Sample records for facility waste burn

  1. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  2. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  3. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  4. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  5. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  6. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRE trial burn. (5) Low risk waste. Owners and operators of boilers or industrial furnaces that burn... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.104...) of this section, a boiler or industrial furnace burning hazardous waste must achieve a destruction...

  7. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DRE trial burn. (5) Low risk waste. Owners and operators of boilers or industrial furnaces that burn... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.104...) of this section, a boiler or industrial furnace burning hazardous waste must achieve a destruction...

  8. 40 CFR 266.101 - Management prior to burning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Management prior to burning. 266.101... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.101 Management prior to burning. (a) Generators. Generators of hazardous waste that is burned in a boiler or industrial furnace...

  9. 40 CFR 266.101 - Management prior to burning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Management prior to burning. 266.101... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.101 Management prior to burning. (a) Generators. Generators of hazardous waste that is burned in a boiler or industrial furnace...

  10. 40 CFR 266.101 - Management prior to burning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Management prior to burning. 266.101... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.101 Management prior to burning. (a) Generators. Generators of hazardous waste that is burned in a boiler or industrial furnace...

  11. 40 CFR 266.101 - Management prior to burning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Management prior to burning. 266.101... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.101 Management prior to burning. (a) Generators. Generators of hazardous waste that is burned in a boiler or industrial furnace...

  12. 40 CFR 266.101 - Management prior to burning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Management prior to burning. 266.101... MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.101 Management prior to burning. (a) Generators. Generators of hazardous waste that is burned in a boiler or industrial furnace...

  13. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.104...) of this section, a boiler or industrial furnace burning hazardous waste must achieve a destruction... demonstrate conformance with this requirement, 99.99% DRE must be demonstrated during a trial burn for each...

  14. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.104...) of this section, a boiler or industrial furnace burning hazardous waste must achieve a destruction... demonstrate conformance with this requirement, 99.99% DRE must be demonstrated during a trial burn for each...

  15. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.104...) of this section, a boiler or industrial furnace burning hazardous waste must achieve a destruction... demonstrate conformance with this requirement, 99.99% DRE must be demonstrated during a trial burn for each...

  16. MUNICIPAL WASTE COMBUSTION ASSESSMENT: MEDICAL WASTE COMBUSTION PRACTICES AT MUNICIPAL WASTE COMBUSTION FACILITIES

    EPA Science Inventory

    The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for mun...

  17. 40 CFR 266.100 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.100 Applicability. (a) The regulations of this subpart apply to hazardous waste burned or processed in a boiler or industrial furnace (as defined in § 260.10 of this chapter) irrespective of the purpose of burning or processing, except as...

  18. 40 CFR 266.100 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.100 Applicability. (a) The regulations of this subpart apply to hazardous waste burned or processed in a boiler or industrial furnace (as defined in § 260.10 of this chapter) irrespective of the purpose of burning or processing, except as...

  19. 40 CFR 266.100 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.100 Applicability. (a) The regulations of this subpart apply to hazardous waste burned or processed in a boiler or industrial furnace (as defined in § 260.10 of this chapter) irrespective of the purpose of burning or processing, except as...

  20. CHARACTERIZATION OF ORGANIC EMISSIONS FROM HAZARDOUS WASTE INCINERATION PROCESSES UNDER THE NEW EPA DRAFT RISK BURN GUIDANCE: MEASUREMENT ISSUES

    EPA Science Inventory

    The paper discusses measurement issues relating to the characterization of organic emissions from hazardous waste incineration processes under EPA's new risk burn guidance. The recently published draft quidance recommends that hazardous waste combustion facilities complete a mass...

  1. 40 CFR 264.342 - Principal organic hazardous constituents (POHCs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE... feed to be burned. This specification will be based on the degree of difficulty of incineration of the... results of waste analyses and trial burns or alternative data submitted with part B of the facility's...

  2. 30 CFR 250.1160 - When may I flare or vent gas?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Requirements Flaring, Venting, and Burning Hydrocarbons § 250.1160 When may I flare or vent gas? (a) You must... production facilities) or is used as an additive necessary to burn waste products, such as H2S The volume of gas flared or vented may not exceed the amount necessary for its intended purpose. Burning waste...

  3. 40 CFR 62.14560 - How do I comply with the increment of progress for submittal of a control plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Compliance Schedule and... requirements of this subpart. (2) The type(s) of waste to be burned. (3) The maximum design waste burning...

  4. 40 CFR 62.14560 - How do I comply with the increment of progress for submittal of a control plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Compliance Schedule and... requirements of this subpart. (2) The type(s) of waste to be burned. (3) The maximum design waste burning...

  5. 40 CFR 62.14560 - How do I comply with the increment of progress for submittal of a control plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Compliance Schedule and... requirements of this subpart. (2) The type(s) of waste to be burned. (3) The maximum design waste burning...

  6. Public Health Risks from Mismanagement of Healthcare Wastes in Shinyanga Municipality Health Facilities, Tanzania

    PubMed Central

    Kuchibanda, Kizito; Mayo, Aloyce W.

    2015-01-01

    The increase of healthcare facilities in Shinyanga municipality has resulted in an increase of healthcare wastes, which poses serious threats to the environment, health workers, and the general public. This research was conducted to investigate management practices of healthcare wastes in Shinyanga municipality with a view of assessing health risks to health workers and the general public. The study, which was carried out in three hospitals, involved the use of questionnaires, in-depth interview, and observation checklist. The results revealed that healthcare wastes are not quantified or segregated in all the three hospitals. Healthcare wastes at the Shinyanga Regional Referral Hospital are disposed of by on-site incineration and burning and some wastes are disposed off-site. At Kolandoto DDH only on-site burning and land disposal are practiced, while at Kambarage UHC healthcare solid wastes are incinerated, disposed of on land disposal, and burned. Waste management workers do not have formal training in waste management techniques and the hospital administrations pay very little attention to appropriate management of healthcare wastes. In light of this, it is evident that management of healthcare solid wastes is not practiced in accordance with the national and WHO's recommended standards. PMID:26779565

  7. Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil-Holterman, Luciana R.

    2012-05-07

    This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of themore » open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.« less

  8. New design incinerator being built

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-01

    A $14 million garbage-burning facility is being built by Reedy Creek Utilities Co. in cooperation with DOE at Lake Buena Vista, Fla., on the edge of Walt Disney World. The nation's first large-volume slagging pyrolysis incinerator will burn municipal waste in a more beneficial way and supply 15% of the amusement park's energy demands. By studying the new incinerators slag-producing capabilities, engineers hope to design similar facilities for isolating low-level nuclear wastes in inert, rocklike slag.

  9. CHARACTERISTICS OF ORGANIC EMISSIONS FROM HAZARDOUS WASTE INCINERATION PROCESSES UNDER THE NEW EPA DRAFT RISK BURN GUIDANCE: MEASUREMENT ISSUES

    EPA Science Inventory

    EPA's recently published draft Risk Burn Guidance recommends that hazardous waste combustion facilities complete a mass balance of the total organics (TOs) that may be emitted from the combustor. TOs, consisting of three distinct fractions (volatile, semivolatile, and nonvolatile...

  10. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.106... implemented by limiting feed rates of the individual metals to levels during the trial burn (for new... screening limit for the worst-case stack. (d) Tier III and Adjusted Tier I site-specific risk assessment...

  11. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.106... implemented by limiting feed rates of the individual metals to levels during the trial burn (for new... screening limit for the worst-case stack. (d) Tier III and Adjusted Tier I site-specific risk assessment...

  12. Comparative analysis of waste-to-energy alternatives for a low-capacity power plant in Brazil.

    PubMed

    Ferreira, Elzimar Tadeu de F; Balestieri, José Antonio P

    2018-03-01

    The Brazilian National Solid Waste Policy has been implemented with some difficulty, especially in convincing the different actors of society about the importance of conscious awareness among every citizen and businesses concerning adequate solid waste disposal and recycling. Technologies for recovering energy from municipal solid waste were considered in National Solid Waste Policy (NSWP), given that their technical and environmental viability is ensured, being the landfill biogas burning in internal combustion engines and solid waste incineration suggested options. In the present work, an analysis of current technologies and a collection of basic data on electricity generation using biogas from waste/liquid effluents is presented, as well as an assessment of the installation of a facility that harnesses biogas from waste or liquid effluents for producing electricity. Two combined cycle concepts were evaluated with capacity in the range 4-11 MW, gas turbine burning landfill biogas and an incinerator that burns solid waste hybrid cycle, and a solid waste gasification system to burn syngas in gas turbines. A comparative analysis of them demonstrated that the cycle with gasification from solid waste has proved to be technically more appealing than the hybrid cycle integrated with incineration because of its greater efficiency and considering the initially defined guidelines for electricity generation. The economic analysis does not reveal significant attractive values; however, this is not a significant penalty to the project given the fact that this is a pilot low-capacity facility, which is intended to be constructed to demonstrate appropriate technologies of energy recovery from solid waste.

  13. Solid rocket propellant waste disposal/ingredient recovery study

    NASA Technical Reports Server (NTRS)

    Mcintosh, M. J.

    1976-01-01

    A comparison of facility and operating costs of alternate methods shows open burning to be the lowest cost incineration method of waste propellant disposal. The selection, development, and implementation of an acceptable alternate is recommended. The recovery of ingredients from waste propellant has the probability of being able to pay its way, and even show a profit, when large consistent quantities of composite propellant are available. Ingredients recovered from space shuttle waste propellant would be worth over $1.5 million. Open and controlled burning are both energy wasteful.

  14. 40 CFR 264.340 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... finds that the waste will pose a threat to human health and the environment when burned in an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264...

  15. 40 CFR 264.340 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... finds that the waste will pose a threat to human health and the environment when burned in an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264...

  16. 40 CFR 264.340 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... finds that the waste will pose a threat to human health and the environment when burned in an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264...

  17. Naval facility energy conversion plants as resource recovery system components

    NASA Astrophysics Data System (ADS)

    Capps, A. G.

    1980-01-01

    This interim report addresses concepts for recovering energy from solid waste by using Naval facilities steam plants as principle building blocks of candidate solid waste/resource recovery systems at Navy installations. The major conclusions of this portion of the project are: although it is technically feasible to adapt Navy energy conversion systems to fire Waste Derived Fuels (WDF) in one or more of its forms, the optimal form selected should be a site-specific total system; near- to intermediate-term programs should probably continue to give first consideration to waterwall incinerators and to the cofiring of solid WDF in coal-capable plants; package incinerators and conversions of oil burning plants to fire a fluff form of solid waste fuel may be the options with the greatest potential for the intermediate term because waterwalls would be uneconomical in many small plants and because the majority of medium-sized oil-burning plants will not be converted to burn coal; and pyrolytic processes to produce gaseous and liquid fuels have not been sufficiently developed as yet to be specified for commerical operation.

  18. Environmental and health impacts of household solid waste handling and disposal practices in third world cities: the case of the Accra Metropolitan Area, Ghana.

    PubMed

    Boadi, Kwasi Owusu; Kuitunen, Markku

    2005-11-01

    Inadequate provision of solid waste management facilities in Third World cities results in indiscriminate disposal and unsanitary environments, which threatens the health of urban residents. The study reported here examined household-level waste management and disposal practices in the Accra Metropolitan Area, Ghana. The residents of Accra currently generate large amounts of solid waste, beyond the management capabilities of the existing waste management system. Because the solid waste infrastructure is inadequate, over 80 percent of the population do not have home collection services. Only 13.5 percent of respondents are served with door-to-door collection of solid waste, while the rest dispose of their waste at communal collection points, in open spaces, and in waterways. The majority of households store their waste in open containers and plastic bags in the home. Waste storage in the home is associated with the presence of houseflies in the kitchen (r = .17, p < .0001). The presence of houseflies in the kitchen during cooking is correlated with the incidence of childhood diarrhea (r = .36, p < .0001). Inadequate solid waste facilities result in indiscriminate burning and burying of solid waste. There is an association between waste burning and the incidence of respiratory health symptoms among adults (r = .25, p < .0001) and children (r = .22, p < .05). Poor handling and disposal of waste are major causes of environmental pollution, which creates breeding grounds for pathogenic organisms, and the spread of infectious diseases. Improving access to solid waste collection facilities and services will help achieve sound environmental health in Accra.

  19. Emissions from small-scale burns of simulated deployed U.S. military waste.

    PubMed

    Woodall, Brian D; Yamamoto, Dirk P; Gullett, Brian K; Touati, Abderrahmane

    2012-10-16

    U.S. military forces have historically relied on open burning as an expedient method of volume reduction and treatment of solid waste during the conflicts in Afghanistan and Iraq. This study is the first effort to characterize a broad range of pollutants and their emission factors during the burning of military waste and the effects that recycling efforts, namely removing plastics, might have on emissions. Piles of simulated military waste were constructed, burned, and emissions sampled at the U.S. Environmental Protection Agency (EPA) Open Burn Testing Facility (OBTF), Research Triangle Park, NC. Three tests contained polyethylene terephthalate (PET #1 or PET) plastic water bottles and four did not. Emission factors for polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), particulate matter (PM(10), PM(2.5)), polychlorinated and polybrominated dioxins/furans (PCDD/F and PBDD/F), and criteria pollutants were determined and are contained within. The average PCDD/F emission factors were 270 ng-toxic equivalency (TEQ) per kg carbon burned (ng-TEQ/kg Cb), ranging from 35 to 780 ng-TEQ/kg Cb. Limited testing suggests that targeted removal of plastic water bottles has no apparent effect on reducing pollutants and may even promote increased emissions.

  20. Hazardous Waste Cleanup: Huntsman Corporation in West Deptford Township, New Jersey

    EPA Pesticide Factsheets

    Huntsman Corporation is located on Mantua Grove Road in West Deptford Township, New Jersey. The Shell Chemical Company manufactured polypropylene pellets at this facility since 1961. Shell stored waste oil and burned it in an on-site boiler.

  1. Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analysesmore » that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.« less

  2. PILOT-SCALE INCINERATION TEST BURN OF TCDD-CONTAMINATED TRICHLOROPHENOL PRODUCTION WASTE

    EPA Science Inventory

    A series of three tests directed at evaluating the incinerability of the toluene stillbottoms waste from trichlorophenol production previously generated by the Vertac Chemical Company were performed in the Combustion Research Facility (CRF) rotary kiln incineration system. This w...

  3. Solid waste management problems in secondary schools in Ibadan, Nigeria.

    PubMed

    Ana, G R E E; Oloruntoba, E O; Shendell, D; Elemile, O O; Benjamin, O R; Sridhar, M K C

    2011-09-01

    Inappropriate solid waste management practices in schools in less-developed countries, particularly in major urban communities, constitute one of the major factors leading to declining environmental health conditions. The objective of the authors' descriptive, cross-sectional study was to assess solid waste management problems in selected urban schools in Ibadan, Nigeria. Eight secondary schools with average pupil populations not less than 500 per school were selected randomly. Four hundred questionnaires (50 per school) were administered. In addition, an observational checklist was used to assess the physical environment. Paper and plastics were the most frequently generated wastes. Common methods of solid waste disposal reported were use of dustbins for collection and open burning. Major problems perceived with current refuse disposal methods by the study students were odors, pest infestation, and spillages. Littering and spillages of solid waste were also common features reported. Data suggested inadequate waste management facilities and practices in study schools. The lack of refuse bins may have contributed to waste spillages and the burning practices. Odors may have arisen from both the decay of overstored organic waste rich in moisture and emissions from refuse burning. This scenario poses a community environmental health nuisance and may compromise school environmental quality.

  4. 40 CFR 62.14805 - What must I do if I close my air curtain incinerator and then restart it?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14805 What must I do if I close my...

  5. 40 CFR 62.14805 - What must I do if I close my air curtain incinerator and then restart it?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14805 What must I do if I close my...

  6. 40 CFR 62.14805 - What must I do if I close my air curtain incinerator and then restart it?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14805 What must I do if I close my...

  7. 40 CFR 62.14805 - What must I do if I close my air curtain incinerator and then restart it?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14805 What must I do if I close my...

  8. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  9. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  10. Profit from a Problem

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Refuse-fired Steam Generating Facility was jointly sponsored by Hampton, NASA Langley and Langley Air Force Base. The facility disposes of all solid waste from the NASA Center, the Air Force Base, the Army's Fort Monroe and other federal installations in the area, and accommodates about 70 percent of Hampton's municipal waste. Incinerated refuse is reduced to a readily-disposable ash whose volume is one-seventh that of the solid waste brought to the plant. The energy produced in the burning process is converted to steam for use in research and administrative facilities at Langley Research Center. Plant is expected to produce some 300 million pounds of steam annually, about 85 percent of Langley Research Center's needs.

  11. Superfund Record of Decision (EPA Region 3): Harvey-Knott Drum site, New Castle County, Delaware, September 1985. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Harvey-Knott Drum Site is located in New Castle County, Delaware, approximately one-half mile east of the Maryland-Delaware border. The Harvey and Knotts Trucking, Inc., operated an open dump and burning ground on the site between 1963 and 1969. The facility accepted sanitary, municipal, and industrial wastes believed to be sludges, paint pigments, and solvents. Wastes were emptied onto the ground, into excavated trenches, or left in drums (some of which were buried). Some of these wastes were either burned as a means of reducing waste volume, or allowed to seep into the soil. Contamination of soil, surface water, andmore » ground water has occurred as a result of disposal of these industrial wastes. The selected remedial action for this site is included.« less

  12. Maximization of revenues for power sales from a solid waste resources recovery facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-01

    The report discusses the actual implementation of the best alternative in selling electrical power generated by an existing waste-to-energy facility, the Metro-Dade County Resources Recovery Plant. After the plant processes and extracts various products out of the municipal solid waste, it burns it to produce electrical power. The price for buying power to satisfy the internal needs of our Resources Recovery Facility (RRF) is substantially higher than the power price for selling electricity to any other entity. Therefore, without any further analysis, it was decided to first satisfy those internal needs and then export the excess power. Various alternatives weremore » thoroughly explored as to what to do with the excess power. Selling power to the power utilities or utilizing the power in other facilities were the primary options.« less

  13. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  14. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  15. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  16. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  17. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  18. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME III: APPENDICES G-N

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. Control efficiency of the SD/FF emission control system ...

  19. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME II: APPENDICES A-F

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. Control efficiency of the SD/FF emission control system ...

  20. Municipal Development of Anaerobic Digestion/ Combined Heat and Power in Massachusetts

    NASA Astrophysics Data System (ADS)

    Pike, Brenda

    With a commercial food waste ban going into effect in Massachusetts in October 2014, businesses, institutions, and municipalities are considering alternatives to landfills and incinerators for organic waste. Anaerobic digestion is one such alternative. Similar to composting, but in an environment devoid of oxygen, anaerobic digestion produces byproducts such as methane (which can be burned for heat or electricity) and liquid or solid digestate (which can be used as fertilizer, cattle bedding, and more). Thus, disposal of food waste and other organic materials can become a source of revenue rather than just an expense. Municipalities interested in developing anaerobic digestion/combined heat and power (AD/CHP) facilities have the benefit of desirable options for sites, such as landfill gas facilities and wastewater treatment plants, and potential feedstocks in source-separated residential or municipal food waste or wastewater. This thesis examines the opportunities and challenges for municipal development of AD/CHP facilities in Massachusetts.

  1. 76 FR 43489 - Deferral for CO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    .... 221320 Sewage treatment facilities. 562212 Solid waste landfills. Fermentation processes......... 325193... processors burning agricultural biomass residues, using fermentation processes, or producing/using biogas... treatment or manure management processes; CO 2 from fermentation during ethanol production or other...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Circulating fluidized-bed (CFB) boilers have ben used for years in Scandinavia to burn refuse-derived fuel (RDF). Now, Foster Wheeler Power Systems, Inc., (Clinton, N.J.) is bringing the technology to the US. Touted as the world`s largest waste-to-energy plant to use CFB technology, the Robbins (III.) Resource Recovery Facility will have the capacity to process 1,600 tons/d of municipal solid waste (MSW) when it begins operation in early 1997. The facility will have two materials-separation and RDF-processing trains, each with dual trommel screens, magnetic and eddy current separators, and shredders. About 25% of the incoming MSW will be sorted and removedmore » for recycling, while 75% of it will be turned into fuel, with a heat value of roughly 6,170 btu/lb. Once burned in the twin CFB boilers the resulting steam will be routed through a single turbine generator to produce 50,000 mW of electric power.« less

  3. Doing your homework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, M.T.

    1990-04-01

    Building a successful resource recovery plant requires the best technology, management and administration. But even when all the right homework is done and the best planning and design is carried out, the idea of a waste burning facility is difficult to sell to a community - especially during an era marked by not-in-my-backyard sentiment. In addition to negotiating the hurdles involved with site procurement, contractor selection, financing, and compliance with applicable laws, developers of resource recovery facilities must overcome negative popular sentiment. In Florida, all these tasks fall within the jurisdiction of the Solid Waste Authority (SWA) of Palm Beachmore » County, which facilitated the construction of the North County Regional Resource Recovery Facility. SWA built the facility as a showpiece, in hopes that other Florida counties also adopt resource recovery as an answer to their waste management problems. The history of the project and its current status are described.« less

  4. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  5. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  6. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  7. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  8. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  9. Measurement of gas and aerosol agricultural emissions

    USDA-ARS?s Scientific Manuscript database

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Agriculture impacts can include primary dust emission, on-facility combustion from vehicles or seasonal field burning, and gaseous emissions from waste...

  10. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, RE- FUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME I: SUMMARY OF RESULTS

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. ontrol efficiency of the SD/FF emission control system wa...

  11. Potential metal recovery from waste streams

    USGS Publications Warehouse

    Smith, Kathleen S.; Hageman, Philip L.; Plumlee, Geoffrey S.; Budahn, James R.; Bleiwas, Donald I.

    2015-01-01

    ‘Waste stream’ is a general term that describes the total flow of waste from homes, businesses, industrial facilities, and institutions that are recycled, burned or isolated from the environment in landfills or other types of storage, or dissipated into the environment. The recovery and reuse of chemical elements from waste streams have the potential to decrease U.S. reliance on primary resources and imports, and to lessen unwanted dispersion of some potentially harmful elements into the environment. Additional benefits might include reducing disposal or treatment costs and decreasing the risk of future environmental liabilities for waste generators. Elemental chemistry and mineralogical residences of the elements are poorly documented for many types of waste streams.

  12. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Central Shops Burning/Rubble Pit (631-6G), Volume 1 Final

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    The Burning/Rubble Pits at the Savannah River Site were usually shallow excavations approximately 3 to 4 meters in depth. Operations at the pits consisted of collecting waste on a continuous basis and burning on a monthly basis. The Central Shops Burning/Rubble Pit 631- 6G (BRP6G) was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal of paper, lumber, cans and empty galvanized steel drums. The unit may have received other materials such as plastics, rubber, rags, cardboard, oil, degreasers, or drummed solvents. The BRP6G was operated from 1951 until 1955. After disposal activities ceased, the areamore » was covered with soil. Hazardous substances, if present, may have migrated into the surrounding soil and/or groundwater. Because of this possibility, the United States Environmental Protection Agency (EPA) has designated the BRP6G as a Solid Waste Management Unit (SWMU) subject to the Resource Conservation Recovery Act/Comprehensive Environmental Response, Compensation and Liability Act (RCRA/CERCLA) process.« less

  13. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Within...

  14. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste...

  15. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste...

  16. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste...

  17. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste...

  18. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Within...

  19. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste...

  20. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Within...

  1. DETERMINING THE "MARGIN OF INCREMENTAL EXPOSURE": AN APPROACH TO ASSESSING NON-CANCER HEALTH EFFECTS OF DIOXINS

    EPA Science Inventory

    U.S. Environmental Protection Agency (EPA) guidance issued in April 1994 for performing screening level risk analyses of emissions from facilities that burn hazardous waste does not address the evaluation of non-cancer health effects from dioxin emissions. Historically, EPA has ...

  2. Science Laboratory Safety: Findings and Implications for Teacher Education.

    ERIC Educational Resources Information Center

    Swami, Piyush

    1986-01-01

    Summarizes a survey of the condition of high school science laboratories in the greater Cincinnati area (N=36). Reports safety measures undertaken for fire and burn and eye and face protection, waste disposal, storage facilities, and ventilation. Offers suggestions and plans for enriching safety education programs for teachers. (ML)

  3. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of...

  4. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of...

  5. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of...

  6. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of...

  7. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of...

  8. 40 CFR 60.3063 - When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... incinerator burns only wood waste, clean lumber, and yard waste? 60.3063 Section 60.3063 Protection of... Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3063 When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard waste? Table 1 of this subpart specifies the final...

  9. 40 CFR 60.3063 - When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... incinerator burns only wood waste, clean lumber, and yard waste? 60.3063 Section 60.3063 Protection of... Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3063 When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard waste? Table 1 of this subpart specifies the final...

  10. 40 CFR 60.3063 - When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... incinerator burns only wood waste, clean lumber, and yard waste? 60.3063 Section 60.3063 Protection of... Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3063 When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard waste? Table 1 of this subpart specifies the final...

  11. 40 CFR 60.3063 - When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... incinerator burns only wood waste, clean lumber, and yard waste? 60.3063 Section 60.3063 Protection of... Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3063 When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard waste? Table 1 of this subpart specifies the final...

  12. 40 CFR 60.3063 - When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... incinerator burns only wood waste, clean lumber, and yard waste? 60.3063 Section 60.3063 Protection of... Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3063 When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard waste? Table 1 of this subpart specifies the final...

