Sample records for facility-wide emission budgets

  1. 40 CFR 52.2424 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emissions budgets. (a) Motor vehicle emissions budget for the Hampton Roads maintenance area adjusting the mobile emissions budget contained in the maintenance plan for the horizon years 2015 and beyond adopted..., 1996. (b) Motor vehicle emissions budget for the Richmond maintenance area adjusting the mobile...

  2. 40 CFR 52.2532 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Motor vehicle emissions budgets. 52... vehicle emissions budgets. (a) EPA approves the following revised 2009 and 2018 motor vehicle emissions... 2018 motor vehicle emissions budgets (MVEBs) for the Huntington, West Virginia 8-hour ozone maintenance...

  3. 40 CFR 52.2424 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Motor vehicle emissions budgets. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Virginia § 52.2424 Motor vehicle emissions budgets. (a) Motor vehicle emissions budget for the Hampton Roads maintenance area adjusting the...

  4. 40 CFR 52.244 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Motor vehicle emissions budgets. 52.244... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.244 Motor vehicle emissions budgets. (a) Approval of the motor vehicle emissions budgets for the following ozone rate-of-progress and...

  5. 40 CFR 52.244 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Motor vehicle emissions budgets. 52.244... budgets. (a) Approval of the motor vehicle emissions budgets for the following ozone rate-of-progress and attainment SIPs will apply for transportation conformity purposes only until new budgets based on updated...

  6. Facilities and Infrastructure FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    The Facilities and Infrastructure Program includes EERE’s capital investments, operations and maintenance, and site-wide support of the National Renewable Energy Laboratory (NREL). It is the nation’s only national laboratory with a primary mission dedicated to the research, development and demonstration (RD&D) of energy efficiency, renewable energy and related technologies. EERE is NREL’s steward, primary client and sponsor of NREL’s designation as a Federally Funded Research and Development Center. The Facilities and Infrastructure (F&I) budget maintains NREL’s research and support infrastructure, ensures availability for EERE’s use, and provides a safe and secure workplace for employees.

  7. 40 CFR 93.118 - Criteria and procedures: Motor vehicle emissions budget.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emissions budget. 93.118 Section 93.118 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... and procedures: Motor vehicle emissions budget. (a) The transportation plan, TIP, and project not from a conforming transportation plan and TIP must be consistent with the motor vehicle emissions budget...

  8. Characterization of methane emissions from five cold heavy oil production with sands (CHOPS) facilities.

    PubMed

    Roscioli, Joseph R; Herndon, Scott C; Yacovitch, Tara I; Knighton, W Berk; Zavala-Araiza, Daniel; Johnson, Matthew R; Tyner, David R

    2018-03-07

    Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions. Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 yr.

  9. Nitrogen emission and deposition budget in West and Central Africa

    NASA Astrophysics Data System (ADS)

    Galy-Lacaux, C.; Delon, C.

    2014-12-01

    Atmospheric nitrogen depends on land surface exchanges of nitrogen compounds. In Sub Saharan Africa, deposition and emission fluxes of nitrogen compounds are poorly quantified, and are likely to increase in the near future due to land use change and anthropogenic pressure. This work proposes an estimate of atmospheric N compounds budget in West and Central Africa, along an ecosystem transect, from dry savanna to wet savanna and forest, for years 2000-2007. The budget may be considered as a one point in time budget, to be included in long term studies as one of the first reference point for Sub Saharan Africa. Gaseous dry deposition fluxes are estimated by considering N compounds concentrations measured in the frame of the IDAF network (IGAC/DEBITS/AFrica) at the monthly scale and modeling of deposition velocities at the IDAF sites, taking into account the bi directional exchange of ammonia. Particulate dry deposition fluxes are calculated using the same inferential method. Wet deposition fluxes are calculated from measurements of ammonium and nitrate chemical content in precipitations at the IDAF sites combined with the annual rainfall amount. In terms of emission, biogenic NO emissions are simulated at each IDAF site with a surface model coupled to an emission module elaborated from an artificial neural network equation. Ammonia emissions from volatilization are calculated from literature data on livestock quantity in each country and N content in manure. NOx and NH3 emission from biomass burning and domestic fires are estimated from satellite data and emission factors. The total budget shows that emission sources of nitrogen compounds are in equilibrium with deposition fluxes in dry and wet savannas, with respectively 7.40 (±1.90) deposited and 9.01 (±3.44) kgN ha-1 yr-1 emitted in dry savanna, 8.38 (±2.04) kgN ha-1 yr-1 deposited and 9.60 (±0.69) kgN ha-1 yr-1 emitted in wet savanna. In forested ecosystems, the total budget is dominated by wet plus dry

  10. The constrained inversion of Nimbus-7 wide field-of-view radiometer measurements for the Earth Radiation Budget

    NASA Technical Reports Server (NTRS)

    Hucek, Richard R.; Ardanuy, Philip; Kyle, H. Lee

    1990-01-01

    The results of a constrained, wide field-of-view radiometer measurement deconvolution are presented and compared against higher resolution results obtained from the Earth Radiation Budget instrument on the Nimbus-7 satellite and from the Earth Radiation Budget Experiment. The method is applicable to both longwave and shortwave observations and is specifically designed to treat the problem of anisotropic reflection and emission at the top of the atmosphere as well as low signal-to-noise ratios that arise regionally within a field. The procedure is reviewed, and the improvements in resolution obtained are examined. Some minor improvements in the albedo algorithm are also described.

  11. Global volcanic emissions: budgets, plume chemistry and impacts

    NASA Astrophysics Data System (ADS)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  12. 40 CFR 51.125 - Emissions reporting requirements for SIP revisions relating to budgets for SO2 and NOX emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SIP revisions relating to budgets for SO2 and NOX emissions. 51.125 Section 51.125 Protection of... SIP revisions relating to budgets for SO2 and NOX emissions. (a) For its transport SIP revision under § 51.123 and/or 51.124, each State must submit to EPA SO2 and/or NOX emissions data as described in...

  13. Validation of farm-scale methane emissions using nocturnal boundary layer budgets

    NASA Astrophysics Data System (ADS)

    Stieger, J.; Bamberger, I.; Buchmann, N.; Eugster, W.

    2015-08-01

    This study provides the first experimental validation of Swiss agricultural methane emission estimates at the farm scale. We measured CH4 concentrations at a Swiss farmstead during two intensive field campaigns in August 2011 and July 2012 to (1) quantify the source strength of livestock methane emissions using a tethered balloon system, and (2) to validate inventory emission estimates via nocturnal boundary layer (NBL) budgets. Field measurements were performed at a distance of 150 m from the nearest farm buildings with a tethered balloon system in combination with gradient measurements at eight heights on a 10 m tower to better resolve the near-surface concentrations. Vertical profiles of air temperature, relative humidity, CH4 concentration, wind speed and wind direction showed that the NBL was strongly influenced by local transport processes and by the valley wind system. Methane concentrations showed a pronounced time course, with highest concentrations in the second half of the night. NBL budget flux estimates were obtained via a time-space kriging approach. Main uncertainties of NBL budget flux estimates were associated with instationary atmospheric conditions and the estimate of the inversion height zi (top of volume integration). The mean NBL budget fluxes of 1.60 ± 0.31 μg CH4 m-2 s-1 (1.40 ± 0.50 and 1.66 ± 0.20 μg CH4 m-2 s-1 in 2011 and 2012, respectively) were in good agreement with local inventory estimates based on current livestock number and default emission factors, with 1.29 ± 0.47 and 1.74 ± 0.63 μg CH4 m-2 s-1 for 2011 and 2012, respectively. This indicates that emission factors used for the national inventory reports are adequate, and we conclude that the NBL budget approach is a useful tool to validate emission inventory estimates.

  14. Validation of farm-scale methane emissions using nocturnal boundary layer budgets

    NASA Astrophysics Data System (ADS)

    Stieger, J.; Bamberger, I.; Buchmann, N.; Eugster, W.

    2015-12-01

    This study provides the first experimental validation of Swiss agricultural methane emission estimates at the farm scale. We measured CH4 concentrations at a Swiss farmstead during two intensive field campaigns in August 2011 and July 2012 to (1) quantify the source strength of livestock methane emissions using a tethered balloon system and (2) to validate inventory emission estimates via nocturnal boundary layer (NBL) budgets. Field measurements were performed at a distance of 150 m from the nearest farm buildings with a tethered balloon system in combination with gradient measurements at eight heights on a 10 m tower to better resolve the near-surface concentrations. Vertical profiles of air temperature, relative humidity, CH4 concentration, wind speed, and wind direction showed that the NBL was strongly influenced by local transport processes and by the valley wind system. Methane concentrations showed a pronounced time course, with highest concentrations in the second half of the night. NBL budget flux estimates were obtained via a time-space kriging approach. Main uncertainties of NBL budget flux estimates were associated with nonstationary atmospheric conditions and the estimate of the inversion height zi (top of volume integration). The mean NBL budget fluxes of 1.60 ± 0.31 μg CH4 m-2 s-1 (1.40 ± 0.50 and 1.66 ± 0.20 μg CH4 m-2 s-1 in 2011 and 2012 respectively) were in good agreement with local inventory estimates based on current livestock number and default emission factors, with 1.29 ± 0.47 and 1.74 ± 0.63 μg CH4 m-2 s-1 for 2011 and 2012 respectively. This indicates that emission factors used for the national inventory reports are adequate, and we conclude that the NBL budget approach is a useful tool to validate emission inventory estimates.

  15. State Budgets, Unit Allocations, and Unit Emissions Rates

    EPA Pesticide Factsheets

    This Technical Support Document (TSD) provides information that supports EPA’s determination of state emissions budgets, unit-level allocations, direct control rate limits, and new unit set-asides for the Transport Rule proposal.

  16. 76 FR 72404 - Adequacy Status of Motor Vehicle Emissions Budgets in Submitted PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9495-4] Adequacy Status of Motor Vehicle Emissions Budgets in Submitted PM 10 Maintenance Plan for Sacramento County; CA AGENCY: Environmental Protection Agency (EPA... found that the motor vehicle emissions budgets (MVEBs) for particulate matter with an aerodynamic...

  17. Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods

    DOE PAGES

    Roscioli, J. R.; Yacovitch, T. I.; Floerchinger, C.; ...

    2015-05-07

    Increased natural gas production in recent years has spurred intense interest in methane (CH 4) emissions associated with its production, gathering, processing, transmission, and distribution. Gathering and processing facilities (G&P facilities) are unique in that the wide range of gas sources (shale, coal-bed, tight gas, conventional, etc.) results in a wide range of gas compositions, which in turn requires an array of technologies to prepare the gas for pipeline transmission and distribution. We present an overview and detailed description of the measurement method and analysis approach used during a 20-week field campaign studying CH 4 emissions from the natural gasmore » G&P facilities between October 2013 and April 2014. Dual-tracer flux measurements and on-site observations were used to address the magnitude and origins of CH 4 emissions from these facilities. The use of a second tracer as an internal standard revealed plume-specific uncertainties in the measured emission rates of 20–47%, depending upon plume classification. Furthermore, combining downwind methane, ethane (C 2H 6), carbon monoxide (CO), carbon dioxide (CO 2), and tracer gas measurements with on-site tracer gas release allows for quantification of facility emissions and in some cases a more detailed picture of source locations.« less

  18. The effect of agency budgets on minimizing greenhouse gas emissions from road rehabilitation policies

    NASA Astrophysics Data System (ADS)

    Reger, Darren; Madanat, Samer; Horvath, Arpad

    2015-11-01

    Transportation agencies are being urged to reduce their greenhouse gas (GHG) emissions. One possible solution within their scope is to alter their pavement management system to include environmental impacts. Managing pavement assets is important because poor road conditions lead to increased fuel consumption of vehicles. Rehabilitation activities improve pavement condition, but require materials and construction equipment, which produce GHG emissions as well. The agency’s role is to decide when to rehabilitate the road segments in the network. In previous work, we sought to minimize total societal costs (user and agency costs combined) subject to an emissions constraint for a road network, and demonstrated that there exists a range of potentially optimal solutions (a Pareto frontier) with tradeoffs between costs and GHG emissions. However, we did not account for the case where the available financial budget to the agency is binding. This letter considers an agency whose main goal is to reduce its carbon footprint while operating under a constrained financial budget. A Lagrangian dual solution methodology is applied, which selects the optimal timing and optimal action from a set of alternatives for each segment. This formulation quantifies GHG emission savings per additional dollar of agency budget spent, which can be used in a cap-and-trade system or to make budget decisions. We discuss the importance of communication between agencies and their legislature that sets the financial budgets to implement sustainable policies. We show that for a case study of Californian roads, it is optimal to apply frequent, thin overlays as opposed to the less frequent, thick overlays recommended in the literature if the objective is to minimize GHG emissions. A promising new technology, warm-mix asphalt, will have a negligible effect on reducing GHG emissions for road resurfacing under constrained budgets.

  19. 40 CFR 52.2532 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Motor vehicle emissions budgets. 52.2532 Section 52.2532 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) West Virginia § 52.2532 Motor...

  20. 40 CFR 52.2424 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Motor vehicle emissions budgets. 52.2424 Section 52.2424 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Virginia § 52.2424 Motor vehicle...

  1. 40 CFR 52.2424 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Motor vehicle emissions budgets. 52.2424 Section 52.2424 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Virginia § 52.2424 Motor vehicle...

  2. 40 CFR 52.2424 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Motor vehicle emissions budgets. 52.2424 Section 52.2424 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Virginia § 52.2424 Motor vehicle...

  3. 40 CFR 52.2532 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Motor vehicle emissions budgets. 52.2532 Section 52.2532 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) West Virginia § 52.2532 Motor...

  4. Being accountable for care of the poor. CHA's social accountability budget helps facilities keep track of charitable activity.

    PubMed

    Trocchio, J; Eckels, T

    1989-06-01

    The Catholic Health Association's social accountability budget is a set of tools to help Catholic healthcare facilities plan for, administer, and report benefits provided to their communities, especially the poor. It defines a full roster of community benefits that a healthcare organization may provide. The benefits fall into three major categories: activities and services, policies and procedures, and community leadership. The social accountability budget also presents guidelines for assessing the facility's existing services, activities, policies, and procedures and discusses how the facility can conduct or be part of a community needs assessment. Information collected through this assessment is used in the planning and budgeting processes. This ensures that uncompensated care and charitable services receive consideration along with traditional planning and budgeting items. Additional guidelines show the facility how to track and measure its services to the community. The final step, often absent from Catholic healthcare facilities' programs, is reporting community benefits.

  5. Wide area methane emissions mapping with airborne IPDA lidar

    NASA Astrophysics Data System (ADS)

    Bartholomew, Jarett; Lyman, Philip; Weimer, Carl; Tandy, William

    2017-08-01

    Methane emissions from natural gas production, storage, and transportation are potential sources of greenhouse gas emissions. Methane leaks also constitute revenue loss potential from operations. Since 2013, Ball Aerospace has been developing advanced airborne sensors using integrated path differential absorption (IPDA) LIDAR instrumentation to identify methane, propane, and longer-chain alkanes in the lowest region of the atmosphere. Additional funding has come from the U.S. Department of Transportation, Pipeline and Hazardous Materials Administration (PHMSA) to upgrade instrumentation to a broader swath coverage of up to 400 meters while maintaining high spatial sampling resolution and geolocation accuracy. Wide area coverage allows efficient mapping of emissions from gathering and distribution networks, processing facilities, landfills, natural seeps, and other distributed methane sources. This paper summarizes the benefits of advanced instrumentation for aerial methane emission mapping, describes the operating characteristics and design of this upgraded IPDA instrumentation, and reviews technical challenges encountered during development and deployment.

  6. Cumulative carbon emissions budgets consistent with 1.5 °C global warming

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna B.; Gillett, Nathan P.

    2018-04-01

    The Paris Agreement1 commits ratifying parties to pursue efforts to limit the global temperature increase to 1.5 °C relative to pre-industrial levels. Carbon budgets2-5 consistent with remaining below 1.5 °C warming, reported in the IPCC Fifth Assessment Report (AR5)2,6,8, are directly based on Earth system model (Coupled Model Intercomparison Project Phase 5)7 responses, which, on average, warm more than observations in response to historical CO2 emissions and other forcings8,9. These models indicate a median remaining budget of 55 PgC (ref. 10, base period: year 1870) left to emit from January 2016, the equivalent to approximately five years of emissions at the 2015 rate11,12. Here we calculate warming and carbon budgets relative to the decade 2006-2015, which eliminates model-observation differences in the climate-carbon response over the historical period9, and increases the median remaining carbon budget to 208 PgC (33-66% range of 130-255 PgC) from January 2016 (with mean warming of 0.89 °C for 2006-2015 relative to 1861-188013-18). There is little sensitivity to the observational data set used to infer warming that has occurred, and no significant dependence on the choice of emissions scenario. Thus, although limiting median projected global warming to below 1.5 °C is undoubtedly challenging19-21, our results indicate it is not impossible, as might be inferred from the IPCC AR5 carbon budgets2,8.

  7. Focus on cumulative emissions, global carbon budgets and the implications for climate mitigation targets

    NASA Astrophysics Data System (ADS)

    Damon Matthews, H.; Zickfeld, Kirsten; Knutti, Reto; Allen, Myles R.

    2018-01-01

    The Environmental Research Letters focus issue on ‘Cumulative Emissions, Global Carbon Budgets and the Implications for Climate Mitigation Targets’ was launched in 2015 to highlight the emerging science of the climate response to cumulative emissions, and how this can inform efforts to decrease emissions fast enough to avoid dangerous climate impacts. The 22 research articles published represent a fantastic snapshot of the state-or-the-art in this field, covering both the science and policy aspects of cumulative emissions and carbon budget research. In this Review and Synthesis, we summarize the findings published in this focus issue, outline some suggestions for ongoing research needs, and present our assessment of the implications of this research for ongoing efforts to meet the goals of the Paris climate agreement.

  8. Towards Understanding the Impact of Production Techniques and Regulations on Widely Varying Methane Emission Rates in Western Basins

    NASA Astrophysics Data System (ADS)

    Robertson, A.; Edie, R.; Soltis, J.; Field, R. A.; Murphy, S. M.

    2017-12-01

    Recent airborne and mobile lab-based studies by our group and others have demonstrated that production-normalized emission rates of methane can vary dramatically between different Western basins. Three oil and gas basins that are geographically near one another and have relatively similar production characteristics (all three basins produce a mix of natural gas and condensate) have starkly different production-normalized methane emission rates at both the facility and basin-wide levels. This presentation will review previously published data on methane emissions from these basins (Denver Julesburg, Uintah, and Upper Green River) and present new measurement work supporting and expanding upon previous estimates. Beyond this, we use facility level data emissions data combined with information about the date of last upgrade to determine what impact regulations have had on methane emission rates from facilities within the basins. We also investigate what impact different approaches to production may have, in particular the role of having many individual wells processed at a central facility with high throughput is analyzed in terms of its impact on methane emissions.

  9. Towards Understanding the Impact of Production Techniques and Regulations on Widely Varying Methane Emission Rates in Western Basins

    NASA Astrophysics Data System (ADS)

    Regayre, L. A.; Johnson, J. S.; Yoshioka, M.; Pringle, K.; Sexton, D.; Booth, B.; Mann, G.; Lee, L.; Bellouin, N.; Lister, G. M. S.; Johnson, C.; Johnson, B. T.; Mollard, J.; Carslaw, K. S.

    2016-12-01

    Recent airborne and mobile lab-based studies by our group and others have demonstrated that production-normalized emission rates of methane can vary dramatically between different Western basins. Three oil and gas basins that are geographically near one another and have relatively similar production characteristics (all three basins produce a mix of natural gas and condensate) have starkly different production-normalized methane emission rates at both the facility and basin-wide levels. This presentation will review previously published data on methane emissions from these basins (Denver Julesburg, Uintah, and Upper Green River) and present new measurement work supporting and expanding upon previous estimates. Beyond this, we use facility level data emissions data combined with information about the date of last upgrade to determine what impact regulations have had on methane emission rates from facilities within the basins. We also investigate what impact different approaches to production may have, in particular the role of having many individual wells processed at a central facility with high throughput is analyzed in terms of its impact on methane emissions.

  10. Understanding Excess Emissions from Industrial Facilities: Evidence from Texas.

    PubMed

    Zirogiannis, Nikolaos; Hollingsworth, Alex J; Konisky, David M

    2018-03-06

    We analyze excess emissions from industrial facilities in Texas using data from the Texas Commission on Environmental Quality. Emissions are characterized as excess if they are beyond a facility's permitted levels and if they occur during startups, shutdowns, or malfunctions. We provide summary data on both the pollutants most often emitted as excess emissions and the industrial sectors and facilities responsible for those emissions. Excess emissions often represent a substantial share of a facility's routine (or permitted) emissions. We find that while excess emissions events are frequent, the majority of excess emissions are emitted by the largest events. That is, the sum of emissions in the 96-100th percentile is often several orders of magnitude larger than the remaining excess emissions (i.e., the sum of emissions below the 95th percentile). Thus, the majority of events emit a small amount of pollution relative to the total amount emitted. In addition, a small group of high emitting facilities in the most polluting industrial sectors are responsible for the vast majority of excess emissions. Using an integrated assessment model, we estimate that the health damages in Texas from excess emissions are approximately $150 million annually.

  11. Aircraft mass budgeting to measure CO2 emissions of Rome, Italy.

    PubMed

    Gioli, Beniamino; Carfora, Maria F; Magliulo, Vincenzo; Metallo, Maria C; Poli, Attilio A; Toscano, Piero; Miglietta, Franco

    2014-04-01

    Aircraft measurements were used to estimate the CO2 emission rates of the city of Rome, assessed against high-resolution inventorial data. Three experimental flights were made, composed of vertical soundings to measure Planetary Boundary Layer (PBL) properties, and circular horizontal transects at various altitudes around the city area. City level emissions and associated uncertainties were computed by means of mass budgeting techniques, obtaining a positive net CO2 flux of 14.7 ± 4.5, 2.5 ± 1.2, and 10.3 ± 1.2 μmol m(-2) s(-1) for the three flights. Inventorial CO2 fluxes at the time of flights were computed by means of spatial and temporal disaggregation of the gross emission inventory, at 10.9 ± 2.5, 9.6 ± 1.3, and 17.4 ± 9.6 μmol m(-2) s(-1). The largest differences between the two dataset are associated with a greater variability of wind speed and direction in the boundary layer during measurements. Uncertainty partitioned into components related to horizontal boundary flows and top surface flow, revealed that the latter dominates total uncertainty in the presence of a wide variability of CO2 concentration in the free troposphere (up to 7 ppm), while it is a minor term with uniform tropospheric concentrations in the study area (within 2 ppm). Overall, we demonstrate how small aircraft may provide city level emission measurements that may integrate and validate emission inventories. Optimal atmospheric conditions and measurement strategies for the deployment of aircraft experimental flights are finally discussed.

  12. The development of seasonal emission factors from a Canadian commercial laying hen facility

    NASA Astrophysics Data System (ADS)

    Morgan, Robert J.; Wood, David J.; Van Heyst, Bill J.

    2014-04-01

    Pollutants emitted from poultry housing facilities are a concern from a human health, bird welfare, and environmental perspective. Development of emission factors for these aerial pollutants is difficult due to variable climatic conditions, the number and type of poultry, and the wide range of management practices used. To address these concerns, a study was conducted to develop emission factors for ammonia and particulate matter over a period of one year from a commercial poultry laying hen facility in Wellington County, Ontario, Canada. Instruments housed inside an on-site mobile trailer were used to monitor in-house concentrations of ammonia and size fractionated particulate matter via a heated sample line. Along with a ventilation profile, emission factors were developed for the facility. Average emissions of 19.53 ± 19.97, 2.55 ± 2.10, and 1.10 ± 1.52 g day-1 AU-1 (where AU is defined as an animal unit equivalent to 500 kg live mass) for ammonia, PM10, PM2.5, respectively, were observed. All emissions peaked during the winter months, with the exception of PM2.5 which increased in the summer.

  13. Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollar, Lenka; Mathews, Caroline E.

    This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In ordermore » to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.« less

  14. System-wide and Superemitter Policy Options for the Abatement of Methane Emissions from the U.S. Natural Gas System

    NASA Astrophysics Data System (ADS)

    Mayfield, E. N.; Robinson, A. L.; Cohon, J. L.

    2017-12-01

    This work assesses trade-offs between system-wide and superemitter policy options for reducing methane emissions from compressor stations in the U.S. transmission and storage system. Leveraging recently collected national emissions and activity data sets, we developed a new process-based emissions model implemented in a Monte Carlo simulation framework to estimate emissions for each component and facility in the system. We find that approximately 83% of emissions, given the existing suite of technologies, have the potential to be abated, with only a few emission categories comprising a majority of emissions. We then formulate optimization models to determine optimal abatement strategies. Most emissions across the system (approximately 80%) are efficient to abate, resulting in net benefits ranging from 160M to 1.2B annually across the system. The private cost burden is minimal under standard and tax instruments, and if firms market the abated natural gas, private net benefits may be generated. Superemitter policies, namely, those that target the highest emitting facilities, may reduce the private cost burden and achieve high emission reductions, especially if emissions across facilities are highly skewed. However, detection across all facilities is necessary regardless of the policy option and there are nontrivial net benefits resulting from abatement of relatively low-emitting sources.

  15. System-wide and Superemitter Policy Options for the Abatement of Methane Emissions from the U.S. Natural Gas System.

    PubMed

    Mayfield, Erin N; Robinson, Allen L; Cohon, Jared L

    2017-05-02

    This work assesses trade-offs between system-wide and superemitter policy options for reducing methane emissions from compressor stations in the U.S. transmission and storage system. Leveraging recently collected national emissions and activity data sets, we developed a new process-based emissions model implemented in a Monte Carlo simulation framework to estimate emissions for each component and facility in the system. We find that approximately 83% of emissions, given the existing suite of technologies, have the potential to be abated, with only a few emission categories comprising a majority of emissions. We then formulate optimization models to determine optimal abatement strategies. Most emissions across the system (approximately 80%) are efficient to abate, resulting in net benefits ranging from $160M to $1.2B annually across the system. The private cost burden is minimal under standard and tax instruments, and if firms market the abated natural gas, private net benefits may be generated. Superemitter policies, namely, those that target the highest emitting facilities, may reduce the private cost burden and achieve high emission reductions, especially if emissions across facilities are highly skewed. However, detection across all facilities is necessary regardless of the policy option and there are nontrivial net benefits resulting from abatement of relatively low-emitting sources.

  16. Cumulative emission budgets and their implications: the case for SAFE carbon

    NASA Astrophysics Data System (ADS)

    Allen, Myles; Bowerman, Niel; Frame, David; Mason, Charles

    2010-05-01

    The risk of dangerous long-term climate change due to anthropogenic carbon dioxide emissions is predominantly determined by cumulative emissions over all time, not the rate of emission in any given year or commitment period. This has profound implications for climate mitigation policy: emission targets for specific years such as 2020 or 2050 provide no guarantee of meeting any overall cumulative emission budget. By focusing attention on short-term measures to reduce the flow of emissions, they may even exacerbate the overall long-term stock. Here we consider how climate policies might be designed explicitly to limit cumulative emissions to, for example, one trillion tonnes of carbon, a figure that has been estimated to give a most likely warming of two degrees above pre-industrial, with a likely range of 1.6-2.6 degrees. Three approaches are considered: tradable emission permits with the possibility of indefinite emission banking, carbon taxes explicitly linked to cumulative emissions and mandatory carbon sequestration. Framing mitigation policy around cumulative targets alleviates the apparent tension between climate protection and short-term consumption that bedevils any attempt to forge global agreement. We argue that the simplest and hence potentially the most effective approach might be a mandatory requirement on the fossil fuel industry to ensure that a steadily increasing fraction of fossil carbon extracted from the ground is artificially removed from the active carbon cycle through some form of sequestration. We define Sequestered Adequate Fraction of Extracted (SAFE) carbon as a source in which this sequestered fraction is anchored to cumulative emissions, increasing smoothly to reach 100% before we release the trillionth tonne. While adopting the use of SAFE carbon would increase the cost of fossil energy much as a system of emission permits or carbon taxes would, it could do so with much less explicit government intervention. We contrast this proposal

  17. The impact of water management practices and associated methane emissions on subtropical pasture greenhouse gas budgets and ecosystem service payments

    NASA Astrophysics Data System (ADS)

    Chamberlain, S.; Groffman, P. M.; Boughton, E.; Gomez-Casanovas, N.; DeLucia, E. H.; Bernacchi, C.; Sparks, J. P.

    2016-12-01

    Pastures are an extensive land cover type, however patterns in pasture greenhouse gas (GHG) exchange vary widely depending on climate and land management. Understanding this variation is important, as pastures may be a net GHG source or sink depending on these factors. We quantified carbon dioxide (CO2) and methane (CH4) fluxes from subtropical pastures in south Florida for three years using eddy covariance, and estimated annual budgets of CO2, CH4, and GHG equivalent emissions. We also explored the influence of water retention practices on pasture GHG budgets by combining data from a multi-year pasture water retention experiment with CH4 flux data from our eddy covariance tower to 1) estimate the influence of water retention on surface soil flooding, and 2) estimate the influence of extended surface soil flooding on CH4 emissions. These findings were then used to assess the impact of CH4 emissions on stakeholder payments for water retention services in a carbon market framework. The pastures were net CO2 sinks sequestering up to 163 ± 54 g CO2-C m-2 yr-1, but were also strong CH4 sources emitting up to 23.5 ± 2.1 g CH4-C m-2 yr-1. Accounting for the global warming potential of CH4, the pastures were strong GHG sources emitting up to 584 ± 78 g CO2 eq. m-2 yr-1. Our analysis suggests CH4 emissions due to increased flooding from water management practices is a small component of the pasture GHG budget, and water retention likely contributes 2-11% of pasture GHG emissions. These emissions could reduce water retention payments by up to 12% if stakeholders were required to pay for current GHG emissions in a carbon market. It would require at least 93.7 kg CH4-C emissions per acre-foot water storage for carbon market costs to exceed water retention payments, and this scenario is highly unlikely as we estimate current practices are responsible for 11.3 ± 7.2 kg CH4-C emissions per acre-foot of water storage. Our results demonstrate that water retention practices

  18. 40 CFR 52.2052 - Motor vehicle emissions budgets for Pennsylvania ozone areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pennsylvania ozone areas. 52.2052 Section 52.2052 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...) Pennsylvania § 52.2052 Motor vehicle emissions budgets for Pennsylvania ozone areas. (a) As of December 26... nitrogen oxides (NOX) and volatile organic compounds (VOCs) for the Lancaster 1997 8-Hour Ozone Maintenance...

  19. A new SO2 emissions budget for Anatahan volcano (Mariana Islands) based on ten years of satellite observations

    NASA Astrophysics Data System (ADS)

    McCormick, Brendan; Popp, Christoph; Andrews, Benjamin; Cottrell, Elizabeth

    2015-04-01

    Satellite remote sensing offers great potential for the study of sulphur dioxide (SO2) gas emissions from volcanoes worldwide. Anatahan is a remote volcano in the Mariana Islands, SW Pacific. Existing SO2 emissions data from Anatahan, from ground-based UV spectrometer measurements, place the volcano among the largest natural SO2 sources worldwide. However, these measurements are limited in number and only available from intervals of eruptive activity. Activity varies widely at Anatahan: over the past decade, records held in the Smithsonian Institution Global Volcanism Program Volcanoes of the World database describe the alternation of intense eruptions with long intervals of quiescence, where much lower intensity activity took place. We present ten years of satellite-based measurements of SO2 in the atmosphere over Anatahan, using data from the UV spectrometers OMI, GOME-2, and SCIAMACHY, and the IR spectrometer AIRS. We find Anatahan's emissions to be highly variable both within and between intervals of eruption and quiescence. We demonstrate a close agreement between trends in SO2 emission evident from our remote sensing data and records of activity compiled from a range of other sources and instruments, across daily to annual temporal scales. Mean eruptive SO2 emissions at Anatahan are ~6400 t/d, and range from <1000 to >18000 t/d. Quiescent emissions are below our instrument detection limits and are therefore unlikely to exceed 150-300 t/d. Overall, accounting for both eruptive and quiescent emissions, we calculate a revised decadal mean SO2 emission rate of 1060-1200 t/d. We further calculate a total decadal SO2 yield from Anatahan of 4-5 Mt, significantly lower than the 17-34 Mt calculated if ground-based campaign data are used in isolation. The use of isolated measurements to extrapolate longer term emissions budgets is subject to clear uncertainty, and we argue that our satellite observations, covering a longer interval of Anatahan's history, are better

  20. Top-down Estimates of Greenhouse Gas Intensities and Emissions for Individual Oil Sands Facilities in Alberta Canada

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S. M.; Staebler, R. M.; Hayden, K. L.; Mittermeier, R. L.; McLaren, R.; Baray, S.; Darlington, A.; Worthy, D.; O'Brien, J.

    2017-12-01

    The oil sands (OS) region of Alberta contributes approximately 10% to Canada's overall anthropogenic greenhouse gas (GHG) emissions. Such emissions have traditionally been estimated through "bottom-up" methods which seek to account for all individual sources of GHGs within a given facility. However, it is recognized that bottom-up approaches for complex industrial facilities can be subject to uncertainties associated with incomplete or inaccurate emission factor and/or activity data. In order to quantify air pollutant emissions from oil sands activities an aircraft-based measurement campaign was performed in the summer of 2013. The aircraft measurements could also be used to quantify GHG emissions for comparison to the bottom up emissions estimates. Utilizing specific flight patterns, together with an emissions estimation algorithm and measurements of CO2 and methane, a "top-down" estimate of GHG intensities for several large surface mining operations was obtained. The results demonstrate that there is a wide variation in emissions intensities (≈80 - 220 kg CO2/barrel oil) across OS facilities, which in some cases agree with calculated intensities, and in other cases are larger than that estimated using industry reported GHG emission and oil production data. When translated to annual GHG emissions, the "top-down" approach results in a CO2 emission of approximately 41 Mega Tonnes (MT) CO2/year for the 4 OS facilities investigated, in contrast to the ≈26 MT CO2/year reported by industry. The results presented here highlight the importance of using "top-down" approaches as a complimentary method in evaluating GHG emissions from large industrial sources.

  1. The influence of non-CO2 forcings on cumulative carbon emissions budgets

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna B.; Gillett, Nathan P.; Arora, Vivek K.; Lee, Warren G.; Zickfeld, Kirsten

    2018-03-01

    Carbon budgets provide a useful tool for policymakers to help meet the global climate targets, as they specify total allowable carbon emissions consistent with limiting warming to a given temperature threshold. Non-CO2 forcings have a net warming effect in the Representative Concentration Pathways (RCP) scenarios, leading to reductions in remaining carbon budgets based on CO2 forcing alone. Carbon budgets consistent with limiting warming to below 2.0 °C, with and without accounting for the effects of non-CO2 forcings, were assessed in inconsistent ways by the Intergovernmental Panel on Climate Change (IPCC), making the effects of non-CO2 forcings hard to identify. Here we use a consistent approach to compare 1.5 °C and 2.0 °C carbon budgets with and without accounting for the effects of non-CO2 forcings, using CO2-only and RCP8.5 simulations. The median allowable carbon budgets for 1.5 °C and 2.0 °C warming are reduced by 257 PgC and 418 PgC, respectively, and the uncertainty ranges on the budgets are reduced by more than a factor of two when accounting for the net warming effects of non-CO2 forcings. While our overall results are consistent with IPCC, we use a more robust methodology, and explain the narrower uncertainty ranges of carbon budgets when non-CO2 forcings are included. We demonstrate that most of the reduction in carbon budgets is a result of the direct warming effect of the non-CO2 forcings, with a secondary contribution from the influence of the non-CO2 forcings on the carbon cycle. Such carbon budgets are expected to play an increasingly important role in climate change mitigation, thus understanding the influence of non-CO2 forcings on these budgets and their uncertainties is critical.

  2. 78 FR 9044 - Adequacy Status of the Motor Vehicle Emission Budgets for Metropolitan Washington DC Area (DC-MD...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... and NO X is effective February 22, 2013. FOR FURTHER INFORMATION CONTACT: Martin Kotsch, U.S...: http://www.epa.gov/otaq/stateresources/transconf/currsips.htm . SUPPLEMENTARY INFORMATION: The word ``budgets'' refers to the motor vehicle emission budgets for VOCs and NO X . The word ``SIP'' in this...

  3. 78 FR 8122 - Adequacy Status of Motor Vehicle Emission Budgets for Transportation Conformity Purposes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... determining whether or not they do conform. Conformity to a SIP means that transportation activities will not... Vehicle Emission Budgets for Transportation Conformity Purposes; Connecticut AGENCY: Environmental... Connecticut State Implementation Plan (SIP) revision are adequate for transportation conformity purposes. The...

  4. Evaluation of multiple emission point facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miltenberger, R.P.; Hull, A.P.; Strachan, S.

    In 1970, the New York State Department of Environmental Conservation (NYSDEC) assumed responsibility for the environmental aspect of the state's regulatory program for by-product, source, and special nuclear material. The major objective of this study was to provide consultation to NYSDEC and the US NRC to assist NYSDEC in determining if broad-based licensed facilities with multiple emission points were in compliance with NYCRR Part 380. Under this contract, BNL would evaluate a multiple emission point facility, identified by NYSDEC, as a case study. The review would be a nonbinding evaluation of the facility to determine likely dispersion characteristics, compliance withmore » specified release limits, and implementation of the ALARA philosophy regarding effluent release practices. From the data collected, guidance as to areas of future investigation and the impact of new federal regulations were to be developed. Reported here is the case study for the University of Rochester, Strong Memorial Medical Center and Riverside Campus.« less

  5. 77 FR 33454 - Adequacy Status: South Carolina: Reasonable Further Progress Plan Motor Vehicle Emissions Budget...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    .... Conformity to a SIP means that transportation activities will not produce new air quality violations, worsen... Carolina: Reasonable Further Progress Plan Motor Vehicle Emissions Budget for Transportation Conformity for... adequate for transportation conformity purposes. The South Carolina portion of the Charlotte bi-state Area...

  6. Regional emission and loss budgets of atmospheric methane (2002-2012)

    NASA Astrophysics Data System (ADS)

    Saeki, T.; Patra, P. K.; Dlugokencky, E. J.; Ishijima, K.; Umezawa, T.; Ito, A.; Aoki, S.; Morimoto, S.; Kort, E. A.; Crotwell, A. M.; Ravi Kumar, K.; Nakazawa, T.

    2015-12-01

    Methane (CH4) plays important roles in atmospheric chemistry and short-term forcing of climate. Clear understanding of atmospheric CH4's budget of emissions and losses is required to aid sustainable development of Earth's future environment. We used an atmospheric chemistry-transport model (JAMSTEC's ACTM) for simulating atmospheric CH4. An inverse modeling system has been developed for estimating CH4 emissions (7 ensemble cases) from 53 land regions for 2002-2012 using measurements at 39 sites. Global net CH4 emissions varied between 505-509 and 524-545 Tg/yr during 2002-2004 and 2010-2012, respectively (ranges based on 6 inversion cases), with a step like increase in 2007 in agreement with atmospheric measurement. The inversion system did not account for interannual variations in radicals reacting with CH4 in atmosphere. Our results suggest that the recent update of EDGAR inventory (version 4.2FT2010) overestimated global total emissions by at least 25 Tg/yr in 2010. Increase in CH4 emission since 2004 originated in the tropical and southern hemisphere regions, with timing consistent with an increase of non-dairy cattle stocks by ~10% in 2012 from 1056 million heads in 2002, leading to ~10 Tg/yr increase in emissions from enteric fermentation. All 7 inversions robustly estimated the interannual variations in emissions, but poorly constrained the seasonal cycle amplitude or phase consistently for all regions due to sparse observational network. Forward simulation results using both the a priori and a posteriori emissions are compared with independent aircraft measurements for validation. By doing that we are able to reject the upper limit (545 Tg/yr) of global total emissions as 14 Tg/yr too high during 2008-2012, which allows us to further conclude that CH4 emission increase rate over the East Asia (China mainly) region was 7-8 Tg/yr between the 2002-2006 and 2008-2012 periods, contrary to 1-17 Tg/yr in the a priori emissions.

  7. Volatile Organic Compound Emissions from Natural Gas Facilities in the Denver-Julesburg Basin, the Uintah Basin and the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Li, X.; Omara, M.; Sullivan, M.; Subramanian, R.; Robinson, A. L.; Presto, A. A.

    2015-12-01

    Natural gas has been widely considered as a "bridge" fuel in the future. Because of the rapid advancement of horizontal drilling and hydraulic fracturing techniques, the production of crude oil and natural gas in US increased dramatically in recent years; and currently natural gas contributes to about 25% of total US energy consumption. Recent studies suggest that shale gas extraction facilities may emit Volatile Organic Compounds (VOCs), which could contribute to the formation of ozone and affect regional air quality, public health and climate change. In this study we visited 37 natural gas facilities in Denver-Julesburg and Uintah Basins from March to May, 2015. VOCs and methane concentrations were measured downwind of individual facilities with our mobile lab. In total 13 VOCs, including benzene and toluene, were measured by a SRI 8610C Gas Chromatograph. Similar measurements will be conducted in the Marcellus Shale in late August 2015. Preliminary results show that VOC emissions from individual shale gas facilities are variable, which suggests that a single VOC profile may not characterize all natural gas production facilities, though there may be some common characteristics. Measured VOC concentrations will be normalized to concurrently-measured methane emissions, and coupled with methane emission rates measured at these facilities, used to obtain VOC emission factors from natural gas production. This presentation will also compare VOC emission rates from the Marcellus shale with that from the Denver-Julesburg and Uintah basins.

  8. Greenhouse gas emissions trading in U.S. States: observations and lessons from the OTC NOx Budget Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Aulisi; Alexander E. Farrell; Jonathan Pershing

    2005-07-01

    A number of U.S. states are considering market-based policies to reduce emissions of greenhouse gases (GHGs). The experience gained from emissions trading for sulfur dioxide and oxides of nitrogen (NOx) offers a useful body of information and data to draw on to design a GHG emissions trading system. This report examines NOx trading under the Ozone Transport Commission (OTC) NOx Budget Program, which resulted principally from the leadership, decisions, and actions by a group of states, ultimately becoming the first multilateral cap-and-trade system for emissions of air pollutants. 72 refs.

  9. 1.5 °C carbon budget dependent on carbon cycle uncertainty and future non-CO2 forcing.

    PubMed

    Mengis, Nadine; Partanen, Antti-Ilari; Jalbert, Jonathan; Matthews, H Damon

    2018-04-11

    Estimates of the 1.5 °C carbon budget vary widely among recent studies, emphasizing the need to better understand and quantify key sources of uncertainty. Here we quantify the impact of carbon cycle uncertainty and non-CO 2 forcing on the 1.5 °C carbon budget in the context of a prescribed 1.5 °C temperature stabilization scenario. We use Bayes theorem to weight members of a perturbed parameter ensemble with varying land and ocean carbon uptake, to derive an estimate for the fossil fuel (FF) carbon budget of 469 PgC since 1850, with a 95% likelihood range of (411,528) PgC. CO 2 emissions from land-use change (LUC) add about 230 PgC. Our best estimate of the total (FF + LUC) carbon budget for 1.5 °C is therefore 699 PgC, which corresponds to about 11 years of current emissions. Non-CO 2 greenhouse gas and aerosol emissions represent equivalent cumulative CO 2 emissions of about 510 PgC and -180 PgC for 1.5 °C, respectively. The increased LUC, high non-CO 2 emissions and decreased aerosols in our scenario, cause the long-term FF carbon budget to decrease following temperature stabilization. In this scenario, negative emissions would be required to compensate not only for the increasing non-CO 2 climate forcing, but also for the declining natural carbon sinks.

  10. Beyond carbon budgets

    NASA Astrophysics Data System (ADS)

    Peters, Glen P.

    2018-06-01

    The remaining carbon budget consistent with limiting warming to 1.5 °C allows 20 more years of current emissions according to one study, but is already exhausted according to another. Both are defensible. We need to move on from a unique carbon budget, and face the nuances.

  11. A High-Speed Continuous Recording High Flow Gas Sampler for Measuring Methane Emissions from Pneumatic Devices at Oil and Natural Gas Production Facilities

    NASA Astrophysics Data System (ADS)

    Ferrara, T.; Howard, T. M.

    2016-12-01

    Studies attempting to reconcile facility level emission estimates of sources at oil and gas facilities with basin wide methane flux measurements have had limited success. Pneumatic devices are commonly used at oil and gas production facilities for process control or liquid pumping. These devices are powered by pressurized natural gas from the well, so they are known methane sources at these sites. Pneumatic devices are estimated to contribute 14% to 25% of the total greenhouse gas emissions (GHG) from production facilities. Measurements of pneumatic devices have shown that malfunctioning or poorly maintained control systems may be emitting significantly more methane than currently estimated. Emission inventories for these facilities use emission factors from EPA that are based on pneumatic device measurements made in the early 1990's. Recent studies of methane emissions from production facilities have attempted to measure emissions from pneumatic devices by several different methods. These methods have had limitations including alteration of the system being measured, the inability to distinguish between leaks and venting during normal operation, or insufficient response time to account of the time based emission events. We have developed a high speed recording high flow sampler that is capable of measuring the transient emissions from pneumatic devices. This sampler is based on the well-established high flow measurement technique used in oil and gas for quantifying component leak rates. In this paper we present the results of extensive laboratory controlled release testing. Additionally, test data from several field studies where this sampler has been used to measure pneumatic device emissions will be presented.

  12. Budget impact from the incorporation of positron emission tomography – computed tomography for staging lung cancers

    PubMed Central

    Biz, Aline Navega; Caetano, Rosângela

    2015-01-01

    OBJECTIVE To estimate the budget impact from the incorporation of positron emission tomography (PET) in mediastinal and distant staging of non-small cell lung cancer. METHODS The estimates were calculated by the epidemiological method for years 2014 to 2018. Nation-wide data were used about the incidence; data on distribution of the disease´s prevalence and on the technologies’ accuracy were from the literature; data regarding involved costs were taken from a micro-costing study and from Brazilian Unified Health System (SUS) database. Two strategies for using PET were analyzed: the offer to all newly-diagnosed patients, and the restricted offer to the ones who had negative results in previous computed tomography (CT) exams. Univariate and extreme scenarios sensitivity analyses were conducted to evaluate the influence from sources of uncertainties in the parameters used. RESULTS The incorporation of PET-CT in SUS would imply the need for additional resources of 158.1 BRL (98.2 USD) million for the restricted offer and 202.7 BRL (125.9 USD) million for the inclusive offer in five years, with a difference of 44.6 BRL (27.7 USD) million between the two offer strategies within that period. In absolute terms, the total budget impact from its incorporation in SUS, in five years, would be 555 BRL (345 USD) and 600 BRL (372.8 USD) million, respectively. The costs from the PET-CT procedure were the most influential parameter in the results. In the most optimistic scenario, the additional budget impact would be reduced to 86.9 BRL (54 USD) and 103.8 BRL (64.5 USD) million, considering PET-CT for negative CT and PET-CT for all, respectively. CONCLUSIONS The incorporation of PET in the clinical staging of non-small cell lung cancer seems to be financially feasible considering the high budget of the Brazilian Ministry of Health. The potential reduction in the number of unnecessary surgeries may cause the available resources to be more efficiently allocated. PMID:26274871

  13. A radiation and energy budget algorithm for forest canopies

    NASA Astrophysics Data System (ADS)

    Tunick, A.

