn, Mass. Riverworks facility in the F404 ram cell. The severe environmental conditions associated with the test cell required a special acoustical noise-proof and mechanical shock-proof enclosure for the double monochromator and UV detectors along with special long cabling to the externally located radiometer and automatic data reduction system. The tests successfully provided spectral irradiance measurements of the afterburner over the 225-320 nm wavelength range with a UV-enhanced silicon detector and over the 200-260 nm range with a PMT detector.
Affordable Electro-Magnetic Interference (EMI) Testing on Large Space Vehicles
NASA Technical Reports Server (NTRS)
Aldridge, Edward; Curry, Bruce; Scully, Robert
2015-01-01
Objective: Perform System-Level EMI testing of the Orion Exploration Flight Test-1 (EFT-1) spacecraft in situ in the Kennedy Space Center's Neil Armstrong Operations & Checkout (O&C) Facility in 6 days. The only way to execute the system-level EMI testing and meet this schedule challenge was to perform the EMI testing in situ in the Final Assembly & System Test (FAST) Cell in a reverberant mode, not the direct illumination mode originally planned. This required the unplanned construction of a Faraday Cage around the vehicle and FAST Cell structure. The presence of massive steel platforms created many challenges to developing an efficient screen room to contain the RF energy and yield an effective reverberant chamber. An initial effectiveness test showed marginal performance, but improvements implemented afterward resulted in the final test performing surprisingly well! The paper will explain the design, the challenges, and the changes that made the difference in performance!
Research activities at the Loma Linda University and Proton Treatment Facility--an overview
NASA Technical Reports Server (NTRS)
Nelson, G. A.; Green, L. M.; Gridley, D. S.; Archambeau, J. O.; Slater, J. M.
2001-01-01
The Loma Linda University (LLU) Radiobiology Program coordinates basic research and proton beam service activities for the university and extramural communities. The current focus of the program is on the biological and physical properties of protons and the operation of radiobiology facilities for NASA-sponsored projects. The current accelerator, supporting facilities and operations are described along with a brief review of extramural research projects supported by the program. These include space craft electronic parts and shielding testing as well as tumorigenesis and animal behavior experiments. An overview of research projects currently underway at LLU is also described. These include: 1) acute responses of the C57Bl/6 mouse immune system, 2) modulation of gene expression in the nematode C. elegans and rat thyroid cells, 3) quantitation of dose tolerance in rat CNS microvasculature, 4) behavioral screening of whole body proton and iron ion-irradiated C57Bl/6 mice, and 5) investigation of the role of cell integration into epithelial structures on responses to radiation.
Altitude Testing of Large Liquid Propellant Engines
NASA Technical Reports Server (NTRS)
Maynard, Bryon T.; Raines, Nickey G.
2010-01-01
The National Aeronautics and Space Administration entered a new age on January 14, 2004 with President Bush s announcement of the creation the Vision for Space Exploration that will take mankind back to the Moon and on beyond to Mars. In January, 2006, after two years of hard, dedicated labor, engineers within NASA and its contractor workforce decided that the J2X rocket, based on the heritage of the Apollo J2 engine, would be the new engine for the NASA Constellation Ares upper stage vehicle. This engine and vehicle combination would provide assured access to the International Space Station to replace that role played by the Space Shuttle and additionally, would serve as the Earth Departure Stage, to push the Crew Excursion Vehicle out of Earth Orbit and head it on a path for rendezvous with the Moon. Test as you fly, fly as you test was chosen to be the guiding philosophy and a pre-requisite for the engine design, development, test and evaluation program. An exhaustive survey of national test facility assets proved the required capability to test the J2X engine at high altitude for long durations did not exist so therefore, a high altitude/near space environment testing capability would have to be developed. After several agency concepts the A3 High Altitude Testing Facility proposal was selected by the J2X engine program on March 2, 2007 and later confirmed by a broad panel of NASA senior leadership in May 2007. This facility is to be built at NASA s John C. Stennis Space Center located near Gulfport, Mississippi. 30 plus years of Space Shuttle Main Engine development and flight certification testing makes Stennis uniquely suited to support the Vision For Space Exploration Return to the Moon. Propellant handling infrastructure, engine assembly facilities, a trained and dedicated workforce and a broad and varied technical support base will all ensure that the A3 facility will be built on time to support the schedule needs of the J2X engine and the ultimate flight of the first Ares I vehicle. The A3 facility will be able to simulate pre-ignition altitude from sea-level to 100,000 feet and maintain it up to 650 seconds. Additionally the facility will be able to accommodate initial ignition, shutdown and then restart test profiles. A3 will produce up to 5000 lbm/sec of superheated steam utilizing a Chemical Steam generation system. Two separate inline steam ejectors will be used to produce a test cell vacuum to simulate the 100,000 ft required altitude. Operational capability will ensure that the facility can start up and shutdown without producing adverse pressure gradients across the J2X nozzle. The facility will have a modern thrust measurement system for accurate determination of engine performance. The latest advances in data acquisition and control will be incorporated to measure performance parameters during hotfire testing. Provisions are being made in the initial design of the new altitude facility to allow for testing of other, larger engines and potential upper stage launch vehicles that might require vacuum start testing of the engines. The new facility at Stennis Space Center will be complete and ready for hotfire operations in late 2010.
Brueggeman, Andrew J; Kuehler, Daniel; Weeks, Donald P
2014-09-01
Genes conferring resistance to the herbicides glyphosate, oxyfluorfen and norflurazon were developed and tested for use as dominant selectable markers in genetic transformation of Chlamydomonas reinhardtii and as potential tools for the protection of commercial-scale algal production facilities against contamination by organisms sensitive to these broad-spectrum herbicides. A synthetic glyphosate acetyltransferase (GAT) gene, when fitted with a strong Chlamydomonas promoter, conferred a 2.7×-fold increase in tolerance to the EPSPS inhibitor, glyphosate, in transgenic cells compared with progenitor WT cells. A mutant Chlamydomonas protoporphyrinogen oxidase (protox, PPO) gene previously shown to produce an enzyme insensitive to PPO-inhibiting herbicides, when genetically engineered, generated transgenic cells able to tolerate up to 136× higher levels of the PPO inhibitor, oxyfluorfen, than nontransformed cells. Genetic modification of the Chlamydomonas phytoene desaturase (PDS) gene-based gene sequences found in various norflurazon-resistant organisms allowed production of transgenic cells tolerant to 40× higher levels of norflurazon than nontransgenic cells. The high efficiency of all three herbicide resistance genes in producing transgenic cells demonstrated their suitability as dominant selectable markers for genetic transformation of Chlamydomonas and, potentially, other eukaryotic algae. However, the requirement for high concentrations of glyphosate and its associated negative effects on cell growth rates preclude its consideration for use in large-scale production facilities. In contrast, only low doses of norflurazon and oxyfluorfen (~1.5 μm and ~0.1 μm, respectively) are required for inhibition of cell growth, suggesting that these two herbicides may prove effective in large-scale algal production facilities in suppressing growth of organisms sensitive to these herbicides. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Understanding facilities design parameters for a remanufacturing system
NASA Astrophysics Data System (ADS)
Topcu, Aysegul; Cullinane, Thomas
2005-11-01
Remanufacturing is rapidly becoming a very important element in the economies of the world. Products such as washing machines, clothes driers, automobile parts, cell phones and a wide range of consumer durable goods are being reclaimed and sent through processes that restore these products to levels of operating performance that are as good or better than their new product performance. The operations involved in the remanufacturing process add several new dimensions to the work that must be performed. Disassembly is an operation that rarely appears on the operations chart of a typical production facility. The inspection and test functions in remanufacturing most often involve several more tasks than those involved in the first time manufacturing cycle. A close evaluation of most any remanufacturing operation reveals several points in the process in which parts must be cleaned, tested and stored. Although several researchers have focused their work on optimizing the disassembly function and the inspection, test and store functions, very little research has been devoted to studying the impact of the facilities design on the effectiveness of the remanufacturing process. The purpose of this paper will be to delineate the differences between first time manufacturing operations and remanufacturing operations for durable goods and to identify the features of the facilities design that must be considered if the remanufacturing operations are to be effective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report is concerned with the nature and scope of the technical services to be rendered and the general plan proposed for operation of Building 3525, High Radiation Level Examination Laboratory (HRLEL). The role of postirradiation examination in implementing the over- all task of irradiation testing for various programs under way at the Oak Ridge National Laboratory (ORNL) and the importance of this effort to the United Stat es reactor development program are stressed . The shielded-cell complex with provisions for remote decontamination, hot-equipment storage, and maintenance is described, as well as other supporting activities which are incorporated into themore » facility. The proposed technical functions include general observation, mensuration, nondestructive testing, burnup and induced-activity measurements, fission-gas sampling and analysis, corrosion evaluation and related measurements, disassembly and cutup, metallographic examination, mechanical-property determinations , and x -ray diffraction analyses. Equipment design and operational features to improve detection and measurement of selected properties in radioactive material s are described, also. The current status on design, procurement, construction, and preoperational testing of in- cell equipment in the mockup is presented along with a forecast of future needs. The mode of operation, manpower requirements, and management of the facility are discussed.« less
A quarantine protocol for analysis of returned extraterrestrial samples
NASA Technical Reports Server (NTRS)
Bagby, J. R.; Sweet, H. C.; Devincenzi, D. L.
1983-01-01
A protocol is presented for the analysis at an earth-orbiting quarantine facility of return samples of extraterrestrial material that might contain (nonterrestrial) life forms. The protocol consists of a series of tests designed to determine whether the sample, conceptualized as a 1-kg sample of Martian soil, is free from nonterrestrial biologically active agents and so may safely be sent to a terrestrial containment facility, or it exhibits biological activity requiring further (second-order) testing outside the biosphere. The first-order testing procedure seeks to detect the presence of any replicating organisms or toxic substances through a series of experiments including gas sampling, analysis of radioactivity, stereomicroscopic inspection, chemical analysis, microscopic examination, the search for metabolic products under growth conditions, microbiologicl assays, and the challenge of cultured cells with any agents found or with the extraterrestrial material as is. Detailed plans for the second-order testing would be developed in response to the actual data received from primary testing.
The pixel tracking telescope at the Fermilab Test Beam Facility
Kwan, Simon; Lei, CM; Menasce, Dario; ...
2016-03-01
An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm 2more » pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less
4. VIEW TO THE NORTHWEST OF THE COLD BAY ON ...
4. VIEW TO THE NORTHWEST OF THE COLD BAY ON THE NORTH (RIGHT) AND THE POST-MORTEM CELLS ON THE SOUTH (LEFT). ALSO ILLUSTRATED ARE THE DIFFERENT ROOF HEIGHTS OF THE BUILDING. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV
Development and applications of nondestructive evaluation at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Whitaker, Ann F.
1990-01-01
A brief description of facility design and equipment, facility usage, and typical investigations are presented for the following: Surface Inspection Facility; Advanced Computer Tomography Inspection Station (ACTIS); NDE Data Evaluation Facility; Thermographic Test Development Facility; Radiographic Test Facility; Realtime Radiographic Test Facility; Eddy Current Research Facility; Acoustic Emission Monitoring System; Advanced Ultrasonic Test Station (AUTS); Ultrasonic Test Facility; and Computer Controlled Scanning (CONSCAN) System.
Density of Indoor Tanning Facilities in 116 Large U.S. Cities
Hoerster, Katherine D.; Garrow, Rebecca L.; Mayer, Joni A.; Clapp, Elizabeth J.; Weeks, John R.; Woodruff, Susan I.; Sallis, James F.; Slymen, Donald J.; Patel, Minal R.; Sybert, Stephanie A.
2009-01-01
Background U.S. adolescents and young adults are using indoor tanning at high rates, even though it has been linked to both melanoma and squamous cell cancer. Because the availability of commercial indoor tanning facilities may influence use, data are needed on the number and density of such facilities. Methods In March 2006, commercial indoor tanning facilities in 116 large U.S. cities were identified, and the number and density (per 100,000 population) were computed for each city. Bivariate and multivariate analyses conducted in 2008 tested the association between tanning-facility density and selected geographic, climatologic, demographic, and legislative variables. Results Mean facility number and density across cities were 41.8 (SD=30.8) and 11.8 (SD=6.0), respectively. In multivariate analysis, cities with higher percentages of whites and lower ultraviolet (UV)index scores had significantly higher facility densities than those with lower percentages of whites and higher UV index scores. Conclusions These data indicate that commercial indoor tanning is widely available in the urban U.S., and this availability may help explain the high usage of indoor tanning. PMID:19215849
Density of indoor tanning facilities in 116 large U.S. cities.
Hoerster, Katherine D; Garrow, Rebecca L; Mayer, Joni A; Clapp, Elizabeth J; Weeks, John R; Woodruff, Susan I; Sallis, James F; Slymen, Donald J; Patel, Minal R; Sybert, Stephanie A
2009-03-01
U.S. adolescents and young adults are using indoor tanning at high rates, even though it has been linked to both melanoma and squamous cell cancer. Because the availability of commercial indoor tanning facilities may influence use, data are needed on the number and density of such facilities. In March 2006, commercial indoor tanning facilities in 116 large U.S. cities were identified, and the number and density (per 100,000 population) were computed for each city. Bivariate and multivariate analyses conducted in 2008 tested the association between tanning-facility density and selected geographic, climatologic, demographic, and legislative variables. Mean facility number and density across cities were 41.8 (SD=30.8) and 11.8 (SD=6.0), respectively. In multivariate analysis, cities with higher percentages of whites and lower ultraviolet (UV)index scores had significantly higher facility densities than those with lower percentages of whites and higher UV index scores. These data indicate that commercial indoor tanning is widely available in the urban U.S., and this availability may help explain the high usage of indoor tanning.
1986-01-01
by sensors in the test cell and sampled, digitized, averaged, and calibrated by the facility computer system. The data included flowrates calculated ...before the next test could be started. This required about 2 minutes. 6.4 Combat Damage Testing Appendix C contains calculations and analysis...were comparable (Figure 7-5). Agent quantities required per MIL-E-22285 were again calculated using the equations noted in paragraph 7.1.1. The
ER-2 High Altitude Solar Cell Calibration Flights
NASA Technical Reports Server (NTRS)
Myers, Matthew; Wolford, David; Snyder, David; Piszczor, Michael
2015-01-01
Evaluation of space photovoltaics using ground-based simulators requires primary standard cells which have been characterized in a space or near-space environment. Due to the high cost inherent in testing cells in space, most primary standards are tested on high altitude fixed wing aircraft or balloons. The ER-2 test platform is the latest system developed by the Glenn Research Center (GRC) for near-space photovoltaic characterization. This system offers several improvements over GRC's current Learjet platform including higher altitude, larger testing area, onboard spectrometers, and longer flight season. The ER-2 system was developed by GRC in cooperation with NASA's Armstrong Flight Research Center (AFRC) as well as partners at the Naval Research Laboratory and Air Force Research Laboratory. The system was designed and built between June and September of 2014, with the integration and first flights taking place at AFRC's Palmdale facility in October of 2014. Three flights were made testing cells from GRC as well as commercial industry partners. Cell performance data was successfully collected on all three flights as well as solar spectra. The data was processed using a Langley extrapolation method, and performance results showed a less than half a percent variation between flights, and less than a percent variation from GRC's current Learjet test platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-06-30
Research on the design, development, and testing of a high-temperature solid electrolyte (HTSOE) fuel cell is described in detail. Task 1 involves the development and refinement of fabrication processes for the porous support tube, fuel electrode, solid electrolyte, air electrode, and interconnection. Task 2 includes the life testing of cell components and the stack; task 3 involves the stack performance evaluation; task 4 includes demonstrating the reproducibility of 10 watt stacks. A cost, design and benefit study to evaluate the nature and worth of an industrial cogeneration application of the HTSOE fuel cell is underway. Here, promisng applications are nowmore » being considered, from which a single application has been selected as a basis for the study - an integrated aluminum production facility. (WHK)« less
27. INTERIOR VIEW TO THE WEST OF ROOM 126 AT ...
27. INTERIOR VIEW TO THE WEST OF ROOM 126 AT THE NORTH END OF THE ENTRANCE HALLWAY TO THE POST-MORTEM CELLS. IN THE CEILING IS A HATCHWAY TO THE UPPER LEVEL OF ROOM 123, THE DISASSEMBLY BAY, BY WHICH PARTS OF THE NUCLEAR REACTOR WERE PASSED FOR FURTHER DISASSEMBLY IN THE VARIOUS POST-MORTEM CELLS. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
Fuel Flexible Gas Turbine Combustor Flametube Facility Upgraded
NASA Technical Reports Server (NTRS)
Little, James E.; Nemets, Steve A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfeld, Bruce J.
2004-01-01
In fiscal year 2003, test cell 23 of the Research Combustion Laboratory (RCL 23) at the NASA Glenn Research Center was upgraded with the addition of gaseous hydrogen as a working propellant and the addition of a 450-psig air-supply system. Test flexibility was further enhanced by upgrades to the facility control systems. RCL 23 can now test with gaseous hydrogen flow rates up to 0.05 lbm/sec and jet fuel flow rates up to 0.62 lbm/sec. Research airflow rates up to 3 lbm/sec are possible with the 450-psig supply system over a range of inlet temperatures. Nonvitiated, heated air is supplied from a shell and tube heat exchanger. The maximum nonvitiated facility air temperature is 1100 F at 1.5 lbm/sec. Research-section exhaust temperatures are limited to 3200 F because of material and cooling capacity limits. A variety of support systems are available depending on the research hardware configuration. Test section ignition can be provided via either a hydrogen air torch system or an electronic spark system. Emissions measurements are obtained with either pneumatically or electromechanically actuated gas sample probes, and the electromechanical system allows for radial measurements at a user-specified axial location for measurement of emissions profiles. Gas analysis data can be obtained for a variety of species, including carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NO and NOx), oxygen (O2), unburnt hydrocarbons, and unburnt hydrogen. Facility control is accomplished with a programmable logic control system. Facility operations have been upgraded to a system based on graphical user interface control screens. A data system is available for real-time acquisition and monitoring of both measurements in engineering units and performance calculations. The upgrades have made RCL 23 a highly flexible facility for research into low emissions gas turbine combustor concepts, and the flame tube configuration inherently allows for a variety of fuel nozzle configurations to be tested in a cost-effective manner. RCL 23 is poised to be a leading facility for developing modern low-emission fuel nozzles for use with jet fuel and alternative fuels.
Hypervelocity Impact Test Facility: A gun for hire
NASA Technical Reports Server (NTRS)
Johnson, Calvin R.; Rose, M. F.; Hill, D. C.; Best, S.; Chaloupka, T.; Crawford, G.; Crumpler, M.; Stephens, B.
1994-01-01
An affordable technique has been developed to duplicate the types of impacts observed on spacecraft, including the Shuttle, by use of a certified Hypervelocity Impact Facility (HIF) which propels particulates using capacitor driven electric gun techniques. The fully operational facility provides a flux of particles in the 10-100 micron diameter range with a velocity distribution covering the space debris and interplanetary dust particle environment. HIF measurements of particle size, composition, impact angle and velocity distribution indicate that such parameters can be controlled in a specified, tailored test designed for or by the user. Unique diagnostics enable researchers to fully describe the impact for evaluating the 'targets' under full power or load. Users regularly evaluate space hardware, including solar cells, coatings, and materials, exposing selected portions of space-qualified items to a wide range of impact events and environmental conditions. Benefits include corroboration of data obtained from impact events, flight simulation of designs, accelerated aging of systems, and development of manufacturing techniques.
Veronesi, Elena; Murgia, Alba; Caselli, Anna; Grisendi, Giulia; Piccinno, Maria Serena; Rasini, Valeria; Giordano, Rosaria; Montemurro, Tiziana; Bourin, Philippe; Sensebé, Luc; Rojewski, Markus T.; Schrezenmeier, Hubert; Layrolle, Pierre; Ginebra, Maria Pau; Panaitescu, Carmen Bunu; Gómez-Barrena, Enrique; Catani, Fabio; Paolucci, Paolo; Burns, Jorge S.
2014-01-01
Successful preliminary studies have encouraged a more translational phase for stem cell research. Nevertheless, advances in the culture of human bone marrow-derived mesenchymal stromal/stem cells (hBM-MSC) and osteoconductive qualities of combined biomaterials can be undermined if necessary cell transportation procedures prove unviable. We aimed at evaluating the effect of transportation conditions on cell function, including the ability to form bone in vivo, using procedures suited to clinical application. hBM-MSC expanded in current Good Manufacturing Practice (cGMP) facilities (cGMP-hBM-MSC) to numbers suitable for therapy were transported overnight within syringes and subsequently tested for viability. Scaled-down experiments mimicking shipment for 18 h at 4°C tested the influence of three different clinical-grade transportation buffers (0.9% saline alone or with 4% human serum albumin [HSA] from two independent sources) compared with cell maintenance medium. Cell viability after shipment was >80% in all cases, enabling evaluation of (1) adhesion to plastic flasks and hydroxyapatite tricalcium phosphate osteoconductive biomaterial (HA/β-TCP 3D scaffold); (2) proliferation rate; (3) ex vivo osteogenic differentiation in contexts of 2D monolayers on plastic and 3D HA/β-TCP scaffolds; and (4) in vivo ectopic bone formation after subcutaneous implantation of cells with HA/β-TCP scaffold into NOD/SCID mice. Von Kossa staining was used to assess ex vivo osteogenic differentiation in 3D cultures, providing a quantifiable test of 3D biomineralization ex vivo as a rapid, cost-effective potency assay. Near-equivalent capacities for cell survival, proliferation, and osteogenic differentiation were found for all transportation buffers. Moreover, cGMP-hBM-MSC transported from a production facility under clinical-grade conditions of 4% HSA in 0.9% saline to a destination 18 h away showed prompt adhesion to HA/β-TCP 3D scaffold and subsequent in vivo bone formation. A successfully validated transportation protocol extends the applicability of fresh stem cells involving multicentric trials for regenerative medicine. PMID:23845029
Summary of materials and hardware performance on LDEF
NASA Technical Reports Server (NTRS)
Dursch, Harry; Pippin, Gary; Teichman, Lou
1993-01-01
A wide variety of materials and experiment support hardware were flown on the Long Duration Exposure Facility (LDEF). Postflight testing has determined the effects of the almost 6 years of low-earth orbit (LEO) exposure on this hardware. An overview of the results are presented. Hardware discussed includes adhesives, fasteners, lubricants, data storage systems, solar cells, seals, and the LDEF structure. Lessons learned from the testing and analysis of LDEF hardware is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
wolf, Zachary R.
2000-09-12
The second phase accelerator for the Dual Axis Hydrodynamic Test facility (DARHT) is designed to provide an electron beam pulse that is 2{mu}s long, 2kA, and 20 MeV in particle energy. The injector provides 3.2 MeV so that the linac need only provide 16.8 MeV. The linac is made with two types of induction accelerator cells. The first block of 8 cells have a 14 in. beam pipe compared to 10 in. in the remaining 80 cells. The other principal difference is that the first 8 cells have reduced volt-sec in their induction cores as a result of a largermore » diameter beam pipe. The cells are designed for very reliable high voltage operation. The insulator is Mycalex. Results from prototype tests are given including results from solenoid measurements. Each cell contains a solenoid for beam transport and a set of x-y correction coils to reduce corkscrew motion. Details of tests to determine RF mode impedances relevant to BBU generation are given. Blocks of cells are separated by intercells some of which contain transport solenoids. The intercells provide vacuum pumping stations as well. Issues of alignment and installation are discussed.« less
Hypervelocity Impact Testing of Space Station Freedom Solar Cells
NASA Technical Reports Server (NTRS)
Christie, Robert J.; Best, Steve R.; Myhre, Craig A.
1994-01-01
Solar array coupons designed for the Space Station Freedom electrical power system were subjected to hypervelocity impacts using the HYPER facility in the Space Power Institute at Auburn University and the Meteoroid/Orbital Debris Simulation Facility in the Materials and Processes Laboratory at the NASA Marshall Space Flight Center. At Auburn, the solar cells and array blanket materials received several hundred impacts from particles in the micron to 100 micron range with velocities typically ranging from 4.5 to 10.5 km/s. This fluence of particles greatly exceeds what the actual components will experience in low earth orbit. These impacts damaged less than one percent of total area of the solar cells and most of the damage was limited to the cover glass. There was no measurable loss of electrical performance. Impacts on the array blanket materials produced even less damage and the blanket materials proved to be an effective shield for the back surface of the solar cells. Using the light gas gun at MSFC, one cell of a four cell coupon was impacted by a 1/4 inch spherical aluminum projectile with a velocity of about 7 km/s. The impact created a neat hole about 3/8 inch in diameter. The cell and coupon were still functional after impact.
Gee, Adrian P.; Richman, Sara; Durett, April; McKenna, David; Traverse, Jay; Henry, Timothy; Fisk, Diann; Pepine, Carl; Bloom, Jeannette; Willerson, James; Prater, Karen; Zhao, David; Koç, Jane Reese; Ellis, Steven; Taylor, Doris; Cogle, Christopher; Moyé, Lemuel; Simari, Robert; Skarlatos, Sonia
2013-01-01
Background Aims Multi-center cellular therapy clinical trials require the establishment and implementation of standardized cell processing protocols and associated quality control mechanisms. The aims here were to develop such an infrastructure in support of the Cardiovascular Cell Therapy Research Network (CCTRN) and to report on the results of processing for the first 60 patients. Methods Standardized cell preparations, consisting of autologous bone marrow mononuclear cells, prepared using the Sepax device were manufactured at each of the five processing facilities that supported the clinical treatment centers. Processing staff underwent centralized training that included proficiency evaluation. Quality was subsequently monitored by a central quality control program that included product evaluation by the CCTRN biorepositories. Results Data from the first 60 procedures demonstrate that uniform products, that met all release criteria, could be manufactured at all five sites within 7 hours of receipt of the bone marrow. Uniformity was facilitated by use of the automated systems (the Sepax for processing and the Endosafe device for endotoxin testing), standardized procedures and centralized quality control. Conclusions Complex multicenter cell therapy and regenerative medicine protocols can, where necessary, successfully utilize local processing facilities once an effective infrastructure is in place to provide training, and quality control. PMID:20524773
31. INTERIOR VIEW TO THE EAST OF THE FIRST FLOOR ...
31. INTERIOR VIEW TO THE EAST OF THE FIRST FLOOR SOUTH CORRIDOR AND VIEWING GALLERY TO THE DISASSEMBLY BAY AND POST-MORTEM CELLS. VIEWING STATIONS ARE ON BOTH SIDES OF THE CORRIDOR. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
33. INTERIOR VIEW TO THE SOUTHWEST OF ROOM 135, A ...
33. INTERIOR VIEW TO THE SOUTHWEST OF ROOM 135, A FIRST FLOOR CORRIDOR AND VIEWING GALLERY NEXT TO THE POST-MORTEM CELLS. VIEWING AND WORK STATIONS ARE ON THE WEST WALL. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
NREL Serves as the Energy Department's Showcase for Cutting-Edge Fuel Cell
vehicle on loan from Hyundai through a one-year Cooperative Research and Development Agreement and a B produced at the Hydrogen Infrastructure Testing and Research Facility (HITRF) located at NREL's Energy and infrastructure as part of the Energy Department's Hydrogen Fueling Infrastructure Research and
Onsite 40-kilowatt fuel cell power plant manufacturing and field test program
NASA Technical Reports Server (NTRS)
1985-01-01
A joint Gas Research Institute and U.S. Department of Energy Program was initiated in 1982 to evaluate the use of fuel cell power systems for on-site energy service. Forty-six 40 kW fuel cell power plants were manufactured at the United Technologies Corporation facility in South Windsor, Connecticut, and are being delivered to host utilities and other program participants in the United States and Japan for field testing. The construction of the 46 fully-integrated power plants was completed in January 1985 within the constraints of the contract plan. The program has provided significant experience in the manufacture, acceptance testing, deployment, and support of on-site fuel cell systems. Initial field test results also show that these experimental power plants meet the performance and environmental requirements of a commercial specification. This Interim Report encompasses the design and manufacturing phases of the 40 kW Power Plant Manufacturing and Field Test program. The contract between UTC and NASA also provides UTC field engineering support to the host utilities, training programs and associated manuals for utility operating and maintenance personnel, spare parts support for a defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently.
Space technology test facilities at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Rodrigues, Annette T.
1990-01-01
The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.
40 CFR 160.43 - Test system care facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... testing facility shall have a number of animal rooms or other test system areas separate from those... GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.43 Test system care facilities. (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure...
40 CFR 160.43 - Test system care facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... testing facility shall have a number of animal rooms or other test system areas separate from those... GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.43 Test system care facilities. (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure...
NASA Lewis Propulsion Systems Laboratory Customer Guide Manual
NASA Technical Reports Server (NTRS)
Soeder, Ronald H.