  13. U.S. Air Force Environmental Assessment, Add To and Alter Type III Hydrant Fueling System, Tinker Air Force Base, Oklahoma

    DTIC Science & Technology

    2011-12-01

    burning of fossil fuels (e.g., oil , natural gas , coal), solid waste decay, and trees and wood products and also as a result of chemical reactions...to negative GHG effects. Methane. CH4 is a GHG that is emitted during the production and transport of coal, natural gas , and oil . Methane...the pump station (Facility 486); Control Room (Facility 487); and the oil -water separator (Facility 488). • Construction of a new Type III pump house

  14. Adherence to Healthcare Waste Management Guidelines among Nurses and Waste Handlers in Thika Sub-county- Kenya.

    PubMed

    Njue, P Mwaniki; Cheboi, K Solomon; Shadrak, Oiye

    2015-10-01

    Despite the set guidelines on Healthcare Waste Management in Kenya, mixing of different categories of waste, crude dumping and poor incineration are still a common phenomenon in public health facilities in Thika Subcounty, Kenya. Thika Subcounty generates 560 Kilograms of healthcare waste daily, which is risk to the many patients (admission rate of 26%). This may pose a potential environmental risk and be a source of disease diffusion. This research explored the adherence to healthcare waste management waste guidelines in health care facilities among the nurses and waste handlers. This was a cross sectional survey in which mixed methods were applied. A census and proportionate random sampling method were used. Quantitative data was analyzed using Statistical Package for Social Science (SPSS) version 20.0, while qualitative data was analyzed manually into themes. Full adherence to the seven waste disposal guidelines was low (16.3%). Knowledge on waste segregation, waste separation then disposal and means of transports were statistically significant in relation to adherence. The type of incinerator and burning status, protection maintenance and supply of adequate waste bins were also important to adherence level. Adherence level was low (16.3%,) and insignificantly different among nurses and waste handlers. From this finding, compliance remains a key challenge. Strategies targeted at contextualizing waste regulations and guidelines into local settings are necessary and important. Policy makers may design and implement standard incinerators across all the health facilities. This study is not exhaustive; therefore, it is necessary to carry out a study linking poor treatment and disposal of clinical waste to purported health outcomes in Kenya.

  15. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hazardous waste burning lightweight aggregate kilns? 63.1221 Section 63.1221 Protection of Environment... hazardous waste burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits for... prior to release to the atmosphere. (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes...

  16. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hazardous waste burning lightweight aggregate kilns? 63.1221 Section 63.1221 Protection of Environment... hazardous waste burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits for... prior to release to the atmosphere. (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes...

  17. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2972 How must I monitor opacity for air curtain incinerators that burn only wood waste...

  18. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2972 How must I monitor opacity for air curtain incinerators that burn only wood waste...

  19. 40 CFR 60.3064 - What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerator that burns only wood waste, clean lumber, and yard waste and then restart it? 60.3064... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3064 What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber, and yard...

  20. 40 CFR 60.3064 - What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerator that burns only wood waste, clean lumber, and yard waste and then restart it? 60.3064... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3064 What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber, and yard...

  1. 40 CFR 60.3064 - What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerator that burns only wood waste, clean lumber, and yard waste and then restart it? 60.3064... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3064 What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber, and yard...

  2. 40 CFR 60.3064 - What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerator that burns only wood waste, clean lumber, and yard waste and then restart it? 60.3064... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3064 What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber, and yard...

  3. 40 CFR 60.3064 - What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerator that burns only wood waste, clean lumber, and yard waste and then restart it? 60.3064... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3064 What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber, and yard...

  4. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14815 What are the emission limitations for air curtain incinerators that burn 100...

  5. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... PERFORMANCE FOR NEW STATIONARY SOURCES Operator Training and Qualification Air Curtain Incinerators That Burn... incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of appendix A of this...

  6. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14815 What are the emission limitations for air curtain incinerators that burn 100...

  7. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14815 What are the emission limitations for air curtain incinerators that burn 100...

  8. Uncontrolled burning of solid waste by households in Mexico is a significant contributor to climate change in the country.

    PubMed

    Reyna-Bensusan, Natalia; Wilson, David C; Smith, Stephen R

    2018-05-01

    Uncontrolled burning of municipal solid waste (MSW) is an important source of air pollution and is wide spread in many developing countries, but only limited data quantify the extent of domestic open burning of household waste. Here, we present some of the first field data to be reported on the uncontrolled domestic burning of waste. A representative community of Mexico (Huejutla de Reyes Municipality) was investigated and household surveys, interviews with waste operators and a waste characterisation analysis were completed to assess the extent of, and factors controlling, the open burning of waste. Waste collection provision to rural communities was very limited and, consequently 92% of households in rural areas reported that they disposed of waste by uncontrolled burning in backyards or unofficial dumps. Overall, 24% of the total MSW generated in the Municipality was disposed by uncontrolled burning. Urban and periurban areas received twice-weekly collections and the rate of uncontrolled burning was considerably smaller compared to rural households, corresponding to approximately 2% of total waste generation. Carbon equivalency calculations showed that burning waste in backyards represented approximately 6% of the total and 8.5% of fuel related CO 2 Eq emissions by the municipality. Moreover, the equivalent carbon dioxide (CO 2 Eq) from black carbon (BC) emitted by uncontrolled burning in backyards was over fifteen times larger compared to methane (CH 4 ) potentially released from equivalent amounts of combustible biodegradable waste disposal at the official dumpsite. An assessment of local respiratory health data showed the incidence of disease was higher in rural than in urban areas, when the opposite trend is typically observed in the international literature; given the high rate of burning activity found in rural areas we suggest that open burning of waste could be a major reason for the apparent poorer respiratory health status of the rural population and requires further investigation. The results emphasise the importance of including BC from uncontrolled burning of waste in international emission inventories of greenhouse gases and in the assessment of the health status of local communities in developing countries where this practice is prevalent. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) andmore » the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.« less

  10. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14820 How must I monitor opacity for air curtain incinerators that burn 100 percent...

  11. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14820 How must I monitor opacity for air curtain incinerators that burn 100 percent...

  12. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Reconstruction is Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn...

  13. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Reconstruction is Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn...

  14. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14820 How must I monitor opacity for air curtain incinerators that burn 100 percent...

  15. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must not... (whether burning hazardous waste or not) did not previously exist, to 50 parts per million by volume, over...

  16. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  17. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must not... (whether burning hazardous waste or not) did not previously exist, to 50 parts per million by volume, over...

  18. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must not... (whether burning hazardous waste or not) did not previously exist, to 50 parts per million by volume, over...

  19. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must not... (whether burning hazardous waste or not) did not previously exist, to 50 parts per million by volume, over...

  20. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  1. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  2. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  3. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  4. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must not... (whether burning hazardous waste or not) did not previously exist, to 50 parts per million by volume, over...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. L. Abbott; K. N. Keck; R. E. Schindler

    This screening level risk assessment evaluates potential adverse human health and ecological impacts resulting from continued operations of the calciner at the New Waste Calcining Facility (NWCF) at the Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Engineering and Environmental Laboratory (INEEL). The assessment was conducted in accordance with the Environmental Protection Agency (EPA) report, Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Waste. This screening guidance is intended to give a conservative estimate of the potential risks to determine whether a more refined assessment is warranted. The NWCF uses a fluidized-bed combustor to solidifymore » (calcine) liquid radioactive mixed waste from the INTEC Tank Farm facility. Calciner off volatilized metal species, trace organic compounds, and low-levels of radionuclides. Conservative stack emission rates were calculated based on maximum waste solution feed samples, conservative assumptions for off gas partitioning of metals and organics, stack gas sampling for mercury, and conservative measurements of contaminant removal (decontamination factors) in the off gas treatment system. Stack emissions were modeled using the ISC3 air dispersion model to predict maximum particulate and vapor air concentrations and ground deposition rates. Results demonstrate that NWCF emissions calculated from best-available process knowledge would result in maximum onsite and offsite health and ecological impacts that are less then EPA-established criteria for operation of a combustion facility.« less

  6. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  7. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  8. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  9. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... boilers that burn hazardous waste? 63.1217 Section 63.1217 Protection of Environment ENVIRONMENTAL... boilers that burn hazardous waste? (a) Emission limits for existing sources. You must not discharge or... provided for in paragraph (a)(2)(iii) of this section: (i) When you burn hazardous waste with an as-fired...

  10. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2973 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  11. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... boilers that burn hazardous waste? 63.1217 Section 63.1217 Protection of Environment ENVIRONMENTAL... boilers that burn hazardous waste? (a) Emission limits for existing sources. You must not discharge or... provided for in paragraph (a)(2)(iii) of this section: (i) When you burn hazardous waste with an as-fired...

  12. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... boilers that burn hazardous waste? 63.1217 Section 63.1217 Protection of Environment ENVIRONMENTAL... that burn hazardous waste? (a) Emission limits for existing sources. You must not discharge or cause... paragraph (a)(2)(iii) of this section: (i) When you burn hazardous waste with an as-fired heating value less...

  13. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  14. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  15. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2973 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  16. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2973 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  17. Wood energy in Alaska--case study evaluations of selected facilities

    Treesearch

    David Nicholls

    2009-01-01

    Biomass resources in Alaska are extensive and diverse, comprising millions of acres of standing small-diameter trees, diseased or dead trees, and trees having lowgrade timber. Limited amounts of logging and mill residues, urban wood residues, and waste products are also available. Recent wildfires in interior Alaska have left substantial volumes of burned timber,...

  18. Biomedical waste management: incineration vs. environmental safety.

    PubMed

    Gautam, V; Thapar, R; Sharma, M

    2010-01-01

    Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.

  19. 40 CFR Table 7 to Subpart Cccc of... - Emission Limitations for Waste-Burning Kilns That Commenced Construction After June 4, 2010, or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Emission Limitations for Waste-Burning... Waste-Burning Kilns That Commenced Construction After June 4, 2010, or Reconstruction or Modification... indefinitely. Table 7 to Subpart CCCC of Part 60—Emission Limitations for Waste-Burning Kilns That Commenced...

  20. 40 CFR 63.1216 - What are the standards for solid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... boilers that burn hazardous waste? 63.1216 Section 63.1216 Protection of Environment ENVIRONMENTAL... that burn hazardous waste? (a) Emission limits for existing sources. You must not discharge or cause...% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or F027 (see § 261...

  1. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...

  2. 40 CFR 63.1216 - What are the standards for solid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... boilers that burn hazardous waste? 63.1216 Section 63.1216 Protection of Environment ENVIRONMENTAL... burn hazardous waste? (a) Emission limits for existing sources. You must not discharge or cause...% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or F027 (see § 261...

  3. 40 CFR 63.1204 - What are the standards for hazardous waste burning cement kilns that are effective until...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste burning cement kilns that are effective until compliance with the standards under § 63.1220? 63... standards for hazardous waste burning cement kilns that are effective until compliance with the standards... plant site where a cement kiln (whether burning hazardous waste or not) did not previously exist, to 50...

  4. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...

  5. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hazardous waste burning lightweight aggregate kilns? 63.1221 Section 63.1221 Protection of Environment... burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits for existing sources... atmosphere. (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or...

  6. 40 CFR 63.1216 - What are the standards for solid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... boilers that burn hazardous waste? 63.1216 Section 63.1216 Protection of Environment ENVIRONMENTAL... burn hazardous waste? (a) Emission limits for existing sources. You must not discharge or cause...% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or F027 (see § 261...

  7. 40 CFR 63.1204 - What are the standards for hazardous waste burning cement kilns that are effective until...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste burning cement kilns that are effective until compliance with the standards under § 63.1220? 63... standards for hazardous waste burning cement kilns that are effective until compliance with the standards... plant site where a cement kiln (whether burning hazardous waste or not) did not previously exist, to 50...

  8. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hazardous waste burning lightweight aggregate kilns? 63.1221 Section 63.1221 Protection of Environment... burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits for existing sources... atmosphere. (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or...

  9. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use...

  10. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use...

  11. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If...

  12. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Modification or Reconstruction is Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only... requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Prior to...

  13. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Modification or Reconstruction is Commenced on or After June 16, 2006 Air Curtain Incinerators That Burn Only... requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Prior to...

  14. 40 CFR 63.1204 - What are the standards for hazardous waste burning cement kilns that are effective until...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste burning cement kilns that are effective until compliance with the standards under § 63.1220? 63... standards for hazardous waste burning cement kilns that are effective until compliance with the standards... plant site where a cement kiln (whether burning hazardous waste or not) did not previously exist, to 50...

  15. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If...

  16. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...

  17. 40 CFR 63.1216 - What are the standards for solid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... boilers that burn hazardous waste? 63.1216 Section 63.1216 Protection of Environment ENVIRONMENTAL... that burn hazardous waste? (a) Emission limits for existing sources. You must not discharge or cause...% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or F027 (see § 261...

  18. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If...

  19. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use...

  20. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...

  1. 40 CFR 63.1204 - What are the standards for hazardous waste burning cement kilns that are effective until...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste burning cement kilns that are effective until compliance with the standards under § 63.1220? 63... What are the standards for hazardous waste burning cement kilns that are effective until compliance... plant site where a cement kiln (whether burning hazardous waste or not) did not previously exist, to 50...

  2. 40 CFR 63.1204 - What are the standards for hazardous waste burning cement kilns that are effective until...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste burning cement kilns that are effective until compliance with the standards under § 63.1220? 63... What are the standards for hazardous waste burning cement kilns that are effective until compliance... plant site where a cement kiln (whether burning hazardous waste or not) did not previously exist, to 50...

  3. 40 CFR Table 7 to Subpart Cccc of... - Emission Limitations for Waste-Burning Kilns That Commenced Construction After June 4, 2010, or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Emission Limitations for Waste-Burning... Waste-Burning Kilns That Commenced Construction After June 4, 2010, or Reconstruction or Modification... indefinitely. Table 7 to Subpart CCCC of Part 60—Emission Limitations for Waste-Burning Kilns That Commenced...

  4. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...

  5. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hazardous waste burning lightweight aggregate kilns? 63.1221 Section 63.1221 Protection of Environment... burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits for existing sources... atmosphere. (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or...

  6. 40 CFR 63.1216 - What are the standards for solid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... boilers that burn hazardous waste? 63.1216 Section 63.1216 Protection of Environment ENVIRONMENTAL... burn hazardous waste? (a) Emission limits for existing sources. You must not discharge or cause...% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or F027 (see § 261...

  7. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use...

  8. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use...

  9. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If...

  10. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If...

  11. Emission reductions from woody biomass waste for energy as an alternative to open burning.

    PubMed

    Springsteen, Bruce; Christofk, Tom; Eubanks, Steve; Mason, Tad; Clavin, Chris; Storey, Brett

    2011-01-01

    Woody biomass waste is generated throughout California from forest management, hazardous fuel reduction, and agricultural operations. Open pile burning in the vicinity of generation is frequently the only economic disposal option. A framework is developed to quantify air emissions reductions for projects that alternatively utilize biomass waste as fuel for energy production. A demonstration project was conducted involving the grinding and 97-km one-way transport of 6096 bone-dry metric tons (BDT) of mixed conifer forest slash in the Sierra Nevada foothills for use as fuel in a biomass power cogeneration facility. Compared with the traditional open pile burning method of disposal for the forest harvest slash, utilization of the slash for fuel reduced particulate matter (PM) emissions by 98% (6 kg PM/BDT biomass), nitrogen oxides (NOx) by 54% (1.6 kg NOx/BDT), nonmethane volatile organics (NMOCs) by 99% (4.7 kg NMOCs/BDT), carbon monoxide (CO) by 97% (58 kg CO/BDT), and carbon dioxide equivalents (CO2e) by 17% (0.38 t CO2e/BDT). Emission contributions from biomass processing and transport operations are negligible. CO2e benefits are dependent on the emission characteristics of the displaced marginal electricity supply. Monetization of emissions reductions will assist with fuel sourcing activities and the conduct of biomass energy projects.

  12. Particulate matter characteristics during agricultural waste burning in Taichung City, Taiwan.

    PubMed

    Cheng, Man-Ting; Horng, Chuen-Liang; Su, Yi-Ru; Lin, Li-Kai; Lin, Yu-Chi; Chou, Charles C-K

    2009-06-15

    Agricultural waste burning is performed after harvest periods in June and November in Taiwan. Typically, farmers use open burning to dispose of excess rice straw. PM(2.5) and PM(2.5-10) measurements were conducted at National Chung Hsing University in Taichung City using a dichotomous sampler. The sampling times were during straw burning periods after rice harvest during 2002-2005. Ionic species including SO(4)(2-), NO(3)(-), NH(4)(+), K(+), Ca(2+), Cl(-) and Na(+) and carbonaceous species (EC and OC) in PM(2.5) and PM(2.5-10) were analyzed. The results showed that the average PM(2.5) and PM(2.5-10) concentrations were 123.6 and 31.5 microg m(-3) during agricultural waste burning periods and 32.6 and 21.4 microg m(-3) during non-waste burning periods, respectively. The fine aerosol ionic species including Cl(-), K(+) and NO(3)(-) increased 11.0, 6.7 and 5.5 times during agricultural burning periods compared with periods when agricultural waste burning is not performed. K(+) was found mainly in the fine mode during agricultural burning. High nitrogen oxidation ratio was found during agricultural waste burning periods which might be caused by the conversion of Nitrogen dioxide (NO(2)) to NO(3)(-). It is concluded that agricultural waste burning with low dispersion often causes high PM(2.5) and gases pollutant events.

  13. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... Only Wood Waste, Clean Lumber, and Yard Waste § 60.2972 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of appendix A of this...

  14. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... Only Wood Waste, Clean Lumber, and Yard Waste § 60.2972 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of appendix A of this...

  15. Credit PSR. The flammable waste materials shed appears as seen ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. The flammable waste materials shed appears as seen when looking south (186°) from South Liquid Loop Road. Note the catch basin for retaining accidentally spilled substances. Wastes are stored in drums and other safety containers until disposal by burning at the Incinerator (4249/E-50) or by other means. Note the nearby sign warning of corrosive, flammable materials, and calling attention to a fire extinguisher; a telephone is provided to call for assistance in the event of an emergency. This structure is isolated to prevent the spread of fire, and it is lightly built so damage from a fire will be inexpensive to repair - Jet Propulsion Laboratory Edwards Facility, Waste Flammable Storage Building, Edwards Air Force Base, Boron, Kern County, CA

  16. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  17. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  18. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  19. 40 CFR Table 7 to Subpart Cccc of... - Emission Limitations for Waste-Burning Kilns That Commenced Construction After June 4, 2010, or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Emission Limitations for Waste-Burning..., Table 7 Table 7 to Subpart CCCC of Part 60—Emission Limitations for Waste-Burning Kilns That Commenced... limit. b NOX limits for new waste-burning kilns based on data for best-performing similar source...

  20. 40 CFR 63.1218 - What are the standards for hydrochloric acid production furnaces that burn hazardous waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... acid production furnaces that burn hazardous waste? 63.1218 Section 63.1218 Protection of Environment... production furnaces that burn hazardous waste? (a) Emission limits for existing sources. You must not...% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or F027 (see § 261...

  1. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  2. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  3. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or... percent wood wastes, clean lumber and/or yard waste? (a) After the date the initial test for opacity is...

  4. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or... percent wood wastes, clean lumber and/or yard waste? (a) After the date the initial test for opacity is...

  5. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or... wood wastes, clean lumber, and/or yard waste? (a) Use Method 9 of 40 CFR part 60, Appendix A to...

  6. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or... wood wastes, clean lumber, and/or yard waste? (a) Use Method 9 of 40 CFR part 60, Appendix A to...

  7. 40 CFR 60.3065 - What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

  8. 40 CFR 60.3065 - What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

  9. 40 CFR Table 8 to Subpart Dddd of... - Model Rule-Emission Limitations That Apply to Waste-Burning Kilns After May 20, 2011

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Apply to Waste-Burning Kilns After May 20, 2011 8 Table 8 to Subpart DDDD of Part 60 Protection of..., Table 8 Table 8 to Subpart DDDD of Part 60—Model Rule—Emission Limitations That Apply to Waste-Burning... to Waste-Burning Kilns After May 20, 2011 For the air pollutant You must meet this emissionlimitation...

  10. 40 CFR 60.3065 - What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

  11. 40 CFR 60.3065 - What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

  12. 40 CFR 60.3065 - What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not..., 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3065 What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

  13. 40 CFR 60.2875 - What definitions must I know?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... burn liquid wastes material and gas (Liquid/gas),” “Energy recovery unit designed to burn solid..., liquid fuel or gaseous fuels. Energy recovery unit designed to burn liquid waste material and gas (Liquid/gas) means an energy recovery unit that burns a liquid waste with liquid or gaseous fuels not combined...

  14. 40 CFR 60.2875 - What definitions must I know?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... burn liquid wastes material and gas (Liquid/gas),” “Energy recovery unit designed to burn solid..., liquid fuel or gaseous fuels. Energy recovery unit designed to burn liquid waste material and gas (Liquid/gas) means an energy recovery unit that burns a liquid waste with liquid or gaseous fuels not combined...

  15. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1930 Section 60... Incinerators That Burn 100 Percent Yard Waste § 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  16. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  17. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive a...

  18. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive a...

  19. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1930 Section 60... Incinerators That Burn 100 Percent Yard Waste § 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  20. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive a...

  1. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  2. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  3. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive a...

  4. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  5. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive a...

  6. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? (a...

  7. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  8. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1930 Section 60... Incinerators That Burn 100 Percent Yard Waste § 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  9. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1930 Section 60... Incinerators That Burn 100 Percent Yard Waste § 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  10. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1930 Section 60... Incinerators That Burn 100 Percent Yard Waste § 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  11. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? (a...

  12. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? (a...

  13. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? (a...

  14. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? (a...

  15. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  16. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  17. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  18. ER stress and subsequent activated calpain play a pivotal role in skeletal muscle wasting after severe burn injury

    PubMed Central

    Shen, Chuanan; Li, Dawei; Wang, Xiaoteng

    2017-01-01

    Severe burns are typically followed by hypermetabolism characterized by significant muscle wasting, which causes considerable morbidity and mortality. The aim of the present study was to explore the underlying mechanisms of skeletal muscle damage/wasting post-burn. Rats were randomized to the sham, sham+4-phenylbutyrate (4-PBA, a pharmacological chaperone promoting endoplasmic reticulum (ER) folding/trafficking, commonly considered as an inhibitor of ER), burn (30% total body surface area), and burn+4-PBA groups; and sacrificed at 1, 4, 7, 14 days after the burn injury. Tibial anterior muscle was harvested for transmission electron microscopy, calcium imaging, gene expression and protein analysis of ER stress / ubiquitin-proteasome system / autophagy, and calpain activity measurement. The results showed that ER stress markers were increased in the burn group compared with the sham group, especially at post-burn days 4 and 7, which might consequently elevate cytoplasmic calcium concentration, promote calpain production as well as activation, and cause skeletal muscle damage/wasting of TA muscle after severe burn injury. Interestingly, treatment with 4-PBA prevented burn-induced ER swelling and altered protein expression of ER stress markers and calcium release, attenuating calpain activation and skeletal muscle damage/wasting after severe burn injury. Atrogin-1 and LC3-II/LC3-I ratio were also increased in the burn group compared with the sham group, while MuRF-1 remained unchanged; 4-PBA decreased atrogin-1 in the burn group. Taken together, these findings suggested that severe burn injury induces ER stress, which in turns causes calpain activation. ER stress and subsequent activated calpain play a critical role in skeletal muscle damage/wasting in burned rats. PMID:29028830

  19. Clay Improvement with Burned Olive Waste Ash

    PubMed Central

    Mutman, Utkan

    2013-01-01

    Olive oil is concentrated in the Mediterranean basin countries. Since the olive oil industries are incriminated for a high quantity of pollution, it has become imperative to solve this problem by developing optimized systems for the treatment of olive oil wastes. This study proposes a solution to the problem. Burned olive waste ash is evaluated for using it as clay stabilizer. In a laboratory, bentonite clay is used to improve olive waste ash. Before the laboratory, the olive waste is burned at 550°C in the high temperature oven. The burned olive waste ash was added to bentonite clay with increasing 1% by weight from 1% to 10%. The study consisted of the following tests on samples treated with burned olive waste ash: Atterberg Limits, Standard Proctor Density, and Unconfined Compressive Strength Tests. The test results show promise for this material to be used as stabilizer and to solve many of the problems associated with its accumulation. PMID:23766671

  20. Emissions from open burning of simulated military waste from forward operating bases.

    PubMed

    Aurell, Johanna; Gullett, Brian K; Yamamoto, Dirk

    2012-10-16

    Emissions from open burning of simulated military waste from forward operating bases (FOBs) were extensively characterized as an initial step in assessing potential inhalation exposure of FOB personnel and future disposal alternatives. Emissions from two different burning scenarios, so-called "burn piles/pits" and an air curtain burner/"burn box", were compared using simulated FOB waste from municipal and commercial sources. A comprehensive array of emissions was quantified, including CO(2), PM(2.5), volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins and -furans (PCDDs/PCDFs), polybrominated dibenzodioxins and -furans (PBDDs/PBDFs), and metals. In general, smoldering conditions in the burn box and the burn pile led to similar emissions. However, when the burn box underwent periodic waste charging to maintain sustained combustion, PM(2.5), VOCs, and PAH emissions dropped considerably compared to smoldering conditions and the overall burn pile results. The PCDD/PCDF and PBDD/PBDF emission factors for the burn piles were 50 times higher than those from the burn box likely due to the dominance of smoldering combustion in the burn piles.

  1. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste.

    PubMed

    Wiedinmyer, Christine; Yokelson, Robert J; Gullett, Brian K

    2014-08-19

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used for chemistry and climate modeling applications. This paper presents the first comprehensive and consistent estimates of the global emissions of greenhouse gases, particulate matter, reactive trace gases, and toxic compounds from open waste burning. Global emissions of CO2 from open waste burning are relatively small compared to total anthropogenic CO2; however, regional CO2 emissions, particularly in many developing countries in Asia and Africa, are substantial. Further, emissions of reactive trace gases and particulate matter from open waste burning are more significant on regional scales. For example, the emissions of PM10 from open domestic waste burning in China is equivalent to 22% of China's total reported anthropogenic PM10 emissions. The results of the emissions model presented here suggest that emissions of many air pollutants are significantly underestimated in current inventories because open waste burning is not included, consistent with studies that compare model results with available observations.

  2. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15380 How must I monitor opacity for air curtain incinerators that burn 100 percent yard...

  3. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15380 How must I monitor opacity for air curtain incinerators that burn 100 percent yard...

  4. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15380 How must I monitor opacity for air curtain incinerators that burn 100 percent yard...

  5. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...

  6. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...

  7. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...

  8. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15380 How must I monitor opacity for air curtain incinerators that burn 100 percent yard...

  9. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15380 How must I monitor opacity for air curtain incinerators that burn 100 percent yard...

  10. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...

  11. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...