    2006-01-01

    Previously, it was shown that a one-dimensional, physics-based (conservation-law) computer model can provide a useful mathematical representation of the wind flow, temperatures, and turbulence inside and above a uniform forest stand. A key element of this calculation was a radiation and energy budget algorithm (implemented to predict the heat source). However, to keep the earlier publication brief, a full description of the radiation and energy budget algorithm was not given. Hence, this paper presents our equation set for calculating the incoming total radiation at the canopy top as well as the transmission, reflection, absorption, and emission of the solar flux through a forest stand. In addition, example model output is presented from three interesting numerical experiments, which were conducted to simulate the canopy microclimate for a forest stand that borders the Blossom Point Field Test Facility (located near La Plata, Maryland along the Potomac River). It is anticipated that the current numerical study will be useful to researchers and experimental planners who will be collecting acoustic and meteorological data at the Blossom Point Facility in the near future.

  14. Large emissions from floodplain trees close the Amazon methane budget.

    PubMed

    Pangala, Sunitha R; Enrich-Prast, Alex; Basso, Luana S; Peixoto, Roberta Bittencourt; Bastviken, David; Hornibrook, Edward R C; Gatti, Luciana V; Marotta, Humberto; Calazans, Luana Silva Braucks; Sakuragui, Cassia Mônica; Bastos, Wanderley Rodrigues; Malm, Olaf; Gloor, Emanuel; Miller, John Bharat; Gauci, Vincent

    2017-12-14

    Wetlands are the largest global source of atmospheric methane (CH 4 ), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH 4 in the tropics, consistently underestimate the atmospheric burden of CH 4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH 4 emissions. Here we report CH 4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH 4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ 13 C) of -66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH 4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a 'top-down' regional estimate of CH 4 emissions of 42.7 ± 5.6 teragrams of CH 4 a year for the Amazon basin, based on regular vertical lower-troposphere CH 4 profiles covering the period 2010-2013. We find close agreement between our 'top-down' and combined 'bottom-up' estimates, indicating that large CH 4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH 4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH 4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH 4 source when trees are combined with other emission sources.

  15. Large emissions from floodplain trees close the Amazon methane budget

    NASA Astrophysics Data System (ADS)

    Pangala, Sunitha R.; Enrich-Prast, Alex; Basso, Luana S.; Peixoto, Roberta Bittencourt; Bastviken, David; Hornibrook, Edward R. C.; Gatti, Luciana V.; Marotta, Humberto; Calazans, Luana Silva Braucks; Sakuragui, Cassia Mônica; Bastos, Wanderley Rodrigues; Malm, Olaf; Gloor, Emanuel; Miller, John Bharat; Gauci, Vincent

    2017-12-01

    Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ13C) of -66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a ‘top-down’ regional estimate of CH4 emissions of 42.7 ± 5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010-2013. We find close agreement between our ‘top-down’ and combined ‘bottom-up’ estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources.

  16. The global methane budget 2000-2012

    NASA Astrophysics Data System (ADS)

    Saunois, Marielle; Bousquet, Philippe; Poulter, Ben; Peregon, Anna; Ciais, Philippe; Canadell, Josep G.; Dlugokencky, Edward J.; Etiope, Giuseppe; Bastviken, David; Houweling, Sander; Janssens-Maenhout, Greet; Tubiello, Francesco N.; Castaldi, Simona; Jackson, Robert B.; Alexe, Mihai; Arora, Vivek K.; Beerling, David J.; Bergamaschi, Peter; Blake, Donald R.; Brailsford, Gordon; Brovkin, Victor; Bruhwiler, Lori; Crevoisier, Cyril; Crill, Patrick; Covey, Kristofer; Curry, Charles; Frankenberg, Christian; Gedney, Nicola; Höglund-Isaksson, Lena; Ishizawa, Misa; Ito, Akihiko; Joos, Fortunat; Kim, Heon-Sook; Kleinen, Thomas; Krummel, Paul; Lamarque, Jean-François; Langenfelds, Ray; Locatelli, Robin; Machida, Toshinobu; Maksyutov, Shamil; McDonald, Kyle C.; Marshall, Julia; Melton, Joe R.; Morino, Isamu; Naik, Vaishali; O'Doherty, Simon; Parmentier, Frans-Jan W.; Patra, Prabir K.; Peng, Changhui; Peng, Shushi; Peters, Glen P.; Pison, Isabelle; Prigent, Catherine; Prinn, Ronald; Ramonet, Michel; Riley, William J.; Saito, Makoto; Santini, Monia; Schroeder, Ronny; Simpson, Isobel J.; Spahni, Renato; Steele, Paul; Takizawa, Atsushi; Thornton, Brett F.; Tian, Hanqin; Tohjima, Yasunori; Viovy, Nicolas; Voulgarakis, Apostolos; van Weele, Michiel; van der Werf, Guido R.; Weiss, Ray; Wiedinmyer, Christine; Wilton, David J.; Wiltshire, Andy; Worthy, Doug; Wunch, Debra; Xu, Xiyan; Yoshida, Yukio; Zhang, Bowen; Zhang, Zhen; Zhu, Qiuan

    2016-12-01

    The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (˜ biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003-2012 decade, global methane emissions are estimated by top-down inversions at 558 Tg CH4 yr-1, range 540-568. About 60 % of global emissions are anthropogenic (range 50-65 %). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP scenarios

  17. 40 CFR 52.2053 - The Motor Vehicle Emissions Budgets for the Pennsylvania Counties in the Philadelphia-Wilmington...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Nonattainment Area 52.2053 Section 52.2053 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 52.2053 The Motor Vehicle Emissions Budgets for the Pennsylvania Counties in the Philadelphia-Wilmington, PA-NJ-DE 1997 Fine Particulate Matter Nonattainment Area As of April 3, 2013, EPA approves the...

  18. 40 CFR 52.2053 - The Motor Vehicle Emissions Budgets for the Pennsylvania Counties in the Philadelphia-Wilmington...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Nonattainment Area 52.2053 Section 52.2053 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 52.2053 The Motor Vehicle Emissions Budgets for the Pennsylvania Counties in the Philadelphia-Wilmington, PA-NJ-DE 1997 Fine Particulate Matter Nonattainment Area As of April 3, 2013, EPA approves the...

  19. TEMPERATURE SENSITIVITY OF SOIL RESPIRATION AND ITS EFFECTS ON ECOSYSTEM CARBON BUDGET: NONLINEARITY BEGETS SURPRISES. (R827676)

    EPA Science Inventory

    Nonlinearity is a salient feature in all complex systems, and it certainly characterizes biogeochemical cycles in ecosystems across a wide range of scales. Soil carbon emission is a major source of uncertainty in estimating the terrestrial carbon budget at the ecosystem level ...

  20. The Global Methane Budget 2000-2012

    NASA Technical Reports Server (NTRS)

    Saunois, Marielle; Bousquet, Philippe; Poulter, Benjamin; Peregon, Anna; Ciais, Philippe; Canadell, Josep G.; Dlugokencky, Edward J.; Etiope, Giuseppe; Bastviken, David; Houweling, Sander; hide

    2016-01-01

    The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (approximately biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modeling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations).For the 2003-2012 decade, global methane emissions are estimated by top-down inversions at 558 TgCH4 yr(exp -1), range 540-568. About 60 of global emissions are anthropogenic (range 50-65%). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP

  1. Refined global methyl halide budgets with respect to rapeseed (Brassica napus) by life-cycle measurements

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Acdan, J.; Xu, R.; Deventer, M. J.; Rhew, R. C.

    2017-12-01

    A precise quantification of global methyl halide budgets is needed to evaluate the ozone depletion potential of these compounds and to predict future changes of stratospheric ozone. However, the global budgets of methyl halides are not balanced between currently identified and quantified sources and sinks. Our study re-evaluated the methyl bromide budget from global cultivated rapeseed (Brassica napus) through life-cycle flux measurements both in the greenhouse and in the field, yielding a methyl bromide emission rate that scales globally to 1.0 - 1.2 Gg yr-1. While this indicates a globally significant source, it is much smaller than the previously widely cited value of 5 - 6 Gg yr-1(Mead et al., 2008), even taking into account the near tripling of annual global yield of rapeseed since the previous evaluation was conducted. Our study also evaluated the methyl chloride and methyl iodide emission levels from rapeseed, yielding emission rates that scale to 5.4 Gg yr-1 for methyl chloride and 1.8 Gg yr-1 of methyl iodide. The concentrations of the methyl donor SAM (S-adenosyl methionine) and the resultant product SAH (S-Adenosyl-L-homocysteine) were also analyzed to explore their role in biogenic methyl halide formation. Halide gradient incubations showed that the magnitude of methyl halide emissions from rapeseed is highly correlated to soil halide levels, thus raising the concern that the heterogeneity of soil halide contents geographically should be considered when extrapolating to global budget.

  2. Subpart H: National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities

    EPA Pesticide Factsheets

    Subpart H sets a limit on the emission of radionuclides that ensures no member of the public receives an effective dose equivalent of more than 10 mrem/year emissions from Department of Energy (DOE) facilities.

  3. Prescribing behaviour after the introduction of decentralized drug budgets: Is there an association with employer and type of care facility?

    PubMed Central

    Andersson, Karolina; Carlsten, Anders; Hedenrud, Tove

    2009-01-01

    Objective To analyse whether prescribing patterns changed after introduction of drug budgets and whether there is an association between drug prescribing patterns and the type of employer and care facility. Methods Data analysed encompassed information on dispensed medicines, by workplaces, prescribed in the Region Västra Götaland, Sweden, for the years 2003 and 2006. Workplaces (n = 969) were categorized according to type of employer and type of care facility. Five prescribing indicators reflecting goals for cost-containing prescribing in Region Västra Götaland were assessed. Changes over time and differences between different types of employer and care facility were analysed by Mann–Whitney tests. Results In 2003, workplaces with a public employer had a significantly higher adherence to three of the prescribing indicators compared with private practitioners. Two of these differences remained in 2006. In 2003, none of the prescribing indicators differed between primary care and other care facilities. Three years later workplaces in primary care had a significantly higher adherence to three of the prescribing indicators than other care facilities. There was a statistically significant difference in change between 2003 and 2006 between primary care and other care facilities; there were no differences in change between workplaces with public and private employers. Conclusions Adherence to three of the prescribing indicators increased after the introduction of decentralized drug budgets. Workplaces with a public employer showed greater adherence to two of the prescribing indicators than private sector workplaces. PMID:19291589

  4. Methane Emissions from Leak and Loss Audits of Natural Gas Compressor Stations and Storage Facilities.

    PubMed

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2015-07-07

    As part of the Environmental Defense Fund's Barnett Coordinated Campaign, researchers completed leak and loss audits for methane emissions at three natural gas compressor stations and two natural gas storage facilities. Researchers employed microdilution high-volume sampling systems in conjunction with in situ methane analyzers, bag samples, and Fourier transform infrared analyzers for emissions rate quantification. All sites had a combined total methane emissions rate of 94.2 kg/h, yet only 12% of the emissions total resulted from leaks. Methane slip from exhausts represented 44% of the total emissions. Remaining methane emissions were attributed to losses from pneumatic actuators and controls, engine crankcases, compressor packing vents, wet seal vents, and slop tanks. Measured values were compared with those reported in literature. Exhaust methane emissions were lower than emissions factor estimates for engine exhausts, but when combined with crankcase emissions, measured values were 11.4% lower than predicted by AP-42 as applicable to emissions factors for four-stroke, lean-burn engines. Average measured wet seal emissions were 3.5 times higher than GRI values but 14 times lower than those reported by Allen et al. Reciprocating compressor packing vent emissions were 39 times higher than values reported by GRI, but about half of values reported by Allen et al. Though the data set was small, researchers have suggested a method to estimate site-wide emissions factors for those powered by four-stroke, lean-burn engines based on fuel consumption and site throughput.

  5. Human health risk characterization of petroleum coke calcining facility emissions.

    PubMed

    Singh, Davinderjit; Johnson, Giffe T; Harbison, Raymond D

    2015-12-01

    Calcining processes including handling and storage of raw petroleum coke may result in Particulate Matter (PM) and gaseous emissions. Concerns have been raised over the potential association between particulate and aerosol pollution and adverse respiratory health effects including decrements in lung function. This risk characterization evaluated the exposure concentrations of ambient air pollutants including PM10 and gaseous pollutants from a petroleum coke calciner facility. The ambient air pollutant levels were collected through monitors installed at multiple locations in the vicinity of the facility. The measured and modeled particulate levels in ambient air from the calciner facility were compared to standards protective of public health. The results indicated that exposure levels were, on occasions at sites farther from the facility, higher than the public health limit of 150 μg/m(3) 24-h average for PM10. However, the carbon fraction demonstrated that the contribution from the calciner facility was de minimis. Exposure levels of the modeled SO2, CO, NOx and PM10 concentrations were also below public health air quality standards. These results demonstrate that emissions from calcining processes involving petroleum coke, at facilities that are well controlled, are below regulatory standards and are not expected to produce a public health risk. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Site-wide seismic risk model for Savannah River Site nuclear facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eide, S.A.; Shay, R.S.; Durant, W.S.

    1993-09-01

    The 200,000 acre Savannah River Site (SRS) has nearly 30 nuclear facilities spread throughout the site. The safety of each facility has been established in facility-specific safety analysis reports (SARs). Each SAR contains an analysis of risk from seismic events to both on-site workers and the off-site population. Both radiological and chemical releases are considered, and air and water pathways are modeled. Risks to the general public are generally characterized by evaluating exposure to the maximally exposed individual located at the SRS boundary and to the off-site population located within 50 miles. Although the SARs are appropriate methods for studyingmore » individual facility risks, there is a class of accident initiators that can simultaneously affect several of all of the facilities, Examples include seismic events, strong winds or tornados, floods, and loss of off-site electrical power. Overall risk to the off-site population from such initiators is not covered by the individual SARs. In such cases multiple facility radionuclide or chemical releases could occur, and off-site exposure would be greater than that indicated in a single facility SAR. As a step towards an overall site-wide risk model that adequately addresses multiple facility releases, a site-wide seismic model for determining off-site risk has been developed for nuclear facilities at the SRS. Risk from seismic events up to the design basis earthquake (DBE) of 0.2 g (frequency of 2.0E-4/yr) is covered by the model. Present plans include expanding the scope of the model to include other types of initiators that can simultaneously affect multiple facilities.« less

  7. Ethylene Oxide Emissions Standards for Sterilization Facilities: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Learn about the NESHAP for ethylene oxide emissions for sterilization facilities. Find the rule history information, federal register citations, legal authority, and related rules as well as a rule summary.

  8. The Relationship Analysis between Motorcycle Emission and Road Facilities under Heterogeneous Traffic Situation

    NASA Astrophysics Data System (ADS)

    Ramli, M. I.; Hanami, Z. A.; Aly, S. H.; Pasra, M.; Hustim, M.

    2018-04-01

    Motor vehicles have long been a source of pollution in many major cities in the world, including Indonesia. The increasing of the motor vehicle on the road leads to the rising of air pollution that exhausted by the vehicles as consequently. This research is intended to analyze the relationship between motorcycle emission and road facilities for each kind of road facilities in four different arterial road types. This study is quantitative research in which data collection is done directly in 4 types of road such as 2/1 UD, 4/1 UD, 4/2 D, and 6/2 UD in Makassar using motorcycle the Gas Analyzer Portable Measurement System and GPS emission test for speed tracking. The results are the emission tend to increase in road facilities where JS3TB (unsignalized junction) has the highest amount of CO and CO2 emission compared to other types.

  9. Retrieval of Paris CO2 and CO emissions using a boundary layer budget method in the framework of the CO2-MEGAPARIS project

    NASA Astrophysics Data System (ADS)

    Dieudonné, E.; Gibert, F.; Xueref-remy, I. C.; Lopez, M.; Schmidt, M.; Ravetta, F.

    2012-12-01

    The development of anthropogenic activities since the pre-industrial era has greatly increased CO2 concentrations in the atmosphere, very likely causing the observed rise in global temperature. Therefore, accurate estimations of CO2 emission fluxes are very important for climate predictions. At the continental scale, CO2 fluxes can be estimated rather precisely using inverse modeling while tower turbulent flux measurements (eddy-covariance or EC) can provide an estimation of local-scale fluxes. However, this method cannot be applied to monitor urban CO2 emissions due to their large horizontal variability, so that a regional scale approach seems more suited. Unfortunately, at this scale, anthropogenic and biospheric fluxes are mixed, diluted and advected in the atmospheric boundary-layer (ABL) and the balance between these processes is not well known. Yet, independent estimations of CO2 fluxes would be needed to verify existing high resolution emission inventories and assess the efficiency of future mitigation policies. Several experiments dedicated to quantifying CO2 emissions from megacities are ongoing, like the CO2-MEGAPARIS research project [a,b]. In this framework, a network of lidars and in-situ sensors has been set up in Paris region. An original ABL mass budget method is used to infer the properties of advected anthropogenic CO2 and CO emissions from Paris urban area [c]. The method is applied in the center of Paris, at neighboring suburban sites located 20 km away, and at a rural station (100 km downwind). The budget uses ABL depths from elastic lidars, CO2 and CO concentrations from both the ICOS [d] and CO2-MEGAPARIS networks to quantify vertical advection and storage terms in the ABL mass budget. EC measurements are used to monitor biospheric surface fluxes. The budget in Paris provides a direct estimation of the average CO2 and CO fluxes from the city, while the budget at the suburban and rural stations provides an estimation of the advected fluxes

  10. Detecting and Understanding Changing Arctic Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Bruhwiler, L.

    2017-12-01

    Warming in the Arctic has proceeded faster than anyplace on Earth. Our current understanding of biogeochemistry suggests that we can expect feedbacks between climate and carbon in the Arctic. Changes in terrestrial fluxes of carbon can be expected as the Arctic warms, and the vast stores of organic carbon frozen in Arctic soils could be mobilized to the atmosphere, with possible significant impacts on global climate. Quantifying trends in Arctic carbon exchanges is important for policymaking because greater reductions in anthropogenic emissions may be required to meet climate goals. Observations of greenhouse gases in the Arctic and globally have been collected for several decades. Analysis of this data does not currently support significantly changed Arctic emissions of CH4, however it is difficult to detect changes in Arctic emissions because of transport from lower latitudes and large inter-annual variability. Unfortunately, current space-based remote sensing systems have limitations at Arctic latitudes. Modeling systems can help untangle the Arctic budget of greenhouse gases, but they are dependent on underlying prior fluxes, wetland distributions and global anthropogenic emissions. Also, atmospheric transport models may have significant biases and errors. For example, unrealistic near-surface stability can lead to underestimation of emissions in atmospheric inversions. We discuss our current understanding of the Arctic carbon budget from both top-down and bottom-up approaches. We show that current atmospheric inversions agree well on the CH4 budget. On the other hand, bottom-up models vary widely in their predictions of natural emissions, with some models predicting emissions too large to be accommodated by the budget implied by global observations. Large emissions from the shallow Arctic ocean are also inconsistent with atmospheric observations. We also discuss the sensitivity of the current atmospheric network to what is likely small, gradual increases in

  11. Fiscal 1983 Science Budget

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Support for science generally is strong in President Ronald Reagan's fiscal 1983 budget proposal, released last week; agency budgets for the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), however, did not beat inflation.Total federal funding for research and development and related facilities rose 9.6% to $44.3 billion, beating the 7.3% inflation rate estimated for 1982 by the Office of Management and Budget. Obligations for basic research by various departments and agencies also topped inflation. The President proposes federal funding of $5.82 billion in fiscal 1983, compared with $5.35 billion in 1982.

  12. Comparing facility-level methane emission rate estimates at natural gas gathering and boosting stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughn, Timothy L.; Bell, Clay S.; Yacovitch, Tara I.

    Coordinated dual-tracer, aircraft-based, and direct component-level measurements were made at midstream natural gas gathering and boosting stations in the Fayetteville shale (Arkansas, USA). On-site component-level measurements were combined with engineering estimates to generate comprehensive facility-level methane emission rate estimates ('study on-site estimates (SOE)') comparable to tracer and aircraft measurements. Combustion slip (unburned fuel entrained in compressor engine exhaust), which was calculated based on 111 recent measurements of representative compressor engines, accounts for an estimated 75% of cumulative SOEs at gathering stations included in comparisons. Measured methane emissions from regenerator vents on glycol dehydrator units were substantially larger than predicted bymore » modelling software; the contribution of dehydrator regenerator vents to the cumulative SOE would increase from 1% to 10% if based on direct measurements. Concurrent measurements at 14 normally-operating facilities show relative agreement between tracer and SOE, but indicate that tracer measurements estimate lower emissions (regression of tracer to SOE = 0.91 (95% CI = 0.83-0.99), R2 = 0.89). Tracer and SOE 95% confidence intervals overlap at 11/14 facilities. Contemporaneous measurements at six facilities suggest that aircraft measurements estimate higher emissions than SOE. Aircraft and study on-site estimate 95% confidence intervals overlap at 3/6 facilities. The average facility level emission rate (FLER) estimated by tracer measurements in this study is 17-73% higher than a prior national study by Marchese et al.« less

  13. Comparing facility-level methane emission rate estimates at natural gas gathering and boosting stations

    DOE PAGES

    Vaughn, Timothy L.; Bell, Clay S.; Yacovitch, Tara I.; ...

    2017-02-09

    Coordinated dual-tracer, aircraft-based, and direct component-level measurements were made at midstream natural gas gathering and boosting stations in the Fayetteville shale (Arkansas, USA). On-site component-level measurements were combined with engineering estimates to generate comprehensive facility-level methane emission rate estimates ('study on-site estimates (SOE)') comparable to tracer and aircraft measurements. Combustion slip (unburned fuel entrained in compressor engine exhaust), which was calculated based on 111 recent measurements of representative compressor engines, accounts for an estimated 75% of cumulative SOEs at gathering stations included in comparisons. Measured methane emissions from regenerator vents on glycol dehydrator units were substantially larger than predicted bymore » modelling software; the contribution of dehydrator regenerator vents to the cumulative SOE would increase from 1% to 10% if based on direct measurements. Concurrent measurements at 14 normally-operating facilities show relative agreement between tracer and SOE, but indicate that tracer measurements estimate lower emissions (regression of tracer to SOE = 0.91 (95% CI = 0.83-0.99), R2 = 0.89). Tracer and SOE 95% confidence intervals overlap at 11/14 facilities. Contemporaneous measurements at six facilities suggest that aircraft measurements estimate higher emissions than SOE. Aircraft and study on-site estimate 95% confidence intervals overlap at 3/6 facilities. The average facility level emission rate (FLER) estimated by tracer measurements in this study is 17-73% higher than a prior national study by Marchese et al.« less

  14. Community and facility-level engagement in planning and budgeting for the government health sector--a district perspective from Kenya.

    PubMed

    O'Meara, Wendy Prudhomme; Tsofa, Benjamin; Molyneux, Sassy; Goodman, Catherine; McKenzie, F Ellis

    2011-03-01

    Health systems reform processes have increasingly recognized the essential contribution of communities to the success of health programs and development activities in general. Here we examine the experience from Kilifi district in Kenya of implementing annual health sector planning guidelines that included community participation in problem identification, priority setting, and planning. We describe challenges in the implementation of national planning guidelines, how these were met, and how they influenced final plans and budgets. The broad-based community engagement envisaged in the guidelines did not take place due to the delay in roll out of the Ministry of Health-trained community health workers. Instead, community engagement was conducted through facility management committees, though in a minority of facilities, even such committees were not involved. Some overlap was found in the priorities highlighted by facility staff, committee members and national indicators, but there were also many additional issues raised by committee members and not by other groups. The engagement of the community through committees influenced target and priority setting, but the emphasis on national health indicators left many local priorities unaddressed by the final work plans. Moreover, it appears that the final impact on budgets allocated at district and facility level was limited. The experience in Kilifi highlights the feasibility of engaging the community in the health planning process, and the challenges of ensuring that this engagement feeds into consolidated plans and future implementation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Soil greenhouse gas emissions and carbon budgeting in a short-hydroperiod floodplain wetland

    NASA Astrophysics Data System (ADS)

    Batson, Jackie; Noe, Gregory B.; Hupp, Cliff R.; Krauss, Ken W.; Rybicki, Nancy B.; Schenk, Edward R.

    2015-01-01

    Understanding the controls on floodplain carbon (C) cycling is important for assessing greenhouse gas emissions and the potential for C sequestration in river-floodplain ecosystems. We hypothesized that greater hydrologic connectivity would increase C inputs to floodplains that would not only stimulate soil C gas emissions but also sequester more C in soils. In an urban Piedmont river (151 km2 watershed) with a floodplain that is dry most of the year, we quantified soil CO2, CH4, and N2O net emissions along gradients of floodplain hydrologic connectivity, identified controls on soil aerobic and anaerobic respiration, and developed a floodplain soil C budget. Sites were chosen along a longitudinal river gradient and across lateral floodplain geomorphic units (levee, backswamp, and toe slope). CO2 emissions decreased downstream in backswamps and toe slopes and were high on the levees. CH4 and N2O fluxes were near zero; however, CH4 emissions were highest in the backswamp. Annual CO2 emissions correlated negatively with soil water-filled pore space and positively with variables related to drier, coarser soil. Conversely, annual CH4 emissions had the opposite pattern of CO2. Spatial variation in aerobic and anaerobic respiration was thus controlled by oxygen availability but was not related to C inputs from sedimentation or vegetation. The annual mean soil CO2 emission rate was 1091 g C m-2 yr-1, the net sedimentation rate was 111 g C m-2 yr-1, and the vegetation production rate was 240 g C m-2 yr-1, with a soil C balance (loss) of -338 g C m-2 yr-1. This floodplain is losing C likely due to long-term drying from watershed urbanization.

  16. Soil greenhouse gas emissions and carbon budgeting in a short-hydroperiod floodplain wetland

    USGS Publications Warehouse

    Batson, Jackie; Noe, Gregory B.; Hupp, Cliff R.; Krauss, Ken W.; Rybicki, Nancy B.; Schenk, Edward R.

    2015-01-01

    Understanding the controls on floodplain carbon (C) cycling is important for assessing greenhouse gas emissions and the potential for C sequestration in river-floodplain ecosystems. We hypothesized that greater hydrologic connectivity would increase C inputs to floodplains that would not only stimulate soil C gas emissions but also sequester more C in soils. In an urban Piedmont river (151 km2 watershed) with a floodplain that is dry most of the year, we quantified soil CO2, CH4, and N2O net emissions along gradients of floodplain hydrologic connectivity, identified controls on soil aerobic and anaerobic respiration, and developed a floodplain soil C budget. Sites were chosen along a longitudinal river gradient and across lateral floodplain geomorphic units (levee, backswamp, and toe slope). CO2 emissions decreased downstream in backswamps and toe slopes and were high on the levees. CH4 and N2O fluxes were near zero; however, CH4emissions were highest in the backswamp. Annual CO2 emissions correlated negatively with soil water-filled pore space and positively with variables related to drier, coarser soil. Conversely, annual CH4 emissions had the opposite pattern of CO2. Spatial variation in aerobic and anaerobic respiration was thus controlled by oxygen availability but was not related to C inputs from sedimentation or vegetation. The annual mean soil CO2 emission rate was 1091 g C m−2 yr−1, the net sedimentation rate was 111 g C m−2 yr−1, and the vegetation production rate was 240 g C m−2 yr−1, with a soil C balance (loss) of −338 g C m−2 yr−1. This floodplain is losing C likely due to long-term drying from watershed urbanization.

  17. Greenhouse gas budgets of managed European grasslands

    NASA Astrophysics Data System (ADS)

    Ammann, C.; Horváth, L.; Jones, S. K.

    2012-04-01

    Greenhouse gas exchange of grasslands are directly and indirectly related to the respective carbon (C) and nitrogen (N) budget. Within the framework of the NitroEurope project we investigated the greenhouse gas, carbon, and nitrogen budgets of four European grassland systems over several years: Easter Bush (UK), Oensingen intensive and extensive (CH), and Bugac (HU). They span contrasting climatic conditions, management types (grazing, cutting) and intensity. While Easter Bush (pasture) and Oensingen int. (meadow) were intensively managed and received a considerable amount of fertiliser, the unfertilised sites Bugac (pasture) and Oensingen ext. (meadow) depended on atmospheric N input (wet and dry deposition) and biological N fixation. The experimental results of the four sites were also compared to published GHG fluxes of other European grasslands. While the ecosystem CO2 exchange was measured on the field scale with the eddy covariance method, the soil fluxes of the other greenhouse gases CH4 and N2O have been detected generally by means of static chambers (only occasional application of eddy covariance). The emission of CH4 by grazing ruminant resulting from enteric fermentation was estimated by animal type specific emission factors. For characterizing the total GHG effect of the grassland sites, the contributions of the different GHGs were normalised to CO2-equivalents. Except for Oensingen ext., all sites showed positive C budgets (sequestration). The observed positive correlation between C and N sequestration (with a ratio between 10 and 20) agrees with studies reported in the literature. The magnitude of N2O emission depended mainly on management intensity (fertiliser input) and on the soil moisture conditions. Whereas for the Oensingen and the Bugac sites, the total GHG budget was dominated by the carbon budget, for Easter Bush the combined effect of N2O and CH4 emission (including animal enteric fermentation) was in the same order of magnitude as the

  18. Hazardous air pollutant (HAP) emission characterization of sewage treatment facilities in Korea.

    PubMed

    Kang, Kyoung-Hee; Dong, Jong-In

    2010-04-01

    Until recently, nearly all sewage treatment-related regulations and researches have focused on the removal of the conventional and toxic pollutants from liquid effluents. The discharge of toxic compounds to the atmosphere has been implicitly regarded as a way of removal or destruction. During sewage treatment, the fate mechanism of volatilization/stripping, sorption and biotransformation primarily determines the fate of volatile HAPs. The objectives of this study are to investigate the emission characteristics of HAPs, which are generated from the liquid surface of sewage treatment facilities, by using an emission isolation flux chamber. HAP emissions increased at the inlet of the aerobic chamber during summer due to the relatively high atmospheric temperature. The percent ratio of flux for toluene reached its peak in winter, accounting for 33.6-34.2% of the total, but decreased to 25.1-28.6% in summer. In autumn, trichloroethene (TCE) was the highest, recording 17.6-18.1%, with chloroform and toluene showing similar levels. It seems that the ratio of chlorinated hydrocarbons increases in both summer and autumn because the chamber temperature during that time is higher than winter. This study is the initial study to investigate the emission characteristics of volatile HAPs emitted from domestic sewage treatment facilities to the air in Korea. Therefore, the isolation flux chamber will be used as an emission estimations tool to measure HAPs from sewage treatment facilities and may be applied to develop the emission factor and national source inventory of HAPs.

  19. Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Charles G.; Sorensen, Christina M.; Bowyer, Ted W.

    2014-04-01

    The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunitiesmore » to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes.« less

  20. Nimbus 7 earth radiation budget wide field of view climate data set improvement. II - Deconvolution of earth radiation budget products and consideration of 1982-1983 El Nino event

    NASA Technical Reports Server (NTRS)

    Ardanuy, Phillip E.; Hucek, Richard R.; Groveman, Brian S.; Kyle, H. Lee

    1987-01-01

    A deconvolution technique is employed that permits recovery of daily averaged earth radiation budget (ERB) parameters at the top of the atmosphere from a set of the Nimbus 7 ERB wide field of view (WFOV) measurements. Improvements in both the spatial resolution of the resultant fields and in the fidelity of the time averages is obtained. The algorithm is evaluated on a set of months during the period 1980-1983. The albedo, outgoing long-wave radiation, and net radiation parameters are analyzed. The amplitude and phase of the quasi-stationary patterns that appear in the spatially deconvolved fields describe the radiation budget components for 'normal' as well as the El Nino/Southern Oscillation (ENSO) episode years. They delineate the seasonal development of large-scale features inherent in the earth's radiation budget as well as the natural variability of interannual differences. These features are underscored by the powerful emergence of the 1982-1983 ENSO event in the fields displayed. The conclusion is that with this type of resolution enhancement, WFOV radiometers provide a useful tool for the observation of the contemporary climate and its variability.

  1. Global Carbon Budget 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Quere, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre

    Here an accurate assessment of anthropogenic carbon dioxide (CO 2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the global carbon budget – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO 2 emissions from fossil fuels and industry ( E FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change ( E LUC), mainly deforestation, aremore » based on land-cover change data and bookkeeping models. The global atmospheric CO 2 concentration is measured directly and its rate of growth ( G ATM) is computed from the annual changes in concentration. The ocean CO 2 sink ( S OCEAN) and terrestrial CO 2 sink ( S LAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance ( B IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1 σ. For the last decade available (2007–2016), E FF was 9.4 ± 0.5 GtC yr –1, E LUC 1.3 ± 0.7 GtC yr –1, G ATM 4.7 ± 0.1 GtC yr –1, S OCEAN 2.4 ± 0.5 GtC yr –1, and S LAND 3.0 ± 0.8 GtC yr –1, with a budget imbalance B IM of 0.6 GtC yr –1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in E FF was approximately zero and emissions remained at 9.9 ±\\ 0.5 GtC yr –1. Also for 2016, E LUC was 1.3 ± .7 GtC yr –1, G ATM was 6.1 ± 0.2 GtC yr –1, S OCEAN was 2.6 ± 0.5 GtC yr –1, and S LAND was 2.7 ± 1.0 GtC yr –1, with a small B IM of –0.3 GtC. G ATM continued to be higher in 2016 compared to the past

  2. Global Carbon Budget 2017

    DOE PAGES

    Le Quere, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre; ...

    2018-03-12

    Here an accurate assessment of anthropogenic carbon dioxide (CO 2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the global carbon budget – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO 2 emissions from fossil fuels and industry ( E FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change ( E LUC), mainly deforestation, aremore » based on land-cover change data and bookkeeping models. The global atmospheric CO 2 concentration is measured directly and its rate of growth ( G ATM) is computed from the annual changes in concentration. The ocean CO 2 sink ( S OCEAN) and terrestrial CO 2 sink ( S LAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance ( B IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1 σ. For the last decade available (2007–2016), E FF was 9.4 ± 0.5 GtC yr –1, E LUC 1.3 ± 0.7 GtC yr –1, G ATM 4.7 ± 0.1 GtC yr –1, S OCEAN 2.4 ± 0.5 GtC yr –1, and S LAND 3.0 ± 0.8 GtC yr –1, with a budget imbalance B IM of 0.6 GtC yr –1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in E FF was approximately zero and emissions remained at 9.9 ±\\ 0.5 GtC yr –1. Also for 2016, E LUC was 1.3 ± .7 GtC yr –1, G ATM was 6.1 ± 0.2 GtC yr –1, S OCEAN was 2.6 ± 0.5 GtC yr –1, and S LAND was 2.7 ± 1.0 GtC yr –1, with a small B IM of –0.3 GtC. G ATM continued to be higher in 2016 compared to the past

  3. Global Carbon Budget 2017

    NASA Astrophysics Data System (ADS)

    Le Quéré, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre; Sitch, Stephen; Pongratz, Julia; Manning, Andrew C.; Korsbakken, Jan Ivar; Peters, Glen P.; Canadell, Josep G.; Jackson, Robert B.; Boden, Thomas A.; Tans, Pieter P.; Andrews, Oliver D.; Arora, Vivek K.; Bakker, Dorothee C. E.; Barbero, Leticia; Becker, Meike; Betts, Richard A.; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Cosca, Catherine E.; Cross, Jessica; Currie, Kim; Gasser, Thomas; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Houghton, Richard A.; Hunt, Christopher W.; Hurtt, George; Ilyina, Tatiana; Jain, Atul K.; Kato, Etsushi; Kautz, Markus; Keeling, Ralph F.; Klein Goldewijk, Kees; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lima, Ivan; Lombardozzi, Danica; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; Nojiri, Yukihiro; Padin, X. Antonio; Peregon, Anna; Pfeil, Benjamin; Pierrot, Denis; Poulter, Benjamin; Rehder, Gregor; Reimer, Janet; Rödenbeck, Christian; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Tian, Hanqin; Tilbrook, Bronte; Tubiello, Francesco N.; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; van Heuven, Steven; Viovy, Nicolas; Vuichard, Nicolas; Walker, Anthony P.; Watson, Andrew J.; Wiltshire, Andrew J.; Zaehle, Sönke; Zhu, Dan

    2018-03-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the global carbon budget - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007-2016), EFF was 9.4 ± 0.5 GtC yr-1, ELUC 1.3 ± 0.7 GtC yr-1, GATM 4.7 ± 0.1 GtC yr-1, SOCEAN 2.4 ± 0.5 GtC yr-1, and SLAND 3.0 ± 0.8 GtC yr-1, with a budget imbalance BIM of 0.6 GtC yr-1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr-1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr-1, GATM was 6.1 ± 0.2 GtC yr-1, SOCEAN was 2.6 ± 0.5 GtC yr-1, and SLAND was 2.7 ± 1.0 GtC yr-1, with a small BIM of -0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007-2016), reflecting in part the high fossil emissions and the small SLAND

  4. Fuel-Flexible Gas Turbine Combustor Flametube Facility

    NASA Technical Reports Server (NTRS)

    Little, James E.; Nemets, Stephen A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfield, Bruce J.; Manning, Stephen D.; Thompson, William K.

    2004-01-01

    Facility modifications have been completed to an existing combustor flametube facility to enable testing with gaseous hydrogen propellants at the NASA Glenn Research Center. The purpose of the facility is to test a variety of fuel nozzle and flameholder hardware configurations for use in aircraft combustors. Facility capabilities have been expanded to include testing with gaseous hydrogen, along with the existing hydrocarbon-based jet fuel. Modifications have also been made to the facility air supply to provide heated air up to 350 psig, 1100 F, and 3.0 lbm/s. The facility can accommodate a wide variety of flametube and fuel nozzle configurations. Emissions and performance data are obtained via a variety of gas sample probe configurations and emissions measurement equipment.

  5. Scaling isotopic emissions and microbes across a permafrost thaw landscape

    NASA Astrophysics Data System (ADS)

    Varner, R. K.; Palace, M. W.; Saleska, S. R.; Bolduc, B.; Braswell, B. H., Jr.; Crill, P. M.; Chanton, J.; DelGreco, J.; Deng, J.; Frolking, S. E.; Herrick, C.; Hines, M. E.; Li, C.; McArthur, K. J.; McCalley, C. K.; Persson, A.; Roulet, N. T.; Torbick, N.; Tyson, G. W.; Rich, V. I.

    2017-12-01

    High latitude peatlands are a significant source of atmospheric methane. This source is spatially and temporally heterogeneous, resulting in a wide range of emission estimates for the atmospheric budget. Increasing atmospheric temperatures are causing degradation of underlying permafrost, creating changes in surface soil moisture, the surface and sub-surface hydrological patterns, vegetation and microbial communities, but the consequences to rates and magnitudes of methane production and emissions are poorly accounted for in global budgets. We combined field observations, multi-source remote sensing data and biogeochemical modeling to predict methane dynamics, including the fraction derived from hydrogenotrophic versus acetoclastic microbial methanogenesis across Stordalen mire, a heterogeneous discontinuous permafrost wetland located in northernmost Sweden. Using the field measurement validated Wetland-DNDC biogeochemical model, we estimated mire-wide CH4 and del13CH4 production and emissions for 2014 with input from field and unmanned aerial system (UAS) image derived vegetation maps, local climatology and water table from insitu and remotely sensed data. Model simulated methanogenic pathways correlate with sequence-based observations of methanogen community composition in samples collected from across the permafrost thaw landscape. This approach enables us to link below ground microbial community composition with emissions and indicates a potential for scaling across broad areas of the Arctic region.

  6. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam production—source-wide emission limitation. Each owner or operator of a new or existing slabstock...

  7. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam production—source-wide emission limitation. Each owner or operator of a new or existing slabstock...

  8. Proposed National Science Foundation Budget on Target to Double

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-06-01

    The Obama administration's proposed fiscal year (FY) 2010 budget for the U.S. National Science Foundation (NSF) is US$7.05 billion, $555 million (8.5%) above its FY 2009 budget, and is in addition to $3 billion in stimulus funding from the 2009 American Recovery and Reinvestment Act (ARRA). The proposed funding, which represents strong support from the administration for NSF and for science and technology, would put the foundation on track to double its budget between 2006 and 2016 (see Eos, 90(10), 83, 2009; 90(20), 175, 2009; and 90(21), 183, 2009). Agency-wide, the FY 2010 request would increase most appropriations accounts. Research and Related Activities would receive $5.73 billion, up $550.1 million (10.6%) compared with the FY 2009 budget. Education and Human Resources would register a slight rise to $857.8 million, up $12.5 million (1.5%). Major Research Equipment and Facilities Construction ( MREFC) would dip to $117.3 million, down $34.7 million (22.8%). The MREFC account would include $46.3 million for the Advanced Laser Interferometer Gravitational Wave Observatory, $42.8 million for the Atacama Large Millimeter Array (down from $82.3 million), $14.3 million for the Ocean Observatories Initiative (which received $105.9 million in stimulus funding), and $0.95 million for IceCube (down from $11.3 million in its final year of funding).

  9. Lidar Based Emissions Measurement at the Whole Facility Scale: Method and Error Analysis

    USDA-ARS?s Scientific Manuscript database

    Particulate emissions from agricultural sources vary from dust created by operations and animal movement to the fine secondary particulates generated from ammonia and other emitted gases. The development of reliable facility emission data using point sampling methods designed to characterize regiona...

  10. The utility of the historical record in assessing future carbon budgets

    NASA Astrophysics Data System (ADS)

    Millar, R.; Friedlingstein, P.; Allen, M. R.

    2017-12-01

    It has long been known that the cumulative emissions of carbon dioxide (CO2) is the most physically relevant determiner of long-lived anthropogenic climate change, with an approximately linear relationship between CO2-induced global mean surface warming and cumulative emissions. The historical observational record offers a way to constrain the relationship between cumulative carbon dioxide emission and global mean warming using observations to date. Here we show that simple regression analysis indicates that the 1.5°C carbon budget would be exhausted after nearly three decades of current emissions, substantially in excess of many estimates from Earth System Models. However, there are many reasons to be cautious about carbon budget assessments from the historical record alone. Accounting for the uncertainty in non-CO2 radiative forcing using a simple climate model and a standard optimal fingerprinting detection attribution technique gives substantial uncertainty in the contribution of CO2 warming to date, and hence the transient climate response to cumulative emissions. Additionally, the existing balance between CO2 and non-CO2 forcing may change in the future under ambitious mitigation scenarios as non-CO2 emissions become more (or less) important to global mean temperature changes. Natural unforced variability can also have a substantial impact on estimates of remaining carbon budgets. By examining all warmings of a given magnitude in both the historical record and past and future ESM simulations we quantify the impact unforced climate variability may have on estimates of remaining carbon budgets, derived as a function of estimated non-CO2 warming and future emission scenario. In summary, whilst the historical record can act as a useful test of climate models, uncertainties in the response to future cumulative emissions remain large and extrapolations of future carbon budgets from the historical record alone should be treated with caution.

  11. Assessment of Component-level Emission Measurements ...

    EPA Pesticide Factsheets

    Oil and natural gas (ONG) production facilities have the potential to emit a substantial amount of greenhouse gasses, hydrocarbons and hazardous air pollutants into the atmosphere. These emissions come from a wide variety of sources including engine exhaust, combustor gases, atmospheric venting from uncontrolled tanks and leaks. Engine exhaust, combustor gases and atmospheric tank venting are included in the initial estimation of a production facilities cumulative emissions. However, there is a large amount of uncertainty associated with magnitude and composition of leaks at these facilities. In order to understand the environmental impacts of these emissions we must first be able characterize the emission flow rate and chemical composition of these leaks/venting. A number of recent publications regarding emission flow rate measurements of components at ONG production facilities have brought into question the validity of such measurements and the sampling methodology. An accurate methodology for quantifying hydrocarbon leaks/venting is needed to support both emission inventories and environmental compliance. This interim report will summarize recent results from a small leak survey completed at ONG production facilities in Utah to characterize their flow rate and chemical composition using a suite of instruments using a high volume sampler (Bacharach Hi Flow Sampler; Bacharach, Inc.), as well as infrared (IR) cameras, a photoionization detector (PID), a fl

  12. Acoustic emission transducers--development of a facility for traceable out-of-plane displacement calibration.

    PubMed

    Theobald, P D; Esward, T J; Dowson, S P; Preston, R C

    2005-03-01

    Acoustic emission (AE) is a widely used technique that has been employed for the integrity testing of a range of vessels and structures for many years. The last decade has seen advances in signal processing, such that the reliability of AE technology is now being recognised by a wider range of industries. Furthermore, the need for quality control at the manufacturing stage, and requirements of in-service testing, is encouraging the issue of traceable measurements to be addressed. Currently, no independent calibration service for acoustic emission transducers is available within Europe. The UKs National Physical Laboratory (NPL) is undertaking work to develop a measurement facility for the traceable calibration of AE sensors. Such calibrations can contribute to greater acceptance of AE techniques in general, by meeting quality system and other traceability requirements. In this paper the key issues surrounding the development of such a facility are reviewed, including the need to establish repeatable AE sources, select suitable test blocks and to understand the limitations imposed by AE sensors themselves. To provide an absolute measurement of the displacement on the surface of a test block, laser interferometry is employed. In this way the output voltage of an AE sensor can be directly related to the displacement detected at the block surface. A possible calibration methodology is discussed and preliminary calibration results are presented for a commercially available AE sensor, showing its response to longitudinal wave modes.