1994-01-01
This manual describes the Propulsion Systems Laboratory (PSL) at NASA Lewis Research Center. The PSL complex supports two large engine test cells (PSL-3 and PSL-4) that are capable of providing flight simulation to altitudes of 70,000 ft. Facility variables at the engine or test-article inlet, such as pressure, temperature, and Mach number (up to 3.0 for PSL-3 and up to 6.0 planned for PSL-4), are discussed. Support systems such as the heated and cooled combustion air systems; the altitude exhaust system; the hydraulic system; the nitrogen, oxygen, and hydrogen systems; hydrogen burners; rotating screen assemblies; the engine exhaust gas-sampling system; the infrared imaging system; and single- and multiple-axis thrust stands are addressed. Facility safety procedures are also stated.
Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory
NASA Technical Reports Server (NTRS)
Fox, Dennis S.; Miller, Robert A.; Zhu, Dongming; Perez, Michael; Cuy, Michael D.; Robinson, R. Craig
2011-01-01
This Technical Memorandum presents the current capabilities of the state-of-the-art Mach 0.3 Burner Rig Facility. It is used for materials research including oxidation, corrosion, erosion and impact. Consisting of seven computer controlled jet-fueled combustors in individual test cells, these relatively small rigs burn just 2 to 3 gal of jet fuel per hour. The rigs are used as an efficient means of subjecting potential aircraft engine/airframe advanced materials to the high temperatures, high velocities and thermal cycling closely approximating actual operating environments. Materials of various geometries and compositions can be evaluated at temperatures from 700 to 2400 F. Tests are conducted not only on bare superalloys and ceramics, but also to study the behavior and durability of protective coatings applied to those materials.
Comparative High Voltage Impulse Measurement
FitzPatrick, Gerald J.; Kelley, Edward F.
1996-01-01
A facility has been developed for the determination of the ratio of pulse high voltage dividers over the range from 10 kV to 300 kV using comparative techniques with Kerr electro-optic voltage measurement systems and reference resistive voltage dividers. Pulse voltage ratios of test dividers can be determined with relative expanded uncertainties of 0.4 % (coverage factor k = 2 and thus a two standard deviation estimate) or less using the complementary resistive divider/Kerr cell reference systems. This paper describes the facility and specialized procedures used at NIST for the determination of test voltage divider ratios through comparative techniques. The error sources and special considerations in the construction and use of reference voltage dividers to minimize errors are discussed, and estimates of the measurement uncertainties are presented. PMID:27805083
NASA Astrophysics Data System (ADS)
Bellur, K.; Médici, E. F.; Hermanson, J. C.; Choi, C. K.; Allen, J. S.
2018-04-01
Control of boil-off of cryogenic propellants is a continuing technical challenge for long duration space missions. Predicting phase change rates of cryogenic liquids requires an accurate estimation of solid-fluid interface temperature distributions in regions where a contact line or a thin liquid film exists. This paper described a methodology to predict inner wall temperature gradients with and without evaporation using discrete temperature measurements on the outer wall of a container. Phase change experiments with liquid hydrogen and methane in cylindrical test cells of various materials and sizes were conducted at the Neutron Imaging Facility at the National Institute of Standards and Technology. Two types of tests were conducted. The first type of testing involved thermal cycling of an evacuated cell (dry) and the second involved controlled phase change with cryogenic liquids (wet). During both types of tests, temperatures were measured using Si-diode sensors mounted on the exterior surface of the test cells. Heat is transferred to the test cell by conduction through a helium exchange gas and through the cryostat sample holder. Thermal conduction through the sample holder is shown to be the dominant mode with the rate of heat transfer limited by six independent contact resistances. An iterative methodology is employed to determine contact resistances between the various components of the cryostat stick insert, test cell and lid using the dry test data. After the contact resistances are established, inner wall temperature distributions during wet tests are calculated.
Corrosion impact of reductant on DWPF and downstream facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickalonis, J. I.; Imrich, K. J.; Jantzen, C. M.
2014-12-01
Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid is not completely consumed and small quantities of the glycolate anion are carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data in glycolate-bearing solution applicable to SRS systems were not available. Therefore, testing wasmore » recommended to evaluate the materials of construction of vessels, piping and components within DWPF and downstream facilities. The testing, conducted in non-radioactive simulants, consisted of both accelerated tests (electrochemical and hot-wall) with coupons in laboratory vessels and prototypical tests with coupons immersed in scale-up and mock-up test systems. Eight waste or process streams were identified in which the glycolate anion might impact the performance of the materials of construction. These streams were 70% glycolic acid (DWPF feed vessels and piping), SRAT/SME supernate (Chemical Processing Cell (CPC) vessels and piping), DWPF acidic recycle (DWPF condenser and recycle tanks and piping), basic concentrated recycle (HLW tanks, evaporators, and transfer lines), salt processing (ARP, MCU, and Saltstone tanks and piping), boric acid (MCU separators), and dilute waste (HLW evaporator condensate tanks and transfer line and ETF components). For each stream, high temperature limits and worst-case glycolate concentrations were identified for performing the recommended tests. Test solution chemistries were generally based on analytical results of actual waste samples taken from the various process facilities or of prototypical simulants produced in the laboratory. The materials of construction for most vessels, components and piping were not impacted with the presence of glycolic acid or the impact is not expected to affect the service life. However, the presence of the glycolate anion was found to affect corrosion susceptibility of some materials of construction in the DWPF and downstream facilities, especially at elevated temperatures. The following table summarizes the results of the electrochemical and hot wall testing and indicates expected performance in service with the glycolate anion present.« less
Credit BG. View looking northeast at southwestern side of Test ...
Credit BG. View looking northeast at southwestern side of Test Stand "D" complex. Test Stand "D" workshop (Building 4222/E-23) is at left; shed to its immediate right is an entrance to underground tunnel system which interconnects all test stands. To the right of Test Stand "D" tower are four Clayton water-tube flash boilers once used in the Steam Generator Plant 4280/E-81 to power the vacuum ejector system at "D" and "C" stands. A corner of 4280/E-81 appears behind the boilers. Boilers were removed as part of stand dismantling program. The Dv (vertical vacuum) Test Cell is located in the Test Stand "D" tower, behind the sunscreen on the west side. The top of the tower contains a hoist for lifting or lowering rocket engines into the Dv Cell. Other equipment mounted in the tower is part of the steam-driven vacuum ejector system - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
10 CFR 26.123 - Testing facility capabilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...
10 CFR 26.123 - Testing facility capabilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...
10 CFR 26.123 - Testing facility capabilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...
10 CFR 26.123 - Testing facility capabilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...
10 CFR 26.123 - Testing facility capabilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...
Photovoltaic Manufacturing Consortium (PVMC) – Enabling America’s Solar Revolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metacarpa, David
The U.S. Photovoltaic Manufacturing Consortium (US-PVMC) is an industry-led consortium which was created with the mission to accelerate the research, development, manufacturing, field testing, commercialization, and deployment of next-generation solar photovoltaic technologies. Formed as part of the U.S. Department of Energy's (DOE) SunShot initiative, and headquartered in New York State, PVMC is managed by the State University of New York Polytechnic Institute (SUNY Poly) at the Colleges of Nanoscale Science and Engineering. PVMC is a hybrid of industry-led consortium and manufacturing development facility, with capabilities for collaborative and proprietary industry engagement. Through its technology development programs, advanced manufacturing development facilities,more » system demonstrations, and reliability and testing capabilities, PVMC has demonstrated itself to be a recognized proving ground for innovative solar technologies and system designs. PVMC comprises multiple locations, with the core manufacturing and deployment support activities conducted at the Solar Energy Development Center (SEDC), and the core Si wafering and metrology technologies being headed out of the University of Central Florida. The SEDC provides a pilot line for proof-of-concept prototyping, offering critical opportunities to demonstrate emerging concepts in PV manufacturing, such as evaluations of innovative materials, system components, and PV system designs. The facility, located in Halfmoon NY, encompasses 40,000 square feet of dedicated PV development space. The infrastructure and capabilities housed at PVMC includes PV system level testing at the Prototype Demonstration Facility (PDF), manufacturing scale cell & module fabrication at the Manufacturing Development Facility (MDF), cell and module testing, reliability equipment on its PV pilot line, all integrated with a PV performance database and analytical characterizations for PVMC and its partners test and commercial arrays. Additional development and deployment support are also housed at the SEDC, such as cost modeling and cost model based development activities for PV and thin film modules, components, and system level designs for reduced LCOE through lower installation hardware costs, labor reductions, soft costs and reduced operations and maintenance costs. The progression of the consortium activities started with infrastructure and capabilities build out focused on CIGS thin film photovoltaics, with a particular focus on flexible cell and module production. As marketplace changes and partners objectives shifted, the consortium shifted heavily towards deployment and market pull activities including Balance of System, cost modeling, and installation cost reduction efforts along with impacts to performance and DER operational costs. The consortium consisted of a wide array of PV supply chain companies from equipment and component suppliers through national developers and installers with a particular focus on commercial scale deployments (typically 25 to 2MW installations). With DOE funding ending after the fifth budget period, the advantages and disadvantages of such a consortium is detailed along with potential avenues for self-sustainability is reviewed.« less
NASA Astrophysics Data System (ADS)
Yano, Sachiko; Kasahara, Haruo; Masuda, Daisuke; Tanigaki, Fumiaki; Shimazu, Toru; Suzuki, Hiromi; Karahara, Ichirou; Soga, Kouichi; Hoson, Takayuki; Tayama, Ichiro; Tsuchiya, Yoshikazu; Kamisaka, Seiichiro
2013-03-01
In 2004, Japan Aerospace Exploration Agency developed the engineered model of the Plant Experiment Unit and the Cell Biology Experiment Facility. The Plant Experiment Unit was designed to be installed in the Cell Biology Experiment Facility and to support the seed-to-seed life cycle experiment of Arabidopsis plants in space in the project named Space Seed. Ground-based experiments to test the Plant Experiment Unit showed that the unit needed further improvement of a system to control the water content of a seedbed using an infrared moisture analyzer and that it was difficult to keep the relative humidity inside the Plant Experiment Unit between 70 and 80% because the Cell Biology Experiment Facility had neither a ventilation system nor a dehumidifying system. Therefore, excess moisture inside the Cell Biology Experiment Facility was removed with desiccant bags containing calcium chloride. Eight flight models of the Plant Experiment Unit in which dry Arabidopsis seeds were fixed to the seedbed with gum arabic were launched to the International Space Station in the space shuttle STS-128 (17A) on August 28, 2009. Plant Experiment Unit were installed in the Cell Biology Experiment Facility with desiccant boxes, and then the Space Seed experiment was started in the Japanese Experiment Module, named Kibo, which was part of the International Space Station, on September 10, 2009 by watering the seedbed and terminated 2 months later on November 11, 2009. On April 19, 2010, the Arabidopsis plants harvested in Kibo were retrieved and brought back to Earth by the space shuttle mission STS-131 (19A). The present paper describes the Space Seed experiment with particular reference to the development of the Plant Experiment Unit and its actual performance in Kibo onboard the International Space Station. Downlinked images from Kibo showed that the seeds had started germinating 3 days after the initial watering. The plants continued growing, producing rosette leaves, inflorescence stems, flowers, and fruits in the Plant Experiment Unit. In addition, the senescence of rosette leaves was found to be delayed in microgravity.
Design, Fabrication, and Shakeout Testing of ATALANTE Dissolver Off-Gas Sorbent-Based Capture System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Jr, Joseph Franklin; Jubin, Robert Thomas; Jordan, Jacob A.
A sorbent-based capture system designed for integration into the existing dissolver off-gas (DOG) treatment system at the ATelier Alpha et Laboratoires pour ANalyses, Transuraniens et Etudes de retraitement (ATALANTE) facility has been successfully designed and fabricated and has undergone shakeout testing. Discussions with personnel from the ATALANTE facility provided guidance that was used for the design. All components for this system were specified, procured, and received on site at Oak Ridge National Laboratory (ORNL). The system was then fabricated and tested at ORNL to verify operation. Shakeout testing resulted in a simplified system. This system should be easily installed intomore » the existing facility and should be straightforward to operate during future experimental testing. All parts were selected to be compatible with ATALANTE power supplies, space requirements, and the existing DOG treatment system. Additionally, the system was demonstrated to meet all of four design requirements. These include (1) a dissolver off-gas flow rate of ≤100 L/h (1.67 L/min), (2) an external temperature of ≤50°C for all system components placed in the hot cell, (3) a sorbent bed temperature of ~150°C, and (4) a gas temperature of ~150°C upon entry into the sorbent bed. The system will be ready for shipment and installation in the existing DOG treatment system at ATALANTE in FY 2016.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles W. Solbrig; Chad Pope; Jason Andrus
The fuel cycle facility (FCF) at the Idaho National Laboratory is a nuclear facility which must be licensed in order to operate. A safety analysis is required for a license. This paper describes the analysis of the Design Basis Accident for this facility. This analysis involves a model of the transient behavior of the FCF inert atmosphere hot cell following an earthquake initiated breach of pipes passing through the cell boundary. The hot cell is used to process spent metallic nuclear fuel. Such breaches allow the introduction of air and subsequent burning of pyrophoric metals. The model predicts the pressure,more » temperature, volumetric releases, cell heat transfer, metal fuel combustion, heat generation rates, radiological releases and other quantities. The results show that releases from the cell are minimal and satisfactory for safety. This analysis method should be useful in other facilities that have potential for damage from an earthquake and could eliminate the need to back fit facilities with earthquake proof boundaries or lessen the cost of new facilities.« less
Engine Research Building’s Central Control Room
1948-07-21
Operators in the Engine Research Building’s Central Control Room at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful collection of compressors and exhausters located in the central portion of the basement provided process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities. This photograph was taken just after a major upgrade to the control room in 1948. The panels on the wall contain rudimentary floor plans of the different Engine Research Building sections with indicator lights and instrumentation for each test cell. The process air equipment included 12 exhausters, four compressors, a refrigeration system, cooling water, and an exhaust system. The operators in the control room kept in contact with engineers running the process air system and those conducting the tests in the test cells. The operators also coordinated with the local power companies to make sure enough electricity was available to operate the powerful compressors and exhausters.
STS-51 preparation: ACTS, ORFEUS, Discovery in VAB
NASA Technical Reports Server (NTRS)
1993-01-01
In NASA's building AM on Cape Canaveral Air Force Station, STS-51 mission specialist Carl Walz (right) and Deutsche Aerospace technician Gregor Dawidowitsch check over the scientific instruments mounted on the Shuttle Pallet Satellite (SPAS) carrier (38573); The Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) and SPAS is readied for hoisting into a test cell at the Vertical Processing Facility (VPF) (38574); Mating of the Advanced Communications Technology Satellite (ACTS) with the Transfer Orbit Stage (TOS) booster is under way in the Payload Hazardous Servicing Facility (PHSF) (38575); The mated ACTS and TOS are ready to be moved from the PHSF to the Vertical Processsing Facility (VPF) (38576); The orbiter Discovery is rolled into the Vehicle Assembly Building (VAB) for mating with the external tank and twin solid rocket boosters (38577-8).
Fuel Cell/Reformers Technology Development
NASA Technical Reports Server (NTRS)
2004-01-01
NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.
Bauer, J; Hymer, W C; Morrison, D R; Kobayashi, H; Seaman, G V; Weber, G
1999-01-01
Programs for free flow electrophoresis in microgravity over the past 25 years are reviewed. Several studies accomplished during 20 spaceflight missions have demonstrated that sample throughput is significantly higher in microgravity than on the ground. Some studies have shown that resolution is also increased. However, many cell separation trials have fallen victim to difficulties associated with experimenting in the microgravity environment such as microbial contamination, air bubbles in electrophoresis chambers, and inadequate facilities for maintaining cells before and after separation. Recent studies suggest that the charge density of cells at their surface may also be modified in microgravity. If this result is confirmed, a further cellular mechanism of "sensing" the low gravity environment will have been found. Several free fluid electrophoresis devices are now available. Most have been tried at least once in microgravity. Newer units not yet tested in spaceflight have been designed to accommodate problems associated with space processing. The USCEPS device and the Japanese FFEU device are specifically designed for sterile operations, whereas the Octopus device is designed to reduce electroosmotic and electrohydrodynamic effects, which become dominant and detrimental in microgravity. Some of these devices will also separate proteins by zone electrophoresis, isotachophoresis, or isoelectric focusing in a single unit. Separation experiments with standard test particles are useful and necessary for testing and optimizing new space hardware. A cohesive free fluid electrophoresis program in the future will obviously require (1) flight opportunities and funding, (2) identification of suitable cellular and macromolecular candidate samples, and (3) provision of a proper interface of electrophoresis processing equipment with biotechnological facilities--equipment like bioreactors and protein crystal growth chambers. The authors feel that such capabilities will lead to the production of commercially useful quantities of target products and to an accumulation of new knowledge relating to the complexities of electrostatic phenomena at the cell surface.
Rundek, Tatjana; Brown, Scott C; Wang, Kefeng; Dong, Chuanhui; Farrell, Mary Beth; Heller, Gary V; Gornik, Heather L; Hutchisson, Marge; Needleman, Laurence; Benenati, James F; Jaff, Michael R; Meier, George H; Perese, Susana; Bendick, Phillip; Hamburg, Naomi M; Lohr, Joann M; LaPerna, Lucy; Leers, Steven A; Lilly, Michael P; Tegeler, Charles; Alexandrov, Andrei V; Katanick, Sandra L
2014-10-01
There is limited information on the accreditation status and geographic distribution of vascular testing facilities in the US. The Centers for Medicare & Medicaid Services (CMS) provide reimbursement to facilities regardless of accreditation status. The aims were to: (1) identify the proportion of Intersocietal Accreditation Commission (IAC) accredited vascular testing facilities in a 5% random national sample of Medicare beneficiaries receiving outpatient vascular testing services; (2) describe the geographic distribution of these facilities. The VALUE (Vascular Accreditation, Location & Utilization Evaluation) Study examines the proportion of IAC accredited facilities providing vascular testing procedures nationally, and the geographic distribution and utilization of these facilities. The data set containing all facilities that billed Medicare for outpatient vascular testing services in 2011 (5% CMS Outpatient Limited Data Set (LDS) file) was examined, and locations of outpatient vascular testing facilities were obtained from the 2011 CMS/Medicare Provider of Services (POS) file. Of 13,462 total vascular testing facilities billing Medicare for vascular testing procedures in a 5% random Outpatient LDS for the US in 2011, 13% (n=1730) of facilities were IAC accredited. The percentage of IAC accredited vascular testing facilities in the LDS file varied significantly by US region, p<0.0001: 26%, 12%, 11%, and 7% for the Northeast, South, Midwest, and Western regions, respectively. Findings suggest that the proportion of outpatient vascular testing facilities that are IAC accredited is low and varies by region. Increasing the number of accredited vascular testing facilities to improve test quality is a hypothesis that should be tested in future research. © The Author(s) 2014.
Optimizing gene transfer to conventional outflow cells in living mouse eyes
Li, G; Gonzalez, P; Camras, LJ; Navarro, I; Qiu, J; Challa, P; Stamer, WD
2013-01-01
The mouse eye has physiological and genetic advantages to study conventional outflow function. However, its small size and shallow anterior chamber presents technical challenges to efficient intracameral delivery of genetic material to conventional outflow cells. The goal of this study was to optimize methods to overcome this technical hurdle, without damaging ocular structures or compromising outflow function. Gene targeting was monitored by immunofluorescence microscopy after transduction of adenovirus encoding green fluorescent protein driven by a CMV promoter. Guided by a micromanipulator and stereomicroscope, virus was delivered intracamerally to anesthetized mice by bolus injection using 33 gauge needle attached to Hamilton syringe or infusion with glass micropipette connected to syringe pump. The total number of particles introduced remained constant, while volume of injected virus solution (3–10 µl) was varied for each method and time of infusion (3–40 min) tested. Outflow facility and intraocular pressure were monitored invasively using established techniques. Unlike bolus injections or slow infusions, introduction of virus intracamerally during rapid infusions (3 min) at any volume tested preferentially targeted trabecular meshwork and Schlemm's canal cells, with minimal transduction of neighboring cells. While infusions resulted in transient intraocular pressure spikes (commensurate with volume infused, Δ40–70 mmHg), eyes typically recovered within 60 minutes. Transduced eyes displayed normal outflow facility and tissue morphology 3–6 days after infusions. Taken together, fast infusion of virus solution in small volumes intracamerally is a novel and effective method to selectively deliver agents to conventional outflow cells in living mice. PMID:23337742
Credit WCT. Photographic copy of photograph, in 1963 a "Y" ...
Credit WCT. Photographic copy of photograph, in 1963 a "Y" branch connector was introduced at the Dd test station in order to add a second test cell (named Dy) to the Dd train of coolers and ejectors. This view shows the diffuser used to connect the Dy test chamber with the "Y" branch. This Dy chamber was the second one installed at this station; it was later moved and incorporated into a larger horizontal test station retaining the Dy designation. (JPL negative no. 384-11176-B, 17 May 1976) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
35. INTERIOR VIEW TO THE NORTHWEST OF ROOM 152, A ...
35. INTERIOR VIEW TO THE NORTHWEST OF ROOM 152, A FIRST FLOOR CORRIDOR AND VIEWING GALLERY ON THE WEST SIDE OF THE POST-MORTEM CELLS. VIEWING AND WORK STATIONS ARE IN THE EAST WALL. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzman, M.I.; Gammie, L.A.; Gilbert, P.E.
1997-12-31
The Metropolitan District (MDC) Water Pollution Control Plant located in Hartford, Connecticut operates a state-of-the-art composting facility to process municipal sewage sludge. An air emissions test program was performed to determine emission rates of criteria and non-criteria pollutants and to evaluate the performance of two types of emissions/odor control systems (biofiltration and wet scrubbing). The purpose of this report is to further the limited available emissions and control performance data on a municipal sewage sludge composting facility operation. The MDC`s sludge composting facility consists of a Biocell train and a Cure Cell train, each of which can currently receive approximatelymore » 20 wet tons per hour of sludge at 60% of full capacity. The minimum retention time in each train is 10.5 days. Air emissions from the Biocell train are treated by both a biofiltration system and a three-stage wet scrubber system. The biofilter and wet scrubber system operate in parallel, so as to allow direct comparison of performance. Emissions from the Cure Cell train are treated by a single biofiltration system. The wet scrubber system consists of a first stage reducing absorber (ammonia solution), followed by a second stage oxidation absorber (sodium hypochlorite and sulfuric acid), and a final residual scrubber (sodium hydroxide solution). The two biofiltration systems are identically sized at 10,000 square feet surface area and three feet depth. The emissions testing program was designed to obtain simultaneous inlet and outlet data across each control device. The measured pollutants included organo-sulfides, alcohols, aldehydes, ketones, pinenes, terpenes, total reduced sulfur compounds, chlorinated hydrocarbons, sulfuric acid, sodium hydroxide, ammonia, carbon monoxide and volatile organic compounds.« less
Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Alex; Banta, Larry; Tucker, David
2010-08-01
This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant componentsmore » is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.« less
Yan, Hongjing; Zhang, Min; Zhao, Jinkou; Huan, Xiping; Ding, Jianping; Wu, Susu; Wang, Chenchen; Xu, Yuanyuan; Liu, Li; Xu, Fei; Yang, Haitao
2014-01-01
Background A large number of men who have sex with men (MSM) and people living with HIV/AIDS (PLHA) are underserved despite increased service availability from government facilities while many community based organizations (CBOs) are not involved. We aimed to assess the feasibility and effectiveness of the task shifting from government facilities to CBOs in China. Methods HIV preventive intervention for MSM and follow-up care for PLHA were shifted from government facilities to CBOs. Based on ‘cash on service delivery’ model, 10 USD per MSM tested for HIV with results notified, 82 USD per newly HIV cases diagnosed, and 50 USD per PLHA received a defined package of follow-up care services, were paid to the CBOs. Cash payments were made biannually based on the verified results in the national web-based HIV/AIDS information system. Findings After task shifting, CBOs gradually assumed preventive intervention for MSM and follow-up care for PLHA from 2008 to 2012. HIV testing coverage among MSM increased from 4.1% in 2008 to 22.7% in 2012. The baseline median CD4 counts of newly diagnosed HIV positive MSM increased from 309 to 397 cells/µL. HIV tests among MSM by CBOs accounted for less than 1% of the total HIV tests in Nanjing but the share of HIV cases detected by CBOs was 12.4% in 2008 and 43.6% in 2012. Unit cost per HIV case detected by CBOs was 47 times lower than that by government facilities. The coverage of CD4 tests and antiretroviral therapy increased from 71.1% and 78.6% in 2008 to 86.0% and 90.1% in 2012, respectively. Conclusion It is feasible to shift essential HIV services from government facilities to CBOs, and to verify independently service results to adopt ‘cash on service delivery’ model. Services provided by CBOs are cost-effective, as compared with that by government facilities. PMID:25050797
NASA Technical Reports Server (NTRS)
1993-01-01
A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).
Infrastructure Development of Single Cell Testing Capability at A0 Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhanaraj, Nandhini; Padilla, R.; Reid, J.
2009-09-01
The objective of this technical note is to document the details of the infrastructure development process that was realized at the A0 photo injector facility to establish RF cold testing capability for 1.3 GHz superconducting niobium single cell cavities. The activity began the last quarter of CY 2006 and ended the first quarter of CY 2009. The whole process involved addressing various aspects such as design of vertical insert and lifting fixture, modification of existing RF test station and design of new couplers, development of a Temperature Mapping (T-Map) system, radiation considerations for the test location (north cave), update ofmore » existing High Pressure Rinse (HPR) system, preparation of necessary safety documents and eventually obtaining an Operational Readiness Clearance (ORC). Figure 1 illustrates the various components of the development process. In the past, the north cave test station at A0 has supported the cold testing 3.9 GHz nine cell and single cell cavities, thus some of the components were available for use and some needed modification. The test dewar had the capacity to accommodate 1.3 GHz single cells although a new vertical insert that could handle both cavity types (1.3 and 3.9 GHz) had to be designed. The existing cryogenic system with an average capacity of {approx} 0.5 g/sec was deemed sufficient. The RF system was updated with broadband components and an additional amplifier with higher power capacity to handle higher gradients usually achieved in 1.3 GHz cavities. The initial testing phase was arbitrated to proceed with fixed power coupling. A new temperature mapping system was developed to provide the diagnostic tool for hot spot studies, quench characterization and field emission studies. The defining feature of this system was the use of diode sensors instead of the traditional carbon resistors as sensing elements. The unidirectional current carrying capacity (forward bias) of the diodes provided for the ease of multiplexing of the system, thus substantially reducing the number of cables required to power the sensors. The high gradient capacity of the 1.3 GHz cavities required a revision of the radiation shielding and interlocks. The cave was updated as per the recommendations of the radiation safety committee. The high pressure rinse system was updated with new adapters to assist the rinsing 1.3 GHz single cell cavities. Finally, a proposal for cold testing 1.3 GHz single cell cavities at A0 north cave was made to the small experiments approval committee, radiation safety committee and the Tevatron cryogenic safety sub-committee for an operational readiness clearance and the same was approved. The project was classified under research and development of single cell cavities (project 18) and was allocated a budget of $200,000 in FY 2007.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, D. P.; Zamecnik, J. R.; Newell, D. D.
2015-08-20
This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.
10. Photographic copy of engineering drawing showing the plumbing layout ...
10. Photographic copy of engineering drawing showing the plumbing layout of Test Stand 'C' Cv Cell, vacuum line, and scrubber-condenser as erected in 1977-78. JPL drawing by VTN Consolidated, Inc. Engineers, Architects, Planners, 2301 Campus Drive, Irvine, California 92664: 'JPL-ETS E-18 (C-Stand Modifications) Flow Diagram,' sheet M-2 (JPL sheet number E18/41-0), September 1, 1977. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
9. Photographic copy of engineering drawing showing the mechanical layout ...
9. Photographic copy of engineering drawing showing the mechanical layout of Test Stand 'C' Cv Cell, vacuum line, and scrubber-condenser as erected in 1977-78. JPL drawing by VTN Consolidated, Inc. Engineers, Architects, Planners, 2301 Campus Drive, Irvine, California 92664: 'JPL-ETS E-18 (C-Stand Modifications) Control Elevations & Schematics,' sheet M-5 (JPL sheet number E18/44-0), 1 September 1977. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
Reed, William; Noga, Stephen J; Gee, Adrian P; Rooney, Cliona M; Wagner, John E; McCullough, Jeffrey; McKenna, David H; Whiteside, Theresa L; Donnenberg, Albert D; Baker, Acacia K; Lindblad, Robert W; Wagner, Elizabeth L; Mondoro, Traci Heath
2009-04-01
In 2002, the US National Heart, Lung, and Blood Institute (NHLBI) conducted a workshop to determine needs of the cell therapy community. A consensus emerged that improved access to cGMP facilities, regulatory assistance, and training would foster the advancement of cellular therapy. A 2003 NHLBI request for proposals resulted in four contracts being awarded to three cell-manufacturing facilities (Baylor College of Medicine, University of Minnesota, and University of Pittsburgh) and one administrative center (The EMMES Corporation). As a result, Production Assistance for Cellular Therapies (PACT) was formed. As of October 1, 2008, PACT has received 65 preliminary applications of which 45 have been approved for product manufacture. A variety of cell therapies are represented including T-regulatory cells, natural killer cells, adipose-derived stem cells, cardiac progenitor cells for cardiac disease, hematopoietic progenitor cells (HPCs) for central nervous system applications, cytotoxic T lymphocytes, and dendritic cells. A total of 169 products have been administered under 12 applications and 2 reagents were manufactured and delivered. Fourteen peer-reviewed publications and 15 abstracts have resulted from the PACT project to date. A cell therapy textbook is nearly complete. PACT technical projects have addressed assay development, rapid endotoxin testing, shipping of cell products, and CD34+ HPC isolation from low-volume marrow. Educational Web seminars and on-site training through workshops have been conducted. PACT is an active and successful cell therapy manufacturing resource in the United States, addressing research and training while forging relationships among academia, industry, and participating institutions.