  12. Issuance of a final RCRA Part B Subpart X permit for open burning/open detonation (OB/OD) of explosives at Eglin AFB, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.E.; Culp, J.C.; Jenness, S.R.

    1997-12-31

    Treatment and disposal of explosives and munitions items have represented a significant management challenge for Department of Defense (DOD) facilities, particularly in light of increased regulatory scrutiny under the Federal Facilities Compliance Act provisions of the Resource Conservation and Recovery Act (RCRA). Subpart X of the RCRA regulations for storage, treatment, and disposal of hazardous wastes was drafted specifically to address explosive wastes. Until just recently, any DOD facility that was performing open burning/open detonation (OB/OD) of explosives was doing so under interim status for RCRA Part B Subpart X. In August 1996, Eglin Air Force Base (AFB), Florida becamemore » the first Air Force facility to be issued a final Part B Subpart X permit to perform OB/OD operations at two Eglin AFB active test ranges. This presentation will examine how Eglin AFB worked proactively with the State of Florida Department of Environmental Protection (FDEP) and EPA Region IV to develop permit conditions based upon risk assessment considerations for both air and ground-water exposure pathways. It will review the role of air emissions and air dispersion modeling in assessing potential exposure and impacts to both onsite and offsite receptors, and will discuss how air monitoring will be used to assure that the facility remains in compliance during OB/OD activities. The presentation will also discuss the soil and ground-water characterization program and associated risk assessment provisions for quarterly ground-water monitoring to assure permit compliance. The project is an excellent example of how a collaborative working relationship among the permittee, their consultant and state, and EPA can result in an environmentally protective permit that assures operational flexibility and mission sensitivity.« less

  13. Levels and distribution of polybrominated diphenyl ethers in soil, sediment and dust samples collected from various electronic waste recycling sites within Guiyu town, southern China.

    PubMed

    Labunska, Iryna; Harrad, Stuart; Santillo, David; Johnston, Paul; Brigden, Kevin

    2013-02-01

    Electronic waste recycling operations in some parts of Asia are conducted using rudimentary techniques which result in workplace and environmental contamination with toxic metals and persistent organic pollutants. This study reports concentrations of 14 polybrominated diphenyl ethers (PBDEs), from tri- to deca-brominated, in 31 samples of soil, sediment, dust or ash collected in the vicinity of e-waste recycling sites in Guiyu (southeast China) which were engaged in common activities such as dismantling, shredding, solder recovery, acid processing and open burning. The concentrations detected in this study far exceed those reported previously in urban soil and sediment and are consistent with or exceed those reported in previous studies around e-waste processing facilities. Some of the highest PBDE concentrations reported to date (e.g. 390 000 ng g (-1) dw (∑ 14 PBDEs)) were found in a sample collected from a site used for open-burning of e-waste, while an average concentration of 220 000 ng g (-1) dw (∑ 14 PBDEs) occurred in sediments impacted by circuit board shredding. A decrease in PBDE concentrations observed with increasing distance from workshops in samples associated with acid processing of wastes provides evidence that such operations are a significant source of PBDEs to the environment. Principal components analysis reveals a complex PBDE congener distribution, suggesting contamination by two or even three commercial formulations consistent with the diverse range of wastes processed.

  14. Furniture wood wastes: Experimental property characterisation and burning tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatano, Fabio; Barbadoro, Luca; Mangani, Giovanna

    2009-10-15

    Referring to the industrial wood waste category (as dominant in the provincial district of Pesaro-Urbino, Marche Region, Italy), this paper deals with the experimental characterisation and the carrying out of non-controlled burning tests (at lab- and pilot-scale) for selected 'raw' and primarily 'engineered' ('composite') wood wastes. The property characterisation has primarily revealed the following aspects: potential influence on moisture content of local weather conditions at outdoor wood waste storage sites; generally, higher ash contents in 'engineered' wood wastes as compared with 'raw' wood wastes; and relatively high energy content values of 'engineered' wood wastes (ranging on the whole from 3675more » to 5105 kcal kg{sup -1} for HHV, and from 3304 to 4634 kcal kg{sup -1} for LHV). The smoke qualitative analysis of non-controlled lab-scale burning tests has primarily revealed: the presence of specific organic compounds indicative of incomplete wood combustion; the presence exclusively in 'engineered' wood burning tests of pyrroles and amines, as well as the additional presence (as compared with 'raw' wood burning) of further phenolic and containing nitrogen compounds; and the potential environmental impact of incomplete industrial wood burning on the photochemical smog phenomenon. Finally, non-controlled pilot-scale burning tests have primarily given the following findings: emission presence of carbon monoxide indicative of incomplete wood combustion; higher nitrogen oxide emission values detected in 'engineered' wood burning tests as compared with 'raw' wood burning test; and considerable generation of the respirable PM{sub 1} fraction during incomplete industrial wood burning.« less

  15. Integrated management of hazardous waste generated from community sources in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yodnane, P.; Spaeder, D.J.

    A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most ofmore » this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.« less

  16. PCDD/F, PBDD/F, and PBDE emissions from open burning of a residential waste dump

    EPA Science Inventory

    This work reports on the first known field study determining emission factors for polychlorinated and polybrominated dibenzodioxinsldibenzofurans (P[C/B]DDs/Fs) and polybrominated diphenyl ethers (PBDEs) from open burning of domestic waste. Two burning waste dump sites in Mexico ...

  17. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  18. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  19. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  20. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  1. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard... incinerator that burns only wood waste, clean lumber, and yard waste? Yes, if your air curtain incinerator is...

  2. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2974 Am I required to apply for and obtain a title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber...

  3. 40 CFR 60.2974 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2974 Am I required to apply for and obtain a title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber...

  4. Emissions of polychlorinated dibenzodioxins and dibenzofurans and polychlorinated biphenyls from uncontrolled burning of garden and domestic waste (backyard burning).

    PubMed

    Hedman, Björn; Näslund, Morgan; Nilsson, Calle; Marklund, Stellan

    2005-11-15

    To assess emissions of dioxins (chlorinated dibenzodioxins and dibenzofurans) and PCB from uncontrolled domestic combustion of waste ("backyard burning"), test combustions in barrels and open fires were monitored. The waste fuels used were garden waste, paper, paper and plastic packaging, refuse-derived fuel (RDF), PVC, and electronic scrap. Combustions including PVC and electronic scrap emitted several orders of magnitude more dioxins than the other waste fuels. Emissions from the other fuels had considerable variations, but the levels were difficult to relate to waste composition. Emission factors of PCDD/F and PCB from the backyard burning ranged from 2.2 to 13 000 ng (WHO-TEQ)/kg. The levels found in ash usually were less than 5% of the total. For assessment of total emissions of dioxins and PCB from backyard burning of low and moderately contaminated wastes, an emission factor range of 4-72 ng (WHO-TEQ)/kg is suggested. These figures implythat combusting waste in the backyard could contribute substantially to total emissions, even if the amounts of fuel involved are equivalent to just a few tenths of a percent of the amounts combusted in municipal waste incinerators.

  5. Exploring social and infrastructural factors affecting open burning of municipal solid waste (MSW) in Indian cities: A comparative case study of three neighborhoods of Delhi.

    PubMed

    Ramaswami, Anu; Baidwan, Navneet Kaur; Nagpure, Ajay Singh

    2016-11-01

    Open municipal solid waste (MSW)-burning is a major source of particulate matter emissions in developing world cities. Despite a legal ban, MSW-burning is observed ubiquitously in Indian cities with little being known about the factors shaping it. This study seeks to uncover social and infrastructural factors that affect MSW-burning at the neighborhood level. We couple physical assessments of the infrastructure provision and the MSW-burning incidences in three different neighborhoods of varying socio-economic status in Delhi, with an accompanying study of the social actors (interviews of waste handlers and households) to explore the extent to which, and potential reasons why, MSW-burning occurs. The observed differences in MSW-burning incidences range from 130 km -2  day -1 in low-income to 30 km -2  day -1 in the high-income areas. However, two high-income areas neighborhoods with functional infrastructure service also showed statistical differences in MSW-burning incidences. Our interviews revealed that, while the waste handlers were aware of the health risks associated with MSW-burning, it was not a high priority in the context of the other difficulties they faced. The awareness of the legal ban on MSW-burning was low among both waste handlers and households. In addition to providing infrastructure for waste pickup, informal restrictions from residents and neighborhood associations can play a significant role in restricting MSW-burning at the neighborhood scale. A more efficient management of MSW requires a combined effort that involves interplay of both social and infrastructural systems. © The Author(s) 2016.

  6. Open burning of household waste: Effect of experimental condition on combustion quality and emission of PCDD, PCDF and PCB

    EPA Science Inventory

    Open burning for waste disposal is, in many countries, the dominant source of polychlorinated dibenzodioxins/dibenzofurans and polychlorinated biphenyls (PCDD/PCDF/PCB) release to the environment. To generate emission factors for open burning, experimental pile burns of ca 100 k...

  7. Corrective Action Investigation Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada, July 2002, Rev. No. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NNSA /NV

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 140 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 140 consists of nine Corrective Action Sites (CASs): 05-08-01, Detonation Pits; 05-08-02, Debris Pits; 05-17-01, Hazardous Waste Accumulation Site (Buried); 05-19-01, Waste Disposal Site; 05-23-01, Gravel Gertie; 05-35-01, Burn Pit; 05-99-04, Burn Pit; 22-99-04, Radioactive Waste Dump; 23-17-01, Hazardous Waste Storage Area. All nine of these CASs are located withinmore » Areas 5, 22, and 23 of the Nevada Test Site (NTS) in Nevada, approximately 65 miles northwest of Las Vegas. This CAU is being investigated because disposed waste may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. The NTS has been used for various research and development projects including nuclear weapons testing. The CASs in CAU 140 were used for testing, material storage, waste storage, and waste disposal. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will determine if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels. This data will be evaluated at all CASs. Phase II will determine the extent of the contaminant(s) of concern (COCs). This data will only be evaluated for CASs with a COC identified during Phase I. Based on process knowledge, the COPCs for CAU 140 include volatile organics, semivolatile organics, petroleum hydrocarbons, explosive residues, herbicides, pesticides, polychlorinated biphenyls, metals, and radionuclides. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.« less

  8. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory Volume 1: Report of Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, G; Daniels, J; Wegrecki, A

    2006-04-24

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as ''high explosives'' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the on-site test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.« less

  9. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.« less

  10. 40 CFR Table 7 to Subpart Cccc of... - Emission Limitations for Waste-burning Kilns That Commenced Construction After June 4, 2010, or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Emission Limitations for Waste-burning Kilns That Commenced Construction After June 4, 2010, or Reconstruction or Modification After August 7... to Subpart CCCC of Part 60—Emission Limitations for Waste-burning Kilns That Commenced Construction...

  11. MUNICIPAL WASTE COMBUSTION ASSESSMENT ...

    EPA Pesticide Factsheets

    The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for municipal waste combustors (MWCs) that reportedly accept medical waste in the U.S., Europe, and Canada. nly very limited data are available on the emission impacts associated with the combustion of medical waste in MWGs. Especially lacking is information needed to fully evaluate the impacts on acid gas, dioxin, and metals emissions, as well as the design and operating requirements for complete destruction of solvents, cytotoxic chemicals, and pathogens. The EPA's Office of Air Quatity Planning and Standards is developing emission standards and guidelines for new and existing MWCs under Sections 111(b) and 111(d) of the Clean Air Act. In support of these regulatory development efforts, the Air and Energy Engineering Research Laboratory in EPA's Office of Research and Development has conducted an assessment to examine the incineration of medical waste in MWGs from an emission standpoint. Potential worker safety and health problems associated with handling of medical wastes and residues were also identified. information

  12. Waste Oil Burn-Off in Coast Guard Powerplants : Waste Oil Filtering Systems and Diesel Engine Performance

    DOT National Transportation Integrated Search

    1976-06-01

    This report documents two tasks of a continuing study to determine the feasibility of burning waste lubricating oils in Coast Guard powerplants. The first task evaluated the effectiveness of two treatment devices for the clean-up of waste lubricating...

  13. Solid waste management in Thailand: an overview and case study (Tha Khon Yang sub-district).

    PubMed

    Yukalang, Nachalida; Clarke, Beverley Dawn; Ross, Kirstin Elizabeth

    2017-09-26

    Due to rapid urbanization, solid waste management (SWM) has become a significant issue in several developing countries including Thailand. Policies implemented by the Central Thai Government to manage SWM issues have had only limited success. This article reviews current municipal waste management plans in Thailand and examines municipal waste management at the local level, with focus on the Tha Khon Yang sub-district surrounding Mahasarakham University in Mahasarakham Province. Within two decades this area has been converted from a rural to an urban landscape featuring accommodation for over 45,000 university students and a range of business facilities. This development and influx of people has outpaced the government's ability to manage municipal solid waste (MSW). There are significant opportunities to improve local infrastructure and operational capacity; but there are few mechanisms to provide and distribute information to improve community participation in waste management. Many community-based waste management projects, such as waste recycling banks, the 3Rs (reduce, reuse and recycle), and waste-to-biogas projects have been abandoned. Additionally, waste from Tha Kon Yang and its surrounding areas has been transferred to unsanitary landfills; there is also haphazard dumping and uncontrolled burning of waste, which exacerbate current pollution issues.

  14. Multifuel industrial steam generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesko, J.E.

    An inefficient, unreliable steam generation and distribution system at the Red River Army Depot (Texarkana, Tex.), a major industrial facility of the federal government, was replaced with a modern, multifuel-burning steam plant. In the new plant, steam is generated by three high-pressure field-erected boilers burning 100 percent coal, 100 percent refuse, or any combination of the two, while maintaining particulate emissions, SO{sub 2} concentration, and NO{sub x} and chlorine levels at or better than clean air standards. The plant, which has been in operation since 1986, is now part of the Army's Energy/Environment Showcase for demonstrating innovative technology to publicmore » and private operators. When the project began, the Red River depot faced several operational problems. Existing No. 2 oil- and gas- fired boilers in three separate boiler plants were inefficient, unreliable, and difficult to maintain. Extra boilers often had to be leased to provide for needed capacity. In addition, the facility had large quantities of waste to dispose of.« less

  15. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1455 Section 60... Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1455 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

  16. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1455 Section 60... Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1455 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

  17. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1455 Section 60... Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1455 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

  18. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1455 Section 60... Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1455 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

  19. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1455 Section 60... Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1455 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

  20. EMISSIONS OF PCDD/F FROM UNCONTROLLED, DOMESTIC WASTE BURNING

    EPA Science Inventory

    Emissions of polychlorinated bibenzodioxin and dibenzofuran (PCDD/F) result from inefficiencies of combustion processes, most typically waste combustion. Uncontrolled combustion, such as occurs during so-called "backyard burning" of domestic waste, may therefore produce optimal ...

  1. CHARACTERIZATION OF AIR EMISSIONS AND RESIDUAL ASH FROM OPEN BURNING OF ELECTRONIC WASTES DURING SIMULATED RUDIMENTALRY RECYCLING OPERATIONS

    EPA Science Inventory

    Air emissions and residual ash measurements were made from open, uncontrolled combustion of electronic waste (e-waste) during simulations of practices associated with rudimentary e-waste recycling operations. Circuit boards and insulated wires were separately burned to simulate p...

  2. Conserving waste rice for wintering waterfowl in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Kross, J.P.; Kaminski, R.M.; Reinecke, K.J.; Pearse, A.T.

    2008-01-01

    Rice lost before or during harvest operations (hereafter waste rice) provides important food for waterfowl in the Mississippi Alluvial Valley, USA, but >70% of waste rice is lost during autumn. We conducted experiments in 19 production rice fields in Arkansas and Mississippi during autumns 2003 and 2004 to evaluate the ability of common postharvest practices (i.e., burn, mow, roll, disk, or standing stubble) to conserve waste rice. We detected a postharvest treatment effect and a positive effect of initial abundance of waste rice on late-autumn abundance of waste rice (P < 0.022). Standing stubble contained the greatest abundance of waste rice followed by burned, mowed, rolled, and disked stubble. We recommend standing stubble or burning to maximize waste rice abundance for wintering waterfowl.

  3. Conserving waste rice for wintering waterfowl in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Kross, J.P.; Kaminski, R.M.; Reinecke, K.J.; Pearse, A.T.

    2008-01-01

    Rice lost before or during harvest operations (hereafter waste rice) provides important food for waterfowl in the Mississippi Alluvial Valley, USA, but >70% of waste rice is lost during autumn. We conducted experiments in 19 production rice fields in Arkansas and Mississippi during autumns 2003 and 2004 to evaluate the ability of common postharvest practices (i.e., burn, mow, roll, disk, or standing stubble) to conserve waste rice. We detected a postharvest treatment effect and a positive effect of initial abundance of waste rice on late-autumn abundance of waste rice (P ??? 0.022). Standing stubble contained the greatest abundance of waste rice followed by burned, mowed, rolled, and disked stubble. We recommend standing stubble or burning to maximize waste rice abundance for wintering waterfowl.

  4. Emissions from Open Burning of Simulated Military Waste from Forward Operating Bases

    EPA Science Inventory

    Emissions from open burning of simulated military waste from forward operating bases (FOBs) were extensively characterized as an initial step in assessing potential inhalation exposure of FOB personnel and future disposal alternatives. Emissions from two different burning scenar...

  5. 40 CFR Table 8 to Subpart Dddd of... - Model Rule-Emission Limitations That Apply to Waste-Burning Kilns After May 20, 2011

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Model Rule-Emission Limitations That Apply to Waste-Burning Kilns After May 20, 2011 8 Table 8 to Subpart DDDD of Part 60 Protection of...—Emission Limitations That Apply to Waste-Burning Kilns After May 20, 2011 [Date to be specified in state...

  6. 40 CFR Table 8 to Subpart Dddd of... - Model Rule-Emission Limitations That Apply to Waste-Burning Kilns After May 20, 2011

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Model Rule-Emission Limitations That Apply to Waste-Burning Kilns After May 20, 2011 8 Table 8 to Subpart DDDD of Part 60 Protection of...—Emission Limitations That Apply to Waste-Burning Kilns After May 20, 2011 [Date to be specified in state...

  7. 40 CFR Table 8 to Subpart Dddd of... - Model Rule-Emission Limitations That Apply to Waste-Burning Kilns After May 20, 2011

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Model Rule-Emission Limitations That Apply to Waste-Burning Kilns After May 20, 2011 8 Table 8 to Subpart DDDD of Part 60 Protection of...—Emission Limitations That Apply to Waste-Burning Kilns After May 20, 2011 For the air pollutant You must...

  8. Burn-center quality improvement: are burn outcomes dependent on admitting facilities and is there a volume-outcome "sweet-spot"?

    PubMed

    Hranjec, Tjasa; Turrentine, Florence E; Stukenborg, George; Young, Jeffrey S; Sawyer, Robert G; Calland, James F

    2012-05-01

    Risk factors of mortality in burn patients such as inhalation injury, patient age, and percent of total body surface area (%TBSA) burned have been identified in previous publications. However, little is known about the variability of mortality outcomes between burn centers and whether the admitting facilities or facility volumes can be recognized as predictors of mortality. De-identified data from 87,665 acute burn observations obtained from the National Burn Repository between 2003 and 2007 were used to estimate a multivariable logistic regression model that could predict patient mortality with reference to the admitting burn facility/facility volume, adjusted for differences in age, inhalation injury, %TBSA burned, and an additional factor, percent full thickness burn (%FTB). As previously reported, all three covariates (%TBSA burned, inhalation injury, and age) were found to be highly statistically significant risk factors of mortality in burn patients (P value < 0.0001). The additional variable, %FTB, was also found to be a statistically significant determinant, although it did not greatly improve the multivariable model. The treatment/admitting facility was found to be an independent mortality predictor, with certain hospitals having increased odds of death and others showing a protective effect (decreased odds ratio). Hospitals with high burn volumes had the highest risk of mortality. Mortality outcomes of patients with similar risk factors (%TBSA burned, inhalation injury, age, and %FTB) are significantly affected by the treating facility and their admission volumes.

  9. The Effect of Developing Nations’ Municipal Waste Composition on PCDD/PCDF Emissions from Open Burning

    EPA Science Inventory

    Open burning tests of municipal waste from two developing nations, Mexico and China, showed composition-related differences in emissions of polychlorinated dibenzodioxin and dibenzofuran (PCDD/PCDF). 26 burn tests were conducted, comparing results from two laboratory combustion ...

  10. 40 CFR 60.2600 - How do I comply with the increment of progress for submittal of a control plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units that...) of waste to be burned. (3) The maximum design waste burning capacity. (4) The anticipated maximum...

  11. 40 CFR 258.24 - Air criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.24 Air criteria. (a) Owners or operators of all MSWLFs... Act, as amended. (b) Open burning of solid waste, except for the infrequent burning of agricultural...

  12. 40 CFR 258.24 - Air criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.24 Air criteria. (a) Owners or operators of all MSWLFs... Act, as amended. (b) Open burning of solid waste, except for the infrequent burning of agricultural...

  13. Hazardous Waste Management System: Identification and Listing of Hazardous Waste - Burning of Hazardous Waste in Boilers and Industrial Furnaces - Federal Register Notice, September 5, 1991

    EPA Pesticide Factsheets

    EPA is announcing an administrative stay of the permitting standards for boilers and industrial furnaces adopted pursuant to the Resource Conservation and Recovery Act (56 FR 7206, Feb. 21, 1991) as they apply to coke ovens burning certain hazardous wastes

  14. Characterization of Emissions from Open Burning of Meals ...

    EPA Pesticide Factsheets

    Emissions from burning current and candidate Meals Ready-to-Eat (MRE) packaging and shipping containers were characterized in an effort to assuage concerns that combustive disposal of waste at forward operating bases could pose an environmental or inhalation threat. Four types of container materials, both box and liners, including the currently used fiberboard, new corrugated fiberboard with Spektrakote polymer, new fiberboard without Spektrakote polymer, and the current fiberboard without wet strength were burned in an open burn test facility that simulated the burn pit disposal methods in Iraq and Afghanistan. MREs, including both current and proposed packaging materials, were added to a single container type to examine their effect on emissions. One quarter of the food was left in the packaging to represent unused meal components. The proposed packaging, consisting of a nano-composite polymer, was added in 25 % increments compared to traditional MRE packaging to create a range of usage levels. Emission factors, mass of pollutant per mass of burned material, were increased over the emission factors of the package containers themselves by the addition of the multi-component MREs, with the exception of Volatile Organic Compounds (VOCs). In general, little distinction was observed when comparing emission factors from the four container materials and when comparing the four MRE compositions. The majority of Particulate Matter (PM) emissions were of particles that

  15. Utilization of open pit burned household waste ash--a feasibility study in Dhaka.

    PubMed

    Haque, Md Obaidul; Sharif, Ahmed

    2014-05-01

    Informal incineration or open pit burning of waste materials is a common practice in the peripheral area of Dhaka, one of the fastest growing mega-cities in the world. This study deals with the effect of open pit burned (i.e. open burned) household waste bottom ash on fired clay bricks. Between 0 to 50% (by weight) of open pit burned household waste bottom ash was mixed with clay to make bricks. The molded specimens were air-dried at room temperature for 24 h and then oven dried at 100 °C for another 24 h to remove the water. The raw bricks were fired in a muffle furnace to a designated temperature (800, 900 and 1000 °C, respectively). The firing behaviour (mechanical strength, water absorption and shrinkage) was determined. The microstructures, phase compositions and leachates were evaluated for bricks manufactured at different firing temperatures. These results demonstrate that open pit burned ash can be recycled in clay bricks. This study also presents physical observations of the incinerated ash particles and determination of the chemical compositions of the raw materials by wet analysis. Open pit burned ash can be introduced easily into bricks up to 20% wt. The concentrations of hazardous components in the leachates were below the standard threshold for inert waste category landfill and their environmental risk during their use-life step can be considered negligible.

  16. Emission from open burning of municipal solid waste in India.

    PubMed

    Kumari, Kanchan; Kumar, Sunil; Rajagopal, Vineel; Khare, Ankur; Kumar, Rakesh

    2017-07-27

    Open burning of Municipal Solid Waste (MSW) is a potential non-point source of emission, which causes greater concern especially in developing countries such as India. Lack of awareness about environmental impact of open burning, and ignorance of the fact, i.e. 'Open burning is a source of emission of carcinogenic substances' are major hindrances towards an appropriate municipal solid waste management system in India. The paper highlights the open burning of MSW practices in India, and the current and projected emission of 10 major pollutants (dioxin, furans, particulate matter, carbon monoxide, sulphur oxides, nitrogen oxides, benzene, toluene, ethyl benzene and 1-hexene) emitted due to the open burning of MSW. Waste to Energy potential of MSW was also estimated adopting effective biological and thermal techniques. Statistical techniques were applied to analyse the data and current and projected emission of various pollutants were estimated. Data pertaining to population, MSW generation and its collection efficiency were compiled for 29 States and 7 Union Territories. Thereafter, emission of 10 pollutants was measured following methodology prescribed in Intergovernmental Panel on Climate Change guideline for National Greenhouse Gas Inventories, 2006. The study revealed that people living in Metropolitan cities are more affected by emissions from open burning.

  17. Waste management in primary healthcare centres of Iran.

    PubMed

    Mesdaghinia, Alireza; Naddafi, Kazem; Mahvi, Amir Hossein; Saeedi, Reza

    2009-06-01

    The waste management practices in primary healthcare centres of Iran were investigated in the present study. A total of 120 primary healthcare centres located across the country were selected using the cluster sampling method and the current situation of healthcare waste management was determined through field investigation. The quantities of solid waste and wastewater generation per outpatient were found to be 60 g outpatient(-1) day(-1) and 26 L outpatient(-1) day(-1), respectively. In all of the facilities, sharp objects were separated almost completely, but separation of other types of hazardous healthcare solid waste was only done in 25% of the centres. The separated hazardous solid waste materials were treated by incineration, temporary incineration and open burning methods in 32.5, 8.3 and 42.5% of the healthcare centres, respectively. In 16.7% of the centres the hazardous solid wastes were disposed of without any treatment. These results indicate that the management of waste materials in primary healthcare centres in Iran faced some problems. Staff training and awareness, separation of healthcare solid waste, establishment of the autoclave method for healthcare solid waste treatment and construction of septic tanks and disinfection units in the centres that were without access to a sewer system are the major measures that are suggested for improvement of the waste management practices.