  13. Net emissions of CH4 and CO2 in Alaska: Implications for the region's greenhouse gas budget

    USGS Publications Warehouse

    Zhuang, Q.; Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Prinn, R.G.; Steudler, P.A.; Felzer, B.S.; Hu, S.

    2007-01-01

    We used a biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to study the net methane (CH4) fluxes between Alaskan ecosystems and the atmosphere. We estimated that the current net emissions of CH4 (emissions minus consumption) from Alaskan soils are ???3 Tg CH 4/yr. Wet tundra ecosystems are responsible for 75% of the region's net emissions, while dry tundra and upland boreal forests are responsible for 50% and 45% of total consumption over the region, respectively. In response to climate change over the 21st century, our simulations indicated that CH 4 emissions from wet soils would be enhanced more than consumption by dry soils of tundra and boreal forests. As a consequence, we projected that net CH4 emissions will almost double by the end of the century in response to high-latitude warming and associated climate changes. When we placed these CH4 emissions in the context of the projected carbon budget (carbon dioxide [CO2] and CH4) for Alaska at the end of the 21st century, we estimated that Alaska will be a net source of greenhouse gases to the atmosphere of 69 Tg CO2 equivalents/yr, that is, a balance between net methane emissions of 131 Tg CO2 equivalents/yr and carbon sequestration of 17 Tg C/yr (62 Tg CO2 equivalents/yr). ?? 2007 by the Ecological Society of America.

  14. Why Linking Budgets to Plans Has Proven Difficult in Higher Education.

    ERIC Educational Resources Information Center

    Schmidtlein, Frank A.

    1990-01-01

    Conclusions from two studies (including a three-year nationwide study of higher education institutional planning) concern types of planning (strategic, program, facility, operational, budget, and issue-specific), and limitations (the limited powers of prediction and the political character of planning and budgeting). Types of budgeting processes…

  15. GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES

    EPA Science Inventory

    This document provides guidance to Superfund remedial project managers, on scene coordinators, facility owners, and potentially responsible parties for conducting an air pathway analysis for landfill gas (LFG) emissions under the Comprehensive Environmental Response, Compensation...

  16. Municipal sludge composting facility emissions -- comparison of wet scrubber and biofiltration control performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzman, M.I.; Gammie, L.A.; Gilbert, P.E.

    1997-12-31

    The Metropolitan District (MDC) Water Pollution Control Plant located in Hartford, Connecticut operates a state-of-the-art composting facility to process municipal sewage sludge. An air emissions test program was performed to determine emission rates of criteria and non-criteria pollutants and to evaluate the performance of two types of emissions/odor control systems (biofiltration and wet scrubbing). The purpose of this report is to further the limited available emissions and control performance data on a municipal sewage sludge composting facility operation. The MDC`s sludge composting facility consists of a Biocell train and a Cure Cell train, each of which can currently receive approximatelymore » 20 wet tons per hour of sludge at 60% of full capacity. The minimum retention time in each train is 10.5 days. Air emissions from the Biocell train are treated by both a biofiltration system and a three-stage wet scrubber system. The biofilter and wet scrubber system operate in parallel, so as to allow direct comparison of performance. Emissions from the Cure Cell train are treated by a single biofiltration system. The wet scrubber system consists of a first stage reducing absorber (ammonia solution), followed by a second stage oxidation absorber (sodium hypochlorite and sulfuric acid), and a final residual scrubber (sodium hydroxide solution). The two biofiltration systems are identically sized at 10,000 square feet surface area and three feet depth. The emissions testing program was designed to obtain simultaneous inlet and outlet data across each control device. The measured pollutants included organo-sulfides, alcohols, aldehydes, ketones, pinenes, terpenes, total reduced sulfur compounds, chlorinated hydrocarbons, sulfuric acid, sodium hydroxide, ammonia, carbon monoxide and volatile organic compounds.« less

  17. 76 FR 8736 - Status of Motor Vehicle Budgets in Submitted State Implementation Plan for Transportation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...EPA is notifying the public that EPA has withdrawn its previous adequacy finding on the 2012 motor vehicle emission budgets (MVEBs) for Connecticut's two 8-hour ozone nonattainment areas. EPA has withdrawn the adequacy finding because Connecticut Department of Environmental Protection (CT DEP) withdrew its 2012 motor vehicle emission budgets from its eight-hour ozone attainment demonstration SIP for both ozone nonattainment areas. As a result of our finding, Connecticut can not use these 2012 motor vehicle emission budgets for future conformity determinations.

  18. Emissions from cold heavy oil production with sands (CHOPS) facilities in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Roscioli, J. R.; Herndon, S. C.; Yacovitch, T. I.; Knighton, W. B.; Zavala-Araiza, D.; Johnson, M. R.; Tyner, D. R.

    2017-12-01

    Cold heavy oil production with sands (CHOPS) is generally characterized as a pump driven oil extraction method producing a mixture of sand, water, and heavy oil to heated liquid storage tanks. In addition to fluids, CHOPS sites also produce solution gas, primarily composed of methane, through the well annulus. Depending on formation and well production characteristics, large volumes of this solution gas are frequently vented to the atmosphere without flaring or conservation. To better understand these emission we present measurements of methane, ethane, propane and aromatic emission rates from CHOPS sites using dual tracer flux ratio methodology. The use of two tracers allowed on-site emission sources to be accurately identified and in one instance indicated that the annular vent was responsible for >75% of emissions at the facility. Overall, a measurement survey of five CHOPS sites finds that the methane emissions are in general significantly under-reported by operators. This under-reporting may arise from uncertainties associated with measured gas-to-oil ratios upon which the reported vent volume is based. Finally, measurements of ethane, propane and aromatics from these facilities indicates surprisingly low non-methane hydrocarbon content.

  19. The oceanic origin of path-independent carbon budgets.

    PubMed

    MacDougall, Andrew H

    2017-09-04

    Virtually all Earth system models (ESM) show a near proportional relationship between cumulative emissions of CO 2 and change in global mean temperature, a relationship which is independent of the emissions pathway taken to reach a cumulative emissions total. The relationship, which has been named the Transient Climate Response to Cumulative CO 2 Emissions (TCRE), gives rise to the concept of a 'carbon budget'. That is, a finite amount of carbon that can be burnt whilst remaining below some chosen global temperature change threshold, such as the 2.0 °C target set by the Paris Agreement. Here we show that the path-independence of TCRE arises from the partitioning ratio of anthropogenic carbon between the ocean and the atmosphere being almost the same as the partitioning ratio of enhanced radiative forcing between the ocean and space. That these ratios are so close in value is a coincidence unique to CO 2 . The simple model used here is underlain by many assumptions and simplifications but does reproduce key aspects of the climate system relevant to the path-independence of carbon budgets. Our results place TCRE and carbon budgets on firm physical foundations and therefore help validate the use of these metrics for climate policy.

  20. Ammonia and hydrogen sulfide emissions from swine production facilities in North America: a meta-analysis.

    PubMed

    Liu, Z; Powers, W; Murphy, J; Maghirang, R

    2014-04-01

    Literature on NH3 and H2S emissions from swine production facilities in North America was reviewed, and a meta-analysis was conducted on measured emissions data from swine houses and manure storage facilities as well as concentration data in the vicinity of swine production facilities. Results from more than 80 studies were compiled with results from the 11 swine sites in the National Air Emissions Monitoring Study (NAEMS). Data across studies were analyzed statistically using the MIXED procedures of SAS. The median emission rates from swine houses across various production stages and manure handling systems were 2.78 and 0.09 kg/yr per pig for NH3 and H2S, respectively. The median emission rates from swine storage facilities were 2.08 and 0.20 kg/yr per pig for NH3 and H2S, respectively. The size of swine farm that may trigger the need to report NH3 emissions under the Emergency Planning and Community Right-to-Know Act (EPCRA) is 3,410 pigs on the basis of the median NH3 emission rate (4.86 kg/yr per pig), but the threshold can be as low as 992 pigs on the basis of the 90th-percentile emission rates (16.71 kg/yr per pig). Swine hoop houses had significantly higher NH3 emission rate (14.80 kg/yr per pig) than other manure-handling systems (P < 0.01), whereas deep-pit houses had the highest H2S emission rate (16.03 kg/yr per pig, P = 0.03). Farrowing houses had the highest H2S emission rate (2.50 kg/yr per pig), followed by gestation houses, and finishing houses had the lowest H2S emission rate (P < 0.01). Regression models for NH3 and H2S emission rates were developed for finishing houses with deep pits, recharge pits, and lagoons. The NH3 emission rates increased with increasing air temperature, but effects of air temperature on H2S emission rates were not significant. The recharge interval of manure pits significantly affected H2S but not NH3 emission rates. The H2S emission rates were also influenced by the size of the operation. Although NH3 and H2S

  1. EVALUATION OF STYRENE EMISSIONS FROM A SHOWER STALL/BATHTUB MANUFACTURING FACILITY

    EPA Science Inventory

    The report gives results of emissions measurements carried out at a representative facility (Eljer Plumbingware in Wilson, NC) that manufactures polyester-resin-reinforced shower stalls and bathtubs by spraying styrene-based resins onto molds in vented, open, spray booths. Styren...

  2. NSF budget clears Senate hurdle

    NASA Astrophysics Data System (ADS)

    Jones, Richard

    At one of the two most important hearings on the National Science Foundation's budget request for FY 1992, held April 24, there was little to suggest that the Senate VA, HUD, and Independent Agencies subcommittee—chaired by Barbara Mikulski (D-Md.)—will make any dramatic changes in the agency's allotment.NSF director Walter Massey reviewed the foundation's budget request, up 17.5% over this year's, but he provoked little discussion about the portions for research and related activities. Mikulski was particularly interested in indirect cost rates and in facility modernization, especially at smaller colleges.

  3. Allocating a 2 °C cumulative carbon budget to countries

    NASA Astrophysics Data System (ADS)

    Gignac, Renaud; Damon Matthews, H.

    2015-07-01

    Recent estimates of the global carbon budget, or allowable cumulative CO2 emissions consistent with a given level of climate warming, have the potential to inform climate mitigation policy discussions aimed at maintaining global temperatures below 2 °C. This raises difficult questions, however, about how best to share this carbon budget amongst nations in a way that both respects the need for a finite cap on total allowable emissions, and also addresses the fundamental disparities amongst nations with respect to their historical and potential future emissions. Here we show how the contraction and convergence (C&C) framework can be applied to the division of a global carbon budget among nations, in a manner that both maintains total emissions below a level consistent with 2 °C, and also adheres to the principle of attaining equal per capita CO2 emissions within the coming decades. We show further that historical differences in responsibility for climate warming can be quantified via a cumulative carbon debt (or credit), which represents the amount by which a given country’s historical emissions have exceeded (or fallen short of) the emissions that would have been consistent with their share of world population over time. This carbon debt/credit calculation enhances the potential utility of C&C, therefore providing a simple method to frame national climate mitigation targets in a way that both accounts for historical responsibility, and also respects the principle of international equity in determining future emissions allowances.

  4. Soil erosion and the global carbon budget.

    PubMed

    Lal, R

    2003-07-01

    Soil erosion is the most widespread form of soil degradation. Land area globally affected by erosion is 1094 million ha (Mha) by water erosion, of which 751 Mha is severely affected, and 549 Mha by wind erosion, of which 296 Mha is severely affected. Whereas the effects of erosion on productivity and non-point source pollution are widely recognized, those on the C dynamics and attendant emission of greenhouse gases (GHGs) are not. Despite its global significance, erosion-induced carbon (C) emission into the atmosphere remains misunderstood and an unquantified component of the global carbon budget. Soil erosion is a four-stage process involving detachment, breakdown, transport/redistribution and deposition of sediments. The soil organic carbon (SOC) pool is influenced during all four stages. Being a selective process, erosion preferentially removes the light organic fraction of a low density of <1.8 Mg/m(3). A combination of mineralization and C export by erosion causes a severe depletion of the SOC pool on eroded compared with uneroded or slightly eroded soils. In addition, the SOC redistributed over the landscape or deposited in depressional sites may be prone to mineralization because of breakdown of aggregates leading to exposure of hitherto encapsulated C to microbial processes among other reasons. Depending on the delivery ratio or the fraction of the sediment delivered to the river system, gross erosion by water may be 75 billion Mg, of which 15-20 billion Mg are transported by the rivers into the aquatic ecosystems and eventually into the ocean. The amount of total C displaced by erosion on the earth, assuming a delivery ratio of 10% and SOC content of 2-3%, may be 4.0-6.0 Pg/year. With 20% emission due to mineralization of the displaced C, erosion-induced emission may be 0.8-1.2 Pg C/year on the earth. Thus, soil erosion has a strong impact on the global C cycle and this component must be considered while assessing the global C budget. Adoption of

  5. 76 FR 40751 - National Environmental Policy Act; Wallops Flight Facility; Site-Wide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ..., and to increase the knowledge of the Earth's upper atmosphere and the near space environment. The... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-062)] National Environmental Policy Act; Wallops Flight Facility; Site- Wide AGENCY: National Aeronautics and Space Administration. ACTION: Notice...

  6. Global carbon budget 2013

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Peters, G. P.; Andres, R. J.; Andrew, R. M.; Boden, T. A.; Ciais, P.; Friedlingstein, P.; Houghton, R. A.; Marland, G.; Moriarty, R.; Sitch, S.; Tans, P.; Arneth, A.; Arvanitis, A.; Bakker, D. C. E.; Bopp, L.; Canadell, J. G.; Chini, L. P.; Doney, S. C.; Harper, A.; Harris, I.; House, J. I.; Jain, A. K.; Jones, S. D.; Kato, E.; Keeling, R. F.; Klein Goldewijk, K.; Körtzinger, A.; Koven, C.; Lefèvre, N.; Maignan, F.; Omar, A.; Ono, T.; Park, G.-H.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Schwinger, J.; Segschneider, J.; Stocker, B. D.; Takahashi, T.; Tilbrook, B.; van Heuven, S.; Viovy, N.; Wanninkhof, R.; Wiltshire, A.; Zaehle, S.

    2014-06-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003-2012), EFF was 8.6 ± 0.4 GtC yr-1, ELUC 0.9 ± 0.5 GtC yr-1, GATM 4.3 ± 0.1 GtC yr-1

  7. Deconvolution and analysis of wide-angle longwave radiation data from Nimbus 6 Earth radiation budget experiment for the first year

    NASA Technical Reports Server (NTRS)

    Bess, T. D.; Green, R. N.; Smith, G. L.

    1980-01-01

    One year of longwave radiation data from July 1975 through June 1976 from the Nimbus 6 satellite Earth radiation budget experiment is analyzed by representing the radiation field by a spherical harmonic expansion. The data are from the wide field of view instrument. Contour maps of the longwave radiation field and spherical harmonic coefficients to degree 12 and order 12 are presented for a 12 month data period.

  8. Becoming a Leader in University Budgeting

    ERIC Educational Resources Information Center

    Varlotta, Lori E.

    2010-01-01

    This chapter explains what senior student affairs officers (SSAOs) and those aspiring to the position should know and do in terms of budgeting to make the transition from division to university leadership. Before SSAOs can help lead any university-wide budget process, particularly ones that unfold amid fiscal decline, they must master divisional…

  9. Global carbon budget 2013

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Peters, G. P.; Andres, R. J.; Andrew, R. M.; Boden, T.; Ciais, P.; Friedlingstein, P.; Houghton, R. A.; Marland, G.; Moriarty, R.; Sitch, S.; Tans, P.; Arneth, A.; Arvanitis, A.; Bakker, D. C. E.; Bopp, L.; Canadell, J. G.; Chini, L. P.; Doney, S. C.; Harper, A.; Harris, I.; House, J. I.; Jain, A. K.; Jones, S. D.; Kato, E.; Keeling, R. F.; Klein Goldewijk, K.; Körtzinger, A.; Koven, C.; Lefèvre, N.; Omar, A.; Ono, T.; Park, G.-H.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Schwinger, J.; Segschneider, J.; Stocker, B. D.; Tilbrook, B.; van Heuven, S.; Viovy, N.; Wanninkhof, R.; Wiltshire, A.; Zaehle, S.; Yue, C.

    2013-11-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe datasets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land-cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of Dynamic Global Vegetation Models. All uncertainties are reported as ± 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003-2012), EFF was 8.6 ± 0.4 GtC yr-1, ELUC 0.8 ± 0.5 GtC yr-1, GATM 4.3 ± 0.1 GtC yr-1, SOCEAN 2.6 ± 0.5 GtC yr-1, and SLAND 2.6 ± 0.8 GtC yr-1. For year 2012 alone, EFF grew to 9.7

  10. The earth radiation budget experiment: Early validation results

    NASA Astrophysics Data System (ADS)

    Smith, G. Louis; Barkstrom, Bruce R.; Harrison, Edwin F.

    The Earth Radiation Budget Experiment (ERBE) consists of radiometers on a dedicated spacecraft in a 57° inclination orbit, which has a precessional period of 2 months, and on two NOAA operational meteorological spacecraft in near polar orbits. The radiometers include scanning narrow field-of-view (FOV) and nadir-looking wide and medium FOV radiometers covering the ranges 0.2 to 5 μm and 5 to 50 μm and a solar monitoring channel. This paper describes the validation procedures and preliminary results. Each of the radiometer channels underwent extensive ground calibration, and the instrument packages include in-flight calibration facilities which, to date, show negligible changes of the instruments in orbit, except for gradual degradation of the suprasil dome of the shortwave wide FOV (about 4% per year). Measurements of the solar constant by the solar monitors, wide FOV, and medium FOV radiometers of two spacecraft agree to a fraction of a percent. Intercomparisons of the wide and medium FOV radiometers with the scanning radiometers show agreement of 1 to 4%. The multiple ERBE satellites are acquiring the first global measurements of regional scale diurnal variations in the Earth's radiation budget. These diurnal variations are verified by comparison with high temporal resolution geostationary satellite data. Other principal investigators of the ERBE Science Team are: R. Cess, SUNY, Stoneybrook; J. Coakley, NCAR; C. Duncan, M. King and A Mecherikunnel, Goddard Space Flight Center, NASA; A. Gruber and A.J. Miller, NOAA; D. Hartmann, U. Washington; F.B. House, Drexel U.; F.O. Huck, Langley Research Center, NASA; G. Hunt, Imperial College, London U.; R. Kandel and A. Berroir, Laboratory of Dynamic Meteorology, Ecole Polytechique; V. Ramanathan, U. Chicago; E. Raschke, U. of Cologne; W.L. Smith, U. of Wisconsin and T.H. Vonder Haar, Colorado State U.

  11. Odor and chemical emissions from dairy and swine facilities: Part 1 - project overview and collection methods

    USDA-ARS?s Scientific Manuscript database

    Livestock facilities have received numerous criticisms due to their emissions of odorous air and chemicals. Hence, there is a significant need for odor emission factors and identification of principle odorous chemicals. Odor emission factors are used as inputs to odor setback models, while chemica...

  12. The North American Carbon Budget Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Hayes, D. J.; Vargas, R.; Alin, S. R.; Conant, R. T.; Hutyra, L.; Jacobson, A. R.; Kurz, W. A.; Liu, S.; McGuire, A. D.; Poulter, B.; Woodall, C. W.

    2016-12-01

    Scientific information quantifying and characterizing the continental-scale carbon budget is necessary for developing national and international policy on climate change. The North American continent (NA) has been considered to be a significant net source of carbon to the atmosphere, with fossil fuel emissions from the U.S., Canada and Mexico far outpacing uptake on land, inland waters and adjacent coastal oceans. As reported in the First State of the Carbon Cycle Report (SOCCR-1), the three countries combined to emit approximately 1.8 billion tons of carbon in 2003, or 27% of the global total fossil fuel inventory. Based on inventory data from various sectors, SOCCR-1 estimated a 500 MtC/yr natural sink that offset about 30% of emissions primarily through forest growth, storage in wood products and sequestration in agricultural soils. Here we present a synthesis of the NA carbon budget for the next report (SOCCR-2) based on updated inventory data and new research over the last decade. After increasing at a rate of 1% per year over the previous 30 years, the combined fossil fuel emissions from the three countries show a decreasing trend over the last decade. The decline is due to the economic recession along with increasing carbon efficiency, and the result is a lower share (20%) of the global total. Synthesizing inventory-based data from forest, agriculture and other sectors over the past decade results in a smaller estimate for terrestrial C uptake (350 MtC/yr, or about 20% of emissions) than SOCCR-1, but excludes potential sinks of highly uncertain magnitude. Estimates from atmospheric and biosphere models suggest stronger sinks on the order of 30 to 50% of emissions, but these vary widely within and across the ensembles. This updated report draws attention to key data gaps in carbon accounting frameworks and uncertainties in modeling approaches, but also highlights integrated approaches for improving our understanding of the NA carbon cycle.

  13. Comparison of facility-level methane emission rates from natural gas production well pads in the Marcellus, Denver-Julesburg, and Uintah Basins

    NASA Astrophysics Data System (ADS)

    Omara, M.; Li, X.; Sullivan, M.; Subramanian, R.; Robinson, A. L.; Presto, A. A.

    2015-12-01

    The boom in shale natural gas (NG) production, brought about by advances in horizontal drilling and hydraulic fracturing, has yielded both economic benefits and concerns about environmental and climate impacts. In particular, leakages of methane from the NG supply chain could substantially increase the carbon footprint of NG, diminishing its potential role as a transition fuel between carbon intensive fossil fuels and renewable energy systems. Recent research has demonstrated significant variability in measured methane emission rates from NG production facilities within a given shale gas basin. This variability often reflect facility-specific differences in NG production capacity, facility age, utilization of emissions capture and control, and/or the level of facility inspection and maintenance. Across NG production basins, these differences in facility-level methane emission rates are likely amplified, especially if significant variability in NG composition and state emissions regulations are present. In this study, we measured methane emission rates from the NG production sector in the Marcellus Shale Basin (Pennsylvania and West Virginia), currently the largest NG production basin in the U.S., and contrast these results with those of the Denver-Julesburg (Colorado) and Uintah (Utah) shale basins. Facility-level methane emission rates were measured at 106 NG production facilities using the dual tracer flux (nitrous oxide and acetylene), Gaussian dispersion simulations, and the OTM 33A techniques. The distribution of facility-level average methane emission rate for each NG basin will be discussed, with emphasis on how variability in NG composition (i.e., ethane-to-methane ratios) and state emissions regulations impact measured methane leak rates. While the focus of this presentation will be on the comparison of methane leak rates among NG basins, the use of three complimentary top-down methane measurement techniques provides a unique opportunity to explore the

  14. Technical Capabilities of the National Vehicle and Fuel Emissions Laboratory (NVFEL)

    EPA Pesticide Factsheets

    National Vehicle and Fuel Emissions Laboratory (NVFEL) is a state-of-the-art test facility that conducts a wide range of emissions testing and analysis for EPA’s motor vehicle, heavy-duty engine, and nonroad engine programs.

  15. Carbon Budgets as a Guide to Deep Decarbonisation

    NASA Astrophysics Data System (ADS)

    Rogelj, J.

    2017-12-01

    Halting global mean temperature rise requires a limit on the cumulative amount of net CO2 disposed of in the atmosphere. Remaining within the limits of such carbon budgets over the 21st century will require a profound transformation of how our societies use and produce energy, crops, and materials. To understand the options available to stay within stringent carbon budget constraints, global transformation pathways are being devised with integrated models of the energy-economy-land system. This presentation will look at how the latest insights of such pathways affect carbon budgets. Estimates of carbon budgets compatible with a given temperature limit depend on the anticipated temperature contribution at peak warming of non-CO2 forcers. Integrated transformation pathways allow to understand the projected extend of these contributions, as well as estimate the maximum conceivable rate of emissions reductions over the coming decades. The latter directly informs the lower end of future cumulative CO2 emissions and can thus provide an estimate for minimum peak warming over the 21st century - a measure which can be compared to the ambitious long-term temperature goal of the UNFCCC Paris Agreement.

  16. Global Carbon Budget 2016

    NASA Technical Reports Server (NTRS)

    Quéré, Corinne Le; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; hide

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere the global carbon budget is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1(sigma), reflecting the current capacity to characterize the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), EFF was 9

  17. Real-time monitoring of emissions from monoethanolamine-based industrial scale carbon capture facilities.

    PubMed

    Zhu, Liang; Schade, Gunnar Wolfgang; Nielsen, Claus Jørgen

    2013-12-17

    We demonstrate the capabilities and properties of using Proton Transfer Reaction time-of-flight mass spectrometry (PTR-ToF-MS) to real-time monitor gaseous emissions from industrial scale amine-based carbon capture processes. The benchmark monoethanolamine (MEA) was used as an example of amines needing to be monitored from carbon capture facilities, and to describe how the measurements may be influenced by potentially interfering species in CO2 absorber stack discharges. On the basis of known or expected emission compositions, we investigated the PTR-ToF-MS MEA response as a function of sample flow humidity, ammonia, and CO2 abundances, and show that all can exhibit interferences, thus making accurate amine measurements difficult. This warrants a proper sample pretreatment, and we show an example using a dilution with bottled zero air of 1:20 to 1:10 to monitor stack gas concentrations at the CO2 Technology Center Mongstad (TCM), Norway. Observed emissions included many expected chemical species, dominantly ammonia and acetaldehyde, but also two new species previously not reported but emitted in significant quantities. With respect to concerns regarding amine emissions, we show that accurate amine quantifications in the presence of water vapor, ammonia, and CO2 become feasible after proper sample dilution, thus making PTR-ToF-MS a viable technique to monitor future carbon capture facility emissions, without conventional laborious sample pretreatment.

  18. 40 CFR 63.5799 - How do I calculate my facility's organic HAP emissions on a tpy basis for purposes of determining...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emissions Factors for Open Molding and Centrifugal Casting § 63.5799 How do I calculate my facility's... new facility that does not have any of the following operations: Open molding, centrifugal casting... existing facilities, do not include any organic HAP emissions where resin or gel coat is applied to an open...

  19. 40 CFR 63.5799 - How do I calculate my facility's organic HAP emissions on a tpy basis for purposes of determining...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emissions Factors for Open Molding and Centrifugal Casting § 63.5799 How do I calculate my facility's... new facility that does not have any of the following operations: Open molding, centrifugal casting... existing facilities, do not include any organic HAP emissions where resin or gel coat is applied to an open...

  20. Integration of the White Sands Complex into a Wide Area Network

    NASA Technical Reports Server (NTRS)

    Boucher, Phillip Larry; Horan, Sheila, B.

    1996-01-01

    The NASA White Sands Complex (WSC) satellite communications facility consists of two main ground stations, an auxiliary ground station, a technical support facility, and a power plant building located on White Sands Missile Range. When constructed, terrestrial communication access to these facilities was limited to copper telephone circuits. There was no local or wide area communications network capability. This project incorporated a baseband local area network (LAN) topology at WSC and connected it to NASA's wide area network using the Program Support Communications Network-Internet (PSCN-I). A campus-style LAN is configured in conformance with the International Standards Organization (ISO) Open Systems Interconnect (ISO) model. Ethernet provides the physical and data link layers. Transmission Control Protocol and Internet Protocol (TCP/IP) are used for the network and transport layers. The session, presentation, and application layers employ commercial software packages. Copper-based Ethernet collision domains are constructed in each of the primary facilities and these are interconnected by routers over optical fiber links. The network and each of its collision domains are shown to meet IEEE technical configuration guidelines. The optical fiber links are analyzed for the optical power budget and bandwidth allocation and are found to provide sufficient margin for this application. Personal computers and work stations attached to the LAN communicate with and apply a wide variety of local and remote administrative software tools. The Internet connection provides wide area network (WAN) electronic access to other NASA centers and the world wide web (WWW). The WSC network reduces and simplifies the administrative workload while providing enhanced and advanced inter-communications capabilities among White Sands Complex departments and with other NASA centers.

  1. Hydrogen Infrastructure Testing and Research Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-04-10

    Learn about the Hydrogen Infrastructure Testing and Research Facility (HITRF), where NREL researchers are working on vehicle and hydrogen infrastructure projects that aim to enable more rapid inclusion of fuel cell and hydrogen technologies in the market to meet consumer and national goals for emissions reduction, performance, and energy security. As part of NREL’s Energy Systems Integration Facility (ESIF), the HITRF is designed for collaboration with a wide range of hydrogen, fuel cell, and transportation stakeholders.

  2. Facility Accounting: Hammering Out a Capital Replacement Budget.

    ERIC Educational Resources Information Center

    Readinger, Jay

    1996-01-01

    Most facility and finance managers cannot adequately handle school infrastructure issues because they lack the tools to describe the problem appropriately. Facility accounting gives managers accurate deferral and projected replacement costs, using nationally recognized life-cycle and cost data. Facility accounting enables proper management of…

  3. Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility

    NASA Technical Reports Server (NTRS)

    Winter, Michael W.; Raiche, George A.; Prabhu, Dinesh K.

    2012-01-01

    Plasma diagnostic measurement campaigns in the NASA Ames Interaction Heating Facility (IHF) have been conducted over the last several years with a view towards characterizing the flow in the arc jet facility by providing data necessary for modeling and simulation. Optical emission spectroscopy has been used in the plenum and in the free jet of the nozzle. Radiation incident over a probe surface has also been measured using radiometry. Plenum measurements have shown distinct radial profiles of temperature over a range of operating conditions. For cases where large amounts of cold air are added radially to the main arc-heated stream, the temperature profiles are higher by as much as 1500 K than the profiles assumed in flow simulations. Optical measurements perpendicular to the flow direction in the free jet showed significant contributions to the molecule emission through inverse pre-dissociation, thus allowing determination of atom number densities from molecular emission. This has been preliminarily demonstrated with the N2 1st Positive System. Despite the use of older rate coefficients, the resulting atom densities are reasonable and surprisingly close to flow predictions.

  4. How Sensitive Is the Carbon Budget Approach to Potential Carbon Cycle Changes?

    NASA Astrophysics Data System (ADS)

    Matthews, D.

    2014-12-01

    The recent development of global Earth-system models, which include dynamic representations of both physical climate and carbon cycle processes, has led to new insights about how the climate responds to human carbon dioxide emissions. Notably, several model analyses have now shown that global temperature responds linearly to cumulative CO2 emissions across a wide range of emissions scenarios. This implies that the timing of CO2 emissions does not affect the overall climate response, and allows a finite global carbon carbon budget to be defined for a given global temperature target. This linear climate response, however, emerges from the interaction of several non-linear processes and feedbacks involving how carbon sinks respond to changes in atmospheric CO2 and climate. In this presentation, I will give an overview of how carbon sinks and carbon cycle feedbacks contribute to the overall linearity of the climate response to cumulative emissions, and will assess how robust this relationship is to a range of possible changes in the carbon cycle, including (a) potential positive carbon cycle feedbacks that are not well represented in the current generation of Earth-system models and (b) negative emission scenarios resulting from possible technological strategies to remove CO2 from the atmosphere.

  5. NOAA seeks healthy budget

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    The small, crowded room of the House side of the U.S. Capitol building belied the large budget of $1,611,991,000 requested for Fiscal Year 1992 by the National Oceanic and Atmospheric Administration. John A. Knauss, Undersecretary for Oceans and Atmosphere, U.S. Department of Commerce, delivered his testimony on February 28 before the House Appropriations Subcommittee on Commerce, Justice, and State, the Judiciary and Related Agencies. He told the subcommittee that the budget “attempts to balance the two goals of maintaining NOAA's position as an important science agency and addressing the serious budget problems that the government continues to face.”Climate and global change, modernization of the National Weather Service, and the Coastal Ocean Science program are NOAA's three ongoing, high-priority initiatives that the budget addresses. Also, three additional initiatives—a NOAA-wide program to improve environmental data management, President Bush's multiagency Coastal America initiative, and a seafood safety program administered jointly by NOAA and the Food and Drug Administration—are addressed.

  6. 77 FR 6571 - Information Collection Request to Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... Office of Management and Budget AGENCY: Coast Guard, DHS. ACTION: Sixty-day notice requesting comments... Information Collection Request (ICR) to the Office of Management and Budget (OMB), Office of Information and... Management Facility (DMF) at the U.S. Department of Transportation (DOT). To avoid duplicate submissions...

  7. 76 FR 52336 - Information Collection Requests to Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ...-0094 and 1625- 0096] Information Collection Requests to Office of Management and Budget AGENCY: Coast... Office of Management and Budget (OMB), Office of Information and Regulatory Affairs (OIRA), requesting... docket number [USCG-2011-0737] to the Docket Management Facility (DMF) at the U.S. Department of...

  8. Global Carbon Budget 2016

    NASA Astrophysics Data System (ADS)

    Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-11-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), EFF was 9

  9. Ambitious U.S. Federal Budget Proposal Strong on Science, Short on Details

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-03-01

    The proposed $3.6 trillion U.S. federal budget for fiscal year (FY) 2010, which the Obama administration released on 26 February, includes significant funding for federal science agencies. The budget also emphasizes the development of a comprehensive energy and climate change plan-including a cap and trade program to reduce greenhouse gas emissions-``to transform our energy supply and slow global warming,'' according to the budget document released by the White House Office of Management and Budget (OMB). However, the 134-page budget document-which also emphasizes a theme of rebuilding environmental and resource agencies-is thin on specifics. Programmatic budget details will be released in April, according to an OMB senior official.

  10. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities.

    PubMed

    Kim, Seungjin; Kang, Seongmin; Lee, Jeongwoo; Lee, Seehyung; Kim, Ki-Hyun; Jeon, Eui-Chan

    2016-10-01

    In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and (12)C content were analyzed; and in particular, CO2 concentration in incineration gases and (12)C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. This study intends to compare greenhouse gas emissions calculated using (12)C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using (12)C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and (12)C content

  11. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  12. 76 FR 52338 - Information Collection Request to Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... Office of Management and Budget AGENCY: Coast Guard, DHS. ACTION: Sixty-day notice requesting comments... Information Collection Request (ICR) to the Office of Management and Budget (OMB), Office of Information and... Coast Guard docket number [USCG-2011-0750] to the Docket Management Facility (DMF) at the U.S...

  13. Institutional Responses to Forced Budget Reductions.

    ERIC Educational Resources Information Center

    Scheidt, Omar H.

    Palomar College (California), the only college in its district, serves a region which is expanding economically in agriculture, light industry, retail, and recreational facilities. Enrollment for fall 1978 was 14,800 with 204 full-time teachers, 166 part-time teachers, and 42 full-time teacher aides. Budget expenditures were $24.8 million for…

  14. The global methane budget 2000–2012

    DOE PAGES

    Saunois, Marielle; Bousquet, Philippe; Poulter, Ben; ...

    2016-12-12

    The global methane (CH 4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH 4 over the past decade. Emissions and concentrations of CH 4 are continuing to increase, making CH 4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH 4 sources that overlap geographically, and from the destruction of CH 4more » by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (~biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations).« less

  15. The global methane budget 2000–2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saunois, Marielle; Bousquet, Philippe; Poulter, Ben

    The global methane (CH 4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH 4 over the past decade. Emissions and concentrations of CH 4 are continuing to increase, making CH 4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH 4 sources that overlap geographically, and from the destruction of CH 4more » by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (~biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations).« less

  16. NASA budget in Congress

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    The House of Representatives has authorized $161.7 million more than President Ronald Reagan proposed for the fiscal 1984 National Aeronautics and Space Administration (NASA) budget. The House NASA authorization bill (H.R. 2065) passed by voice vote on April 26. Five days earlier, the Senate Commerce, Science, and Technology Committee marked up S. 1096, the Senate's NASA authorization bill, and recommended $171.6 million more than the Reagan proposal. The Senate is expected to vote on the bill in mid May, after which time a conference committee will iron out the differences between the House and Senate versions.President Reagan requested a total NASA budget of $7.1065 billion: $5.7085 billion for research and development, $150.5 million for construction of facilities, and $1.2475 billion for research and program management (Eos, February 15, 1983, p. 65).

  17. An audit of the global carbon budget: identifying and reducing sources of uncertainty

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Tans, P. P.; Marland, G.; Stocker, B. D.

    2012-12-01

    Uncertainties in our carbon accounting practices may limit our ability to objectively verify emission reductions on regional scales. Furthermore uncertainties in the global C budget must be reduced to benchmark Earth System Models that incorporate carbon-climate interactions. Here we present an audit of the global C budget where we try to identify sources of uncertainty for major terms in the global C budget. The atmospheric growth rate of CO2 has increased significantly over the last 50 years, while the uncertainty in calculating the global atmospheric growth rate has been reduced from 0.4 ppm/yr to 0.2 ppm/yr (95% confidence). Although we have greatly reduced global CO2 growth rate uncertainties, there remain regions, such as the Southern Hemisphere, Tropics and Arctic, where changes in regional sources/sinks will remain difficult to detect without additional observations. Increases in fossil fuel (FF) emissions are the primary factor driving the increase in global CO2 growth rate; however, our confidence in FF emission estimates has actually gone down. Based on a comparison of multiple estimates, FF emissions have increased from 2.45 ± 0.12 PgC/yr in 1959 to 9.40 ± 0.66 PgC/yr in 2010. Major sources of increasing FF emission uncertainty are increased emissions from emerging economies, such as China and India, as well as subtle differences in accounting practices. Lastly, we evaluate emission estimates from Land Use Change (LUC). Although relative errors in emission estimates from LUC are quite high (2 sigma ~ 50%), LUC emissions have remained fairly constant in recent decades. We evaluate the three commonly used approaches to estimating LUC emissions- Bookkeeping, Satellite Imagery, and Model Simulations- to identify their main sources of error and their ability to detect net emissions from LUC.; Uncertainties in Fossil Fuel Emissions over the last 50 years.

  18. Application of the stepwise focusing method to optimize the cost-effectiveness of genome-wide association studies with limited research budgets for genotyping and phenotyping.

    PubMed

    Ohashi, J; Clark, A G

    2005-05-01

    The recent cataloguing of a large number of SNPs enables us to perform genome-wide association studies for detecting common genetic variants associated with disease. Such studies, however, generally have limited research budgets for genotyping and phenotyping. It is therefore necessary to optimize the study design by determining the most cost-effective numbers of SNPs and individuals to analyze. In this report we applied the stepwise focusing method, with two-stage design, developed by Satagopan et al. (2002) and Saito & Kamatani (2002), to optimize the cost-effectiveness of a genome-wide direct association study using a transmission/disequilibrium test (TDT). The stepwise focusing method consists of two steps: a large number of SNPs are examined in the first focusing step, and then all the SNPs showing a significant P-value are tested again using a larger set of individuals in the second focusing step. In the framework of optimization, the numbers of SNPs and families and the significance levels in the first and second steps were regarded as variables to be considered. Our results showed that the stepwise focusing method achieves a distinct gain of power compared to a conventional method with the same research budget.

  19. Condition of Florida Educational Facilities and Balancing Budgets

    ERIC Educational Resources Information Center

    Jones, Margaret Moore

    2012-01-01

    The purpose of this study was to examine if relationships existed between the condition of instructional facilities within Florida Coastal School District, as measured by the Facilities Condition Index (FCI), and enrollment percentages for special education students, African American students, Caucasian students, and students receiving free and…

  20. Estimating farm-gate ammonia emissions from major animal production systems in China

    NASA Astrophysics Data System (ADS)

    Gao, Zhiling; Ma, Wenqi; Zhu, Gaodi; Roelcke, Marco

    2013-11-01

    Ammonia (NH3) emissions from livestock production in China are an important contributor to the global NH3 budget. In this study, by estimating total nitrogen (N) intake based on herd structures and excreted N, a mass balance model was used to estimate NH3 losses from animal housing and manure storage facilities of dairy cattle, beef cattle, pigs, broiler and layer productions within animal farm gate and their corresponding NH3 emission intensities on the basis of animal products, N and protein in animal products. In 2009, NH3 emissions from pigs, layers, beef and dairy cattle and broiler production systems in China were 1.23, 0.52, 0.24, 0.21 and 0.09 million tons, respectively. The NH3 emission intensities were 26.6 g NH3-N kg-1 of pork, 28.1 g NH3-N kg-1 of layer eggs, 39.4 g NH3-N kg-1 of beef meat, 6.0 g NH3-N kg-1 of dairy milk and 4.6 g NH3-N kg-1 of chicken meat, or 1260 (pigs), 1514 (layers), 1297 (beef), 1107 (dairy) and 123 g NH3-N (broilers) kg-1 N in animal products. Of the sectors of NH3 emission, manure storage facilities and farmyard manure (FYM) in animal housing were the major contributors to the total NH3 emissions except for layers; housing emissions from slurry were also major contributors for dairy and pig production.

  1. Subpart I: National Emission Standards for Radionuclide Emissions From Federal Facilities Other Than Nuclear Regulatory Commission Licensees and Not Covered by Subpart H

    EPA Pesticide Factsheets

    Subpart I limits radionuclide emissions to the ambient air from federal facilities that are not regulated elsewhere. The annual effective dose equivalent (ede) to any individual must not exceed 10 millirem (mrem).

  2. Impact of the Application Technique on Nitrogen Gas Emissions and Nitrogen Budgets in Case of Energy Maize Fertilized with Biogas Residues

    NASA Astrophysics Data System (ADS)

    Andres, Monique; Fränzke, Manuel; Schuster, Carola; Kreuter, Thomas; Augustin, Jürgen

    2014-05-01

    Despite an increasing cultivation of energy maize fertilized with ammonia-rich biogas residues (BR), little is known about the impact of the application technique on gaseous nitrogen (N) losses as well as N budgets, indicative of N use efficiency. To contribute to closing this knowledge gap we conducted a field experiment supplemented by a laboratory incubation study. The field experiment was carried out in Dedelow, located in the Northeastern German Lowlands and characterized by well-drained loamy sand (haplic luvisol). Two treatments with different application technique for BR fertilization - i) trail hoses and ii) injection - were compared to an unfertilized control (0% N). Seventy percent of the applied N-BR was assumed to be plant-available. In 2013, biweekly nitrous oxide (N2O) measurements were conducted during the time period between BR application and maize harvest (18.04.-11.09.2013; 147 days) using non-flow-through non-steady-state chamber measurements. To quantify soil Nmin status, soil samples were taken from 0-30 cm soil depth in the spring (before fertilization) and autumn (after maize harvest). Immediately after BR application, ammonia (NH3) volatilization was measured intensively using the open dynamic chamber Dräger-Tube method. Export of N due to harvest was determined via plant N content (Nharvest). Based on the measured N gas fluxes, N soil and plant parameters, soil N budgets were calculated using a simple difference approach. Values of N output (Nharvest, NN2O_cum and NNH3_cum) are subtracted from N input values (Nfertilizer and Nmin_autumnminus Nmin_spring). In order to correctly interpret N budgets, other N fluxes must be integrated into the budget calculation. Apart from soil-based mobilization and immobilization turnover processes and nitrate leaching, this applies specifically to N2 losses due to denitrification. Therefore, we measured the N2 emissions from laboratory-incubated undisturbed soil cores (250 cm3) by means of the helium

  3. Communal biofuel burning for district heating: Emissions and immissions from medium-sized (0.4 and 1.5 MW) facilities

    NASA Astrophysics Data System (ADS)

    Fachinger, Friederike; Drewnick, Frank; Gieré, Reto; Borrmann, Stephan

    2018-05-01

    Particulate and gaseous emissions of two medium-sized district heating facilities (400 kW, fueled with miscanthus, and 1.5 MW, fueled with wood chips) were characterized for different operational conditions, and compared to previously obtained results for household wood and pellet stoves. SO2 and NOx emission factors (reported in mg MJFuel-1) were found to not only depend on fuel sulfur/nitrogen content, but also on combustion appliance type and efficiency. Emission factors of SO2, NOx, and PM (particulate matter) increased with increasing load. Particle chemical composition did not primarily depend on operational conditions, but varied mostly with combustion appliances, fuel types, and flue gas cleaning technologies. Black carbon content was decreasing with increasing combustion efficiency; chloride content was strongly enhanced when burning miscanthus. Flue gas cleaning using an electrostatic precipitator caused strong reduction not only in total PM, but also in the fraction of refractory and semi-refractory material within emitted PM1. For the impact of facilities on their surroundings (immissions) not only their total emissions are decisive, but also their stack heights. In immission measurements downwind of the two facilities, a plume could only be observed for the 400 kW facility with low (11 m) stack height (1.5 MW facility: 30 m), and measured immissions agreed reasonably well with predicted ones. The impact of these immissions is non-negligible: At a distance of 50 m from the facility, apart from CO2, also plume contributions of NOx, ultrafine particles, PM1, PM10, poly-aromatic hydrocarbons, and sulfate were detected, with enhancements above background values of 2-130%.

  4. Contribution of bioaerosols to the global organic aerosol budget

    NASA Astrophysics Data System (ADS)

    Janssen, R.; Heald, C. L.

    2017-12-01

    Bioaerosols are ubiquitous in the atmosphere and may contribute significantly to cloud condensation and ice nuclei populations, and consequently to formation of clouds and precipitation. However, quantifying the contribution of bioaerosols to the global organic aerosol budget is a challenge, since bioaerosol sources are poorly constrained on the global scale. Previous global estimates of global primary biological aerosol particle (PBAP) emissions, including bacteria, fungal spores and pollen, range from 78-296 Tg/year. Over the past several years, size-resolved measurements of fluorescent biological aerosol particles have been made in tropical, temperate and boreal ecosystems. Besides, single particle mass spectroscopy has been used to quantify bioaerosol concentrations at various locations in the US. We use these observations to develop and evaluate a bioaerosol emission scheme that describes both the biological production of bioaerosols and the meteorological drivers of the emission of these particles into the atmosphere. Then, we implement this scheme in the GEOS-Chem global chemical transport model to estimate the emission, burden and lifetime of bioaerosols. Finally, we evaluate the contribution of bioaerosols to the total organic aerosol budget, which further consists of primary and secondary organic aerosol.

  5. Budgeting Facilities Operation Costs Using the Facilities Operation Model

    DTIC Science & Technology

    2011-06-01

    practices that today’s modern buildings have built into them. Several factors can change from the time the requirement is generated to when actual...information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and...BOS required $4.2 billion.2 In FY2012, it is estimated it will reach $4.6 billion.3 Unlike sustainment and modernization , failure to fund facility

  6. 7 CFR 3402.14 - Budget and budget narrative.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Budget and budget narrative. 3402.14 Section 3402.14... GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Preparation of an Application § 3402.14 Budget and budget narrative. Applicants must prepare the Budget, Form CSREES-2004, and a budget narrative...

  7. A reassessment of the budget of formic and acetic acids in the boundary layer at Dumont d'Urville (coastal Antarctica): The role of penguin emissions on the budget of several oxygenated volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Legrand, Michel; Gros, ValéRie; Preunkert, Susanne; Sarda-EstèVe, Roland; Thierry, Anne-Mathilde; PéPy, Guillaume; Jourdain, B.