NASA Technical Reports Server (NTRS)
Scully, Robert C.
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the EMI/EMC Test Facility. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Credit BG. View looking northeast down from the tower onto ...
Credit BG. View looking northeast down from the tower onto the two horizontal test stations at Test Stand "D." Station Dy is at the far left (Dy vacuum cell out of view), with in-line exhaust gas cooling sections and steam-driven "air ejector" (or evacuator) discharging engine exhausts to the east. The Dd cell is visible at the lower left, and the Dd exhaust train has the same functions as at Dy. The spherical tank is an electrically heated "accumulator" which supplies steam to the ejectors at Dv, Dd, and Dy stations. Other large piping delivered cooling water to the horizontal train cooling sections. The horizontal duct at the "Y" branch in the Dd train connects the Dd ejector to the Dv and Cv vacuum duct system (a blank can be bolted into this duct to isolate the Dd system). The shed roof for the Dpond test station appears at bottom center of this image. The open steel frame to the lower left of the image supports a hoist and crane for installing or removing test engines from the Dd test cell - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Wood, Joseph; Mahajan, Ekta; Shiratori, Masaru
2013-01-01
The use of disposable bags for cell culture media storage has grown significantly in the past decade. Some of the key advantages of using disposable bags relative to non-disposable containers include increased product throughput, decreased cleaning validation costs, reduced risk of cross contamination and lower facility costs. As the scope of use of disposable bags for cell culture applications increases, problematic bags and scenarios should be identified and addressed to continue improving disposables technologies and meet the biotech industry's needs. In this article, we examine a cell culture application wherein media stored in disposable bags is warmed at 37°C before use for cell culture operations. A problematic bag film was identified through a prospective and retrospective cell culture investigation. The investigation provided information on the scope and variation of the issue with respect to different Chinese hamster ovary (CHO) cell lines, cell culture media, and application-specific parameters. It also led to the development of application-specific test methods and enabled a strategy for disposable bag film testing. The strategy was implemented for qualifying an alternative bag film for use in our processes. In this test strategy, multiple lots of 13 bag film types, encompassing eight vendors were evaluated using a three round, cell culture-based test strategy. The test strategy resulted in the determination of four viable bag film options based on the technical data. The results of this evaluation were used to conclude that a volatile or air-quenched compound, likely generated by gamma irradiation of the problematic bag film, negatively impacted cell culture performance. © 2013 American Institute of Chemical Engineers.
Overview of the Orion Vibroacoustic Test Capability at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Hughes, William O.; Hozman, Aron D.; McNelis, Mark E.; Otten, Kim D.
2008-01-01
In order to support the environmental test needs for our new Orion and Constellation program, NASA is developing unique world-class test facilities. To optimize this testing of spaceflight hardware while minimizing transportation issues, a one-stop, under one roof test capability is being developed at the Space Power Facility at the NASA Glenn Research Center's Plum Brook Station. This facility will provide the capability to perform the following environmental testing: (1) reverberation acoustic testing, (2) mechanical base-shake sine testing, (3) modal testing, (4) thermal-vacuum testing, and (5) EMI/EMC (electromagnetic interference and compatibility) testing. An overview of this test capability will be provided in this presentation, with special focus on the two new vibroacoustic test facilities currently being designed and built, the Reverberant Acoustic Test Facility (RATF) and the Mechanical Vibration Facility (MVF). Testing of the engineering developmental hardware and qualification hardware of the Orion (Crew Exploration Vehicle) will commence shortly after the facilities are commissioned.
EOS-AM1 Nickel Hydrogen Cell Interim Life Test Report
NASA Technical Reports Server (NTRS)
Bennett, C. W.; Keys, D. J.; Rao, G. M.; Wannemacher, H. E.; Vaidyanathan, H.
1997-01-01
This paper reports the interim results of the Earth Observing System AM-1 project (EOS-AM-1) nickel hydrogen cell life test being conducted under contract to National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at the Lockheed Martin Missiles and Space (LMMS) facility in East Windsor, NJ; and at COMSAT Labs., Clarksburg, MD. The purpose of the tests is to verify that the EOS-AM-l cell design can meet five years of real-time Low Earth Orbit (LEO) cycling. The tests include both real-time LEO and accelerated stress tests. At LMMS, the first real-time LEO simulated 99 minute orbital cycle started on February 7, 1994 and the test has been running continuously since that time, with 13000 LEO cycles completed as of September 2, 1996. Each cycle consists of a 64 minute charge (VT at 1.507 volts per cell, 1.06 C/D ratio, followed by 0.6 ampere trickle charge) and a 35 minute constant power discharge at 177 watts (22.5% DOD). At COMSAT, the accelerated stress test consists of 90 minute orbital cycles at 60% DOD with a 30 minute discharge at 60 amperes and a 60 minute charge at 40 ampercs (VT at 1.54 volts per cell to 1.09 C/D ratio, followed by 0.6 ampere trickle charge). The real-time LEO life test battery consists of seven, 50AH (nameplate rating) Eagle-Picher, Inc. (EPI) Mantech cells manufactured into three, 3-cell pack assemblies (there are two place holder cells that are not part of the life test electrical circuit). The test pack is configured to simulate the conductive thermal design of the spacecraft battely, including: conductive aluminum sleeves, 3-cell pack aluminum baseplate, and honeycomb panel all mounted to a liquid (-5 C) cold plate. The entire assembly is located in a thermal chamber operating at +3 C. The accelerated stress test unit consists of five cells mounted in machined aluminum test sleeves and is operating at +10 C. The real-time LEO life test battery has met all performance requirements through the first 13,000 cycles, including: end of charge and discharge cell voltages and voltage gradients; end of chalge and discharge cell pressures; within cell and between cell temperature gradients; discharge capacity; current and power levels; and all chalge parameters. The accelerated stress test battely has completed over 5900 cycles as of 9/11/96. This paper reports both battery performances as a function of cycle life, with individual cell performance comparisons repolted for selected cycles in both tests.
1997-06-28
STS-94 Pilot Susan Leigh Still arrives at the Shuttle Landing Facility aboard a T-38 jet in preparation for the reflight of the Microgravity Science Laboratory-1 mission. Launch is scheduled for July 1, 1997, at 2:37 p.m. EDT. The laboratory was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments
1997-06-28
STS-94 Commander James D. Halsell, Jr., arrives at the Shuttle Landing Facility aboard a T-38 jet in preparation for the reflight of the Microgravity Science Laboratory-1 mission. Launch is scheduled for July 1, 1997, at 2:37 p.m. EDT. The laboratory was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments
Survey of solar thermal test facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masterson, K.
The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilitiesmore » is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.« less
Calibration for Thrust and Airflow Measurements in the CE-22 Advanced Nozzle Test Facility
NASA Technical Reports Server (NTRS)
Werner, Roger A.; Wolter, John D.
2010-01-01
CE-22 facility procedures and measurements for thrust and airflow calibration obtained with choked-flow ASME nozzles are presented. Six calibration nozzles are used at an inlet total pressure from 20 to 48 psia. Throat areas are from 9.9986 to 39.986 sq. in.. Throat Reynolds number varies from 1.8 to 7.9 million. Nozzle gross thrust coefficient (CFG) uncertainty is 0.25 to 0.75 percent, with smaller uncertainly generally for larger nozzles and higher inlet total pressure. Nozzle discharge coefficient (CDN) uncertainty is 0.15 percent or less for all the data. ASME nozzle calibrations need to be done before and after research model testing to achieve these uncertainties. In addition, facility capability in terms of nozzle pressure ratio (NPR) and nozzle airflow are determined. Nozzle pressure ratio of 50 or more is obtainable at 40 psia for throat areas between 20 and 30 sq. in.. Also presented are results for two of the ASME nozzles vectored at 10deg, a dead-weight check of the vertical (perpendicular to the jet axis) force measurement, a calibration of load cell forces for the effects of facility tank deflection with tank pressure, and the calibration of the metric-break labyrinth seal.
Lewis Research Center space station electric power system test facilities
NASA Technical Reports Server (NTRS)
Birchenough, Arthur G.; Martin, Donald F.
1988-01-01
NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.
Nuclear thermal propulsion test facility requirements and development strategy
NASA Technical Reports Server (NTRS)
Allen, George C.; Warren, John; Clark, J. S.
1991-01-01
The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.
34. INTERIOR VIEW TO THE NORTH OF ROOMS 143 AND ...
34. INTERIOR VIEW TO THE NORTH OF ROOMS 143 AND 150, A FIRST FLOOR CORRIDOR AND VIEWING GALLERY ON THE EAST SIDE OF THE POST-MORTEM CELLS. VIEWING AND WORK STATIONS ARE IN THE NORTH AND WEST WALLS. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
NREL to Collaborate with Small Clean Energy Businesses as Part of DOE Pilot
help the first group of small clean energy businesses advance their products under the Small Business Vouchers (SBV) pilot launched last July by DOE. NREL is one of nine national laboratories participating in . Midwest Energy Group (MEG) of Illinois will use NREL's fuel cell test facilities to assess the long-term
Freeze-Dried Human Red Blood Cells
1992-04-15
are unlikely to survive until the next scheduled observation will be euthanized. Euthanasia of moribund animals will be authorized by the Study Director...discussed below will be performed in accordance with the Standard Operating Procedures of the Test Facility. A. Euthanasia : Euthanasia (overdose of...American Veterinary Medical Association (AVMA) Panel on Euthanasia Journal of American Veterinary Medical Association, 188:252-268, 1986). I I In
STD testing policies and practices in U.S. city and county jails.
Parece, M S; Herrera, G A; Voigt, R F; Middlekauff, S L; Irwin, K L
1999-09-01
Studies have shown that sexually transmitted disease (STD) rates are high in the incarcerated population. However, little is known about STD testing policies or practices in jails. To assess STD testing policies and practices in jails. The Division of STD Prevention developed and distributed an e-mail survey to 94 counties reporting more than 40 primary and secondary cases in 1996 or having cities with more than 200,000 persons. State and local STD program managers completed the assessment in collaboration with health departments and the main jail facilities in the selected counties. Most facilities (52-77%) had a policy for STD screening based only on symptoms or by arrestee request, and in these facilities, 0.2% to 6% of arrestees were tested. Facilities having a policy of offering routine testing tested only 3% to 45% of arrestees. Large facilities, facilities using public providers, and facilities routinely testing for syphilis using Stat RPR tested significantly more arrestees (P<0.05). Approximately half of the arrestees were released within 48 hours after intake, whereas 45% of facilities did not have STD testing results until after 48 hours. Most facilities had a policy for STD screening based only on symptoms or by arrestee request. Facilities having a policy of routine STD testing are not testing most of the arrestees. There is a small window (<48 hours) for STD testing and treatment before release. Smaller jails and facilities using private providers may need additional resources to increase STD testing levels. Correctional facilities should be considered an important setting for STD public health intervention where routine rapid STD screening and treatment on-site could be implemented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, Greg; Sutton, Benjamin J.; Tatman, Jonathan K.
The advanced welding facility within a hot cell at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory (ORNL), which has been jointly funded by the U.S. Department of Energy (DOE), Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program and the Welding and Repair Technology Center, is in the final phase of development. Research and development activities in this facility will involve direct testing of advanced welding technologies on irradiated materials in order to address the primary technical challenge of helium induced cracking that can arise when conventionalmore » fusion welding techniques are utilized on neutron irradiated stainless steels and nickel-base alloys. This report details the effort that has been required since the beginning of fiscal year 2017 to initiate welding research and development activities on irradiated materials within the hot cell cubicle, which houses welding sub-systems that include laser beam welding (LBW) and friction stir welding (FSW) and provides material containment within the hot cell.« less
Smith, Jennifer A; Sharma, Monisha; Levin, Carol; Baeten, Jared M; van Rooyen, Heidi; Celum, Connie; Hallett, Timothy B; Barnabas, Ruanne V
2015-04-01
Home HIV counselling and testing (HTC) achieves high coverage of testing and linkage to care compared with existing facility-based approaches, particularly among asymptomatic individuals. In a modelling analysis we aimed to assess the effect on population-level health and cost-effectiveness of a community-based package of home HTC in KwaZulu-Natal, South Africa. We parameterised an individual-based model with data from home HTC and linkage field studies that achieved high coverage (91%) and linkage to antiretroviral therapy (80%) in rural KwaZulu-Natal, South Africa. Costs were derived from a linked microcosting study. The model simulated 10,000 individuals over 10 years and incremental cost-effectiveness ratios were calculated for the intervention relative to the existing status quo of facility-based testing, with costs discounted at 3% annually. The model predicted implementation of home HTC in addition to current practice to decrease HIV-associated morbidity by 10–22% and HIV infections by 9–48% with increasing CD4 cell count thresholds for antiretroviral therapy initiation. Incremental programme costs were US$2·7 million to $4·4 million higher in the intervention scenarios than at baseline, and costs increased with higher CD4 cell count thresholds for antiretroviral therapy initiation; antiretroviral therapy accounted for 48–87% of total costs. Incremental cost-effectiveness ratios per disability-adjusted life-year averted were $1340 at an antiretroviral therapy threshold of CD4 count lower than 200 cells per μL, $1090 at lower than 350 cells per μL, $1150 at lower than 500 cells per μL, and $1360 at universal access to antiretroviral therapy. Community-based HTC with enhanced linkage to care can result in increased HIV testing coverage and treatment uptake, decreasing the population burden of HIV-associated morbidity and mortality. The incremental cost-effectiveness ratios are less than 20% of South Africa's gross domestic product per person, and are therefore classed as very cost effective. Home HTC can be a viable means to achieve UNAIDS' ambitious new targets for HIV treatment coverage. National Institutes of Health, Bill & Melinda Gates Foundation, Wellcome Trust.
2010-01-06
CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the external fuel tank for space shuttle Discovery's STS-131 mission, ET-135, is lowered into a test cell. The tank was delivered to Kennedy aboard the Pegasus barge from NASA's Michoud Assembly Facility on Dec. 26. The tank will remain in the test cell until it is transferred into a high bay for mating with the twin solid rocket boosters that will be used on the mission. Launch of the STS-131 mission to the International Space Station is targeted for March 18. For information on the STS-131 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Glenn Benson
2010-01-06
CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a crane is enlisted to lift the external fuel tank for space shuttle Discovery's STS-131 mission, ET-135, into a test cell. The tank was delivered to Kennedy aboard the Pegasus barge from NASA's Michoud Assembly Facility on Dec. 26. The tank will remain in the test cell until it is transferred into a high bay for mating with the twin solid rocket boosters that will be used on the mission. Launch of the STS-131 mission to the International Space Station is targeted for March 18. For information on the STS-131 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Glenn Benson
2010-01-06
CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the external fuel tank for space shuttle Discovery's STS-131 mission, ET-135, has arrived in its test cell. The tank was delivered to Kennedy aboard the Pegasus barge from NASA's Michoud Assembly Facility on Dec. 26. The tank will remain in the test cell until it is transferred into a high bay for mating with the twin solid rocket boosters that will be used on the mission. Launch of the STS-131 mission to the International Space Station is targeted for March 18. For information on the STS-131 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Glenn Benson
Daudin, L; Carrière, M; Gouget, B; Hoarau, J; Khodja, H
2006-01-01
A single ion hit facility is being developed at the Pierre Süe Laboratory (LPS) since 2004. This set-up will be dedicated to the study of ionising radiation effects on living cells, which will complete current research conducted on uranium chemical toxicity on renal and osteoblastic cells. The study of the response to an exposure to alpha particles will allow us to distinguish radiological and chemical toxicities of uranium, with a special emphasis on the bystander effect at low doses. Designed and installed on the LPS Nuclear microprobe, up to now dedicated to ion beam microanalysis, this set-up will enable us to deliver an exact number of light ions accelerated by a 3.75 MV electrostatic accelerator. An 'in air' vertical beam permits the irradiation of cells in conditions compatible with cell culture techniques. Furthermore, cellular monolayer will be kept in controlled conditions of temperature and atmosphere in order to diminish stress. The beam is collimated with a fused silica capillary tubing to target pre-selected cells. Motorisation of the collimator with piezo-electric actuators should enable fast irradiation without moving the sample, thus avoiding mechanical stress. An automated epifluorescence microscope, mounted on an antivibration table, allows pre- and post-irradiation cell observation. An ultra thin silicon surface barrier detector has been developed and tested to be able to shoot a cell with a single alpha particle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susan Stacy; Hollie K. Gilbert
2005-02-01
Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to housemore » the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.« less
Wake Shield Facility Modal Survey Test in Vibration Acoustic Test Facility
1991-10-09
Astronaut Ronald M. Sega stands beside the University of Houston's Wake Shield Facility before it undergoes a Modal Survey Test in the Vibration and Acoustic Test Facility Building 49, prior to being flown on space shuttle mission STS-60.
Survey of aircraft icing simulation test facilities in North America
NASA Technical Reports Server (NTRS)
Olsen, W.
1981-01-01
A survey was made of the aircraft icing simulation facilities in North America: there are 12 wind tunnels, 28 engine test facilities, 6 aircraft tankers and 14 low velocity facilities, that perform aircraft icing tests full or part time. The location and size of the facility, its speed and temperature range, icing cloud parameters, and the technical person to contact are surveyed. Results are presented in tabular form. The capabilities of each facility were estimated by its technical contact person. The adequacy of these facilities for various types of icing tests is discussed.
VIEW LOOKING SOUTH AT THE SATURN V (BLDG. 4550) AND ...
VIEW LOOKING SOUTH AT THE SATURN V (BLDG. 4550) AND SATURN I (BLDG. 4557) STRUCTURAL TEST FACILITIES, SATURN V TEST FACILITY IS IN THE FOREGROUND RIGHT. THE SATURN I TEST FACILITY IS IN THE BACKGROUND CENTER. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
Point-of-Care Assay of Telomerase Activity at Single-Cell Level via Gas Pressure Readout.
Wang, Yanjun; Yang, Luzhu; Li, Baoxin; Yang, Chaoyong James; Jin, Yan
2017-08-15
Detection of telomerase activity at the single-cell level is one of the central challenges in cancer diagnostics and therapy. Herein, we describe a facile and reliable point-of-care testing (POCT) strategy for detection of telomerase activity via a portable pressure meter. Telomerase primer (TS) was immobilized onto the surface of magnetic beads (MBs), and then was elongated to a long single-stranded DNA by telomerase. The elongated (TTAGGG) n repeat unit hybridized with several short PtNP-functionalized complementary DNA (PtNPs-cDNA), which specifically enriched PtNPs onto the surfaces of magnetic beads (MBs), which were separated using a magnet. Then, nanoparticle-catalyzed gas-generation reaction converted telomerase activity into significant change in gas pressure. Because of the self-amplification of telomerase and enrichment by magnetic separation, the diluted telomerase equivalent to a single HeLa cell was facilely detected. More importantly, the telomerase in the lysate of 1 HeLa cell can be reliably detected by monitoring change in gas pressure, indicating that it is feasible and possible to study differences between individual cells. The difference in relative activity between different kinds of cancer cells was easily and sensitively studied. Study of inhibition of telomerase activity demonstrated that our method has great potential in screening of telomerase-targeted antitumor drugs as well as in clinical diagnosis.
40 CFR 792.31 - Testing facility management.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Testing facility management. 792.31... facility management. For each study, testing facility management shall: (a) Designate a study director as... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...
Kim, TaeJoo; Sim, CheulMuu; Kim, MooHwan
2008-05-01
An investigation into the water discharge characteristics of proton exchange membrane (PEM) fuel cells is carried out by using a feasibility test apparatus and the Neutron Radiography Facility (NRF) at HANARO. The feasibility test apparatus was composed of a distilled water supply line, a compressed air supply line, heating systems, and single PEM fuel cells, which were a 1-parallel serpentine type with a 100 cm(2) active area. Three kinds of methods were used: compressed air supply-only; heating-only; and a combination of the methods of a compressed air supply and heating, respectively. The resultant water discharge characteristics are different according to the applied methods. The compressed air supply only is suitable for removing the water at a flow field and a heating only is suitable for water at the MEA. Therefore, in order to remove all the water at PEM fuel cells, the combination method is needed at the moment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leach, Franklin E.; Norheim, Randolph V.; Anderson, Gordon A.
Although Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) remains themass spectrometry platform that provides the highest levels of performance for mass accuracy and resolving power, there is room for improvement in analyzer cell design as the ideal quadrupolar trapping potential has yet to be generated for a broadband MS experiment. To this end, analyzer cell designs have improved since the field’s inception, yet few research groups participate in this area because of the high cost of instrumentation efforts. As a step towards reducing this barrier to participation and allowing for more designs to be physically tested, we introduce amore » method of FT-ICR analyzer cell prototyping utilizing printed circuit boards at modest vacuum conditions. This method allows for inexpensive devices to be readily fabricated and tested over short intervals and should open the field to laboratories lacking or unable to access high performance machine shop facilities because of the required financial investment.« less
Next market opportunities for phosphoric acid fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClelland, R.H.
Key early entry markets for the next step PC25 Model C fuel cell are most likely to include: Premium Quality Power markets such as data centers, communications facilities, and the like; Healthcare Facilities, particularly for nursing homes and hospitals having 300 or more beds, here, the thermal side of a 200 kW fuel cell is an excellent match and some importance is also attached to power quality and reliability; and Auxiliary Electric Power at natural gas compression facilities, such facilities also tend to place a premium on reliability and low maintenance, moreover, the fuel cell`s inherently low emissions can bemore » very important within the northeast Ozone Transport Region. For the fuel cell concept to remain viable, penetration of this class of early entry markets is needed to sustain economic and reliability progress within a goal of moderate production volumes. This can then build the needed bridge to further markets and to other emerging fuel cell technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summers, W. A.; Colon-Mercado, H. R.; Steimke, J. L.
2014-02-24
Over the past several years, Savannah River National Laboratory (SRNL) has led a team of collaborators under the Department of Energy’s (DOE) nuclear hydrogen production program to develop the Hybrid Sulfur (HyS) Process. HyS is a 2-step water-splitting process consisting of high temperature decomposition of sulfuric acid to generate SO 2, followed by the electrolysis of aqueous SO 2 to generate hydrogen and sulfuric acid. The latter is fed back into the high temperature reactor. SRNL designed and built an SO 2-depolarized electrolyzer (SDE) and a test facility. Over 40 SDE’s were tested using different catalysts, membranes and other components.more » SRNL demonstrated that an SDE could be operated continuously for approximately 200 hours under certain conditions without buildup of sulfur at the SDE’s cathode, thus solving a key technical problem with SDE technology. Air Products and Chemicals, Inc. (APCI) is a major supplier of hydrogen production systems, and they have proprietary technology that could benefit from the SDE developed by SRNS, or some improved version thereof. However, to demonstrate that SRNL’s SDE is a truly viable approach to the electrolyzer design, continuous operation for far greater periods of time than 200 hours must be demonstrated, and the electrolyzer must be scaled up to greater hydrogen production capacities. SRNL and Air Products entered into a Cooperative Research and Development Agreement with the objective of demonstrating the effectiveness of the SDE for hydrogen and sulfuric acid production and to demonstrate long-term continuous operation so as to dramatically increase the confidence in the SDE design for commercial operation. SRNL prepared a detailed technical report documenting previous SDE development, including the current SDE design and operating conditions that led to the 200-hour sulfurfree testing. SRNL refurbished its single cell SDE test facility and qualified the equipment for continuous operation. A new membrane electrode assembly (MEA) was fabricated and installed in the single cell electrolyzer (60 cm 2 active cell area). Shakedown testing was conducted, and several modifications were made to the test facility equipment. Seven different MEAs were used during testing. Beginning on May 20, 2013, SRNL was able to test the SDE continuously for 1200 hours, including 1000 hours under power to generate hydrogen at an average rate of 10.8 liters per hour. The SDE was not removed or repaired during the 50-day test and was successfully restarted after each shutdown. The test was intentionally stopped after 1200 hours (1000 hours of hydrogen production) due to funding constraints. Post-test examination of the MEA using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Microanalysis (EDAX) showed no elemental sulfur deposits or sulfur layer inside the cell, thus successfully achieving the test goals. The results demonstrated that the SDE could be operated for extended periods without major performance degradation or the buildup of sulfur inside the MEA. Air Products conducted an assessment of the economic viability of the SDE based on the “as tested” design. The results indicated that the SDE faces significant economic obstacles in its current state. Further development and scale-up are necessary before the SDE is ready for commercialization.« less
Aerojet - Attitude Control Engines. Chapter 3, Appendix E
NASA Technical Reports Server (NTRS)
Pfeifer, Gerald R.
2009-01-01
All the engines were both qualification and acceptance tested at Marquardt s facilities. After we won the Apollo Program contract, we went off and built two vacuum test facilities, which simulated altitude continuous firing for as long as we wanted to run an engine. They would run days and days with the same capability we had on steam ejection. We did all of the testing in both for the qualification and the acceptance test. One of them was a large ball, which was an eighteen-foot diameter sphere, evacuated again with a big steam ejector system that could be used for system testing; that s where we did the Lunar Excursion Module testing. We put the whole cluster in there and tested the entire cluster at the simulated altitude conditions. The lowest altitude we tested at - typically an acceptance test - was 105,000 feet simulated altitude. The big ball - because people were interested in what they called goop formation, which is an unburned hydrazine product migrating to cold surfaces on different parts of spacecraft - was built to address those kinds of issues. We ran long-life tests in a simulated space environment with the entire inside of the test cell around the test article, liquid nitrogen cooled, so it could act as getter for any of the exhaust products. That particular facility could pull down to about 350,000 feet (atmosphere) equivalent altitude, which was pushing pretty close to the thermodynamic triple point of the MMH. It was a good test facility. Those facilities are no longer there. When the guys at Marquardt sold the company to what eventually became part of Aerojet, all those test facilities were cut off at the roots. I think they have a movie studio there at this point. That part of it is truly not recoverable, but it did some excellent high-altitude, space-equivalent testing at the time. Surprisingly, we had very few problems while testing in the San Fernando Valley. In the early 1960s, nobody had ever seen dinitrogen tetroxide (N2O4), so that wasn't too big a deal. We really did only make small, red clouds. In all the hundreds of thousands of tests and probably well over one million firings that I was around that place for, in all that thirty-something years, we had a total of one serious injury associated with rocket engine testing and propellants. Because we were trying to figure out what propellants would really be good, we tried all of the fun stuff like the carbon tetrafluoride, chlorine pentafluoride, and pure fluorine. The materials knowledge wasn't all that great at the time. On one test, the fluorine we had didn't react well with the copper they were using for tubing, and it managed to cause another unscheduled disassembly of the facility. It was very serious. It's like one of those Korean War stories. The technician happened to be walking past the test facility when it decided to blow itself up. A piece of copper tubing pierced one cheek and came out the other. That was the only serious accident in all of the engines handled in all those years. Now, we did have a problem with the EPA later because they figured out what the brown clouds were about. We built a whole bunch of exhaust mitigation scrubbers to take care of engine testing in the daytime. In general, we operated the big shuttle (RCS) engine, the 870- pounder at nominal conditions; they scrubbed the effluents pretty well. If you operated that same 870-pound force engine at a level where you get a lot of excess oxidizer, yeah, there s a brown cloud. But, you know, it doesn't show up well in the dark. They did do some of that. But, that s gone; it was addressed one way or another. RELEASED -
Eradication of Murine Norovirus from a Mouse Barrier Facility
Kastenmayer, Robin J; Perdue, Kathy A; Elkins, William R
2008-01-01
Murine norovirus (MNV) is a common viral infection of mice in many research facilities. MNV infects hematopoietic cells and alters their cellular morphology. Because of MNV's probable effects on the systemic immune response of infected mice the decision was made to eradicate the virus from 2 rooms containing infected animals in our vivarium. Two different eradication methods were selected. One room, in which most of the indirectly exposed sentinels had antibodies to MNV, was depopulated and thoroughly cleaned prior to repopulation. In the other room, in which only 13% of the sentinels had positive MNV titers, selective testing was used, and MNV-positive animals were removed. Data from surveillance of the sentinel mice exposed to dirty bedding indicate that the test-and-removal method was ineffective in eliminating MNV from the room, whereas sentinel mice in the room that underwent depopulation and cleaning prior to repopulation have not shown any evidence of MNV since December 2006. PMID:18210995
Antenna Test Facility (ATF): User Test Planning Guide
NASA Technical Reports Server (NTRS)
Lin, Greg
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the ATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Radiant Heat Test Facility (RHTF): User Test Planning Guide
NASA Technical Reports Server (NTRS)
DelPapa, Steven
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the RHTF. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Science and Technology Facility | Photovoltaic Research | NREL
- and back-contact schemes for advanced thin-film PV solar cells. Contact materials include metals Science and Technology Facility Science and Technology Facility Solar cell, thin-film, and Development Laboratory Research in thin-film PV is accomplished in this lab with techniques used for
NASA Technical Reports Server (NTRS)
Stradling, J.; Pippen, D. L.