  18. 40 CFR 62.14700 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or... inoperative, inactive, malfunctioning, or out of control (except for downtime associated with zero and span... a daily basis, keep a log of the quantity of waste burned and the types of waste burned (always...

  19. 40 CFR 62.14700 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or... inoperative, inactive, malfunctioning, or out of control (except for downtime associated with zero and span... a daily basis, keep a log of the quantity of waste burned and the types of waste burned (always...

  20. 40 CFR 60.2740 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30... inoperative, inactive, malfunctioning, or out of control (except for downtime associated with zero and span... daily basis, keep a log of the quantity of waste burned and the types of waste burned (always required...

  1. 40 CFR 62.14700 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or... inoperative, inactive, malfunctioning, or out of control (except for downtime associated with zero and span... a daily basis, keep a log of the quantity of waste burned and the types of waste burned (always...

  2. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... chloride (PVC), polyurethane foam, polystyrene foam, rubber and lubricating oils, treated timbers and other... onto ice-free areas or into any fresh water system. (h) Open burning of wastes is prohibited at all... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  3. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... chloride (PVC), polyurethane foam, polystyrene foam, rubber and lubricating oils, treated timbers and other... onto ice-free areas or into any fresh water system. (h) Open burning of wastes is prohibited at all... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  4. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... chloride (PVC), polyurethane foam, polystyrene foam, rubber and lubricating oils, treated timbers and other... onto ice-free areas or into any fresh water system. (h) Open burning of wastes is prohibited at all... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  5. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... chloride (PVC), polyurethane foam, polystyrene foam, rubber and lubricating oils, treated timbers and other... onto ice-free areas or into any fresh water system. (h) Open burning of wastes is prohibited at all... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  6. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... chloride (PVC), polyurethane foam, polystyrene foam, rubber and lubricating oils, treated timbers and other... onto ice-free areas or into any fresh water system. (h) Open burning of wastes is prohibited at all... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  7. EMISSIONS OF POLYCHLORINATED DIBENZO-P-DIOXINS AND POLYCHLORINATED DIBENZOFURANS FROM THE OPEN BURNING OF HOUSEHOLD WASTE IN BARRELS

    EPA Science Inventory

    Backyard burning of household waste in barrels is a common waste disposal practice for which pollutant emissions have not been well characterized. This study measured the emissions of several pollutants, including polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofura...

  8. EVALUATION OF EMISSIONS FROM THE OPEN BURNING OF HOUSEHOLD WASTE IN BARRELS - VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a detailed emissions characterization study undertaken to examine, characterize, and quantify emissions from the simulated burning of household waste in barrels. The study evaluated two waste streams: that of an avid recycler, who removed most of the r...

  9. EVALUATION OF EMISSIONS FROM THE OPEN BURNING OF HOUSEHOLD WASTES IN BARRELS - VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of a detailed emissions characterization study undertaken to examine, characterize, and quantify emissions from the simulated burning of household waste in barrels. The study evaluated two waste streams: that of an avid recycler, who removed most of the r...

  10. Optimal utilization of waste-to-energy in an LCA perspective.

    PubMed

    Fruergaard, T; Astrup, T

    2011-03-01

    Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration. For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production. All relevant consequences for energy and resource consumptions, emissions to air, water and soil, upstream processes and downstream processes were included in the LCA. Energy substitutions were considered with respect to two different energy systems: a present-day Danish system based on fossil fuels and a potential future system based on 100% renewable energy. It was found that mass burn incineration of SRF with energy recovery provided savings in all impact categories, but co-combustion was better with respect to Global Warming (GW). If all heat from incineration could be utilized, however, the two alternatives were comparable for SRF. For organic waste, mass burn incineration with energy recovery was preferable over anaerobic digestion in most impact categories. Waste composition and flue gas cleaning at co-combustion plants were critical for the environmental performance of SRF treatment, while the impacts related to utilization of the digestate were significant for the outcome of organic waste treatment. The conclusions were robust in a present-day as well as in a future energy system. This indicated that mass burn incineration with efficient energy recovery is a very environmentally competitive solution overall. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Verified Centers, Nonverified Centers or Other Facilities: A National Analysis of Burn Patient Treatment Location

    PubMed Central

    Zonies, David; Mack, Christopher; Kramer, Bradley; Rivara, Frederick; Klein, Matthew

    2009-01-01

    Background Although comprehensive burn care requires significant resources, patients may be treated at verified burn centers, non-verified burn centers, or other facilities due to a variety of factors. The purpose of this study was to evaluate the association between patient and injury characteristics and treatment location using a national database. Study Design We performed an analysis of all burn patients admitted to United States hospitals participating in the Healthcare Cost and Utilization Project over 2 years. Univariate and multivariate analyses were performed to identify patient and injury factors associated with the likelihood of treatment at designated burn care facilities. Definitve care facilities were categorized as American Burn Association verified centers, non-verified burn centers, or other facilities. Results Over the two years, 29,971 burn patients were treated in 1,376 hospitals located in 19 participating states. A total of 6,712 (22%) patients were treated at verified centers, with 26% and 52% treated at non-verified or other facilities, respectively. Patients treated at verified centers were younger than those at non-verified or other facilities (33.1 years vs. 33.7 years vs. 41.9 years, p<0.001) and had a higher rate of inhalation injury (3.4% vs. 3.2% vs. 2.2%, p<0.001). Independent factors associated with treatment at verified centers include burns to the head/neck (RR 2.4, CI 2.1-2.7), hand (RR 1.8, CI 1.6-1.9), electrical injury (RR 1.4, CI 1.4, CI 1.2-1.7), and fewer co-morbidities (RR 0.55, CI 0.5-0.6). Conclusions More than two-thirds of significantly burned patients are treated at non-verified burn centers in the U.S. Many patients meeting ABA criteria for transfer to a burn center are being treated at non-burn center facilities. PMID:20193892

  12. Time to rehabilitation in the burn population: incidence of zero onset days in the UDSMR national dataset.

    PubMed

    Schneider, Jeffrey C; Tan, Wei-Han; Goldstein, Richard; Mix, Jacqueline M; Niewczyk, Paulette; Divita, Margaret A; Ryan, Colleen M; Gerrard, Paul B; Kowalske, Karen; Zafonte, Ross

    2013-01-01

    A preliminary investigation of the burn rehabilitation population found a large variability of zero onset day frequency between facilities. Onset days is defined as the time from injury to inpatient rehabilitation admission; this variable has not been investigated in burn patients previously. This study explored if this finding was a facility-based phenomena or characteristic of burn inpatient rehabilitation patients. This study was a secondary analysis of Uniform Data System for Medical Rehabilitation (UDSmr) data from 2002 to 2007 examining inpatient rehabilitation characteristics among patients with burn injuries. Exclusion criteria were age less than 18 years and discharge against medical advice. Comparisons of demographic, medical and functional data were made between facilities with a high frequency of zero onset days versus facilities with a low frequency of zero onset days. A total of 4738 patients from 455 inpatient rehabilitation facilities were included. Twenty-three percent of the population exhibited zero onset days (n = 1103). Sixteen facilities contained zero onset patients; two facilities accounted for 97% of the zero onset subgroup. Facilities with a high frequency of zero onset day patients demonstrated significant differences in demographic, medical, and functional variables compared to the remainder of the study population. There were significantly more zero onset day admissions among burn patients (23%) than other diagnostic groups (0.5- 3.6%) in the Uniform Data System for Medical Rehabilitation database, but the majority (97%) came from two inpatient rehabilitation facilities. It is unexpected for patients with significant burn injury to be admitted to a rehabilitation facility on the day of injury. Future studies investigating burn rehabilitation outcomes using the Uniform Data System for Medical Rehabilitation database should exclude facilities with a high percentage of zero onset days, which are not representative of the burn inpatient rehabilitation population.

  13. 75 FR 65482 - Approval of a Petition for Exemption From Hazardous Waste Disposal Injection Restrictions to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... Waste Disposal Injection Restrictions to ArcelorMittal Burns Harbor, LLC, Burns Harbor, IN AGENCY... by the United States Environmental Protection Agency (EPA) that an exemption to the land disposal restrictions under the 1984 Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and...

  14. Case study, comparison of trial burn results from similar sulfuric acid regeneration plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milaszewski, M.; Johns, T.; Dickerson, W.F.

    The primary business of Rhodia Eco Services (Rhodia) is the regeneration of sulfuric acid. Sulfuric acid regeneration requires thermal decomposition of acid to sulfur dioxide, and remaking the acid through chemical reaction. The sulfuric acid regeneration furnace is the ideal place to process pumpable wastes for energy recovery and for thermal destruction. Rhodia is regulated by the Boiler and Industrial Furnace (BIF) regulations (40 CFR 266, Subpart H). The Hammond, Indiana plant is an interim status BIF facility and the Houston, Texas facility is renewing its RCRA incineration permit as a BIF facility. Both plants have conducted BIF Trial Burnsmore » with very similar results. The performance levels demonstrated were at levels better than RCRA/BIF standards for destruction and removal efficiency, metal, HCl/Cl, particulate, dioxin/furan, and organic emissions.« less

  15. Evaluation of the public health risks associated with semivolatile metal and dioxin emissions from hazardous waste incinerators.

    PubMed Central

    Sedman, R M; Esparza, J R

    1991-01-01

    The public health impacts associated with stack emissions from hazardous waste incinerators have become a major concern in recent years. Most evaluations of incinerator stack emissions have focused on three classes of compounds: metals, semivolatile, and volatile compounds. These investigations have been complicated by the difficulty and expense of analyzing the emissions and the limited amount of toxicity information for many of the compounds that have been detected. The results of over 20 trial burns at hazardous waste incinerators were assembled in an attempt to determine which compounds may pose a significant threat to the public health. The risks associated with semivolatile emissions were found to be inconsequential, although further study of dioxins and dibenzofurans emissions appears to be warranted. The risk associated with the emission of cadmium and perhaps chromium (VI) may pose a significant risk to public health at certain facilities. Controls on waste feed or air pollution control devices should be employed to reduce the emission of these metals. Any monitoring of metal emissions from hazardous waste incinerators should focus on cadmium and chromium (VI). PMID:1954929

  16. Hot Cell Liners Category of Transuranic Waste Stored Below Ground within Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Robert Wesley; Hargis, Kenneth Marshall

    2014-09-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreementmore » between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Hot Cell Liners category; their physical and radiological characteristics; the results of the radioassays; and the justification to reclassify the five containers as LLW rather than TRU waste.« less

  17. Tritium Packages and 17th RH Canister Categories of Transuranic Waste Stored Below Ground within Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Kenneth Marshall

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlementmore » agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.« less

  18. In Situ Bioremediation of Chlorinated Solvent Source Areas with Enhanced Mass Transfer

    DTIC Science & Technology

    2008-09-01

    immerse in cold water. Do not apply ointment , grease or Vaseline. Cover burns with thick, dry sterile dressings. Keep burned feet or legs elevated...about six to eight barrels per month of waste TCE and POL may have been disposed. These materials were also used to aid in burning other wastes...These consist of man-made fill in the trench areas and include debris and burned material. These materials typically extend to less than 12 ft bgs

  19. 40 CFR Table 4 to Subpart Eeee of... - Summary of Reporting Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Waste management plan; and § 60.2952. v. Anticipated date of initial startup. § 60.2952. 2. Startup notification a. Prior to initial startup i. Types of waste to be burned;ii. Maximum design waste burning... petition for site-specific operating limits; and § 60.2953. v. Anticipated date of initial startup. § 60...

  20. 40 CFR Table 4 to Subpart Eeee of... - Summary of Reporting Requirements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Waste management plan; and § 60.2952. v. Anticipated date of initial startup. § 60.2952. 2. Startup notification a. Prior to initial startup i. Types of waste to be burned;ii. Maximum design waste burning... petition for site-specific operating limits; and § 60.2953. v. Anticipated date of initial startup. § 60...

  1. 40 CFR Table 4 to Subpart Eeee of... - Summary of Reporting Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Waste management plan; and § 60.2952. v. Anticipated date of initial startup. § 60.2952. 2. Startup notification a. Prior to initial startup i. Types of waste to be burned;ii. Maximum design waste burning... petition for site-specific operating limits; and § 60.2953. v. Anticipated date of initial startup. § 60...

  2. 40 CFR Table 4 to Subpart Eeee of... - Summary of Reporting Requirements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Waste management plan; and § 60.2952. v. Anticipated date of initial startup. § 60.2952. 2. Startup notification a. Prior to initial startup i. Types of waste to be burned;ii. Maximum design waste burning... petition for site-specific operating limits; and § 60.2953. v. Anticipated date of initial startup. § 60...

  3. 40 CFR Table 4 to Subpart Eeee of... - Summary of Reporting Requirements

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Waste management plan; and § 60.2952. v. Anticipated date of initial startup. § 60.2952. 2. Startup notification a. Prior to initial startup i. Types of waste to be burned;ii. Maximum design waste burning... petition for site-specific operating limits; and § 60.2953. v. Anticipated date of initial startup. § 60...

  4. 40 CFR 60.2970 - What is an air curtain incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2970 What is an air... incinerators include both firebox and trench burner units. (b) Air curtain incinerators that burn only the...

  5. Monitoring and Inventory of Hazardous Pollutants Emissions from Solid Waste Open Burning

    NASA Astrophysics Data System (ADS)

    KIM Oanh, N. T.

    2017-12-01

    Open burning remains a way to dispose of solid waste in developing countries, commonly practiced in places where municipal solid waste (MSW) management is not sufficiently efficient. This open burning practice emits huge amounts of toxic air pollutants, including semi-VOC of dioxins (PCDD/F) and polycyclic aromatic hydrocarbons (PAHs), particulate matters (PM), and toxic gases. This study measured toxic substances released from simulated open burning experiments of MSW (5 batches) and plastic waste (3 batches) to determine emission factors (EFs). Carbon content of the waste before and after burning was measured and the EFs were calculated using the carbon balance method. The obtained EFs of CO; CO2; NO2 and SO2 were 102±61; 1,684±96; 0.69±0.54; and 1.44±1.18 g/kg of dry MSW. The corresponding values for plastic waste were 13.0±6.0; 1,824±10; 0.12±0.07; and 0.14±0.09 g/kg, respectively. The EF of coarse PM (PM10-2.5); PM2.5 and BC in PM2.5 were, respectively, 6.1±5.6; 6.4±5.1 and 1.1±0.7 g/kg of MSW, and 2.3±0.1; 2.5±0.3; and 0.2±0.2 g/kg of plastic waste. The EFs of 17 dioxins and 16 PAHs were respectively 1,050±500 ng-TEQ dioxins (70% in gas phase) and 117± 21 mg PAHs (92% in gas phase) per kg of MSW, while those for plastic waste were 8.6 ng TEQ dioxins (36% in gas phase) and 85.2±0.06 mg PAHs (99% in gas phase). Using the activity data from own surveys and literature, we estimated the annual emissions from solid waste open burning in Southeast Asia for 2015. Higher emissions in the domain were seen during the dry months and over large urban areas. The large amounts of toxic pollutants emitted from this open burning activity call for actions to stop this practice which in turn requires integrated environmental management approach simultaneously considering both solid waste and air pollution.

  6. PCDD/F EMISSIONS FROM UNCONTROLLED, DOMESTIC WASTE BURNING

    EPA Science Inventory

    Considerable uncertainty exists in the inventory of polychlorinated dibenzodioxin and dibenzofuran (PCDD/F) emissions from controlled combustion sources such as backyard burning of domestic waste. The contribution from these sources to the worldwide PCDD/F balance may be signific...

  7. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    PubMed

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The influence of black carbon on the sorption and desorption of two model PAHs in natural soils.

    PubMed

    Chi, Fung-Hwa

    2014-01-01

    Black carbons (BC) which result from the incomplete combustion of farm waste [man-made (burned) BC] are highly absorbent. In Taiwan, the burning of farm waste known as slash and burn is common. The BCs from the burning may present an environmental challenge. Little is known about the effect of BCs on the transport of hydrophobic organic contaminants (HOC). This study investigates the sorption of anthracene and naphthalene to BCs in soil and efficiency of the surfactants Tween 80 and Triton X-100 in their removal. Both surfactants demonstrated 2-6 times increased solubility in the soils with the addiction of BC. Column experiments were performed to imitate the transportation of these contaminants in groundwater through soils before and after adding BC produced by burning farm waste in the lab. We found significantly increased sorption of anthracene in soil added with BCs produced in the lab, suggesting that fraction of organic carbon (foc) can contribute to sorption of such HOCs. Sorption of naphthalene was increased but not significantly. Comparing the concentrations of contaminants, we found the soil containing BC from burned farm waste absorbed HOC more efficiently than the organic BC (naturally-occurring) in the original soil. Therefore, sorption capacity and influence on the transport of HOC cannot be estimated simply by the foc of the soil because the two BCs differ greatly in their sorption ability. BC from farm waste absorbs more contaminants than naturally occurring BC in the soil.

  9. Waste burning and heat recovery characteristics of a mass burn incineration system.

    PubMed

    Chen, Wei-Hsin

    2003-02-01

    An experimental investigation on waste combustion characteristics of a mass burn incinerator is conducted in this study. Three different charging modes, including operator manipulation, periodic feeding, and temperature control, are taken into consideration. The results indicate that the burning characteristics in the combustion chambers are closely related to the operating modes. For the operator manipulation where the wastes are sent into the incinerator in two short periods, the entire temperature distribution of the primary combustion chamber can be partitioned into two parts, thereby yielding waste group combustion. Temperature oscillations in both the primary and secondary combustion chambers are characterized for the periodic feeding. However, because of the shorter charging period and smaller amount of waste, the burning interaction between the two chambers is initially weak and becomes notable in the final stage. When temperature control is performed, the burning oscillation of the primary combustion chamber is further amplified so the combustion interaction is drastic. These exhibitions are mainly caused by the competition between endothermic and exothermic reactions. The instantaneous heat exchange efficiency of the cyclone heat recovery system (CHRS) installed in the incineration system is also evaluated to obtain details of energy recovery behaviors. As a result, the efficiency tends to decrease linearly with increasing temperature of hot flue gas. This arises from the fact that heat loss from the gas to the environment is increased when the temperature of the former is higher, even though the temperature gradient across the cyclone is enlarged.

  10. Mobilizable RDF/d-RDF burning program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemann, K.; Campbell, J.

    1982-03-01

    The Mobilizable RDF/d-RDF Burning Program was conceived to promote the utilization of refuse-derived fuels (RDF) as a supplement to existing fossil fuel sources in industrial-sized boilers. The program explores the design, development, and eventual construction of densified-RDF (d-RDF) for use in boiler combustion testing as a supplement to stoker coal or wood wastes. The equipment would be mounted on trailers and assembled and operated at preselected sites throughout the country where approximately 750 tons of RDF would be produced and test burned in a local boiler. The equipment, to include a transportable RDF boiler metering and feed system, would thenmore » be moved and operated at two to three test sites annually. The program is intended to encourage the construction of permanent resource recovery facilities by involving local waste handling groups in operating the equipment and producing fuel, and potential local fuel users in testing the fuel in their boilers. The Mobilizable Program was developed from two separate tasks. The first task developed the concept behind the program and defined its operational and organizational structure. The second task, a follow-up to the first, was intended principally to finalize test locations, develop equipment designs and specifications, and formalize a management program. This report summarizes the principal findings of both tasks. It identifies the criteria used to identify test locations, outlines the program's management structure, presents design and performance specifications for both the fuel production equipment and boiler fuel feed systems, and provides a detailed evaluation of the parameters involved in burning RDF in industrial-sized boilers. Final conclusions and recommendations identify problem areas encountered in the program, and discuss possible future directions for such a program.« less

  11. MICRO AUTO GASIFICATION SYSTEM: EMISSIONS ...

    EPA Pesticide Factsheets

    A compact, CONEX-housed waste to energy unit, Micro Auto Gasification System (MAGS), was characterized for air emissions from burning of military waste types. The MAGS unit is a dual chamber gasifier with a secondary diesel-fired combustor. Eight tests were conducted with multiple waste types in a 7-day period at the Kilauea Military Camp in Hawai’i. The emissions characterized were chosen based on regulatory emissions limits as well as their ability to cause adverse health effects on humans: particulate matter (PM), mercury, heavy metals, volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Three military waste feedstock compositions reflecting the variety of wastes to be encountered in theatre were investigated: standard waste (SW), standard waste with increased plastic content (HP), standard waste without SW food components but added first strike ration (FSR) food and packaging material (termed FSR). A fourth waste was collected from the Kilauea dumpster that served the dining facility and room lodging (KMC). Limited scrubber water and solid ash residue samples were collected to obtain a preliminary characterization of these effluents/residues.Gasifying SW, HP, and KMC resulted in similar PCDD/PCDF stack concentrations, 0.26-0.27 ng TEQ/m3 at 7% O2, while FSR waste generated a notably higher stack concentration of 0.68 ng TEQ/m3 at 7% O2. The PM emission

  12. HANDBOOK: QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) PROCEDURES FOR HAZARDOUS WASTE INCINERATION

    EPA Science Inventory

    Resource Conservation and Recovery Act regulations for hazardous waste incineration require trial burns by permit applicants. uality Assurance Project Plan (QAPjP) must accompany a trial burn plan with appropriate quality assurance/quality control procedures. uidance on the prepa...

  13. Remote Sensing Combined with Field Spectroscopy for the Detection and Monitoring of Heavy Metal Contamination from Informal E-waste Recycling

    NASA Astrophysics Data System (ADS)

    Friedlander, L. R.; Garb, Y.

    2017-12-01

    Electronic waste (e-waste) is one of today's fastest growing waste streams. Made up of discarded electronics, e-waste disposal is complex. However, e-waste also provides economic opportunity through the processing and extraction of precious metals. Sometimes referred to as "urban mining," this recycling operates informally or illegally and is characterized by dangerous practices such as, open-pit burning, acid leaching, and burning of low value wastes. Poorly controlled e-waste recycling releases dangerous contaminants, especially heavy metals, directly to the surface environment where they can infiltrate water resources and spread through precipitation events. Despite growing recognition of the prevalence of unregulated e-waste processing, systematic data on the extent and persistence of the released contamination is still limited. In general, contamination is established through techniques that provide only a snapshot in time and in a limited geographic area. Here we present preliminary results from attempts to combine field, laboratory, and remote sensing studies toward a systematic remote sensing methodology for e-waste contamination detection and monitoring. The ongoing work utilizes a tragic "natural experiment," in which over 500 e-waste burn sites were active over more than a decade in a variety of agricultural, residential, and natural contexts. We have collected over 100 soil samples for which we have both XRF and ICP-AES measurements showing soil Pb concentrations as high as 14000 ppm. We have also collected 480 in-situ reflectance spectra with corresponding soil samples over 4 field transects of areas with long-term burn activity. The most heavily contaminated samples come from within the burn sites and are made up of ash. Field spectra of these samples reflect their dark color with low overall reflectance and shallow spectral features. These spectra are challenging to use for image classification due to their similarity with other low-reflectance parts of the image (e.g., shadows). We have begun to distinguish shadows from the dark burn site centers by automatically detecting and masking shadows. This will allow us to utilize images taken at different times and our in-situ field spectral results to develop a method for monitoring contaminant spread from these complex point sources.

  14. Interplay of metals and bromine with dioxin-related compounds concentrated in e-waste open burning soil from Agbogbloshie in Accra, Ghana.

    PubMed

    Fujimori, Takashi; Itai, Takaaki; Goto, Akitoshi; Asante, Kwadwo A; Otsuka, Masanari; Takahashi, Shin; Tanabe, Shinsuke

    2016-02-01

    Open burning of electronic waste (e-waste) releases various metals and organohalogen compounds in the environment. Here we investigated the interplay of metals (Cu, Pb, Zn, Fe, Co, and Sr) and bromine (Br) in the formation of dioxin-related compounds (DRCs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs), as well as non-regulated DRCs such as polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) and their monobrominated PCDD/Fs in soils sampled from open burning e-waste sites at Agbogbloshie in Accra, Ghana. The predominant DRCs were PBDFs, PCDFs, PCDDs, and DL-PCBs. Statistical analyzes, X-ray absorption spectroscopy, and the PCDF/PCDD ratio suggested possible formation paths of PCDD/Fs and DL-PCBs by catalytic behaviors of copper chlorides (CuCl, CuCl2, and Cu2(OH)3Cl) and thermal breakdown of polyvinyl chloride. Predominant formation of brominated furans may be derived from electron transfer from intermediates of PBDE to copper, Cu(II) → Cu(I). Lead chloride also contributed to generate DRCs and may become highly bioaccessible through the open burning of e-waste. The main zinc species (ZnCl2 and ZnS) suggested a possible relationship to generate DRCs and specific zinc source such as tire burning. Cu, Pb, Zn, and Br contained in various e-wastes, wires/cables, plastics, and tires strongly influenced generation of many DRCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Burning of Hazardous Waste in Boilers and Industrial Furnaces - Federal Register Notice, September 30, 1992

    EPA Pesticide Factsheets

    On August 27, 1991 (56 FR 42504) and August 25, 1992 (57 FR 38558), the Environmental Protection Agency (EPA) published technical amendments, clarifications, and corrections to the final rule for boilers and industrial furnaces burning hazardous waste.