    2012-03-01

    Initiated in 1997, the year-round study of formic and acetic acids was maintained until 2011 at the coastal Antarctic site of Dumont d'Urville. The records show that formic and acetic acids are rather abundant in summer with typical mixing ratios of 200 pptv and 700 pptv, respectively. With the aim to constrain their budget, investigations of their potential marine precursors like short-chain alkenes and acetaldehyde were initiated in 2011. Acetic acid levels in December 2010 were four times higher than those observed over summers back to 1997. These unusually high levels were accompanied by unusually high levels of ammonia, and by an enrichment of oxalate in aerosols. These observations suggest that the guano decomposition in the large penguin colonies present at the site was particularly strong under weather conditions encountered in spring 2010 (important snow storms followed by sunny days with mild temperatures). Although being dependent on environmental conditions, this process greatly impacts the local atmospheric budget of acetic acid, acetaldehyde, and acetone during the entire summer season. Present at levels as high as 500 pptv, acetaldehyde may represent the major precursor of acetic acid, alkene-ozone reactions remaining insignificant sources. Far less influenced by penguin emissions, the budget of formic acid remains not fully understood even if alkene-ozone reactions contribute significantly.

  8. Cold season emissions dominate the Arctic tundra methane budget

    NASA Astrophysics Data System (ADS)

    Zona, Donatella; Gioli, Beniamino; Commane, Róisín; Lindaas, Jakob; Wofsy, Steven C.; Miller, Charles E.; Dinardo, Steven J.; Dengel, Sigrid; Sweeney, Colm; Karion, Anna; Chang, Rachel Y.-W.; Henderson, John M.; Murphy, Patrick C.; Goodrich, Jordan P.; Moreaux, Virginie; Liljedahl, Anna; Watts, Jennifer D.; Kimball, John S.; Lipson, David A.; Oechel, Walter C.

    2016-01-01

    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y-1, ∼25% of global emissions from extratropical wetlands, or ∼6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.

  9. Cold season emissions dominate the Arctic tundra methane budget.

    PubMed

    Zona, Donatella; Gioli, Beniamino; Commane, Róisín; Lindaas, Jakob; Wofsy, Steven C; Miller, Charles E; Dinardo, Steven J; Dengel, Sigrid; Sweeney, Colm; Karion, Anna; Chang, Rachel Y-W; Henderson, John M; Murphy, Patrick C; Goodrich, Jordan P; Moreaux, Virginie; Liljedahl, Anna; Watts, Jennifer D; Kimball, John S; Lipson, David A; Oechel, Walter C

    2016-01-05

    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥ 50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y(-1), ∼ 25% of global emissions from extratropical wetlands, or ∼ 6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.

  10. Development of the Vista Methane Emissions Inventory for Southern California: A GIS-Based Approach for Mapping Methane Emissions

    NASA Astrophysics Data System (ADS)

    Carranza, V.; Frausto-Vicencio, I.; Rafiq, T.; Verhulst, K. R.; Hopkins, F. M.; Rao, P.; Duren, R. M.; Miller, C. E.

    2016-12-01

    Atmospheric methane (CH4) is the second most prevalent anthropogenic greenhouse gas. Improved estimates of CH4 emissions from cities is essential for carbon cycle science and climate mitigation efforts. Development of spatially-resolved carbon emissions data sets may offer significant advances in understanding and managing carbon emissions from cities. Urban CH4 emissions in particular require spatially resolved emission maps to help resolve uncertainties in the CH4 budget. This study presents a Geographic Information System (GIS)-based approach to mapping CH4 emissions using locations of infrastructure known to handle and emit methane. We constrain the spatial distribution of sources to the facility level for the major CH4 emitting sources in the South Coast Air Basin. GIS spatial modeling was combined with publicly available datasets to determine the distribution of potential CH4 sources. The datasets were processed and validated to ensure accuracy in the location of individual sources. This information was then used to develop the Vista emissions prior, which is a one-year long, spatially-resolved CH4 emissions estimate. Methane emissions were calculated and spatially allocated to produce 1 km x 1 km gridded CH4 emission map spanning the Los Angeles Basin. In future work, the Vista CH4 emissions prior will be compared with existing, coarser-resolution emissions estimates and will be evaluated in inverse modeling studies using atmospheric observations. The Vista CH4 emissions inventory presents the first detailed spatial maps of CH4 sources and emissions estimates in the Los Angeles Basin and is a critical step towards sectoral attribution of CH4 emissions at local to regional scales.

  11. Cold season emissions dominate the Arctic tundra methane budget

    PubMed Central

    Zona, Donatella; Gioli, Beniamino; Lindaas, Jakob; Wofsy, Steven C.; Miller, Charles E.; Dinardo, Steven J.; Dengel, Sigrid; Sweeney, Colm; Karion, Anna; Chang, Rachel Y.-W.; Henderson, John M.; Murphy, Patrick C.; Goodrich, Jordan P.; Moreaux, Virginie; Liljedahl, Anna; Watts, Jennifer D.; Kimball, John S.; Lipson, David A.; Oechel, Walter C.

    2016-01-01

    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the “zero curtain” period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y−1, ∼25% of global emissions from extratropical wetlands, or ∼6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming. PMID:26699476

  12. Cold season emissions dominate the Arctic tundra methane budget

    DOE PAGES

    Zona, Donatella; Gioli, Beniamino; Commane, Róisín; ...

    2015-12-22

    Arctic terrestrial ecosystems are major global sources of methane (CH 4); hence, it is important to understand the seasonal and climatic controls on CH 4 emissions from these systems. Here, we report year-round CH 4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥ 50% of the annual CH 4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the “zero curtain” period, when subsurface soil temperatures are poised near 0more » °C. The zero curtain may persist longer than the growing season, and CH 4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH 4 derived from aircraft data demonstrate the large spatial extent of late season CH 4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH 4 y –1, ~25% of global emissions from extratropical wetlands, or ~6% of total global wetland methane emissions. Here, the dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH 4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.« less

  13. Global carbon budget 2014

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chini, L. P.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A. K.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peng, S.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2015-05-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each

  14. Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties.

    PubMed

    Hu, Jin-Song; Ji, Heng-Xing; Cao, An-Min; Huang, Zheng-Xi; Zhang, Yang; Wan, Li-Jun; Xia, An-Dong; Yu, Da-Peng; Meng, Xiang-Min; Lee, Shuit-Tong

    2007-08-07

    A facile self-assembly growth route assisted by surfactant has been developed to synthesize tris(8-hydroxyquinoline)aluminium (Alq(3)) nanorods with regular hexagonal shape and good crystallinity, which exhibit field-emission characteristics with a very low turn-on field of ca. 3.1 V microm(-1) and a high field-enhancement factor of ca. 1300.

  15. Estimating air chemical emissions from research activities using stack measurement data.

    PubMed

    Ballinger, Marcel Y; Duchsherer, Cheryl J; Woodruff, Rodger K; Larson, Timothy V

    2013-03-01

    Current methods of estimating air emissions from research and development (R&D) activities use a wide range of release fractions or emission factors with bases ranging from empirical to semi-empirical. Although considered conservative, the uncertainties and confidence levels of the existing methods have not been reported. Chemical emissions were estimated from sampling data taken from four research facilities over 10 years. The approach was to use a Monte Carlo technique to create distributions of annual emission estimates for target compounds detected in source test samples. Distributions were created for each year and building sampled for compounds with sufficient detection frequency to qualify for the analysis. The results using the Monte Carlo technique without applying a filter to remove negative emission values showed almost all distributions spanning zero, and 40% of the distributions having a negative mean. This indicates that emissions are so low as to be indistinguishable from building background. Application of a filter to allow only positive values in the distribution provided a more realistic value for emissions and increased the distribution mean by an average of 16%. Release fractions were calculated by dividing the emission estimates by a building chemical inventory quantity. Two variations were used for this quantity: chemical usage, and chemical usage plus one-half standing inventory. Filters were applied so that only release fraction values from zero to one were included in the resulting distributions. Release fractions had a wide range among chemicals and among data sets for different buildings and/or years for a given chemical. Regressions of release fractions to molecular weight and vapor pressure showed weak correlations. Similarly, regressions of mean emissions to chemical usage, chemical inventory, molecular weight, and vapor pressure also gave weak correlations. These results highlight the difficulties in estimating emissions from R

  16. Impact of Medicare's prospective payment system on hospitals, skilled nursing facilities, and home health agencies: how the Balanced Budget Act of 1997 may have altered service patterns for Medicare providers.

    PubMed

    Kulesher, Robert R

    2006-01-01

    The prospective payment system is one of many changes in reimbursement that has affected the delivery of health care. Originally developed for the payment of inpatient hospital services, it has become a major factor in how all health insurance is reimbursed. The policy implications extend beyond the Medicare program and affect the entire health care delivery system. Initially implemented in 1982 for payments to hospitals, prospective payment system was extended to payments for skilled nursing facility and home health agency services by the Balanced Budget Act of 1997. The intent of the Balanced Budget Act was to bring into balance the federal budget through reductions in spending. The decisions that providers have made to mitigate the impact are a function of ownership type, organizational mission, and current level of Medicare participation. This article summarizes the findings of several initial studies on the Balanced Budget Act's impact and discusses how changes in Medicare reimbursement policy have influenced the delivery of health care for the general public and for Medicare beneficiaries.

  17. Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of 64Cu-Au alloy nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhao, Yongfeng; Sultan, Deborah; Detering, Lisa; Luehmann, Hannah; Liu, Yongjian

    2014-10-01

    Gold nanoparticles have been widely used for oncological applications including diagnosis and therapy. However, the non-specific mononuclear phagocyte system accumulation and potential long-term toxicity have significantly limited clinical translation. One strategy to overcome these shortcomings is to reduce the size of gold nanoparticles to allow renal clearance. Herein, we report the preparation of 64Cu alloyed gold nanoclusters (64CuAuNCs) for in vivo evaluation of pharmacokinetics, systemic clearance, and positron emission tomography (PET) imaging in a mouse prostate cancer model. The facile synthesis in acqueous solution allowed precisely controlled 64Cu incorporation for high radiolabeling specific activity and stability for sensitive and accurate detection. Through surface pegylation with 350 Da polyethylene glycol (PEG), the 64CuAuNCs-PEG350 afforded optimal biodistribution and significant renal and hepatobiliary excretion. PET imaging showed low non-specific tumor uptake, indicating its potential for active targeting of clinically relevant biomarkers in tumor and metastatic organs.Gold nanoparticles have been widely used for oncological applications including diagnosis and therapy. However, the non-specific mononuclear phagocyte system accumulation and potential long-term toxicity have significantly limited clinical translation. One strategy to overcome these shortcomings is to reduce the size of gold nanoparticles to allow renal clearance. Herein, we report the preparation of 64Cu alloyed gold nanoclusters (64CuAuNCs) for in vivo evaluation of pharmacokinetics, systemic clearance, and positron emission tomography (PET) imaging in a mouse prostate cancer model. The facile synthesis in acqueous solution allowed precisely controlled 64Cu incorporation for high radiolabeling specific activity and stability for sensitive and accurate detection. Through surface pegylation with 350 Da polyethylene glycol (PEG), the 64CuAuNCs-PEG350 afforded optimal

  18. Global Carbon Budget 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.

    Accurate assessment of anthropogenic carbon dioxide (CO 2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components,more » alongside methodology and data limitations. CO 2 emissions from fossil fuels and industry ( E FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change ( E LUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth ( G ATM) is computed from the annual changes in concentration. The mean ocean CO 2 sink ( S OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink ( S LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1 σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade

  19. Global Carbon Budget 2016

    DOE PAGES

    Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.; ...

    2016-11-14

    Accurate assessment of anthropogenic carbon dioxide (CO 2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components,more » alongside methodology and data limitations. CO 2 emissions from fossil fuels and industry ( E FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change ( E LUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth ( G ATM) is computed from the annual changes in concentration. The mean ocean CO 2 sink ( S OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink ( S LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1 σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade

  20. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors.

    PubMed

    Townsend, Aaron K; Webber, Michael E

    2012-07-01

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Simulating the carbon, water, energy budgets and greenhouse gas emissions of arctic soils with the ISBA land surface model

    NASA Astrophysics Data System (ADS)

    Morel, Xavier; Decharme, Bertrand; Delire, Christine

    2017-04-01

    Permafrost soils and boreal wetlands represent an important challenge for future climate simulations. Our aim is to be able to correctly represent the most important thermal, hydrologic and carbon cycle related processes in boreal areas with our land surface model ISBA (Masson et al, 2013). This is particularly important since ISBA is part of the CNRM-CM Climate Model (Voldoire et al, 2012), that is used for projections of future climate changes. To achieve this goal, we replaced the one layer original soil carbon module based on the CENTURY model (Parton et al, 1987) by a multi-layer soil carbon module that represents C pools and fluxes (CO2 and CH4), organic matter decomposition, gas diffusion (Khvorostyanov et al., 2008), CH4 ebullition and plant-mediated transport, and cryoturbation (Koven et al., 2009). The carbon budget of the new model is closed. The soil carbon module is tightly coupled to the ISBA energy and water budget module that solves the one-dimensional Fourier law and the mixed-form of the Richards equation explicitly to calculate the time evolution of the soil energy and water budgets (Boone et al., 2000; Decharme et al. 2011). The carbon, energy and water modules are solved using the same vertical discretization. Snowpack processes are represented by a multi-layer snow model (Decharme et al, 2016). We test this new model on a pair of monitoring sites in Greenland, one in a permafrost area (Zackenberg Ecological Research Operations, Jensen et al, 2014) and the other in a region without permafrost (Nuuk Ecological Research Operations, Jensen et al, 2013); both sites are established within the GeoBasis part of the Greenland Ecosystem Monitoring (GEM) program. The site of Chokurdakh, in a permafrost area of Siberia is is our third studied site. We test the model's ability to represent the physical variables (soil temperature and water profiles, snow height), the energy and water fluxes as well as the carbon dioxyde and methane fluxes. We also test the

  2. A facility-wide approach to recreation programming for adults who are severely and profoundly retarded.

    PubMed

    Burch, M R; Reiss, M; Bailey, J S

    1985-01-01

    A facility-wide recreation program was designed and implemented in order to increase staff and client participation in daily leisure activities at an intermediate care facility for severely and profoundly mentally retarded adults. The baseline phase of the study consisted of having recreational materials available during scheduled recreation periods. The treatment was a package program consisting of (1) providing the staff with preplanned materials and activities, (2) assigning staff to specific roles, and (3) monitoring staff and providing feedback by supervisors. The treatment was implemented on the two living units of the Liberty Intermediate Care Facility. Treatment effects were similar on both units. Client participation increased from a baseline average of less than 10% to nearly 50% and staff participation increased from less than 10% to an average of 60% during program implementation.

  3. Observations of Jupiter thermal emission made by the Infrared Telescope Facility and the Galileo NIMS instrument

    NASA Image and Video Library

    1998-03-26

    These observations of Jupiter equator in thermal heat emission were made by NASA Infrared Telescope Facility top panel within hours of the Near-Infrared Mapping Spectrometer NIMS instrument image middle inset and the spectra bottom.

  4. Oakton Community College Annual Budget, Fiscal Year 1998-1999, Community College District 535.

    ERIC Educational Resources Information Center

    Oakton Community Coll., Des Plaines, IL.

    This report provides the annual budget for Oakton (Illinois) Community College's fiscal year 1998-1999. The budget contains a total of $59,751,098 in revenues and $61,697,515 in expenditures, a 5.29% increase. The deficit is due primarily to remodeling and outfitting of facilities at one of the campuses and deployment of a computing system for the…

  5. Computational investigations of low-emission burner facilities for char gas burning in a power boiler

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.

    2016-04-01

    Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).

  6. Photochemical modeling of emissions trading of highly reactive volatile organic compounds in Houston, Texas. 2. Incorporation of chlorine emissions.

    PubMed

    Wang, Linlin; Thompson, Tammy; McDonald-Buller, Elena C; Allen, David T

    2007-04-01

    As part of the State Implementation Plan for attaining the National Ambient Air Quality Standard for ozone, the Texas Commission of Environmental Quality has created a Highly Reactive Volatile Organic Compounds (HRVOC) Emissions Cap and Trade Program for industrial point sources in the Houston/Galveston/Brazoria area. This series of papers examines the potential air quality impacts of this new emission trading program through photochemical modeling of potential trading scenarios; this paper examines the air quality impact of allowing facilities to trade chlorine emission reductions for HRVOC allocations on a reactivity weighted basis. The simulations indicate that trading of anthropogenic chlorine emission reductions for HRVOC allowances at a single facility or between facilities, in general, resulted in improvements in air quality. Decreases in peak 1-h averaged and 8-h averaged ozone concentrations associated with trading chlorine emissions for HRVOC allocations on a Maximum Incremental Reactivity (MIR) basis were up to 0.74 ppb (0.63%) and 0.56 ppb (0.61%), respectively. Air quality metrics based on population exposure decreased by up to 3.3% and 4.1% for 1-h and 8-h averaged concentrations. These changes are small compared to the maximum changes in ozone concentrations due to the VOC emissions from these sources (5-10 ppb for 8-h averages; up to 30 ppb for 1-h averages) and the chlorine emissions from the sources (5-10 ppb for maximum concentrations over wide areas and up to 70 ppb in localized areas). The simulations indicate that the inclusion of chlorine emissions in the trading program is likely to be beneficial to air quality and is unlikely to cause localized increases in ozone concentrations ("hot spots").

  7. Budgeting for Climate Neutrality, Colleges Consider Energy Credits

    ERIC Educational Resources Information Center

    Carlson, Scott

    2008-01-01

    More and more colleges are grappling with issues on budgeting for climate neutrality. Around 40 percent of colleges' greenhouse-gas emissions come from purchased electricity. Through the American College and University Presidents Climate Commitment, which originated in 2007, hundreds of colleges have vowed to buy energy from green sources. In…

  8. Refinement of the nocturnal boundary layer budget method for quantifying agricultural greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Wittebol, Laura A.

    Measuring greenhouse gas (GHG) emissions directly at the farm scale is most relevant to the agricultural sector and has the potential to eliminate some of the uncertainty arising from scaling up from plot or field studies or down from regional or national levels. The stable nighttime atmosphere acts as a chamber within which sequentially-measured GHG concentration profiles determine the flux of GHGs. With the overall goal of refining the nocturnal boundary layer (NBL) budget method to obtain reliable flux estimates at a scale representative of the typical eastern Canadian farm (approximately 1 km2), fluxes of CO2, N2O, and CH4 were measured at two agricultural farms in Eastern Canada. Field sites in 1998 and 2002 were located on an experimental farm adjacent to a suburb southwest of the city of Ottawa, ON, a relatively flat area with corn, hay, and soy as the dominant crops. The field site in 2003 was located in the rural community of Coteau-du-Lac, QC, about 20 km southwest of the island of Montreal, a fairly flat area bordered by the St. Lawrence River to the south, consisting mainly of corn and hay with a mixture of soy and vegetable crops. A good agreement was obtained between the overall mean NBL budget-measured CO2 flux at both sites, near-in-time windy night eddy covariance data and previously published results. The mean NBL-measured N2O flux from all wind directions and farming management was of the same order of magnitude as, but slightly higher than, previously published baseline N2O emissions from agroecosystems. Methane fluxes results were judged to be invalid as they were extremely sensitive to wind direction change. Spatial sampling of CO 2, N2O, and CH4 around the two sites confirmed that [CH4] distribution was particularly sensitive to the nature of the emission source, field conditions, and wind direction. Optimal NBL conditions for measuring GHG fluxes, present approximately 60% of the time in this study, consisted of a very stable boundary layer

  9. Life Sciences Centrifuge Facility assessment

    NASA Technical Reports Server (NTRS)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  10. TOWARD ERROR ANALYSIS OF LARGE-SCALE FOREST CARBON BUDGETS

    EPA Science Inventory

    Quantification of forest carbon sources and sinks is an important part of national inventories of net greenhouse gas emissions. Several such forest carbon budgets have been constructed, but little effort has been made to analyse the sources of error and how these errors propagate...

  11. Framing Climate Goals in Terms of Cumulative CO2-Forcing-Equivalent Emissions

    NASA Astrophysics Data System (ADS)

    Jenkins, S.; Millar, R. J.; Leach, N.; Allen, M. R.

    2018-03-01

    The relationship between cumulative CO2 emissions and CO2-induced warming is determined by the Transient Climate Response to Emissions (TCRE), but total anthropogenic warming also depends on non-CO2 forcing, complicating the interpretation of emissions budgets based on CO2 alone. An alternative is to frame emissions budgets in terms of CO2-forcing-equivalent (CO2-fe) emissions—the CO2 emissions that would yield a given total anthropogenic radiative forcing pathway. Unlike conventional "CO2-equivalent" emissions, these are directly related to warming by the TCRE and need to fall to zero to stabilize warming: hence, CO2-fe emissions generalize the concept of a cumulative carbon budget to multigas scenarios. Cumulative CO2-fe emissions from 1870 to 2015 inclusive are found to be 2,900 ± 600 GtCO2-fe, increasing at a rate of 67 ± 9.5 GtCO2-fe/yr. A TCRE range of 0.8-2.5°C per 1,000 GtC implies a total budget for 0.6°C of additional warming above the present decade of 880-2,750 GtCO2-fe, with 1,290 GtCO2-fe implied by the Coupled Model Intercomparison Project Phase 5 median response, corresponding to 19 years' CO2-fe emissions at the current rate.

  12. UK emissions of the greenhouse gas nitrous oxide

    PubMed Central

    Skiba, U.; Jones, S. K.; Dragosits, U.; Drewer, J.; Fowler, D.; Rees, R. M.; Pappa, V. A.; Cardenas, L.; Chadwick, D.; Yamulki, S.; Manning, A. J.

    2012-01-01

    Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N2O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N2O in many countries and responsible for 75 per cent of UK N2O emissions. Microbial N2O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling. PMID:22451103

  13. 9 CFR 3.78 - 0utdoor housing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facility at that time of year without stress or discomfort, may be kept in outdoor facilities. (b) Shelter... times during the contact. (Approved by the Office of Management and Budget under control number 0579...

  14. 9 CFR 3.78 - 0utdoor housing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... facility at that time of year without stress or discomfort, may be kept in outdoor facilities. (b) Shelter... times during the contact. (Approved by the Office of Management and Budget under control number 0579...

  15. 9 CFR 3.78 - 0utdoor housing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... facility at that time of year without stress or discomfort, may be kept in outdoor facilities. (b) Shelter... times during the contact. (Approved by the Office of Management and Budget under control number 0579...

  16. 9 CFR 3.78 - 0utdoor housing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... facility at that time of year without stress or discomfort, may be kept in outdoor facilities. (b) Shelter... times during the contact. (Approved by the Office of Management and Budget under control number 0579...

  17. 9 CFR 3.78 - 0utdoor housing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... facility at that time of year without stress or discomfort, may be kept in outdoor facilities. (b) Shelter... times during the contact. (Approved by the Office of Management and Budget under control number 0579...

  18. Soil Organic Carbon Redistribution by Water Erosion – The Role of CO2 Emissions for the Carbon Budget

    PubMed Central

    Wang, Xiang; Cammeraat, Erik L. H.; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m−2 yr−1) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m−2. Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems. PMID:24802350

  19. 7 CFR 277.3 - Budgets and budget revision procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Budgets and budget revision procedures. 277.3 Section... OF STATE AGENCIES § 277.3 Budgets and budget revision procedures. The preparation, content, submittal, and revision requirements for the State Food Stamp Program Budget shall be as specified in § 272.2...

  20. Measurement, analysis, and modeling of hydrogen sulfide emissions from a swine facility in North Carolina

    NASA Astrophysics Data System (ADS)

    Blunden, Jessica

    Annual global source contributions of sulfur compounds to the natural atmospheric environment are estimated to be 142 x 106 tons. Although not quantified, volatilization from animal wastes may be an important source of gaseous reduced sulfur compounds. Hydrogen sulfide (H2S) is a colorless gas emitted during decomposition of hog manure that produces an offensive "rotten egg" odor. Once released into the atmosphere, H 2S is oxidized and the eventual byproduct, sulfuric acid, may combine with other atmospheric constituents to form aerosol products such as ammonium bisulfate and ammonium sulfate. In recent years, confined animal feeding operations (CAFOs) have increased in size, resulting in more geographically concentrated areas of animals and, subsequently, animal waste. In North Carolina and across the southeastern United States anaerobic waste treatment lagoons are traditionally used to store and treat hog excreta at commercial hog farms. Currently, no state regulations exist for H2S gaseous emissions from animal production facilities in North Carolina and the amount of H2S being emitted into the atmosphere from these potential sources is widely unknown. In response to the need for data, this research initiative has been undertaken in an effort to quantify emissions of H2S from swine CAFOs. An experimental study was conducted at a commercial swine farm in eastern North Carolina to measure hydrogen sulfide emissions from a hog housing unit utilizing a mechanical fan ventilation system and from an on-site waste storage treatment lagoon. A dynamic flow-through chamber system was employed to make lagoon flux measurements. Semi-continuous measurements were made over a one-year period (2004-2005) for a few days during each of the four predominant seasons in order to assess diurnal and temporal variability in emissions. Fan rpm from the barn was continuously measured and flow rates were calculated in order to accurately assess gaseous emissions from the system

  1. Identifying sources of fugitive emissions in industrial facilities using trajectory statistical methods

    NASA Astrophysics Data System (ADS)

    Brereton, Carol A.; Johnson, Matthew R.

    2012-05-01

    Fugitive pollutant sources from the oil and gas industry are typically quite difficult to find within industrial plants and refineries, yet they are a significant contributor of global greenhouse gas emissions. A novel approach for locating fugitive emission sources using computationally efficient trajectory statistical methods (TSM) has been investigated in detailed proof-of-concept simulations. Four TSMs were examined in a variety of source emissions scenarios developed using transient CFD simulations on the simplified geometry of an actual gas plant: potential source contribution function (PSCF), concentration weighted trajectory (CWT), residence time weighted concentration (RTWC), and quantitative transport bias analysis (QTBA). Quantitative comparisons were made using a correlation measure based on search area from the source(s). PSCF, CWT and RTWC could all distinguish areas near major sources from the surroundings. QTBA successfully located sources in only some cases, even when provided with a large data set. RTWC, given sufficient domain trajectory coverage, distinguished source areas best, but otherwise could produce false source predictions. Using RTWC in conjunction with CWT could overcome this issue as well as reduce sensitivity to noise in the data. The results demonstrate that TSMs are a promising approach for identifying fugitive emissions sources within complex facility geometries.

  2. Science minister unveils reforms to facilities council

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2010-04-01

    The UK's science minister Lord Dray son has announced a series of measures to prevent the Science and Technology Facilities Council (STFC) from being dogged by further financial crises. They include a plan for the STFC's budget for large facilities, such as the Diamond synchrotron and the ISIS neutron-scattering lab, to be allocated and managed separately from its budget for grants. Drayson was forced to review the STFC after the council announced last December that the UK would have to pull out of 25 international science projects because of a £40m shortfall in funding.

  3. Thriving and surviving in home care and skilled nursing facilities under the Balanced Budget Act of 1997.

    PubMed

    Turnbull, G B

    2000-03-01

    The Balanced Budget Act of 1997 (BBA 97) contains the most dramatic changes to the Medicare program since its genesis nearly 35 years ago. To remain financially viable under the cost-cutting measures mandated in this Act, hospitals, home health agencies, skilled nursing facilities, and their employees must have a working knowledge of its contents. In addition, the patients served by these health care providers must have well documented and positive health outcomes, and they must be satisfied with the care and service they receive. Nevertheless, merely understanding the changes mandated by BBA 97 is not sufficient for success; clinicians also must develop innovative solutions to the hurdles the Act erects and quickly integrate them into daily practice. Issues of payment and reimbursement have everything to do with the delivery of today's patient care, regardless of the setting where it is delivered. BBA 97 offers special opportunities to wound, ostomy, and continence care clinicians.

  4. Large-scale budget applications of mathematical programming in the Forest Service

    Treesearch

    Malcolm Kirby

    1978-01-01

    Mathematical programming applications in the Forest Service, U.S. Department of Agriculture, are growing. They are being used for widely varying problems: budgeting, lane use planning, timber transport, road maintenance and timber harvest planning. Large-scale applications are being mace in budgeting. The model that is described can be used by developing economies....

  5. A New Approach in Public Budgeting: Citizens' Budget

    ERIC Educational Resources Information Center

    Bilge, Semih

    2015-01-01

    Change and transformation in the understanding and definition of citizenship has led to the emergence of citizen-oriented public service approach. This approach also raised a new term and concept in the field of public budgeting because of the transformation in the processes of public budgeting: citizens' budget. The citizens' budget which seeks…

  6. Budget boosts overall research but cuts NOAA and USGS funds

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Science in general, and physical sciences in particular, show growth far above projected inflation in President Ronald Reagan's fiscal 1984 budget proposal. Total funding requested for all federal research and development, including facilities, is $47 billion, up 17.2% over fiscal 1983, jumping hurdles over the 5% projected inflation rate. Defense R&D is slated to soar 29% to $30.3 billion, while non-defense R&D would rise 0.4% to $16.7 billion. Table 1 shows the proposed research and development budgets by major departments and agencies.

  7. A nitrogen budget for Denmark; developments between 1990 and 2010, and prospects for the future

    NASA Astrophysics Data System (ADS)

    Hutchings, N. J.; Nielsen, O.-K.; Dalgaard, T.; Mikkelsen, M. H.; Børgesen, C. D.; Thomsen, M.; Ellermann, T.; Højberg, A. L.; Mogensen, L.; Winther, M.

    2014-11-01

    A nitrogen (N) budget for Denmark has been developed for the years 1990 to 2010, describing the inputs and outputs at the national scale and the internal flows between relevant sectors of the economy. Satisfactorily closing the N budgets for some sectors of the economy was not possible, due to missing or contradictory information. The budgets were nevertheless considered sufficiently reliable to quantify the major flows. Agriculture was responsible for the majority of inputs, though fisheries and energy generation also made significant contributions. Agriculture was the main source of N input to the aquatic environment, whereas agriculture, energy generation and transport all contributed to emissions of reactive N gases to the atmosphere. Significant reductions in inputs of reactive N have been achieved during the 20 years, mainly by restricting the use of N for crop production and improving livestock feeding. This reduction has helped reduce nitrate leaching by about half. Measures to limit ammonia emissions from agriculture and mono-nitrogen oxides (NOx) emissions from energy generation and transport, has reduced gaseous emissions of reactive N. Much N flows through the food and feed processing industries and there is a cascade of N through the consumer to solid and liquid waste management systems. The budget was used to frame a discussion of the potential for further reductions in losses of reactive N to the environment. These will include increasing the recycling of N between economic sectors, increasing the need for the assessment of knock-on effects of interventions within the context of the national N cycle.

  8. Greenhouse Gas Emissions from Educational Facilities and the EPA Greenhouse Gas Reporting Rule: Actions You Need to Take Now

    ERIC Educational Resources Information Center

    Wurmbrand, Mitchell M.; Klotz, Thomas C.

    2010-01-01

    On September 22, 2009, The United States Environmental Protection Agency (EPA) issued its final rule on greenhouse gas (GHG) emission reporting. The informational literature that EPA has published to support the rule clearly states that EPA believes the vast majority of smaller GHG-emitting facilities, such as educational facilities, will not be…

  9. 75 FR 39700 - Information Collection Request to Office of Management and Budget; OMB; Control Number: 1625-New

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... Office of Management and Budget; OMB; Control Number: 1625-New AGENCY: Coast Guard, DHS. ACTION: Sixty... of Management and Budget (OMB) requesting an approval for the following collection of information... the following means: (1) Online: http://www.regulations.gov . (2) Mail: Docket Management Facility...

  10. Global Carbon Budget 2015

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Friedlingstein, P.; Peters, G. P.; Andres, R. J.; Boden, T. A.; Houghton, R. A.; House, J. I.; Keeling, R. F.; Tans, P.; Arneth, A.; Bakker, D. C. E.; Barbero, L.; Bopp, L.; Chang, J.; Chevallier, F.; Chini, L. P.; Ciais, P.; Fader, M.; Feely, R. A.; Gkritzalis, T.; Harris, I.; Hauck, J.; Ilyina, T.; Jain, A. K.; Kato, E.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landschützer, P.; Lauvset, S. K.; Lefèvre, N.; Lenton, A.; Lima, I. D.; Metzl, N.; Millero, F.; Munro, D. R.; Murata, A.; Nabel, J. E. M. S.; Nakaoka, S.; Nojiri, Y.; O'Brien, K.; Olsen, A.; Ono, T.; Pérez, F. F.; Pfeil, B.; Pierrot, D.; Poulter, B.; Rehder, G.; Rödenbeck, C.; Saito, S.; Schuster, U.; Schwinger, J.; Séférian, R.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Laan-Luijkx, I. T.; van der Werf, G. R.; van Heuven, S.; Vandemark, D.; Viovy, N.; Wiltshire, A.; Zaehle, S.; Zeng, N.

    2015-12-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global

  11. Global carbon budget 2014

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2014-09-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe datasets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from Land-Use Change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent Dynamic Global Vegetation Models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). We compare the variability and mean land and ocean fluxes to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of

  12. Global carbon budget 2014

    DOE PAGES

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; ...

    2015-05-08

    Accurate assessment of anthropogenic carbon dioxide (CO 2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. COmore » 2 emissions from fossil fuel combustion and cement production ( E FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change ( E LUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth ( G ATM) is computed from the annual changes in concentration. The mean ocean CO 2 sink ( S OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink ( S LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO 2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ;, reflecting the current capacity to characterise the

  13. Global Carbon Budget 2015

    DOE PAGES

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; ...

    2015-12-07

    Accurate assessment of anthropogenic carbon dioxide (CO 2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We also discuss changes compared to previous estimates as well as consistency within and among components, alongside methodologymore » and data limitations. CO 2 emissions from fossil fuels and industry ( E FF) are based on energy statistics and cement production data, while emissions from land-use change ( E LUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth ( G ATM) is computed from the annual changes in concentration. Moreover, the mean ocean CO 2 sink ( S OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink ( S LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO 2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual

  14. Global Carbon Budget 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.

    Accurate assessment of anthropogenic carbon dioxide (CO 2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We also discuss changes compared to previous estimates as well as consistency within and among components, alongside methodologymore » and data limitations. CO 2 emissions from fossil fuels and industry ( E FF) are based on energy statistics and cement production data, while emissions from land-use change ( E LUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth ( G ATM) is computed from the annual changes in concentration. Moreover, the mean ocean CO 2 sink ( S OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink ( S LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO 2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual

  15. Global carbon budget 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.

    Accurate assessment of anthropogenic carbon dioxide (CO 2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. COmore » 2 emissions from fossil fuel combustion and cement production ( E FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change ( E LUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth ( G ATM) is computed from the annual changes in concentration. The mean ocean CO 2 sink ( S OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink ( S LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO 2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ;, reflecting the current capacity to characterise the

  16. Surface radiation budget for climate applications

    NASA Technical Reports Server (NTRS)

    Suttles, J. T. (Editor); Ohring, G. (Editor)

    1986-01-01

    The Surface Radiation Budget (SRB) consists of the upwelling and downwelling radiation fluxes at the surface, separately determined for the broadband shortwave (SW) (0 to 5 micron) and longwave (LW) (greater than 5 microns) spectral regions plus certain key parameters that control these fluxes, specifically, SW albedo, LW emissivity, and surface temperature. The uses and requirements for SRB data, critical assessment of current capabilities for producing these data, and directions for future research are presented.

  17. Making of the NSTX Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Neumeyer; M. Ono; S.M. Kaye

    1999-11-01

    The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.

  18. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam... procedures in paragraphs (c)(1) through (4) of this section, unless a recovery device is used. Slabstock foam...

  19. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam... procedures in paragraphs (c)(1) through (4) of this section, unless a recovery device is used. Slabstock foam...

  20. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam... procedures in paragraphs (c)(1) through (4) of this section, unless a recovery device is used. Slabstock foam...

  1. Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.

    1975-01-01

    The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.

  2. 75 FR 10297 - Information Collection Request to Office of Management and Budget; OMB Control Numbers: 1625-0056

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... Office of Management and Budget; OMB Control Numbers: 1625-0056 AGENCY: Coast Guard, DHS. ACTION: Sixty... of Management and Budget (OMB) requesting an extension of its approval for the following collection... . (2) Mail: Docket Management Facility (DMF) (M-30), U.S. Department of Transportation (DOT), West...

  3. Aircraft-Based Measurements of Point Source Methane Emissions in the Barnett Shale Basin.

    PubMed

    Lavoie, Tegan N; Shepson, Paul B; Cambaliza, Maria O L; Stirm, Brian H; Karion, Anna; Sweeney, Colm; Yacovitch, Tara I; Herndon, Scott C; Lan, Xin; Lyon, David

    2015-07-07

    We report measurements of methane (CH4) emission rates observed at eight different high-emitting point sources in the Barnett Shale, Texas, using aircraft-based methods performed as part of the Barnett Coordinated Campaign. We quantified CH4 emission rates from four gas processing plants, one compressor station, and three landfills during five flights conducted in October 2013. Results are compared to other aircraft- and surface-based measurements of the same facilities, and to estimates based on a national study of gathering and processing facilities emissions and 2013 annual average emissions reported to the U.S. EPA Greenhouse Gas Reporting Program (GHGRP). For the eight sources, CH4 emission measurements from the aircraft-based mass balance approach were a factor of 3.2-5.8 greater than the GHGRP-based estimates. Summed emissions totaled 7022 ± 2000 kg hr(-1), roughly 9% of the entire basin-wide CH4 emissions estimated from regional mass balance flights during the campaign. Emission measurements from five natural gas management facilities were 1.2-4.6 times larger than emissions based on the national study. Results from this study were used to represent "super-emitters" in a newly formulated Barnett Shale Inventory, demonstrating the importance of targeted sampling of "super-emitters" that may be missed by random sampling of a subset of the total.

  4. 7 CFR 277.3 - Budgets and budget revision procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 4 2012-01-01 2012-01-01 false Budgets and budget revision procedures. 277.3 Section 277.3 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE... OF STATE AGENCIES § 277.3 Budgets and budget revision procedures. The preparation, content, submittal...

  5. 7 CFR 277.3 - Budgets and budget revision procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 4 2014-01-01 2014-01-01 false Budgets and budget revision procedures. 277.3 Section 277.3 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE... OF STATE AGENCIES § 277.3 Budgets and budget revision procedures. The preparation, content, submittal...

  6. 7 CFR 277.3 - Budgets and budget revision procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 4 2011-01-01 2011-01-01 false Budgets and budget revision procedures. 277.3 Section 277.3 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE... OF STATE AGENCIES § 277.3 Budgets and budget revision procedures. The preparation, content, submittal...

  7. 7 CFR 277.3 - Budgets and budget revision procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 4 2013-01-01 2013-01-01 false Budgets and budget revision procedures. 277.3 Section 277.3 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE... OF STATE AGENCIES § 277.3 Budgets and budget revision procedures. The preparation, content, submittal...

  8. Primary aerosol and secondary inorganic aerosol budget over the Mediterranean Basin during 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Guth, Jonathan; Marécal, Virginie; Josse, Béatrice; Arteta, Joaquim; Hamer, Paul

    2018-04-01

    In the frame of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx), we analyse the budget of primary aerosols and secondary inorganic aerosols over the Mediterranean Basin during the years 2012 and 2013. To do this, we use two year-long numerical simulations with the chemistry-transport model MOCAGE validated against satellite- and ground-based measurements. The budget is presented on an annual and a monthly basis on a domain covering 29 to 47° N latitude and 10° W to 38° E longitude. The years 2012 and 2013 show similar seasonal variations. The desert dust is the main contributor to the annual aerosol burden in the Mediterranean region with a peak in spring, and sea salt being the second most important contributor. The secondary inorganic aerosols, taken as a whole, contribute a similar level to sea salt. The results show that all of the considered aerosol types, except for sea salt aerosols, experience net export out of our Mediterranean Basin model domain, and thus this area should be considered as a source region for aerosols globally. Our study showed that 11 % of the desert dust, 22.8 to 39.5 % of the carbonaceous aerosols, 35 % of the sulfate and 9 % of the ammonium emitted or produced into the study domain are exported. The main sources of variability for aerosols between 2012 and 2013 are weather-related variations, acting on emissions processes, and the episodic import of aerosols from North American fires. In order to assess the importance of the anthropogenic emissions of the marine and the coastal areas which are central for the economy of the Mediterranean Basin, we made a sensitivity test simulation. This simulation is similar to the reference simulation but with the removal of the international shipping emissions and the anthropogenic emissions over a 50 km wide band inland along the coast. We showed that around 30 % of the emissions of carbonaceous aerosols and 35 to 60 % of the exported carbonaceous aerosols originates from the marine and

  9. Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty

    NASA Astrophysics Data System (ADS)

    Ito, A.; Inatomi, M.

    2012-02-01

    We assessed the global terrestrial budget of methane (CH4) by using a process-based biogeochemical model (VISIT) and inventory data for components of the budget that were not included in the model. Emissions from wetlands, paddy fields, biomass burning, and plants, as well as oxidative consumption by upland soils, were simulated by the model. Emissions from ruminant livestock and termites were evaluated by using an inventory approach. These CH4 flows were estimated for each of the model's 0.5° × 0.5° grid cells from 1901 to 2009, while accounting for atmospheric composition, meteorological factors, and land-use changes. Estimation uncertainties were examined through ensemble simulations using different parameterization schemes and input data (e.g., different wetland maps and emission factors). From 1996 to 2005, the average global terrestrial CH4 budget was estimated on the basis of 1152 simulations, and terrestrial ecosystems were found to be a net source of 308.3 ± 20.7 Tg CH4 yr-1. Wetland and livestock ruminant emissions were the primary sources. The results of our simulations indicate that sources and sinks are distributed highly heterogeneously over the Earth's land surface. Seasonal and interannual variability in the terrestrial budget was also assessed. The trend of increasing net emission from terrestrial sources and its relationship with temperature variability imply that terrestrial CH4 feedbacks will play an increasingly important role as a result of future climatic change.

  10. 76 FR 5817 - Collection of Information Under Review by Office of Management and Budget: OMB Control Number...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... Review by Office of Management and Budget: OMB Control Number: 1625-0008 AGENCY: Coast Guard, DHS. ACTION..., Office of Management and Budget (OMB), Office of Information and Regulatory Affairs (OIRA), requesting... by Coast Guard docket number [USCG-2010-0978] to the Docket Management Facility (DMF) at the U.S...

  11. 76 FR 27074 - Collection of Information Under Review by Office of Management and Budget; OMB Control Number...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... Review by Office of Management and Budget; OMB Control Number: 1625-0106 AGENCY: Coast Guard, DHS. ACTION... Office of Management and Budget (OMB), Office of Information and Regulatory Affairs (OIRA), requesting...-0087] to the Docket Management Facility (DMF) at the U.S. Department of Transportation (DOT) and/or to...

  12. 76 FR 8764 - Collection of Information Under Review by Office of Management and Budget: OMB Control Number...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... Review by Office of Management and Budget: OMB Control Number: 1625-0073 AGENCY: Coast Guard, DHS. ACTION..., Office of Management and Budget (OMB), Office of Information and Regulatory Affairs (OIRA), requesting an... comments identified by Coast Guard docket number [USCG-2010-0981] to the Docket Management Facility (DMF...

  13. 76 FR 27071 - Collection of Information Under Review by Office of Management and Budget; OMB Control Number...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... Review by Office of Management and Budget; OMB Control Number: 1625-0003 AGENCY: Coast Guard, DHS. ACTION... Office of Management and Budget (OMB), Office of Information and Regulatory Affairs (OIRA), requesting... the Docket Management Facility (DMF) at the U.S. Department of Transportation (DOT) and/or to OIRA. To...

  14. Source apportionment of stack emissions from research and development facilities using positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Ballinger, Marcel Y.; Larson, Timothy V.

    2014-12-01

    Research and development (R&D) facility emissions are difficult to characterize due to their variable processes, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compound (VOC) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified between 9 and 11 source-related factors contributing to stack emissions, depending on the building. Similar factors between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions; other factors had similar profiles for two or more buildings but not all four. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit.

  15. GLOBAL METHANE EMISSIONS FROM MINOR ANTHROPOGENIC SOURCES AND BIOFUEL COMBUSTION IN RESIDENTIAL STOVES (JOURNAL)

    EPA Science Inventory

    Most global methane (CH4) budgets have failed to include emissions from a diverse group of minor anthropogenic sources. Individually, these minor sources emit small quantities of CH4, but collectively, their contributions to the budget may be significant. In this paper, CH4 emiss...

  16. Development of a 350ppm community carbon budget in Eugene, Oregon

    NASA Astrophysics Data System (ADS)

    Rice, A. L.; McRae, M.

    2016-12-01

    In the absence of national greenhouse gas emissions regulations, cities and county agencies across the United States have pursued a patchwork of emissions reduction targets and approaches to achieve those targeted goals. Some regions currently aim to meet efforts in mitigation with ambitious reduction targets that go beyond those pursued at national or international levels (e.g., UNFCCC, Paris, 2015). In 2014 The City of Eugene (Oregon, USA) City Council passed the Climate Recovery Ordinance which, in addition to outlining City emissions targets for 2020 and 2030, requested a proposal to adopt a community greenhouse gas reduction target consistent with achieving a global atmospheric carbon dioxide concentration of 350ppm by the year 2100. A 350ppm 2100 target, if achieved, could keep global average temperature rise to within 1°C by century-end but would necessarily limit cumulative fossil fuel carbon emissions to 500GtC (currently 375GtC). In contrast to historically-based approaches to greenhouse gas mitigation targets typically established by cities, the request of a community target based on a 350ppm target required the development of new methods by the City of Eugene. Collaborating with a Thriving Earth Exchange (TEX) scientist and working with a peer review team of regional analysts, the City of Eugene City Manager's Office produced a report which described a methodology for establishing a 350ppm community carbon budget and led a multi-session dialog with Eugene City Council members on possible action towards this goal. Here, we describe the methods developed and the collaborative effort which made it possible. The work led to the recent Eugene City Council adoption of an ambitious community-wide greenhouse gas emission reduction goal of 7.6% per year, consistent with global emissions reductions needed to achieve an atmospheric carbon dioxide concentration 350ppm by 2100.