1985-01-01
The NASA Johnson Space Center White Sands Test Facility (WSTF) performs aerospace materials testing and evaluation. Established in 1963, the facility grew from a NASA site dedicated to the development of space engines for the Apollo project to a major test facility. In addition to propulsion tests, it tests materials and components, aerospace fluids, and metals and alloys in simulated space environments.
40 CFR 160.31 - Testing facility management.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Testing facility management. 160.31... GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 160.31 Testing facility management. For each study, testing facility management shall: (a) Designate a study director as described in § 160.33...
A proton irradiation test facility for space research in Ankara, Turkey
NASA Astrophysics Data System (ADS)
Gencer, Ayşenur; Yiǧitoǧlu, Merve; Bilge Demirköz, Melahat; Efthymiopoulos, Ilias
2016-07-01
Space radiation often affects the electronic components' performance during the mission duration. In order to ensure reliable performance, the components must be tested to at least the expected dose that will be received in space, before the mission. Accelerator facilities are widely used for such irradiation tests around the world. Turkish Atomic Energy Authority (TAEA) has a 15MeV to 30MeV variable proton cyclotron in Ankara and the facility's main purpose is to produce radioisotopes in three different rooms for different target systems. There is also an R&D room which can be used for research purposes. This paper will detail the design and current state of the construction of a beamline to perform Single Event Effect (SEE) tests in Ankara for the first time. ESA ESCC No.25100 Standard Single Event Effect Test Method and Guidelines is being considered for these SEE tests. The proton beam kinetic energy must be between 20MeV and 200MeV according to the standard. While the proton energy is suitable for SEE tests, the beam size must be 15.40cm x 21.55cm and the flux must be between 10 ^{5} p/cm ^{2}/s to at least 10 ^{8} p/cm ^{2}/s according to the standard. The beam size at the entrance of the R&D room is mm-sized and the current is variable between 10μA and 1.2mA. Therefore, a defocusing beam line has been designed to enlarge the beam size and reduce the flux value. The beam line has quadrupole magnets to enlarge the beam size and the collimators and scattering foils are used for flux reduction. This facility will provide proton fluxes between 10 ^{7} p/cm ^{2}/s and 10 ^{10} p/cm ^{2}/s for the area defined in the standard when completed. Also for testing solar cells developed for space, the proton beam energy will be lowered below 10MeV. This project has been funded by Ministry of Development in Turkey and the beam line construction will finish in two years and SEE tests will be performed for the first time in Turkey.
EOS--AM1 Nickel Hydrogen Cell Interim Life Test Report
NASA Technical Reports Server (NTRS)
Bennett, C. W.; Keys, D. J.; Rao, G. M.; Wannemacher, H. E.; Vaidyanathan H.
1999-01-01
This paper reports the interim results of the Earth Observing System AM-1 project (EOS-AM-1) nickel hydrogen cell life test being conducted under contract to National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at the Lockheed Martin Missiles and Space (LMMS) facility in East Windsor, NJ; and at COMSAT Labs., Clarksburg, MD. The purpose of the tests is to verify that the EOS-AM-1 cell design can meet five years of real-time Low Earth Orbit (LEO) cycling. The tests include both real-time LEO and accelerated stress tests. At LMMS, the first real-time LEO simulated 99 minute orbital cycle started on February 7, 1994 and the test has been running continuously since that time, with 18202 LEO cycles completed as of September 1, 1997. Each cycle consists of a 64 minute charge (VT at 1.507 volts per cell. 1.06 C/D ratio, followed by 0.6 ampere trickle charge) and a 35 minute constant power discharge at 177 watts (22.5% DOD). At COMSAT, the accelerated stress test consists of 90 minute orbital cycles at 60% DOD with a 30 minute discharge at 60 amperes and a 60 minute charge at 40 amperes (VT at 1.54 volts per cell to 1.09 C/D ratio, followed by 0.6 ampere trickle charge). The real-time LEO life test battery consists of seven, 50AH (nameplate rating) Eagle-Picher, Inc. (EPI) Mantech cells manufactured into three. 3-cell pack assemblies (there are two place holder cells that are not part of the life test electrical circuit). The test pack is configured to simulate the conductive thermal design of the spacecraft battery, including: conductive aluminum sleeves, 3-cell pack aluminum baseplate, and honeycomb panel all mounted to a liquid (-5 C) cold plate. The entire assembly is located in a thermal chamber operatina at +30 C. The accelerated stress test unit consists of five cells mounted in machined aluminum test sleeves and is operating at +10 C. The real-time LEO life test battery has met all performance requirements throuch the first 18,202 cycles, including: end of chargee and discharge cell voltages and voltace -radients; end of charge and discharge cell pressures; within cell and between cell temperature gradients; discharge capacity; current and power levels; and all charge parameters. The accelerated stress test battery has completed 11,998 cycles when the test was terminated. The stress test unit met all test parameters. This paper reports battery performances as a function of cycle life for both the real time LEO and the accelerated life test regimes.
EOS-AM1 Nickel Hydrogen Cell Interim Life Test Report
NASA Technical Reports Server (NTRS)
Bennett, Charles W.; Keys, D. J.; Rao, G. M.; Wannemacher, H. E.; Vaidyanathan, Hari
1998-01-01
This paper reports the interim results Earth Observing System AM-1 project (EOS-AM-1) nickel hydrogen cell life test being conducted under contract to National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at the Lockheed Martin Missiles and Space (LMMS) facility in East Windsor, NJ; and at COMSAT Labs., Clarksburg, MD. The purpose of the tests is to verify that the EOS-AM-1 cell design can meet five years of real-time Low Earth Orbit (LEO) cycling. The tests include both real-time LEO and accelerated stress tests. At LMMS, the first real-time LEO simulated 99 minute orbital cycle started on February 7, 1994 and the test has been running continuously since that time, with 18202 LEO cycles completed as of September 1, 1997. Each cycle consists of a 64-minute charge (VT at 1,507 volts per cell, 1.06 C/D ratio, followed by 0.6 ampere trickle charge) and a 35 minute constant power discharge at 177 watts (22.5 percent DOD). At COMSAT, the accelerated stress test consists of 90 minute orbital cycles at 60 percent DOD with a 30 minute discharge at 60 amperes and a 60 minute charge at 40 amperes (VT at 1.54 volts per cell to 1.90 C/D ratio, followed by 0.6 ampere trickle charge). The real-time LEO life test battery consists of seven, 50AH (nameplate rating) Eagle-Picher, Inc. (EPI) Mantech cells manufactured into three, 3-cell pack assemblies (there are two place holder cells that are not part of the life test electrical circuit). The test pack is configured to simulate the conductive thermal design of the spacecraft battery, including: conductive aluminum sleeves, 3-cell pack aluminum baseplate, and honeycomb panel all mounted to a liquid (minus 5 deg) cold plate. The entire assembly is located in a thermal chamber operating at plus 3 deg. The accelerated stress test unit consists of five cells mounted in machined aluminum test sleeves and is operating at plus 10 deg. The real-time LEO life test battery has met all performance requirements through the first 18,202 cycles, including: end of charge and discharge cell voltages and voltage gradients; end of charge and discharge cells pressures; within cell and between cell temperature gradients dischare capacity; current and power levels; and all charge parameters. The accelerated stress test battery has completed 11998 cycles when the test was terminated. The stress test unit met all test parameters. This paper reports battery performances as a function of cycle life for both the real-time LEO and the accelerated life test regimes.
Reed, William; Noga, Stephen J.; Gee, Adrian P.; Rooney, Cliona M.; Wagner, John E.; McCullough, Jeffrey; McKenna, David H.; Whiteside, Theresa L.; Donnenberg, Albert D.; Baker, Acacia K.; Lindblad, Robert W.; Wagner, Elizabeth L.; Mondoro, Traci Heath
2014-01-01
BACKGROUND In 2002, the US National Heart, Lung, and Blood Institute (NHLBI) conducted a workshop to determine needs of the cell therapy community. A consensus emerged that improved access to cGMP facilities, regulatory assistance, and training would foster the advancement of cellular therapy. STUDY DESIGN AND METHODS A 2003 NHLBI request for proposals resulted in four contracts being awarded to three cell-manufacturing facilities (Baylor College of Medicine, University of Minnesota, and University of Pittsburgh) and one administrative center (The EMMES Corporation). As a result, Production Assistance for Cellular Therapies (PACT) was formed. RESULTS As of October 1, 2008, PACT has received 65 preliminary applications of which 45 have been approved for product manufacture. A variety of cell therapies are represented including T-regulatory cells, natural killer cells, adipose-derived stem cells, cardiac progenitor cells for cardiac disease, hematopoietic progenitor cells (HPCs) for central nervous system applications, cytotoxic T lymphocytes, and dendritic cells. A total of 169 products have been administered under 12 applications and 2 reagents were manufactured and delivered. Fourteen peer-reviewed publications and 15 abstracts have resulted from the PACT project to date. A cell therapy textbook is nearly complete. PACT technical projects have addressed assay development, rapid endotoxin testing, shipping of cell products, and CD34+ HPC isolation from low-volume marrow. Educational Web seminars and onsite training through workshops have been conducted. CONCLUSIONS PACT is an active and successful cell therapy manufacturing resource in the United States, addressing research and training while forging relationships among academia, industry, and participating institutions. PMID:19170985
Facility-level association of preoperative stress testing and postoperative adverse cardiac events.
Valle, Javier A; Graham, Laura; Thiruvoipati, Thejasvi; Grunwald, Gary; Armstrong, Ehrin J; Maddox, Thomas M; Hawn, Mary T; Bradley, Steven M
2018-06-22
Despite limited indications, preoperative stress testing is often used prior to non-cardiac surgery. Patient-level analyses of stress testing and outcomes are limited by case mix and selection bias. Therefore, we sought to describe facility-level rates of preoperative stress testing for non-cardiac surgery, and to determine the association between facility-level preoperative stress testing and postoperative major adverse cardiac events (MACE). We identified patients undergoing non-cardiac surgery within 2 years of percutaneous coronary intervention in the Veterans Affairs (VA) Health Care System, from 2004 to 2011, facility-level rates of preoperative stress testing and postoperative MACE (death, myocardial infarction (MI) or revascularisation within 30 days). We determined risk-standardised facility-level rates of stress testing and postoperative MACE, and the relationship between facility-level preoperative stress testing and postoperative MACE. Among 29 937 patients undergoing non-cardiac surgery at 131 VA facilities, the median facility rate of preoperative stress testing was 13.2% (IQR 9.7%-15.9%; range 6.0%-21.5%), and 30-day postoperative MACE was 4.0% (IQR 2.4%-5.4%). After risk standardisation, the median facility-level rate of stress testing was 12.7% (IQR 8.4%-17.4%) and postoperative MACE was 3.8% (IQR 2.3%-5.6%). There was no correlation between risk-standardised stress testing and composite MACE at the facility level (r=0.022, p=0.81), or with individual outcomes of death, MI or revascularisation. In a national cohort of veterans undergoing non-cardiac surgery, we observed substantial variation in facility-level rates of preoperative stress testing. Facilities with higher rates of preoperative stress testing were not associated with better postoperative outcomes. These findings suggest an opportunity to reduce variation in preoperative stress testing without sacrificing patient outcomes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Gaipa, Giuseppe; Tilenni, Manuela; Straino, Stefania; Burba, Ilaria; Zaccagnini, Germana; Belotti, Daniela; Biagi, Ettore; Valentini, Marco; Perseghin, Paolo; Parma, Matteo; Campli, Cristiana Di; Biondi, Andrea; Capogrossi, Maurizio C; Pompilio, Giulio; Pesce, Maurizio
2010-01-01
Abstract The aim of the present study was to develop and validate a good manufacturing practice (GMP) compliant procedure for the preparation of bone marrow (BM) derived CD133+ cells for cardiovascular repair. Starting from available laboratory protocols to purify CD133+ cells from human cord blood, we implemented these procedures in a GMP facility and applied quality control conditions defining purity, microbiological safety and vitality of CD133+ cells. Validation of CD133+ cells isolation and release process were performed according to a two-step experimental program comprising release quality checking (step 1) as well as ‘proofs of principle’ of their phenotypic integrity and biological function (step 2). This testing program was accomplished using in vitro culture assays and in vivo testing in an immunosuppressed mouse model of hindlimb ischemia. These criteria and procedures were successfully applied to GMP production of CD133+ cells from the BM for an ongoing clinical trial of autologous stem cells administration into patients with ischemic cardiomyopathy. Our results show that GMP implementation of currently available protocols for CD133+ cells selection is feasible and reproducible, and enables the production of cells having a full biological potential according to the most recent quality requirements by European Regulatory Agencies. PMID:19627397
The implementation of tissue banking experiences for setting up a cGMP cell manufacturing facility.
Arjmand, Babak; Emami-Razavi, Seyed Hassan; Larijani, Bagher; Norouzi-Javidan, Abbas; Aghayan, Hamid Reza
2012-12-01
Cell manufacturing for clinical applications is a unique form of biologics manufacturing that relies on maintenance of stringent work practices designed to ensure product consistency and prevent contamination by microorganisms or by another patient's cells. More extensive, prolonged laboratory processes involve greater risk of complications and possibly adverse events for the recipient, and so the need for control is correspondingly greater. To minimize the associate risks of cell manufacturing adhering to international quality standards is critical. Current good tissue practice (cGTP) and current good manufacturing practice (cGMP) are examples of general standards that draw a baseline for cell manufacturing facilities. In recent years, stem cell researches have found great public interest in Iran and different cell therapy projects have been started in country. In this review we described the role of our tissue banking experiences in establishing a new cGMP cell manufacturing facility. The authors concluded that, tissue banks and tissue banking experts can broaden their roles from preparing tissue grafts to manufacturing cell and tissue engineered products for translational researches and phase I clinical trials. Also they can collaborate with cell processing laboratories to develop SOPs, implement quality management system, and design cGMP facilities.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
... Status; Brightpoint North America L.P. (Cell Phone Kitting and Distribution) Indianapolis, IN Pursuant to... the cell phone kitting and distribution facilities of Brightpoint North America L.P., located in... cell phones at the facilities of Brightpoint North America L.P., located in Plainfield, Indiana...
NASA Technical Reports Server (NTRS)
Bennett, Charles W.; Keys, Denney J.; Rao, Gopalakrishna M.; Wannemacher, Hari E.; Vaidyanathan, Harry
1997-01-01
This paper reports the interim results of the Earth Observing System AM-1 project (EOS-AM-1) nickel hydrogen cell life test being conducted under contract to National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at the Lockheed Martin Missile and Space (LMMS) facility in East Windsor, NJ; and at COMSAT Labs., Clarksburg, MD. The purpose of die tests is to verify that the EOS-AM-1 cell design can meet five years of real-time Low Earth Orbit (LEO) cycling. The tests include both real-time LEO and accelerated stress tests. At LMMS, the first real-time LEO simulated 99 minute orbital cycle started on February 7, 1994 and the test has been running continuously since that time, with 18,202 LEO cycles completed as of September 1, 1997. Each cycle consists of a 64 minute charge (VT at 1.507 volts per cell, 1.06 C/D ratio, followed by 0.6 ampere trickle charge) and a 35 minute constant power discharge at 177 watts (22.5% DOD). At COMSAT, the accelerated stress test consists of 90 minute orbital cycles at 60% DOD with a 30 minute discharge at 60 amperes and a 60 minute charge at 40 amperes (VT at 1.54 volts per cell to 1.09 C/D ratio, followed by 0.6 ampere trickle charge). The real-time LEO life test battery consists of seven, 50AH (nameplate rating) Eagle-Picher, Inc. (EPI) Mantech cells manufactured into three, 3-cell pack assemblies (there are two place holder cells that are not part of the life test electrical circuit). The test pack is configured to simulate the conductive thermal design of the spacecraft battery, including: conductive aluminum sleeves, 3-cell pack aluminum baseplate, and honeycomb panel all mounted to a liquid (-5 C) cold plate. The entire assembly is located in a thermal chamber operating at +30 C. The accelerated stress test unit consists of five cells mounted in machined aluminum test sleeves and is operating at +10 C. The real-time LEO life test battery has met all performance requirements through the first 18,202 cycles, including: end of charge mid discharge cell voltages and voltage gradients; end of charge and discharge cell pressures; within cell and between cell temperature gradients; discharge capacity; current and power levels; and all charge parameters. The accelerated stress test battery has completed 11,998 cycles when the test was terminated. The stress test unit met all test parameters. This paper reports battery perfortnances as a funcfion of cycle life for both the real-time LEO and the accelerated life test regimes.
Energy Systems Test Area (ESTA). Power Systems Test Facilities
NASA Technical Reports Server (NTRS)
Situ, Cindy H.
2010-01-01
This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.
Water, vapour and heat transport in concrete cells for storing radioactive waste
NASA Astrophysics Data System (ADS)
Carme Chaparro, M.; W. Saaltink, Maarten
2016-08-01
Water is collected from a drain situated at the centre of a concrete cell that stores radioactive waste at 'El Cabril', which is the low and intermediate level radioactive waste disposal facility of Spain. This indicates flow of water within the cell. 2D numerical models have been made in order to reproduce and understand the processes that take place inside the cell. Temperature and relative humidity measured by sensors in the cells and thermo-hydraulic parameters from laboratory test have been used. Results show that this phenomenon is caused by capillary rise from the phreatic level, evaporation and condensation within the cell produced by temperature gradients caused by seasonal temperature fluctuations outside. At the centre of the cell, flow of gas and convection also play a role. Three remedial actions have been studied that may avoid the leakage of water from the drain.
Upgrade of the cryogenic CERN RF test facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirotte, O.; Benda, V.; Brunner, O.
2014-01-29
With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RFmore » test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.« less
Initialization and Setup of the Coastal Model Test Bed: STWAVE
2017-01-01
Laboratory (CHL) Field Research Facility (FRF) in Duck , NC. The improved evaluation methodology will promote rapid enhancement of model capability and focus...Blanton 2008) study . This regional digital elevation model (DEM), with a cell size of 10 m, was generated from numerous datasets collected at different...INFORMATION: For additional information, contact Spicer Bak, Coastal Observation and Analysis Branch, Coastal and Hydraulics Laboratory, 1261 Duck Road
New NREL Research Facility Slashes Energy Use by 66 Percent
Thermal Test Facility, which serves as a showcase of energy-saving features and the home of NREL's cutting technologies now being developed at the Thermal Test Facility will help us reach this goal." The facility energy-efficient building design, NREL's Thermal Test Facility houses sophisticated equipment for
Peteffi, Giovana Piva; da Silva, Luciano Basso; Antunes, Marina Venzon; Wilhelm, Camila; Valandro, Eduarda Trevizani; Glaeser, Jéssica; Kaefer, Djeine; Linden, Rafael
2016-10-01
Formaldehyde (FA) is a chemical widely used in the furniture industry and has been classified as a potential human carcinogen. The purpose of this study was to evaluate the occupational exposure of workers to FA at a furniture manufacturing facility and the relationship between environmental concentrations of FA, formic acid concentration in urine, and DNA damage. The sample consisted of 46 workers exposed to FA and a control group of 45 individuals with no history of occupational exposure. Environmental concentrations of FA were determined by high-performance liquid chromatography. Urinary formic acid concentrations were determined by gas chromatography with flame ionization detector. DNA damage was evaluated by the micronucleus (MN) test performed in exfoliated buccal cells and comet assay with venous blood. The 8-h time-weighted average of FA environmental concentration ranged from 0.03 ppm to 0.09 ppm at the plant, and the control group was exposed to a mean concentration of 0.012 ppm. Workers exposed to higher environmental FA concentrations had urinary formic acid concentrations significantly different from those of controls (31.85 mg L(-1) vs. 19.35 mg L(-), p ≤ 0.01 Mann-Whitney test). Significant differences were found between control and exposed groups for the following parameters: damage frequency and damage index in the comet assay, frequency of binucleated cells in the MN test, and formic acid concentration in urine. The frequency of micronuclei, nuclear buds, and karyorrhexis did not differ between groups. There was a positive correlation between environmental concentrations of FA and damage frequency (Spearman's rank correlation coefficient [r s] = 0.24), damage index (r s = 0.21), binucleated cells (r s = 0.34), and urinary formic acid concentration (r s = 0.63). The results indicate that, although workers in the furniture manufacturing facility were exposed to low environmental levels of FA, this agent contributes to the observed increase in cytogenetic damage. In addition, urinary formic acid concentrations correlated strongly with occupational exposure to FA. © The Author(s) 2015.
Vibration and Acoustic Test Facility (VATF): User Test Planning Guide
NASA Technical Reports Server (NTRS)
Fantasia, Peter M.
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the VATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Brennan, Linda M.; Widder, Mark W.; McAleer, Michael K.; Mayo, Michael W.; Greis, Alex P.; van der Schalie, William H.
2016-01-01
This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity testing of drinking water. The manuscript further describes how to run a toxicity test using the prepared biochips. A control water sample and the test water sample are mixed with pre-measured powdered media and injected into separate channels of the biochip. Impedance readings from the sensing electrodes in each of the biochip channels are measured and compared by an automated statistical software program. The screen on the ECIS instrument will indicate either "Contamination Detected" or "No Contamination Detected" within an hour of sample injection. Advantages are ease of use and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the long-term stability of stored biochips in a ready state for testing. Limitations are the requirement for cold storage of the biochips and limited sensitivity to cholinesterase-inhibiting pesticides. Applications for this toxicity detector are for rapid field-portable testing of drinking water supplies by Army Preventative Medicine personnel or for use at municipal water treatment facilities. PMID:27023147
Brennan, Linda M; Widder, Mark W; McAleer, Michael K; Mayo, Michael W; Greis, Alex P; van der Schalie, William H
2016-03-07
This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity testing of drinking water. The manuscript further describes how to run a toxicity test using the prepared biochips. A control water sample and the test water sample are mixed with pre-measured powdered media and injected into separate channels of the biochip. Impedance readings from the sensing electrodes in each of the biochip channels are measured and compared by an automated statistical software program. The screen on the ECIS instrument will indicate either "Contamination Detected" or "No Contamination Detected" within an hour of sample injection. Advantages are ease of use and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the long-term stability of stored biochips in a ready state for testing. Limitations are the requirement for cold storage of the biochips and limited sensitivity to cholinesterase-inhibiting pesticides. Applications for this toxicity detector are for rapid field-portable testing of drinking water supplies by Army Preventative Medicine personnel or for use at municipal water treatment facilities.
NASA Astrophysics Data System (ADS)
Daum, Eric
2000-12-01
The accelerator-based intense D-Li neutron source International Fusion Materials Irradiation Facility (IFMIF) provides very suitable irradiation conditions for fusion materials development with the attractive option of accelerated irradiations. Investigations show that a neutron moderator made of tungsten and placed in the IFMIF test cell can further improve the irradiation conditions. The moderator softens the IFMIF neutron spectrum by enhancing the fraction of low energy neutrons. For displacement damage, the ratio of point defects to cascades is more DEMO relevant and for tritium production in Li-based breeding ceramic materials it leads to a preferred production via the 6Li(n,t) 4He channel as it occurs in a DEMO breeding blanket.
Central Facilities Area Sewage Lagoon Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giesbrecht, Alan
2015-03-01
The Central Facilities Area (CFA) located in Butte County, Idaho at Idaho National Laboratory (INL) has an existing wastewater system to collect and treat sanitary wastewater and non contact cooling water from the facility. The existing treatment facility consists of three cells: Cell 1 has a surface area of 1.7 acres, Cell 2 has a surface area of 10.3 acres, and Cell 3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5 acre land application site that utilizes a center pivot irrigation sprinkler system. The purpose ofmore » this current study is to update the analysis and conclusions of the December 2013 study. In this current study, the new seepage rate and influent flow rate data have been used to update the calculations, model, and analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spore, J.W.; Cappiello, M.W.; Dotson, P.J.
The analytical support in 1985 for Cylindrical Core Test Facility (CCTF), Slab Core Test Facility (SCTF), and Upper Plenum Test Facility (UPTF) tests involves the posttest analysis of 16 tests that have already been run in the CCTF and the SCTF and the pretest analysis of 3 tests to be performed in the UPTF. Posttest analysis is used to provide insight into the detailed thermal-hydraulic phenomena occurring during the refill and reflood tests performed in CCTF and SCTF. Pretest analysis is used to ensure that the test facility is operated in a manner consistent with the expected behavior of anmore » operating full-scale plant during an accident. To obtain expected behavior of a plant during an accident, two plant loss-of-coolant-accident (LOCA) calculations were performed: a 200% cold-leg-break LOCA calculation for a 2772 MW(t) Babcock and Wilcox plant and a 200% cold-leg-break LOCA calculation for a 3315 MW(t) Westinghouse plant. Detailed results are presented for several CCTF UPI tests and the Westinghouse plant analysis.« less
Development of a EUV Test Facility at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy
2011-01-01
This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.
NASA Technical Reports Server (NTRS)
Galofaro, Joel T.; Vayner, Boris V.
2006-01-01
Plasma ground testing results, conducted at the Glenn Research Center (GRC) National Plasma Interaction (N-PI) Facility, are presented for a number of thin-film photovoltaic cells. The cells represent a mix of promising new technologies identified by the Air Force Research Laboratory (AFRL) under the CYGNUS Space Science Technology Experiment (SSTE-4) Program. The current ground tests are aimed at characterizing the performance and survivability of thin film technologies in the harsh low earth orbital space environment where they will be flown. Measurements of parasitic current loss, charging/dielectric breakdown of cover-slide coatings and arcing threshold tests are performed for each individual cell. These measurements are followed by a series of experiments designed to test for catastrophic arc failure mechanisms. A special type of power supply, called a solar array simulator (SAS) with adjustable voltage and current limits on the supply s output, is employed to bias two adjacent cells at a predetermined voltage and current. The bias voltage is incrementally ramped up until a sustained arc results. Sustained arcs are precursors to catastrophic arc failure where the arc current rises to a maximum value for long timescales often ranging between 30 to 100 sec times. Normal arcs by comparison, are short lived events with a timescale between 10 to 30 sec. Sustained arcs lead to pyrolization with extreme cell damage and have been shown to cause the loss of entire array strings in solar arrays. The collected data will be used to evaluate the suitability of thin-film photovoltaic technologies for future space operations.
Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF). User Test Planning Guide
NASA Technical Reports Server (NTRS)
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the ARMSEF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Central Control Room in the Engine Research Building
1968-11-21
Operators in the Engine Research Building’s Central Control Room at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The massive 4.25-acre Engine Research Building contains dozens of test cells, test stands, and altitude chambers. A powerful a collection of compressors and exhausters located in the central portion of the basement provides process air and exhaust for these test areas. This system is connected to similar process air systems in the laboratory’s other large test facilities. The Central Control Room coordinates this activity and communicates with the local utilities. The panels on the wall contain schematics with indicator lights and instrumentation for the atmospheric exhaust, altitude exhaust, refrigerated air, and process air systems. The process air equipment included twelve exhausters, four compressors, refrigeration system, cooling water, and an exhaust system. The operators in the control room kept in contact with engineers running the process air system and those conducting the tests in the test cells. The operators also coordinated with the local power companies to make sure enough electricity was available to operate the powerful compressors and exhausters.
Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC
NASA Technical Reports Server (NTRS)
1991-01-01
The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.
Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC
1991-10-09
The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.