  16. Public health impact of the 1992 Los Angeles civil unrest.

    PubMed Central

    Evans, C A

    1993-01-01

    The Los Angeles civil unrest in April 1992 stunned the nation. The days of violence resulted in 53 deaths, 2,325 reported injuries, more than 600 buildings completely destroyed by fire, and approximately $735 million in total damages. The purpose of this paper is to give an overview of the activities of the Public Health Programs and Services Branch of the Los Angeles County Department of Health Services during and after the civil unrest and to illustrate the types of public health issues and problems that may result from large-scale civil disturbance. Public health agencies and jurisdictions should consider these issues in their disaster planning. Public Health Programs and Services Branch activities were directly affected by the violence and destruction. Women, Infants and Children Program vouchering sites and 20 drug program and alcohol recovery sites were damaged or burned and 15 county health centers closed during the unrest. At least 38 private medical and dental offices and 45 pharmacies were destroyed or damaged. County health authorities offered facilities to house relocated private care providers and filled prescriptions for medications where needed. The environmental health impact required the inspection of 2,827 burned and damaged sites for hazardous waste including asbestos; at 9 percent of the inspected sites, waste required special disposal. More than 1,000 food facilities suffered damage and required inspection before reopening. In the 3 months following the unrest, a 20-percent increase in disposal capacity was authorized at four county landfills to accommodate the disposal of debris. Violence was a public health issue of particular concern.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8497562

  17. Alternative Fuel for Portland Cement Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burnmore » characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted at a full-scale cement plant with alternative fuels to examine their compatibility with the cement production process. Construction and demolition waste, woodchips, and soybean seeds were used as alternative fuels at a full-scale cement production facility. These fuels were co-fired with coal and waste plastics. The alternative fuels used in this trial accounted for 5 to 16 % of the total energy consumed during these burns. The overall performance of the portland cement produced during the various trial burns performed for practical purposes very similar to the cement produced during the control burn. The cement plant was successful in implementing alternative fuels to produce a consistent, high-quality product that increased cement performance while reducing the environmental footprint of the plant. The utilization of construction and demolition waste, woodchips and soybean seeds proved to be viable replacements for traditional fuels. The future use of these fuels depends on local availability, associated costs, and compatibility with a facility's production process.« less

  18. Emissions of unintentional persistent organic pollutants from open burning of municipal solid waste from developing countries

    EPA Science Inventory

    Open burning of waste is the most significant source of polychlorinated dibenzo-para-dioxins and dibenzofurans (PCDD/PCDF) in many national inventories prepared pursuant to the Stockholm Convention on Persistent Organic Pollutants (POPs). This is particularly true for developing ...

  19. Identifying Metals as Marker for Waste Burning Aerosol Particles in New Delhi

    NASA Astrophysics Data System (ADS)

    Kumar, Sudhanshu

    2012-07-01

    {Identifying Metals as Marker for Waste Burning Aerosol Particles in New Delhi } Tracing of aerosol sources is an important task helpful for making control strategy, and for climate change study. However, it is a difficult job as aerosols have several sources, involve in complex atmospheric processing, degradation and removal processes. Several approaches have been used for this task, e.g., models, which are based on the input of chemical species; stable- and radio-isotope compositions of certain species; chemical markers in which trace metals are the better options because they persist in atmosphere until the life of a particle. For example, K and Hg are used for biomass and coal burning tracings, respectively. Open waste burning has recently been believed to be a considerable source of aerosols in several mega cities in India and China. To better understand this source contribution in New Delhi aerosols, we have conducted aerosol sampling at a landfill site (Okhla), and in proximity (within 1 km distance) of this site. Aerosol filter samples were acid digested in microwave digestion system and analyzed using inductively coupled plasma -- high resolution mass spectrometry (ICP-HRMS) for getting metal signatures in particles. The metals, e.g., Sn, Sb and As those are found almost negligible in remote aerosols, are maximized in these waste burning aerosols. Sample collected in other location of New Delhi also shows the considerable presence of these metals in particles. Preliminary studies of isotopic ratios of these metals suggested that these metals, especially Sn can be used as marker for tracing the open waste burning sources of aerosols in New Delhi.

  20. Morphological study of fluorescent carbon Nanoparticles (F-CNPs) from ground coffee waste soot oxidation by diluted acid

    NASA Astrophysics Data System (ADS)

    Gea, S.; Tjandra, S.; Joshua, J.; Wirjosentono, B.

    2018-02-01

    Coffee ground waste utilization for fluorescent carbon nanoparticles (F-CNPs) through soot oxidation with diluted HNO3 has been conducted. Soot was obtained through three different treatments to coffee ground waste; which was burned in furnaceat 550°C and 650°C and directly burned in a heat-proofcontainer. Then they were analyzed morphologically with Scanning Electron Microscope (SEM) instrument. Soot from direct burning indicated the optimum result where it has denser pores compared to other two soots. Soot obtained from direct burning was refluxed in diluted HNO3 for 12 hours to perform the oxidation. Yellowish brown supernatant was later observed which lead to green fluorescent under the UV light. F-CNPs characterization was done in Transmission Electron Microscopy, which showed that 7.4-23.4 nm of particle size were distributed.

  1. Brominated flame retardant emissions from the open burning of five plastic wastes and implications for environmental exposure in China.

    PubMed

    Ni, Hong-Gang; Lu, Shao-You; Mo, Ting; Zeng, Hui

    2016-07-01

    Based on the most widely used plastics in China, five plastic wastes were selected for investigation of brominated flame retardant (BFR) emission behaviors during open burning. Considerable variations were observed in the emission factors (EF) of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) from the combustion of different plastic wastes. Distribution of BFR output mass showed that ΣPBDE was emitted mainly by the airborne particle (51%), followed by residual ash (44%) and the gas phase (5.1%); these values for ΣHBCD were 62%, 24%, and 14%, respectively. A lack of mass balance after the burning of the plastic wastes for some congeners (output/input mass ratios>1) suggested that formation and survival exceeded PBDE decomposition during the burns. However, that was not the case for HBCD. A comparison with literature data showed that the open burning of plastic waste is major source of PBDE compared to regulated combustion activities. Even for state-of-the-art waste incinerators equipped with sophisticated complex air pollution control technologies, BFRs are released on a small scale to the environment. According to our estimate, ΣPBDE release to the air and land from municipal solid waste (MSW) incineration plants in China in 2015 were 105 kg/year and 7124 kg/year. These data for ΣHBCD were 25.5 and 71.7 kg/year, respectively. Considering the fact that a growing number of cities in China are switching to incineration as the preferred method for MSW treatment, our estimate is especially important. This study provides the first data on the environmental exposure of BFRs emitted from MSW incineration in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. APPLICATION OF PULSE COMBUSTION TO INCINERATION OF LIQUID HAZARDOUS WASTE

    EPA Science Inventory

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combustor burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. Th...

  3. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste

    EPA Science Inventory

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used in chemistry and climate modeling applications. This paper presents th...

  4. VARIABLES AFFECTING EMISSIONS OF PCDDS/FS FROM UNCONTROLLED COMBUSTION OF HOUSEHOLD WASTE IN BARRELS

    EPA Science Inventory

    The uncontrolled burning of household waste in barrels has recently been implicated as a major source of airborne emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs). Based on the need to generate a more accurate emission factor for burn ba...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gug, JeongIn, E-mail: Jeongin_gug@student.uml.edu; Cacciola, David, E-mail: david_cacciola@student.uml.edu; Sobkowicz, Margaret J., E-mail: Margaret_sobkowiczkline@uml.edu

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW)more » is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative.« less

  6. Mercury and Pregnancy

    MedlinePlus

    ... through industrial processes, like burning waste or burning coal in power plants. It can fall from the ... volcanoes) and man-made sources (such as burning coal and other pollution). You can get methylmercury in ...

  7. The protracted waste crisis and physical health of workers in Beirut: a comparative cross-sectional study.

    PubMed

    Morsi, Rami Z; Safa, Rawan; Baroud, Serge F; Fawaz, Cherine N; Farha, Jad I; El-Jardali, Fadi; Chaaya, Monique

    2017-04-11

    Since July 2015, Lebanon has been experiencing a waste management crisis. Dumpsites in inhabited areas and waste burning have emerged due to the waste accumulation, further adding to the gravity of the situation. However, the association between the crisis and health of the population has not been scientifically reported. A comparative cross-sectional study was conducted to assess whether exposure to open dumpsites and waste burning is associated with acute health symptoms. The study sample included 221 male workers between the ages of 18-60 years selected from two areas chosen based on their proximity to a garbage dumpsite and waste burning. 110 workers were exposed to a garbage dumpsite and waste burning, and 111 workers were not. Data were collected via a face-to-face interview using a newly developed validated structured questionnaire. Chi-square tests were used to check for statistically significant differences between exposure and covariates. Multivariable analyses using multiple logistic regression were used to compare health symptoms between exposed and unexposed workers adjusting for potential confounders. The prevalence of acute health symptoms was greater among the exposed workers than the non-exposed workers, including gastrointestinal, respiratory, dermatological and constitutional symptoms. Controlling for confounding variables, such as age, insurance, family support, residence near dumpsite, work site, and smoking, a minimum odds ratio (OR) of 4.30 was obtained when comparing the exposed population to those non-exposed. The strong association between improper waste management and physical health calls for immediate attention by the government, stakeholders and community members to find optimal solutions for this waste management crisis and set immediate priority interventions such as regular waste collection, volume reduction and recycling performance improvement. However, the long recall period may have underestimated our results.

  8. Potential health impacts of burning coal beds and waste banks

    USGS Publications Warehouse

    Finkelman, R.B.

    2004-01-01

    Uncontrolled release of pollutants from burning coal beds and waste banks presents potential environmental and human health hazards. On a global scale, the emissions of large volumes of greenhouse gases from burning coal beds may contribute to climate change that alters ecosystems and patterns of disease occurrence. On regional and local scales, the emissions from burning coal beds and waste banks of acidic gases, particulates, organic compounds, and trace elements can contribute to a range of respiratory and other human health problems. Although there are few published reports of health problems caused by these emissions, the potential for problems can be significant. In India, large numbers of people have been displaced from their homes because of health problems caused by emissions from burning coal beds. Volatile elements such as arsenic, fluorine, mercury, and selenium are commonly enriched in coal deposits. Burning coal beds can volatilize these elements, which then can be inhaled, or adsorbed on crops and foods, taken up by livestock or bioaccumulated in birds and fish. Some of these elements can condense on dust particles that can be inhaled or ingested. In addition, selenium, arsenic, lead, tin, bismuth, fluorine, and other elements condense where the hot gaseous emissions come in contact with ambient air, forming mats of concentrated efflorescent minerals on the surface of the ground. These mats can be leached by rainwater and washed into local water bodies providing other potential routes of exposure. Although there are little data linking burning coal beds and waste banks to known health problems, a possibly analogous situation exists in rural China where mineralized coal burned in a residential environment has caused widespread and severe health problems such as fluorosis and arseniasis. ?? 2004 Elsevier B.V. All rights reserved.

  9. Occurrence, profiles, and toxic equivalents of chlorinated and brominated polycyclic aromatic hydrocarbons in E-waste open burning soils.

    PubMed

    Nishimura, Chiya; Horii, Yuichi; Tanaka, Shuhei; Asante, Kwadwo Ansong; Ballesteros, Florencio; Viet, Pham Hung; Itai, Takaaki; Takigami, Hidetaka; Tanabe, Shinsuke; Fujimori, Takashi

    2017-06-01

    We conducted this study to assess the occurrence, profiles, and toxicity of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) and brominated polycyclic aromatic hydrocarbons (Br-PAHs) in e-waste open burning soils (EOBS). In this study, concentrations of 15 PAHs, 26 Cl-PAHs and 14 Br-PAHs were analyzed in EOBS samples. We found that e-waste open burning is an important emission source of Cl-PAHs and Br-PAHs as well as PAHs. Concentrations of total Cl-PAHs and Br-PAHs in e-waste open burning soil samples ranged from 21 to 2800 ng/g and from 5.8 to 520 ng/g, respectively. Compared with previous studies, the mean of total Cl-PAH concentrations of the EOBS samples in this study was higher than that of electronic shredder waste, that of bottom ash, and comparable to fly ash from waste incinerators in Korea and Japan. The mean of total Br-PAH concentrations of the EOBS samples was generally three to four orders of magnitude higher than those in incinerator bottom ash and comparable to incinerator fly ash, although the number of Br-PAH congeners measured differed among studies. We also found that the Cl-PAH and Br-PAH profiles were similar among all e-waste open burning soil samples but differed from those in waste incinerator fly ash. The profiles and principal component analysis results suggested a unique mechanism of Cl-PAH and Br-PAH formation in EOBS. In addition, the Cl-PAHs and Br-PAHs showed high toxicities equivalent to PCDD/Fs measured in same EOBS samples when calculated based on their relative potencies to benzo[a]pyrene. Along with chlorinated and brominated dioxins and PAHs, Cl-PAHs and Br-PAHs are important environmental pollutants to investigate in EOBS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Waste Oil Burn-Off in Coast Guard Power Plants - Diesel Piston Ring Wear Study by Radioactive Tracer Techniques

    DOT National Transportation Integrated Search

    1976-07-01

    This report covers the results of a study utilizing a radioactive tracer technique to determine wear effects on the upper compression rings of a two-stroke cycle diesel engine burning mixtures of waste lube oil in fuel oil. The radioactive tracer tec...

  11. 40 CFR 60.2265 - What definitions must I know?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... technology such as mass burn, modular, and fluidized bed combustors.) Auxiliary fuel means natural gas... waste is not high-level radioactive waste, spent nuclear fuel, or byproduct material as defined by the... for application of a coating. The unit burns the coating overspray off the rack so the rack can be...

  12. 40 CFR 62.14840 - What definitions must I know?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... which typically have enclosed fireboxes and controlled air technology such as mass burn, modular, and... waste is not high-level radioactive waste, spent nuclear fuel, or by-product material as defined by the... unit means a unit that burns the coatings off racks used to hold small items for application of a...

  13. 40 CFR 60.2875 - What definitions must I know?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fireboxes and controlled air technology such as mass burn, modular, and fluidized bed combustors.) Auxiliary... waste is not high-level radioactive waste, spent nuclear fuel, or by-product material as defined by the... for application of a coating. The unit burns the coating overspray off the rack so the rack can be...

  14. 40 CFR 62.14840 - What definitions must I know?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... which typically have enclosed fireboxes and controlled air technology such as mass burn, modular, and... waste is not high-level radioactive waste, spent nuclear fuel, or by-product material as defined by the... unit means a unit that burns the coatings off racks used to hold small items for application of a...

  15. 40 CFR 60.2265 - What definitions must I know?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... technology such as mass burn, modular, and fluidized bed combustors.) Auxiliary fuel means natural gas... waste is not high-level radioactive waste, spent nuclear fuel, or byproduct material as defined by the... for application of a coating. The unit burns the coating overspray off the rack so the rack can be...

  16. 40 CFR 60.2953 - What information must I submit prior to initial startup?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... initial startup? 60.2953 Section 60.2953 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... initial startup? You must submit the information specified in paragraphs (a) through (e) of this section prior to initial startup. (a) The type(s) of waste to be burned. (b) The maximum design waste burning...

  17. 40 CFR 60.2195 - What information must I submit prior to initial startup?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... initial startup? 60.2195 Section 60.2195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., 2001 Recordkeeping and Reporting § 60.2195 What information must I submit prior to initial startup? You... startup. (a) The type(s) of waste to be burned. (b) The maximum design waste burning capacity. (c) The...

  18. 40 CFR 60.2953 - What information must I submit prior to initial startup?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... initial startup? 60.2953 Section 60.2953 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... initial startup? You must submit the information specified in paragraphs (a) through (e) of this section prior to initial startup. (a) The type(s) of waste to be burned. (b) The maximum design waste burning...

  19. 40 CFR 60.2953 - What information must I submit prior to initial startup?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... initial startup? 60.2953 Section 60.2953 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... initial startup? You must submit the information specified in paragraphs (a) through (e) of this section prior to initial startup. (a) The type(s) of waste to be burned. (b) The maximum design waste burning...

  20. 40 CFR 60.2195 - What information must I submit prior to initial startup?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... initial startup? 60.2195 Section 60.2195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., 2001 Recordkeeping and Reporting § 60.2195 What information must I submit prior to initial startup? You... startup. (a) The type(s) of waste to be burned. (b) The maximum design waste burning capacity. (c) The...

  1. 40 CFR 60.2195 - What information must I submit prior to initial startup?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... initial startup? 60.2195 Section 60.2195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., 2001 Recordkeeping and Reporting § 60.2195 What information must I submit prior to initial startup? You... startup. (a) The type(s) of waste to be burned. (b) The maximum design waste burning capacity. (c) The...

  2. 76 FR 80747 - Approval and Promulgation of Implementation Plans; Oregon: New Source Review/Prevention of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... 340-228--Requirements for Fuel Burning Equipment and Fuel Sulfur Content 0020 Definitions 11/8/2007 0200 General Emission Standards for Fuel 11/8/2007 Burning Equipment, Sulfur Dioxide Standards. 0210... reduced sulfur (TRS) emission-related definitions. 0100 Wigwam Waste Burners, Wigwam Waste Burners 11/8...

  3. What We Have Learned From Our Inspections of Incinerators and Use of Burn Pits in Afghanistan: Final Assessment

    DTIC Science & Technology

    2015-02-01

    In 2004, the Department of Defense (DOD) began introducing new solid waste disposal methods in Afghanistan, including landfills and incineration...base landfills and incinera- tion. Nonetheless, the overall approach to its solid waste disposal in Afghanistan was hap- hazard and reactive. DOD was...contract to have solid waste hauled to a local landfill —a solution that could have eliminat- SIGAR 15-33-AL: Final assessment: incinerators and Burn

  4. Enhanced levels of atmospheric low-molecular weight monocarboxylic acids in gas and particulates over Mt. Tai, North China, during field burning of agricultural wastes

    NASA Astrophysics Data System (ADS)

    Mochizuki, Tomoki; Kawamura, Kimitaka; Nakamura, Shinnosuke; Kanaya, Yugo; Wang, Zifa

    2017-12-01

    To understand the source and atmospheric behaviour of low molecular weight monocarboxylic acids (monoacids), gaseous (G) and particulate (P) organic acids were collected at the summit of Mt. Tai in the North China Plain (NCP) during field burning of agricultural waste (wheat straw). Particulate organic acids were collected with neutral quartz filter whereas gaseous organic acids were collected with KOH-impregnated quartz filter. Normal (C1-C10), branched (iC4-iC6), hydroxy (lactic and glycolic), and aromatic (benzoic) monoacids were determined with a capillary gas chromatography employing p-bromophenacyl esters. We found acetic acid as the most abundant gas-phase species whereas formic acid is the dominant particle-phase species. Concentrations of formic (G/P 1 570/1 410 ng m-3) and acetic (3 960/1 120 ng m-3) acids significantly increased during the enhanced field burning of agricultural wastes. Concentrations of formic and acetic acids in daytime were found to increase in both G and P phases with those of K+, a field-burning tracer (r = 0.32-0.64). Primary emission and secondary formation of acetic acid is linked with field burning of agricultural wastes. In addition, we found that particle-phase fractions (Fp = P/(G + P)) of formic (0.50) and acetic (0.31) acids are significantly high, indicating that semi-volatile organic acids largely exist as particles. Field burning of agricultural wastes may play an important role in the formation of particulate monoacids in the NCP. High levels (917 ng m-3) of particle-phase lactic acid, which is characteristic of microorganisms, suggest that microbial activity associated with terrestrial ecosystem significantly contributes to the formation of organic aerosols.

  5. Investigation of the tracers for plastic-enriched waste burning aerosols

    NASA Astrophysics Data System (ADS)

    Kumar, Sudhanshu; Aggarwal, Shankar G.; Gupta, Prabhat K.; Kawamura, Kimitaka

    2015-05-01

    To better identify the tracers for open-waste burning (OWB) aerosols, we have conducted aerosol sampling at 2 landfill sites, i.e., Okhla and Bhalswa in New Delhi. The metals such as, As, Cd, Sb and Sn, which have been observed almost negligible in remote aerosols, are found abundantly in these OWB aerosol samples (n = 26), i.e., 60 ± 65, 41 ± 53, 537 ± 847 and 1325 ± 1218 ng m-3, respectively. Samples (n = 20) collected at urban locations in New Delhi, i.e., at Employees' State Insurance (ESI) hospital and National Physical Laboratory (NPL) also show high abundances of these metals in the particles. Filter samples are also analyzed for water-soluble dicarboxylic acids (C2-C12) and related compounds (oxocarboxylic acids and α-dicarbonyls). Terephthalic acid (tPh) was found to account for more than 77% of total diacids determined in OWB aerosols. However, such a high abundance of tPh is not observed in aerosols collected at urban sites. Instead, phthalic acid (Ph) was found as the third/fourth most abundant diacid (∼3%) following C2 (>70%) and C4 (>12%) in these waste burning influenced urban aerosols. A possible secondary formation pathway of Ph by photo-degradation of phthalate ester (di-2-ethylhexyl phthalate) in plastic-waste burning aerosol is suggested. Ionic composition of OWB aerosols showed that Cl- is the most abundant ion (40 ± 8% of total ions determined). The correlation studies of the potential metals with the organic tracers of garbage burning, i.e., phthalic, isophthalic and terephthalic acids show that especially Sn can be used as marker for tracing the plastic-enriched waste burning aerosols.

  6. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions.

    PubMed

    Oh, Hyukjin; Annamalai, Kalyan; Sweeten, John M

    2008-04-01

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass [FB]) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash "fouling" were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash-fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out.

  7. Burning high-level TRU waste in fusion fission reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yaosong

    2016-09-01

    Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.

  8. The impact of municipal waste combustion in small heat sources

    NASA Astrophysics Data System (ADS)

    Vantúch, Martin; Kaduchová, Katarína; Lenhard, Richard

    2016-06-01

    At present there is a tendency to make greater use for heating houses for burning solid fuel, such as pieces of wood, coal, coke, local sources of heat to burn natural gas. This tendency is given both the high price of natural gas as well as the availability of cheaper solid fuel. In many cases, in the context saving heating costs, respectively in the context of the disposal of waste is co-incinerated with municipal solid fuels and wastes of different composition. This co entails increased production emissions such as CO (carbon monoxide), NOx (nitrogen oxides), particulate matter (particulate matter), PM10, HCl (hydrogen chloride), PCDD/F (polychlorinated dibenzodioxins and dibenzofurans), PCBs (polychlorinated biphenyls) and others. The experiment was focused on the emission factors from the combustion of fossil fuels in combination with municipal waste in conventional boilers designed to burn solid fuel.

  9. Toxic-Waste Disposal by Combustion in Containers

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Stephens, J. B.; Moynihan, P. I.; Compton, L. E.; Kalvinskas, J. J.

    1986-01-01

    Chemical wastes burned with minimal handling in storage containers. Technique for disposing of chemical munitions by burning them inside shells applies to disposal of toxic materials stored in drums. Fast, economical procedure overcomes heat-transfer limitations of conventional furnace designs by providing direct contact of oxygenrich combustion gases with toxic agent. No need to handle waste material, and container also decontaminated in process. Oxygen-rich torch flame cuts burster well and causes vaporization and combustion of toxic agent contained in shell.

  10. Nuclear system that burns its own wastes shows promise

    NASA Technical Reports Server (NTRS)

    Atchison, K.

    1975-01-01

    A nuclear fission energy system, capable of eliminating a significant amount of its radioactive wastes by burning them, is described. A theoretical investigation of this system conducted by computer analysis, is based on use of gaseous fuel nuclear reactors. Gaseous core reactors using a uranium plasma fuel are studied along with development for space propulsion.

  11. 40 CFR 264.1087 - Standards: Closed-vent systems and control devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of such devices include, but are not limited to, a car-seal or a lock-and-key configuration valve...) A boiler or industrial furnace burning hazardous waste for which the owner or operator has been... requirements of 40 CFR part 266, subpart H; or (E) A boiler or industrial furnace burning hazardous waste for...

  12. Grid-connected integrated community energy system. Phase II, Stage 2, final report. Preliminary design pyrolysis facility. [Andco-Torrax system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The University of Minnesota is studying and planning a grid connected integrated community energy system to include disposal of wastes from health centers and utilizing the heat generated. The University of Minnesota has purchased the so called Southeast Generating Station from the Northern States Power Company. This plant contains two coal-fired boilers that will be retrofitted to burn low-sulfur Montana coal. Building modifications and additions will be made to support the components of the Andco-Torrax system and integrate the system with the rest of the plant. The Andco-Torrax system is a new high-temperature refuse-conversion process known technically as slagging pyrolysis.more » Although the pyrolysis of solid waste is a relatively new innovation, pyrolysis processes have been used for years by industry. This report covers the preliminary design and operation of the system. (MCW)« less

  13. The 1976 Hanford Americium Accident: Then and Now

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.

    2013-10-02

    The 1976 chemical explosion of an 241Am ion exchange column at a Hanford Site waste management facility resulted in the extreme contamination of a worker with 241Am, nitric acid and debris. The worker underwent medical treatment for acid burns, as well as wound debridement, extensive personal skin decontamination and long-term DTPA chelation therapy for decorporation of americium-241. Because of the contamination levels and prolonged decontamination efforts, care was provided for the first three months at the unique Emergency Decontamination Facility with gradual transition to the patient’s home occurring over another two months. The medical treatment, management, and dosimetry of themore » patient have been well documented in numerous reports and journal articles. The lessons learned with regard to patient treatment and effectiveness of therapy still form the underlying philosophy of treatment for contaminated injuries. Changes in infrastructure and facilities as well as societal expectations make for interesting speculation as to how responses might differ today.« less

  14. 77 FR 36443 - Disapproval and Promulgation of Air Quality Implementation Plans; State of Utah; Revisions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... Promulgation of Air Quality Implementation Plans; State of Utah; Revisions To Open Burning Regulations AGENCY... Emission Standards: General Burning authorizes the State to extend the time period for open burning. EPA is... Burning. This rule contains the following provisions: definitions and exclusions, community waste disposal...

  15. 40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...

  16. 40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...

  17. 40 CFR 265.1088 - Standards: Closed-vent systems and control devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... removing the lock. Examples of such devices include, but are not limited to, a car-seal or a lock-and-key... furnace burning hazardous waste for which the owner or operator has been issued a final permit under 40... 266, subpart H; or (E) A boiler or industrial furnace burning hazardous waste for which the owner or...

  18. Computational investigations of low-emission burner facilities for char gas burning in a power boiler

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.

    2016-04-01

    Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).

  19. 40 CFR 60.51 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., yard wastes, food wastes, plastics, leather, rubber, and other combustibles, and noncombustible... subpart A of this part. (a) Incinerator means any furnace used in the process of burning solid waste for the purpose of reducing the volume of the waste by removing combustible matter. (b) Solid waste means...

  20. Air Emissions and Health Benefits from Using Sugarcane Waste as a Cellulosic Ethanol Feedstock

    NASA Astrophysics Data System (ADS)

    Tsao, C.; Campbell, E.; Chen, Y.; Carmichael, G.; Mena-Carrasco, M.; Spak, S.