  17. Evaluation of renewable energy alternatives for highway maintenance facilities.

    DOT National Transportation Integrated Search

    2013-12-01

    A considerable annual energy budget is used for heating, lighting, cooling and operating ODOT : maintenance facilities. Such facilities contain vehicle repair and garage bays, which are large open : spaces with high heating demand in winter. The main...

  18. Capital Improvements Programming: A Proposal for a Revised Process to Develop the Annual Capital Budget for the Orleans Parish School Board. Revised.

    ERIC Educational Resources Information Center

    Ducote, Kenneth J.

    A study by the United States General Accounting Office found that successful organizations incorporate in their capital budgeting process extensive links between planning and budgeting, up-to-date information on existing capital facilities, and consideration of long-term effects in making capital budgeting decisions. This paper recommends the…

  19. Under Secretary of Defense (Comptroller) > Budget Materials > Budget1998

    Science.gov Websites

    (Comptroller) Under Secretary of Defense (Comptroller) Home About OUSD(C) OUSD(C) Top Leaders OUSD(C) Org Chart functionalStatements OUSD(C) History FMR Budget Materials Budget Execution Financial Management Improving Financial Closure Program (C-1) PDF icon Excel icon Links to Budget Materials Budget Execution Flexibilities

  20. Effect of exhaust emissions on carbon monoxide levels in employees working at indoor car wash facilities

    PubMed Central

    Topacoglu, H; Katsakoglou, S; Ipekci, A

    2014-01-01

    Background: Exhaust emissions from motor vehicles threaten the environment and human health. Carbon monoxide (CO) poisoning, especially the use of exhaust gas CO in suicidal attempts is well known in the literature. Recently, indoor car wash facilities established in large shopping malls with closed parking, lots is a new risk area that exposes car wash employees to prolonged periods of high level CO emissions from cars. The aim of this study was to investigate how carboxyhemoglobin (COHb) blood levels of employees get affected in confined areas with relatively poor air circulation. Methods: Twenty male volunteers working in indoor parking car wash facilities were included in the study. Participants were informed about the aim of this study and their consent was obtained. Their pulse COHb levels were measured twice, at the beginning and at the end of the working day using Rad-57 pulse CO-oximeter device, allowing non-invasive measurement of COHb blood levels to compare the changes in their COHb levels before and after work. Results: The mean age of the male volunteers was 29.8 ± 11.9 (range 18-55). While the mean COHb levels measured at the start of the working day was 2.1 ± 2.0 (range 0-9), it was increased to 5.2 ± 3.3 (range 1-15) at the end of work shift (Wilcoxon test, p <0.001). There was a statistically significant difference in COHb levels between the beginning and the end of the work shift in smoker subjects, while the difference was not significant in the non-smoking group (Wilcoxon test, p=0.001, p=0.102, respectively). Conclusion: The COHb blood levels of indoor car wash facility employees is directly impacted and gets elevated by motor vechile exhaust emissions. For the health of the employees at indoor parking car wash facilities, stricter precautions are needed and the government should not give permit to such operations. PMID:25125950

  1. Mechanisms Controlling Annual, Interannual, and Decadal Changes in California's Carbon Budget

    NASA Astrophysics Data System (ADS)

    Goulden, M. L.; Jin, Y.; Randerson, J. T.; Trumbore, S.; Hsueh, D.; Fellows, A.; Anderson, R.; McMillan, A.; Roberts, D.; Riley, W.; Dennison, P.

    2006-12-01

    We used remote sensing-based measurements of land-surface properties, in-situ measurements of land- atmosphere exchange, mechanistic models of biogeochemistry and atmospheric transport, and previously compiled data sets of fossil fuel use, agricultural yield, land use, and biomass to better understand California's Carbon budget. Key findings include: (1) California's NPP in the early 2000s (190 x 1012 gC y-1) was roughly double its fossil fuel emission (95 x 1012 gC y-1). Since ecosystem carbon storage is typically less than half NPP, California's net C budget was dominated by fossil fuel emissions. (2) Fluctuations in ecosystem NEP caused by climate variability (18 x 1012 gC y-1) were the dominant cause of interannual carbon cycle variability. Fluctuations in fossil fuel consumption caused by the business cycle (8 x 1012 gC y-1) and fluctuations associated with wildland fire (3 x 1012 gC y-1) were smaller. (3) Approximately 50% of California's fossil fuel emissions are advected to the south or west; only 50% of California's fossil fuel emissions are transported east, creating a challenge for efforts to use longitudinal CO2 gradients to constrain North America's carbon budget. (4) Alternative spectral indices based on visible greenness (VARI or VIG) or that include information on short-wave IR absorption (NDWI, NDII7 or RSR) were more tightly correlated with LAI, live fuel moisture, and whole ecosystem CO2 flux than more commonly used near-IR-based indices (NDVI, EVI). (5) Unmanaged forests, especially in the Sierra Nevada Mountains, have lost carbon over the last 70 years as a result of the selective mortality of large trees. This mortality was likely caused by episodic insect outbreaks, which may have been exacerbated by stand thickening associated with fire suppression.

  2. Methane correction factors for estimating emissions from aerobic wastewater treatment facilities based on field data in Mexico and on literature review.

    PubMed

    Noyola, A; Paredes, M G; Güereca, L P; Molina, L T; Zavala, M

    2018-10-15

    Wastewater treatment (WWT) may be an important source of methane (CH 4 ), a greenhouse gas with significant global warming potential. Sources of CH 4 emissions from WWT facilities can be found in the water and in the sludge process lines. Among the methodologies for estimating CH 4 emissions inventories from WWT, the more adopted are the guidelines of the Intergovernmental Panel on Climate Change (IPCC), which recommends default emission factors (Tier 1) depending on WWT systems. Recent published results show that well managed treatment facilities may emit CH 4 , due to dissolved CH 4 in the influent wastewater; in addition, biological nutrient removal also will produce this gas in the anaerobic (or anoxic) steps. However, none of these elements is considered in the current IPCC guidelines. The aim of this work is to propose modified (and new) methane correction factors (MCF) regarding the current Tier 1 IPCC guidelines for CH 4 emissions from aerobic treatment systems, with and without anaerobic sludge digesters, focusing on intertropical countries. The modifications are supported on in situ assessment of fugitive CH 4 emissions in two facilities in Mexico and on relevant literature data. In the case of well-managed centralized aerobic treatment plant, a MCF of 0.06 (instead of the current 0.0) is proposed, considering that the assumption of a CH 4 -neutral treatment facility, as established in the IPCC methodology, is not supported. Similarly, a MCF of 0.08 is proposed for biological nutrient removal processes, being a new entry in the guidelines. Finally, a one-step straightforward calculation is proposed for centralized aerobic treatment plants with anaerobic digesters that avoids confusion when selecting the appropriate default MCF based on the Tier 1 IPCC guidelines. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Analysis of the uncertainty associated with national fossil fuel CO2 emissions datasets for use in the global Fossil Fuel Data Assimilation System (FFDAS) and carbon budgets

    NASA Astrophysics Data System (ADS)

    Song, Y.; Gurney, K. R.; Rayner, P. J.; Asefi-Najafabady, S.

    2012-12-01

    specific sectors required by FFDAS. Our results indicated that although the harmonization performed by Macknick generates better agreement among datasets, significant differences remain at national total level. For example, the CO2 emission span for most countries range from 10% to 12%; BP is generally the highest of the four datasets while IEA is typically the lowest; The US and China had the highest absolute span values but lower percentage span values compared to other countries. However, the US and China make up nearly one-half of the total global absolute span quantity. The absolute span value for the summation of national differences approaches 1 GtC/year in 2007, almost one-half of the biological "missing sink". The span value is used as a potential bias in a recalculation of global and regional carbon budgets to highlight the importance of fossil fuel CO2 emissions in calculating the missing sink. We conclude that if the harmonized span represents potential bias, calculations of the missing sink through forward budget or inverse approaches may be biased by nearly a factor of two.

  4. Permafrost thaw strongly reduces allowable CO2 emissions for 1.5°C and 2°C

    NASA Astrophysics Data System (ADS)

    Kechiar, M.; Gasser, T.; Kleinen, T.; Ciais, P.; Huang, Y.; Burke, E.; Obersteiner, M.

    2017-12-01

    We quantify how the inclusion of carbon emission from permafrost thaw impacts the budgets of allowable anthropogenic CO2 emissions. We use the compact Earth system model OSCAR v2.2 which we expand with a permafrost module calibrated to emulate the behavior of the complex models JSBACH, ORCHIDEE and JULES. When using the "exceedance" method and with permafrost thaw turned off, we find budgets very close to the CMIP5 models' estimates reported by IPCC. With permafrost thaw turned on, the total budgets are reduced by 3-4%. This corresponds to a 33-45% reduction of the remaining budget for 1.5°C, and a 9-13% reduction for 2°C. When using the "avoidance" method, however, permafrost thaw reduces the total budget by 3-7%, which corresponds to reductions by 33-56% and 56-79% of the remaining budget for 1.5°C and 2°C, respectively. The avoidance method relies on many scenarios that actually peak below the target whereas the exceedance method overlooks the carbon emitted by thawed permafrost after the temperature target is reached, which explains the difference. If we use only the subset of scenarios in which there is no net negative emissions, the permafrost-induced reduction in total budgets rises to 6-15%. Permafrost thaw therefore makes the emission budgets strongly path-dependent. We also estimate budgets of needed carbon capture in scenarios overshooting the temperature targets. Permafrost thaw strongly increases these capture budgets: in the case of a 1.5°C target overshot by 0.5°C, which is in line with the Paris agreement, about 30% more carbon must be captured. Our conclusions are threefold. First, inclusion of permafrost thaw systematically reduces the emission budgets, and very strongly so if the temperature target is overshot. Second, the exceedance method, that is the only one that complex models can follow, only partially accounts for the effect of slow non-linear processes such as permafrost thaw, leading to overestimated budgets. Third, the newfound

  5. The impact of Earth system feedbacks on carbon budgets and climate response.

    PubMed

    Lowe, Jason A; Bernie, Daniel

    2018-05-13

    A number of studies have examined the size of the allowable global cumulative carbon budget compatible with limiting twenty-first century global average temperature rise to below 2°C and below 1.5°C relative to pre-industrial levels. These estimates of cumulative emissions have a number of uncertainties including those associated with the climate sensitivity and the global carbon cycle. Although the IPCC fifth assessment report contained information on a range of Earth system feedbacks, such as carbon released by thawing of permafrost or methane production by wetlands as a result of climate change, the impact of many of these Earth system processes on the allowable carbon budgets remains to be quantified. Here, we make initial estimates to show that the combined impact from typically unrepresented Earth system processes may be important for the achievability of limiting warming to 1.5°C or 2°C above pre-industrial levels. The size of the effects range up to around a 350 GtCO 2 budget reduction for a 1.5°C warming limit and around a 500 GtCO 2 reduction for achieving a warming limit of 2°C. Median estimates for the extra Earth system forcing lead to around 100 GtCO 2 and 150 GtCO 2 , respectively, for the two warming limits. Our estimates are equivalent to several years of anthropogenic carbon dioxide emissions at present rates. In addition to the likely reduction of the allowable global carbon budgets, the extra feedbacks also bring forward the date at which a given warming threshold is likely to be exceeded for a particular emission pathway.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Author(s).

  6. The impact of Earth system feedbacks on carbon budgets and climate response

    NASA Astrophysics Data System (ADS)

    Lowe, Jason A.; Bernie, Daniel

    2018-05-01

    A number of studies have examined the size of the allowable global cumulative carbon budget compatible with limiting twenty-first century global average temperature rise to below 2°C and below 1.5°C relative to pre-industrial levels. These estimates of cumulative emissions have a number of uncertainties including those associated with the climate sensitivity and the global carbon cycle. Although the IPCC fifth assessment report contained information on a range of Earth system feedbacks, such as carbon released by thawing of permafrost or methane production by wetlands as a result of climate change, the impact of many of these Earth system processes on the allowable carbon budgets remains to be quantified. Here, we make initial estimates to show that the combined impact from typically unrepresented Earth system processes may be important for the achievability of limiting warming to 1.5°C or 2°C above pre-industrial levels. The size of the effects range up to around a 350 GtCO2 budget reduction for a 1.5°C warming limit and around a 500 GtCO2 reduction for achieving a warming limit of 2°C. Median estimates for the extra Earth system forcing lead to around 100 GtCO2 and 150 GtCO2, respectively, for the two warming limits. Our estimates are equivalent to several years of anthropogenic carbon dioxide emissions at present rates. In addition to the likely reduction of the allowable global carbon budgets, the extra feedbacks also bring forward the date at which a given warming threshold is likely to be exceeded for a particular emission pathway. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  7. Oil and Natural Gas Production Facilities National Emissions Standards for Hazardous Air Pollutants (NESHAP) Final Rule Fact Sheet

    EPA Pesticide Factsheets

    This page contains a January 2007 fact sheet for the final National Emission Standards for Hazardous Air Pollutants (NESHAP) for Oil and Natural Gas Production Facilities. This document provides a summary of the 2007 final rule.

  8. Program Direction FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    Program Direction enables EERE to maintain and support a world-class federal workforce to accomplish its mission of creating and sustaining American leadership in the sustainable transportation, renewable power, and energy efficiency sectors. The FY 2017 Program Direction budget request provides resources for program and project management, administrative support, contract administration, human capital management, headquarters and field site non-laboratory facilities and infrastructure, and contractor support.

  9. Kinetic energy budgets in areas of intense convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Berecek, E. M.; Ebel, D. M.; Jedlovec, G. J.

    1980-01-01

    A kinetic energy budget analysis of the AVE-SESAME 1 period which coincided with the deadly Red River Valley tornado outbreak is presented. Horizontal flux convergence was found to be the major kinetic energy source to the region, while cross contour destruction was the major sink. Kinetic energy transformations were dominated by processes related to strong jet intrusion into the severe storm area. A kinetic energy budget of the AVE 6 period also is presented. The effects of inherent rawinsonde data errors on widely used basic kinematic parameters, including velocity divergence, vorticity advection, and kinematic vertical motion are described. In addition, an error analysis was performed in terms of the kinetic energy budget equation. Results obtained from downward integration of the continuity equation to obtain kinematic values of vertical motion are described. This alternate procedure shows promising results in severe storm situations.

  10. Water-budget methods

    USGS Publications Warehouse

    Healy, Richard W.; Scanlon, Bridget R.

    2010-01-01

    A water budget is an accounting of water movement into and out of, and storage change within, some control volume. Universal and adaptable are adjectives that reflect key features of water-budget methods for estimating recharge. The universal concept of mass conservation of water implies that water-budget methods are applicable over any space and time scales (Healy et al., 2007). The water budget of a soil column in a laboratory can be studied at scales of millimeters and seconds. A water-budget equation is also an integral component of atmospheric general circulation models used to predict global climates over periods of decades or more. Water-budget equations can be easily customized by adding or removing terms to accurately portray the peculiarities of any hydrologic system. The equations are generally not bound by assumptions on mechanisms by which water moves into, through, and out of the control volume of interest. So water-budget methods can be used to estimate both diffuse and focused recharge, and recharge estimates are unaffected by phenomena such as preferential flow paths within the unsaturated zone.Water-budget methods represent the largest class of techniques for estimating recharge. Most hydrologic models are derived from a water-budget equation and can therefore be classified as water-budget models. It is not feasible to address all water-budget methods in a single chapter. This chapter is limited to discussion of the “residual” water-budget approach, whereby all variables in a water-budget equation, except for recharge, are independently measured or estimated and recharge is set equal to the residual. This chapter is closely linked with Chapter 3, on modeling methods, because the equations presented here form the basis of many models and because models are often used to estimate individual components in water-budget studies. Water budgets for streams and other surface-water bodies are addressed in Chapter 4. The use of soil-water budgets and

  11. Determination of the carbon budget of a pasture: effect of system boundaries and flux uncertainties

    NASA Astrophysics Data System (ADS)

    Felber, R.; Bretscher, D.; Münger, A.; Neftel, A.; Ammann, C.

    2015-12-01

    Carbon (C) sequestration in the soil is considered as a potential important mechanism to mitigate greenhouse gas (GHG) emissions of the agricultural sector. It can be quantified by the net ecosystem carbon budget (NECB) describing the change of soil C as the sum of all relevant import and export fluxes. NECB was investigated here in detail for an intensively grazed dairy pasture in Switzerland. Two budget approaches with different system boundaries were applied: NECBtot for system boundaries including the grazing cows and NECBpast for system boundaries excluding the cows. CO2 and CH4 exchange induced by soil/vegetation processes as well as direct emissions by the animals were derived from eddy covariance measurements. Other C fluxes were either measured (milk yield, concentrate feeding) or derived based on animal performance data (intake, excreta). For the investigated year, both approaches resulted in a small non-significant C loss: NECBtot - 13 ± 61 g C m-2 yr-1 and NECBpast - 17 ± 81 g C m-2 yr-1. The considerable uncertainties, depending on the approach, were mainly due to errors in the CO2 exchange or in the animal related fluxes. The associated GHG budget revealed CH4 emissions from the cows to be the major contributor, but with much lower uncertainty compared to NECB. Although only one year of data limit the representativeness of the carbon budget results, they demonstrated the important contribution of the non-CO2 fluxes depending on the chosen system boundaries and the effect of their propagated uncertainty in an exemplary way. The simultaneous application and comparison of both NECB approaches provides a useful consistency check for the carbon budget determination and can help to identify and eliminate systematic errors.

  12. Determination of the carbon budget of a pasture: effect of system boundaries and flux uncertainties

    NASA Astrophysics Data System (ADS)

    Felber, Raphael; Bretscher, Daniel; Münger, Andreas; Neftel, Albrecht; Ammann, Christof

    2016-05-01

    Carbon (C) sequestration in the soil is considered as a potential important mechanism to mitigate greenhouse gas (GHG) emissions of the agricultural sector. It can be quantified by the net ecosystem carbon budget (NECB) describing the change of soil C as the sum of all relevant import and export fluxes. NECB was investigated here in detail for an intensively grazed dairy pasture in Switzerland. Two budget approaches with different system boundaries were applied: NECBtot for system boundaries including the grazing cows and NECBpast for system boundaries excluding the cows. CO2 and CH4 exchange induced by soil/vegetation processes as well as direct emissions by the animals were derived from eddy covariance measurements. Other C fluxes were either measured (milk yield, concentrate feeding) or derived based on animal performance data (intake, excreta). For the investigated year, both approaches resulted in a small near-neutral C budget: NECBtot -27 ± 62 and NECBpast 23 ± 76 g C m-2 yr-1. The considerable uncertainties, depending on the approach, were mainly due to errors in the CO2 exchange or in the animal-related fluxes. The comparison of the NECB results with the annual exchange of other GHG revealed CH4 emissions from the cows to be the major contributor in terms of CO2 equivalents, but with much lower uncertainty compared to NECB. Although only 1 year of data limit the representativeness of the carbon budget results, they demonstrate the important contribution of the non-CO2 fluxes depending on the chosen system boundaries and the effect of their propagated uncertainty in an exemplary way. The simultaneous application and comparison of both NECB approaches provides a useful consistency check for the carbon budget determination and can help to identify and eliminate systematic errors.

  13. 76 FR 57749 - Information Collection Request to Office of Management and Budget

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Information Collection Requests (ICRs) to the Office of Management and Budget (OMB), Office of Information and.... FOR FURTHER INFORMATION CONTACT: Ms. Kenlinishia Tyler, Office of Information Management, telephone... reception facility standards. Advance notice information from vessels ensures effective management of...

  14. Characterization of VOCs Emissions from Industrial Facilities and Natural Gas Production Sites: A Mobile Sensing Approach

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Gu, J.; Trask, B.; Lyon, D. R.; Albertson, J. D.

    2017-12-01

    With the recent expansion of U.S. oil and gas (O&G) production, many studies have focused on the quantification of fugitive methane emissions. However, only a few studies have explored the emissions of volatile organic compounds (VOCs) from O&G production sites that affect human health in adjacent communities, both directly through exposure to toxic chemical compounds and indirectly via formation of ground-level ozone. In this study, we seek to quantify emissions of VOCs from O&G production sites and petrochemical facilities using a mobile sensing approach, with both high-end analyzers and relatively low-cost sensors. A probabilistic source characterization approach is used to estimate emission rates of VOCs, directly taking into account quantitative measure of sensor accuracy. This work will provide data with proper spatiotemporal resolution and coverage, so as to improve the understanding of VOCs emission from O&G production sites, VOCs-exposure of local communities, and explore the feasibility of low-cost sensors for VOCs monitoring. The project will provide an important foundational step to enable large scale studies.

  15. Playing Hardball with Facilities Expenses.

    ERIC Educational Resources Information Center

    Fickes, Michael

    1997-01-01

    Describes one school district manager's tactics for successfully controlling district costs and increasing capital improvements while only marginally increasing the facilities maintenance budget. Highlights guidelines for controlling personnel requirements and cost-reduction methods. Discusses specific cost-control measures involving telephone…

  16. First-principles definition and measurement of planetary electromagnetic-energy budget.

    PubMed

    Mishchenko, Michael I; Lock, James A; Lacis, Andrew A; Travis, Larry D; Cairns, Brian

    2016-06-01

    The imperative to quantify the Earth's electromagnetic-energy budget with an extremely high accuracy has been widely recognized but has never been formulated in the framework of fundamental physics. In this paper we give a first-principles definition of the planetary electromagnetic-energy budget using the Poynting-vector formalism and discuss how it can, in principle, be measured. Our derivation is based on an absolute minimum of theoretical assumptions, is free of outdated notions of phenomenological radiometry, and naturally leads to the conceptual formulation of an instrument called the double hemispherical cavity radiometer (DHCR). The practical measurement of the planetary energy budget would require flying a constellation of several dozen planet-orbiting satellites hosting identical well-calibrated DHCRs.

  17. First-principles definition and measurement of planetary electromagnetic-energy budget

    NASA Astrophysics Data System (ADS)

    Mishchenko, M. I.; James, L.; Lacis, A. A.; Travis, L. D.; Cairns, B.

    2016-12-01

    The imperative to quantify the Earth's electromagnetic-energy budget with an extremely high accuracy has been widely recognized but has never been formulated in the framework of fundamental physics. In this talk we give a first-principles definition of the planetary electromagnetic-energy budget using the Poynting-vector formalism and discuss how it can, in principle, be measured. Our derivation is based on an absolute minimum of theoretical assumptions, is free of outdated concepts of phenomenological radiometry, and naturally leads to the conceptual formulation of an instrument called the double hemispherical cavity radiometer (DHCR). The practical measurement of the planetary energy budget would require flying a constellation of several dozen planet-orbiting satellites hosting identical well-calibrated DHCRs.

  18. First-Principles Definition and Measurement of Planetary Electromagnetic-Energy Budget

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Lock, James A.; Lacis, Andrew A.; Travis, Larry D.; Cairns, Brian

    2016-01-01

    The imperative to quantify the Earths electromagnetic-energy budget with an extremely high accuracy has been widely recognized but has never been formulated in the framework of fundamental physics. In this paper we give a first-principles definition of the planetary electromagnetic-energy budget using the Poynting- vector formalism and discuss how it can, in principle, be measured. Our derivation is based on an absolute minimum of theoretical assumptions, is free of outdated notions of phenomenological radiometry, and naturally leads to the conceptual formulation of an instrument called the double hemispherical cavity radiometer (DHCR). The practical measurement of the planetary energy budget would require flying a constellation of several dozen planet-orbiting satellites hosting identical well-calibrated DHCRs.

  19. A CASE STUDY DEMONSTRATING GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES--SOMERSWORTH, NEW HAMPSHIRE

    EPA Science Inventory

    The purpose of the activities described in this document is to provide a demonstration of the procedures and methodologies described within the "Guidance for Evaluating Landfill Gas Emissions from Closed or Abandoned Facilities" (Guidance). This demonstration provides an example ...

  20. Fiscal 1993 U.S. Science Budget request released

    NASA Astrophysics Data System (ADS)

    Bush, Susan; Simarski, Lynn Teo; DeVito, M. Catherine

    1992-02-01

    DOE's proposed budget for fiscal 1993 is $19.4 billion, almost level with fiscal 1992's $19 billion. Of that, $5.5 billion is targeted for environmental cleanup at DOE facilities, an increase of $1.16 billion. DOE's portion of research and development related to the National Energy Strategy is $725 million, up 16% from 1992. Funding for defense activities is down 9% to $7.5 billion from $8.3 billion.According to DOE Secretary James D. Watkins, “Congressional enactment of a comprehensive and balanced legislative package is needed to implement fully the president's National Energy Strategy.” As such, there are provisions in the fiscal 1993 DOE budget for advanced energy technology R&D to reduce energy consumption, increase fuel flexibility, and improve U.S. competitiveness in world markets.

  1. The Life-and-Death Factor: Focus on Healthcare Facilities

    ERIC Educational Resources Information Center

    Dessoff, Alan

    2009-01-01

    With economic pressures restricting campus budgets and healthcare policy issues capturing national attention, facilities managers at university-affiliated hospitals and other healthcare entities say they feel more urgency than ever to provide cost-effective services to patients, providers, medical researchers, and students. Managing facilities at…

  2. A new method for probabilistic assessment of regional climate impacts in dependence of cumulative GHG emission budgets

    NASA Astrophysics Data System (ADS)

    Frieler, Katja; Meinshausen, Malte; Braun, Nadine; Hare, Bill

    2010-05-01

    Given the expected and already observed impacts of climate change there is growing agreement that global mean temperature rise should be limited to below 2 or 1.5 degrees. The translation of such a temperature target into guidelines for global emission reduction over the coming decades has become one of the most important and urgent tasks. In fact, there are four recent studies (Meinshausen et al. 2009, Allen et al. 2009, Matthews et al. 2009 and Zickfeld et al. 2009) which take a very comprehensive approach to quantifying the current uncertainties related to the question of what are the "allowed amounts" of global emissions given specific limits of global warming. Here, we present an extension of this budget approach allowing to focus on specific regional impacts. The method is based on probabilistic projections of regional temperature and precipitation changes providing the input for available impact functions. Using the example of Greenland's surface mass balance (Gregory et al., 2006) we will demonstrate how the probability of specific impacts can be described in dependence of global GHG emission budgets taking into account the uncertainty of global mean temperature projections as well as uncertainties of regional climate patterns varying from AOGCM to AOGCM. The method utilizes the AOGCM based linear relation between global mean temperature changes and regionally averaged changes in temperature and precipitation. It allows to handle the variations of regional climate projections from AR4 AOGCM runs independent of the uncertainties of global mean temperature change that are estimated by a simple climate model (Meinshausen et al., 2009). While the linearity of this link function is already established for temperature and to a lesser degree (depending on the region) also for precipitation (Santer et al. 1990; Mitchell et al. 1999; Giorgi et al., 2008; Solomon et al., 2009), we especially focus on the quantification of the uncertainty (in particularly the inter

  3. The Carbon Tetrachloride (CCl4) Budget: Mystery or Not

    NASA Technical Reports Server (NTRS)

    Liang, Qing; Newman, Paul A.; Daniel, John S.; Reimann, Stefan; Hall, Bradley; Dutton, Geoff; Kuijpers, Lambert J. M.

    2014-01-01

    Carbon tetrachloride (CCl4) is a major anthropogenic ozone-depleting substance and greenhouse gas and has been regulated under the Montreal Protocol. However, atmospheric observations show a very slow decline in CCl4 concentrations, inconsistent with the nearly zero emissions estimate based on the UNEP reported production and feedstock usage in recent years. It is now apparent that there are either unidentified industrial leakages, an unknown production source of CCl4, or large legacy emissions from CCl4 contaminated sites. In this paper we use a global chemistry climate model to assess the budget mystery of atmospheric CCl4. We explore various factors that affect the global trend and the gradient between the Northern and Southern hemispheres or interhemispheric gradient (IHG): emissions, emission hemispheric partitioning, and lifetime variations. We find a present-day emission of 30-50 Gg per yr and a total lifetime 25 - 36 years are necessary to reconcile both the observed CCl4 global trend and IHG.

  4. Observational Constraints on the Global Budget of Ethanol

    NASA Astrophysics Data System (ADS)

    Naik, V.; Fiore, A. M.; Horowitz, L. W.; Singh, H. B.; Wiedinmyer, C.; Guenther, A. B.; de Gouw, J.; Millet, D.; Levy, H.; Oppenheimer, M.

    2007-12-01

    Ethanol, an oxygenated volatile organic compound (OVOC), is used extensively as a motor fuel and fuel additive to promote clean combustion. Ethanol can affect the oxidizing capacity and the ozone-forming potential of the atmosphere. Limited available atmospheric observations suggest a global background atmospheric ethanol mixing ratio of about 20 pptv, with values up to 3 ppbv near source regions; however, the atmospheric distribution and budget of ethanol remain poorly understood. Here, we use the global three-dimensional chemical transport model MOZART-4 to investigate the global ethanol distribution and budget, and place constraints on the budget by evaluating the model with atmospheric observations. We implement a global ethanol source of 14.7 Tg yr-1 in the model consisting of biogenic emissions (9.2 Tg yr-1), industrial/anthropogenic emissions (3.2 Tg yr-1), emissions from biofuels (1.8 Tg yr-1), biomass burning emissions (0.5 Tg yr-1), and a secondary source from atmospheric production (0.056 Tg yr-1). Gas-phase oxidation by the hydroxyl radical accounts for 66% of the global sink of ethanol in the model, dry deposition 9%, and wet scavenging 25%. The simulation yields a global mean ethanol burden of 0.11 Tg and an atmospheric lifetime of 3 days. The simulated boundary layer mean ethanol concentrations underestimate observations from field campaigns over the United States by 50%, downwind of Asia by 76% and over the remote Pacific Ocean by 86%. Because of the short lifetime of ethanol, the model discrepancy over remote tropical regions cannot be attributed to an underestimate of surface emissions over continents. In these regions, the dominant model source is secondary atmospheric production, from the reaction of the ethyl peroxy radical (C2H5O2) either with itself or with the methyl peroxy radical (CH3O2). A ~500-fold increase in this diffuse source (to ~30 Tg yr-1) distributed uniformly throughout the troposphere would largely correct the observation

  5. 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes

    NASA Astrophysics Data System (ADS)

    Gastellu-Etchegorry, J. P.

    2008-12-01

    DART EB is a model that is being developed for simulating the 3D (3 dimensional) energy budget of urban and natural scenes, possibly with topography and atmosphere. It simulates all non radiative energy mechanisms (heat conduction, turbulent momentum and heat fluxes, water reservoir evolution, etc.). It uses DART model (Discrete Anisotropic Radiative Transfer) for simulating radiative mechanisms: 3D radiative budget of 3D scenes and their remote sensing images expressed in terms of reflectance or brightness temperature values, for any atmosphere, wavelength, sun/view direction, altitude and spatial resolution. It uses an innovative multispectral approach (ray tracing, exact kernel, discrete ordinate techniques) over the whole optical domain. This paper presents two major and recent improvements of DART for adapting it to urban canopies. (1) Simulation of the geometry and optical characteristics of urban elements (houses, etc.). (2) Modeling of thermal infrared emission by vegetation and urban elements. The new DART version was used in the context of the CAPITOUL project. For that, districts of the Toulouse urban data base (Autocad format) were translated into DART scenes. This allowed us to simulate visible, near infrared and thermal infrared satellite images of Toulouse districts. Moreover, the 3D radiation budget was used by DARTEB for simulating the time evolution of a number of geophysical quantities of various surface elements (roads, walls, roofs). Results were successfully compared with ground measurements of the CAPITOUL project.

  6. 40 CFR 51.122 - Emissions reporting requirements for SIP revisions relating to budgets for NOX emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL... NOX emissions data as described in this section. (c) Each revision must provide for periodic reporting by the state of NOX emissions data to demonstrate whether the state's emissions are consistent with...

  7. 40 CFR 51.122 - Emissions reporting requirements for SIP revisions relating to budgets for NOX emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL... NOX emissions data as described in this section. (c) Each revision must provide for periodic reporting by the state of NOX emissions data to demonstrate whether the state's emissions are consistent with...

  8. Methane emissions in the Marcellus, top down constraints on emission growth with increasing production

    NASA Astrophysics Data System (ADS)

    DeCarlo, P. F.; Goetz, J. D.

    2017-12-01

    Emission inventories in the state of Pennsylvania are largely self-reported numbers by industry and significantly underestimate methane emissions at the facility level compared to measured emissions. Nevertheless, these emission inventories are used in making policy decisions at the state level with regard to reduction and mitigation of methane emissions from oil and gas development. A series of measurements made in northeastern Pennsylvania in 2012 and 2015 provide data for comparison to reported emission inventories at the facility level and changes in total emissions at the state and regional level. Tracer release studies performed in 2012 indicate up to an order of magnitude underestimate for facility level emissions. A novel methane background analysis on the 2012 and 2015 datasets indicates approximately a 300% increase in methane emissions over that three-year period scaling with increasing natural gas in the northeast region of Pennsylvania. State emission inventories indicate an 11% decrease over the same time period clearly at odds with the measurements. This presentation will also discuss potential areas of discrepancy with the emission inventories.

  9. Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia).

    PubMed

    Chan, Yiu C; Sinha, Rajiv K; Weijin Wang

    2011-05-01

    This study investigated greenhouse gas (GHG) emissions from three different home waste treatment methods in Brisbane, Australia. Gas samples were taken monthly from 34 backyard composting bins from January to April 2009. Averaged over the study period, the aerobic composting bins released lower amounts of CH(4) (2.2 mg m(- 2) h(-1)) than the anaerobic digestion bins (9.5 mg m(-2) h(-1)) and the vermicomposting bins (4.8 mg m(-2) h( -1)). The vermicomposting bins had lower N(2)O emission rates (1.2 mg m(-2) h(- 1)) than the others (1.5-1.6 mg m(-2) h( -1)). Total GHG emissions including both N(2)O and CH(4) were 463, 504 and 694 mg CO(2)-e m(- 2) h(-1) for vermicomposting, aerobic composting and anaerobic digestion, respectively, with N(2)O contributing >80% in the total budget. The GHG emissions varied substantially with time and were regulated by temperature, moisture content and the waste properties, indicating the potential to mitigate GHG emission through proper management of the composting systems. In comparison with other mainstream municipal waste management options including centralized composting and anaerobic digestion facilities, landfilling and incineration, home composting has the potential to reduce GHG emissions through both lower on-site emissions and the minimal need for transportation and processing. On account of the lower cost, the present results suggest that home composting provides an effective and feasible supplementary waste management method to a centralized facility in particular for cities with lower population density such as the Australian cities.

  10. Employing a CGE model in analysing the environmental and economy-wide impacts of CO2 emission abatement policies in Malaysia.

    PubMed

    Yahoo, Masoud; Othman, Jamal

    2017-04-15

    The impact of global warming has received much international attention in recent decades. To meet climate-change mitigation targets, environmental policy instruments have been designed to transform the way goods and services are produced as well as alter consumption patterns. The government of Malaysia is strongly committed to reducing CO 2 gas emissions as a proportion of GDP by 40% from 2005 levels by the year 2020. This study evaluates the economy-wide impacts of implementing two different types of CO 2 emission abatement policies in Malaysia using market-based (imposing a carbon tax) and command-and-control mechanism (sectoral emission standards). The policy simulations conducted involve the removal of the subsidy on petroleum products by the government. A carbon emission tax in conjunction with the revenue neutrality assumption is seen to be more effective than a command-and-control policy as it provides a double dividend. This is apparent as changes in consumption patterns lead to welfare enhancements while contributing to reductions in CO 2 emissions. The simulation results show that the production of renewable energies is stepped up when the imposition of carbon tax and removal of the subsidy is augmented by revenue recycling. This study provides an economy-wide assessment that compares two important tools for assisting environment policy makers evaluate carbon emission abatement initiatives in Malaysia. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 40 CFR Table Jj-1 to Subpart Jj of... - Animal Population Threshold Level Below Which Facilities Are Not Required To Report Emissions...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emissions Under Subpart JJ 1 2 Animal group Average annual animal population (Head) 3 Beef 29,300 Dairy 3... groups except dairy, the average annual animal population represents the total number of animals present at the facility. For dairy facilities, the average annual animal population represents the number of...

  12. 40 CFR Table Jj-1 to Subpart Jj of... - Animal Population Threshold Level Below Which Facilities Are Not Required To Report Emissions...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emissions Under Subpart JJ 1,2 Animal group Average annual animal population (Head) 3 Beef 29,300 Dairy 3... groups except dairy, the average annual animal population represents the total number of animals present at the facility. For dairy facilities, the average annual animal population represents the number of...

  13. Budget Thoughts.

    ERIC Educational Resources Information Center

    Bialostosky, Don

    2001-01-01

    Addresses budget issues in terms of "getting" and "spending." Notes that educators should not lay waste their powers in exchange for getting and spending. Notes that careful budget management is a necessary virtue, but it is not a sufficient virtue to win additional support. Suggests what to take to an annual budget hearing. (SG)

  14. 40 CFR 63.5799 - How do I calculate my facility's organic HAP emissions on a tpy basis for purposes of determining...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production... to incorporation of pollution-prevention control techniques, existing facilities may base the average...

  15. Husbandry Emissions at the Sub-Facility Scale by Fused Mobile Surface In Situ and Airborne Remote Sensing

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Melton, C.; Tratt, D. M.; Hall, J. L.; Buckland, K. N.; Frash, J.; Leen, J. B.; Lundquist, T.; Vigil, S. A.

    2017-12-01

    Husbandry methane (CH4) and ammonia (NH3) are strong climate and air pollution drivers. Husbandry emission factors have significant uncertainty and can differ from lab estimates as real-world practices affect emissions including where and how husbandry activities occur, their spatial and temporal relationship to micro-climate (winds, temperature, insolation, rain, and lagoon levels, which vary diurnally and seasonally), and animal care. Research dairies provide a unique opportunity to combine insights on sub-facility scale emissions to identify best practices. Two approaches with significant promise for quantifying husbandry emissions are airborne remote sensing and mobile in situ trace gas with meteorological measurements. Both capture snapshot data to allow deconvolution of temporal and spatial variability, which challenges stationary measurements, while also capturing micro-scale processes, allowing connection of real-world practices to emissions. Mobile in situ concentration data on trace gases and meteorology were collected by AMOG (AutoMObile trace Gas) Surveyor on 10 days spanning 31 months at the California Polytechnic State University Research Dairy, San Luis Obispo, CA. AMOG Surveyor is a commuter vehicle modified for atmospheric science. CH4, NH3, H2O, COS, CO, CO2, H2S, O3, NO, NO2, SO2, NOX, solar spectra, temperature, and winds were measured. The airborne hyperspectral thermal infrared sensor, Mako, collected data on 28 Sept. 2015. Research dairies allow combining insights on sub-facility scale emissions to identify best practices holistically - i.e., considering multiple trace gases. In situ data were collected while transecting plumes, approximately orthogonal to winds. Emission strength and source location were estimated by Gaussian plume inversion, validated by airborne data. Good agreement was found on source strength and location at meter length-scales. Data revealed different activities produced unique emissions with distinct trace gas

  16. California Budget Simulation

    ERIC Educational Resources Information Center

    Mallinson, Daniel J.

    2018-01-01

    The California Budget Challenge produced by Next10 provides a useful and intuitive tool for instructors to introduce students to public budgeting. Students will reason through a series of budgeting decisions using information provided on the fiscal and practical implications of their choices. The Challenge is updated with each budget cycle, so it…

  17. Atlas of wide-field-of-view outgoing longwave radiation derived from Nimbus 6 Earth radiation budget data set, July 1975 to June 1978

    NASA Technical Reports Server (NTRS)

    Bess, T. Dale; Smith, G. Louis

    1987-01-01

    An atlas of monthly mean outgoing longwave radiation global contour maps and associated spherical harmonic coefficients is presented. The atlas contains 36 months of continuous data from July 1975 to June 1978. The data were derived from the first Earth radiation budget experiment, which was flown on the Nimbus-6 Sun-synchronous satellite in 1975. Only the wide-field-of-view longwave measurements are cataloged in this atlas. The contour maps along with the associated sets of spherical harmonic coefficients form a valuable data set for studying different aspects of our changing climate over monthly, annual, and interannual scales in the time domain, and over regional, zonal, and global scales in the spatial domain.

  18. 40 CFR 63.471 - Facility-wide standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacture of narrow tubing, and continuous web cleaning machines, located at a major source that are subject... engineering calculations included in the compliance report. (4) Each owner or operator of an affected facility...

  19. 40 CFR 63.471 - Facility-wide standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... manufacture of narrow tubing, and continuous web cleaning machines, located at a major source that are subject... engineering calculations included in the compliance report. (4) Each owner or operator of an affected facility...

  20. Facility safety study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The safety of NASA's in house microelectronics facility is addressed. Industrial health standards, facility emission control requirements, operation and safety checklists, and the disposal of epitaxial vent gas are considered.

  1. APPA's New Operational Guidelines for Educational Facilities

    ERIC Educational Resources Information Center

    Bigger, Alan S.

    2011-01-01

    Nearly 25 years ago a group of APPA members and facilities managers started to discuss an idea and to plant a seed about the need for a document, or series of documents, that would explain the need for staffing facilities operations and the implication of such staffing on levels of service. As the demand for increased budget cuts reached seismic…

  2. Gaseous nitrous acid (HONO) and nitrogen oxides (NOx) emission from gasoline and diesel vehicles under real-world driving test cycles.

    PubMed

    Trinh, Ha T; Imanishi, Katsuma; Morikawa, Tazuko; Hagino, Hiroyuki; Takenaka, Norimichi

    2017-04-01

    Reactive nitrogen species emission from the exhausts of gasoline and diesel vehicles, including nitrogen oxides (NO x ) and nitrous acid (HONO), contributes as a significant source of photochemical oxidant precursors in the ambient air. Multiple laboratory and on-road exhaust measurements have been performed to estimate the NO x emission factors from various vehicles and their contribution to atmospheric pollution. Meanwhile, HONO emission from vehicle exhaust has been under-measured despite the fact that HONO can contribute up to 60% of the total hydroxyl budget during daytime and its formation pathway is not fully understood. A profound traffic-induced HONO to NO x ratio of 0.8%, established by Kurtenbach et al. since 2001, has been widely applied in various simulation studies and possibly linked to under-estimation of HONO mixing ratios and OH radical budget in the morning. The HONO/NO x ratios from direct traffic emission have become debatable when it lacks measurements for direct HONO emission from vehicles upon the fast-changing emission reduction technology. Several recent studies have reported updated values for this ratio. This study has reported the measurement of HONO and NO x emission as well as the estimation of exhaust-induced HONO/NO x ratios from gasoline and diesel vehicles using different chassis dynamometer tests under various real-world driving cycles. For the tested gasoline vehicle, which was equipped with three-way catalyst after-treatment device, HONO/NO x ratios ranged from 0 to 0.95 % with very low average HONO concentrations. For the tested diesel vehicle equipped with diesel particulate active reduction device, HONO/NO x ratios varied from 0.16 to 1.00 %. The HONO/NO x ratios in diesel exhaust were inversely proportional to the average speeds of the tested vehicles. Photolysis of HONO is a dominant source of morning OH radicals. Conventional traffic-induced HONO/NO x ratio of 0.8% has possibly linked to underestimation of the total HONO

  3. Emissions of PCDD and PCDF from combustion of forest fuels and sugarcane: a comparison between field measurements and simulations in a laboratory burn facility.

    PubMed

    Black, R R; Meyer, C P; Touati, A; Gullett, B K; Fiedler, H; Mueller, J F

    2011-05-01

    Release of PCDD and PCDF from biomass combustion such as forest and agricultural crop fires has been nominated as an important source for these chemicals despite minimal characterisation. Available emission factors that have been experimentally determined in laboratory and field experiments vary by several orders of magnitude from <0.5 μg TEQ (t fuel consumed)(-1) to >100 μg TEQ (t fuel consumed)(-1). The aim of this study was to evaluate the effect of experimental methods on the emission factor. A portable field sampler was used to measure PCDD/PCDF emissions from forest fires and the same fuel when burnt over a brick hearth to eliminate potential soil effects. A laboratory burn facility was used to sample emissions from the same fuels. There was very good agreement in emission factors to air (EF(Air)) for forest fuel (Duke Forest, NC) of 0.52 (range: 0.40-0.79), 0.59 (range: 0.18-1.2) and 0.75 (range: 0.27-1.2) μg TEQ(WHO2005) (t fuel consumed)(-1) for the in-field, over a brick hearth, and burn facility experiments, respectively. Similarly, experiments with sugarcane showed very good agreement with EF(Air) of 1.1 (range: 0.40-2.2), 1.5 (range: 0.84-2.2) and 1.7 (range: 0.34-4.4) μg TEQ (t fuel consumed)(-1) for in-field, over a brick hearth, open field and burn facility experiments respectively. Field sampling and laboratory simulations were in good agreement, and no significant changes in emissions of PCDD/PCDF could be attributed to fuel storage and transport to laboratory test facilities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Elementary Music Teachers' Perceptions of the Effect of Budget Reductions on Music Education

    ERIC Educational Resources Information Center

    Michel, Jimmy

    2018-01-01

    Since 2007, many U.S. music education programs have been negatively affected by budget reductions at the local, state, and national levels. Although researchers have studied the effect of budget reductions on music education, they have not widely examined the perspectives of teachers who have experienced these reductions. The purpose of this study…

  5. Quantifying carbon budget and nitrous oxide emissions of terrestrial ecosystems in the Eurasian Arctic and the Dry Latitudinal Belt of Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Zhuang, Q.; Yu, T.; Qu, Y.; Kicklighter, D. W.; Melillo, J. M.; Sokolov, A. P.; Reilly, J. M.; Monier, E.

    2017-12-01

    The largest increase of surface air temperature and related climate extremes has occurred in Northern Eurasia in recent decades, and is projected to continue during the 21st century. The changing climate will affect the fate of the large reservoir of organic matter stored in the region. Given a large amount of carbon-based gases CO2 and CH4 is exchanged between the atmosphere and land ecosystems, we hypothesize that the emissions of another potent greenhouse gas N2O are not small. This study used a process-based biogeochemistry model to estimate soil N2O emissions in Northern Eurasia for the latter half of the 20th century and the 21st century. We find that, in the latter half of the 20th century, there was a slight decreasing trend for the regional N2O emissions from 1.4 Tg N yr-1 to 1.17 Tg N yr-1. Boreal forests are the largest source due to their large area and high flux density. Two contrasting climate scenarios with no-policy and policy for future greenhouse gas emissions and with different climate sensitivities (high, medium and low) of a global climate model are used to drive the biogeochemistry model for the 21st century. Simulations indicate that there will be an increasing trend of N2O emissions under the no-policy climate scenario. By 2100, the emissions are 1.28, 1.40 and 1.73 Tg N yr-1 under climate conditions projected considering low, intermediate, and high level of climate sensitivity, respectively. In contrast, under the policy climate scenarios, there will be a decreasing trend and the emissions are 0.89, 1.02, and 1.06 Tg N yr-1 by 2100, respectively. This study suggests that the large increase of air temperature will enhance regional N2O emissions. Future changes in precipitation and depleting organic nitrogen pools also play a role in affecting future emission strengths in Northern Eurasia. In this presentation, we will also present ensemble simulations of carbon budget for the Dry Latitudinal Belt of Northern Eurasia under various future

  6. Integrated Facilities Management and Fixed Asset Accounting.

    ERIC Educational Resources Information Center

    Golz, W. C., Jr.