Commissioning Results of the 2nd 3.5 Cell SRF Gun for ELBE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, A; Freitag, M; Murcek, Petr
As in 2007 the first 3.5 cell superconducting radio frequency (SRF) gun was taken into operation, it turned out that the specified performance has not been achieved. However, to demonstrate the full potential of this new type of electron source, a second and slightly modified SRF gun II was built in collaboration with Thomas Jefferson National Accelerator Facility (TJNAF). We will report on commissioning and first results of the new gun, which includes in particular the characterization of the most important RF properties as well as their comparison with previous vertical test results.
2010-01-06
CAPE CANAVERAL, Fla. – In the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the external fuel tank for space shuttle Discovery's STS-131 mission, ET-135, is lifted from its transporter toward a test cell. The tank was delivered to Kennedy aboard the Pegasus barge from NASA's Michoud Assembly Facility on Dec. 26. The tank will remain in the test cell until it is transferred into a high bay for mating with the twin solid rocket boosters that will be used on the mission. Launch of the STS-131 mission to the International Space Station is targeted for March 18. For information on the STS-131 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Glenn Benson
2010-01-06
CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers prepare the external fuel tank for space shuttle Discovery's STS-131 mission, ET-135, hanging vertically in the transfer aisle, for its lift into a test cell. The tank was delivered to Kennedy aboard the Pegasus barge from NASA's Michoud Assembly Facility on Dec. 26. The tank will remain in the test cell until it is transferred into a high bay for mating with the twin solid rocket boosters that will be used on the mission. Launch of the STS-131 mission to the International Space Station is targeted for March 18. For information on the STS-131 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Glenn Benson
2010-01-06
CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers prepare to lift the external fuel tank for space shuttle Discovery's STS-131 mission, ET-135, from the transfer aisle into a test cell. The tank was delivered to Kennedy aboard the Pegasus barge from NASA's Michoud Assembly Facility on Dec. 26. The tank will remain in the test cell until it is transferred into a high bay for mating with the twin solid rocket boosters that will be used on the mission. Launch of the STS-131 mission to the International Space Station is targeted for March 18. For information on the STS-131 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Glenn Benson
2010-01-06
CAPE CANAVERAL, Fla. – In the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a crane lifts the external fuel tank for space shuttle Discovery's STS-131 mission, ET-135, from its transporter toward a test cell. The tank was delivered to Kennedy aboard the Pegasus barge from NASA's Michoud Assembly Facility on Dec. 26. The tank will remain in the test cell until it is transferred into a high bay for mating with the twin solid rocket boosters that will be used on the mission. Launch of the STS-131 mission to the International Space Station is targeted for March 18. For information on the STS-131 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Glenn Benson
2010-01-06
CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the external fuel tank for space shuttle Discovery's STS-131 mission, ET-135, is lifted above the transfer aisle for transfer into a test cell. The tank was delivered to Kennedy aboard the Pegasus barge from NASA's Michoud Assembly Facility on Dec. 26. The tank will remain in the test cell until it is transferred into a high bay for mating with the twin solid rocket boosters that will be used on the mission. Launch of the STS-131 mission to the International Space Station is targeted for March 18. For information on the STS-131 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Glenn Benson
2010-01-06
CAPE CANAVERAL, Fla. – In the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the external fuel tank for space shuttle Discovery's STS-131 mission, ET-135, is rotated into a vertical position as it is lifted toward a test cell. The tank was delivered to Kennedy aboard the Pegasus barge from NASA's Michoud Assembly Facility on Dec. 26. The tank will remain in the test cell until it is transferred into a high bay for mating with the twin solid rocket boosters that will be used on the mission. Launch of the STS-131 mission to the International Space Station is targeted for March 18. For information on the STS-131 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Glenn Benson
2010-01-06
CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers are on hand to monitor the external fuel tank for space shuttle Discovery's STS-131 mission, ET-135, as it is positioned into a test cell. The tank was delivered to Kennedy aboard the Pegasus barge from NASA's Michoud Assembly Facility on Dec. 26. The tank will remain in the test cell until it is transferred into a high bay for mating with the twin solid rocket boosters that will be used on the mission. Launch of the STS-131 mission to the International Space Station is targeted for March 18. For information on the STS-131 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Glenn Benson
Realistic Development and Testing of Fission System at a Non-Nuclear Testing Facility
NASA Technical Reports Server (NTRS)
Godfroy, Tom; VanDyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike
2000-01-01
The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems.
Realistic development and testing of fission systems at a non-nuclear testing facility
NASA Astrophysics Data System (ADS)
Godfroy, Tom; van Dyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike
2000-01-01
The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems. .
Credit WCT. Photographic copy of photograph, interior view of Dd ...
Credit WCT. Photographic copy of photograph, interior view of Dd test cell with VO (Viking Orbiter)-75 spacecraft engine mounted for testing. (Viking was a Mars orbiter and lander mission.) The end of the engine nozzle is inserted into a diffuser in order to conduct exhaust gases out of the chamber. All piping and tubing is stainless steel. Note ports in background through which instrumentation wiring passes. Nozzles at top of view are part of an internal fire suppression (or "Firex") system. (JPL negative no. 384-9428, 24 April 1972) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Summary of solar cell data from the Long Duration Exposure Facility (LDEF)
NASA Technical Reports Server (NTRS)
Hill, David C.; Rose, M. Frank
1994-01-01
The Long Duration Exposure Facility (LDEF) was composed of many separate experiments, some of which contained solar cells. These solar cells were distributed at various positions on the LDEF and, therefore, were exposed to the space environment with an orientational dependence. This report will address the space environmental effects on solar cells and solar cell assemblies (SCA's), including electrical interconnects and associated insulation blankets where flown in conjunction with solar cells.
Ground Handling of Batteries at Test and Launch-site Facilities
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.; Hohl, Alan R.
2008-01-01
Ground handling of flight as well as engineering batteries at test facilities and launch-site facilities is a safety critical process. Test equipment interfacing with the batteries should have the required controls to prevent a hazardous failure of the batteries. Test equipment failures should not induce catastrophic failures on the batteries. Transportation requirements for batteries should also be taken into consideration for safe transportation. This viewgraph presentation includes information on the safe handling of batteries for ground processing at test facilities as well as launch-site facilities.
Mercury Capsule Model in the 1- by 1-Foot Supersonic Wind Tunnel
1959-10-21
National Aeronautics and Space Administration (NASA) researchers install a small-scale model of the capsule for Project Mercury in the 1- by 1-Foot Supersonic Wind Tunnel at the Lewis Research Center. NASA Lewis conducted a variety of tests for Project Mercury, including retrorocket calibration, escape tower engine performance, and separation of the capsule from simulated Atlas and Redstone boosters. The test of this capsule and escape tower model in the 1- by 1-foot tunnel were run in January and February 1960. The 1-by 1-Foot Supersonic Wind Tunnel had a 15-inch long test section, seen here, that was one foot wide and one foot high. The sides were made of glass to allow cameras to capture the supersonic air flow over the models. The tunnel could generate air flows from Mach 1.3 to 3.0. At the time, it was one of nine small supersonic wind tunnels at Lewis. These tunnels used the exhauster and compressor equipment of the larger facilities. The 1- by 1 tunnel, which began operating in the early 1950s, was built inside a test cell in the expansive Engine Research Building. During the 1950s the 1- by 1 was used to study a variety of inlets, nozzles, and cones for missiles and scramjets. The Mercury capsule tests were among the last at the facility for many years. The tunnel was mothballed in 1960. The 1- by 1 was briefly restored in 1972, then brought back online for good in 1979. The facility has maintained a brisk operating schedule ever since.
NETL's Hybrid Performance, or Hyper, facility
None
2018-02-13
NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.
40 CFR 792.43 - Test system care facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Test system care facilities. 792.43 Section 792.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.43 Test system care facilities...
University of Washington Clinical Neutron Facility: Report on 26 Years of Operation
NASA Astrophysics Data System (ADS)
Laramore, George E.; Emery, Robert; Reid, David; Banerian, Stefani; Kalet, Ira; Jacky, Jonathan; Risler, Ruedi
2011-12-01
Particle radiotherapy facilities are highly capital intensive and must operate over decades to recoup the original investment. We describe the successful, long-term operation of a neutron radiotherapy center at the University of Washington, which has been operating continuously since September 1984. To date, 2836 patients have received neutron radiotherapy. The mission of the facility has also evolved to include the production of unique radioisotopes that cannot be made with the low-energy cyclotrons more commonly found in nuclear medicine departments. The facility is also used for neutron damage testing for industrial devices. In this paper, we describe the challenges of operating such a facility over an extended time period, including a planned maintenance and upgrade program serving diverse user groups, and summarize the major clinical results in terms of tumor control and normal tissue toxicity. Over time, the mix of patients being treated has shifted from common tumors such as prostate cancer, lung cancer, and squamous cell tumors of the head and neck to the rarer tumors such as salivary gland tumors and sarcomas due to the results of clinical trials. Current indications for neutron radiotherapy are described and neutron tolerance doses for a range of normal tissues presented.
Biotechnology Facility: An ISS Microgravity Research Facility
NASA Technical Reports Server (NTRS)
Gonda, Steve R.; Tsao, Yow-Min
2000-01-01
The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.
The NASA landing gear test airplane
NASA Technical Reports Server (NTRS)
Carter, John F.; Nagy, Christopher J.
1995-01-01
A tire and landing gear test facility has been developed and incorporated into a Convair 990 aircraft. The system can simulate tire vertical load profiles to 250,000 lb, sideslip angles to 15 degrees, and wheel braking on actual runways. Onboard computers control the preprogrammed test profiles through a feedback loop and also record three axis loads, tire slip angle, and tire condition. The aircraft to date has provided tire force and wear data for the Shuttle Orbiter tire on three different runways and at east and west coast landing sites. This report discusses the role of this facility in complementing existing ground tire and landing gear test facilities, and how this facility can simultaneously simulate the vertical load, tire slip, velocity, and surface for an entire aircraft landing. A description is given of the aircraft as well as the test system. An example of a typical test sequence is presented. Data collection and reduction from this facility are discussed, as well as accuracies of calculated parameters. Validation of the facility through ground and flight tests is presented. Tests to date have shown that this facility can operate at remote sites and gather complete data sets of load, slip, and velocity on actual runway surfaces. The ground and flight tests have led to a successful validation of this test facility.
Direct Utilization of Coal Syngas in High Temperature Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celik, Ismail B.
2014-10-30
This EPSCoR project had two primary goals: (i) to build infrastructure and work force at WVU to support long-term research in the area of fuel cells and related sciences; (ii) study effects of various impurities found in coal-syngas on performance of Solid Oxide Fuel Cells (SOFC). As detailed in this report the WVU research team has made significant accomplishments in both of these areas. What follows is a brief summary of these accomplishments: State-of-the-art test facilities and diagnostic tools have been built and put into use. These include cell manufacturing, half-cell and full-cell test benches, XPS, XRD, TEM, Raman, EDAX,more » SEM, EIS, and ESEM equipment, unique in-situ measurement techniques and test benches (Environmental EM, Transient Mass-Spectrometer-MS, and IR Optical Temperature measurements). In addition, computational capabilities have been developed culminating in a multi-scale multi-physics fuel cell simulation code, DREAM-SOFC, as well as a Beowulf cluster with 64 CPU units. We have trained 16 graduate students, 10 postdoctoral fellows, and recruited 4 new young faculty members who have actively participated in the EPSCoR project. All four of these faculty members have already been promoted to the tenured associate professor level. With the help of these faculty and students, we were able to secure 14 research awards/contracts amounting to a total of circa $5.0 Million external funding in closely related areas of research. Using the facilities mentioned above, the effects of PH3, HCl, Cl2, and H2S on cell performance have been studied in detail, mechanisms have been identified, and also remedies have been proposed and demonstrated in the laboratory. For example, it has been determined that PH3 reacts rapidly with Ni to from secondary compounds which may become softer or even melt at high temperature and then induce Ni migration to the surface of the cell changing the material and micro-structural properties of the cell drastically. It is found that the extent of steam and current load accelerate the degradation caused by PH3. A unique filtering technique has been proposed to reduce the effect of PH3. In addition, various cell materials have been proposed to reduce the rate of degradation caused by H2S. Furthermore, a three-dimensional, transient multi-physics model has been formulated to describe primary transport processes and electro-chemical reactions occurring within the cell. This model has been validated using data gathered from accelerated tests. The validated model then has been used to study the degradation rates under a range of operating conditions and impurity levels. This has resulted in a procedure that uses both experiments and simulations to predict the life-time of a cell operating with syngas with known concentration of trace impurities. Finally all the experience and knowledge gained has been disseminated via 39 journal papers and 43 presentations/posters/conference papers.« less
38. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF TEST ...
38. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF TEST BAY AND EXHAUST PIT, LOOKING WEST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
37. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF TEST ...
37. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF TEST BAY AND EXHAUST PIT, LOOKING SOUTHWEST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
CARS Temperature Measurements in a Hypersonic Propulsion Test Facility
NASA Technical Reports Server (NTRS)
Jarrett, Olin, Jr.; Smith, M. W.; Antcliff, R. R.; Northam, G. Burt; Cutler, A. D.; Capriotti, D. P.; Taylor, D. J.
1990-01-01
Nonintrusive diagnostic measurements were performed in the supersonic reacting flow of the Hypersonic Propulsion Test Cell 2 at NASA-Langley. A Coherent Anti-stokes Raman Spectroscopy (CARS) system was assembled specifically for the test cell environment. System design considerations were: (1) test cell noise and vibration; (2) contamination from flow field or atmospheric borne dust; (3) unwanted laser or electrically induced combustion (inside or outside the duct); (4) efficient signal collection; (5) signal splitting to span the wide dynamic range present throughout the flow field; (6) movement of the sampling volume in the flow; and (7) modification of the scramjet model duct to permit optical access to the reacting flow with the CARS system. The flow in the duct was a nominal Mach 2 flow with static pressure near one atmosphere. A single perpendicular injector introduced hydrogen into the flow behind a rearward facing step. CARS data was obtained in three planes downstream of the injection region. At least 20 CARS data points were collected at each of the regularly spaced sampling locations in each data plane. Contour plots of scramjet combustor static temperature in a reacting flow region are presented.
Brown, Scott C; Wang, Kefeng; Dong, Chuanhui; Farrell, Mary Beth; Heller, Gary V; Gornik, Heather L; Hutchisson, Marge; Needleman, Laurence; Benenati, James F; Jaff, Michael R; Meier, George H; Perese, Susana; Bendick, Phillip; Hamburg, Naomi M; Lohr, Joann M; LaPerna, Lucy; Leers, Steven A; Lilly, Michael P; Tegeler, Charles; Katanick, Sandra L; Alexandrov, Andrei V; Siddiqui, Adnan H; Rundek, Tatjana
2016-09-01
Accreditation of cerebrovascular ultrasound laboratories by the Intersocietal Accreditation Commission (IAC) and equivalent organizations is supported by the Joint Commission certification of stroke centers. Limited information exists on the accreditation status and geographic distribution of cerebrovascular testing facilities in the United States. Our study objectives were to identify the proportion of IAC-accredited outpatient cerebrovascular testing facilities used by Medicare beneficiaries, describe their geographic distribution, and identify variations in cerebrovascular testing procedure types and volumes by accreditation status. As part of the VALUE (Vascular Accreditation, Location, and Utilization Evaluation) Study, we examined the proportion of IAC-accredited facilities that conducted cerebrovascular testing in a 5% Centers for Medicare and Medicaid Services random Outpatient Limited Data Set in 2011 and investigated their geographic distribution using geocoding. Among 7327 outpatient facilities billing Medicare for cerebrovascular testing, only 22% (1640) were IAC accredited. The proportion of IAC-accredited cerebrovascular testing facilities varied by region (χ(2)[3] = 177.1; P < .0001), with 29%, 15%, 13%, and 10% located in the Northeast, South, Midwest, and West, respectively. However, of the total number of cerebrovascular outpatient procedures conducted in 2011 (38,555), 40% (15,410) were conducted in IAC-accredited facilities. Most cerebrovascular testing procedures were carotid duplex, with 40% of them conducted in IAC-accredited facilities. The proportion of facilities conducting outpatient cerebrovascular testing accredited by the IAC is low and varies by region. The growing number of certified stroke centers should be accompanied by more accredited outpatient vascular testing facilities, which could potentially improve the quality of stroke care.
Thermal Cycling of Mir Cooperative Solar Array (MCSA) Test Panels
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Scheiman, David A.
1997-01-01
The Mir Cooperative Solar Array (MCSA) project was a joint US/Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA is currently being used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station (ISS), which will use arrays based on the same solar cells used in the MCSA. The US supplied the photovoltaic power modules (PPMs) and provided technical and programmatic oversight while Russia provided the array support structures and deployment mechanism and built and tested the array. In order to ensure that there would be no problems with the interface between US and Russian hardware, an accelerated thermal life cycle test was performed at NASA Lewis Research Center on two representative samples of the MCSA. Over an eight-month period (August 1994 - March 1995), two 15-cell MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles (+80 C to -100 C), equivalent to four years on-orbit. The test objectives, facility, procedure and results are described in this paper. Post-test inspection and evaluation revealed no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early as an artifact of the test and removed from consideration. The interesting nature of the performance degradation caused by this one cell, which only occurred at elevated temperatures, is discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the US solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit).
Nuclear electric propulsion development and qualification facilities
NASA Technical Reports Server (NTRS)
Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario
1991-01-01
This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.
4 Birds 1 Stone to Inhibit 5androstane-3alpha,17beta-diol Conversion to DHT
2016-09-01
GFP and ARE-luciferase were tested by our laboratory and the Roswell Park Cancer Institute Small Molecule Screening Facility (SMSF). PC-3 cells that...outside UNC-Lineberger Comprehensive Cancer and Roswell Park Cancer Institute. Administration Core A will have direct responsibility for organization...Supporting Agency: Roswell Park Alliance Foundation Name and address of the Funding Agency’s Procuring Contracting/Grants Officer: Judith Epstein
Diode Laser Diagnostics of High Speed Flows (Postprint)
2006-10-01
Tests were conducted in the Research Cell 18 direct connect wind tunnel facility at WPAFB. TDLAS was used to detect water and oxygen at...the measurements and provide, in essence, an internal standard for the development of the oxygen sensor . American Institute of Aeronautics and...definitely improves SNR if fast flow noise dominates as in this case. The improved optical and electronic TDLAS system detected water and oxygen at
Investigations into the Properties, Conditions, and Effects of the Ionosphere.
1988-01-15
Innovative Approaches to Direct Measurement of N e 28 ]- J FEASIBILITY OF RADIO BLACKOUT MITIGATION IN THE BRAKING PHASE 28 OF AOTV OPERATIONS 1. Brief...Cell could be tested under simulated flight conditions in the SAIC plasma laboratory facility. AJ. FEASIBILITY OF RADIO BLACKOUT MITIGATION IN THE...enable calculation of chemical modification techniques ,. on phenomena of radio blackout during re-entry of orbiting spacecraft . * ,1. Brief
Optimization of concentrator photovoltaic solar cell performance through photonic engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, James
The goal of this program was to incorporate two new and innovative design concepts into the design and production of CPV cells that have near zero added cost, yet significantly increase the operational efficiency of CPV modules. The program focused developing luminescent coupling effects and radiative cooling layers to increase efficiency and suppress CPV module power losses due to spectral variations and heating. The major results of the program were: 1) The optics of three commercial refractive (Fresnel) concentrators were characterized and prevent application of radiative cooling concepts due to strong mid-IR absorption (4-12µm) required to effectively radiate blackbody radiationmore » from the cells and provide cooling. Investigation of alternative materials for the concentrator lenses produced only undesirable options—materials with reasonable mid-IR transmission for cooling only had about 30-40 visible transmission, thus reducing incident sunlight by >50%. While our investigation was somewhat limited, our work suggests that the only viable concentrator system that can incorporate radiative cooling utilizes reflective optics. 2) With limited ability to test high concentration CPV cells (requires outdoor testing), we acquired both semi-crystalline and crystalline Si cells and tested them in our outdoor facility and demonstrated 4°C cooling using a simple silica layer coating on the cells. 3) Characterizing Si cells in the IR associated with radiative cooling, we observed very significant near-IR absorption that increases the cell operating temperature by a similar amount, 4-5°C. By appropriate surface layer design, one can produce a layer that is highly reflective in the near-IR (1.5-4µm) and highly emissive in the mid-IR (5-15µm), thus reducing cell operational temperature by 10°C and increasing efficiency by ~1% absolute. The radiative cooling effect in c-Si solar cells might be further improved by providing a higher thermal conductive elastomer for securing the cover glass on top of the AR-coating. Since it was never imagined that the front surface would provide any cooling for solar cells, thermal conductivity of this elastomer was never a design consideration, but, improving the conductivity could decrease cell temperature by another 3-4°C. The combined effect could be an ~1.5% absolute increase in cell and module efficiency, a very significant improvement. 4) Developed a numerical model to explore dependence of luminescent coupling efficiency over a broad range of operating conditions. We developed a novel method and facility to experimentally measure the luminescent coupling that can be used to confirm the dependence of luminescent coupling on multi-junction cell design parameters.« less
Geophysical background and as-built target characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, J.W.
1994-09-01
The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) has provided a facility for DOE, other Government agencies, and the private sector to evaluate and document the utility of specific geophysical measurement techniques for detecting and defining cultural and environmental targets. This facility is the Rabbit Valley Geophysics Performance Evaluation Range (GPER). Geophysical surveys prior to the fiscal year (FY) 1994 construction of new test cells showed the primary test area to be relatively homogeneous and free from natural or man-made artifacts, which would generate spurious responses in performance evaluation data. Construction of nine new cell areas inmore » Rabbit Valley was completed in June 1994 and resulted in the emplacement of approximately 150 discrete targets selected for their physical and electrical properties. These targets and their geophysical environment provide a broad range of performance evaluation parameters from ``very easy to detect`` to ``challenging to the most advanced systems.`` Use of nonintrusive investigative techniques represents a significant improvement over intrusive characterization methods, such as drilling or excavation, because there is no danger of exposing personnel to possible hazardous materials and no risk of releasing or spreading contamination through the characterization activity. Nonintrusive geophysical techniques provide the ability to infer near-surface structure and waste characteristics from measurements of physical properties associated with those targets.« less
Coupled Facility/Payload Vibration Modeling Improvements
NASA Technical Reports Server (NTRS)
Carnahan, Timothy M.; Kaiser, Michael
2015-01-01
A major phase of aerospace hardware verification is vibration testing. The standard approach for such testing is to use a shaker to induce loads into the payload. In preparation for vibration testing at NASA/GSFC there is an analysis to assess the responses of the payload. A new method of modeling the test is presented that takes into account dynamic interactions between the facility and the payload. This dynamic interaction has affected testing in the past, but been ignored or adjusted for during testing. By modeling the combination of the facility and test article (payload) it is possible to improve the prediction of hardware responses. Many aerospace test facilities work in similar way to those at NASA Goddard Space Flight Center. Lessons learned here should be applicable to other test facilities with similar setups.
An inventory of aeronautical ground research facilities. Volume 3: Structural
NASA Technical Reports Server (NTRS)
Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.
1971-01-01
An inventory of test facilities for conducting acceleration, environmental, impact, structural shock, load, heat, vibration, and noise tests is presented. The facility is identified with a description of the equipment, the testing capabilities, and cost of operation. Performance data for the facility are presented in charts and tables.
46 CFR 162.050-15 - Designation of facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... This is the mean and standard deviation, respectively, of the differences between the known sample... sample analysis, and the materials necessary to perform the tests; (2) Each facility test rig must be of... facilities. (a) Each request for designation as a facility authorized to perform approval tests must be...
40 CFR 792.43 - Test system care facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... accomplished within a room or area by housing them separately in different chambers or aquaria. Separation of... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas...
40 CFR 792.43 - Test system care facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... accomplished within a room or area by housing them separately in different chambers or aquaria. Separation of... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas...
40 CFR 792.43 - Test system care facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... accomplished within a room or area by housing them separately in different chambers or aquaria. Separation of... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas...
Experimental and computational data from a small rocket exhaust diffuser
NASA Astrophysics Data System (ADS)
Stephens, Samuel E.
1993-06-01
The Diagnostics Testbed Facility (DTF) at the NASA Stennis Space Center in Mississippi is a versatile facility that is used primarily to aid in the development of nonintrusive diagnostics for liquid rocket engine testing. The DTF consists of a fixed, 1200 lbf thrust, pressure fed, liquid oxygen/gaseous hydrogen rocket engine, and associated support systems. An exhaust diffuser has been fabricated and installed to provide subatmospheric pressures at the exit of the engine. The diffuser aerodynamic design was calculated prior to fabrication using the PARC Navier-Stokes computational fluid dynamics code. The diffuser was then fabricated and tested at the DTF. Experimental data from these tests were acquired to determine the operational characteristics of the system and to correlate the actual and predicted flow fields. The results show that a good engineering approximation of overall diffuser performance can be made using the PARC Navier-Stokes code and a simplified geometry. Correlations between actual and predicted cell pressure and initial plume expansion in the diffuser are good; however, the wall pressure profiles do not correlate as well with the experimental data.
Development and operation of a mobile test facility for education
NASA Astrophysics Data System (ADS)
Davis, Christopher T.
The automotive industry saw a large shift towards vehicle electrification after the turn of the century. It became necessary to ensure that new and existing engineers were qualified to design and calibrate these new systems. To ensure this training, Michigan Tech received a grant to develop a curriculum based around vehicle electrification. As part of this agenda, the Michigan Tech Mobile Laboratory was developed to provide hands-on training for professional engineers and technicians in hybrid electric vehicles and vehicle electrification. The Mobile Lab has since then increased the scope of the delivered curriculum to include other automotive areas and even customizable course content to meet specific needs. This thesis outlines the development of the Mobile Laboratory and its powertrain test facilities. The focus of this thesis is to discuss the different hardware and software systems within the lab and test cells. Detailed instructions on the operation and maintenance of each of the systems are discussed. In addition, this thesis outlines the setup and operation of the necessary equipment for several of the experiments for the on and off campus courses and seminars.
Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, P.K.; Freemerman, R.L.
1989-11-01
On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as themore » Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.« less
Quality assurance in the HIV/AIDS laboratory network of China.
Jiang, Yan; Qiu, Maofeng; Zhang, Guiyun; Xing, Wenge; Xiao, Yao; Pan, Pinliang; Yao, Jun; Ou, Chin-Yih; Su, Xueli
2010-12-01
In 2009, there were 8273 local screening laboratories, 254 confirmatory laboratories, 35 provincial confirmatory central laboratories and 1 National AIDS Reference Laboratory (NARL) in China. These laboratories were located in Center for Disease Control and Prevention (CDC) facilities, hospitals, blood donation clinics, maternal and child health (MCH) hospitals and border health quarantine health-care facilities. The NARL and provincial laboratories provide quality assurance through technical, bio-safety and managerial training; periodic proficiency testing; on-site supervisory inspections; and commercial serologic kit evaluations. From 2002 to 2009, more than 220 million HIV antibody tests were performed at screening laboratories, and all reactive and indeterminate samples were confirmed at confirmatory laboratories. The use of highly technically complex tests, including CD4 cell enumeration, viral load, dried blood spot (DBS)-based early infant diagnosis (EID), drug resistance (DR) genotyping, HIV-1 subtyping and incidence assays, have increased in recent years and their performance quality is closely monitored. China has made significant progress in establishing a well-coordinated HIV laboratory network and QA systems. However, the coverage and intensity of HIV testing and quality assurance programmes need to be strengthened so as to ensure that more infected persons are diagnosed and that they receive timely prevention and treatment services.
Calibration of the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel (1996 and 1997 Tests)
NASA Technical Reports Server (NTRS)
Arrington, E. Allen
2012-01-01
There were several physical and operational changes made to the NASA Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel during the period of 1992 through 1996. Following each of these changes, a facility calibration was conducted to provide the required information to support the research test programs. Due to several factors (facility research test schedule, facility downtime and continued facility upgrades), a full test section calibration was not conducted until 1996. This calibration test incorporated all test section configurations and covered the existing operating range of the facility. However, near the end of that test entry, two of the vortex generators mounted on the compressor exit tailcone failed causing minor damage to the honeycomb flow straightener. The vortex generators were removed from the facility and calibration testing was terminated. A follow-up test entry was conducted in 1997 in order to fully calibrate the facility without the effects of the vortex generators and to provide a complete calibration of the newly expanded low speed operating range. During the 1997 tunnel entry, all planned test points required for a complete test section calibration were obtained. This data set included detailed in-plane and axial flow field distributions for use in quantifying the test section flow quality.
Bimatoprost, prostamide activity, and conventional drainage.