    2010-12-01

    Brazil, as the largest ethanol exporter in the world, faces rapid expansion of ethanol production due to the increase of global biofuels demand. Current production of Brazilian sugarcane ethanol causes significant air emissions mainly from the open burning phase of agriculture wastes (i.e. sugarcane straws and leaves) resulting in potential health impacts. One possible measure to avoid undesired burning practices is to increase the utilization of unburned sugarcane residues as a feedstock for cellulosic ethanol. To explore the benefits of this substitution, here we first apply a bottom-up approach combining agronomic data and life-cycle models to investigate spatially and temporally explicit emissions from sugarcane waste burning. We further quantify the health benefits from preventing burning practices using the CMAQ regional air quality model and the BenMAP health benefit analysis tool adapted for Brazilian applications. Furthermore, the health impacts will be converted into monetary values which provide policymakers useful information for the development of cellulosic ethanol.

  1. Remedial investigation/feasibility study badger army ammunition plant Baraboo, Wisconsin. Volume 2. Feasibility study report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-08-01

    This Feasibility Study (FS) report for the Badger Army Ammunition Plant (BAAP) in Baraboo, Wisconsin, was prepared by ABB Environmental Services, Inc. (ABB-ES) as a component of Task Order 1 of Contract DAAAl5-91-D-OOO8 with the U.S. Army Environmental Center (USAEC). This report uses the results presented in the Final Remedial Investigation (RI) report (ABB-ES, 1993a) to develop and screen alternatives for remediation of contaminated media at BAAP. The purpose of this FS report is to develop, screen, and evaluate site-specific remedial alternatives to mitigate the impact of site-derived chemicals and ultimately provide protection of human health and the environment. Preferredmore » alternatives for each site are included in this report. Based on previous environmental studies at BAAP, 11 potential hazardous waste sites were ranked according to potential contributions of hazardous chemicals to the environment. These sites were designated as Waste Management Areas because some of the sites contain multiple Solid Waste Management Units (SWMUs). The sites selected to undergo facility assessment and corrective actions are: the Propellant Burning Ground (including Landfill), Deterrent Burning Ground, existing Landfill, Settling Ponds and Spoils Disposal Area, Rocket Paste Area, Oleum Plant and Oleum Plant Pond, Nitroglycerine Pond, old Acid Area, new Acid Area, and Ballistics Pond. The USAEC added an 11th site, the Old Fuel Oil Tank, to the list in October 1989 after discovery of fuel-contaminated soils during excavation of a water line in the vicinity of the old fuel oil tank foundation.« less

  2. Remedial investigation/feasibility study badger army ammunition plant Baraboo, Wisconsin. Volume 3. Feasibility study report (Final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-08-01

    This Feasibility Study (FS) report for the Badger Army Ammunition Plant (BAAP) in Baraboo, Wisconsin, was prepared by ABB Environmental Services, Inc. (ABB-ES) as a component of Task Order 1 of Contract DAAAl5-91-D-OOO8 with the U.S. Army Environmental Center (USAEC). This report uses the results presented in the Final Remedial Investigation (RI) report (ABB-ES, 1993a) to develop and screen alternatives for remediation of contaminated media at BAAP. The purpose of this FS report is to develop, screen, and evaluate site-specific remedial alternatives to mitigate the impact of site-derived chemicals and ultimately provide protection of human health and the environment. Preferredmore » alternatives for each site are included in this report. Based on previous environmental studies at BAAP, 11 potential hazardous waste sites were ranked according to potential contributions of hazardous chemicals to the environment. These sites were designated as Waste Management Areas because some of the sites contain multiple Solid Waste Management Units (SWMUs). The sites selected to undergo facility assessment and corrective actions are: the Propellant Burning Ground (including Landfill), Deterrent Burning Ground, existing Landfill, Settling Ponds and Spoils Disposal Area, Rocket Paste Area, Oleum Plant and Oleum Plant Pond, Nitroglycerine Pond, old Acid Area, new Acid Area, and Ballistics Pond. The USAEC added an 11th site, the Old Fuel Oil Tank, to the list in October 1989 after discovery of fuel-contaminated soils during excavation of a water line in the vicinity of the old fuel oil tank foundation.« less

  3. Remedial investigation/feasibility study badger army ammunition plant Baraboo, Wisconsin. Volume 1. Feasibility study report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-08-01

    This Feasibility Study (FS) report for the Badger Army Ammunition Plant (BAAP) in Baraboo, Wisconsin, was prepared by ABB Environmental Services, Inc. (ABB-ES) as a component of Task Order 1 of Contract DAAAl5-91-D-OOO8 with the U.S. Army Environmental Center (USAEC). This report uses the results presented in the Final Remedial Investigation (RI) report (ABB-ES, 1993a) to develop and screen alternatives for remediation of contaminated media at BAAP. The purpose of this FS report is to develop, screen, and evaluate site-specific remedial alternatives to mitigate the impact of site-derived chemicals and ultimately provide protection of human health and the environment. Preferredmore » alternatives for each site are included in this report. Based on previous environmental studies at BAAP, 11 potential hazardous waste sites were ranked according to potential contributions of hazardous chemicals to the environment. These sites were designated as Waste Management Areas because some of the sites contain multiple Solid Waste Management Units (SWMUs). The sites selected to undergo facility assessment and corrective actions are: the Propellant Burning Ground (including Landfill), Deterrent Burning Ground, existing Landfill, Settling Ponds and Spoils Disposal Area, Rocket Paste Area, Oleum Plant and Oleum Plant Pond, Nitroglycerine Pond, old Acid Area, new Acid Area, and Ballistics Pond. The USAEC added an 11th site, the Old Fuel Oil Tank, to the list in October 1989 after discovery of fuel-contaminated soils during excavation of a water line in the vicinity of the old fuel oil tank foundation.« less

  4. Characteristics of organic matter in PM2.5 from an e-waste dismantling area in Taizhou, China.

    PubMed

    Gu, Zeping; Feng, Jialiang; Han, Wenliang; Wu, Minghong; Fu, Jiamo; Sheng, Guoying

    2010-08-01

    Solvent extractable organic compounds in PM(2.5) samples collected in Taizhou, a city famous for its electrical and electronic waste (e-waste) recycling industry in Zhejiang province of China, were analyzed to identify the main emission sources based on molecular markers. Two types of plastics which were most frequently contained in the e-wastes, wires/cables and plastic blocks, were burned in the lab and the particles emitted analyzed. The concentrations of PAHs and phthalate esters at the e-waste dismantling area during our sampling periods were about two times of that at the reference urban site, indicating the high pollution level there. The high concentrations of quaterphenyl found at the dismantling area indicated that burning of plastics or polymers was an important emission source of the PAHs in the fine particles. The diagnostic analysis based on the compositions of alkanes, hopanes and other molecular markers showed that engine exhaust, biomass burning and kitchen emissions were also important emission sources at the e-waste dismantling area. Our results suggested that more effort should be paid to control the correlative emission sources such as transportation and kitchen to achieve better air quality at the e-waste dismantling area besides regulating the recycling activities. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Environmental hazards of waste disposal patterns--a multimethod study in an unrecognized Bedouin village in the Negev area of Israel.

    PubMed

    Meallem, Ilana; Garb, Yaakov; Cwikel, Julie

    2010-01-01

    The Bedouin of the Negev region of Israel are a formerly nomadic, indigenous, ethnic minority, of which 40% currently live in unrecognized villages without organized, solid waste disposal. This study, using both quantitative and qualitative methods, explored the transition from traditional rubbish production and disposal to current uses, the current composition of rubbish, methods of waste disposal, and the extent of exposure to waste-related environmental hazards in the village of Um Batim. The modern, consumer lifestyle produced both residential and construction waste that was dumped very close to households. Waste was tended to by women who predominantly used backyard burning for disposal, exposing villagers to corrosive, poisonous, and dangerously flammable items at these burn sites. Village residents expressed a high level of concern over environmental hazards, yet no organized waste disposal or environmental hazards reduction was implemented.

  6. 40 CFR 60.50c - Applicability and delegation of authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... later than December 1, 2008; or (2) For which modification is commenced after March 16, 1998 but no... during periods when only pathological waste, low-level radioactive waste, and/or chemotherapeutic waste... when only pathological waste, low-level radioactivewaste and/or chemotherapeutic waste is burned. (c...

  7. 40 CFR 62.15370 - What is yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false What is yard waste? 62.15370 Section 62.15370 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Incinerators That Burn 100 Percent Yard Waste § 62.15370 What is yard waste? Yard waste is grass, grass...

  8. 40 CFR 62.15370 - What is yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false What is yard waste? 62.15370 Section 62.15370 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Incinerators That Burn 100 Percent Yard Waste § 62.15370 What is yard waste? Yard waste is grass, grass...

  9. 40 CFR 60.1915 - What is yard waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is yard waste? 60.1915 Section 60.1915 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Incinerators That Burn 100 Percent Yard Waste § 60.1915 What is yard waste? Yard waste is grass, grass...

  10. 40 CFR 60.1915 - What is yard waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is yard waste? 60.1915 Section 60.1915 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Incinerators That Burn 100 Percent Yard Waste § 60.1915 What is yard waste? Yard waste is grass, grass...

  11. A Better Way to Burn Wood.

    ERIC Educational Resources Information Center

    Robison, Rita

    1979-01-01

    Wood pyrolysis is a process that burns wood without air, producing gas and oil that are then burned for heat. Now being tested at Maryville College, Tennessee, the process is expected to cut fuel costs, solve a waste disposal problem, and produce charcoal for sale. (Author/MLF)

  12. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyukjin Oh; Kalyan Annamalai; John M. Sweeten

    2008-04-15

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass, FB) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash 'fouling' were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss throughmore » ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out. 16 refs., 12 figs., 6 tabs.« less

  13. Public concerns and behaviours towards solid waste management in Italy.

    PubMed

    Sessa, Alessandra; Di Giuseppe, Gabriella; Marinelli, Paolo; Angelillo, Italo F

    2010-12-01

    A self-administered questionnaire investigated knowledge, perceptions of the risks to health associated with solid waste management, and practices about waste management in a random sample of 1181 adults in Italy. Perceived risk of developing cancer due to solid waste burning was significantly higher in females, younger, with an educational level lower than university and who believed that improper waste management is linked to cancer. Respondents who had visited a physician at least once in the last year for fear of contracting a disease due to the non-correct waste management had an educational level lower than university, have modified dietary habits for fear of contracting disease due to improper waste management, believe that improper waste management is linked to allergies, perceive a higher risk of contracting infectious disease due to improper waste management and have participated in education/information activities on waste management. Those who more frequently perform with regularity differentiate household waste collection had a university educational level, perceived a higher risk of developing cancer due to solid waste burning, had received information about waste collection and did not need information about waste management. Educational programmes are needed to modify public concern about adverse health effects of domestic waste.

  14. Evaluation and Parameter Analysis of Burn up Calculations for the Assessment of Radioactive Waste - 13187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, Ivan; Aksyutina, Yuliya; Tietze-Jaensch, Holger

    2013-07-01

    Burn up calculations facilitate a determination of the composition and nuclear inventory of spent nuclear fuel, if operational history is known. In case this information is not available, the total nuclear inventory can be determined by means of destructive or, even on industrial scale, nondestructive measurement methods. For non-destructive measurements however only a few easy-to-measure, so-called key nuclides, are determined due to their characteristic gamma lines or neutron emission. From these measured activities the fuel burn up and cooling time are derived to facilitate the numerical inventory determination of spent fuel elements. Most regulatory bodies require an independent assessment ofmore » nuclear waste properties and their documentation. Prominent part of this assessment is a consistency check of inventory declaration. The waste packages often contain wastes from different types of spent fuels of different history and information about the secondary reactor parameters may not be available. In this case the so-called characteristic fuel burn up and cooling time are determined. These values are obtained from a correlations involving key-nuclides with a certain bandwidth, thus with upper and lower limits. The bandwidth is strongly dependent on secondary reactor parameter such as initial enrichment, temperature and density of the fuel and moderator, hence the reactor type, fuel element geometry and plant operation history. The purpose of our investigation is to look into the scaling and correlation limitations, to define and verify the range of validity and to scrutinize the dependencies and propagation of uncertainties that affect the waste inventory declarations and their independent verification. This is accomplished by numerical assessment and simulation of waste production using well accepted codes SCALE 6.0 and 6.1 to simulate the cooling time and burn up of a spent fuel element. The simulations are benchmarked against spent fuel from the real reactor Obrigheim in Germany for which sufficiently precise experimental reference data are available. (authors)« less

  15. PCDD/Fs in air and soil around an e-waste dismantling area with open burning of insulated wires in south China.

    PubMed

    Ren, M; Tang, Y H; Peng, P A; Cai, Y

    2015-05-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in ambient air and farmland soil sampled in 2006 around an e-waste dismantling area with open burning of insulated wires in Longtang in south China were investigated. The total toxic equivalent concentrations of PCDD/Fs were 3.2-31.7 pg/m(3) in air and 5.8 12.4 ng/kg in farmland soil at an e-waste site and 0.063-0.091 pg/m(3) in air at a background site. PCDD/Fs in the air at the e-waste site were characterized with dominant 1,2,3,4,6,7,8-HpCDF and OCDF and higher concentrations of furans than dioxins, suggesting open burning of insulated wires was likely to be the main source of PCDD/Fs. Compared with the results in this study, the level of PCDD/F tended to lessen with the average TEQ concentration decreasing by 41 % and the pattern changed to be dominated by OCDD in the air of Longtang in 2010 when insulated wires were openly burned in only a small scale. Our results indicate that the lower chlorinated congeners with higher vapor pressures have enhanced atmospheric transport tendencies.

  16. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not availablemore » or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.Y.; Valenti, J.C.; Tabor, D.G.

    The use of waste wood as fuel for producing energy is a promising supplement to fossil fuels for many regions of the country. In addition to recovering energy and conserving landfill space, burning waste wood fuels also mitigates global warming created by fossil fuel combustion. However, the environmental consequences resulting from emissions generated by combustion of waste wood which contains paints, resins, or preservatives are not well understood. The combustion of waste wood treated with chemicals may produce potentially hazardous products of incomplete combustion (PIC) emissions such as dioxins. Characterization of PIC emissions from the combustion of waste wood previouslymore » treated with pentachlorophenol is reported in this study. Utility poles and crossbars are typically treated with a preservative such as pentachlorophenol in order to prolong their service life. They are disposed of by landfilling after being taken out of service. Burning such wood waste in boilers for steam generation becomes an increasingly attractive waste management alternative as it contains substantial energy value and reduces landfilling costs. Pilot-scale combustion tests were conducted under well controlled conditions in a 0.58 MW (2 million Btu/hr) combustor to compare PIC emissions from burning untreated wood and pentachlorophenol-treated wood. Sampling and analyses for a wide variety of PICs, including volatile organic compounds (VOCs), semivolatile organic compounds, and dioxins and furans, were performed to assess the effect of pentachlorophenol preservative present in wood on PIC emissions.« less

  18. 40 CFR 60.3062 - What is an air curtain incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is... this subpart. (1) 100 percent wood waste. (2) 100 percent clean lumber. (3) 100 percent yard waste. (4...

  19. 40 CFR 60.3062 - What is an air curtain incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is... this subpart. (1) 100 percent wood waste. (2) 100 percent clean lumber. (3) 100 percent yard waste. (4...

  20. 40 CFR 60.3062 - What is an air curtain incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is... this subpart. (1) 100 percent wood waste. (2) 100 percent clean lumber. (3) 100 percent yard waste. (4...

  1. 40 CFR 60.3062 - What is an air curtain incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is... this subpart. (1) 100 percent wood waste. (2) 100 percent clean lumber. (3) 100 percent yard waste. (4...

  2. Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio.

    PubMed

    Rajput, Prashant; Sarin, M M

    2014-05-01

    This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67±0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (∼30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1∼1.2) and polar organic aerosols (OM2/OC2∼2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9±0.2 and 1.8±0.2, from paddy- and wheat-residue burning emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melody, M.

    Waste Technologies Industries (WTI; East Liverpool, Ohio) is trying to wing what it hopes will be its final battle in a 13-year, $160 million war with the government, and community and environmental groups. The company since 1980 has sought EPA approval to operate a hazardous waste incinerator in East Liverpool, Ohio. WTI late last year conducted a pre-test burn, or shakedown, during which the incinerator burned certain types of hazardous waste. The test demonstrates the incinerator's performance under normal operating conditions, Regulatory authorities, including EPA and the Ohio Environmental Protection Agency (OEPA), monitored activity during the shakedown, which was limitedmore » to 720 hours of operation. In accordance with RCRA requirements, the company in March conducted a trial burn to demonstrate that the incinerator meets permit standards. WTI's permit specifies three performance parameters the incinerator must meet -- particulate and hydrogen chloride emissions limits, and destruction removal efficiencies (DREs).« less

  4. [An investigative report concerning safety and management in the magnetic resonance environment: there are more accidents than expected].

    PubMed

    Doi, Tsukasa; Yamatani, Yuya; Ueyama, Tsuyoshi; Nishiki, Shigeo; Ogura, Akio; Kawamitsu, Hideaki; Tsuchihashi, Toshio; Okuaki, Tomoyuki; Matsuda, Tsuyoshi; Kumashiro, Masayuki

    2011-01-01

    Using a questionnaire, we surveyed 2,500 facilities in Japan to clarify medical accidents concerning the magnetic resonance device and its environment. Data derived from 1,319 valid responses (52.8%), allowed us to analyze the situation of (or the reason for) the occurrence of the accidents and their environmental factors. Five hundred and nine facilities (39% of all facilities) had the experience of magnetically induced displacement of the large ferromagnetic material. Intravenous (I.V.) drip stands were involved the largest number of them: 31% (228 cases). Oxygen bottles had the second largest number of incidents: 20%. There were also many incidents involving various materials brought in by non-medical staff (e.g. stepladder for construction). About 20% of the accidents occurred outside of working hours. Patients in 12% of the facilities (154 facilities) experienced burns. In 39 of the cases, burns were received to the inside of the thighs. In 38 of the cases, patients received burns from an electrical cable touching the skin. There were also frequent incidents of burning regarding the boa. We received reports of burns and pain from the halo vest even though it's required to be worn for MR safety. Regarding incidents of contraindications, 280 patients with pacemakers were brought into the magnetic resonance (MR) inspection room. Twelve percent of the facilities experienced natural quench. Lack of training for the staff who introduce and operate high magnetic field devices are considered involving frequently occurring accidents of attractions and burns at hospitals with over 500 beds caused by carrying in materials.

  5. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    EPA Science Inventory

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  6. HANFORD FACILITY ANNUAL DANGEROUS WASTE REPORT CY2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SKOLRUD, J.O.

    2006-02-15

    The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCR4 Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. An electronic database is utilized to collect and compile the large array ofmore » data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes, In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, the report is also transmitted electronically to a web site maintained by the Washington State Department of Ecology.« less

  7. Global biomass burning - Atmospheric, climatic, and biospheric implications

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    On a global scale, the total biomass consumed by annual burning is about 8680 million tons of dry material; the estimated total biomass consumed by the burning of savanna grasslands, at 3690 million tons/year, exceeds all other biomass burning (BMB) components. These components encompass agricultural wastes burning, forest burning, and fuel wood burning. BMB is not restricted to the tropics, and is largely anthropogenic. Satellite measurements indicate significantly increased tropospheric concentrations of CO and ozone associated with BMB. BMB significantly enhances the microbial production and emission of NO(x) from soils, and of methane from wetlands.

  8. Redesigning Urban Carbon Cycles: from Waste Stream to Commodity

    NASA Astrophysics Data System (ADS)

    Brabander, D. J.; Fitzstevens, M. G.

    2013-12-01

    While there has been extensive research on the global scale to quantify the fluxes and reservoirs of carbon for predictive climate change models, comparably little attention has been focused on carbon cycles in the built environment. The current management of urban carbon cycles presents a major irony: while cities produce tremendous fluxes of organic carbon waste, their populations are dependent on imported carbon because most urban have limited access to locally sourced carbon. The persistence of outdated management schemes is in part due to the fact that reimagining the handling of urban carbon waste streams requires a transdisciplinary approach. Since the end of the 19th century, U.S. cities have generally relied on the same three options for managing organic carbon waste streams: burn it, bury it, or dilute it. These options still underpin the framework for today's design and management strategies for handling urban carbon waste. We contend that urban carbon management systems for the 21st century need to be scalable, must acknowledge how climate modulates the biogeochemical cycling of urban carbon, and should carefully factor local political and cultural values. Urban waste carbon is a complex matrix ranging from wastewater biosolids to municipal compost. Our first goal in designing targeted and efficient urban carbon management schemes has been examining approaches for categorizing and geochemically fingerprinting these matrices. To date we have used a combination of major and trace element ratio analysis and bulk matrix characteristics, such as pH, density, and loss on ignition, to feed multivariable statistical analysis in order to identify variables that are effective tracers for each waste stream. This approach was initially developed for Boston, MA, US, in the context of identifying components of municipal compost streams that were responsible for increasing the lead inventory in the final product to concentrations that no longer permitted its use in supporting urban agriculture. We are now extending this approach to additional large U.S. and European urban centers where different philosophical and technological approaches to managing urban waste carbon have resulted in a range of infrastructures, from highly distributed systems (Germany) to centralized mega facilities (London). Ultimately, this research will lead to a decision-making matrix model that will permit cities to customize their urban carbon waste stream facilities and transform this waste into a usable commodity.

  9. Environmental Restoration (ER) Consolidated Quarterly Report_April to June 2017_ October 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John R.

    2017-10-01

    This Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) provides the status of ongoing corrective action activities being implemented at Sandia National Laboratories, New Mexico (SNL/NM) during the April, May, and June 2017 quarterly reporting period. Table I-1 lists the Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified for corrective action at SNL/NM. Sections I.2.1 and I.2.2 summarize the work completed during this quarter. Section I.2.1 summarizes the quarterly activities at sites undergoing corrective action field activities. Field activities are conducted at the three groundwater AOCs (Burn Site Groundwater [BSG AOC], Technical Area [TA]-V Groundwatermore » [TAVG AOC], and Tijeras Arroyo Groundwater [TAG AOC]). Section I.2.2 summarizes quarterly activities at sites where the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB) issued a certificate of completion and the sites are in the corrective action complete (CAC) regulatory process. Currently, SWMUs 8 and 58, 68, 149, 154, and 502 are in the CAC regulatory process. Corrective action activities are deferred at the Long Sled Track (SWMU 83), the Gun Facilities (SWMU 84), and the Short Sled Track (SWMU 240) because these three sites are active mission facilities. These three active mission sites are located in TA-III.« less

  10. Hanford Facility Annual Dangerous Waste Report Calendar Year 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FREEMAN, D.A.

    2003-02-01

    Hanford CY 2002 dangerous waste generation and management forms. The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Informationmore » and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, electronic copies of the report are also transmitted to the regulatory agency.« less

  11. Final closure plan for the high-explosives open burn treatment facility at Lawrence Livermore National Laboratory Experimental Test Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, S.

    This document addresses the interim status closure of the HE Open Bum Treatment Facility, as detailed by Title 22, Division 4.5, Chapter 15, Article 7 of the Califonia Code of Regulations (CCR) and by Title 40, Code of Federal Regulations (CFR) Part 265, Subpart G, ``Closure and Post Closure.`` The Closure Plan (Chapter 1) and the Post- Closure Plan (Chapter 2) address the concept of long-term hazard elimination. The Closure Plan provides for capping and grading the HE Open Bum Treatment Facility and revegetating the immediate area in accordance with applicable requirements. The Closure Plan also reflects careful consideration ofmore » site location and topography, geologic and hydrologic factors, climate, cover characteristics, type and amount of wastes, and the potential for contaminant migration. The Post-Closure Plan is designed to allow LLNL to monitor the movement, if any, of pollutants from the treatment area. In addition, quarterly inspections will ensure that all surfaces of the closed facility, including the cover and diversion ditches, remain in good repair, thus precluding the potential for contaminant migration.« less

  12. 40 CFR 60.106 - Test methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... determine opacity. (c) If auxiliary liquid or solid fossil-fuels are burned in an incinerator-waste heat... rate from solid or liquid fossil fuel, million J/hr (million Btu/hr). Rc = Coke burn-off rate, Mg coke... supplemental gaseous, liquid, or solid fossil fuel is burned, testing shall be conducted at a point between the...

  13. 40 CFR 60.106 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... determine opacity. (c) If auxiliary liquid or solid fossil-fuels are burned in an incinerator-waste heat... rate from solid or liquid fossil fuel, million J/hr (million Btu/hr). Rc = Coke burn-off rate, Mg coke... supplemental gaseous, liquid, or solid fossil fuel is burned, testing shall be conducted at a point between the...

  14. 40 CFR 60.106 - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... determine opacity. (c) If auxiliary liquid or solid fossil-fuels are burned in an incinerator-waste heat... rate from solid or liquid fossil fuel, million J/hr (million Btu/hr). Rc = Coke burn-off rate, Mg coke... supplemental gaseous, liquid, or solid fossil fuel is burned, testing shall be conducted at a point between the...

  15. Lessons Learned from Radioactive Waste Storage and Disposal Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esh, David W.; Bradford, Anna H.

    2008-01-15

    The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less

  16. Characteristics of Polybrominated Diphenyl Ethers Released from Thermal Treatment and Open Burning of E-Waste.

    PubMed

    Li, Ting-Yu; Zhou, Jun-Feng; Wu, Chen-Chou; Bao, Lian-Jun; Shi, Lei; Zeng, Eddy Y

    2018-04-17

    Primitive processing of e-waste potentially releases abundant organic contaminants to the environment, but the magnitudes and mechanisms remain to be adequately addressed. We conducted thermal treatment and open burning of typical e-wastes, that is, plastics and printed circuit boards. Emission factors of the sum of 39 polybrominated diphenyl ethers (∑ 39 PBDE) were 817-1.60 × 10 5 ng g -1 in thermal treatment and nondetected-9.14 × 10 4 ng g -1 , in open burning. Airborne particles (87%) were the main carriers of PBDEs, followed by residual ashes (13%) and gaseous constituents (0.3%), in thermal treatment, while they were 30%, 43% and 27% in open burning. The output-input mass ratios of ∑ 39 PBDE were 0.12-3.76 in thermal treatment and 0-0.16 in open burning. All PBDEs were largely affiliated with fine particles, with geometric mean diameters at 0.61-0.83 μm in thermal degradation and 0.57-1.16 μm in open burning from plastic casings, and 0.44-0.56 and nondetected- 0.55 μm, from printed circuit boards. Evaporation and reabsorption may be the main emission mechanisms for lightly brominated BDEs, but heavily brominated BDEs tend to affiliate with particles from heating or combustion. The different size distributions of particulate PBDEs in emission sources and adjacent air implicated a noteworthy redisposition process during atmospheric dispersal.