    1984-01-01

    A record of a school district's assets--land, buildings, machinery, and equipment--can be a useful management tool that meets accounting requirements and provides appropriate information for budgeting, forecasting, and facilities management. (MLF)

  7. Reduction of Life Cycle CO2 Emission in Public Welfare Facilities Equipped with PV/Solar Heat/Cogeneration System

    NASA Astrophysics Data System (ADS)

    Oke, Shinichiro; Kemmoku, Yoshishige; Takikawa, Hirofumi; Sakakibara, Tateki

    The reduction effect of life cycle CO2 emission is examined in case of introducing a PV/solar heat/cogeneration system into public welfare facilities(hotel and hospital). Life cycle CO2 emission is calculated as the sum of that when operating and that when manufacturing equipments. The system is operated with the dynamic programming method, into which hourly data of electric and heat loads, solar insolation, and atmospheric temperature during a year are input. The proposed system is compared with a conventional system and a cogeneration system. The life cycle CO2 emission of the PV/solar heat/cogeneration system is lower than that of the conventional system by 20% in hotel and by 14% in hospital.

  8. Developing guidance for budget impact analysis.

    PubMed

    Trueman, P; Drummond, M; Hutton, J

    2001-01-01

    The role of economic evaluation in the efficient allocation of healthcare resources has been widely debated. Whilst economic evidence is undoubtedly useful to purchasers, it does not address the issue of affordability which is an increasing concern. Healthcare purchasers are concerned not just with maximising efficiency but also with the more simplistic goal of remaining within their annual budgets. These two objectives are not necessarily consistent. This paper examines the issue of affordability, the relationship between affordability and efficiency and builds the case for why there is a growing need for budget impact models to complement economic evaluation. Guidance currently available for such models is also examined and it is concluded that this guidance is currently insufficient. Some of these insufficiencies are addressed and some thoughts on what constitutes best practice in budget impact modelling are suggested. These suggestions include consideration of transparency, clarity of perspective, reliability of data sources, the relationship between intermediate and final end-points and rates of adoption of new therapies. They also include the impact of intervention by population subgroups or indications, reporting of results, probability of re-deploying resources, the time horizon, exploring uncertainty and sensitivity analysis, and decision-maker access to the model. Due to the nature of budget impact models, the paper does not deliver stringent methodological guidance on modelling. The intention was to provide some suggestions of best practice in addition to some foundations upon which future research can build.

  9. System-wide emissions implications of increased wind power penetration.

    PubMed

    Valentino, Lauren; Valenzuela, Viviana; Botterud, Audun; Zhou, Zhi; Conzelmann, Guenter

    2012-04-03

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  10. Impact of orphan drugs on Latvian budget.

    PubMed

    Logviss, Konstantins; Krievins, Dainis; Purvina, Santa

    2016-05-11

    Number of orphan medicinal products on the market and number of rare disease patients, taking these usually expensive products, are increasing. As a result, budget impact of orphan drugs is growing. This factor, along with the cost-effectiveness of orphan drugs, is often considered in the reimbursement decisions, directly affecting accessibility of rare disease therapies. The current study aims to assess the budget impact of orphan drugs in Latvia. Our study covered a 5-year period, from 2010 to 2014. Impact of orphan drugs on Latvian budget was estimated from the National Health Service's perspective. It was calculated in absolute values and relative to total pharmaceutical market and total drug reimbursement budget. A literature review was performed for comparison with other European countries. Orphan drug annual expenditure ranged between EUR 2.065 and 3.065 million, with total 5-year expenditure EUR 12.467 million. It constituted, on average, 0.84 % of total pharmaceutical market and 2.14 % of total drug reimbursement budget, respectively. Average annual per patient expenditures varied widely, from EUR 1 534 to EUR 580 952. The most costly treatment was enzyme replacement therapy (Elaprase) for MPS II. Glivec had the highest share (34 %) of the total orphan drug expenditure. Oncological drugs represented more than a half of the total orphan drug expenditure, followed by drugs for metabolic and endocrine conditions and medicines for cardiopulmonary diseases. Three indications: Ph+ CML, MPS II, and PAH accounted for nearly 90 % of the total orphan drug expenditure. Budget impact of orphan drugs in Latvia is very small. It increased slightly over a period of five years, due to the slight increase in the number of patients and the number of orphan drugs reimbursed. Current Latvian drug reimbursement system is not sufficient for most orphan drugs.

  11. Emission of nitrous acid from soil and biological soil crusts represents an important source of HONO in the remote atmosphere in Cyprus

    NASA Astrophysics Data System (ADS)

    Meusel, Hannah; Tamm, Alexandra; Kuhn, Uwe; Wu, Dianming; Lena Leifke, Anna; Fiedler, Sabine; Ruckteschler, Nina; Yordanova, Petya; Lang-Yona, Naama; Pöhlker, Mira; Lelieveld, Jos; Hoffmann, Thorsten; Pöschl, Ulrich; Su, Hang; Weber, Bettina; Cheng, Yafang

    2018-01-01

    Soil and biological soil crusts can emit nitrous acid (HONO) and nitric oxide (NO). The terrestrial ground surface in arid and semiarid regions is anticipated to play an important role in the local atmospheric HONO budget, deemed to represent one of the unaccounted-for HONO sources frequently observed in field studies. In this study HONO and NO emissions from a representative variety of soil and biological soil crust samples from the Mediterranean island Cyprus were investigated under controlled laboratory conditions. A wide range of fluxes was observed, ranging from 0.6 to 264 ng m-2 s-1 HONO-N at optimal soil water content (20-30 % of water holding capacity, WHC). Maximum NO-N fluxes at this WHC were lower (0.8-121 ng m-2 s-1). The highest emissions of both reactive nitrogen species were found from bare soil, followed by light and dark cyanobacteria-dominated biological soil crusts (biocrusts), correlating well with the sample nutrient levels (nitrite and nitrate). Extrapolations of lab-based HONO emission studies agree well with the unaccounted-for HONO source derived previously for the extensive CYPHEX field campaign, i.e., emissions from soil and biocrusts may essentially close the Cyprus HONO budget.

  12. On-line CO, CO2 emissions evaluation and (benzene, toluene, xylene) determination from experimental burn of tropical biomass.

    PubMed

    Tawfiq, Mohammed F; Aroua, Mohamed Kheireddine; Sulaiman, Nik Meriam Nik

    2015-07-01

    Atmospheric pollution and global warming issues are increasingly becoming major environmental concerns. Fire is one of the significant sources of pollutant gases released into the atmosphere; and tropical biomass fires, which are of particular interest in this study, contribute greatly to the global budget of CO and CO2. This pioneer research simulates the natural biomass burning strategy in Malaysia using an experimental burning facility. The investigation was conducted on the emissions (CO2, CO, and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)) from ten tropical biomass species. The selected species represent the major tropical forests that are frequently subjected to dry forest fire incidents. An experimental burning facility equipped with an on-line gas analyzer was employed to determine the burning emissions. The major emission factors were found to vary among the species, and the specific results were as follows. The moisture content of a particular biomass greatly influenced its emission pattern. The smoke analysis results revealed the existence of BTEX, which were sampled from a combustion chamber by enrichment traps aided with a universal gas sampler. The BTEX were determined by organic solvent extraction followed by GC/MS quantification, the results of which suggested that the biomass burning emission factor contributed significant amounts of benzene, toluene, and m,p-xylene. The modified combustion efficiency (MCE) changed in response to changes in the sample moisture content. Therefore, this study concluded that the emission of some pollutants mainly depends on the burning phase and sample moisture content of the biomass. Copyright © 2015. Published by Elsevier B.V.

  13. Fuzzy logic for plant-wide control of biological wastewater treatment process including greenhouse gas emissions.

    PubMed

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2018-06-01

    The application of control strategies is increasingly used in wastewater treatment plants with the aim of improving effluent quality and reducing operating costs. Due to concerns about the progressive growth of greenhouse gas emissions (GHG), these are also currently being evaluated in wastewater treatment plants. The present article proposes a fuzzy controller for plant-wide control of the biological wastewater treatment process. Its design is based on 14 inputs and 6 outputs in order to reduce GHG emissions, nutrient concentration in the effluent and operational costs. The article explains and shows the effect of each one of the inputs and outputs of the fuzzy controller, as well as the relationship between them. Benchmark Simulation Model no 2 Gas is used for testing the proposed control strategy. The results of simulation results show that the fuzzy controller is able to reduce GHG emissions while improving, at the same time, the common criteria of effluent quality and operational costs. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Use and uncertainty evaluation of a process-based model for assessing the methane budgets of global terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Ito, A.; Inatomi, M.

    2011-07-01

    We assessed the global terrestrial budget of methane (CH4) using a process-based biogeochemical model (VISIT) and inventory data. Emissions from wetlands, paddy fields, biomass burning, and plants, and oxidative consumption by upland soils, were simulated by the model. Emissions from livestock ruminants and termites were evaluated by an inventory approach. These CH4 flows were estimated for each of the model's 0.5° × 0.5° grid cells from 1901 to 2009, while accounting for atmospheric composition, meteorological factors, and land-use changes. Estimation uncertainties were examined through ensemble simulations using different parameterization schemes and input data (e.g. different wetland maps and emission factors). From 1996 to 2005, the average global terrestrial CH4 budget was estimated on the basis of 576 simulations, and terrestrial ecosystems were found to be a net source of 320.4 ± 18.9 Tg CH4 yr-1. Wetland and ruminant emissions were the primary sources. The results of our simulations indicate that sources and sinks are distributed highly heterogeneously over the Earth's land surface. Seasonal and interannual variability in the terrestrial budget was assessed. The trend of increasing net terrestrial sources and its relationship with temperature variability imply that terrestrial CH4 feedbacks will play an increasingly important role as a result of future climatic change.

  15. Nitrogen budgets of livestock systems in pastoral Sub-Saharan Africa: knowns and unknowns

    NASA Astrophysics Data System (ADS)

    Carbonell, Victoria; Merbold, Lutz; Díaz-Pinés, Eugenio; Butterbach-Bahl, Klaus

    2017-04-01

    Livestock in developing countries can substantially contribute to better livelihoods by supplying food and generating income. This is especially important in pastoral Sub-Saharan Africa (SSA), where smallholders derive their subsistence from livestock farming, as most of the total income of the households in this region comes from livestock. Population growth is causing an increase in demand for food, and urbanisation in developing countries is characterised by an intensification of agriculture and socioeconomic changes, which subsequently lead to an increasing demand for livestock products. While this offers an opportunity for income increase for smallholders in SSA, livestock intensification is known to have environmental consequences, such as greenhouse gas (GHG) emissions, and other contaminating nitrogen (N) loss pathways such as ammonia emission, mainly through gas volatilization from manure. There is a lack of empirical data for pastoral systems in SSA, and as a result, the use of data derived from the developed world in models may produce inaccurate model outputs due to different climatic conditions and management strategies. Here, we review the currently available scientific literature of N budgets, N flows, and factors affecting N flows in pastoral SSA in order to better understand these processes. We present the relationship between flows and the factors affecting them, and literature available for each of these relationships. By doing so we identify gaps that are needed to be filled in the future, in order to have accurate livestock systems N budgets, and thus understanding the contribution of African livestock systems to the global N budget and related emissions and subsequently identify suitable N mitigation strategies.

  16. Low Emissions Alternative Power (LEAP) Project Office Business Team of the Aeropropulsion Research Program Office (ARPO) Org. 0140

    NASA Technical Reports Server (NTRS)

    Buttler, Jennifer A.

    2004-01-01

    The program for which I am working at this summer is Propulsion and Power/Low Emissions Alternative Power (P&P/LEAP). It invests in a fundamental TRL 1-6 research and technology portfolio that will enable the future of: Alternative fuels and/or alternative propulsion systems, non-combustion (electric) propulsion systems. P&P/LEAP will identify and capitalize on the highest potential concepts generated both internal and external to the Agency. During my 2004 summer at NASA Glenn Research Center, I worked with my mentor Barbara Mader, in the Project Office with the Business Team completing various tasks for the project and personnel. The LEAP project is a highly matrixed organization. The Project Office is responsible for the goals advocacy and dollar (budget) of the LEAP project. The objectives of the LEAP Project are to discover new energy sources and develop unconventional engines and power systems directed towards greatly reduced emissions, enable new vehicle concepts for public mobility, new science missions and national security. The Propulsion and PowerLow Emissions Alternative Power directly supports the environmental, mobility, national security objectives of the Vehicle Systems Program and the Aeronautics Technology Theme. Technology deliverables include the demonstration through integrated ground tests, a constant volume combustor in an engine system, and UAV/small transport aircraft all electric power system. My mentor serves as a key member of the management team for the Aeropropulsion Research Program Office (ARPO). She has represented the office on numerous occasions, and is a member of a number of center-wide panels/teams, such as the Space management Committee and is chair to the Business Process Consolidation Team. She is responsible for the overall coordination of resources for the Propulsion and Power Project - from advocacy to implementation. The goal for my summer at NASA was to document processes and archive program documents from the past

  17. The NOx Budget Trading Program: A Collaborative, Innovative Approach to Solving a Regional Air Pollution Problem

    EPA Pesticide Factsheets

    This article examines the development and implementation of the NOx Budget Trading Program (NBP) and the lessons the Environmental Protection Agency has learned from this seasonal emissions cap-and-trade program.

  18. Biogenic Emission Inventories: Scaling Local Biogenic Measurements to Regions

    NASA Astrophysics Data System (ADS)

    Lamb, B.; Pressley, S.; Westberg, H.; Guenther, A.

    2002-12-01

    Biogenic Hydrocarbons, such as isoprene, are important trace gas species that are naturally emitted by vegetation and that affect the oxidative capacity of the atmosphere. Biogenic emissions are regulated by many environmental variables; the most important variables are thought to be temperature and light. Long-term isoprene flux measurements are useful for verifying existing canopy models and exploring other correlations between isoprene fluxes and environmental parameters. Biogenic Emission Models, such as BEIS (Biogenic Emission Inventory System) rely on above canopy environmental parameters and below canopy scaling factors to estimate canopy scale biogenic hydrocarbon fluxes. Other models, which are more complex, are coupled micrometeorological and physiological modules that provide feedback mechanisms present in a canopy environment. These types of models can predict biogenic emissions well, however, the required input is extensive, and for regional applications, they can be cumbersome. This paper presents analyses based on long-term isoprene flux measurements that have been collected since 1999 at the AmeriFlux site located at the University of Michigan Biological Station (UMBS) as part of the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET). The goals of this research were to explore a potential relationship between the surface energy budget (primarily sensible heat flux) and isoprene emissions. Our hypothesis is that the surface energy flux is a better model parameter for isoprene emissions at the canopy scale than temperature and light levels, and the link to the surface energy budget will provide a significant improvement in isoprene emission models. Preliminary results indicate a significant correlation between daily isoprene emissions and sensible heat fluxes for a predominantly aspen/oak stand located in northern Michigan. Since surface energy budgets are an integral part of mesoscale meteorological models, this

  19. Budget brief, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-01-01

    The FY DOE budge totals $12.6 billion in budget authority and $11.1 billion in budget outlays. The budget authority being requested consists of $10.3 billion in new authority and a $2.3 billion reappropriation of expiring funds for the Strategic Petroleum Reserve. Areas covered in the Energy budget are: energy conservation; research, development, and applications; regulation and information; direct energy production; strategic energy production; and energy security reserve. Other areas include: general science, defense activities; departmental administration; and legislative proposal - spent fuel. Budget totals are compared for 1980 and 1981. A detailed discussion of the FY 1981 activities to bemore » undertaken to carry out these activities is provided. (MCW)« less

  20. Computerized Budget Monitoring.

    ERIC Educational Resources Information Center

    Stein, Julian U.; Rowe, Joe N.

    1989-01-01

    This article discusses the importance of budget monitoring in fiscal management; describes ways in which computerized budget monitoring increases accuracy, efficiency, and flexibility; outlines steps in the budget process; and presents sample reports, generated using the Lotus 1-2-3 spreadsheet and graphics program. (IAH)

  1. A CASE STUDY DEMONSTRATING GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES--SOUTH KINGSTOWN, RHODE ISLAND

    EPA Science Inventory

    The report describes a case study that applies EPA/600/R-05/123a, the guidance for conducting air pathway analyses of landfill gas emissions that are of interest to superfund remedial project managers, on-scene coordinators, facility owners, and potentially responsible parties. T...

  2. Validation of temporal and spatial consistency of facility- and speed-specific vehicle-specific power distributions for emission estimation: A case study in Beijing, China.

    PubMed

    Zhai, Zhiqiang; Song, Guohua; Lu, Hongyu; He, Weinan; Yu, Lei

    2017-09-01

    Vehicle-specific power (VSP) has been found to be highly correlated with vehicle emissions. It is used in many studies on emission modeling such as the MOVES (Motor Vehicle Emissions Simulator) model. The existing studies develop specific VSP distributions (or OpMode distribution in MOVES) for different road types and various average speeds to represent the vehicle operating modes on road. However, it is still not clear if the facility- and speed-specific VSP distributions are consistent temporally and spatially. For instance, is it necessary to update periodically the database of the VSP distributions in the emission model? Are the VSP distributions developed in the city central business district (CBD) area applicable to its suburb area? In this context, this study examined the temporal and spatial consistency of the facility- and speed-specific VSP distributions in Beijing. The VSP distributions in different years and in different areas are developed, based on real-world vehicle activity data. The root mean square error (RMSE) is employed to quantify the difference between the VSP distributions. The maximum differences of the VSP distributions between different years and between different areas are approximately 20% of that between different road types. The analysis of the carbon dioxide (CO 2 ) emission factor indicates that the temporal and spatial differences of the VSP distributions have no significant impact on vehicle emission estimation, with relative error of less than 3%. The temporal and spatial differences have no significant impact on the development of the facility- and speed-specific VSP distributions for the vehicle emission estimation. The database of the specific VSP distributions in the VSP-based emission models can maintain in terms of time. Thus, it is unnecessary to update the database regularly, and it is reliable to use the history vehicle activity data to forecast the emissions in the future. In one city, the areas with less data can still

  3. 76 FR 10897 - Status of Motor Vehicle Budgets in Submitted State Implementation Plan for Transportation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... has withdrawn its May 30, 2008 adequacy finding of the 2010 particulate matter of ten microns or less... particulate matter of ten microns or less (PM-10) motor vehicle emission budget (MVEB) for the Maricopa County...

  4. 7 CFR 3402.14 - Budget and budget narrative.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Budget and budget narrative. 3402.14 Section 3402.14 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM...

  5. 7 CFR 3402.14 - Budget and budget narrative.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Budget and budget narrative. 3402.14 Section 3402.14 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM...

  6. National Emission Standards for Hazardous Air Pollutants (NESHAP) for Source Categories: Perchloroethylene Dry Cleaning Facilities - 1993 Final Rule (58 FR 49354)

    EPA Pesticide Factsheets

    This document is a copy of the Federal Register publication of the September 22, 1993 Final Rule for the National Emission Standards for Hazardous Air Pollutants for Source Categories: Perchloroethylene Dry Cleaning Facilities.

  7. FY 1984 Science Budget overview

    NASA Astrophysics Data System (ADS)

    Astronomy, engineering, and the physical sciences as a whole were among the best funded programs in the fiscal 1984 budget that President Ronald Reagan sent to Congress last week. In addition, science education got a shot in the arm: The Reagan proposal includes plans for the nation's universities to upgrade scientific instrumentation and to attract and support high caliber scientists and engineers.Reagan proposes that federal funding for research and development, including R&D facilities, total $47 billion in fiscal 1984, up 17% from the fiscal 1983 level. Defense research and development programs would be increased 29%; nondefense R&D would be increased 0.4%. Total basic research would be boosted 10%.

  8. Volcanic gas emissions and degassing dynamics at Ubinas and Sabancaya volcanoes; implications for the volatile budget of the central volcanic zone

    NASA Astrophysics Data System (ADS)

    Moussallam, Yves; Tamburello, Giancarlo; Peters, Nial; Apaza, Fredy; Schipper, C. Ian; Curtis, Aaron; Aiuppa, Alessandro; Masias, Pablo; Boichu, Marie; Bauduin, Sophie; Barnie, Talfan; Bani, Philipson; Giudice, Gaetano; Moussallam, Manuel

    2017-09-01

    Emission of volcanic gas is thought to be the dominant process by which volatiles transit from the deep earth to the atmosphere. Volcanic gas emissions, remain poorly constrained, and volcanoes of Peru are entirely absent from the current global dataset. In Peru, Sabancaya and Ubinas volcanoes are by far the largest sources of volcanic gas. Here, we report the first measurements of the compositions and fluxes of volcanic gases emitted from these volcanoes. The measurements were acquired in November 2015. We determined an average SO2 flux of 15.3 ± 2.3 kg s- 1 (1325-ton day- 1) at Sabancaya and of 11.4 ± 3.9 kg s- 1 (988-ton day- 1) at Ubinas using scanning ultraviolet spectroscopy and dual UV camera systems. In-situ Multi-GAS analyses yield molar proportions of H2O, CO2, SO2, H2S and H2 gases of 73, 15, 10 1.15 and 0.15 mol% at Sabancaya and of 96, 2.2, 1.2 and 0.05 mol% for H2O, CO2, SO2 and H2S at Ubinas. Together, these data imply cumulative fluxes for both volcanoes of 282, 30, 27, 1.2 and 0.01 kg s- 1 of H2O, CO2, SO2, H2S and H2 respectively. Sabancaya and Ubinas volcanoes together contribute about 60% of the total CO2 emissions from the Central Volcanic zone, and dominate by far the total revised volatile budget of the entire Central Volcanic Zone of the Andes.

  9. Carbonyl Emissions From Oil and Gas Production Facilities

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.; O'Neil, T.; Tran, T.

    2015-12-01

    A number of recent studies have targeted emissions of methane and other hydrocarbons from oil and gas exploration and production activity. These measurements are greatly increasing understanding of the atmospheric impacts of oil and gas development. Very few measurements exist, however, of emissions of formaldehyde and other carbonyls from oil and gas equipment. Carbonyls are toxic and serve as important ozone precursors, especially during winter ozone episodes in places like Utah's Uintah Basin. Current air quality models are only able to reproduce observed high wintertime ozone if they incorporate emissions inventories with very high carbonyl emissions. We measured carbonyl emissions from oil and gas equipment and facilities—including glycol dehydrators, liquid storage tanks, raw gas leaks, raw gas-burning engines, and produced water surface impoundments—in Rocky Mountain oil and gas fields. Carbonyl emissions from raw gas were below detection, but emissions of formaldehyde, acetaldehyde, and other carbonyls were detected from liquid storage tanks, glycol dehydrators, and other oil and gas equipment. In some cases, carbonyls may be formed from the degradation of methanol and other chemicals used in oil and gas production, but the collected data provide evidence for other non-combustion formation pathways. Raw gas-burning engines also emitted carbonyls. Emissions from all measured sources were a small fraction of total volatile organic compound emissions. We incorporated our measurements into an emissions inventory, used that inventory in an air quality model (WRF-SMOKE-CAMx), and were unable to reproduce observed high wintertime ozone. This could be because (1) emission sources we have not yet measured, including compressors, gas processing plants, and others, are large; (2) non-carbonyl emissions, especially those that quickly degrade into carbonyls during photochemical processing, are underestimated in the inventory; or (3) the air quality model is unable

  10. Effective dose to staff members in a positron emission tomography/CT facility using zirconium-89

    PubMed Central

    2013-01-01

    Objective: Positron emission tomography (PET) using zirconium-89 (89Zr) is complicated by its complex decay scheme. In this study, we quantified the effective dose from 89Zr and compared it with fluorine-18 fludeoxyglucose (18F-FDG). Methods: Effective dose distribution in a PET/CT facility in Riyadh was calculated by Monte Carlo simulations using MCNPX. The positron bremsstrahlung, the annihilation photons, the delayed gammas from 89Zr and those emissions from 18F-FDG were modelled in the simulations but low-energy characteristic X-rays were ignored. Results: On the basis of injected activity, the dose from 89Zr was higher than that of 18F-FDG. However, the dose per scan from 89Zr became less than that from 18F-FDG near the patient, owing to the difference in injected activities. In the corridor and control rooms, the 89Zr dose was much higher than 18F-FDG, owing to the difference in attenuation by the shielding materials. Conclusion: The presence of the high-energy photons from 89Zr-labelled immuno-PET radiopharmaceuticals causes a significantly higher effective dose than 18F-FDG to the staff outside the patient room. Conversely, despite the low administered activity of 89Zr, it gives rise to a comparable or even lower dose than 18F-FDG to the staff near the patient. This interesting result raises apparently contradictory implications in the radiation protection considerations of a PET/CT facility. Advances in knowledge: To the best of our knowledge, radiation exposure to staff and public in the PET/CT unit using 89Zr has not been investigated. The ultimate output of this study will lead to the optimal design of the facility for routine use of 89Zr. PMID:23934963

  11. Budget Analysis: Review of the Governor's Proposed Budget, 1999-00.

    ERIC Educational Resources Information Center

    New York State Office of the Comptroller, Albany.

    This report provides an overview of the 1999-2000 executive budget for New York State. The budget calls for $72.7 billion in all funds spending and proposes that a $1.8 billion surplus from the 1998-99 fiscal year be used to fill budget gaps in fiscal years 2000-01 and 2001-02. The report focuses on spending for education, health and social…

  12. Plan Your Advertising Budget.

    ERIC Educational Resources Information Center

    Britt, Steuart-Henderson

    1979-01-01

    Methods for establishing an advertising budget are reviewed. They include methods based on percentage of sales or profits, unit of sales, and objective and task. Also discussed are ways to allocate a promotional budget. The most common breakdowns are: departmental budgets, total budget, calendar periods, media, and sales area. (JMD)

  13. An Analysis of the Charter School Facility Landscape in Idaho

    ERIC Educational Resources Information Center

    National Alliance for Public Charter Schools, 2012

    2012-01-01

    In spring of 2012, the Idaho Charter School Network, the Colorado League of Charter Schools, and the National Alliance for Public Charter Schools worked to collect evidence that would accurately portray both the adequacy of charter school facilities and the average spending for facilities out of charter schools' operating budgets in Idaho.…

  14. First observations of stimulated electromagnetic emission in the ionosphere modified by the spear heating facility on Spitsbergen

    NASA Astrophysics Data System (ADS)

    Tereshchenko, E. D.; Yurik, R. Yu.; Yeoman, T. K.; Robinson, T. R.

    2008-11-01

    We present the first results of observations of the stimulated electromagnetic emission (SEE) in the ionosphere modified by the Space Plasma Exploration by Active Radar (SPEAR) heating facility. Observation of the SEE is the key method of ground-based diagnostics of the ionospheric plasma disturbances due to high-power HF radiation. The presented results were obtained during the heating campaign performed at the SPEAR facility in February-March 2007. Prominent SEE special features were observed in periods in which the critical frequency of the F 2 layer was higher than the pump-wave frequency (4.45 MHz). As an example, such special features as the downshifted maximum and the broad continuum in the region of negative detunings from the pump-wave frequency are presented. Observations clearly demonstrate that the ionosphere was efficiently excited by the SPEAR heating facility despite the comparatively low pump-wave power.

  15. Evidence for Large Decadal Variability in the Tropical Mean Radiative Energy Budget

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Wong, Takmeng; Allan, Richard; Slingo, Anthony; Kiehl, Jeffrey T.; Soden, Brian J.; Gordon, C. T.; Miller, Alvin J.; Yang, Shi-Keng; Randall, David R.; hide

    2001-01-01

    It is widely assumed that variations in the radiative energy budget at large time and space scales are very small. We present new evidence from a compilation of over two decades of accurate satellite data that the top-of-atmosphere (TOA) tropical radiative energy budget is much more dynamic and variable than previously thought. We demonstrate that the radiation budget changes are caused by changes In tropical mean cloudiness. The results of several current climate model simulations fall to predict this large observed variation In tropical energy budget. The missing variability in the models highlights the critical need to Improve cloud modeling in the tropics to support Improved prediction of tropical climate on Inter-annual and decadal time scales. We believe that these data are the first rigorous demonstration of decadal time scale changes In the Earth's tropical cloudiness, and that they represent a new and necessary test of climate models.

  16. Applicability Determination Letters for 40 C.F.R. Part 63 Subpart M, National Perchloroethylene Air Emission Standards for Dry Cleaning Facilities

    EPA Pesticide Factsheets

    This pages contains two letters on the applicability of the National Perchloroethylene Air Emission Standards for Dry Cleaning Facilities (40 CFR 63, Subpart M). Both letters clarify what constitutes instillation of a dry cleaning machine.

  17. Ecosystem Modeling of Biological Processes to Global Budgets

    NASA Technical Reports Server (NTRS)

    Christopher, Potter S.; Condon, Estelle (Technical Monitor)

    2000-01-01

    biosphere effects on atmospheric composition is the ecosystem level. These assumptions are the foundation for developing modern emission budgets for biogenic gases such as carbon dioxide, methane, carbon monoxide, isoprene, nitrous and nitric oxide, and ammonia. Such emission budgets commonly include information on seasonal flux patterns, typical diurnal profiles, and spatial resolution of at least one degree latitude/longitude for the globe. On the basis of these budgets, it is possible to compute 'base emission rates' for the major biogenic trace gases from both terrestrial and ocean sources, which may be useful benchmarks for defining the gas production rates of organisms, especially those from early Earth history, which are required to generate a detectable signal on a global atmosphere. This type of analysis is also the starting point for evaluation of the 'biological processes to global gas budget' extrapolation procedure described above for early Earth ecosystems.

  18. Who needs budgets?

    PubMed

    Hope, Jeremy; Fraser, Robin

    2003-02-01

    Budgeting, as most corporations practice it, should be abolished. That may sound radical, but doing so would further companies' long-running efforts to transform themselves into developed networks that can nimbly adjust to market conditions. Most other building blocks are in place, but companies continue to restrict themselves by relying on inflexible budget processes and the command-and-control culture that budgeting entails. A number of companies have rejected the foregone conclusions embedded in budgets, and they've given up the self-interested wrangling over what the data indicate. In the absence of budgets, alternative goals and measures--some financial, such as cost-to-income ratios, and some nonfinancial, such as time to market-move to the foreground. Companies that have rejected budgets require employees to measure themselves against the performance of competitors and against internal peer groups. Because employees don't know whether they've succeeded until they can look back on the results of a given period, they must use every ounce of energy to ensure that they beat the competition. A key feature of many companies that have rejected budgets is the use of rolling forecasts, which are created every few months and typically cover five to eight quarters. Because the forecasts are regularly revised, they allow companies to continuously adapt to market conditions. The forecasting practices of two such companies, both based in Sweden, are examined in detail: the bank Svenska Handelsbanken and the wholesaler Ahlsell. Though the first companies to reject budgets were located in Northern Europe, organizations that have gone beyond budgeting can be found in a range of countries and industries. Their practices allow them to unleash the power of today's management tools and realize the potential of a fully decentralized organization.

  19. Source Partitioning of Methane Emissions and its Seasonality in the U.S. Midwest

    NASA Astrophysics Data System (ADS)

    Chen, Zichong; Griffis, Timothy J.; Baker, John M.; Millet, Dylan B.; Wood, Jeffrey D.; Dlugokencky, Edward J.; Andrews, Arlyn E.; Sweeney, Colm; Hu, Cheng; Kolka, Randall K.

    2018-02-01

    The methane (CH4) budget and its source partitioning are poorly constrained in the Midwestern United States. We used tall tower (185 m) aerodynamic flux measurements and atmospheric scale factor Bayesian inversions to constrain the monthly budget and to partition the total budget into natural (e.g., wetlands) and anthropogenic (e.g., livestock, waste, and natural gas) sources for the period June 2016 to September 2017. Aerodynamic flux observations indicated that the landscape was a CH4 source with a mean annual CH4 flux of +13.7 ± 0.34 nmol m-2 s-1 and was rarely a net sink. The scale factor Bayesian inversion analyses revealed a mean annual source of +12.3 ± 2.1 nmol m-2 s-1. Flux partitioning revealed that the anthropogenic source (7.8 ± 1.6 Tg CH4 yr-1) was 1.5 times greater than the bottom-up gridded United States Environmental Protection Agency inventory, in which livestock and oil/gas sources were underestimated by 1.8-fold and 1.3-fold, respectively. Wetland emissions (4.0 ± 1.2 Tg CH4 yr-1) were the second largest source, accounting for 34% of the total budget. The temporal variability of total CH4 emissions was dominated by wetlands with peak emissions occurring in August. In contrast, emissions from oil/gas and other anthropogenic sources showed relatively weak seasonality.

  20. 2 CFR 200.468 - Specialized service facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OFFICE OF MANAGEMENT AND BUDGET GUIDANCE Reserved UNIFORM ADMINISTRATIVE REQUIREMENTS, COST PRINCIPLES, AND AUDIT REQUIREMENTS FOR FEDERAL AWARDS Cost Principles General Provisions for Selected Items of Cost § 200.468 Specialized service facilities. (a) The costs of services provided by highly complex or...

  1. Global Carbon Project: the 2013 Global Carbon Budget (Version 2.3, issued June 2014)

    DOE Data Explorer

    Le Quere, C. [University of East Anglia, Norwich UK; Peters, G. P. [Univ. of Oslo (Norway); Andrew, R. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Andrew, R. M. [Univ. of Oslo (Norway); Boden, T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-01-01

    Global emissions of carbon dioxide from the combustion of fossil fuels will reach 36 billion tonnes for the year 2013. "This is a level unprecedented in human history," says CSIRO's Dr Pep Canadell, Executive-Director of the Global Carbon Project (GCP) and co-author of a new report. The GCP provides an annual report of carbon dioxide emissions, land and ocean sinks and accumulation in the atmosphere, incorporating data from multiple research institutes from around the world. The 2013 figures coincide with the global launch of the Global Carbon Atlas, an online platform to explore, visualise and interpret the emissions data at the global, regional and national scales (www.globalcarbonatlas.org). The full data and methods are published today in the journal Earth System Science Data Discussions, and data and other graphic materials can be found at: www.globalcarbonproject.org/carbonbudget. The Global Carbon Budget 2013 is a collaborative effort of the global carbon cycle science community coordinated by the Global Carbon Project. The landing page for this dataset includes links to V. 1.1, issued Nov2013, V.1.3, issued Dec2013, and the June 2014 issue of V.2.3 of the 2013 Global Carbon Budget.

  2. Budgeting Approaches in Community Colleges

    ERIC Educational Resources Information Center

    Palmer, James C.

    2014-01-01

    Several budgeting approaches have been initiated as alternatives to the traditional, incremental process. These include formula budgeting; zero-base budgeting; planning, programming, and budgeting systems; and responsibility center budgeting. Each is premised on assumptions about how organizations might best make resource allocation decisions.…

  3. A numerical study on dust devils with implications to global dust budget estimates

    USDA-ARS?s Scientific Manuscript database

    The estimates of the contribution of dust devils (DDs) to the global dust budget have large uncertainties because the dust emission mechanisms in DDs are not yet well understood. In this study, a large-eddy simulation model coupled with a dust scheme is used to investigate DD dust entrainment. DDs a...

  4. When Funding Is Scarce: Making the Best Use of Existing Facilities

    ERIC Educational Resources Information Center

    Yurko, Amy

    2010-01-01

    In this environment of economic uncertainty, school districts can be faced with tough decisions in their attempts to provide students and teachers with safe and functional facilities for teaching and learning. To accommodate program changes and enrollment fluctuations as well as aging facilities and limited capital budgets, it is increasingly…

  5. Assessment of Component-level Emission Measurements Using a High Volume Sampler at Oil and Natural Gas Production Pads in Utah

    EPA Science Inventory

    Oil and natural gas (ONG) production facilities have the potential to emit a substantial amount of greenhouse gasses, hydrocarbons and hazardous air pollutants into the atmosphere. These emissions come from a wide variety of sources including engine exhaust, combustor gases, atm...

  6. Modernizing sports facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dustin, R.

    Modernization and renovation of sports facilities challenge the design team to balance a number of requirements: spectator and owner expectations, existing building and site conditions, architectural layouts, code and legislation issues, time constraints and budget issues. System alternatives are evaluated and selected based on the relative priorities of these requirements. These priorities are unique to each project. At Alexander Memorial Coliseum, project schedules, construction funds and facility usage became the priorities. The ACC basketball schedule and arrival of the Centennial Olympics dictated the construction schedule. Initiation and success of the project depended on the commitment of the design team tomore » meet coliseum funding levels established three years ago. Analysis of facility usage and system alternative capabilities drove the design team to select a system that met the project requirements and will maximize the benefits to the owner and spectators for many years to come.« less

  7. Budgeting Time to Teach about the School Budget

    ERIC Educational Resources Information Center

    Weiss, Dale

    2011-01-01

    As a teacher in the Milwaukee Public Schools (MPS) for the past 16 years, the author has grown used to dismal budget cut news arriving each February. Although cuts are always frustrating and their results burdensome, the school has been able to "hang on" reasonably well. This year, however, the budget cuts were extreme. In this article,…

  8. Strategic Budgeting.

    ERIC Educational Resources Information Center

    Jones, Dennis P.

    1993-01-01

    An approach to college budgeting that encompasses strategic as well as operational decisions is proposed. Strategic decisions focus on creation and maintenance of institutional capacity, whereas operational decisions focus on use of that capacity to accomplish specific purposes. Strategic budgeting must emphasize institutional assets and their…

  9. Surface Emissivity Maps for Satellite Retrieval of the Longwave Radiation Budget

    NASA Technical Reports Server (NTRS)

    Gupta, Shashi K.; Wilber, Anne C.; Kratz, David P.

    1999-01-01

    This paper presents a brief description of the procedure used to produce global surface emissivity maps for the broadband LW, the 8-12 micrometer window, and 12 narrow LW bands. For a detailed description of the methodology and the input data, the reader is referred to Wilber et al. (1999). These maps are based on a time-independent surface type map published by the IGBP, and laboratory measurements of spectral reflectances of surface materials. These maps represent a first attempt to characterize emissivity based on surface types, and many improvements to the methodology presented here are already underway. Effects of viewing zenith angle and sea state on the emissivity of ocean surface (Smith et al. 1996, Wu and Smith 1997, Masuda et al. 1988) will be taken into account. Measurements form ASTER and MODIS will be incorporated as they become available. Seasonal variation of emissivity based on changes in the characteristics of vegetation will be considered, and the variability of emissivity of barren land areas will be accounted for with the use of Zobler World Soil Maps (Zobler 1986). The current maps have been made available to the scientific community from the web site: http://tanalo.larc.nasa.gov:8080/surf_htmls/ SARB_surf.html

  10. Geophysics and overall science strong in FY 1985 budget

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    A Mars mission, a new research thrust on the continental lithosphere, increased efforts in digital cartography, and construction of a Very Long Baseline Array radio telescope top the list of highlights for geophysics-related research in the proposed fiscal 1985 federal budget that President Ronald Reagan sent to Congress earlier this month.Science in general fared well in this fourth Reagan budget. Research and development support would grow 14% to $53 billion ($51.8 billion would go to conduct of R&D, while $1.3 billion would be allocated to R&D facilities). With a projected inflation rate of about 4%, this increase would provide real growth of 10% over fiscal 1984 levels. The largest increase for R&D, 22%, would support defense modernization. Figure 1 compares nondefense federal R&D obligations since 1978 in constant 1983 dollars, while Table 1 compares conduct of R&D by major departments and agencies.

  11. Home - House Budget Committee

    Science.gov Websites

    Initiatives Hearings Full Menu About Toggle Links Members History Staff Rules & Budget Law News Toggle Staff Rules & Budget Law News Press Releases Budget Digests HBC Publications Op-Eds Speeches &

  12. Kilauea's double eruption, 2008-2016: volatile budget and associated hazards

    NASA Astrophysics Data System (ADS)

    Sutton, A. J.; Elias, T.

    2016-12-01

    After 20 years of effusive behavior on Kilauea's East Rift Zone, a surge in magma supply brought about eruptive changes that significantly improved our understanding of volcanic processes and associated hazards. The volcano's summit deformation changes and increase in CO2 emissions signaled the supply surge beginning in 2003, and heralded the opening of the Overlook Vent in 2008. Along with the supply surge and vent opening came a dramatic spike in gas release. Summit SO2 emissions climbed from 0.2 kt/d to over 10 kt/d while East Rift discharge rose from 2 kt/d to about 6 kt/d before both summit and rift emissions began an overall decline in late 2008. In spite of the emissions decline, however, overall gas release from Kilauea remained well above the previous 20-year average through early 2014. Beginning in 2008, the annual gas budget released from the summit and rift combined, was more than 830 kt, 6.7 kt, and 3.7 kt of SO2, HCl, and HF, respectively. Effects of these elevated emissions sustained ongoing human health concerns and caused a multi-year agricultural disaster designation for the Island. The current activity of Kīlauea consists of a predominant summit gas eruption (where lava and ash discharge are trivial compared to gas release) and a more typical rift lava eruption with sufficient lava effusion to reach a community 20 km from the eruptive vent. An updated gas-based lava effusion estimate shows that Kilauea continued to erupt an average of 0.11 km^3 yr^-1 of dense rock equivalent lava between early 2012 and mid-2016. This value shows that despite the new regime of erupting most of its gas budget at the volcano's summit, the Kilauea system is still capable of pushing magma out of its rift at a rate consistent with the long term average.

  13. An Analysis of the Charter School Facility Landscape in New Jersey

    ERIC Educational Resources Information Center

    National Alliance for Public Charter Schools, 2013

    2013-01-01

    In spring of 2012, the New Jersey Charter Schools Association, the Colorado League of Charter Schools, and the National Alliance for Public Charter Schools worked to collect evidence that would accurately portray both the adequacy of charter school facilities and the average spending for facilities out of charter schools' operating budgets in New…

  14. Reliability of eye lens dosimetry in workers of a positron emission tomography radiopharmaceutical production facility.

    PubMed

    da Silva, Teógenes A; Guimarães, Margarete C; Meireles, Leonardo S; Teles, Luciana L D; Lacerda, Marco Aurélio S

    2016-11-01

    A new regulatory statement was issued concerning the eye lens radiation protection of persons in planned exposures. A debate was raised on the adequacy of the dosimetric quantity and on its method of measurement. The aim of this work was to establish the individual monitoring procedure with the EYE-D™ holder and a MCP-N LiF:Mg,Cu,P thermoluminescent chip detector for measuring the personal dose equivalent H p (3) in workers of a Positron Emission Tomography Radiopharmaceutical Production Facility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Emissions of soot particles from heat generators

    NASA Astrophysics Data System (ADS)

    Lyubov, V. K.; Popov, A. N.; Popova, E. I.

    2017-11-01

    «Soot carbon» or «Soot» - incomplete combustion or thermal decomposition particulate carbon product of hydrocarbons consisting of particles of various shapes and sizes. Soot particles are harmful substances Class 2 and like a dust dispersed by wind for thousands of kilometers. Soot have more powerful negative factor than carbon dioxide. Therefore, more strict requirements on ecological and economical performance for energy facilities at Arctic areas have to be developed to protect fragile Arctic ecosystems and global climate change from degradation and destruction. Quantity of soot particles in the flue gases of energy facilities is a criterion of effectiveness for organization of the burning process. Some of heat generators do not provide the required energy and environmental efficiency which results in irrational use of energy resources and acute pollution of environment. The paper summarizes the results of experimental study of solid particles emission from wide range of capacity boilers burning different organic fuels (natural gas, fuel oil, coal and biofuels). Special attention is paid to environmental and energy performance of the biofuels combustion. Emissions of soot particles PM2.5 are listed. Structure, composition and dimensions of entrained particles with the use of electronic scanning microscope Zeiss SIGMA VP were also studied. The results reveal an impact of several factors on soot particles emission.

  16. The use of new facility by means internal balance with sting support for wide range Angle of Attack aircraft

    NASA Astrophysics Data System (ADS)

    Subagyo; Daryanto, Yanto; Risnawan, Novan

    2018-04-01

    The development of facilities for the testing of wide range angle of attack aircraft in the wind tunnel at subsonic regime has done and implemented. Development required to meet the test at an angle of attack from -20 ° to 40 °. Testing the wide range angle of attack aircraft with a wide variation of the angle of attack become important needs. This can be done simply by using the sting support-equipped by internal balance to measure the forces and moments component aerodynamics. The results of development and use on the wide range angle of attack aircraft testing are aerodynamics characteristics in the form of the coefficient three components forces and the three components of the moment. A series of test aircraft was successfully carried out and the results are shown in the form of graphs of characteristic of aerodynamics at wind speed 70 m/s.

  17. Plasmonic beaming and active control over fluorescent emission.

    PubMed

    Jun, Young Chul; Huang, Kevin C Y; Brongersma, Mark L

    2011-01-01

    Nanometallic optical antennas are rapidly gaining popularity in applications that require exquisite control over light concentration and emission processes. The search is on for high-performance antennas that offer facile integration on chips. Here we demonstrate a new, easily fabricated optical antenna design that achieves an unprecedented level of control over fluorescent emission by combining concepts from plasmonics, radiative decay engineering and optical beaming. The antenna consists of a nanoscale plasmonic cavity filled with quantum dots coupled to a miniature grating structure that can be engineered to produce one or more highly collimated beams. Electromagnetic simulations and confocal microscopy were used to visualize the beaming process. The metals defining the plasmonic cavity can be utilized to electrically control the emission intensity and wavelength. These findings facilitate the realization of a new class of active optical antennas for use in new optical sources and a wide range of nanoscale optical spectroscopy applications.