Wan, Zhou; Woodward, David F; Cornell, Clive L; Fliri, Hans G; Martos, José L; Pettit, Simon N; Wang, Jenny W; Kharlamb, Alexander B; Wheeler, Larry A; Garst, Michael E; Landsverk, Kari J; Struble, Craig S; Stamer, W Daniel
2007-09-01
Despite structural similarity with prostaglandin F(2 alpha), the ocular hypotensive agent bimatoprost (Lumigan; Allergan, Inc., Irvine, CA) shows unique pharmacology in vitro and functional activity in vivo. Unfortunately, the precise mechanisms that underlie bimatoprost's distinctive impact on aqueous humor dynamics are unclear. The purpose of the present study was to investigate the effects of bimatoprost and a novel prostamide-selective antagonist AGN 211334 on human conventional drainage. Two model systems were used to test the consequences of bimatoprost and/or AGN 211334 treatment on conventional drainage. Human anterior segments in organ culture were perfused at a constant flow rate of 2.5 microL/min while pressure was recorded continuously. After stable baseline facilities were established, segments were treated with drug(s), and pressure was monitored for an additional 3 days. In parallel, the drugs' effects on hydraulic conductivity of human trabecular meshwork (TM) cell monolayers were evaluated. Pharmacological properties of AGN 211334 were characterized in isolated feline iris preparations in organ culture and heterologously expressed G-protein-coupled receptors were examined in vitro. Bimatoprost increased outflow facility by an average of 40% +/- 10% within 48 hours of treatment (n = 10, P < 0.001). Preincubation or coincubation with AGN 211334 significantly blunted bimatoprost's effects by 95% or 43%, respectively. Similar results were obtained in cell culture experiments in which bimatoprost increased hydraulic conductivity of TM cell monolayers by 78% +/- 25%. Pretreatment with AGN 211334 completely blocked bimatoprost's effects, while coincubation decreased its effects on average by 74%. In both models, AGN 211334 alone significantly decreased fluid flux across trabecular tissues and cells. The findings indicate that bimatoprost interacts with a prostamide receptor in the trabecular meshwork to increase outflow facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dux, Joachim; Friedrich, Daniel; Lutz, Werner
2013-07-01
Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to themore » hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)« less
Engine component instrumentation development facility at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan
1992-01-01
The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.
Design philosophy of the Jet Propulsion Laboratory infrared detector test facility
NASA Technical Reports Server (NTRS)
Burns, R.; Blessinger, M. A.
1983-01-01
To support the development of advanced infrared remote sensing instrumentation using line and area arrays, a test facility has been developed to characterize the detectors. The necessary performance characteristics of the facility were defined by considering current and projected requirements for detector testing. The completed facility provides the desired level of detector testing capability as well as providing ease of human interaction.
Evaluating Past and Future USCG Use of Ohmsett Test Facility
2016-10-01
and Renewable Energy Test Facility, that was previously known as a fully capitalized acronym, Ohmsett. This facility is located on the U.S. Naval...Oil Spill Response Research and Renewable Energy Test Facility, that was previously known as a fully capitalized acronym, Ohmsett. This facility is...Incident Management Systems NSF National Strike Force NWS Naval Weapons Station Ohmsett National Oil Spill Response Research and Renewable Energy
49 CFR Appendix A to Part 665 - Tests To Be Performed at the Bus Testing Facility
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Tests To Be Performed at the Bus Testing Facility... Part 665—Tests To Be Performed at the Bus Testing Facility The eight tests to be performed on each vehicle are required by SAFETEA-LU and are based in part on tests described in the FTA report “First...
49 CFR Appendix A to Part 665 - Tests To Be Performed at the Bus Testing Facility
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Tests To Be Performed at the Bus Testing Facility... Part 665—Tests To Be Performed at the Bus Testing Facility The eight tests to be performed on each vehicle are required by SAFETEA-LU and are based in part on tests described in the FTA report “First...
NASA Johnson Space Center: White Sands Test Facility
NASA Technical Reports Server (NTRS)
Aggarwal, Pravin; Kowalski, Robert R.
2011-01-01
This slide presentation reviews the testing facilities and laboratories available at the White Sands Test Facility (WSTF). The mission of WSTF is to provide the expertise and infrastructure to test and evaluate spacecraft materials, components and propulsion systems that enable the safe exploration and use of space. There are nine rocket test stands in two major test areas, six altitude test stands, three ambient test stands,
Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility
NASA Technical Reports Server (NTRS)
Albertson, Cindy W.; Emami, Saied
2001-01-01
Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.
Utilization of the developed cell story eBook through storytelling
NASA Astrophysics Data System (ADS)
Tecson, Christine Mae B.; Soleria, Honey Joy B.; Taranza, Victoria; Tabudlong, Josefina M.; Salic-Hairulla, Monera
2018-01-01
The main objective of this research was to develop a Cell story eBook and utilize it through storytelling and find out how it impacts the conceptual knowledge of Grade 7 students about the Cell organelles and their functions. A total of one hundred twenty-nine respondents (129) were involved in the study, one hundred twenty-four (124) of the respondents were Grade 7 students, two (2) biology in-service teachers from Integrated Developmental School, MSUIIT, two (2) ICT experts from MSU-IIT, and one in-service biology teacher from Iligan City National High School. The study employed was a Quasi-experimental design with two-group (experimental and control groups) pre-test-post-test design. The instruments used were a 20-item multiple choice tests for the pre-test and post-test and a rubric for the evaluation of the Cell Story eBook. The researchers developed the Cell story eBook through a pre-assessment, identification of the topic, formulation of objectives, making of the story, making of the storyboard, designing of the Cell story eBook, evaluation of the Cell story eBook, final revision and publication in PDF format. During the utilization stage, the experimental group was presented with the Cell story eBook through storytelling while the control group was taught using traditional lecture method. Findings show that the developed Cell story eBook was rated Excellent by the panel of experts. Moreover, there is a statistically significant difference between the post-tests of the two groups. Results signifies that there is a distinction between the performances of the two groups which means that there is an existing impact after the utilization of the developed Cell story eBook through storytelling inside the classroom. The said developed instructional material and the way it was utilized therefore, affects the conceptual knowledge of the learners. The developed Cell story eBook can also be utilized even in the absence of technology due to its flexibility. It can be printed as a hard copy for further utilization especially for those schools that still lacks appropriate learning facilities which is a common situation in the Philippines.
Fuel Cells Provide Reliable Power to U.S. Postal Service Facility in Anchorage, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Steven
2003-01-01
Working together, the U.S. Postal Service (USPS) and Chugach Electric Association, partnering with the Department of Defense (DOD), Department of Energy (DOE), US Army Corps of Engineers Construction Engineering Research Laboratories (USA CERL), Electric Power Research Institute (EPRI), and National Rural Electric Cooperative Association (NRECA), developed and installed one of the largest fuel cell installations in the world. The one-megawatt fuel cell combined heat and power plant sits behind the Anchorage U.S. Postal Service Mail Processing and Distribution Facility. Chugach Electric owns, operates, and maintains the fuel cell power plant, which provides clean, reliable power to the USPS facility. Inmore » addition, heat recovered from the fuel cells, in the form of hot water, is used to heat the USPS Mail Processing and Distribution Facility. By taking a leadership role, the USPS will save over $800,000 in electricity and natural gas costs over the 5 1/2-year contract term with Chugach Electric.« less
SSC Test Operations Contract Overview
NASA Technical Reports Server (NTRS)
Kleim, Kerry D.
2010-01-01
This slide presentation reviews the Test Operations Contract at the Stennis Space Center (SSC). There are views of the test stands layouts, and closer views of the test stands. There are descriptions of the test stand capabilities, some of the other test complexes, the Cryogenic propellant storage facility, the High Pressure Industrial Water (HPIW) facility, and Fluid Component Processing Facility (FCPF).
Coupled Facility-Payload Vibration Modeling Improvements
NASA Technical Reports Server (NTRS)
Carnahan, Timothy M.; Kaiser, Michael A.
2015-01-01
A major phase of aerospace hardware verification is vibration testing. The standard approach for such testing is to use a shaker to induce loads into the payload. In preparation for vibration testing at National Aeronautics and Space Administration/Goddard Space Flight Center an analysis is performed to assess the responses of the payload. A new method of modeling the test is presented that takes into account dynamic interactions between the facility and the payload. This dynamic interaction has affected testing in the past, but been ignored or adjusted for during testing. By modeling the combined dynamics of the facility and test article (payload) it is possible to improve the prediction of hardware responses. Many aerospace test facilities work in similar way to those at NASA/Goddard Space Flight Center. Lessons learned here should be applicable to other test facilities with similar setups.
Morris, Meghan D; Brown, Brandon; Allen, Scott A
2017-09-11
Purpose Worldwide efforts to identify individuals infected with the hepatitis C virus (HCV) focus almost exclusively on community healthcare systems, thereby failing to reach high-risk populations and those with poor access to primary care. In the USA, community-based HCV testing policies and guidelines overlook correctional facilities, where HCV rates are believed to be as high as 40 percent. This is a missed opportunity: more than ten million Americans move through correctional facilities each year. Herein, the purpose of this paper is to examine HCV testing practices in the US correctional system, California and describe how universal opt-out HCV testing could expand early HCV detection, improve public health in correctional facilities and communities, and prove cost-effective over time. Design/methodology/approach A commentary on the value of standardizing screening programs across facilities by mandating all facilities (universal) to implement opt-out testing policies for all prisoners upon entry to the correctional facilities. Findings Current variability in facility-level testing programs results in inconsistent testing levels across correctional facilities, and therefore makes estimating the actual number of HCV-infected adults in the USA difficult. The authors argue that universal opt-out testing policies ensure earlier diagnosis of HCV among a population most affected by the disease and is more cost-effective than selective testing policies. Originality/value The commentary explores the current limitations of selective testing policies in correctional systems and provides recommendations and implications for public health and correctional organizations.
Electronic Systems Test Laboratory (ESTL) User Test Planning Guide
NASA Technical Reports Server (NTRS)
Robinson, Neil
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the ESTL. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Structures Test Laboratory (STL). User Test Planning Guide
NASA Technical Reports Server (NTRS)
Zipay, John J.
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the STL. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Energy Systems Test Area (ESTA) Battery Test Operations User Test Planning Guide
NASA Technical Reports Server (NTRS)
Salinas, Michael
2012-01-01
Test process, milestones and inputs are unknowns to first-time users of the ESTA Battery Test Operations. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
A simple cell transport device keeps culture alive and functional during shipping.
Miller, Paula G; Wang, Ying I; Swan, Glen; Shuler, Michael L
2017-09-01
Transporting living complex cellular constructs through the mail while retaining their full viability and functionality is challenging. During this process, cells often suffer from exposure to suboptimal life-sustaining conditions (e.g. temperature, pH), as well as damage due to shear stress. We have developed a transport device for shipping intact cell/tissue constructs from one facility to another that overcomes these obstacles. Our transport device maintained three different cell lines (Caco2, A549, and HepG2 C3A) individually on transwell membranes with high viability (above 97%) for 48 h under simulated shipping conditions without an incubator. The device was also tested by actual overnight shipping of blood brain barrier constructs consisting of human induced pluripotent brain microvascular endothelial cells and rat astrocytes on transwell membranes to a remote facility (approximately 1200 miles away). The blood brain barrier constructs arrived with high cell viability and were able to regain full barrier integrity after equilibrating in the incubator for 24 h; this was assessed by the presence of continuous tight junction networks and in vivo-like values for trans-endothelial electrical resistance (TEER). These results demonstrated that our cell transport device could be a useful tool for long-distance transport of membrane-bound cell cultures and functional tissue constructs. Studies that involve various cell and tissue constructs, such as the "Multi-Organ-on-Chip" devices (where multiple microscale tissue constructs are integrated on a single microfluidic device) and studies that involve microenvironments where multiple tissue interactions are of interest, would benefit from the ability to transport or receive these constructs. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1257-1266, 2017. © 2017 American Institute of Chemical Engineers.
Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Billings, Marcus D.
2001-01-01
The nonlinear finite element program MSC.Dytran was used to predict the impact pulse for (he drop test of an energy absorbing cellular structure. This pre-test simulation was performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. In addition, a goal of the simulation was to bound the acceleration pulse produced and delivered to the simulated space cargo container. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the enter of the EEV's cellular structure. The material models and failure criteria were varied to determine their effect on the resulting acceleration pulse. Pre-test analytical predictions using MSC.Dytran were compared with the test results obtained from impact test #4 using bungee accelerator located at the NASA Langley Research Center Impact Dynamics Research Facility. The material model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAMI model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for drop test #4.
Recent Upgrades at the Fermilab Test Beam Facility
NASA Astrophysics Data System (ADS)
Rominsky, Mandy
2016-03-01
The Fermilab Test Beam Facility is a world class facility for testing and characterizing particle detectors. The facility has been in operation since 2005 and has undergone significant upgrades in the last two years. A second beam line with cryogenic support has been added and the facility has adopted the MIDAS data acquisition system. The facility also recently added a cosmic telescope test stand and improved tracking capabilities. With two operational beam lines, the facility can deliver a variety of particle types and momenta ranging from 120 GeV protons in the primary beam line down to 200 MeV particles in the tertiary beam line. In addition, recent work has focused on analyzing the beam structure to provide users with information on the data they are collecting. With these improvements, the Fermilab Test Beam facility is capable of supporting High Energy physics applications as well as industry users. The upgrades will be discussed along with plans for future improvements.
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.
2010-01-01
Two cold flow subscale nozzles were tested for side load characteristics during simulated nozzle start transients. The two test article contours were a truncated ideal and a parabolic. The current paper is an extension of a 2009 AIAA JPC paper on the test results for the same two nozzle test articles. The side load moments were measured with the strain tube approach in MSFC s Nozzle Test Facility. The processing techniques implemented to convert the strain gage signals into side load moment data are explained. Nozzle wall pressure profiles for separated nozzle flow at many NPRs are presented and discussed in detail. The effect of the test cell diffuser inlet on the parabolic nozzle s wall pressure profiles for separated flow is shown. The maximum measured side load moments for the two contours are compared. The truncated ideal contour s peak side load moment was 45% of that of the parabolic contour. The calculated side load moments, via mean-plus-three-standard-deviations at each nozzle pressure ratio, reproduced the characteristics and absolute values of measured maximums for both contours. The effect of facility vibration on the measured side load moments is quantified and the effect on uncertainty is calculated. The nozzle contour designs are discussed and the impact of a minor fabrication flaw in the nozzle contours is explained.
A solution to water vapor in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Gloss, Blair B.; Bruce, Robert A.
1989-01-01
As cryogenic wind tunnels are utilized, problems associated with the low temperature environment are being discovered and solved. Recently, water vapor contamination was discovered in the National Transonic Facility, and the source was shown to be the internal insulation which is a closed-cell polyisocyanurate foam. After an extensive study of the absorptivity characteristics of the NTF thermal insulation, the most practical solution to the problem was shown to be the maintaining of a dry environment in the circuit at all times. Utilizing a high aspect ratio transport model, it was shown that the moisture contamination effects on the supercritical wing pressure distributions were within the accuracy of setting test conditions and as such were considered negligible for this model.
Space Power Facility-Capabilities for Space Environmental Testing Within a Single Facility
NASA Technical Reports Server (NTRS)
Sorge, Richard N.
2013-01-01
The purpose of this paper is to describe the current and near-term environmental test capabilities of the NASA Glenn Research Center's Space Power Facility (SPF) located at Sandusky, Ohio. The paper will present current and near-term capabilities for conducting electromagnetic interference and compatibility testing, base-shake sinusoidal vibration testing, reverberant acoustic testing, and thermal-vacuum testing. The paper will also present modes of transportation, handling, ambient environments, and operations within the facility to conduct those tests. The SPF is in the midst of completing and activating new or refurbished capabilities which, when completed, will provide the ability to conduct most or all required full-scale end-assembly space simulation tests at a single test location. It is envisioned that the capabilities will allow a customer to perform a wide range of space simulation tests in one facility at reasonable cost.
Onofri, Silvano; de Vera, Jean-Pierre; Zucconi, Laura; Selbmann, Laura; Scalzi, Giuliano; Venkateswaran, Kasthuri J; Rabbow, Elke; de la Torre, Rosa; Horneck, Gerda
2015-12-01
Dehydrated Antarctic cryptoendolithic communities and colonies of the rock inhabitant black fungi Cryomyces antarcticus (CCFEE 515) and Cryomyces minteri (CCFEE 5187) were exposed as part of the Lichens and Fungi Experiment (LIFE) for 18 months in the European Space Agency's EXPOSE-E facility to simulated martian conditions aboard the International Space Station (ISS). Upon sample retrieval, survival was proved by testing colony-forming ability, and viability of cells (as integrity of cell membrane) was determined by the propidium monoazide (PMA) assay coupled with quantitative PCR tests. Although less than 10% of the samples exposed to simulated martian conditions were able to proliferate and form colonies, the PMA assay indicated that more than 60% of the cells and rock communities had remained intact after the "Mars exposure." Furthermore, a high stability of the DNA in the cells was demonstrated. The results contribute to assessing the stability of resistant microorganisms and biosignatures on the surface of Mars, data that are valuable information for further search-for-life experiments on Mars. Endoliths-Eukaryotes-Extremophilic microorganisms-Mars-Radiation resistance.
High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.E. O'Brien; X. Zhang; G.K. Housley
2012-09-01
A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells.more » The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this report. Results of initial testing showed the expected increase in open-cell voltage associated with elevated pressure. However, stack performance in terms of area-specific resistance was enhanced at elevated pressure due to better gas diffusion through the porous electrodes of the cells. Some issues such as cracked cells and seals were encountered during testing. Full resolution of these issues will require additional testing to identify the optimum test configurations and protocols.« less
GENERAL VIEW LOOKING NORTHWEST AT THE SATURN V STATIC TEST ...
GENERAL VIEW LOOKING NORTHWEST AT THE SATURN V STATIC TEST FACILITY. THIS TEST FACILITY WAS DESIGNED TO RESIST THE 12 MILLION POUNDES OF THRUST GENERATED BY THE THE SATURN V FIRST STAGE ENGINE CLUSTER. - Marshall Space Flight Center, Saturn V S-IC Static Test Facility, West Test Area, Huntsville, Madison County, AL
Calibration and use of filter test facility orifice plates
NASA Astrophysics Data System (ADS)
Fain, D. E.; Selby, T. W.
1984-07-01
There are three official DOE filter test facilities. These test facilities are used by the DOE, and others, to test nuclear grade HEPA filters to provide Quality Assurance that the filters meet the required specifications. The filters are tested for both filter efficiency and pressure drop. In the test equipment, standard orifice plates are used to set the specified flow rates for the tests. There has existed a need to calibrate the orifice plates from the three facilities with a common calibration source to assure that the facilities have comparable tests. A project has been undertaken to calibrate these orifice plates. In addition to reporting the results of the calibrations of the orifice plates, the means for using the calibration results will be discussed. A comparison of the orifice discharge coefficients for the orifice plates used at the seven facilities will be given. The pros and cons for the use of mass flow or volume flow rates for testing will be discussed. It is recommended that volume flow rates be used as a more practical and comparable means of testing filters. The rationale for this recommendation will be discussed.
National space test centers - Lewis Research Center Facilities
NASA Technical Reports Server (NTRS)
Roskilly, Ronald R.
1990-01-01
The Lewis Research Center, NASA, presently has a number of test facilities that constitute a significant national space test resource. It is expected this capability will continue to find wide application in work involving this country's future in space. Testing from basic research to applied technology, to systems development, to ground support will be performed, supporting such activities as Space Station Freedom, the Space Exploration Initiative, Mission to Planet Earth, and many others. The major space test facilities at both Cleveland and Lewis' Plum Brook Station are described. Primary emphasis is on space propulsion facilities; other facilities of importance in space power and microgravity are also included.
Cryogenic Test Capability at Marshall Space Flight Center's X-ray Cryogenic Test Facility
NASA Technical Reports Server (NTRS)
Kegley, Jeffrey; Baker, Mark; Carpenter, Jay; Eng, Ron; Haight, Harlan; Hogue, William; McCracken, Jeff; Siler, Richard; Wright, Ernie
2006-01-01
Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing sub-liquid nitrogen temperature testing since 1999. Optical wavefront measurement, thermal structural deformation, mechanism functional & calibration, and simple cryo-conditioning tests have been completed. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The chamber's payload envelope and the facility s refrigeration capacity have both been increased. Modifications have also been made to the optical instrumentation area improving access for both the installation and operation of optical instrumentation outside the vacuum chamber. The facility's capabilities, configuration, and performance data will be presented.
Reduction Reaction Activity on Pt-Monolayer-Shell PdIr/Ni-core Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Liang; Vukmirovic, Miomir B.; Adzic, Radoslav R.
Platinum monolayer oxygen reduction reaction catalysts present promising way of reducing the Pt content without scarifying its fuel cell performance. We present a facile way of preparing Pt monolayer shell PdIr-based core catalysts, which showed much higher activity for oxygen reduction reaction than that of TKK 46.6% Pt/C catalyst. Among tested samples, PtMLPd2Ir/Ni/C performs the best with Pt and Platinum Group Metal mass activity around 9 and 0.25 times higher of that of TKK 46.6% Pt/C. In addition, accelerated aging test indicates its excellent durability.
Reduction Reaction Activity on Pt-Monolayer-Shell PdIr/Ni-core Catalysts
Song, Liang; Vukmirovic, Miomir B.; Adzic, Radoslav R.
2018-05-14
Platinum monolayer oxygen reduction reaction catalysts present promising way of reducing the Pt content without scarifying its fuel cell performance. We present a facile way of preparing Pt monolayer shell PdIr-based core catalysts, which showed much higher activity for oxygen reduction reaction than that of TKK 46.6% Pt/C catalyst. Among tested samples, PtMLPd2Ir/Ni/C performs the best with Pt and Platinum Group Metal mass activity around 9 and 0.25 times higher of that of TKK 46.6% Pt/C. In addition, accelerated aging test indicates its excellent durability.
LOH- RadGene experiment at Cell Biology Experiment Facility (CBEF)
2009-02-20
ISS018-E-034090 (20 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, uses a communication system near the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station.
NASA Technical Reports Server (NTRS)
Rogers, J. P.; Cureton, K. L.; Olsen, J. R.
1994-01-01
Future aerospace vehicles will require use of the Electrical Actuator systems for flight control elements. This report presents a proposed ELA Test Facility for dynamic evaluation of high power linear Electrical Actuators with primary emphasis on Thrust Vector Control actuators. Details of the mechanical design, power and control systems, and data acquisition capability of the test facility are presented. A test procedure for evaluating the performance of the ELA Test Facility is also included.
Photovoltaic Systems Test Facilities: Existing capabilities compilation
NASA Technical Reports Server (NTRS)
Volkmer, K.
1982-01-01
A general description of photovoltaic systems test facilities (PV-STFs) operated under the U.S. Department of Energy's photovoltaics program is given. Descriptions of a number of privately operated facilities having test capabilities appropriate to photovoltaic hardware development are given. A summary of specific, representative test capabilities at the system and subsystem level is presented for each listed facility. The range of system and subsystem test capabilities available to serve the needs of both the photovoltaics program and the private sector photovoltaics industry is given.
GENERAL VIEW OF THE NORTH SECTION OF THE EAST TEST ...
GENERAL VIEW OF THE NORTH SECTION OF THE EAST TEST AREA. THE SATURN V TEST FACILITY (BLDG. 4550) IS TO THE LEFT IN THE PHOTO. THE SATURN I TEST FACILITY (BLDG. 4557) IS IN THE CENTER, THE COLD CALIBRATION TEST STAND (BLDG. 4588) IS THE SHORT STEEL FRAMED STRUCTURE TO THE RIGHT IN THE PHOTO AND THE TURBO PUMP / HIGH VOLUME FLOW FACILITY (BLDG. 4548) IS THE TALL STEEL FRAMED STRUCTURE IN THE RIGHT SIDE OF THE PHOTOGRAPHIC IMAGE. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
Obermeyer, Carla Makhlouf; Neuman, Melissa; Hardon, Anita; Desclaux, Alice; Wanyenze, Rhoda; Ky-Zerbo, Odette; Cherutich, Peter; Namakhoma, Ireen
2013-09-01
Research indicates that individuals tested for HIV have higher socio-economic status than those not tested, but less is known about how socio-economic status is associated with modes of testing. We compared individuals tested through provider-initiated testing and counselling (PITC), those tested through voluntary counselling and testing (VCT) and those never tested. Cross-sectional surveys were conducted at health facilities in Burkina Faso, Kenya, Malawi and Uganda, as part of the Multi-country African Testing and Counselling for HIV (MATCH) study. A total of 3659 clients were asked about testing status, type of facility of most recent test and socio-economic status. Two outcome measures were analysed: ever tested for HIV and mode of testing. We compared VCT at stand-alone facilities and PITC, which includes integrated facilities where testing is provided with medical care, and prevention of mother-to-child transmission (PMTCT) facilities. The determinants of ever testing and of using a particular mode of testing were analysed using modified Poisson regression and multinomial logistic analyses. Higher socio-economic status was associated with the likelihood of testing at VCT rather than other facilities or not testing. There were no significant differences in socio-economic characteristics between those tested through PITC (integrated and PMTCT facilities) and those not tested. Provider-initiated modes of testing make testing accessible to individuals from lower socio-economic groups to a greater extent than traditional VCT. Expanding testing through PMTCT reduces socio-economic obstacles, especially for women. Continued efforts are needed to encourage testing and counselling among men and the less affluent. © 2013 John Wiley & Sons Ltd.
10. Credit USAF, 7 September 1945. Original housed in the ...
10. Credit USAF, 7 September 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. View looks northwest into jet engine test cell located on aircraft apron southeast of Building 4305. In background of photo can be seen doors of Unicon Portable Hangar on left, and southeast end of Building T-l Bachelor Officers' Quarters ("Desert Rat Hotel"). This view emphasizes the hangar's role as a test facility for developing and testing aircraft and aircraft systems, not simply as a "garage" for aircraft. - Edwards Air Force Base, North Base, Unicon Portable Hangar, First & C Streets, Boron, Kern County, CA
A Testing Service for Industry
NASA Technical Reports Server (NTRS)
1994-01-01
A small isolated NASA facility provides assistance to industry in the design, testing, and operation of oxygen systems. White Sands Test Facility (WSTF) was originally established to test rocket propulsion systems for the Apollo program. The facility's role was later expanded into testing characterization, flammability and toxicity characteristics of materials. Its materials and components test methods were adopted by the American society for Testing and Materials. When research and testing results became known, industry requested assistance, and in 1980, NASA authorized WSTF to open its facility to private firms, a valuable service, as oxygen systems testing is often too expensive and too hazardous for many companies. Today, some of the best known American industries utilize White Sands testing capabilities.
Specialized Environmental Chamber Test Complex: User Test Planning Guide
NASA Technical Reports Server (NTRS)
Montz, Michael E.
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the Specialized Environmental Test Complex. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Test Procedure,” and Chapter 6, “Definitions and Acronyms,” of the EPA's “ENERGY STAR Testing Facility Guidance Manual: Building a Testing Facility and Performing the Solid State Test Method for ENERGY STAR... specified in Chapter 4, “Equipment Setup and Test Procedure,” of the EPA's “ENERGY STAR Testing Facility...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Test Procedure,” and Chapter 6, “Definitions and Acronyms,” of the EPA's “ENERGY STAR Testing Facility Guidance Manual: Building a Testing Facility and Performing the Solid State Test Method for ENERGY STAR... specified in Chapter 4, “Equipment Setup and Test Procedure,” of the EPA's “ENERGY STAR Testing Facility...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Test Procedure,” and Chapter 6, “Definitions and Acronyms,” of the EPA's “ENERGY STAR Testing Facility Guidance Manual: Building a Testing Facility and Performing the Solid State Test Method for ENERGY STAR... specified in Chapter 4, “Equipment Setup and Test Procedure,” of the EPA's “ENERGY STAR Testing Facility...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Test Procedure,” and Chapter 6, “Definitions and Acronyms,” of the EPA's “ENERGY STAR Testing Facility Guidance Manual: Building a Testing Facility and Performing the Solid State Test Method for ENERGY STAR... specified in Chapter 4, “Equipment Setup and Test Procedure,” of the EPA's “ENERGY STAR Testing Facility...
Improved E-ELT subsystem and component specifications, thanks to M1 test facility
NASA Astrophysics Data System (ADS)
Dimmler, M.; Marrero, J.; Leveque, S.; Barriga, Pablo; Sedghi, B.; Kornweibel, N.