  17. High-Resolution Mapping of Biomass Burning Emissions in Three Tropical Regions.

    PubMed

    Shi, Yusheng; Matsunaga, Tsuneo; Yamaguchi, Yasushi

    2015-09-15

    Biomass burning in tropical regions plays a significant role in atmospheric pollution and climate change. This study quantified a comprehensive monthly biomass burning emissions inventory with 1 km high spatial resolution, which included the burning of vegetation, human waste, and fuelwood for 2010 in three tropical regions. The estimations were based on the available burned area product MCD64A1 and statistical data. The total emissions of all gases and aerosols were 17382 Tg of CO2, 719 Tg of CO, 30 Tg of CH4, 29 Tg of NOx, 114 Tg of NMOC (nonmethane organic compounds), 7 Tg of SO2, 10 Tg of NH3, 79 Tg of PM2.5 (particulate matter), 45 Tg of OC (organic carbon), and 6 Tg of BC (black carbon). Taking CO as an example, vegetation burning accounted for 74% (530 Tg) of the total CO emissions, followed by fuelwood combustion and human waste burning. Africa was the biggest emitter (440 Tg), larger than Central and South America (113 Tg) and South and Southeast Asia (166 Tg). We also noticed that the dominant fire types in vegetation burning of these three regions were woody savanna/shrubland, savanna/grassland, and forest, respectively. Although there were some slight overestimations, our results are supported by comparisons with previously published data.

  18. HANFORD FACILITY ANNUAL DANGEROUS WASTE REPORT CY2003 [SEC 1 & 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FREEMAN, D.A.

    2004-02-17

    The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Information and Tracking System (SWITS) database is utilized to collectmore » and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, the report is also transmitted electronically to a web site maintained by the Washington State Department of Ecology.« less

  19. Pit 9 Category of Transuranic Waste Stored Below Ground within Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Kenneth M.

    2014-01-08

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreementmore » between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP).This report summarizes available information on the origin, configuration, and composition of the waste containers within Pit 9, their physical and radiological characteristics, and issues that may be encountered in their retrieval and processing. Review of the available information indicates that Pit 9 should present no major issues in retrieval and processing, and most drums contain TRU waste that can be shipped to WIPP. The primary concern in retrieval is the integrity of containers that have been stored below-ground for 35 to 40 years. The most likely issue that will be encountered in processing containers retrieved from Pit 9 is the potential for items that are prohibited at WIPP such as sealed containers greater than four liters in size and free liquids that exceed limits for WIPP.« less

  20. Nature of air pollution, emission sources, and management in the Indian cities

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Goel, Rahul; Pant, Pallavi

    2014-10-01

    The global burden of disease study estimated 695,000 premature deaths in 2010 due to continued exposure to outdoor particulate matter and ozone pollution for India. By 2030, the expected growth in many of the sectors (industries, residential, transportation, power generation, and construction) will result in an increase in pollution related health impacts for most cities. The available information on urban air pollution, their sources, and the potential of various interventions to control pollution, should help us propose a cleaner path to 2030. In this paper, we present an overview of the emission sources and control options for better air quality in Indian cities, with a particular focus on interventions like urban public transportation facilities; travel demand management; emission regulations for power plants; clean technology for brick kilns; management of road dust; and waste management to control open waste burning. Also included is a broader discussion on key institutional measures, like public awareness and scientific studies, necessary for building an effective air quality management plan in Indian cities.

  1. SOXAL{trademark} pilot plant demonstration at Niagara Mohawk`s Dunkirk Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strangway, P.K.

    The Clean Air Act Amendments of 1990 made it necessary to accelerate the development of scrubber systems for use by some utilities burning sulfur-containing fuels, primarily coal. While many types of Flue Gas Desulfurization (FGD) systems operate based on lime and limestone scrubbing, these systems have drawbacks when considered for incorporation into long-term emissions control plans. Although the costs associated with disposal of large amounts of scrubber sludge may be manageable today, the trend is toward increased disposal costs. Many new SO{sub 2} control technologies are being pursued in the hope of developing an economical regenerable FGD system did recoversmore » the SO{sub 2} as a saleable commercial product, thus minimizing the formation of disposal waste. Some new technologies include the use of exotic chemical absorbents which are alien to the utility industry and utilities` waste treatment facilities. These systems present utilities with new environmental issues. The SOXAL{trademark} process has been developed so as to eliminate such issues.« less

  2. 10 CFR 62.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Emergency access means access to an operating non-Federal or regional low-level radioactive waste disposal... regional low-level radioactive waste disposal facility or facilities for a period not to exceed 180 days... waste. Non-Federal disposal facility means a low-level radioactive waste disposal facility that is...

  3. Department of Energy Technology Readiness Assessments - Process Guide and Training Plan

    DTIC Science & Technology

    2008-09-12

    Hanford Waste Treatment and Immobilization Plant ( WTP ) Analytical Laboratory, Low Activity Waste (LAW) Facility and Balance of Facilities (3 TRAs... WTP High-Level Waste (HLW) Facility – WTP Pre-Treatment (PT) Facility – Hanford River Protection Project Low Activity Waste Treatment Alternatives

  4. Utilization of biocatalysts in cellulose waste minimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, J.; Evans, B.R.

    1996-09-01

    Cellulose, a polymer of glucose, is the principal component of biomass and, therefore, a major source of waste that is either buried or burned. Examples of biomass waste include agricultural crop residues, forestry products, and municipal wastes. Recycling of this waste is important for energy conservation as well as waste minimization and there is some probability that in the future biomass could become a major energy source and replace fossil fuels that are currently used for fuels and chemicals production. It has been estimated that in the United States, between 100-450 million dry tons of agricultural waste are produced annually,more » approximately 6 million dry tons of animal waste, and of the 190 million tons of municipal solid waste (MSW) generated annually, approximately two-thirds is cellulosic in nature and over one-third is paper waste. Interestingly, more than 70% of MSW is landfilled or burned, however landfill space is becoming increasingly scarce. On a smaller scale, important cellulosic products such as cellulose acetate also present waste problems; an estimated 43 thousand tons of cellulose ester waste are generated annually in the United States. Biocatalysts could be used in cellulose waste minimization and this chapter describes their characteristics and potential in bioconversion and bioremediation processes.« less

  5. 76 FR 80451 - Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Proposed Amendments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... wastes ERUs were designed to burn. Energy Recovery Units (i.e., units that would be boilers and process... and 241 Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Proposed... 2060-AR15 and 2050-AG44 Commercial and Industrial Solid Waste Incineration Units: Reconsideration and...

  6. E-waste interventions in Ghana.

    PubMed

    Asante, Kwadwo Ansong; Pwamang, John A; Amoyaw-Osei, Yaw; Ampofo, Joseph Addo

    2016-03-01

    Electrical and electronic waste (e-waste) has become an emerging environmental and human health problem in the world in the 21st century. Recently, the developing nations of West Africa (e.g. Ghana and Nigeria) have become a major destination for e-waste worldwide. In Ghana, the e-waste recyclers use primitive methods (mechanical shredding and open burning) to remove plastic insulation from copper cables. This technique can release highly toxic chemicals and severely affect the environment and human health if improperly managed. It is as a result of the adverse impact on human health that some interventions are being made in Ghana to reduce exposure. The present mode of recycling/dismantling, which happens at Agbogbloshie must be replaced by official receiving/recycling centers to be established. Currently, equipment to strip both large and small cables are available in the country via the Blacksmith Institute (USA) and it is expected that the e-waste workers will embrace the use of these machines. This technology will go a long way to help prevent the burning of e-waste and will be replicated in other smaller e-waste centers in the country.

  7. Race, Wealth, and Solid Waste Facilities in North Carolina

    PubMed Central

    Norton, Jennifer M.; Wing, Steve; Lipscomb, Hester J.; Kaufman, Jay S.; Marshall, Stephen W.; Cravey, Altha J.

    2007-01-01

    Background Concern has been expressed in North Carolina that solid waste facilities may be disproportionately located in poor communities and in communities of color, that this represents an environmental injustice, and that solid waste facilities negatively impact the health of host communities. Objective Our goal in this study was to conduct a statewide analysis of the location of solid waste facilities in relation to community race and wealth. Methods We used census block groups to obtain racial and economic characteristics, and information on solid waste facilities was abstracted from solid waste facility permit records. We used logistic regression to compute prevalence odds ratios for 2003, and Cox regression to compute hazard ratios of facilities issued permits between 1990 and 2003. Results The adjusted prevalence odds of a solid waste facility was 2.8 times greater in block groups with ≥50% people of color compared with block groups with < 10% people of color, and 1.5 times greater in block groups with median house values < $60,000 compared with block groups with median house values ≥$100,000. Among block groups that did not have a previously permitted solid waste facility, the adjusted hazard of a new permitted facility was 2.7 times higher in block groups with ≥50% people of color compared with block groups with < 10% people of color. Conclusion Solid waste facilities present numerous public health concerns. In North Carolina solid waste facilities are disproportionately located in communities of color and low wealth. In the absence of action to promote environmental justice, the continued need for new facilities could exacerbate this environmental injustice. PMID:17805426

  8. Changes to the Hazardous Waste Federal Regulations Through Part 266 and Part 266 Appendices - Federal Register Notice, February 21, 1991

    EPA Pesticide Factsheets

    Under this final rule, the Environmental Protection Agency (EPA) is expanding controls on hazardous waste combustion to regulate air emissions from the burning of hazardous waste in boilers and industrial furnaces.

  9. 75 FR 1615 - Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... DEPARTMENT OF ENERGY Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition...-Level Waste and Facilities Disposition Final Environmental Impact Statement. This document corrects an... Record of Decision: Idaho High-Level Waste and Facilities [[Page 1616

  10. Superfund Record of Decision (EPA Region 5): South Andover Salvage Yards, Operable Unit 1, Anoka County, Andover, MN. (Second remedial action), (amendment), June 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The 50-acre South Andover site is composed of several privately owned parcels of land near Minneapolis in Anoka County, Minnesota. There are several source areas where former activities included drum storage, waste storage, and waste burning. Solid and liquid chemical waste dumping and open pit burning of solvents occurred during the 1960's and 1970's. Investigations showed that drum storage and chemical waste disposal sites were partially obscured by auto salvage operations and more than 3 million waste tires. The ROD amendment changes the 1988 ROD for ground water based on current data from a 1990 Design Investigation. The primary contaminantsmore » of concern affecting the ground water are VOCs, including acetone, ethyl benzene, methylchloride, PCE, TCE, toluene; and metals, including arsenic, chromium, and lead.« less

  11. A Novel Fuel/Reactor Cycle to Implement the 300 Years Nuclear Waste Policy Approach - 12377

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carelli, M.D.; Franceschini, F.; Lahoda, E.J.

    2012-07-01

    A thorium-based fuel cycle system can effectively burn the currently accumulated commercial used nuclear fuel and move to a sustainable equilibrium where the actinide levels in the high level waste are low enough to yield a radiotoxicity after 300 years lower than that of the equivalent uranium ore. The second step of the Westinghouse approach to solving the waste 'problem' has been completed. The thorium fuel cycle has indeed the potential of burning the legacy TRU and achieve the waste objective proposed. Initial evaluations have been started for the third step, development and selection of appropriate reactors. Indications are thatmore » the probability of show-stoppers is rather remote. It is, therefore, believed that development of the thorium cycle and associated technologies will provide a permanent solution to the waste management. Westinghouse is open to the widest collaboration to make this a reality. (authors)« less

  12. 40 CFR 60.106 - Test methods and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... determine opacity. (c) If auxiliary liquid or solid fossil-fuels are burned in an incinerator-waste heat... rate from solid or liquid fossil fuel, GJ/hr (million Btu/hr). Rc = Coke burn-off rate, Mg coke/hr (ton... supplemental gaseous, liquid, or solid fossil fuel is burned, testing shall be conducted at a point between the...

  13. 40 CFR 60.106 - Test methods and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... determine opacity. (c) If auxiliary liquid or solid fossil-fuels are burned in an incinerator-waste heat... rate from solid or liquid fossil fuel, GJ/hr (million Btu/hr). Rc = Coke burn-off rate, Mg coke/hr (ton... supplemental gaseous, liquid, or solid fossil fuel is burned, testing shall be conducted at a point between the...

  14. APTI (Air Pollution Training Institute) Course 427: combustion evaluation, student manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beard, J.T.; Iachetta, F.A.; Lilleleht, L.U.

    1980-02-01

    This Student Manual is used in conjunction with Course No. 427, 'Combustion Evaluation' as applied to air pollution control situations. This manual was prepared by the EPA Air Pollution Training Institute (APTI) to supplement the course lecture materials and to present detailed reference information on the following topics: combustion fundamentals, fuel properties, combustion system design, pollutant emission evaluations, combustion control, gas, oil, and coal burning, solid waste and wood burning, incineration of wastes, sewage sludge incineration, waste gas flares, hazardous waste combustion, NOx control, and improved combustion systems. Note: There is also an Instructor's Guide to be used in conductingmore » the training course - (EPA-450/2-80-065) and a Student Workbook to be used for homework and in-class problem solving - (EPA-450/2-80-64).« less

  15. Requirements and Regulations for Open Burning and Fire Training

    EPA Pesticide Factsheets

    Intentional burning of facilities is considered demolition under federal asbestos regulations, even if no asbestos is present. Learn about regulations and requirements for open burning and fire training.

  16. Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo

    Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can bemore » accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as the core isotopic content have been characterized. Results will be presented showing the potential for thorium to reach a high TRU transmutation rate over a wide variety of fuel types (oxide, metal, nitride and carbide) and transmutation schemes (recycle or partition of in-bred U-233). In addition, a sustainable scheme has been devised to burn the TRU accumulated in the core inventory once the legacy TRU supply has been exhausted, thereby achieving long-term virtually TRU-free. A comprehensive 'back-to-front' approach to the fuel cycle has recently been proposed by Westinghouse which emphasizes achieving 'acceptable', low-radiotoxicity, high-level waste, with the intent not only to satisfy all technical constraints but also to improve public acceptance of nuclear energy. Following this approach, the thorium fuel cycle, due to its low radiotoxicity and high potential for TRU transmutation has been selected as a promising solution. Additional studies not shown here have shown significant reduction of decay heat. The TRU burning potential of the Th-based fuel cycle has been illustrated with a variety of fuel types, using the Toshiba ARR to perform the analysis, including scenarios with continued LWR operation of either uranium fueled or thorium fueled LWRs. These scenarios will afford overall reduction in actinide radiotoxicity, however when the TRU supply is exhausted, a continued U- 235 LWR operation must be assumed to provide TRU makeup feed. This scenario will never reach the characteristically low TRU content of a closed thorium fuel cycle with its associated potential benefits on waste radiotoxicity, as exemplified by the transition scenario studied. At present, the cases studied indicate ThC as a potential fuel for maximizing TRU burning, while ThN with nitrogen enriched to 95% N-15 shows the highest breeding potential. As a result, a transition scenario with ThN was developed to show that a sustainable, closed Th-cycle can be achieved starting from burning the legacy TRU stock and completing the transmutation of the residual TRU remaining in the core inventory after the legacy TRU external supply has been exhausted. The radiotoxicity of the actinide waste during the various phases has been characterized, showing the beneficial effect of the decreasing content of TRU in the recycled fuel as the transition to a closed Th-based fuel cycle is undertaken. Due to the back-to-front nature of the proposed methodology, detailed designs are not the first step taken when assessing a fuel cycle scenario potential. As a result, design refinement is still required and should be expected in future studies. Moreover, significant safety assessment, including determination of associated reactivity coefficients, fuel and reprocessing feasibility studies and economic assessments will still be needed for a more comprehensive and meaningful comparison against other potential solutions. With the above considerations in mind, the potential advantages of thorium fuelled reactors on HLW management optimization lead us to believe that thorium fuelled reactor systems can play a significant role in the future and deserve further consideration. (authors)« less

  17. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when a...

  18. 76 FR 55256 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., 2011, on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...

  19. 76 FR 55255 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...

  20. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebersorger, S.; Beigl, P., E-mail: peter.beigl@boku.ac.at

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions aremore » met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).« less

  1. Municipal solid waste generation in municipalities: quantifying impacts of household structure, commercial waste and domestic fuel.

    PubMed

    Lebersorger, S; Beigl, P

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation). Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Lubricating oil burn-off in Coast Guard power plants

    DOT National Transportation Integrated Search

    1975-02-01

    The results of a feasibility study for the burn-off of waste oils in Coast Guard power plants are presented. Among the factors considered in this evaluation were: simplicity, cost, engine manufacturers recommendations, mixing ratios, engine emissions...

  3. Corrective Action Investigation Plan for Corrective Action Unit 168: Areas 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada (Rev. 0) includes Record of Technical Change No. 1 (dated 8/28/2002), Record of Technical Change No. 2 (dated 9/23/2002), and Record of Technical Change No. 3 (dated 6/2/2004)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy, National Nuclear Security Administration Nevada

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 168 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 168 consists of a group of twelve relatively diverse Corrective Action Sites (CASs 25-16-01, Construction Waste Pile; 25-16-03, MX Construction Landfill; 25-19-02, Waste Disposal Site; 25-23-02, Radioactive Storage RR Cars; 25-23-18, Radioactive Material Storage; 25-34-01, NRDS Contaminated Bunker; 25-34-02, NRDS Contaminated Bunker; CAS 25-23-13, ETL - Lab Radioactive Contamination; 25-99-16, USW G3;more » 26-08-01, Waste Dump/Burn Pit; 26-17-01, Pluto Waste Holding Area; 26-19-02, Contaminated Waste Dump No.2). These CASs vary in terms of the sources and nature of potential contamination. The CASs are located and/or associated wit h the following Nevada Test Site (NTS) facilities within three areas. The first eight CASs were in operation between 1958 to 1984 in Area 25 include the Engine Maintenance, Assembly, and Disassembly Facility; the Missile Experiment Salvage Yard; the Reactor Maintenance, Assembly, and Disassembly Facility; the Radioactive Materials Storage Facility; and the Treatment Test Facility Building at Test Cell A. Secondly, the three CASs located in Area 26 include the Project Pluto testing area that operated from 1961 to 1964. Lastly, the Underground Southern Nevada Well (USW) G3 (CAS 25-99-16), a groundwater monitoring well located west of the NTS on the ridgeline of Yucca Mountain, was in operation during the 1980s. Based on site history and existing characterization data obtained to support the data quality objectives process, contaminants of potential concern (COPCs) for CAU 168 are primarily radionuclide; however, the COPCs for several CASs were not defined. To address COPC uncertainty, the analytical program for most CASs will include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons, polychlorinated biphenyls, and radionuclides. Upon reviewing historical data and current site conditions, it has been determined that no further characterization is required at USW G3 (CAS 25-99-16) to select the appropriate corrective action. A cesium-137 source was encased in cement within the vadous zone during the drilling of the well (CAS 25-99-16). A corrective action of closure in place with a land-use restriction for drilling near USW G3 is appropriate. This corrective action will be documented in the Corrective Action Decision Document (CADD) for CAU 168. The results of the remaining field investigation will support a defensible evaluation of corrective action alternatives for the other CASs within CAU 168 in this CADD.« less

  4. Healthcare waste management: current practices in selected healthcare facilities, Botswana.

    PubMed

    Mbongwe, Bontle; Mmereki, Baagi T; Magashula, Andrew

    2008-01-01

    Healthcare waste management continues to present an array of challenges for developing countries, and Botswana is no exception. The possible impact of healthcare waste on public health and the environment has received a lot of attention such that Waste Management dedicated a special issue to the management of healthcare waste (Healthcare Wastes Management, 2005. Waste Management 25(6) 567-665). As the demand for more healthcare facilities increases, there is also an increase on waste generation from these facilities. This situation requires an organised system of healthcare waste management to curb public health risks as well as occupational hazards among healthcare workers as a result of poor waste management. This paper reviews current waste management practices at the healthcare facility level and proposes possible options for improvement in Botswana.

  5. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...

  6. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...

  7. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...

  8. Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana.

    PubMed

    Itai, Takaaki; Otsuka, Masanari; Asante, Kwadwo Ansong; Muto, Mamoru; Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu; Tanabe, Shinsuke

    2014-02-01

    Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. © 2013. Published by Elsevier B.V. All rights reserved.

  9. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.

    2013-09-30

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in themore » HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. The PA is needed to satisfy both Washington State IDF Permit and DOE Order requirements. Cast Stone has been selected for solidification of radioactive wastes including WTP aqueous secondary wastes treated at the Effluent Treatment Facility (ETF) at Hanford. A similar waste form called Saltstone is used at the Savannah River Site (SRS) to solidify its LAW tank wastes.« less

  10. Combustion of textile residues in a packed bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Changkook; Phan, Anh N.; Sharifi, Vida N.

    2007-08-15

    Textile is one of the main components in the municipal waste which is to be diverted from landfill for material and energy recovery. As an initial investigation for energy recovery from textile residues, the combustion of cotton fabrics with a minor fraction of polyester was investigated in a packed bed combustor for air flow rates ranging from 117 to 1638 kg/m{sup 2} h (0.027-0.371 m/s). Tests were also carried out in order to evaluate the co-combustion of textile residues with two segregated waste materials: waste wood and cardboard. Textile residues showed different combustion characteristics when compared to typical waste materialsmore » at low air flow rates below 819 kg/m{sup 2} h (0.186 m/s). The ignition front propagated fast along the air channels randomly formed between packed textile particles while leaving a large amount of unignited material above. This resulted in irregular behaviour of the temperature profile, ignition rate and the percentage of weight loss in the ignition propagation stage. A slow smouldering burn-out stage followed the ignition propagation stage. At air flow rates of 1200-1600 kg/m{sup 2} h (0.272-0.363 m/s), the bed had a maximum burning rate of about 240 kg/m{sup 2} h consuming most of the combustibles in the ignition propagation stage. More uniform combustion with an increased burning rate was achieved when textile residues were co-burned with cardboard that had a similar bulk density. (author)« less

  11. Korean Waste Management Law and Waste Disposal Forms.

    DTIC Science & Technology

    1991-03-01

    disinfection facility, dewatering facility, and other auxiliary facilities 2) An aerobic treatment facility composed of intake, detention basin, aerobic ... digestion or oxidation treatment facility, biological treatment facility, disinfection facility, dewatering facility, and other auxiliary facilities

  12. A Burning Plasma Experiment: the role of international collaboration

    NASA Astrophysics Data System (ADS)

    Prager, Stewart

    2003-04-01

    The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. A burning plasma is self-heated. The 100 million degree temperature of the plasma is maintained by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system, posing a major plasma physics challenge. Two attractive options are being considered by the US fusion community as burning plasma facilities: the international ITER experiment and the US-based FIRE experiment. ITER (the International Thermonuclear Experimental Reactor) is a large, power-plant scale facility. It was conceived and designed by a partnership of the European Union, Japan, the Soviet Union, and the United States. At the completion of the first engineering design in 1998, the US discontinued its participation. FIRE (the Fusion Ignition Research Experiment) is a smaller, domestic facility that is at an advanced pre-conceptual design stage. Each facility has different scientific, programmatic and political implications. Selecting the optimal path for burning plasma science is itself a challenge. Recently, the Fusion Energy Sciences Advisory Committee recommended a dual path strategy in which the US seek to rejoin ITER, but be prepared to move forward with FIRE if the ITER negotiations do not reach fruition by July, 2004. Either the ITER or FIRE experiment would reveal the behavior of burning plasmas, generate large amounts of fusion power, and be a huge step in establishing the potential of fusion energy to contribute to the world's energy security.

  13. 40 CFR 62.12360 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTANTS Wisconsin Emissions from Existing Municipal Waste Combustors with the Capacity to Burn Greater... existing municipal waste combustor units in the State of Wisconsin that are subject to part 60, subpart Cb...

  14. 40 CFR 62.12360 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTANTS Wisconsin Emissions from Existing Municipal Waste Combustors with the Capacity to Burn Greater... existing municipal waste combustor units in the State of Wisconsin that are subject to part 60, subpart Cb...

  15. 40 CFR 257.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities... demolition (C&D) landfill means a solid waste disposal facility subject to the requirements of subparts A or...

  16. APTI (Air Pollution Training Institute) course 427: combustion evaluation, instructor's guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beard, J.T.; Iachetta, F.A.; Lilleleht, L.U.

    1980-02-01

    This Instructor's Guide is used in conjunction with Course No. 427, 'Combustion Evaluation' as applied to air pollution control situations. The teaching guide was prepared by the EPA Air Pollution Training Institute (APTI) to assist instructors in presenting course No. 427. The guide contains sections on the following topics: combustion fundamentals, fuel properties, combustion system design, pollutant emission calculations, combustion control, gas, oil, and burning, solid waste and wood burning, incineration of wastes, sewage sludge incineration, flame and catalytic incineration, waste gas flares, hazardous waste combustion, NOx control, improved combustion systems. Note: There is also a Student Workbook to bemore » used for homework and in-class problem solving (EPA-450/2-80-064) and a Student Manual for reference and additional subject material (EPA-450/2-80-063).« less

  17. 40 CFR 62.14810 - What must I do if I plan to permanently close my air curtain incinerator and not restart it?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14810 What must I do if I...

  18. 40 CFR 62.14765 - What is an air curtain incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14765 What is an air curtain incinerator? An air curtain incinerator...

  19. 40 CFR 62.14765 - What is an air curtain incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14765 What is an air curtain incinerator? An air curtain incinerator...

  20. 40 CFR 62.14810 - What must I do if I plan to permanently close my air curtain incinerator and not restart it?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14810 What must I do if I...

  1. 40 CFR 62.14770 - When must I achieve final compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14770 When must I achieve final compliance? If you plan to continue...

  2. 40 CFR 62.14770 - When must I achieve final compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14770 When must I achieve final compliance? If you plan to continue...