  18. Enterprise-wide worklist management.

    PubMed

    Locko, Roberta C; Blume, Hartwig; Goble, John C

    2002-01-01

    Radiologists in multi-facility health care delivery networks must serve not only their own departments but also departments of associated clinical facilities. We describe our experience with a picture archiving and communication system (PACS) implementation that provides a dynamic view of relevant radiological workload across multiple facilities. We implemented a distributed query system that permits management of enterprise worklists based on modality, body part, exam status, and other criteria that span multiple compatible PACSs. Dynamic worklists, with lesser flexibility, can be constructed if the incompatible PACSs support specific DICOM functionality. Enterprise-wide worklists were implemented across Generations Plus/Northern Manhattan Health Network, linking radiology departments of three hospitals (Harlem, Lincoln, and Metropolitan) with 1465 beds and 4260 ambulatory patients per day. Enterprise-wide, dynamic worklist management improves utilization of radiologists and enhances the quality of care across large multi-facility health care delivery organizations. Integration of other workflow-related components remain a significant challenge.

  19. Estimating regional-scale methane flux and budgets using CARVE aircraft measurements over Alaska

    NASA Astrophysics Data System (ADS)

    Hartery, Sean; Commane, Róisín; Lindaas, Jakob; Sweeney, Colm; Henderson, John; Mountain, Marikate; Steiner, Nicholas; McDonald, Kyle; Dinardo, Steven J.; Miller, Charles E.; Wofsy, Steven C.; Chang, Rachel Y.-W.

    2018-01-01

    Methane (CH4) is the second most important greenhouse gas but its emissions from northern regions are still poorly constrained. In this study, we analyze a subset of in situ CH4 aircraft observations made over Alaska during the growing seasons of 2012-2014 as part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE). Net surface CH4 fluxes are estimated using a Lagrangian particle dispersion model which quantitatively links surface emissions from Alaska and the western Yukon with observations of enhanced CH4 in the mixed layer. We estimate that between May and September, net CH4 emissions from the region of interest were 2.2 ± 0.5 Tg, 1.9 ± 0.4 Tg, and 2.3 ± 0.6 Tg of CH4 for 2012, 2013, and 2014, respectively. If emissions are only attributed to two biogenic eco-regions within our domain, then tundra regions were the predominant source, accounting for over half of the overall budget despite only representing 18 % of the total surface area. Boreal regions, which cover a large part of the study region, accounted for the remainder of the emissions. Simple multiple linear regression analysis revealed that, overall, CH4 fluxes were largely driven by soil temperature and elevation. In regions specifically dominated by wetlands, soil temperature and moisture at 10 cm depth were important explanatory variables while in regions that were not wetlands, soil temperature and moisture at 40 cm depth were more important, suggesting deeper methanogenesis in drier soils. Although similar environmental drivers have been found in the past to control CH4 emissions at local scales, this study shows that they can be used to generate a statistical model to estimate the regional-scale net CH4 budget.

  20. Emissions of carbon tetrachloride from Europe

    NASA Astrophysics Data System (ADS)

    Graziosi, Francesco; Arduini, Jgor; Bonasoni, Paolo; Furlani, Francesco; Giostra, Umberto; Manning, Alistair J.; McCulloch, Archie; O'Doherty, Simon; Simmonds, Peter G.; Reimann, Stefan; Vollmer, Martin K.; Maione, Michela

    2016-10-01

    Carbon tetrachloride (CCl4) is a long-lived radiatively active compound with the ability to destroy stratospheric ozone. Due to its inclusion in the Montreal Protocol on Substances that Deplete the Ozone Layer (MP), the last two decades have seen a sharp decrease in its large-scale emissive use with a consequent decline in its atmospheric mole fractions. However, the MP restrictions do not apply to the use of carbon tetrachloride as feedstock for the production of other chemicals, implying the risk of fugitive emissions from the industry sector. The occurrence of such unintended emissions is suggested by a significant discrepancy between global emissions as derived from reported production and feedstock usage (bottom-up emissions), and those based on atmospheric observations (top-down emissions). In order to better constrain the atmospheric budget of carbon tetrachloride, several studies based on a combination of atmospheric observations and inverse modelling have been conducted in recent years in various regions of the world. This study is focused on the European scale and based on long-term high-frequency observations at three European sites, combined with a Bayesian inversion methodology. We estimated that average European emissions for 2006-2014 were 2.2 (± 0.8) Gg yr-1, with an average decreasing trend of 6.9 % per year. Our analysis identified France as the main source of emissions over the whole study period, with an average contribution to total European emissions of approximately 26 %. The inversion was also able to allow the localisation of emission "hot spots" in the domain, with major source areas in southern France, central England (UK) and Benelux (Belgium, the Netherlands, Luxembourg), where most industrial-scale production of basic organic chemicals is located. According to our results, European emissions correspond, on average, to 4.0 % of global emissions for 2006-2012. Together with other regional studies, our results allow a better constraint

  1. Nanoscale semiconductor-insulator-metal core/shell heterostructures: facile synthesis and light emission

    NASA Astrophysics Data System (ADS)

    Li, Gong Ping; Chen, Rui; Guo, Dong Lai; Wong, Lai Mun; Wang, Shi Jie; Sun, Han Dong; Wu, Tom

    2011-08-01

    Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO2 and In2O3 are used as examples. We also show that linear chains of short ZnO nanorods embedded in MgO nanotubes and porous MgO nanotubes can be obtained by taking advantage of the reduced thermal stability of the ZnO core. Furthermore, after MgO shell-coating and the appropriate annealing treatment, the intensity of the ZnO near-band-edge UV emission becomes much stronger, showing a 25-fold enhancement. The intensity ratio of the UV/visible emission can be increased further by decorating the surface of the ZnO/MgO nanowires with high-density plasmonic Au nanoparticles. These heterostructured semiconductor-insulator-metal nanowires with tailored morphologies and enhanced functionalities have great potential for use as nanoscale building blocks in photonic and electronic applications.Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO2 and In2O3 are used as examples. We also show that linear chains of short ZnO nanorods embedded in

  2. Structuring economic incentives to reduce emissions from deforestation within Indonesia.

    PubMed

    Busch, Jonah; Lubowski, Ruben N; Godoy, Fabiano; Steininger, Marc; Yusuf, Arief A; Austin, Kemen; Hewson, Jenny; Juhn, Daniel; Farid, Muhammad; Boltz, Frederick

    2012-01-24

    We estimate and map the impacts that alternative national and subnational economic incentive structures for reducing emissions from deforestation (REDD+) in Indonesia would have had on greenhouse gas emissions and national and local revenue if they had been in place from 2000 to 2005. The impact of carbon payments on deforestation is calibrated econometrically from the pattern of observed deforestation and spatial variation in the benefits and costs of converting land to agriculture over that time period. We estimate that at an international carbon price of $10/tCO(2)e, a "mandatory incentive structure," such as a cap-and-trade or symmetric tax-and-subsidy program, would have reduced emissions by 163-247 MtCO(2)e/y (20-31% below the without-REDD+ reference scenario), while generating a programmatic budget surplus. In contrast, a "basic voluntary incentive structure" modeled after a standard payment-for-environmental-services program would have reduced emissions nationally by only 45-76 MtCO(2)e/y (6-9%), while generating a programmatic budget shortfall. By making four policy improvements--paying for net emission reductions at the scale of an entire district rather than site-by-site; paying for reductions relative to reference levels that match business-as-usual levels; sharing a portion of district-level revenues with the national government; and sharing a portion of the national government's responsibility for costs with districts--an "improved voluntary incentive structure" would have been nearly as effective as a mandatory incentive structure, reducing emissions by 136-207 MtCO(2)e/y (17-26%) and generating a programmatic budget surplus.

  3. Structuring economic incentives to reduce emissions from deforestation within Indonesia

    PubMed Central

    Busch, Jonah; Lubowski, Ruben N.; Godoy, Fabiano; Steininger, Marc; Yusuf, Arief A.; Austin, Kemen; Hewson, Jenny; Juhn, Daniel; Farid, Muhammad; Boltz, Frederick

    2012-01-01

    We estimate and map the impacts that alternative national and subnational economic incentive structures for reducing emissions from deforestation (REDD+) in Indonesia would have had on greenhouse gas emissions and national and local revenue if they had been in place from 2000 to 2005. The impact of carbon payments on deforestation is calibrated econometrically from the pattern of observed deforestation and spatial variation in the benefits and costs of converting land to agriculture over that time period. We estimate that at an international carbon price of $10/tCO2e, a “mandatory incentive structure,” such as a cap-and-trade or symmetric tax-and-subsidy program, would have reduced emissions by 163–247 MtCO2e/y (20–31% below the without-REDD+ reference scenario), while generating a programmatic budget surplus. In contrast, a “basic voluntary incentive structure” modeled after a standard payment-for-environmental-services program would have reduced emissions nationally by only 45–76 MtCO2e/y (6–9%), while generating a programmatic budget shortfall. By making four policy improvements—paying for net emission reductions at the scale of an entire district rather than site-by-site; paying for reductions relative to reference levels that match business-as-usual levels; sharing a portion of district-level revenues with the national government; and sharing a portion of the national government's responsibility for costs with districts—an “improved voluntary incentive structure” would have been nearly as effective as a mandatory incentive structure, reducing emissions by 136–207 MtCO2e/y (17–26%) and generating a programmatic budget surplus. PMID:22232665

  4. The Ozone Budget in the Upper Troposphere from Global Modeling Initiative (GMI)Simulations

    NASA Technical Reports Server (NTRS)

    Rodriquez, J.; Duncan, Bryan N.; Logan, Jennifer A.

    2006-01-01

    Ozone concentrations in the upper troposphere are influenced by in-situ production, long-range tropospheric transport, and influx of stratospheric ozone, as well as by photochemical removal. Since ozone is an important greenhouse gas in this region, it is particularly important to understand how it will respond to changes in anthropogenic emissions and changes in stratospheric ozone fluxes.. This response will be determined by the relative balance of the different production, loss and transport processes. Ozone concentrations calculated by models will differ depending on the adopted meteorological fields, their chemical scheme, anthropogenic emissions, and treatment of the stratospheric influx. We performed simulations using the chemical-transport model from the Global Modeling Initiative (GMI) with meteorological fields from (It)h e NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), (2) the atmospheric GCM from NASA's Global Modeling and Assimilation Office(GMAO), and (3) assimilated winds from GMAO . These simulations adopt the same chemical mechanism and emissions, and adopt the Synthetic Ozone (SYNOZ) approach for treating the influx of stratospheric ozone -. In addition, we also performed simulations for a coupled troposphere-stratosphere model with a subset of the same winds. Simulations were done for both 4degx5deg and 2degx2.5deg resolution. Model results are being tested through comparison with a suite of atmospheric observations. In this presentation, we diagnose the ozone budget in the upper troposphere utilizing the suite of GMI simulations, to address the sensitivity of this budget to: a) the different meteorological fields used; b) the adoption of the SYNOZ boundary condition versus inclusion of a full stratosphere; c) model horizontal resolution. Model results are compared to observations to determine biases in particular simulations; by examining these comparisons in conjunction with the derived budgets, we may pinpoint

  5. Federal NOx Budget Trading Program and CAIR NOx and SO2 Trading Programs (40 CFR Part 97)

    EPA Pesticide Factsheets

    This part establishes general provisions and the applicability, permitting, allowance, excess emissions, monitoring, and opt-in provisions for the federal NOx Budget Trading Program as a means of mitigating interstate transport of ozone and nitrogen oxides

  6. Overview of the Global Nitrous Oxide Budget: The More We Think We Know, the Less We Really Know

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.

    2016-12-01

    The N2O budget is balanced in the real world, but our ability to account for past and present sources and sinks remains poor. This is true for both top-down atmospheric inversion models and bottom-up compilations of emission estimates by geographic region, economic sector, land use, and land management. Narrowing uncertainties would improve confidence in budgets and improve targeting of climate change mitigation. Estimates of the atmospheric lifetime of N2O range from 104 to 152 years, resulting in an uncertainty of nearly 5 Tg N2O-N/yr in atmospheric model inversion estimates of global sources. Top-down source estimates are also sensitive to the assumed pre-industrial, quasi-steady-state N2O concentration. However, land-use change and natural climatic variation in the centuries preceding the industrial revolution add uncertainty. While there is agreement that agricultural soils are now the largest single source of anthropogenic N2O emissions, recent estimates of direct emissions from fertilizer and manure application to soils range from 0.66 to 2.5 Tg N2O-N/yr. These discrepancies are due to differences in estimated activity data (application rates), in disaggregation of data by region and crop type, and in linear or nonlinear assumptions for estimating emission factors. Indirect N2O emissions (those occurring in downstream or downwind ecosystems receiving runoff or deposition derived from agricultural sources) have always been poorly constrained and difficult to estimate. It is unclear, for example, whether recent estimates of enhanced N2O emissions from oceans due to N inputs from land are already adequately accounted for by indirect emission estimates or are a previously underestimated source. Tropical deforestation generally results in a brief (months to years) increase in soil N2O emissions, followed by emissions from degraded lands that are lower than those of the original forest. The effect globally is probably a net reduction of soil emissions that should

  7. Budget impact analysis of trastuzumab in early breast cancer: a hospital district perspective.

    PubMed

    Purmonen, Timo T; Auvinen, Päivi K; Martikainen, Janne A

    2010-04-01

    Adjuvant trastuzumab is widely used in HER2-positive (HER2+) early breast cancer, and despite its cost-effectiveness, it causes substantial costs for health care. The purpose of the study was to develop a tool for estimating the budget impact of new cancer treatments. With this tool, we were able to estimate the budget impact of adjuvant trastuzumab, as well as the probability of staying within a given budget constraint. The created model-based evaluation tool was used to explore the budget impact of trastuzumab in early breast cancer in a single Finnish hospital district with 250,000 inhabitants. The used model took into account the number of patients, HER2+ prevalence, length and cost of treatment, and the effectiveness of the therapy. Probabilistic sensitivity analysis and alternative case scenarios were performed to ensure the robustness of the results. Introduction of adjuvant trastuzumab caused substantial costs for a relatively small hospital district. In base-case analysis the 4-year net budget impact was 1.3 million euro. The trastuzumab acquisition costs were partially offset by the reduction in costs associated with the treatment of cancer recurrence and metastatic disease. Budget impact analyses provide important information about the overall economic impact of new treatments, and thus offer complementary information to cost-effectiveness analyses. Inclusion of treatment outcomes and probabilistic sensitivity analysis provides more realistic estimates of the net budget impact. The length of trastuzumab treatment has a strong effect on the budget impact.

  8. Teaching the Federal Budget, National Debt, and Budget Deficit: Findings from High School Teachers

    ERIC Educational Resources Information Center

    Marri, Anand R.; Ahn, Meesuk; Crocco, Margaret Smith; Grolnick, Maureen; Gaudelli, William; Walker, Erica N.

    2011-01-01

    The issues surrounding the federal budget, national debt, and budget deficit are complex, but not beyond the reach of young students. This study finds scant treatment of the federal budget, national debt, and budget deficit in high schools today. It is hardly surprising that high school teachers spend so little time discussing these topics in…

  9. Quantification of methane and nitrous oxide emissions from various waste treatment facilities by tracer dilution method

    NASA Astrophysics Data System (ADS)

    Mønster, Jacob; Rella, Chris; Jacobson, Gloria; Kjeldsen, Peter; Scheutz, Charlotte

    2013-04-01

    tracer gas concentrations while another measured the nitrous oxide concentration. We present the performance of these instruments at different waste treatment facilities (waste water treatment plants, composting facilities, sludge mineralization beds, anaerobic digesters and landfills) in Denmark, and discuss the strengths and limitations of the method of the method for quantifying methane and nitrous oxide emissions from the different sources. Furthermore, we have measured the methane emissions from 10 landfills with emission rates ranging from 5 to 135 kg/h depending on the age, state, content and aftercare of the landfill. In addition, we have studied 3 waste water treatment plants, and found nitrous oxide emission of 200 to 700 g/h from the aeration tanks and a total methane emission ranging from 2 to 15 kg/h, with the primary emission coming from the sludge treatment. References Galle, B., Samuelsson, J., Svensson, B.H., and Börjesson, G. (2001). Measurements of methane emissions from landfills using a time correlation tracer method based on FTIR absorption spectroscopy. Environmental Science & Technology 35 (1), 21-25 Scheutz, C., Samuelsson, J., Fredenslund, A. M., and Kjeldsen, P. (2011). Quantification of multiple methane emission sources at landfills using a double tracer technique. Waste Management, 31(5), 1009-17 Solomon, S., D. Qin, M. Manning, R.B. Alley, T. Berntsen, N.L. Bindoff, Z. Chen, A. Chidthaisong, J.M. Gregory, G.C. Hegerl, M. Heimann, B. Hewitson, B.J. Hoskins, F. Joos, J. Jouzel, V. Kattsov, U. Lohmann, T.Matsuno, M. Molina, N. Nicholls, J.Overpeck, G. Raga, V. Ramaswamy, J. Ren, M. Rusticucci, R. Somerville, T.F. Stocker, P. Whetton, R.A.Wood and D. Wratt, 2007: Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  10. 75 FR 36117 - No Child Left Behind School Facilities and Construction Negotiated Rulemaking Committee-Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... visit; Brief update on school facilities FY11 budget; Review any language drafted by Committee members... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs No Child Left Behind School Facilities and... of Indian Affairs is announcing that the No Child Left Behind School Facilities and Construction...

  11. Using budget-friendly methods to analyze sport specific movements

    NASA Astrophysics Data System (ADS)

    Jackson, Lindsay; Williams, Sarah; Ferrara, Davon

    2015-03-01

    When breaking down the physics behind sport specific movements, athletes, usually professional, are often assessed in multimillion-dollar laboratories and facilities. Budget-friendly methods, such as video analysis using low-cost cameras, iPhone sensors, or inexpensive force sensors can make this process more accessible to amateur athletes, which in-turn can give insight into injury mechanisms. Here we present a comparison of two methods of determining the forces experienced by a cheerleader during co-education stunting and soccer goalies while side-diving. For the cheerleader, accelerometer measurements were taken by an iPhone 5 and compared to video analysis. The measurements done on the soccer players were taken using FlexiForce force sensors and again compared to video analysis. While these budget-friendly methods could use some refining, they show promise for producing usable measurements for possibly increasing our understanding of injury in amateur players. Furthermore, low-cost physics experiments with sports can foster an active learning environment for students with minimum physics and mathematical background.

  12. An Atmospheric Nitrogen Budget in the Pacific Northwest during the 1997-99 El Niño Southern Oscillation

    NASA Astrophysics Data System (ADS)

    Nergui, T.; Lamb, B. K.; Chung, S. H.

    2016-12-01

    Excess reactive nitrogen (N) from anthropogenic activities is known to cause detrimental effects on the environment. Natural climate variability such as the El Niño Southern Oscillation (ENSO) can affect regional N budgets due to spatial patterns of atmospheric transport and other meteorological conditions associated with ENSO forcing. This study aims to quantify atmospheric N fluxes over the Pacific Northwest to improve our understanding of how ENSO influences regional N budget. The WRF-MEGAN-SMOKE-CMAQ modeling framework is used to simulate atmospheric physical and chemical processes from summer of 1997 to summer of 1999, which includes one of the strongest ENSO events on record. Total N emissions over Washington, Idaho, and Oregon were about 357 Gg N in 1998, of which 96% was from transportation, electricity generation, and industrial activities. The emissions were about 110 Gg N in summer (Jun-Aug) and 63 Gg N in winter (Dec-Feb). This seasonality is mainly driven by emissions from agriculture, wildfire, and biogenic sources (32±16 Gg N), with a maximum in summer (49 Gg N) and a minimum in winter (9 Gg N). Regional total N deposition was about 259 Gg N in 1998, which was 72 % of the regional emissions. Total N deposition rates were lower (36 Gg N) in winter of 1997/1998 and higher in the following spring (82 Gg N) and summer (81 Gg N). Dry deposition is dominant over wet deposition in the region. Depending on the season, dry and wet deposition accounted for 49-70% and 30-51% of the total deposition rates, respectively. During the 1997-98 El Niño and 1998-99 La Niña winters, wet and dry deposition contributed about equally to the total deposition. A mass balance calculation with an assumption of no N accumulation in the troposphere indicates that about 26±9 Gg N was transported out of the region on a seasonal basis. Initial results for 1999 show that 32 Gg N was transported out of the region in 1997-98 El Niño winter, while the net N transport was about 27

  13. 77 FR 75451 - Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... upgraded licenses or license renewals to operate the controls at a nuclear reactor facility. This... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2012-0184] Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB) Review; Comment Request AGENCY: Nuclear Regulatory...

  14. Simulating the heat budget for waste as it is placed within a landfill operating in a northern climate.

    PubMed

    Megalla, Dina; Van Geel, Paul J; Doyle, James T

    2016-09-01

    A landfill gas to energy (LFGTE) facility in Ste. Sophie, Quebec was instrumented with sensors which measure temperature, oxygen, moisture content, settlement, total earth pressure, electrical conductivity and mounding of leachate. These parameters were monitored during the operating phase of the landfill in order to better understand the biodegradation and waste stabilization processes occurring within a LFGTE facility. Conceptual and numerical models were created to describe the heat transfer processes which occur within five waste lifts placed over a two-year period. A finite element model was created to simulate the temperatures within the waste and estimate the heat budget over a four and a half year period. The calibrated model was able to simulate the temperatures measured to date within the instrumented waste profile at the site. The model was used to evaluate the overall heat budget for the waste profile. The model simulations and heat budget provide a better understanding of the heat transfer processes occurring within the landfill and the relative impact of the various heat source/sink and storage terms. Aerobic biodegradation appears to play an important role in the overall heat budget at this site generating 36% of the total heat generated within the waste profile during the waste placement stages of landfill operations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyu; Gurney, Kevin R.

    2011-07-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are drivenmore » by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil

  16. Congressional hearing reviews NSF major research and facilities projects

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-03-01

    An 8 March congressional hearing about the U.S. National Science Foundation's Major Research Equipment and Facilities Construction (NSF MREFC) account focused on fiscal management and accountability of projects in that account and reviewed concerns raised by NSF's Office of Inspector General (OIG). NSF established the MREFC account in 1995 to better plan and manage investments in major equipment and facilities projects, which can cost from tens of millions to hundreds of millions of dollars, and the foundation has funded 17 MREFC projects since then. The Obama administration's proposed fiscal year (FY) 2013 budget includes funding for four MREFC projects: Advanced Laser Gravitational-Wave Observatory (AdvLIGO), Advanced Technology Solar Telescope (ATST), National Ecological Observatory (NEON), and Ocean Observatories Initiative (OOI). The hearing, held by a subcommittee of the House of Representatives' Committee on Science, Space, and Technology, reviewed management oversight throughout the life cycles of MREFC projects and concerns raised in recent OIG reports about the use of budget contingency funds. NSF's February 2012 manual called "Risk management guide for large facilities" states that cost contingency is "that portion of the project budget required to cover `known unknowns,'" such as planning and estimating errors and omissions, minor labor or material price fluctuations, and design developments and changes within the project scope. Committee members acknowledged measures that NSF has made to improve the MREFC oversight process, but they also urged the agency to continue to take steps to ensure better project management.

  17. A Decision Tool to Evaluate Budgeting Methodologies for Estimating Facility Recapitalization Requirements

    DTIC Science & Technology

    2008-03-01

    1 . Maintenance Practices Influence Service Life .......................................................... 11 2 . Expectations or Standards May...BRB, 1991, p. 1 - 2 ) Additionally, public sector organizations typically have a larger inventory of facilities to maintain, making asset management...questions were answered. 1 . What are the long term causes and effects of under-funding the maintenance of facilities? 2 . What methods currently

  18. 40 CFR 62.3918 - Identification of plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Iowa Mercury Emissions...) Identification of sources. The plan applies to all new and existing mercury budget units meeting the... portion of the plan applicable to mercury budget units as described in Iowa State rule 567-34.301 is...

  19. 40 CFR 62.3918 - Identification of plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Iowa Mercury Emissions...) Identification of sources. The plan applies to all new and existing mercury budget units meeting the... portion of the plan applicable to mercury budget units as described in Iowa State rule 567-34.301 is...

  20. 40 CFR 62.3918 - Identification of plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Iowa Mercury Emissions...) Identification of sources. The plan applies to all new and existing mercury budget units meeting the... portion of the plan applicable to mercury budget units as described in Iowa State rule 567-34.301 is...

  1. 40 CFR 62.3918 - Identification of plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Iowa Mercury Emissions...) Identification of sources. The plan applies to all new and existing mercury budget units meeting the... portion of the plan applicable to mercury budget units as described in Iowa State rule 567-34.301 is...

  2. 40 CFR 62.3918 - Identification of plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Iowa Mercury Emissions...) Identification of sources. The plan applies to all new and existing mercury budget units meeting the... portion of the plan applicable to mercury budget units as described in Iowa State rule 567-34.301 is...

  3. A toy model for estimating N2O emissions from natural soils

    NASA Technical Reports Server (NTRS)

    Fung, Inez

    1992-01-01

    A model of N2O emissions from natural soils, whose ultimate objective is to evaluate what contribution natural ecosystems make to the global N2O budget and how the contribution would change with global change, is presented. Topics covered include carbon and nitrogen available in the soil, delivery of nitrifiable N, soil water and oxygen status, soil water budget model, effects of drainage, nitrification and denitrification potentials, soil fertility, N2O production, and a model evaluation. A major implication of the toy model is that the tropics account for more than 80 percent of global emission.

  4. PSE-HMM: genome-wide CNV detection from NGS data using an HMM with Position-Specific Emission probabilities.

    PubMed

    Malekpour, Seyed Amir; Pezeshk, Hamid; Sadeghi, Mehdi

    2016-11-03

    Copy Number Variation (CNV) is envisaged to be a major source of large structural variations in the human genome. In recent years, many studies apply Next Generation Sequencing (NGS) data for the CNV detection. However, still there is a necessity to invent more accurate computational tools. In this study, mate pair NGS data are used for the CNV detection in a Hidden Markov Model (HMM). The proposed HMM has position specific emission probabilities, i.e. a Gaussian mixture distribution. Each component in the Gaussian mixture distribution captures a different type of aberration that is observed in the mate pairs, after being mapped to the reference genome. These aberrations may include any increase (decrease) in the insertion size or change in the direction of mate pairs that are mapped to the reference genome. This HMM with Position-Specific Emission probabilities (PSE-HMM) is utilized for the genome-wide detection of deletions and tandem duplications. The performance of PSE-HMM is evaluated on a simulated dataset and also on a real data of a Yoruban HapMap individual, NA18507. PSE-HMM is effective in taking observation dependencies into account and reaches a high accuracy in detecting genome-wide CNVs. MATLAB programs are available at http://bs.ipm.ir/softwares/PSE-HMM/ .

  5. SWEIS Yearbook-2012 Comparison of 2012 Data to Projections of the 2008 Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, Hallie B.; Wright, Marjorie Alys

    2014-01-16

    Los Alamos National Laboratory (LANL or the Laboratory) operations data for Calendar Year (CY) 2012 mostly fell within the 2008 Site-Wide Environmental Impact Statement (SWEIS) projections. Operation levels for one LANL facility exceeded the 2008 SWEIS capability projections—Radiochemistry Facility; however, none of the capability increases caused exceedances in radioactive air emissions, waste generation, or National Pollutant Discharge Elimination System (NPDES) discharge. Several facilities exceeded the2008 SWEIS levels for waste generation quantities; however, all were one-time, non-routine events that do not reflect the day-to-day operations of the Laboratory. In addition, total site-wide waste generation quantities were below SWEIS projections for allmore » waste types, reflecting the overall levels of operations at both the Key and Non-Key Facilities. Although gas and electricity consumption have remained within the 2008 SWEIS limits for utilities, water consumption exceeded the 2008 SWEIS projections by 27 million gallons in CY 2012.« less

  6. Net mitigation potential of straw return to Chinese cropland: estimation with a full greenhouse gas budget model.

    PubMed

    Lu, Fei; Wang, Xiaoke; Han, Bing; Ouyang, Zhiyun; Duan, Xiaonan; Zheng, Hua

    2010-04-01

    Based on the carbon-nitrogen cycles and greenhouse gas (GHG) mitigation and emission processes related to straw return and burning, a compound greenhouse gas budget model, the "Straw Return and Burning Model" (SRBM), was constructed to estimate the net mitigation potential of straw return to the soil in China. As a full GHG budget model, the SRBM addressed the following five processes: (1) soil carbon sequestration, (2) mitigation of synthetic N fertilizer substitution, (3) methane emission from rice paddies, (4) additional fossil fuel use for straw return, and (5) CH4 and N2O emissions from straw burning in the fields. Two comparable scenarios were created to reflect different degrees of implementation for straw return and straw burning. With GHG emissions and mitigation effects of the five processes converted into global warming potential (GWP), the net GHG mitigation was estimated. We concluded that (1) when the full greenhouse gas budget is considered, the net mitigation potential of straw return differs from that when soil carbon sequestration is considered alone; (2) implementation of straw return across a larger area of cropland in 10 provinces (i.e., Shanghai, Jiangsu, Zhejiang, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, and Hainan) will increase net GHG emission; (3) if straw return is promoted as a feasible mitigation measure in the remaining provinces, the total net mitigation potential before soil organic carbon (SOC) saturation will be 71.89 Tg CO2 equivalent (eqv)/yr, which is equivalent to 1.733% of the annual carbon emission from fossil fuel use in China in 2003; (4) after SOC saturation, only 13 of 21 provinces retain a relatively small but permanent net mitigation potential, while in the others the net GHG mitigation potential will gradually diminish; and (5) the major obstacle to the feasibility or permanence of straw return as a mitigation measure is the increased CH4 emission from rice paddies. The paper also suggests that comparable

  7. Understanding the Budget Battle.

    ERIC Educational Resources Information Center

    Hritz, Townley

    1996-01-01

    Describes Head Start's financial uncertainty for the future due to the government's budget battle. Presents information on the key points in the budget process, how that process got off track in fiscal year 1996, the resulting government shutdowns, and how Head Start can prepare for the 1997 budget debates. (MOK)

  8. Nanoscale semiconductor-insulator-metal core/shell heterostructures: facile synthesis and light emission.

    PubMed

    Li, Gong Ping; Chen, Rui; Guo, Dong Lai; Wong, Lai Mun; Wang, Shi Jie; Sun, Han Dong; Wu, Tom

    2011-08-01

    Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO(2) and In(2)O(3) are used as examples. We also show that linear chains of short ZnO nanorods embedded in MgO nanotubes and porous MgO nanotubes can be obtained by taking advantage of the reduced thermal stability of the ZnO core. Furthermore, after MgO shell-coating and the appropriate annealing treatment, the intensity of the ZnO near-band-edge UV emission becomes much stronger, showing a 25-fold enhancement. The intensity ratio of the UV/visible emission can be increased further by decorating the surface of the ZnO/MgO nanowires with high-density plasmonic Au nanoparticles. These heterostructured semiconductor-insulator-metal nanowires with tailored morphologies and enhanced functionalities have great potential for use as nanoscale building blocks in photonic and electronic applications. This journal is © The Royal Society of Chemistry 2011

  9. Budget cuts.

    PubMed

    1996-05-31

    The House of Representatives approved a Federal budget for fiscal 1997. The budget calls for cutting $1.5 billion from the current $23 billion budget for the Department of Health and Human Services (DHHS). Only half of the DHHS money goes to the National Institutes of Health, whose research programs were expected to remain intact. DHHS programs, such as the Ryan White CARE Act and prevention programs run by the Centers for Disease Control and Prevention (CDC) are likely to bear the brunt of the cuts. The House Veterans Affairs/Housing and Urban Development appropriations bill will be reviewed during the week of June 3, 1996. The Senate envisions a $1.5 billion reduction in DHHS programs, although the action is not final.

  10. Compressed Gas Safety for Experimental Fusion Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertialmore » fusion experiments.« less

  11. 42 CFR 457.140 - Budget.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Budget. 457.140 Section 457.140 Public Health... Child Health Insurance Programs and Outreach Strategies § 457.140 Budget. The State plan, or plan amendment that has a significant impact on the approved budget, must include a budget that describes the...

  12. How to determine the GHG budget of a pasture field with grazing animals

    NASA Astrophysics Data System (ADS)

    Ammann, Christof; Neftel, Albrecht; Felber, Raphael

    2016-04-01

    Up to now the scientific investigation and description of the agriculture related greenhouse gas (GHG) exchange has been largely separated into (i) direct animal related and (ii) ecosystem area related processes and measurement methods. An overlap of the two usually separated topics occurs for grazed pastures, where direct animal and pasture area emissions are relevant. In the present study eddy covariance (EC) flux measurements on the field scale were combined with a source location attribution (footprint) model and with GPS position measurements of the individual animals. The experiment was performed on a pasture field in Switzerland under a rotational full grazing regime with dairy cows. The exchange fluxes of CH4, CO2, and N2O were measured simultaneously over the entire year. The observed CH4 emission fluxes correlated well with the presence of cows in the flux footprint. When converted to average emission per cow, the results agreed with published values from respiration chamber experiments with similar cows. For CO2 a sophisticated partitioning algorithm was applied to separate the pasture and animal contributions, because both were in the same order of magnitude. The N2O exchange fully attributable to the pasture soil showed considerable and continuous emissions through the entire seasonal course mainly modulated by soil moisture and temperature. The resulting GHG budget shows that the largest GHG effect of the pasture system was due to enteric CH4 emissions followed by soil N2O emissions, but that the carbon storage change was affected by a much larger uncertainty. The results demonstrate that the EC technique in combination with animal position information allows to consistently quantify the exchange of all three GHG on the pasture and to adequately distinguish between direct animal and diffuse area sources (and sinks). Yet questions concerning a standardized attribution of animal related emissions to the pasture GHG budget still need to be resolved.

  13. Advance Appropriations: A Needless and Confusing Education Budget Technique. Federal Education Budget Project

    ERIC Educational Resources Information Center

    Delisle, Jason

    2007-01-01

    This report argues that advance appropriations serve no functional purpose for schools, but they create a loss of transparency, comparability, and simplicity in federal education budgeting. It allocates spending before future budgets have been established. The approach was originally used to skirt spending limits and budget procedures in place…

  14. A radiometric model of an earth radiation budget radiometer optical system with diffuse-specular surfaces

    NASA Technical Reports Server (NTRS)

    Luther, M. R.

    1981-01-01

    The Earth Radiation Budget Experiment (ERBE) is to fly on NASA's Earth Radiation Budget Satellite (ERBS) and on NOAA F and NOAA G. Large spatial scale earth energy budget data will be derived primarily from measurements made by the ERBE nonscanning instrument (ERBE-NS). A description is given of a mathematical model capable of simulating the radiometric response of any of the ERBE-NS earth viewing channels. The model uses a Monte Carlo method to accurately account for directional distributions of emission and reflection from optical surfaces which are neither strictly diffuse nor strictly specular. The model computes radiation exchange factors among optical system components, and determines the distribution in the optical system of energy from an outside source. Attention is also given to an approach for implementing the model and results obtained from the implementation.

  15. ­­Secondary organic aerosol formation from photo-oxidation of wood combustion emissions: Characterization of gas phase precursors and their link to SOA budget

    NASA Astrophysics Data System (ADS)

    Bhattu, D.; Stefenelli, G.; Zotter, P.; Zhou, J.; Nussbaumer, T.; Bertrand, A.; Marchand, N.; Termine-Roussel, B.; Baltensperger, U.; Slowik, J.; Prevot, A. S.; El-Haddad, I.; Dommen, J.

    2016-12-01

    Current legislation limits the emission of particulate matter, but does not regulate the precursors potentially forming secondary organic aerosol (SOA). Recent literature has shown that only 22 non-traditional SOA precursors from residential wood combustion explains 84-116% of the observed SOA mass whereas traditional precursors in the models account for only 3-27% of the SOA mass (Bruns et al., 2016). Investigation of gas phase emissions from wood combustion and their SOA formation potential have largely focused on single combustion devices with limited operating conditions. As, both primary emissions and SOA formation is a strong function of device type, load, fuel and operating conditions, we have performed a detailed chamber study investigating the gas-phase precursors from beech wood using three combustion devices namely a pellet boiler (combustion conditions: optimum, lack and excess of oxygen), an industrial wood chip grate boiler (30% and 100% power), and a log wood stove (varying fuel load and moisture content) using a potential aerosol mass reactor (PAM) with varying OH exposure. The short residence time in the reactor allowed a time resolved picture of SOA production potential and reduced wall losses. The main aim of this study is to characterize the primary and aged gaseous emissions and investigate their SOA formation potential depending on their mass yield, molecular structures, functional groups and OH reactivity in order to ascertain the contribution of residential wood burning in total carbonaceous OA budget. The physical and chemical effects of different OA aging conditions were monitored using an SMPS, an Aethalometer, an HR-ToF-AMS, as well as a PTR-ToF-MS and other gas monitors. In pellet boiler, significant SOA mass enhancement is observed in excess oxygen conditions compared to optimum and oxygen deprived conditions. Highest gas phase emissions from wood stove are observed at cold start (start of each burn cycle) and lowest in burn out phase

  16. The first federal budget under Prime Minister Justin Trudeau: Addressing social determinants of health?

    PubMed

    Ruckert, Arne; Labonté, Ronald

    2016-08-15

    A challenging budget environment during the Harper years has meant that crucial investments in the social determinants of health (SDHs) have increasingly been neglected. The tabling of what is widely considered a more progressive budget with expansionary fiscal elements under the new Prime Minister, Justin Trudeau, raises the question as to what extent this budget invests in policy areas that are crucial for achieving a more equitable distribution in the social determinants of health, as promised in the Liberal party platform. In this commentary, we argue that the first Liberal budget represents a step in the right direction, but that this first step needs to be followed up with a sustained commitment to address the pervasive (and unfair) social inequalities that are the root cause of persistent health inequities in Canada. We conclude that the first Trudeau budget, while moving in the right direction, does not fully embody the sustained policy changes needed to effectively address SDHs, including a more expansive role for the federal government in the redistribution of income and wealth.

  17. Upward revision of global fossil fuel methane emissions based on isotope database.

    PubMed

    Schwietzke, Stefan; Sherwood, Owen A; Bruhwiler, Lori M P; Miller, John B; Etiope, Giuseppe; Dlugokencky, Edward J; Michel, Sylvia Englund; Arling, Victoria A; Vaughn, Bruce H; White, James W C; Tans, Pieter P

    2016-10-06

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  18. Baseline budgeting for continuous improvement.

    PubMed

    Kilty, G L

    1999-05-01

    This article is designed to introduce the techniques used to convert traditionally maintained department budgets to baseline budgets. This entails identifying key activities, evaluating for value-added, and implementing continuous improvement opportunities. Baseline Budgeting for Continuous Improvement was created as a result of a newly named company president's request to implement zero-based budgeting. The president was frustrated with the mind-set of the organization, namely, "Next year's budget should be 10 to 15 percent more than this year's spending." Zero-based budgeting was not the answer, but combining the principles of activity-based costing and the Just-in-Time philosophy of eliminating waste and continuous improvement did provide a solution to the problem.

  19. 40 CFR 62.14106 - Emission limits for municipal waste combustor fugitive ash emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the atmosphere from that affected facility visible emissions of combustion ash from an ash conveying... paragraph (a) of this section does cover visible emissions discharged to the atmosphere from buildings or...

  20. Reform of Budgeting for Acquisition: Lessons from Private Sector Capital Budgeting for the Department of Defense

    DTIC Science & Technology

    2006-04-30

    Åèìáëáíáçå= oÉëÉ~êÅÜ=póãéçëáìã= REFORM OF BUDGETING FOR ACQUISITION: LESSONS FROM PRIVATE SECTOR CAPITAL BUDGETING FOR THE DEPARTMENT OF DEFENSE...TITLE AND SUBTITLE Reform of Budgeting for Acquisition: Lessons from Private Sector Capital Budgeting for the Department of Defense 5a. CONTRACT...Reform of Budgeting for Acquisition: Lessons from Private Sector Capital Budgeting for the Department of Defense Presenter: Jerry McCaffery, PhD, serves

  1. 40 CFR 61.183 - Emission monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.183 Emission monitoring. (a... arsenic trioxide and metallic arsenic process emission stream that exits from a control device. (b) The...

  2. 40 CFR 61.183 - Emission monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.183 Emission monitoring. (a... arsenic trioxide and metallic arsenic process emission stream that exits from a control device. (b) The...

  3. The relationship between budget allocated and budget utilized of faculties in an academic institution

    NASA Astrophysics Data System (ADS)

    Aziz, Wan Noor Hayatie Wan Abdul; Aziz, Rossidah Wan Abdul; Shuib, Adibah; Razi, Nor Faezah Mohamad

    2014-06-01

    Budget planning enables an organization to set priorities towards achieving certain goals and to identify the highest priorities to be accomplished with the available funds, thus allowing allocation of resources according to the set priorities and constraints. On the other hand, budget execution and monitoring enables allocated funds or resources to be utilized as planned. Our study concerns with investigating the relationship between budget allocation and budget utilization of faculties in a public university in Malaysia. The focus is on the university's operations management financial allocation and utilization based on five categories which are emolument expenditure, academic or services and supplies expenditure, maintenance expenditure, student expenditure and others expenditure. The analysis on financial allocation and utilization is performed based on yearly quarters. Data collected include three years faculties' budget allocation and budget utilization performance involving a sample of ten selected faculties of a public university in Malaysia. Results show that there are positive correlation and significant relationship between quarterly budget allocation and quarterly budget utilization. This study found that emolument give the highest contribution to the total allocation and total utilization for all quarters. This paper presents some findings based on statistical analysis conducted which include descriptive statistics and correlation analysis.

  4. 13 CFR 130.460 - Budget justification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Budget justification. 130.460... CENTERS § 130.460 Budget justification. The SBDC Director, as a part of the renewal application, or the... submit to the SBA Project Officer the budget justification for the upcoming budget period. The budget...

  5. Spatial relationships of sector-specific fossil fuel CO2 emissions in the United States

    NASA Astrophysics Data System (ADS)

    Zhou, Yuyu; Gurney, Kevin Robert

    2011-09-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multistate spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multistate perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements.

  6. Balancing effluent quality, economic cost and greenhouse gas emissions during the evaluation of (plant-wide) control/operational strategies in WWTPs.

    PubMed

    Flores-Alsina, Xavier; Arnell, Magnus; Amerlinck, Youri; Corominas, Lluís; Gernaey, Krist V; Guo, Lisha; Lindblom, Erik; Nopens, Ingmar; Porro, Jose; Shaw, Andy; Snip, Laura; Vanrolleghem, Peter A; Jeppsson, Ulf

    2014-01-01

    The objective of this paper was to show the potential additional insight that result from adding greenhouse gas (GHG) emissions to plant performance evaluation criteria, such as effluent quality (EQI) and operational cost (OCI) indices, when evaluating (plant-wide) control/operational strategies in wastewater treatment plants (WWTPs). The proposed GHG evaluation is based on a set of comprehensive dynamic models that estimate the most significant potential on-site and off-site sources of CO₂, CH₄ and N₂O. The study calculates and discusses the changes in EQI, OCI and the emission of GHGs as a consequence of varying the following four process variables: (i) the set point of aeration control in the activated sludge section; (ii) the removal efficiency of total suspended solids (TSS) in the primary clarifier; (iii) the temperature in the anaerobic digester; and (iv) the control of the flow of anaerobic digester supernatants coming from sludge treatment. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects of increased GHG production when carrying out local energy optimization of the aeration system in the activated sludge section and energy recovery from the AD. Although off-site CO₂ emissions may decrease, the effect is counterbalanced by increased N₂O emissions, especially since N₂O has a 300-fold stronger greenhouse effect than CO₂. The reported results emphasize the importance and usefulness of using multiple evaluation criteria to compare and evaluate (plant-wide) control strategies in a WWTP for more informed operational decision making. © 2013.

  7. Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011

    NASA Astrophysics Data System (ADS)

    Morino, Y.; Ohara, T.; Nishizawa, M.

    2011-12-01

    To understand the atmospheric behavior of radioactive materials emitted from the Fukushima Daiichi nuclear power plant after the nuclear accident that accompanied the great Tohoku earthquake and tsunami on 11 March 2011, we simulated the transport and deposition of iodine-131 and cesium-137 using a chemical transport model. The model roughly reproduced the observed temporal and spatial variations of deposition rates over 15 Japanese prefectures (60-400 km from the plant), including Tokyo, although there were some discrepancies between the simulated and observed rates. These discrepancies were likely due to uncertainties in the simulation of emission, transport, and deposition processes in the model. A budget analysis indicated that approximately 13% of iodine-131 and 22% of cesium-137 were deposited over land in Japan, and the rest was deposited over the ocean or transported out of the model domain (700 × 700 km2). Radioactivity budgets are sensitive to temporal emission patterns. Accurate estimation of emissions to the air is important for estimation of the atmospheric behavior of radionuclides and their subsequent behavior in land water, soil, vegetation, and the ocean.

  8. Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011

    NASA Astrophysics Data System (ADS)

    Morino, Yu; Ohara, Toshimasa; Nishizawa, Masato

    2011-09-01

    To understand the atmospheric behavior of radioactive materials emitted from the Fukushima Daiichi nuclear power plant after the nuclear accident that accompanied the great Tohoku earthquake and tsunami on 11 March 2011, we simulated the transport and deposition of iodine-131 and cesium-137 using a chemical transport model. The model roughly reproduced the observed temporal and spatial variations of deposition rates over 15 Japanese prefectures (60-400 km from the plant), including Tokyo, although there were some discrepancies between the simulated and observed rates. These discrepancies were likely due to uncertainties in the simulation of emission, transport, and deposition processes in the model. A budget analysis indicated that approximately 13% of iodine-131 and 22% of cesium-137 were deposited over land in Japan, and the rest was deposited over the ocean or transported out of the model domain (700 × 700 km2). Radioactivity budgets are sensitive to temporal emission patterns. Accurate estimation of emissions to the air is important for estimation of the atmospheric behavior of radionuclides and their subsequent behavior in land water, soil, vegetation, and the ocean.

  9. From Radio with Love: An Overview of the Role of Radio Observations in Understanding High-Energy Emission from Active Galaxies

    NASA Technical Reports Server (NTRS)

    Ojha, Roopesh

    2012-01-01

    The gamma-ray satellite Fermi and the ground based TeV facilities MAGIC, VERITAS and HESS have ushered in a new era in the observation of high-energy emission from active galaxies. The energy budgets of these objects have a major contribution from gamma-rays and it is simply not possible to understand their physics without high-energy observations. Though the exact mechanisms for high-energy production in galaxies remains an open question, gamma-rays typically result from interactions between high-energy particles. Via different interactions these same particles can produce radio emission. Thus the non-thermal nature of gamma-ray emission practically guarantees that high-energy emitters are also radio loud. Aside from their obvious role as a component of multiwavelength analysis, radio observations provide two crucial elements essential to understanding the source structure and physical processes of high-energy emitters: very high timing resolution and very high spatial resolution. A brief overview of the unique role played by radio observations in unraveling the mysteries of the high energy Universe as presented here.