2014-07-01
During the last 2 years ESO has operated the "M1 Test Facility", a test stand consisting of a representative section of the E-ELT primary mirror equipped with 4 complete prototype segment subunits including sensors, actuators and control system. The purpose of the test facility is twofold: it serves to study and get familiar with component and system aspects like calibration, alignment and handling procedures and suitable control strategies on real hardware long before the primary mirror (hereafter M1) components are commissioned. Secondly, and of major benefit to the project, it offered the possibility to evaluate component and subsystem performance and interface issues in a system context in such detail, that issues could be identified early enough to feed back into the subsystem and component specifications. This considerably reduces risk and cost of the production units and allows refocusing the project team on important issues for the follow-up of the production contracts. Experiences are presented in which areas the results of the M1 Test Facility particularly helped to improve subsystem specifications and areas, where additional tests were adopted independent of the main test facility. Presented are the key experiences of the M1 Test Facility which lead to improved specifications or identified the need for additional testing outside of the M1 Test Facility.
Saito, Suzue; Duong, Yen T; Metz, Melissa; Lee, Kiwon; Patel, Hetal; Sleeman, Katrina; Manjengwa, Julius; Ogollah, Francis M; Kasongo, Webster; Mitchell, Rick; Mugurungi, Owen; Chimbwandira, Frank; Moyo, Crispin; Maliwa, Vusumuzi; Mtengo, Helecks; Nkumbula, Tepa; Ndongmo, Clement B; Vere, Nora Skutayi; Chipungu, Geoffrey; Parekh, Bharat S; Justman, Jessica; Voetsch, Andrew C
2017-11-01
Logistical complexities of returning laboratory test results to participants have precluded most population-based HIV surveys conducted in sub-Saharan Africa from doing so. For HIV positive participants, this presents a missed opportunity for engagement into clinical care and improvement in health outcomes. The Population-based HIV Impact Assessment (PHIA) surveys, which measure HIV incidence and the prevalence of viral load (VL) suppression in selected African countries, are returning VL results to health facilities specified by each HIV positive participant within eight weeks of collection. We describe the performance of the specimen and data management systems used to return VL results to PHIA participants in Zimbabwe, Malawi and Zambia. Consenting participants underwent home-based counseling and HIV rapid testing as per national testing guidelines; all confirmed HIV positive participants had VL measured at a central laboratory on either the Roche CAP/CTM or Abbott m2000 platform. On a bi-weekly basis, a dedicated data management team produced logs linking the VL test result with the participants' contact information and preferred health facility; project staff sent test results confidentially via project drivers, national courier systems, or electronically through an adapted short message service (SMS). Participants who provided cell phone numbers received SMS or phone call alerts regarding availability of VL results. From 29,634 households across the three countries, 78,090 total participants 0 to 64 years in Zimbabwe and Malawi and 0 to 59 years in Zambia underwent blood draw and HIV testing. Of the 8391 total HIV positive participants identified, 8313 (99%) had VL tests performed and 8245 (99%) of these were returned to the selected health facilities. Of the 5979 VL results returned in Zimbabwe and Zambia, 85% were returned within the eight-week goal with a median turnaround time of 48 days (IQR: 33 to 61). In Malawi, where exact return dates were unavailable all 2266 returnable results reached the health facilities by 11 weeks. The first three PHIA surveys returned the vast majority of VL results to each HIV positive participant's preferred health facility within the eight-week target. Even in the absence of national VL monitoring systems, a system to return VL results from a population-based survey is feasible, but it requires developing laboratory and data management systems and dedicated staff. These are likely important requirements to strengthen return of results systems in routine clinical care. © 2017 The Authors. Journal of the International AIDS Society published by John Wiley & sons Ltd on behalf of the International AIDS Society.
Murphy, Colin T; Galloway, Thomas J; Handorf, Elizabeth A; Wang, Lora; Mehra, Ranee; Flieder, Douglas B; Ridge, John A
2015-04-15
The objective of this study was to identify trends and predictors of the time to treatment initiation (TTI) for patients with head and neck squamous cell carcinoma (HNSCC). The National Cancer Database (NCDB) was reviewed for the following head and neck cancer sites: oral tongue, oropharynx, larynx, and hypopharynx. TTI was defined as the number of days from diagnosis to the initiation of definitive treatment and was measured according to covariates. Significant differences in the median TTI across each covariate were measured using the Kruskal-Wallis test, and the Spearman test was used to measure trends within covariates. For multivariate analysis, a zero-inflated, negative, binomial regression model was used to estimate the expected TTI, which was expressed in the predicted number of days; and the Vuong test was used to identify the predictors of TTI. In total, 274,630 patients were included. Between 1998 and 2011, the median TTI for all patients was 26 days, and it increased from 19 days to 30 days (P < .0001). Treatment with chemoradiation (CRT) (P < .0001), treatment at academic facilities (P < .0001), and stage IV disease (P < .0001) were associated with increased TTI. TTI significantly increased for each disease stage (P < .0001), treatment modality (P < .0001), and facility type (P < .0001) over time. In addition, patients became more likely to transition care between facilities after diagnosis for treatment initiation (P < .0001) over time. On multivariate analysis, treatment at academic facilities (33 days), transitioning care (37 days), and receipt of CRT (39 days) predicted for a longer TTI. TTI is rising for patients with HNSCC. Those who have advanced-stage disease, receive treatment with CRT, are treated at academic facilities, and who have a transition in care realized the greatest increases in TTI. © 2014 American Cancer Society.
System reliability analysis through corona testing
NASA Technical Reports Server (NTRS)
Lalli, V. R.; Mueller, L. A.; Koutnik, E. A.
1975-01-01
In the Reliability and Quality Engineering Test Laboratory at the NASA Lewis Research Center a nondestructive, corona-vacuum test facility for testing power system components was developed using commercially available hardware. The test facility was developed to simulate operating temperature and vacuum while monitoring corona discharges with residual gases. This facility is being used to test various high voltage power system components.
Chamber B Thermal/Vacuum Chamber: User Test Planning Guide
NASA Technical Reports Server (NTRS)
Montz, Mike E.
2012-01-01
Test process, milestones and inputs are unknowns to first-time users of Chamber B. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Audio Development Laboratory (ADL) User Test Planning Guide
NASA Technical Reports Server (NTRS)
Romero, Andy
2012-01-01
Test process, milestones and inputs are unknowns to first-time users of the ADL. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Advanced Materials Laboratory User Test Planning Guide
NASA Technical Reports Server (NTRS)
Orndoff, Evelyne
2012-01-01
Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
21 CFR 58.31 - Testing facility management.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Testing facility management. 58.31 Section 58.31... management. For each nonclinical laboratory study, testing facility management shall: (a) Designate a study... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...
Take a Tour of Our Facility | Energy Systems Integration Facility | NREL
Take a Tour of Our Facility Take a Tour of Our Facility The Energy Systems Integration Facility Optical Characterization Laboratory System Performance Laboratory Power Systems Integration Laboratory Control Room Energy Storage Laboratory Outdoor Testing Areas Outdoor Testing Areas Energy Systems
A facility for testing 10 to 100-kWe space power reactors
NASA Astrophysics Data System (ADS)
Carlson, William F.; Bitten, Ernest J.
1993-01-01
This paper describes an existing facility that could be used in a cost-effective manner to test space power reactors in the 10 to 100-kWe range before launch. The facility has been designed to conduct full power tests of 100-kWe SP-100 reactor systems and already has the structural features that would be required for lower power testing. The paper describes a reasonable scenario starting with the acceptance at the test site of the unfueled reactor assembly and the separately shipped nuclear fuel. After fueling the reactor and installing it in the facility, cold critical tests are performed, and the reactor is then shipped to the launch site. The availability of this facility represents a cost-effective means of performing the required prelaunch test program.
Time-Lapse Video of SLS Engine Section Test Article Being Stacked at Michoud
2017-04-25
This time-lapse video shows the Space Launch System engine section structural qualification test article being stacked at NASA's Michoud Assembly Facility in New Orleans. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved to Michoud's Cell A in Building 110 for vertical stacking with hardware that simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. Once stacked, the entire test article will load onto the barge Pegasus and ship to NASA's Marshall Space Flight Center in Huntsville, Alabama. There, it will be subjected to millions of pounds of force during testing to ensure the hardware can withstand the incredible stresses of launch.
SLS Engine Section Test Article Moved for Stacking at Michoud
2017-04-25
Stacking is underway for the Space Launch System core stage engine section structural qualification test article at NASA's Michoud Assembly Facility in New Orleans. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved to Michoud's Cell A in Building 110 for vertical stacking with hardware that simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. Once stacked, the entire test article will load onto the barge Pegasus and ship to NASA's Marshall Space Flight Center in Huntsville, Alabama. There, it will be subjected to millions of pounds of force during testing to ensure the hardware can withstand the incredible stresses of launch.
Proposal for a new categorization of aseptic processing facilities based on risk assessment scores.
Katayama, Hirohito; Toda, Atsushi; Tokunaga, Yuji; Katoh, Shigeo
2008-01-01
Risk assessment of aseptic processing facilities was performed using two published risk assessment tools. Calculated risk scores were compared with experimental test results, including environmental monitoring and media fill run results, in three different types of facilities. The two risk assessment tools used gave a generally similar outcome. However, depending on the tool used, variations were observed in the relative scores between the facilities. For the facility yielding the lowest risk scores, the corresponding experimental test results showed no contamination, indicating that these ordinal testing methods are insufficient to evaluate this kind of facility. A conventional facility having acceptable aseptic processing lines gave relatively high risk scores. The facility showing a rather high risk score demonstrated the usefulness of conventional microbiological test methods. Considering the significant gaps observed in calculated risk scores and in the ordinal microbiological test results between advanced and conventional facilities, we propose a facility categorization based on risk assessment. The most important risk factor in aseptic processing is human intervention. When human intervention is eliminated from the process by advanced hardware design, the aseptic processing facility can be classified into a new risk category that is better suited for assuring sterility based on a new set of criteria rather than on currently used microbiological analysis. To fully benefit from advanced technologies, we propose three risk categories for these aseptic facilities.
NASA Technical Reports Server (NTRS)
Yamamoto, K.; Brausch, J. F.; Janardan, B. A.; Hoerst, D. J.; Price, A. O.; Knott, P. R.
1984-01-01
A total of 142 shadowgraph photographs were taken on 43 different plumes that were distributed over the six nozzle configurations using the 9.5 inch diameter collimated light beam of the shadowgraph setup. Aerodynamic flow conditions of the shadowgraph test points, the location and identification of each of the photographs, and copies of the pictures are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linke, J.; Bolt. H.; Breitbach, G.
1994-12-31
To assess the lifetime and the long term heat removal capabilities of plasma facing components in future thermonuclear fusion reactors such as ITER, neutron irradiation and subsequent high heat flux tests will be most essential. The effect of neutron damage will be simulated in material test reactors (such as the HFR-Petten) in a fission neutron environment. To investigate the heat loads during normal and off-normal operation scenarios a 60 kW electron beam test stand (Juelich Divertor Test Facility in Hot Cells, JUDITH) has been installed in a hot cell which can be operated by remote handling techniques. In this facilitymore » inertially cooled test coupons can be handled as well as small actively cooled divertor mock-ups. A special clamping mechanism for small test coupons (25 mm x 25 mm x 35 mm) with an integrated coolant channel within a copper or TZM heat sink has been developed and tested in an electron beam test bed. This method is an attractive alternative to costly large scale tests on complete divertor modules. The temperature and stress fields in individual CFC or beryllium tiles brazed to metallic heat sink (e.g. copper or TZM) can be investigated before and after neutron irradiation with moderate efforts.« less
DOE LeRC photovoltaic systems test facility
NASA Technical Reports Server (NTRS)
Cull, R. C.; Forestieri, A. F.
1978-01-01
The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility.
Ho, Hai Quan; Honda, Yuki; Motoyama, Mizuki; Hamamoto, Shimpei; Ishii, Toshiaki; Ishitsuka, Etsuo
2018-05-01
The p-type spherical silicon solar cell is a candidate for future solar energy with low fabrication cost, however, its conversion efficiency is only about 10%. The conversion efficiency of a silicon solar cell can be increased by using n-type silicon semiconductor as a substrate. This study proposed a new method of neutron transmutation doping silicon (NTD-Si) for producing the n-type spherical solar cell, in which the Si-particles are irradiated directly instead of the cylinder Si-ingot as in the conventional NTD-Si. By using a 'screw', an identical resistivity could be achieved for the Si-particles without a complicated procedure as in the NTD with Si-ingot. Also, the reactivity and neutron flux swing could be kept to a minimum because of the continuous irradiation of the Si-particles. A high temperature engineering test reactor (HTTR), which is located in Japan, was used as a reference reactor in this study. Neutronic calculations showed that the HTTR has a capability to produce about 40t/EFPY of 10Ωcm resistivity Si-particles for fabrication of the n-type spherical solar cell. Copyright © 2018 Elsevier Ltd. All rights reserved.
Materials and techniques for spacecraft static charge control
NASA Technical Reports Server (NTRS)
Amore, L. J.; Eagles, A. E.
1977-01-01
An overview of the design, development, fabrication, and testing of transparent conductive coatings and conductive lattices deposited or formed on high resistivity spacecraft dielectric materials to obtain control static charge buildup on spacecraft external surfaces is presented. Fabrication techniques for the deposition of indium/tin oxide coatings and copper grid networks on Kapton and FEP Teflon films and special frit coatings for OSR and solar cell cover glasses are discussed. The techniques include sputtering, photoetching, silkscreening, and mechanical processes. A facility designed and built to simulate the electron plasma at geosynchronous altitudes is described along with test procedures. The results of material characterizations as well as electron irradiation aging effects in this facility for spacecraft polymers treated to control static charge are presented. The data presents results for electron beam energies up to 30 kV and electron current densities of 30 nA/cm squared. Parameters measured include secondary emission, surface leakage, and through the sample currents as a function of primary beam energy and voltage.
Energy Systems Test Area (ESTA) Electrical Power Systems Test Operations: User Test Planning Guide
NASA Technical Reports Server (NTRS)
Salinas, Michael J.
2012-01-01
Test process, milestones and inputs are unknowns to first-time users of the ESTA Electrical Power Systems Test Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
An overview of the Defence Research Agency photovoltaic programme
NASA Technical Reports Server (NTRS)
Goodbody, C.; Davies, M. A. H.
1993-01-01
The Defense Research Agency (DRA) has been active in the photovoltaic field since the early 1960's, then as the Royal Aircraft Establishment (RAE). The early work was aimed at developing silicon cells, solar panels, and light-weight flexible arrays in support of the 'UK' and 'X' series of British scientific and technology satellites, for which the RAE was either the design authority or technical advisor. The X3 satellite - Prospero, launched in 1971 test flew 50 micron wrap-round silicon cells. The X4 satellite - Miranda, launched in 1974 test flew a deployable flexible silicon array which was developed at the DRA. During this period an extensive range of test equipment was developed which was maintained, modernized, and extended to date. Following a period of reduced activity in the late 1970's and early 1980's the current program evolved. The programs that have been undertaken since 1983 are briefly summarized. These range from various cell developments, new types of coverglasses, flight experiments, radiation testing, primary cell calibration, and environmental testing. The current photovoltaic program is mainly funded by the UK Ministry of Defence and by the Department of Trade and Industry through the British National Space Center (BNSC). The program is aimed at research and development, both internally and with industry, to meet the customer's technical objectives and requirements and to provide them with technical advice. The facilities are also being used on contract work for various national and international organizations.
Six-Degree-of-Freedom Dynamic Test System (SDTS) User Test Planning Guide
NASA Technical Reports Server (NTRS)
Stokes, LeBarian
2012-01-01
Test process, milestones and inputs are unknowns to first-time users of the SDTS. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
National Biomedical Tracer Facility: Project definition study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heaton, R.; Peterson, E.; Smith, P.
The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPFmore » to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.« less
System reliability analysis through corona testing
NASA Technical Reports Server (NTRS)
Lalli, V. R.; Mueller, L. A.; Koutnik, E. A.
1975-01-01
A corona vacuum test facility for nondestructive testing of power system components was built in the Reliability and Quality Engineering Test Laboratories at the NASA Lewis Research Center. The facility was developed to simulate operating temperature and vacuum while monitoring corona discharges with residual gases. The facility is being used to test various high-voltage power system components.
NASA Technical Reports Server (NTRS)
Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.
2011-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.
Robot-Powered Reliability Testing at NREL's ESIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Kevin
With auto manufacturers expected to roll out fuel cell electric vehicles in the 2015 to 2017 timeframe, the need for a reliable hydrogen fueling infrastructure is greater than ever. That's why the National Renewable Energy Laboratory (NREL) is using a robot in its Energy Systems Integration Facility (ESIF) to assess the durability of hydrogen fueling hoses, a largely untested-and currently costly-component of hydrogen fueling stations. The automated machine mimics the repetitive stress of a human bending and twisting the hose to refuel a vehicle-all under the high pressure and low temperature required to deliver hydrogen to a fuel cell vehicle'smore » onboard storage tank.« less
Robot-Powered Reliability Testing at NREL's ESIF
Harrison, Kevin
2018-02-14
With auto manufacturers expected to roll out fuel cell electric vehicles in the 2015 to 2017 timeframe, the need for a reliable hydrogen fueling infrastructure is greater than ever. That's why the National Renewable Energy Laboratory (NREL) is using a robot in its Energy Systems Integration Facility (ESIF) to assess the durability of hydrogen fueling hoses, a largely untested-and currently costly-component of hydrogen fueling stations. The automated machine mimics the repetitive stress of a human bending and twisting the hose to refuel a vehicle-all under the high pressure and low temperature required to deliver hydrogen to a fuel cell vehicle's onboard storage tank.
Robot-Powered Reliability Testing at NREL's ESIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Kevin
With auto manufacturers expected to roll out fuel cell electric vehicles in the 2015 to 2017 timeframe, the need for a reliable hydrogen fueling infrastructure is greater than ever. That's why the National Renewable Energy Laboratory (NREL) is using a robot in its Energy Systems Integration Facility (ESIF) to assess the durability of hydrogen fueling hoses, a largely untested—and currently costly—component of hydrogen fueling stations. The automated machine mimics the repetitive stress of a human bending and twisting the hose to refuel a vehicle—all under the high pressure and low temperature required to deliver hydrogen to a fuel cell vehicle'smore » onboard storage tank.« less
Evaluation of Geopolymer Concrete for Rocket Test Facility Flame Deflectors
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Montes, Carlos; Islam, Rashedul; Allouche, Erez
2014-01-01
The current paper presents results from a combined research effort by Louisiana Tech University (LTU) and NASA Stennis Space Center (SSC) to develop a new alumina-silicate based cementitious binder capable of acting as a high performance refractory material with low heat ablation rate and high early mechanical strength. Such a binder would represent a significant contribution to NASA's efforts to develop a new generation of refractory 'hot face' liners for liquid or solid rocket plume environments. This project was developed as a continuation of on-going collaborations between LTU and SSC, where test sections of a formulation of high temperature geopolymer binder were cast in the floor and walls of Test Stand E-1 Cell 3, an active rocket engine test stand flame trench. Additionally, geopolymer concrete panels were tested using the NASA-SSC Diagnostic Test Facility (DTF) thruster, where supersonic plume environments were generated on a 1ft wide x 2ft long x 6 inch deep refractory panel. The DTF operates on LOX/GH2 propellants producing a nominal thrust of 1,200 lbf and the combustion chamber conditions are Pc=625psig, O/F=6.0. Data collected included high speed video of plume/panel area and surface profiles (depth) of the test panels measured on a 1-inch by 1-inch giving localized erosion rates during the test. Louisiana Tech conducted a microstructure analysis of the geopolymer binder after the testing program to identify phase changes in the material.
NIST Document Sharing Test Facility
NIST Document Sharing Test Facility This site supports the IHE effort in Document Sharing as part . This test facility is based on the IHE IT Infrastructure Technical Framework. All testing done against that Patient IDs be pre-registered before submitting metadata about them. To allocate new patient IDs
10 CFR 61.81 - Tests at land disposal facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Tests at land disposal facilities. 61.81 Section 61.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests, and Inspections § 61.81 Tests at land disposal facilities. (a) Each...
10 CFR 61.81 - Tests at land disposal facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Tests at land disposal facilities. 61.81 Section 61.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests, and Inspections § 61.81 Tests at land disposal facilities. (a) Each...
10 CFR 61.81 - Tests at land disposal facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Tests at land disposal facilities. 61.81 Section 61.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests, and Inspections § 61.81 Tests at land disposal facilities. (a) Each...
Li, Stanley Ka-Lok; Banerjee, Juni; Jang, Christopher; Sehgal, Amita; Stone, Richard A; Civan, Mortimer M
2015-02-05
Aqueous humor inflow falls 50% during sleeping hours without proportional fall in IOP, partly reflecting reduced outflow facility. The mechanisms underlying outflow facility cycling are unknown. One outflow facility regulator is matrix metalloproteinase (MMP) release from trabecular meshwork (TM) cells. Because anterior segment temperature must oscillate due to core temperature cycling and eyelid closure during sleep, we tested whether physiologically relevant temperature oscillations drive cycles in the activity of secreted MMP. Temperature of transformed normal human TM cells (hTM5 line) was fixed or alternated 12 hours/12 hours between 33°C and 37°C. Activity of secreted MMP-2 and MMP-9 was measured by zymography, and gene expression by RT-PCR and quantitative PCR. Raising temperature to 37°C increased, and lowering to 33°C reduced, activity of secreted MMP. Switching between 37°C and 33°C altered MMP-9 by 40% ± 3% and MMP-2 by 22% ± 2%. Peripheral circadian clocks did not mediate temperature-driven cycling of MMP secretion because MMP-release oscillations did not persist at constant temperature after 3 to 6 days of alternating temperatures, and temperature cycles did not entrain clock-gene expression in these cells. Furthermore, inhibiting heat shock transcription factor 1, which links temperature and peripheral clock-gene oscillations, inhibited MMP-9 but not MMP-2 temperature-driven MMP cycling. Inhibition of heat-sensitive TRPV1 channels altered total MMP secretion but not temperature-induced modulations. Inhibiting cold-sensitive TRPM-8 channels had no effect. Physiologically relevant temperature oscillations drive fluctuations of secreted MMP-2 and MMP-9 activity in hTM5 cells independent of peripheral clock genes and temperature-sensitive TRP channels. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
Pavement testing facility : effects of tire pressure on flexible pavement response performance
DOT National Transportation Integrated Search
1989-08-01
The effects of tire pressure on flexible pavement response and performance were evaluated using data from the first phase of research at the Federal Highway Administration's Pavement Testing Facility. The Accelerated Loading Facility testing machine ...
34. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF BLOCKHOUSE ...
34. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF BLOCKHOUSE AND TOP OF TEST BAY, LOOKING NORTHEAST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
33. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF BLOCKHOUSE ...
33. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF BLOCKHOUSE AND UPPER LEVEL OF TEST BAY, LOOKING NORTH - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
Refurbishment and Automation of the Thermal/Vacuum Facilities at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Donohue, John T.; Johnson, Chris; Ogden, Rick; Sushon, Janet
1998-01-01
The thermal/vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the 11 facilities, currently 10 of the systems are scheduled for refurbishment and/or replacement as part of a 5-year implementation. Expected return on investment includes the reduction in test schedules, improvements in the safety of facility operations, reduction in the complexity of a test and the reduction in personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering and for the automation of thermal/vacuum facilities and thermal/vacuum tests. Automation of the thermal/vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs) and the use of Supervisory Control and Data Acquisition (SCADA) systems. These components allow the computer control and automation of mechanical components such as valves and pumps. In some cases, the chamber and chamber shroud require complete replacement while others require only mechanical component retrofit or replacement. The project of refurbishment and automation began in 1996 and has resulted in the computer control of one Facility (Facility #225) and the integration of electronically controlled devices and PLCs within several other facilities. Facility 225 has been successfully controlled by PLC and SCADA for over one year. Insignificant anomalies have occurred and were resolved with minimal impact to testing and operations. The amount of work remaining to be performed will occur over the next four to five years. Fiscal year 1998 includes the complete refurbishment of one facility, computer control of the thermal systems in two facilities, implementation of SCADA and PLC systems to support multiple facilities and the implementation of a Database server to allow efficient test management and data analysis.
The Use of Environmental Test Facilities for Purposes Beyond Their Original Design
NASA Technical Reports Server (NTRS)
Fisher, Terry C.; Marner, W. J.
2000-01-01
Increasing demands from space flight project offices are requiring environmental testing facilities to become more versatile with increased capabilities. At the same time, maintaining a cost-effective approach to test operations has driven efforts to use these facilities for purposes beyond their original design. This paper presents an overview of the Jet Propulsion Laboratory's efforts to provide JPL's space flight projects with test facilities to meet unique test requirements and to serve the needs of selected outside customers. The large number of recent Mars Missions, including the Mars Pathfinder project, have required testing of components and systems in a Martian surface environment in facilities originally designed for deep space testing. The unique problems associated with performing these tests are discussed, along with practical solutions. Other unique test requirements are discussed including the use of space simulation chambers for testing high altitude balloon gondolas and the use of vacuum chambers for system level test firing of an ion propulsion engine.
NASA Astrophysics Data System (ADS)
Steinberg, S. J.; Howard, M. D.
2016-02-01
Collecting algae samples from the field presents issues of specimen damage or degradation caused by preservation methods, handling and transport to laboratory facilities for identification. Traditionally, in-field collection of high quality microscopic images has not been possible due to the size, weight and fragility of high quality instruments and training of field staff in species identification. Scientists at the Southern California Coastal Water Research Project (SCCWRP) in collaboration with the Fletcher Lab, University of California Berkeley, Department of Bioengineering, tested and translated Fletcher's original medical CellScope for use in environmental monitoring applications. Field tests conducted by SCCWRP in 2014 led to modifications of the clinical CellScope to one better suited to in-field microscopic imaging for aquatic organisms. SCCWRP subsequently developed a custom cell-phone application to acquire microscopic imagery using the "CellScope Aquatic "in combination with other cell-phone derived field data (e.g. GPS location, date, time and other field observations). Data and imagery collected in-field may be transmitted in real-time to a web-based data system for tele-taxonomy evaluation and assessment by experts in the office. These hardware and software tools was tested in field in a variety of conditions and settings by multiple algae experts during the spring and summer of 2015 to further test and refine the CellScope Aquatic platform. The CellScope Aquatic provides an easy-to-use, affordable, lightweight, professional quality, data collection platform for environmental monitoring. Our ongoing efforts will focus on development of real-time expert systems for data analysis and image processing, to provide onsite feedback to field scientists.
The NASA integrated test facility and its impact on flight research
NASA Technical Reports Server (NTRS)
Mackall, D. A.; Pickett, M. D.; Schilling, L. J.; Wagner, C. A.
1988-01-01
The Integrated Test Facility (ITF), being built at NASA Ames-Dryden Flight Research Facility, will provide new test capabilities for emerging research aircraft. An overview of the ITF and the challenges being addressed by this unique facility are outlined. The current ITF capabilities, being developed with the X-29 Forward Swept Wing Program, are discussed along with future ITF activities.
Direct fuel cell power plants: the final steps to commercialization
NASA Astrophysics Data System (ADS)
Glenn, Donald R.
Since the last paper presented at the Second Grove Fuel Cell Symposium, the Energy Research Corporation (ERC) has established two commercial subsidiaries, become a publically-held firm, expanded its facilities and has moved the direct fuel cell (DFC) technology and systems significantly closer to commercial readiness. The subsidiaries, the Fuel Cell Engineering Corporation (FCE) and Fuel Cell Manufacturing Corporation (FCMC) are perfecting their respective roles in the company's strategy to commercialize its DFC technology. FCE is the prime contractor for the Santa Clara Demonstration and is establishing the needed marketing, sales, engineering, and servicing functions. FCMC in addition to producing the stacks and stack modules for the Santa Clara demonstration plant is now upgrading its production capability and product yields, and retooling for the final stack scale-up for the commercial unit. ERC has built and operated the tallest and largest capacities-to-date carbonate fuel cell stacks as well as numerous short stacks. While most of these units were tested at ERC's Danbury, Connecticut (USA) R&D Center, others have been evaluated at other domestic and overseas facilities using a variety of fuels. ERC has supplied stacks to Elkraft and MTU for tests with natural gas, and RWE in Germany where coal-derived gas were used. Additional stack test activities have been performed by MELCO and Sanyo in Japan. Information from some of these activities is protected by ERC's license arrangements with these firms. However, permission for limited data releases will be requested to provide the Grove Conference with up-to-date results. Arguably the most dramatic demonstration of carbonate fuel cells in the utility-scale, 2 MW power plant demonstration unit, located in the City of Santa Clara, California. Construction of the unit's balance-of-plant (BOP) has been completed and the installed equipment has been operationally checked. Two of the four DFC stack sub-modules, each rated at 500 kW, are on-site and will be installed to the BOP upon completion of the BOP pretests now in the final stages. Full operation and commencement of the formal demonstration is to begin late this year. Now five years old, the Fuel Cell Commercialization Group (FCCG) has grown to include over 30 buyers. The Group's Committees have been actively working with FCE personnel to hone the plant's performance, configuration and cost/benefit trade-offs to assure a market-responsive unit results from the collaboration. A standard contract has been developed for use with the FCCG buyers to streamline the purchase agreement negotiations for the early units. These are essential steps to support a market entry for the 2.8 MW power plant in 1999. The paper details the program's progress and provides additional information on the current demonstration and stack test efforts, with comparisons to earlier test data. Recent accomplishments and planned efforts to affect market entry of the first production units is reviewed as well.