  3. 40 CFR 62.14765 - What is an air curtain incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14765 What is an air curtain incinerator? An air curtain incinerator...

  4. 40 CFR 62.14765 - What is an air curtain incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14765 What is an air curtain incinerator? An air curtain incinerator...

  5. 40 CFR 62.14810 - What must I do if I plan to permanently close my air curtain incinerator and not restart it?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14810 What must I do if I...

  6. 40 CFR 62.14770 - When must I achieve final compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14770 When must I achieve final compliance? If you plan to continue...

  7. 40 CFR 62.14765 - What is an air curtain incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14765 What is an air curtain incinerator? An air curtain incinerator...

  8. 40 CFR 62.14770 - When must I achieve final compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14770 When must I achieve final compliance? If you plan to continue...

  9. 40 CFR 62.14810 - What must I do if I plan to permanently close my air curtain incinerator and not restart it?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14810 What must I do if I...

  10. 40 CFR 62.14770 - When must I achieve final compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14770 When must I achieve final compliance? If you plan to continue...

  11. 40 CFR 62.14810 - What must I do if I plan to permanently close my air curtain incinerator and not restart it?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14810 What must I do if I...

  12. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these includemore » the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)« less

  13. LANL OPERATING EXPERIENCE WITH THE WAND AND HERCULES PROTOTYPE SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. M. GRUETZMACHER; C. L. FOXX; S. C. MYERS

    2000-09-01

    The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) prototype systems have been operating at Los Alamos National Laboratory's (LANL's) Solid Waste Operation's (SWO'S) non-destructive assay (NDA) building since 1997 and 1998, respectively. These systems are the cornerstone of the verification program for low-density Green is Clean (GIC) waste at the Laboratory. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAS) that has been actively segregated as clean (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). The use of this methodology alters LANL's pastmore » practice of disposing of all room trash generated in nuclear facilities in radioactive waste landfills. Waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from radioactive material handling areas at Los Alamos might be free of contamination. This approach avoids the high cost of disposal of clean waste at a radioactive waste landfill. It also reduces consumption of precious space in the radioactive waste landfill where disposal of this waste provides no benefit to the public or the environment. Preserving low level waste (LLW) disposal capacity for truly radioactive waste is critical in this era when expanding existing radioactive waste landfills or permitting new ones is resisted by regulators and stakeholders. This paper describes the operating experience with the WAND and HERCULES since they began operation at SWO. Waste for verification by the WAND system has been limited so far to waste from the Plutonium Facility and the Solid Waste Operations Facility. A total of461 ft3 (13.1 m3) of low-density shredded waste and paper have been verified clean by the WAND system. The HERCULES system has been used to verify waste from four Laboratory facilities. These are the Solid Waste Operations Facility, the TA-48 Chemistry Facility, the Shops Facility, and the Environmental Facility. A total of 3150 ft3 (89.3 m3) of low-density waste has been verified clean by the HERCULES system.« less

  14. The consequences of global biomass burning

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    Global biomass burning encompasses forest burning for land clearing, the annual burning of grasslands, the annual burning of agricultural stubble and waste after harvests, and the burning of wood as fuel. These activities generate CO2, CH4 and other hydrocarbons, CO, H2, NO, NH3, and CH3Cl; of these, CO, CH4 and the hydrocarbons, and NO, are involved in the photochemical production of tropospheric O3, while NO is transformed to NO2 and then to nitric acid, which falls as acid rain. Biomass burning is also a major source of atmospheric particulates and aerosols which affect the transmission of incoming solar radiation and outgoing IR radiation through the atmosphere, with significant climatic effects.

  15. Approaches to Deal with Irradiated Graphite in Russia - Proposal for New IAEA CRP on Graphite Waste Management - 12364

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kascheev, Vladimir; Poluektov, Pavel; Ustinov, Oleg

    The problems of spent reactor graphite are being shown, the options of its disposal is considered. Burning method is selected as the most efficient and waste-free. It is made a comparison of amounts of {sup 14}C that entering the environment in a natural way during the operation of nuclear power plants (NPPs) and as a result of the proposed burning of spent reactor graphite. It is shown the possibility of burning graphite with the arrival of {sup 14}C into the atmosphere within the maximum allowable emissions. This paper analyzes the different ways of spent reactor graphite treatment. It is shownmore » the possibility of its reprocessing by burning method in the air flow. It is estimated the effect of this technology to the overall radiation environment and compared its contribution to the general background radiation due to cosmic radiation and NPPs emission. It is estimated the maximum permissible speeds of burning reactor graphite (for example, RBMK graphite) for areas with different conditions of agricultural activities. (authors)« less

  16. The NOXSO clean coal project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% ofmore » the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).« less

  17. 78 FR 9111 - Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Final Amendments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... established standards in this final rule for the following four subcategories of CISWI units: Incinerators (i... incinerators; ERUs (i.e., units that would be boilers or process heaters if they did not combust solid waste); and waste burning kilns (i.e., units that would be cement kilns if they did not combust solid waste...

  18. Generation and distribution of PAHs in the process of medical waste incineration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying, E-mail: echochen327@163.com; National Center of Solid Waste Management, Ministry of Environmental Protection, Beijing 100029; Zhao, Rongzhi

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs)more » during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.« less

  19. Environmental Restoration Operations: Consolidated Quarterly Report January -March 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John R.

    This Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) provides the status of ongoing corrective action activities being implemented at Sandia National Laboratories, New Mexico (SNL/NM) during the January, February, and March 2017 quarterly reporting period. Table I-1 lists the Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified for corrective action at SNL/NM. Sections I.2.1 and I.2.2 summarize the work completed during this quarter. Section I.2.1 summarizes the quarterly activities at sites undergoing corrective action field activities. Field activities are conducted at the three groundwater AOCs (Burn Site Groundwater [BSG AOC], Technical Area [TA]-V Groundwatermore » [TAVG AOC], and Tijeras Arroyo Groundwater [TAG AOC]). Section I.2.2 summarizes quarterly activities at sites where the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB) issued a certificate of completion and the sites are in the corrective action complete (CAC) regulatory process. Currently, SWMUs 8 and 58, 68, 149, 154, and 502 are in the CAC regulatory process. Corrective action activities are deferred at the Long Sled Track (SWMU 83), the Gun Facilities (SWMU 84), and the Short Sled Track (SWMU 240) because these three sites are active mission facilities. These three active mission sites are located in TA-III. This Sandia National Laboratories, New Mexico Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) fulfills all quarterly reporting requirements set forth in the Resource Conservation and Recovery Act Facility Operating Permit and the Compliance Order on Consent.« less

  20. Solid and hazardous waste management practices onboard ocean going vessels: a review.

    PubMed

    Swamy, Yeddanapudi V R P P

    2012-01-01

    Shipping or carriage of goods play an important role in the development of human societies and international shipping industry, which carries 90% of the world trade, is the life blood of global economy. During ships operational activity a number of solid and hazardous wastes, also referred as garbage are produced from galleys, crew cabins and engine/deck departments stores. This review provides an overview of the current practices onboard and examines the evidence that links waste management plan regulations to shipping trade. With strict compliance to International Maritime Organization's MARPOL regulations, which prevents the pollution of sea from ships various discharges, well documented solid and hazardous waste management practices are being followed onboard ships. All ship board wastes are collected, segregated, stored and disposed of in appropriate locations, in accordance with shipping company's environmental protection policy and solid and hazardous waste management plan. For example, food residues are ground onboard and dropped into the sea as fish food. Cardboard and the like are burned onboard in incinerators. Glass is sorted into dark/light and deposited ashore, as are plastics, metal, tins, batteries, fluorescent tubes, etc. The residue from plastic incineration which is still considered as plastic is brought back to shore for disposal. New targets are being set up to reduce the volume of garbage generated and disposed of to shore facilities, and newer ships are using baling machines which compress cardboard etc into bales to be taken ashore. The garbage management and its control system work as a 'continual improvement' process to achieve new targets.

  1. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissani, M; Fischer, R; Kidd, S

    2006-04-03

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility,more » waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.« less

  2. Waste separation: Does it influence municipal waste combustor emissions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, A.J.; Rigo, H.G.

    1996-09-01

    It has been suggested that MSW incinerator emissions show significant variations because of the heterogeneous nature of the waste fed to the furnace. This argument has even been used to propose banning certain materials from incinerators. However, data previously reported by the authors suggests that a large portion of the trace metals come from natural sources. Furthermore, full scale incinerator spiking experiments suggest that certain forms of trace metals have minimal effects on stack emissions. Similar studies with chlorinated plastics have failed to identify a significant effect on incinerator dioxin emissions. The implication of segregating the lawn and garden wastemore » and other fines from the furnace feed is explored using data from a 400 tpd mass burn facility equipped with a conditioning tower, dry reactor and fabric filter air pollution control system (APCS) preceded by an NRT separation system. The stack emissions have been tested periodically since commissioning to characterize emissions for various seasons using both processed fuel and raw MSW. Front end processing to remove selected portions of the waste stream based upon size or physical properties, i.e. fines, grass, or ferrous materials, did not result in a statistically significant difference in stack emissions. System operating regime, and in particular those that effect the effective air to cloth ratio in the fabric filter, appear to be the principal influence on emission levels.« less

  3. Characterization and comparison of emissions from rudimentary waste disposal technologies

    EPA Science Inventory

    Results from 2011 simulation of burn pit emissions and air curtain incinerator emissions, recent developments in methods for open air sampling, comparison of waste energy technologies, current SERDP programs in this area.

  4. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collard, L.B.

    2000-09-26

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.

  5. 40 CFR 279.61 - Restrictions on burning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 279.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Burners Who Burn Off... substances are transformed into new products, including the component parts of products, by mechanical or...

  6. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facilitymore » intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.« less

  7. Supplemental Immobilization Cast Stone Technology Development and Waste Form Qualification Testing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Serne, R. Jeffrey; Pierce, Eric M.

    2013-05-31

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). The pretreatment facility will have the capacity to separate all of the tank wastes into the HLW and LAW fractions, and the HLW Vitrification Facility will have the capacity to vitrifymore » all of the HLW. However, a second immobilization facility will be needed for the expected volume of LAW requiring immobilization. A number of alternatives, including Cast Stone—a cementitious waste form—are being considered to provide the additional LAW immobilization capacity.« less

  8. The presence and partitioning behavior of flame retardants in waste, leachate, and air particles from Norwegian waste-handling facilities.

    PubMed

    Morin, Nicolas A O; Andersson, Patrik L; Hale, Sarah E; Arp, Hans Peter H

    2017-12-01

    Flame retardants in commercial products eventually make their way into the waste stream. Herein the presence of flame retardants in Norwegian landfills, incineration facilities and recycling sorting/defragmenting facilities is investigated. These facilities handled waste electrical and electronic equipment (WEEE), vehicles, digestate, glass, combustibles, bottom ash and fly ash. The flame retardants considered included polybrominated diphenyl ethers (∑BDE-10) as well as dechlorane plus, polybrominated biphenyls, hexabromobenzene, pentabromotoluene and pentabromoethylbenzene (collectively referred to as ∑FR-7). Plastic, WEEE and vehicles contained the largest amount of flame retardants (∑BDE-10: 45,000-210,000μg/kg; ∑FR-7: 300-13,000μg/kg). It was hypothesized leachate and air concentrations from facilities that sort/defragment WEEE and vehicles would be the highest. This was supported for total air phase concentrations (∑BDE-10: 9000-195,000pg/m 3 WEEE/vehicle facilities, 80-900pg/m 3 in incineration/sorting and landfill sites), but not for water leachate concentrations (e.g., ∑BDE-10: 15-3500ng/L in WEEE/Vehicle facilities and 1-250ng/L in landfill sites). Landfill leachate exhibited similar concentrations as WEEE/vehicle sorting and defragmenting facility leachate. To better account for concentrations in leachates at the different facilities, waste-water partitioning coefficients, K waste were measured (for the first time to our knowledge for flame retardants). WEEE and plastic waste had elevated K waste compared to other wastes, likely because flame retardants are directly added to these materials. The results of this study have implications for the development of strategies to reduce exposure and environmental emissions of flame retardants in waste and recycled products through improved waste management practices. Copyright © 2017. Published by Elsevier B.V.

  9. From Solid Waste to Energy.

    ERIC Educational Resources Information Center

    Wisely, F. E.; And Others

    A project designed to convert solid waste to energy is explained in this paper. In April, 1972, an investor-owned utility began to burn municipal solid waste as fuel for the direct production of electric power. This unique venture was a cooperative effort between the City of St. Louis, Missouri, and the Union Electric Company, with financial…

  10. 40 CFR 62.14795 - How do I achieve final compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14795 How do I achieve final compliance? For the final compliance, you must...

  11. 40 CFR 62.14795 - How do I achieve final compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14795 How do I achieve final compliance? For the final compliance, you must...

  12. 40 CFR 62.14795 - How do I achieve final compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14795 How do I achieve final compliance? For the final compliance, you must...

  13. 40 CFR 62.14795 - How do I achieve final compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14795 How do I achieve final compliance? For the final compliance, you must...

  14. 40 CFR 62.14795 - How do I achieve final compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14795 How do I achieve final compliance? For the final compliance, you must...

  15. Working conditions and environmental exposures among electronic waste workers in Ghana.

    PubMed

    Akormedi, Matthew; Asampong, Emmanuel; Fobil, Julius N

    2013-01-01

    To investigate and describe informal e-waste recycling and working conditions at Agbogbloshie, Accra, Ghana. We conducted in-depth interviews which were qualitatively analysed from a grounded theory perspective. Workers obtained e-waste from the various residential areas in Accra, then dismantled and burned them in open air to recover copper, aluminum, steel, and other products for sale to customers on-site or at the nearby Agbogbloshie market. The processers worked under unhealthy conditions often surrounded by refuse and human excreta without any form of protective gear and were thus exposed to frequent burns, cuts, and inhalation of highly contaminated fumes. We observed no form of social security/support system for the workers, who formed informal associations to support one another in times of difficulty. e-waste recycling working conditions were very challenging and presented serious hazards to worker health and wellbeing. Formalizing the e-waste processing activities requires developing a framework of sustainable financial and social security for the e-waste workers, including adoption of low-cost, socially acceptable, easy-to-operate, and cleaner technologies that would safeguard the health of the workers and the general public.

  16. 77 FR 69769 - Solid Waste Rail Transfer Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    .... SUMMARY: These final rules govern land-use-exemption permits for solid waste rail transfer facilities. The... ``land-use-exemption permits'' in certain circumstances. Under the CRA, a solid waste rail transfer... grants a land-use-exemption permit for a solid waste rail transfer facility, such permit would only...

  17. PERMITTING HAZARDOUS WASTE INCINERATORS

    EPA Science Inventory

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  18. 1. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY. CAMERA FACING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY. CAMERA FACING NORTHEAST. ON RIGHT OF VIEW IS PART OF EARTH/GRAVEL SHIELDING FOR BIN SET. AERIAL STRUCTURE MOUNTED ON POLES IS PNEUMATIC TRANSFER SYSTEM FOR DELIVERY OF SAMPLES BEING SENT FROM NEW WASTE CALCINING FACILITY TO THE CPP REMOTE ANALYTICAL LABORATORY. INEEL PROOF NUMBER HD-17-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  19. Utility involvement in cogeneration and small power production since PURPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallaron, S.A.

    One of the objectives of PURPA was more efficient energy production through cogeneration and the use of renewable resources. Under PURPA regulations, cogeneration and small power-producing plants may file for qualifying status to receive benefits allowed by the National Energy Act. There has been a steady increase in the number of qualifying facilities (QFs) and some electric utilities have increased ownership of small power-producing facilities as well as electric purchases from QFs. QFs are not only exempt from federal and state utility regulations under PURPA, but they also may be eligible for an exemption from the provisions of the Fuelmore » Use Act of 1978 which prohibits or limits use of oil and natural gas in power plants and other major fuel-burning installations. To obtain QF status under PURPA, small power-producing facilities are limited to a capacity of 80 MW or less and must use some combination of biomass, waste, geothermal, or other renewable resource as the primary energy source. Cogenerators are not limited in size or fuel. The purchase of electricity from cogenerators and small power producers can be an attractive alternative for utilities in meeting future demands.« less

  20. Region 9 NPDES Facilities - Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollah, A.S.

    Low level radioactive waste (LLW) is generated from various nuclear applications in Bangladesh. The major sources of radioactive waste in the country are at present: (a) the 3 MW TRIGA Mark-II research reactor; (b) the radioisotope production facility; (c) the medical, industrial and research facilities that use radionuclides; and (d) the industrial facility for processing monazite sands. Radioactive waste needs to be safely managed because it is potentially hazardous to human health and the environment. According to Nuclear Safety and Radiation Control Act-93, the Bangladesh Atomic Energy Commission (BAEC) is the governmental body responsible for the receipt and final disposalmore » of radioactive wastes in the whole country. Waste management policy has become an important environmental, social, and economical issue for LLW in Bangladesh. Policy and strategies will serve as a basic guide for radioactive waste management in Bangladesh. The waste generator is responsible for on-site collection, conditioning and temporary storage of the waste arising from his practice. The Central Waste Processing and Storage Unit (CWPSU) of BAEC is the designated national facility with the requisite facility for the treatment, conditioning and storage of radioactive waste until a final disposal facility is established and becomes operational. The Regulatory Authority is responsible for the enforcement of compliance with provisions of the waste management regulation and other relevant requirements by the waste generator and the CWPSU. The objective of this paper is to present, in a concise form, basic information about the radioactive waste management infrastructure, regulations, policies and strategies including the total inventory of low level radioactive waste in the country. For improvement and strengthening in terms of operational capability, safety and security of RW including spent radioactive sources and overall security of the facility (CWPSF), the facility is expected to serve waste management need in the country and, in the course of time, the facility may be turned into a regional level training centre. It is essential for safe conduction and culture of research and application in nuclear science and technology maintaining the relevant safety of man and environment and future generations to come. (authors)« less

  2. Flow analysis of metals in a municipal solid waste management system.

    PubMed

    Jung, C H; Matsuto, T; Tanaka, N

    2006-01-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.

  3. Flow analysis of metals in a municipal solid waste management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, C.H.; Matsuto, T.; Tanaka, N.

    2006-07-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria formore » landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.« less

  4. Release of chlorinated, brominated and mixed halogenated dioxin-related compounds to soils from open burning of e-waste in Agbogbloshie (Accra, Ghana).

    PubMed

    Tue, Nguyen Minh; Goto, Akitoshi; Takahashi, Shin; Itai, Takaaki; Asante, Kwadwo Ansong; Kunisue, Tatsuya; Tanabe, Shinsuke

    2016-01-25

    Although complex mixtures of dioxin-related compounds (DRCs) can be released from informal e-waste recycling, DRC contamination in African e-waste recycling sites has not been investigated. This study examined the concentrations of DRCs including chlorinated, brominated, mixed halogenated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs, PBDD/Fs, PXDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in surface soil samples from the Agbogbloshie e-waste recycling site in Ghana. PCDD/F and PBDD/F concentrations in open burning areas (18-520 and 83-3800 ng/g dry, respectively) were among the highest reported in soils from informal e-waste sites. The concentrations of PCDFs and PBDFs were higher than those of the respective dibenzo-p-dioxins, suggesting combustion and PBDE-containing plastics as principal sources. PXDFs were found as more abundant than PCDFs, and higher brominated analogues occurred at higher concentrations. The median total WHO toxic equivalent (TEQ) concentration in open burning soils was 7 times higher than the U.S. action level (1000 pg/g), with TEQ contributors in the order of PBDFs>PCDD/Fs>PXDFs. DRC emission to soils over the e-waste site as of 2010 was estimated, from surface soil lightness based on the correlations between concentrations and lightness, at 200mg (95% confidence interval 93-540 mg) WHO-TEQ over three years. People living in Agbogbloshie are potentially exposed to high levels of not only chlorinated but also brominated DRCs, and human health implications need to be assessed in future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The status of LILW disposal facility construction in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min-Seok; Chung, Myung-Sub; Park, Kyu-Wan

    2013-07-01

    In this paper, we discuss the experiences during the construction of the first LILW disposal facility in South Korea. In December 2005, the South Korean Government designated Gyeongju-city as a host city of Low- and Intermediate-Level Radioactive Waste(LILW) disposal site through local referendums held in regions whose local governments had applied to host disposal facility in accordance with the site selection procedures. The LILW disposal facility is being constructed in Bongilri, Yangbuk-myeon, Gyeongju. The official name of the disposal facility is called 'Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (LILW Disposal Center)'. It can dispose of 800,000 drumsmore » of radioactive wastes in a site of 2,100,000 square meters. At the first stage, LILW repository of underground silo type with disposal capacity of 100,000 drums is under construction expected to be completed by June of 2014. The Wolsong Low and Intermediate Level Radioactive Waste Disposal Center consists of surface facilities and underground facilities. The surface facilities include a reception and inspection facility, an interim storage facility, a radioactive waste treatment building, and supporting facilities such as main control center, equipment and maintenance shop. The underground facilities consist of a construction tunnel for transport of construction equipment and materials, an operation tunnel for transport of radioactive waste, an entrance shaft for workers, and six silos for final disposal of radioactive waste. As of Dec. 2012, the overall project progress rate is 93.8%. (authors)« less

  6. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-09-01

    US DOE mixed low-level and mixed transuranic waste inventory was estimated at 181,000 cubic meters (about 2,000 waste streams). Treatability studies may be used as part of DOE`s mixed waste management program. Commercial treatability study suppliers have been identified that either have current capability in their own facilities or have access to licensed facilities. Numerous federal and state regulations, as well as DOE Order 5820.2A, impact the performance of treatability studies. Generators, transporters, and treatability study facilities are subject to regulation. From a mixed- waste standpoint, a key requirement is that the treatability study facility must have an NRC ormore » state license that allows it to possess radioactive materials. From a RCRA perspective, the facility must support treatability study activities with the applicable plans, reports, and documentation. If PCBs are present in the waste, TSCA will also be an issue. CERCLA requirements may apply, and both DOE and NRC regulations will impact the transportation of DOE mixed waste to an off-site treatment facility. DOE waste managers will need to be cognizant of all applicable regulations as mixed-waste treatability study programs are initiated.« less

  7. 25. CONSTRUCTION PROGRESS AERIAL VIEW OF WASTE CALCINING FACILITY TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. CONSTRUCTION PROGRESS AERIAL VIEW OF WASTE CALCINING FACILITY TAKEN WHEN STRUCTURE WAS 99 PERCENT COMPLETE. INEEL PHOTO NUMBER NRTS-60-5409. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  8. Nuclear Waste: Defense Waste Processing Facility-Cost, Schedule, and Technical Issues.

    DTIC Science & Technology

    1992-06-17

    gallons of high-level radioactive waste stored in underground tanks at the savannah major facility involved Is the Defense Waste Processing Facility ( DwPF ...As a result of concerns about potential problems with the DWPF and delays in its scheduled start-up, the Chairman of the Environment, Energy, and...Natural Resources Subcommittee, House Committee on Government Operations, asked GAO to review the status of the DWPF and other facilities. This report

  9. Hazardous Waste Manifest System

    EPA Pesticide Factsheets

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  10. Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, S.M.

    1997-04-30

    This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types.

  11. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  12. 10 CFR 62.13 - Contents of a request for emergency access: Alternatives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... radioactive waste in a licensed storage facility; (3) Obtaining access to a disposal facility by voluntary... disposal at a Federal low-level radioactive waste disposal facility in the case of a Federal or defense... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission...

  13. 40 CFR 264.341 - Waste analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Waste analysis. 264.341 Section 264... Incinerators § 264.341 Waste analysis. (a) As a portion of the trial burn plan required by § 270.62 of this chapter, or with part B of the permit application, the owner or operator must have included an analysis of...

  14. Waste-to-Energy Laboratory. Grades 8-12.

    ERIC Educational Resources Information Center

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an activity for grades 8-12 students that focuses on the reuse of waste as an energy source by burning and converting it into energy. For this experiment students construct a calorimeter from simple recyclable material. The calorimeter is used to measure the amount of energy stored in paper and yard waste that could be used…

  15. 40 CFR Table 4 to Subpart Cccc of... - Summary of Reporting Requirements a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements • Waste management plan • Anticipated date of initial startup § 60.2190 Startup notification Prior to initial startup • Type of waste to be burned• Maximum design waste burning capacity • Anticipated... occurred during a period of startup, shutdown, or malfunction § 60.2215 and 60.2220 Qualified operator...

  16. 40 CFR Table 4 to Subpart Cccc of... - Summary of Reporting Requirements a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements • Waste management plan • Anticipated date of initial startup § 60.2190 Startup notification Prior to initial startup • Type of waste to be burned• Maximum design waste burning capacity • Anticipated... occurred during a period of startup, shutdown, or malfunction § 60.2215 and 60.2220 Qualified operator...

  17. 40 CFR Table 4 to Subpart Cccc of... - Summary of Reporting Requirements a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements • Waste management plan • Anticipated date of initial startup § 60.2190 Startup notification Prior to initial startup • Type of waste to be burned• Maximum design waste burning capacity • Anticipated... occurred during a period of startup, shutdown, or malfunction § 60.2215 and 60.2220 Qualified operator...

  18. Kraft pulping of industrial wood waste

    Treesearch

    Aziz Ahmed; Masood Akhtar; Gary C. Myers; Gary M. Scott

    1998-01-01

    Most of the approximately 25 to 30 million tons of industrial wood waste generated in the United States per year is burned for energy and/or landfilled. In this study, kraft pulp from industrial wood waste was evaluated and compared with softwood (loblolly pine, Douglas-fir) and hardwood (aspen) pulp. Pulp bleachability was also evaluated. Compared to loblolly pine...

  19. 40 CFR 264.341 - Waste analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Waste analysis. 264.341 Section 264... Incinerators § 264.341 Waste analysis. (a) As a portion of the trial burn plan required by § 270.62 of this chapter, or with part B of the permit application, the owner or operator must have included an analysis of...

  20. 40 CFR 264.341 - Waste analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Waste analysis. 264.341 Section 264... Incinerators § 264.341 Waste analysis. (a) As a portion of the trial burn plan required by § 270.62 of this chapter, or with part B of the permit application, the owner or operator must have included an analysis of...

Top