The DFVLR wind-energy test facility 'Ulrich Huetter' on Schnittlinger Berg
NASA Astrophysics Data System (ADS)
Kussmann, Alfred
1986-11-01
The DFVLR test facility for wind-energy systems (named after Ulrich Huetter, the designer of the 100-kW GFRP-rotor W 34 wind turbine first manufactured and tested in the 1950s) is described and illustrated with photographs. The history of the facility is traced, and current operations in gathering, archiving, processing, interpreting, and documenting performance-test data are outlined. The facility includes instrumentation for rotor telemetry, gondola motion measurements, and ground measurements and provides testing services to private users on both contract and leasing bases.
Hypergravity Facilities: Extending Knowledge Over the Continuum of Gravity
NASA Technical Reports Server (NTRS)
Souza, Kenneth A.
1999-01-01
Historical perspectives, reasons for gravitational research, key questions regarding centrifuges, particular centrifuge discussions, vestibular research facilities, the hypergravity facility for cell culture, the human research facility, as well as the center for bioinformatics are all topics discussed in viewgraph form.
Energy Systems Test Area (ESTA) Pyrotechnic Operations: User Test Planning Guide
NASA Technical Reports Server (NTRS)
Hacker, Scott
2012-01-01
The Johnson Space Center (JSC) has created and refined innovative analysis, design, development, and testing techniques that have been demonstrated in all phases of spaceflight. JSC is uniquely positioned to apply this expertise to components, systems, and vehicles that operate in remote or harsh environments. We offer a highly skilled workforce, unique facilities, flexible project management, and a proven management system. The purpose of this guide is to acquaint Test Requesters with the requirements for test, analysis, or simulation services at JSC. The guide includes facility services and capabilities, inputs required by the facility, major milestones, a roadmap of the facility s process, and roles and responsibilities of the facility and the requester. Samples of deliverables, facility interfaces, and inputs necessary to define the cost and schedule are included as appendices to the guide.
Hardware simulation of fuel cell/gas turbine hybrids
NASA Astrophysics Data System (ADS)
Smith, Thomas Paul
Hybrid solid oxide fuel cell/gas turbine (SOFC/GT) systems offer high efficiency power generation, but face numerous integration and operability challenges. This dissertation addresses the application of hardware-in-the-loop simulation (HILS) to explore the performance of a solid oxide fuel cell stack and gas turbine when combined into a hybrid system. Specifically, this project entailed developing and demonstrating a methodology for coupling a numerical SOFC subsystem model with a gas turbine that has been modified with supplemental process flow and control paths to mimic a hybrid system. This HILS approach was implemented with the U.S. Department of Energy Hybrid Performance Project (HyPer) located at the National Energy Technology Laboratory. By utilizing HILS the facility provides a cost effective and capable platform for characterizing the response of hybrid systems to dynamic variations in operating conditions. HILS of a hybrid system was accomplished by first interfacing a numerical model with operating gas turbine hardware. The real-time SOFC stack model responds to operating turbine flow conditions in order to predict the level of thermal effluent from the SOFC stack. This simulated level of heating then dynamically sets the turbine's "firing" rate to reflect the stack output heat rate. Second, a high-speed computer system with data acquisition capabilities was integrated with the existing controls and sensors of the turbine facility. In the future, this will allow for the utilization of high-fidelity fuel cell models that infer cell performance parameters while still computing the simulation in real-time. Once the integration of the numeric and the hardware simulation components was completed, HILS experiments were conducted to evaluate hybrid system performance. The testing identified non-intuitive transient responses arising from the large thermal capacitance of the stack that are inherent to hybrid systems. Furthermore, the tests demonstrated the capabilities of HILS as a research tool for investigating the dynamic behavior of SOFC/GT hybrid power generation systems.
Facilities and support systems for a 90-day test of a regenerative life support system
NASA Technical Reports Server (NTRS)
Malin, R. L.
1972-01-01
A 90-day test is reported of a regenerative life support system which was completed in a space station simulator. The long duration of the test and the fact that it was manned, imposed rigid reliability and safety requirements on the facility. Where adequate reliability could not be built into essential facility systems, either backup systems or components were provided. Awareness was intensified by: (1) placing signs on every piece of equipment that could affect the test, (2) painting switches on all breaker panels a bright contrasting color, (3) restricting access to the test control area, and (4) informing personnel in the facility (other than test personnel) of test activities. It is concluded that the basic facility is satisfactory for conducting long-duration manned tests, and it is recommended that all monitor and alarm functions be integrated into a single operation.
NASA Technical Reports Server (NTRS)
Jackola, Arthur S.; Hartjen, Gary L.
1992-01-01
The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.
Using the NPSS Environment to Model an Altitude Test Facility
NASA Technical Reports Server (NTRS)
Lavelle, Thomas M.; Owen, Albert K.; Huffman, Brian C.
2013-01-01
An altitude test facility was modeled using Numerical Propulsion System Simulation (NPSS). This altitude test facility model represents the most detailed facility model developed in the NPSS architecture. The current paper demonstrates the use of the NPSS system to define the required operating range of a component for the facility. A significant number of additional component models were easily developed to complete the model. Discussed in this paper are the additional components developed and what was done in the development of these components.
Space power distribution system technology. Volume 3: Test facility design
NASA Technical Reports Server (NTRS)
Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Messner, A.; Ritterman, P. F.
1983-01-01
The AMPS test facility is a major tool in the attainment of more economical space power. The ultimate goals of the test facility, its primary functional requirements and conceptual design, and the major equipment it contains are discussed.
7. Historic aerial photo of rocket engine test facility complex, ...
7. Historic aerial photo of rocket engine test facility complex, June 1962. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-60674. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
NASA Technical Reports Server (NTRS)
Evans, Richard K.; Hill, Gerald M.
2012-01-01
Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world?s largest space environment test facilities located at the NASA Glenn Research Center?s Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.
NASA Technical Reports Server (NTRS)
Evans, Richard K.; Hill, Gerald M.
2014-01-01
Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world's largest space environment test facilities located at the NASA Glenn Research Center's Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.
Current status and some future test directions for the U.S. National Transonic Facility
NASA Technical Reports Server (NTRS)
Gloss, Blair B.
1992-01-01
The construction of the National Transonic Facility was completed in September 1982 and the start-up and checkout of the tunnel systems were performed over the following two years. In August 1984, the facility was declared operational for final checkout of cryogenic instrumentation and control systems, and for the aerodynamics calibration and testing to commence. Since 1984 several operational problems have been identified and successfully solved which is demonstrated by the fact that the facility has operated the last year with no significant facility down times. Also during this time period, development of test techniques and instrumentation has continued. This paper will review some of the recent test techniques and instrumentation developments, and will briefly review the status of the facility.
2014-09-25
CAPE CANAVERAL, Fla. – Coupled Florida East Coast Railway, or FEC, locomotives No. 433 and No. 428 make the first run past the Orbiter Processing Facility and Thermal Protection System Facility in Launch Complex 39 at NASA’s Kennedy Space Center in Florida during the Rail Vibration Test for the Canaveral Port Authority. Seismic monitors are collecting data as the train passes by. The purpose of the test is to collect amplitude, frequency and vibration test data utilizing two Florida East Coast locomotives operating on KSC tracks to ensure that future railroad operations will not affect launch vehicle processing at the center. Buildings instrumented for the test include the Rotation Processing Surge Facility, Thermal Protection Systems Facility, Vehicle Assembly Building, Orbiter Processing Facility and Booster Fabrication Facility. Photo credit: NASA/Daniel Casper
40 CFR 792.47 - Facilities for handling test, control, and reference substances.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...
40 CFR 792.47 - Facilities for handling test, control, and reference substances.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...
40 CFR 792.47 - Facilities for handling test, control, and reference substances.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...
40 CFR 792.47 - Facilities for handling test, control, and reference substances.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Facilities for handling test, control... § 792.47 Facilities for handling test, control, and reference substances. (a) As necessary to prevent contamination or mixups, there shall be separate areas for: (1) Receipt and storage of the test, control, and...
40 CFR 160.43 - Test system care facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure... a room or area by housing them separately in different chambers or aquaria. Separation of species is... testing facility shall have a number of animal rooms or other test system areas separate from those...
40 CFR 160.43 - Test system care facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure... a room or area by housing them separately in different chambers or aquaria. Separation of species is... testing facility shall have a number of animal rooms or other test system areas separate from those...
Dermatological disease in the older age group: a cross-sectional study in aged care facilities.
Deo, Maneka S; Kerse, Ngaire; Vandal, Alain C; Jarrett, Paul
2015-12-23
To estimate the prevalence of dermatological disease in aged care facilities, and the relationship between cognitive or physical disability and significant disease. 2 large aged care facilities in Auckland, New Zealand, each providing low and high level care. All 161 residents of the facilities were invited to participate. The only exclusion criterion was inability to obtain consent from the individual or designated guardian. 88 participants were recruited-66 females (75%), 22 males (25%) with average age 87.1 years (SD 5.5 years). Primary--presence of significant skin disease (defined as that which in the opinion of the investigators needed treatment or was identified as a patient concern) diagnosed clinically on full dermatological examination by a dermatologist or dermatology trainee. Secondary--functional and cognitive status (Rehabilitation Complexity Scale and Abbreviated Mental Test Score). 81.8% were found to have at least one significant condition. The most common disorders were onychomycosis 42 (47.7%), basal cell carcinoma 13 (14.8%), asteototic eczema 11 (12.5%) and squamous cell carcinoma in situ 9 (10.2%). Other findings were invasive squamous cell carcinoma 7 (8%), bullous pemphigoid 2 (2.3%), melanoma 2 (2.3%), lichen sclerosus 2 (2.3%) and carcinoma of the breast 1 (1.1%). Inflammatory disease was more common in those with little physical disability compared with those with serious physical disability (OR 3.69; 95% CI 1.1 to 12.6, p=0.04). No significant association was found between skin disease and cognitive impairment. A high rate of dermatological disease was found. Findings ranged from frequent but not life-threatening conditions (eg, onychomycosis), to those associated with a significant morbidity (eg, eczema, lichen sclerosus and bullous pemphigoid), to potentially life-threatening (eg, squamous cell carcinoma, melanoma and breast cancer). Those with less significant physical impairment were found to be at greater risk of inflammatory dermatoses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Space Power Facility at NASA’s Plum Brook Station
1969-02-21
Exterior view of the Space Power Facility at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It produces a vacuum deep enough to simulate the conditions at 300 miles altitude. The facility can sustain a high vacuum; simulate solar radiation via a 4-megawatt quartz heat lamp array, solar spectrum by a 400-kilowatt arc lamp, and cold environments. The Space Power Facility was originally designed to test nuclear power sources for spacecraft during long durations in a space atmosphere, but it was never used for that purpose. The facility’s first test in 1970 involved a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the Brayton tests. The facility was also used for jettison tests of the Centaur Standard Shroud. The shroud was designed for the new Titan-Centaur rocket that was scheduled to launch the Viking spacecraft to Mars. The new shroud was tested under conditions that simulated the time from launch to the separation of the stages. Test programs at the facility include high-energy experiments, shroud separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.
Rehabilitation of the Rocket Vehicle Integration Test Stand at Edwards Air Force Base
NASA Technical Reports Server (NTRS)
Jones, Daniel S.; Ray, Ronald J.; Phillips, Paul
2005-01-01
Since initial use in 1958 for the X-15 rocket-powered research airplane, the Rocket Engine Test Facility has proven essential for testing and servicing rocket-powered vehicles at Edwards Air Force Base. For almost two decades, several successful flight-test programs utilized the capability of this facility. The Department of Defense has recently demonstrated a renewed interest in propulsion technology development with the establishment of the National Aerospace Initiative. More recently, the National Aeronautics and Space Administration is undergoing a transformation to realign the organization, focusing on the Vision for Space Exploration. These initiatives provide a clear indication that a very capable ground-test stand at Edwards Air Force Base will be beneficial to support the testing of future access-to-space vehicles. To meet the demand of full integration testing of rocket-powered vehicles, the NASA Dryden Flight Research Center, the Air Force Flight Test Center, and the Air Force Research Laboratory have combined their resources in an effort to restore and upgrade the original X-15 Rocket Engine Test Facility to become the new Rocket Vehicle Integration Test Stand. This report describes the history of the X-15 Rocket Engine Test Facility, discusses the current status of the facility, and summarizes recent efforts to rehabilitate the facility to support potential access-to-space flight-test programs. A summary of the capabilities of the facility is presented and other important issues are discussed.
A simulated lightning effects test facility for testing live and inert missiles and components
NASA Technical Reports Server (NTRS)
Craven, Jeffery D.; Knaur, James A.; Moore, Truman W., Jr.; Shumpert, Thomas H.
1991-01-01
Details of a simulated lightning effects test facility for testing live and inert missiles, motors, and explosive components are described. The test facility is designed to simulate the high current, continuing current, and high rate-of-rise current components of an idealized direct strike lightning waveform. The Lightning Test Facility was in operation since May, 1988, and consists of: 3 separate capacitor banks used to produce the lightning test components; a permanently fixed large steel safety cage for retaining the item under test (should it be ignited during testing); an earth covered bunker housing the control/equipment room; a charge/discharge building containing the charging/discharging switching; a remotely located blockhouse from which the test personnel control hazardous testing; and interconnecting cables.
3. VIEW LOOKING NORTH, COMPONENTS TEST LABORATORY, DYNAMIC TEST FACILITY ...
3. VIEW LOOKING NORTH, COMPONENTS TEST LABORATORY, DYNAMIC TEST FACILITY (SATURN V IN BACKGROUND). - Marshall Space Flight Center, East Test Area, Components Test Laboratory, Huntsville, Madison County, AL
NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility
NASA Technical Reports Server (NTRS)
Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.
X-Ray Calibration Facility/Advanced Video Guidance Sensor Test
NASA Technical Reports Server (NTRS)
Johnston, N. A. S.; Howard, R. T.; Watson, D. W.
2004-01-01
The advanced video guidance sensor was tested in the X-Ray Calibration facility at Marshall Space Flight Center to establish performance during vacuum. Two sensors were tested and a timeline for each are presented. The sensor and test facility are discussed briefly. A new test stand was also developed. A table establishing sensor bias and spot size growth for several ranges is detailed along with testing anomalies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael R. Kruzic
2008-06-01
Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consentmore » Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100 centimeters squared (cm2) beta/gamma. Removable beta/gamma contamination levels seldom exceeded 1,000 dpm/100 cm2, but, in railroad trenches on the reactor pad containing soil on the concrete pad in front of the shield wall, the beta dose rates ranged up to 120 milli-roentgens per hour from radioactivity entrained in the soil. General area dose rates were less than 100 micro-roentgens per hour. Prior to demolition of the reactor shield wall, removable and fixed contaminated surfaces were decontaminated to the best extent possible, using traditional decontamination methods. Fifth, large sections of the remaining structures were demolished by mechanical and open-air controlled explosive demolition (CED). Mechanical demolition methods included the use of conventional demolition equipment for removal of three main buildings, an exhaust stack, and a mobile shed. The 5-foot (ft), 5-inch (in.) thick, neutron-activated reinforced concrete shield was demolished by CED, which had never been performed at the NTS.« less
Team Update on North American Proton Facilities for Radiation Testing
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Turflinger, Thomas; Haas, Thurman; George, Jeffrey; Moss, Steven; Davis, Scott; Kostic, Andrew; Wie, Brian; Reed, Robert; Guertin, Steven;
2016-01-01
In the wake of the closure of the Indiana University Cyclotron Facility (IUCF), this presentation provides an overview of the options for North American proton facilities. This includes those in use by the aerospace community as well as new additions from the cancer therapy regime. In addition, proton single event testing background is provided for understanding the criteria needed for these facilities for electronics testing.
The New Heavy Gas Testing Capability in the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Cole, Stanley R.; Rivera, Jose A., Jr.
1997-01-01
The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over thirty-five years. The facility has a rich history of significant contributions to the design of many United States commercial transports and military aircraft. The facility has many features which contribute to its uniqueness for aeroelasticity testing; however, perhaps the most important facility capability is the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind-tunnel models. The heavy gas also provides other testing benefits, including reduction in the power requirements to operate the facility during testing. Unfortunately, the use of the original heavy gas has been curtailed due to environmental concerns. A new gas, referred to as R-134a, has been identified as a suitable replacement for the former TDT heavy gas. The TDT is currently undergoing a facility upgrade to allow testing in R-134a heavy gas. This replacement gas will result in an operational test envelope, model scaling advantages, and general testing capabilities similar to those available with the former TDT heavy gas. As such, the TDT is expected to remain a viable facility for aeroelasticity research and aircraft dynamic clearance testing well into the 21st century. This paper describes the anticipated advantages and facility calibration plans for the new heavy gas and briefly reviews several past test programs that exemplify the possible benefits of heavy gas testing.
40 CFR 160.45 - Test system supply facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... aquatic plants. (2) Facilities for plant growth, including, but not limited to greenhouses, growth chambers, light banks, and fields. (c) When appropriate, facilities for aquatic animal tests shall be... preserved by appropriate means. (b) When appropriate, plant supply facilities shall be provided. As...
9. Historic aerial photo of rocket engine test facility complex, ...
9. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1270. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
10. Historic photo of rendering of rocket engine test facility ...
10. Historic photo of rendering of rocket engine test facility complex, April 28, 1964. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-69472. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
8. Historic aerial photo of rocket engine test facility complex, ...
8. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1271. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
21 CFR 58.31 - Testing facility management.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Organization and Personnel § 58.31 Testing facility management. For each nonclinical laboratory study, testing facility management shall: (a) Designate a study...
A radiant heating test facility for space shuttle orbiter thermal protection system certification
NASA Technical Reports Server (NTRS)
Sherborne, W. D.; Milhoan, J. D.
1980-01-01
A large scale radiant heating test facility was constructed so that thermal certification tests can be performed on the new generation of thermal protection systems developed for the space shuttle orbiter. This facility simulates surface thermal gradients, onorbit cold-soak temperatures down to 200 K, entry heating temperatures to 1710 K in an oxidizing environment, and the dynamic entry pressure environment. The capabilities of the facility and the development of new test equipment are presented.
Design philosophy and operating experience with the WNRE Hot Cell Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, R.G.; Seymour, C.G.; Ryz, M.A.
1969-10-15
The objective of radiation safety and operating efficiency often conflict. The key to preventing this conflict is proper design. In this paper we discuss how both objectives have been met in the Whiteshell Nuclear Research Establishment (WNRE) Hot Cell Facilities.
Costs of facility-based HIV testing in Malawi, Zambia and Zimbabwe
Mwenge, Lawrence; Sande, Linda; Mangenah, Collin; Ahmed, Nurilign; Kanema, Sarah; d’Elbée, Marc; Sibanda, Euphemia; Kalua, Thokozani; Ncube, Gertrude; Johnson, Cheryl C.; Hatzold, Karin; Cowan, Frances M.; Corbett, Elizabeth L.; Ayles, Helen; Maheswaran, Hendramoorthy
2017-01-01
Background Providing HIV testing at health facilities remains the most common approach to ensuring access to HIV treatment and prevention services for the millions of undiagnosed HIV-infected individuals in sub-Saharan Africa. We sought to explore the costs of providing these services across three southern African countries with high HIV burden. Methods Primary costing studies were undertaken in 54 health facilities providing HIV testing services (HTS) in Malawi, Zambia and Zimbabwe. Routinely collected monitoring and evaluation data for the health facilities were extracted to estimate the costs per individual tested and costs per HIV-positive individual identified. Costs are presented in 2016 US dollars. Sensitivity analysis explored key drivers of costs. Results Health facilities were testing on average 2290 individuals annually, albeit with wide variations. The mean cost per individual tested was US$5.03.9 in Malawi, US$4.24 in Zambia and US$8.79 in Zimbabwe. The mean cost per HIV-positive individual identified was US$79.58, US$73.63 and US$178.92 in Malawi, Zambia and Zimbabwe respectively. Both cost estimates were sensitive to scale of testing, facility staffing levels and the costs of HIV test kits. Conclusions Health facility based HIV testing remains an essential service to meet HIV universal access goals. The low costs and potential for economies of scale suggests an opportunity for further scale-up. However low uptake in many settings suggests that demand creation or alternative testing models may be needed to achieve economies of scale and reach populations less willing to attend facility based services. PMID:29036171
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.
2010-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio, U.S.A. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, U.S.A. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent ongoing construction.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.
2011-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC?s Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA?s space exploration program. T he large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world?s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada?s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic de-sign and subsequent on-going construction.
Lenart-Boroń, Anna; Wolny-Koładka, Katarzyna; Stec, Joanna; Kasprowic, Andrzej
2016-10-01
This study assessed the antimicrobial resistance of airborne Staphylococcus spp. strains isolated from healthcare facilities in southern Poland. A total of 55 isolates, belonging to 10 coagulase-negative staphylococci (CoNS) species, isolated from 10 healthcare facilities (including hospitals and outpatient units) were included in the analysis. The most frequently identified species were Staphylococcus saprophyticus and Staphylococcus warneri, which belong to normal human skin flora, but can also be the cause of common and even severe nosocomial infections. Disk diffusion tests showed that the bacterial strains were most frequently resistant to erythromycin and tetracycline and only 18% of strains were susceptible to all tested antimicrobials. Polymerase chain reaction amplification of specific gene regions was used to determine the presence of the Macrolide-Lincosamide-Streptogramin resistance mechanisms in CoNS. The molecular analysis, conducted using specific primer pairs, identified the msrA1 gene, encoding active efflux pumps in bacterial cells, as the most frequent resistance gene. As many as seven antibiotic resistance genes were found in one isolate, whereas the most common number of resistance genes per isolate was five (n = 17). It may be concluded that drug resistance was widely spread among the tested strains, but the resulting antimicrobial resistance profile indicates that in the case of infection, the use of antibiotics from the basic antibiogram group will be effective in therapy. However, before administering treatment, determination of the specific antimicrobial resistance should be conducted, particularly in the case of hospitalized patients.
Ground test facility for SEI nuclear rocket engines
NASA Astrophysics Data System (ADS)
Harmon, Charles D.; Ottinger, Cathy A.; Sanchez, Lawrence C.; Shipers, Larry R.
1992-07-01
Nuclear (fission) thermal propulsion has been identified as a critical technology for a manned mission to Mars by the year 2019. Facilities are required that will support ground tests to qualify the nuclear rocket engine design, which must support a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power for a flight weight reactor/engine. This paper describes the design of a fuel element ground test facility, with a strong emphasis on safety and economy. The details of major structures and support systems of the facility are discussed, and a design diagram of the test facility structures is presented.
NASA Technical Reports Server (NTRS)
Springer, Darlene
1989-01-01
Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.
LPT. Aerial of low power test (TAN640 and 641) and ...
LPT. Aerial of low power test (TAN-640 and -641) and shield test (TAN-645 and -646) facilities. Camera facing north west. Low power test facility at right. Shield test facility at left. Flight engine test area in background at center left of view. Administrative and A&M areas at right. Photographer: Lowin. Date: February 24, 1965. INEEL negative no. 65-991 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Surface evaluation of UV-degraded contamination
NASA Technical Reports Server (NTRS)
Connatser, Robert; Hadaway, James B.
1992-01-01
Three different areas of work were accomplished under this contract: (1) contamination testing and evaluation; (2) UV irradiation testing; and (3) surface evaluation testing. Contamination testing was generally performed in the In-Situ Contamination Effects Facility at Marshall Space Flight Center (MSFC). UV irradiation testing was also performed primarily at MSFC, utilizing facilities there. Finally, the surface evaluation was done at facilities at UAH Center for Applied Optics.
16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna System...
16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna System...
16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 2 2013-01-01 2013-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna System...
16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 2 2014-01-01 2014-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna System...
The NASA Glen Research Center's Hypersonic Tunnel Facility. Chapter 16
NASA Technical Reports Server (NTRS)
Woike, Mark R.; Willis, Brian P.
2001-01-01
The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF) is a blow-down, freejet wind tunnel that provides true enthalpy flight conditions for Mach numbers of 5, 6, and 7. The Hypersonic Tunnel Facility is unique due to its large scale and use of non-vitiated (clean air) flow. A 3MW graphite core storage heater is used to heat the test medium of gaseous nitrogen to the high stagnation temperatures required to produce true enthalpy conditions. Gaseous oxygen is mixed into the heated test flow to generate the true air simulation. The freejet test section is 1.07m (42 in.) in diameter and 4.3m (14 ft) in length. The facility is well suited for the testing of large scale airbreathing propulsion systems. In this chapter, a brief history and detailed description of the facility are presented along with a discussion of the facility's application towards hypersonic airbreathing propulsion testing.
1. Credit PSR. This view displays the north and west ...
1. Credit PSR. This view displays the north and west facades of Test Stand "G" (Vibration Facility) as seen when looking east southeast (110°). Test Stand "G" no longer houses the vibrator; it now houses an autoclave due to the changing nature of the testing work. The Vibration Facility was Test Stand "G"'s historic function. Test Stand "E" is at the far right. The Vibration Facility subjected motor and engine assemblies to various vibration patterns in order to simulate flight conditions and evaluate the durability of engine and motor designs. - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA
A New Large Vibration Test Facility Concept for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Ross, Brian P.; Johnson, Eric L.; Hoksbergen, Joel; Lund, Doug
2014-01-01
The James Webb Space Telescope consists of three main components, the Integrated Science Instrument Module (ISIM) Element, the Optical Telescope Element (OTE), and the Spacecraft Element. The ISIM and OTE are being assembled at the National Aeronautics and Space Administration's Goddard Spaceflight Center (GSFC). The combined OTE and ISIM Elements, called OTIS, will undergo sine vibration testing before leaving Goddard. OTIS is the largest payload ever tested at Goddard and the existing GSFC vibration facilities are incapable of performing a sine vibration test of the OTIS payload. As a result, a new large vibration test facility is being designed. The new facility will consist of a vertical system with a guided head expander and a horizontal system with a hydrostatic slip table. The project is currently in the final design phase with installation to begin in early 2015 and the facility is expected to be operational by late 2015. This paper will describe the unique requirements for a new large vibration test facility and present the selected final design concepts.
Apollo/Saturn V facilities Test Vehicle and Launch Umbilical Tower
1966-05-25
An Apollo/Saturn V facilities Test Vehicle and Launch Umbilical Tower (LUT) atop a crawler-transporter move from the Vehicle Assembly Building (VAB) on the way to Pad A. This test vehicle, designated the Apollo/Saturn 500-F, is being used to verify launch facilities, train launch crews, and develop test and checkout procedures.
A Low Cost Weather Balloon Borne Solar Cell Calibration Payload
NASA Technical Reports Server (NTRS)
Snyder, David B.; Wolford, David S.
2012-01-01
Calibration of standard sets of solar cell sub-cells is an important step to laboratory verification of on-orbit performance of new solar cell technologies. This paper, looks at the potential capabilities of a lightweight weather balloon payload for solar cell calibration. A 1500 gr latex weather balloon can lift a 2.7 kg payload to over 100,000 ft altitude, above 99% of the atmosphere. Data taken between atmospheric pressures of about 30 to 15 mbar may be extrapolated via the Langley Plot method to 0 mbar, i.e. AMO. This extrapolation, in principle, can have better than 0.1 % error. The launch costs of such a payload arc significantly less than the much larger, higher altitude balloons, or the manned flight facility. The low cost enables a risk tolerant approach to payload development. Demonstration of 1% standard deviation flight-to-flight variation is the goal of this project. This paper describes the initial concept of solar cell calibration payload, and reports initial test flight results. .
Behavior of radioactive iodine and technetium in the spray calcination of high-level waste
NASA Astrophysics Data System (ADS)
Knox, C. A.; Farnsworth, R. K.
1981-08-01
The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In facility, installed in a radiochemical cell, is described in which installed in a radiochemical cell is described in which small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. During the spray calcination of commercial high-level liquid waste spiked with Tc-99 and I-131 and 31 wt% loss of I-131 past the sintered-metal filters. These filters and venturi scrubber were very efficient in removing particulates and Tc-99 from the the off-gas stream. Liquid scrubbers were not efficient in removing I-131 as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents are needed to remove iodine. For all future operations where iodine is present, a silver zeolite adsorber is to be used.