  10. Public Budgeting: The Compromises Among the Sound Budgeting Principles in Contingency Funding

    DTIC Science & Technology

    2017-06-01

    sound decisions (including the full financial costs and benefits of the budget decisions, and the impacts thereof) and be made accessible to all...is also seen when all relevant data and costs projections result, in a timely manner, in a budget document that is accessible by the public . A medium...include all relevant data and costs projections, and makes information accessible to the public for review in a timely manner. The budget

  11. California's Methane Budget derived from CalNex P-3 Aircraft Observations and the WRF-STILT Lagrangian Transport Model

    NASA Astrophysics Data System (ADS)

    Santoni, G. W.; Xiang, B.; Kort, E. A.; Daube, B.; Andrews, A. E.; Sweeney, C.; Wecht, K.; Peischl, J.; Ryerson, T. B.; Angevine, W. M.; Trainer, M.; Nehrkorn, T.; Eluszkiewicz, J.; Wofsy, S. C.

    2012-12-01

    We present constraints on California emission inventories of methane (CH4) using atmospheric observations from nine NOAA P-3 flights during the California Nexus (CalNex) campaign in May and June of 2010. Measurements were made using a quantum cascade laser spectrometer (QCLS) and a cavity ring-down spectrometer (CRDS) and calibrated to NOAA standards in-flight. Five flights sampled above the northern and southern central valley and an additional four flights probed the south coast air basin, quantifying emissions from the Los Angeles basin. The data show large (>100 ppb) CH4 enhancements associated with point and area sources such as cattle and manure management, landfills, wastewater treatment, gas production and distribution infrastructure, and rice agriculture. We compare aircraft observations to modeled CH4 distributions by accounting for a) transport using the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by Weather Research and Forecasting (WRF) meteorology, b) emissions from inventories such as EDGAR and ones constructed from California-specific state and county databases, each gridded to 0.1° x 0.1° resolution, and c) spatially and temporally evolving boundary conditions such as GEOS-Chem and a NOAA aircraft profile measurement derived curtain imposed at the edge of the WRF domain. After accounting for errors associated with transport, planetary boundary layer height, lateral boundary conditions, seasonality of emissions, and the spatial resolution of surface emission prior estimates, we find that the California Air Resources Board (CARB) CH4 budget is a factor of 1.64 too low. Using a Bayesian inversion to the flight data, we estimate California's CH4 budget to be 2.5 TgCH4/yr, with emissions from cattle and manure management, landfills, rice, and natural gas infrastructure, representing roughly 82%, 26%, 9% and 32% (sum = 149% with other sources accounting for the additional 15%) of the current CARB CH4 budget estimate of 1.52 TgCH4

  12. 40 CFR 63.5799 - How do I calculate my facility's organic HAP emissions on a tpy basis for purposes of determining...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Calculating Organic Hap Emissions Factors for Open Molding and Centrifugal Casting § 63.5799 How do I.../casting operations, or a new facility that does not have any of the following operations: Open molding... coat is applied to an open centrifugal mold using open molding application techniques. Table 1 and the...

  13. 40 CFR 63.5799 - How do I calculate my facility's organic HAP emissions on a tpy basis for purposes of determining...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Calculating Organic Hap Emissions Factors for Open Molding and Centrifugal Casting § 63.5799 How do I.../casting operations, or a new facility that does not have any of the following operations: Open molding... coat is applied to an open centrifugal mold using open molding application techniques. Table 1 and the...

  14. Potential of windbreak trees to reduce carbon emissions by agricultural operations in the US

    Treesearch

    William Ballesteros-Possu; James R. Brandle; Michele Schoeneberger

    2017-01-01

    Along with sequestering C in forest, trees on farms are able to contribute to greenhouse mitigation through emission avoidance mechanisms. To evaluate the magnitude of these contributions, emission avoidance contributions for field and farmstead windbreak designs in regions across the United States were estimated, along with greenhouse gas (GHG) emission budgets for...

  15. Instructional Equipment Funding in California Public Higher Education. A Report to the Legislature in Response to Supplemental Language in the 1985-86 Budget Act. Commission Report 85-38.

    ERIC Educational Resources Information Center

    California State Postsecondary Education Commission, Sacramento.

    Budgeting for instructional equipment at California's public colleges and universities is considered. Information is provided on how the University of California and the California State University budget the replacement of existing instructional equipment as well as instructional equipment in new or altered facilities. Methods used by the…

  16. 40 CFR 97.254 - Compliance with CAIR SO2 emissions limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Compliance with CAIR SO2 emissions... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR SO2 Allowance Tracking System § 97.254 Compliance with CAIR SO2 emissions limitation. (a) Allowance transfer...

  17. 40 CFR 96.254 - Compliance with CAIR SO2 emissions limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Compliance with CAIR SO2 emissions... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR SO2 Allowance Tracking System § 96.254 Compliance with CAIR SO2 emissions limitation...

  18. Taking climate, land use, and social economy into estimation of carbon budget in the Guanzhong-Tianshui Economic Region of China.

    PubMed

    Li, Ting; Li, Jing; Zhou, Zixiang; Wang, Yanze; Yang, Xiaonan; Qin, Keyu; Liu, Jingya

    2017-04-01

    Carbon sequestration is an indispensable ecosystem service provided by soil and vegetation, so mapping and valuing the carbon budget by considering both ecological and social factors is an important trend in evaluating ecosystem services. In this work, we established multiple scenarios to evaluate the impacts of land use change, population growth, carbon emission per capita, and carbon markets on carbon budget. We quantified carbon sinks (aboveground and belowground) under different scenarios, using the Carnegie-Ames-Stanford Approach (CASA) model and an improved carbon cycle process model, and studied carbon sources caused by human activities by analyzing the spatial distribution of human population and carbon emission per capita. We also assessed the net present value (NPV) for carbon budgets under different carbon price and discount rate scenarios using NPV model. Our results indicate that the carbon budget of Guanzhong-Tianshui Economic Region is surplus: Carbon sinks range from 1.50 × 10 10 to 1.54 × 10 10  t, while carbon sources caused by human activities range from 2.76 × 10 5 to 7.60 × 10 5  t. And the NPV for carbon deficits range from 3.20 × 10 11 RMB to 1.52 × 10 12 RMB. From the perspective of ecological management, deforestation, urban sprawl, population growth, and excessive carbon consumption are considered as the main challenges in balancing carbon sources and sinks. Levying carbon tax would be a considerable option when decision maker develops carbon emission reduction policies. Our results provide a scientific and credible reference for harmonious and sustainable development in the Guanzhong-Tianshui Economic Region of China.

  19. Perspectives On The Global Budget of Methane

    NASA Astrophysics Data System (ADS)

    Khalil, M. K.; Butenhoff, C. L.; Shearer, M. J.

    2008-12-01

    Early budgets of methane focused on the emissions from individual sources but the estimates had large uncertainties. These uncertainties have been reduced considerably in recent years, but we need an understanding of the trends in the sources as well as their spatial distributions if we are to use methane to control global warming. A nearly 30 year long time series of global atmospheric methane concentrations has accumulated that can provide some of the answers. One of the most dramatic findings is that the increase of methane has nearly stopped in the last decade. But the record also shows that the trend was falling ever since systematic measurements were taken, and perhaps even before that. This finding has led to some puzzles. There is a belief that the anthropogenic sources of methane are increasing but to explain the falling trend we need decreasing sources (or increasing sinks). In fact, the atmospheric measurements show only that the most probable explanation for the decreasing trend and the present near constancy of concentrations is that the global source of methane has been more or less constant over the last 30 years with many short-term ups and downs. Moreover, there is good evidence that some of the major man-made sources of methane, such as cattle, biomass burning and possibly others, have stopped increasing some time back and other sources such as rice agriculture may have decreased over the last 30 years. This allows some smaller energy based sources to have increased, consistent with expectations, and balance out the decreasing sources to keep the total more or less constant. A credible quantitative case can be made for a stable global source based on available information on the trends of the various sources and sinks of methane, but uncertainties remain. We will argue that the stability of sources and sinks is the most likely explanation of the methane concentration trends. We will use this result to re-evaluate the future of man- made methane

  20. Facilities maintenance handbook

    NASA Technical Reports Server (NTRS)

    1991-01-01

    develop management information in order to statistically identify and analyze variances from those plans. It will also add credibility to the NASA facilities maintenance budgeting process. The key to a successful maintenance program is the understanding and support of the senior Center managers.

  1. 40 CFR 61.52 - Emission standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Mercury § 61.52 Emission standard. (a) Emissions to the atmosphere from mercury ore processing facilities and mercury cell chlor-alkali plants shall not exceed 2.3 kg (5.1 lb) of mercury per 24-hour period. (b) Emissions to the...

  2. Experimental facility for the study of acoustic emission registered in the primary circuit components of WWER power units

    NASA Astrophysics Data System (ADS)

    Petrosyan, V. G.; Hovakimyan, T. H.; Yeghoyan, E. A.; Hovhannisyan, H. T.; Mayilyan, D. G.; Petrosyan, A. P.

    2017-01-01

    This paper is dedicated to the creation of a facility for the experimental study of a phenomenon of background acoustic emission (AE), which is detected in the main circulation loop (MCL) of WWER power units. The analysis of the operating principle and the design of a primary feed-and-blow down system (FB) deaerator of NPP as the most likely source of continuous acoustic emission is carried out. The experimental facility for the systematic study of a phenomenon of continuous AE is developed. A physical model of a thermal deaerator is designed and constructed. A thermal monitoring system is introduced. An automatic system providing acoustic signal registration in a low frequency (0.03-30 kHz) and high frequency (30-300 kHz) bands and study of its spectral characteristics is designed. Special software for recording and processing of digitized electrical sensor signals is developed. A separate and independent principle of study of the most probable processes responsible for the generation of acoustic emission signals in the deaerator is applied. Trial series of experiments and prechecks of acoustic signals in different modes of the deaerator model are conducted. Compliance of basic technological parameters with operating range of the real deaerator was provided. It is shown that the acoustic signal time-intensity curve has several typical regions. The pilot research showed an impact of various processes that come about during the operation of the deaerator physical model on the intensity of the AE signal. The experimental results suggest that the main sources of generation of the AE signals are the processes of steam condensation, turbulent flow of gas-vapor medium, and water boiling.

  3. Effects of anode geometry on forward wide-angle neon ion emissions in 3.5 kJ plasma focus device by novel mega-size panorama polycarbonate image detectors

    NASA Astrophysics Data System (ADS)

    Sohrabi, M.; Soltani, Z.; Sarlak, Z.

    2018-03-01

    Forward wide-angle neon ion emissions in a 3.5 kJ plasma focus device (PFD) were studied using 5 different anode top geometries; hollow-end cylinder, solid triangle, solid hemisphere, hollow-end cone and flat-end cone. Position-sensitive mega-size panorama polycarbonate ion image detectors (MS-PCID) developed by dual-cell circular mega-size electrochemical etching (MS-ECE) systems were applied for processesing wide-angle neon ion images on MS-PCIDs exposed on the PFD cylinder top base under a single pinch shot. The images can be simply observed, analyzed and relatively quantified in terms of ion emission angular distributions even by the unaided eyes. By analysis of the forward neon ion emission images, the ion emission yields, ion emission angular distributions, iso-fluence ion contours and solid angles of ion emissions in 4π PFD space were determined. The neon ion emission yields on the PFD cylinder top base are in an increasing order ~2.1×109, ~2.2 ×109, ~2.8×109, ~2.9×109, and ~3.5×109 neon ions/shot for the 5 stated anode top geometries respectively. The panorama neon ion images as diagnosed even by the unaided eyes demonstrate the lowest and highest ion yields from the hollow-end cylinder and flat-end cone anode tops respectively. Relative dynamic qualitative neon ion spectrometry was made by the unaided eyes demonstrating relative neon ion energy as they appear. The study also demonstrates the unique power of the MS-PCID/MS-ECE imaging system as an advanced state-of-the-art ion imaging method for wide-angle dynamic parametric studies in PFD space and other ion study applications.

  4. Budget goal commitment, clinical managers' use of budget information and performance.

    PubMed

    Macinati, Manuela S; Rizzo, Marco G

    2014-08-01

    Despite the importance placed on accounting as a means to influence performance in public healthcare, there is still a lot to be learned about the role of management accounting in clinical managers' work behavior and their link with organizational performance. The article aims at analyzing the motivational role of budgetary participation and the intervening role of individuals' mental states and behaviors in influencing the relationship between budgetary participation and performance. According to the goal-setting theory, SEM technique was used to test the relationships among variables. The data were collected by a survey conducted in an Italian hospital. The results show that: (i) budgetary participation does not directly influence the use of budget information, but the latter is encouraged by the level of budget goal commitment which, as a result, is influenced by the positive motivational consequences of participative budgeting; (ii) budget goal commitment does not directly influence performance, but the relationship is mediated by the use of budget information. This study contributes to health policy and management accounting literature and has significant policy implications. Mainly, the findings prove that the introduction of business-like techniques in the healthcare sector can improve performance if attitudinal and behavioral variables are adequately stimulated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Interim Budget Plan.

    ERIC Educational Resources Information Center

    Office of Student Financial Assistance (ED), Washington, DC.

    This report provides the interim budget plan of the U.S. Department of Education's Office of Student Financial Assistance (OSFA) for fiscal year 2000. It reviews factors influencing OSFA's budget request, including legislative requirements, recent accomplishments, the need to maintain both the Direct Loan and Federal Family Education Loan…

  6. FY 2011 Educational Facilities Master Plan & the FY 2011-2016 Capital Improvements Program

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2010

    2010-01-01

    The FY 2011 Educational Facilities Master Plan (Master Plan) and FY 2011-2016 Capital Improvements Program (CIP) reflect the adopted actions of the Montgomery County (Maryland) Council and integrate the facilities planning process with the annual capital budget and the six-year CIP. The CIP is developed in accordance with the Board of Education…

  7. The Uncertain Carbon Emissions in China

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Guan, D.; Zhang, Q.

    2014-12-01

    Anthropogenic fossil fuel emissions are considered as being well understood with a low uncertainty (9.1 ± 0.5Gt C yr-1). Yet emissions from developing countries have a higher uncertainty, and their increasing trend hence causes the global emission uncertainty to increase with time. By using full transparency emission inventory which the energy consumption, fuel heating values, carbon content and oxidation rate reported separately in sectoal level, here we found new 1.5 Gt C yr-1 (15% of global total) uncertainties of carbon emission inventory, which mainly contributed by the mass energy use and various consumption coal quality in China and India. Increment of coal's carbon emission in China and India are equivalent to 130 % of global total coal's emission growth during 2008-2010, various reported heating value and carbon content of coal consumption result in the different estimates of carbon emission in China and India up to 1.5 C yr-1. These new emerging uncertainties implies a significant mis-estimation of human induced carbon emissions and a new dominating factor in contributing the global carbon budget residual.

  8. Geologic emissions of methane to the atmosphere.

    PubMed

    Etiope, Giuseppe; Klusman, Ronald W

    2002-12-01

    The atmospheric methane budget is commonly defined assuming that major sources derive from the biosphere (wetlands, rice paddies, animals, termites) and that fossil, radiocarbon-free CH4 emission is due to and mediated by anthropogenic activity (natural gas production and distribution, and coal mining). However, the amount of radiocarbon-free CH4 in the atmosphere, estimated at approximately 20% of atmospheric CH4, is higher than the estimates from statistical data of CH4 emission from fossil fuel related anthropogenic sources. This work documents that significant amounts of "old" methane, produced within the Earth crust, can be released naturally into the atmosphere through gas permeable faults and fractured rocks. Major geologic emissions of methane are related to hydrocarbon production in sedimentary basins (biogenic and thermogenic methane) and, subordinately, to inorganic reactions (Fischer-Tropsch type) in geothermal systems. Geologic CH4 emissions include diffuse fluxes over wide areas, or microseepage, on the order of 10(0)-10(2) mg m(-2) day(-1), and localised flows and gas vents, on the order of 10(2) t y(-1), both on land and on the seafloor. Mud volcanoes producing flows of up to 10(3) t y(-1) represent the largest visible expression of geologic methane emission. Several studies have indicated that methanotrophic consumption in soil may be insufficient to consume all leaking geologic CH4 and positive fluxes into the atmosphere can take place in dry or seasonally cold environments. Unsaturated soils have generally been considered a major sink for atmospheric methane, and never a continuous, intermittent, or localised source to the atmosphere. Although geologic CH4 sources need to be quantified more accurately, a preliminary global estimate indicates that there are likely more than enough sources to provide the amount of methane required to account for the suspected missing source of fossil CH4.

  9. The nitrogen, carbon and greenhouse gas budget of a grazed, cut and fertilised temperate grassland

    NASA Astrophysics Data System (ADS)

    Jones, Stephanie K.; Helfter, Carole; Anderson, Margaret; Coyle, Mhairi; Campbell, Claire; Famulari, Daniela; Di Marco, Chiara; van Dijk, Netty; Sim Tang, Y.; Topp, Cairistiona F. E.; Kiese, Ralf; Kindler, Reimo; Siemens, Jan; Schrumpf, Marion; Kaiser, Klaus; Nemitz, Eiko; Levy, Peter E.; Rees, Robert M.; Sutton, Mark A.; Skiba, Ute M.

    2017-04-01

    Intensively managed grazed grasslands in temperate climates are globally important environments for the exchange of the greenhouse gases (GHGs) carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). We assessed the N and C budget of a mostly grazed and occasionally cut and fertilised grassland in SE Scotland by measuring or modelling all relevant imports and exports to the field as well as changes in soil C and N stocks over time. The N budget was dominated by import from inorganic and organic fertilisers (21.9 g N m-2 a-1) and losses from leaching (5.3 g N m-2 a-1), N2 emissions (2.9 g N m-2 a-1), and NOx and NH3 volatilisation (3.9 g N m-2 a-1), while N2O emission was only 0.6 g N m-2 a-1. The efficiency of N use by animal products (meat and wool) averaged 9.9 % of total N input over only-grazed years (2004-2010). On average over 9 years (2002-2010), the balance of N fluxes suggested that 6.0 ± 5.9 g N m-2 a-1 (mean ± confidence interval at p > 0.95) were stored in the soil. The largest component of the C budget was the net ecosystem exchange of CO2 (NEE), at an average uptake rate of 218 ± 155 g C m-2 a-1 over the 9 years. This sink strength was offset by carbon export from the field mainly as grass offtake for silage (48.9 g C m-2 a-1) and leaching (16.4 g C m-2 a-1). The other export terms, CH4 emissions from the soil, manure applications and enteric fermentation, were negligible and only contributed to 0.02-4.2 % of the total C losses. Only a small fraction of C was incorporated into the body of the grazing animals. Inclusion of these C losses in the budget resulted in a C sink strength of 163 ± 140 g C m-2 a-1. By contrast, soil stock measurements taken in May 2004 and May 2011 indicated that the grassland sequestered N in the 0-60 cm soil layer at 4.51 ± 2.64 g N m-2 a-1 and lost C at a rate of 29.08 ± 38.19 g C m-2 a-1. Potential reasons for the discrepancy between these estimates are probably an underestimation of C losses, especially from

  10. Determination of Summertime VOC Emission Rates from Produced Water Ponds in the Uintah Basin

    NASA Astrophysics Data System (ADS)

    Martin, R. S.; Woods, C.; Lyman, S.

    2013-12-01

    The observance of excess ozone concentrations in Utah's Uintah Basin over past several years has prompted several investigations into the extent and causes of the elevated ozone. Among these is the assessment of potential emissions of reactive VOCs. Evaporation ponds, used a remediation technique for treatment of contaminated production and other waters, are one potential source of significant VOC emissions and is estimated that there are around 160 such ponds within the Uintah Basin's oil and gas production areas. In June 2012 VOC emission rates for several reactive VOCs were derived for an evaporation facility consisting of a small inlet pond (≈0.03 acres) and two larger, serial ponds (≈4.3 acres each). The emission rates were determined over three sampling periods using an inverse modeling approach. Under this methodology, ambient VOC concentrations are determined at several downwind locations through whole-air collection into SUMMA canisters, followed by GC/MS quantification and compared with predicted concentrations using an EPA-approved dispersion model, AERMOD. The presumed emission rates used within the model were then adjusted until the modeled concentrations approach the observed concentrations. The derived emission rates for the individual VOCs were on the order of 10-3 g/s/m2 from the inlet pond and 10-6 g/s/m2 from the larger ponds. The emissions from the 1st pond in series after the inlet pond were about 3-4x the emissions from the 2nd pond. These combined emission rates are about an order of magnitude those reported for a single study in Colorado (Thoma, 2009). It should be noted, however, that the variability about each of the VOC emission rates was significant (often ×100% at the 95% confidence interval). Extrapolating these emission rates to the estimated total areas of all the evaporation ponds within Basin resulted in calculated Basin-wide VOC emissions 292,835 tons/yr. However, Bar-Ilan et al. (2009) estimated 2012 VOC oil and gas related

  11. Model Error Budgets

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    2008-01-01

    An error budget is a commonly used tool in design of complex aerospace systems. It represents system performance requirements in terms of allowable errors and flows these down through a hierarchical structure to lower assemblies and components. The requirements may simply be 'allocated' based upon heuristics or experience, or they may be designed through use of physics-based models. This paper presents a basis for developing an error budget for models of the system, as opposed to the system itself. The need for model error budgets arises when system models are a principle design agent as is increasingly more common for poorly testable high performance space systems.

  12. Evaluating the UK's carbon budget using a dense network of tall-tower observations

    NASA Astrophysics Data System (ADS)

    White, E.; Rigby, M. L.; Manning, A.; Lunt, M. F.; Ganesan, A.; O'Doherty, S.; Stavert, A.; Stanley, K. M.; Williams, M. D.; Smallman, T. L.; Comyn-Platt, E.; Levy, P. E.

    2017-12-01

    The UK has committed to reducing greenhouse gas (GHG) emissions to 80% of 1990 levels by 2050. Evaluating the UK's GHG emissions, and in particular those of carbon dioxide, is imperative to the UK's ability to track progress towards these goals. Making top-down estimates of regional carbon dioxide emissions is challenging due to the rapid temporal variability in the biogenic flux, and the co-location of anthropogenic and biogenic sources and sinks. We present a hierarchical Bayesian inverse modelling framework, which is able to estimate a yearly total (anthropogenic and biogenic) carbon dioxide budget for the UK. Using observations from a high-density GHG monitoring network, combined with high temporal resolution prior information and a Lagrangian atmospheric transport model (NAME, developed by the UK Met Office), we derive a net positive flux for the UK of 0.39 Pg/yr in 2014. We will compare the outcome of inversions that used prior information from two different biosphere models, CARDAMOM and JULES. This comparison helps to understand more about the biogenic processes contributing to the UK's carbon dioxide budget, limitations with different modelling approaches and the sensitivity of the inversion framework to the choice of prior. A better understanding of how the biogenic flux changes throughout the year can, in turn, help to improve the UK's anthropogenic carbon dioxide inventory by identifying times in the year when the anthropogenic signal may be possible to detect.

  13. Design Your Own Budget: A Case Study Based on the 1988 Budget.

    ERIC Educational Resources Information Center

    Williams, Paul

    1992-01-01

    Presents a classroom activity in which students work in groups to develop a national budget. Requires students to consider economic factors such as inflation, unemployment, and taxation. Includes charts and a national budget work sheet. (CFR)

  14. Emission measurement and safety assessment for the production process of silicon nanoparticles in a pilot-scale facility

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Asbach, Christof; Fissan, Heinz; Hülser, Tim; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Pui, David Y. H.

    2012-03-01

    Emission into the workplace was measured for the production process of silicon nanoparticles in a pilot-scale facility at the Institute of Energy and Environmental Technology e.V. (IUTA). The silicon nanoparticles were produced in a hot-wall reactor and consisted of primary particles around 60 nm in diameter. We employed real-time aerosol instruments to measure particle number and lung-deposited surface area concentrations and size distribution; airborne particles were also collected for off-line electron microscopic analysis. Emission of silicon nanoparticles was not detected during the processes of synthesis, collection, and bagging. This was attributed to the completely closed production system and other safety measures against particle release which will be discussed briefly. Emission of silicon nanoparticles significantly above the detection limit was only observed during the cleaning process when the production system was open and manually cleaned. The majority of the detected particles was in the size range of 100-400 nm and were silicon nanoparticle agglomerates first deposited in the tubing then re-suspended during the cleaning process. Appropriate personal protection equipment is recommended for safety protection of the workers during cleaning.

  15. 40 CFR 52.279 - Food processing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Food processing facilities. 52.279... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities... emissions from food processing facilities without any accompanying analyses demonstrating that these...

  16. 40 CFR 52.279 - Food processing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Food processing facilities. 52.279... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities... emissions from food processing facilities without any accompanying analyses demonstrating that these...

  17. 40 CFR 52.279 - Food processing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Food processing facilities. 52.279... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities... emissions from food processing facilities without any accompanying analyses demonstrating that these...

  18. 40 CFR 52.279 - Food processing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emissions from food processing facilities without any accompanying analyses demonstrating that these... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Food processing facilities. 52.279... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities...

  19. Comparison of methane emission estimates from multiple measurement techniques at natural gas production pads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Clay Samuel; Vaughn, Timothy L.; Zimmerle, Daniel

    This study presents the results of a campaign that estimated methane emissions at 268 gas production facilities in the Fayetteville shale gas play using onsite measurements (261 facilities) and two downwind methods - the dual tracer flux ratio method (Tracer Facility Estimate - TFE, 17 facilities) and the EPA Other Test Method 33a (OTM33A Facility Estimate - OFE, 50 facilities). A study onsite estimate (SOE) for each facility was developed by combining direct measurements and simulation of unmeasured emission sources, using operator activity data and emission data from literature. The SOE spans 0-403 kg/h and simulated methane emissions from liquidmore » unloadings account for 88% of total emissions estimated by the SOE, with 76% (95% CI [51%-92%]) contributed by liquid unloading at two facilities. TFE and SOE show overlapping 95% CI between individual estimates at 15 of 16 (94%) facilities where the measurements were paired, while OFE and SOE show overlapping 95% CI between individual estimates at 28 of 43 (65%) facilities. However, variance-weighted least-squares (VWLS) regressions performed on sets of paired estimates indicate statistically significant differences between methods. The SOE represents a lower bound of emissions at facilities where onsite direct measurements of continuously emitting sources are the primary contributor to the SOE, a sub-selection of facilities which minimizes expected inter-method differences for intermittent pneumatic controllers and the impact of episodically-emitting unloadings. At 9 such facilities, VWLS indicates that TFE estimates systematically higher emissions than SOE (TFE-to-SOE ratio = 1.6, 95% CI [1.2 to 2.1]). At 20 such facilities, VWLS indicates that OFE estimates systematically lower emissions than SOE (OFE-to-SOE ratio of 0.41 [0.26 to 0.90]). Given that SOE at these facilities is a lower limit on emissions, these results indicate that OFE is likely a less accurate method than SOE or TFE for this type of facility.« less

  20. Comparison of methane emission estimates from multiple measurement techniques at natural gas production pads

    DOE PAGES

    Bell, Clay Samuel; Vaughn, Timothy L.; Zimmerle, Daniel; ...

    2017-02-09

    This study presents the results of a campaign that estimated methane emissions at 268 gas production facilities in the Fayetteville shale gas play using onsite measurements (261 facilities) and two downwind methods - the dual tracer flux ratio method (Tracer Facility Estimate - TFE, 17 facilities) and the EPA Other Test Method 33a (OTM33A Facility Estimate - OFE, 50 facilities). A study onsite estimate (SOE) for each facility was developed by combining direct measurements and simulation of unmeasured emission sources, using operator activity data and emission data from literature. The SOE spans 0-403 kg/h and simulated methane emissions from liquidmore » unloadings account for 88% of total emissions estimated by the SOE, with 76% (95% CI [51%-92%]) contributed by liquid unloading at two facilities. TFE and SOE show overlapping 95% CI between individual estimates at 15 of 16 (94%) facilities where the measurements were paired, while OFE and SOE show overlapping 95% CI between individual estimates at 28 of 43 (65%) facilities. However, variance-weighted least-squares (VWLS) regressions performed on sets of paired estimates indicate statistically significant differences between methods. The SOE represents a lower bound of emissions at facilities where onsite direct measurements of continuously emitting sources are the primary contributor to the SOE, a sub-selection of facilities which minimizes expected inter-method differences for intermittent pneumatic controllers and the impact of episodically-emitting unloadings. At 9 such facilities, VWLS indicates that TFE estimates systematically higher emissions than SOE (TFE-to-SOE ratio = 1.6, 95% CI [1.2 to 2.1]). At 20 such facilities, VWLS indicates that OFE estimates systematically lower emissions than SOE (OFE-to-SOE ratio of 0.41 [0.26 to 0.90]). Given that SOE at these facilities is a lower limit on emissions, these results indicate that OFE is likely a less accurate method than SOE or TFE for this type of facility.« less

  1. Soft Budget Constraints in Public Hospitals.

    PubMed

    Wright, Donald J

    2016-05-01

    A soft budget constraint arises when a government is unable to commit to not 'bailout' a public hospital if the public hospital exhausts its budget before the end of the budget period. It is shown that if the political costs of a 'bailout' are relatively small, then the public hospital exhausts the welfare-maximising budget before the end of the budget period and a 'bailout' occurs. In anticipation, the government offers a budget to the public hospital that may be greater than or less than the welfare-maximising budget. In either case, the public hospital treats 'too many' elective patients before the 'bailout' and 'too few' after. The introduction of a private hospital reduces the size of any 'bailout' and increases welfare. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Cycle-Based Budgeting Toolkit: A Primer

    ERIC Educational Resources Information Center

    Yan, Bo

    2016-01-01

    At the core, budgeting is about distributing and redistributing limited financial resources for continuous improvement. Incremental budgeting is limited in achieving the goal due to lack of connection between outcomes and budget decisions. Zero-based budgeting fills the gap, but is cumbersome to implement, especially for large urban school…

  3. 25 CFR 276.14 - Budget revision.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Budget revision. 276.14 Section 276.14 Indians BUREAU OF... UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS § 276.14 Budget revision. Criteria and procedures to be followed by grantees in reporting deviations from grant budgets and requesting approval for budget...

  4. Responsibility-Centred Budgeting: An Emerging Trend in Higher Education Budget Reform

    ERIC Educational Resources Information Center

    Zierdt, Ginger LuAnne

    2009-01-01

    Higher education institutions in the United States are entering a new era in budgeting. Therefore, institutions are actively engaging in dialogues about the budgeting tools that will most effectively assist them in achieving institutional goals and objectives within their strategic plans and being accountable for the use of scarce resources, as…

  5. High emissions of greenhouse gases from grasslands on peat and other organic soils.

    PubMed

    Tiemeyer, Bärbel; Albiac Borraz, Elisa; Augustin, Jürgen; Bechtold, Michel; Beetz, Sascha; Beyer, Colja; Drösler, Matthias; Ebli, Martin; Eickenscheidt, Tim; Fiedler, Sabine; Förster, Christoph; Freibauer, Annette; Giebels, Michael; Glatzel, Stephan; Heinichen, Jan; Hoffmann, Mathias; Höper, Heinrich; Jurasinski, Gerald; Leiber-Sauheitl, Katharina; Peichl-Brak, Mandy; Roßkopf, Niko; Sommer, Michael; Zeitz, Jutta

    2016-12-01

    Drainage has turned peatlands from a carbon sink into one of the world's largest greenhouse gas (GHG) sources from cultivated soils. We analyzed a unique data set (12 peatlands, 48 sites and 122 annual budgets) of mainly unpublished GHG emissions from grasslands on bog and fen peat as well as other soils rich in soil organic carbon (SOC) in Germany. Emissions and environmental variables were measured with identical methods. Site-averaged GHG budgets were surprisingly variable (29.2 ± 17.4 t CO 2 -eq. ha -1  yr -1 ) and partially higher than all published data and the IPCC default emission factors for GHG inventories. Generally, CO 2 (27.7 ± 17.3 t CO 2  ha -1  yr -1 ) dominated the GHG budget. Nitrous oxide (2.3 ± 2.4 kg N 2 O-N ha -1  yr -1 ) and methane emissions (30.8 ± 69.8 kg CH 4 -C ha -1  yr -1 ) were lower than expected except for CH 4 emissions from nutrient-poor acidic sites. At single peatlands, CO 2 emissions clearly increased with deeper mean water table depth (WTD), but there was no general dependency of CO 2 on WTD for the complete data set. Thus, regionalization of CO 2 emissions by WTD only will remain uncertain. WTD dynamics explained some of the differences between peatlands as sites which became very dry during summer showed lower emissions. We introduced the aerated nitrogen stock (N air ) as a variable combining soil nitrogen stocks with WTD. CO 2 increased with N air across peatlands. Soils with comparatively low SOC concentrations showed as high CO 2 emissions as true peat soils because N air was similar. N 2 O emissions were controlled by the WTD dynamics and the nitrogen content of the topsoil. CH 4 emissions can be well described by WTD and ponding duration during summer. Our results can help both to improve GHG emission reporting and to prioritize and plan emission reduction measures for peat and similar soils at different scales. © 2016 John Wiley & Sons Ltd.

  6. Vehicle emissions during children's school commuting: impacts of education policy.

    PubMed

    Marshall, Julian D; Wilson, Ryan D; Meyer, Katie L; Rajangam, Santhosh K; McDonald, Noreen C; Wilson, Elizabeth J

    2010-03-01

    We explore how school policies influence the environmental impacts of school commutes. Our research is motivated by increased interest in school choice policies (in part because of the U.S. "No Child Left Behind" Act) and in reducing bus service to address recent budget shortfalls. Our analysis employs two samples of elementary-age children, age 5-12: a travel survey (n = 1246 respondents) and a school enrollment data set (n = 19,655 students). Multinomial logistic regression modeled the determinants of travel mode (automobile, school bus, and walking; n = 803 students meeting selection criteria). Travel distance has the single greatest effect on travel mode, though school choice, trip direction (to- or from-school), and grade play a role. Several policies were investigated quantitatively to predict the impact on school travel, vehicle emissions, and costs. We find that eliminating district-wide school choice (i.e., returning to a system with neighborhood schools only) would have significant impacts on transport modes and emissions, whereas in many cases proposed shifts in school choice and bus-provision policies would have only modest impacts. Policies such as school choice and school siting may conflict with the goal of increasing rates of active (i.e., nonmotorized) school commuting. Policies that curtail bus usage may reduce bus emissions but yield even larger increases in private-vehicle emissions. Our findings underscore the need to critically evaluate transportation-related environmental and health impacts of currently proposed changes in school policy.

  7. Sediment budgeting and restoration planning in a heterogeneous landscape, the Root River watershed, southeastern Minnesota.

    NASA Astrophysics Data System (ADS)

    Hemmis, J. M.; Souffront, M.; Stout, J. C.; Belmont, P.

    2014-12-01

    Excessive sedimentation in streams and rivers is one of the top water quality concerns in the U.S. and globally. While sediment is a natural constituent of stream ecosystems, excessive amounts cause high levels of turbidity which can reduce primary and secondary production, reduce nutrient retention, and have negative impacts on fish reproduction and physiology. Fine sediment particles adsorb pollutants such as mercury, metals, polychlorinated biphenyl compounds and bacteria. Key questions remain regarding the origin of excessive sediment as well as the transport pathways of sediment through the landscape and channel network of the 4,300 km2 Root River watershed in southeastern Minnesota. To answer these questions, we are developing a sediment budget to account for inputs, outputs, and changes in sediment storage reservoirs within the system. Because watershed sediment fluxes are determined as the sum of many small changes (erosion and deposition) across a vast area, multiple, redundant techniques are required to adequately constrain all parts of the sediment budget. Specifically, this budget utilizes four years of field research and surveys, an extensive set of sediment fingerprinting data, watershed-wide measurements of channel widening and meander migration, and watershed modeling, all evaluated and extrapolated in a geomorphically sensitive manner. Analyses of sediment deposition within channel cutoffs throughout the watershed help constrain sediment storage. These overlapping methods, reconciled within the hard constraint of direct measurements of water and sediment fluxes, improve the reliability of the budget. The sediment budget highlights important sources and sinks and identifies locations that are likely to be more, or less, sensitive to changes in land and water management to support watershed-wide prioritization of conservation and restoration actions.

  8. 7 CFR 906.33 - Budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 906.33 Section 906.33 Agriculture Regulations... GRANDE VALLEY IN TEXAS Order Regulating Handling Expenses and Assessments § 906.33 Budget. At the... budget of income and expenditures necessary for the administration of this part. The committee shall...

  9. Optimization of Emissions Sensor Networks Incorporating Tradeoffs Between Different Sensor Technologies

    NASA Astrophysics Data System (ADS)

    Nicholson, B.; Klise, K. A.; Laird, C. D.; Ravikumar, A. P.; Brandt, A. R.

    2017-12-01

    In order to comply with current and future methane emissions regulations, natural gas producers must develop emissions monitoring strategies for their facilities. In addition, regulators must develop air monitoring strategies over wide areas incorporating multiple facilities. However, in both of these cases, only a limited number of sensors can be deployed. With a wide variety of sensors to choose from in terms of cost, precision, accuracy, spatial coverage, location, orientation, and sampling frequency, it is difficult to design robust monitoring strategies for different scenarios while systematically considering the tradeoffs between different sensor technologies. In addition, the geography, weather, and other site specific conditions can have a large impact on the performance of a sensor network. In this work, we demonstrate methods for calculating optimal sensor networks. Our approach can incorporate tradeoffs between vastly different sensor technologies, optimize over typical wind conditions for a particular area, and consider different objectives such as time to detection or geographic coverage. We do this by pre-computing site specific scenarios and using them as input to a mixed-integer, stochastic programming problem that solves for a sensor network that maximizes the effectiveness of the detection program. Our methods and approach have been incorporated within an open source Python package called Chama with the goal of providing facility operators and regulators with tools for designing more effective and efficient monitoring systems. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

  10. CO2 emissions from German drinking water reservoirs.

    PubMed

    Saidi, Helmi; Koschorreck, Matthias

    2017-03-01

    Globally, reservoirs are a significant source of atmospheric CO 2 . However, precise quantification of greenhouse gas emissions from drinking water reservoirs on the regional or national scale is still challenging. We calculated CO 2 fluxes for 39 German drinking water reservoirs during a period of 22years (1991-2013) using routine monitoring data in order to quantify total emission of CO 2 from drinking water reservoirs in Germany and to identify major drivers. All reservoirs were a net CO 2 source with a median flux of 167gCm -2 y -1 , which makes gaseous emissions a relevant process for the carbon budget of each reservoir. Fluxes varied seasonally with median fluxes of 13, 48, and 201gCm -2 y -1 in spring, summer, and autumn respectively. Differences between reservoirs appeared to be primarily caused by the concentration of CO 2 in the surface water rather than by the physical gas transfer coefficient. Consideration of short term fluctuations of the gas transfer coefficient due to varying wind speed had only a minor effect on the annual budgets. High CO 2 emissions only occurred in reservoirs with pH<7 and total alkalinity <0.2mEql -1 . Annual CO 2 emissions correlated exponentially with pH but not with dissolved organic carbon (DOC). There was significant correlation between land use in the catchment and CO 2 emissions. In total, German drinking water reservoirs emit 44000t of CO 2 annually, which makes them a negligible CO 2 source (<0.005% of national CO 2 emissions) in Germany. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Modeled Full-Flight Aircraft Emissions Impacts on Air Quality and Their Sensitivity to Grid Resolution

    EPA Science Inventory

    Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9–12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality ar...

  12. 76 FR 10385 - Information Collection Request to Office of Management and Budget; OMB Control Number: 1625-0106

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... Office of Management and Budget; OMB Control Number: 1625-0106 AGENCY: Coast Guard, DHS. ACTION: Sixty....S. Coast Guard intends to submit an Information Collection Request (ICR) to the Office of Management... Coast Guard docket number [USCG-2011-0087] to the Docket Management Facility (DMF) at the U.S...

  13. 76 FR 27073 - Information Collection Request to Office of Management and Budget; OMB Control Number: 1625-0109

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... Office of Management and Budget; OMB Control Number: 1625-0109 AGENCY: Coast Guard, DHS. ACTION: Sixty....S. Coast Guard intends to submit an Information Collection Request (ICR) to the Office of Management...-0158] to the Docket Management Facility (DMF) at the U.S. Department of Transportation (DOT). To avoid...

  14. 7 CFR 1744.64 - Budget adjustment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Budget adjustment. 1744.64 Section 1744.64... Disbursement of Funds § 1744.64 Budget adjustment. (a) If more funds are required than are available in a budget account, the borrower may request RUS's approval of a budget adjustment to use funds from another...

  15. A CASE STUDY DEMONSTRATING U.S. EPA GUIDANCE FOR EVALUATING LANDFILL GAS EMISSIONS FROM CLOSED OR ABANDONED FACILITIES--BUSH VALLEY LANDFILL, HARFORD COUNTY, MARYLAND

    EPA Science Inventory

    The purpose of the activities described in this document is to provide a demonstration of the procedures and methodologies described within the "Guidance for Evaluating Landfill Gas Emissions from Closed or Abandoned Facilities" (Guidance). This demonstration provides an example ...

  16. The Faculty Role in Budgeting.

    ERIC Educational Resources Information Center

    Meisinger, Richard J., Jr.; Dubeck, Leroy W.

    1984-01-01

    Specific roles faculty members can play in their institution's budget processes are discussed, and the general ends served by budgets are identified. Each of the dimensions of institutional character (e.g., size, mission) determines the ways in which participants in budgeting will interact. For example, broader faculty participation in budgeting…

  17. 7 CFR 956.41 - Budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 956.41 Section 956.41 Agriculture Regulations... OF SOUTHEAST WASHINGTON AND NORTHEAST OREGON Expenses and Assessments § 956.41 Budget. Prior to each fiscal period and as may be necessary thereafter, the committee shall prepare an estimated budget of...

  18. 7 CFR 958.41 - Budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 958.41 Section 958.41 Agriculture Regulations... Budget. Prior to each fiscal period, and as may be necessary thereafter the committee shall prepare a budget of estimated income and expenditures necessary for the administration of this part. The committee...

  19. 7 CFR 948.76 - Budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 948.76 Section 948.76 Agriculture Regulations... Regulating Handling Expenses and Assessments § 948.76 Budget. As soon as practicable after the beginning of... budget of income and expenditures necessary for its administration of this part. Each area committee may...

  20. 7 CFR 959.41 - Budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 959.41 Section 959.41 Agriculture Regulations... Handling Expenses and Assessments § 959.41 Budget. As soon as practicable after the beginning of each fiscal period and as may be necessary thereafter, the committee shall prepare an estimated budget of...

  1. 7 CFR 966.41 - Budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 966.41 Section 966.41 Agriculture Regulations... Handling Expenses and Assessments § 966.41 Budget. At the beginning of each fiscal period and as may be necessary thereafter, the committee shall prepare an estimated budget of income and expenditures necessary...

  2. 7 CFR 945.41 - Budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 945.41 Section 945.41 Agriculture Regulations... COUNTIES IN IDAHO, AND MALHEUR COUNTY, OREGON Order Regulating Handling Budget, Expenses and Assessments § 945.41 Budget. At the beginning of each fiscal period, and as may be necessary thereafter, the...

  3. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. C.; Alden, C.; White, J. W. C.

    2014-10-01

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of C in the atmosphere, ocean, and land; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate error and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2 σ error of the atmospheric growth rate has decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s, leading to a ~20% reduction in the over-all uncertainty of net global C uptake by the biosphere. While fossil fuel emissions have increased by a factor of 4 over the last 5 decades, 2 σ errors in fossil fuel emissions due to national reporting errors and differences in energy reporting practices have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s. At the same time land use emissions have declined slightly over the last 5 decades, but their relative errors remain high. Notably, errors associated with fossil fuel emissions have come to dominate uncertainty in the global C budget and are now comparable to the total emissions from land use, thus efforts to reduce errors in fossil fuel emissions are necessary. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that C uptake has increased and 97% confident that C uptake by the terrestrial biosphere has increased over the last 5 decades. Although the persistence of future C sinks remains unknown and some ecosystem services may be compromised by this continued C uptake (e.g. ocean acidification), it is clear that arguably the greatest ecosystem service currently provided by the biosphere is the

  4. School Budget Hold'em Facilitator's Guide

    ERIC Educational Resources Information Center

    Education Resource Strategies, 2012

    2012-01-01

    "School Budget Hold'em" is a game designed to help school districts rethink their budgeting process. It evolved out of Education Resource Strategies' (ERS) experience working with large urban districts around the country. "School Budget Hold'em" offers a completely new approach--one that can turn the budgeting process into a long-term visioning…

  5. FY 2013 Educational Facilities Master Plan and the FY 2013-2018 Capital Improvements Program

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2012

    2012-01-01

    The FY 2013 Educational Facilities Master Plan (Master Plan) and the FY 2013-2018 Capital Improvements Program (CIP) reflect the adopted actions of the Montgomery County (Maryland) Council and integrate the facilities planning process with the annual capital budget and the six-year CIP. The CIP is developed in accordance with the Board of…

  6. FY 2007 Educational Facilities Master Plan and the FY 2007-2012 Capital Improvements Program

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2006

    2006-01-01

    The FY 2007 Educational Facilities Master Plan (Master Plan) and FY 2007-2012 Capital Improvements Program (CIP) reflect the adopted actions of the Montgomery County (Maryland) Council and integrate the facilities planning process with the annual capital budget and the six-year CIP. The CIP is developed in accordance with the Board of Education…

  7. Modeling greenhouse gas emissions from dairy farms.

    PubMed

    Rotz, C Alan

    2017-11-15

    Dairy farms have been identified as an important source of greenhouse gas emissions. Within the farm, important emissions include enteric CH 4 from the animals, CH 4 and N 2 O from manure in housing facilities during long-term storage and during field application, and N 2 O from nitrification and denitrification processes in the soil used to produce feed crops and pasture. Models using a wide range in level of detail have been developed to represent or predict these emissions. They include constant emission factors, variable process-related emission factors, empirical or statistical models, mechanistic process simulations, and life cycle assessment. To fully represent farm emissions, models representing the various emission sources must be integrated to capture the combined effects and interactions of all important components. Farm models have been developed using relationships across the full scale of detail, from constant emission factors to detailed mechanistic simulations. Simpler models, based upon emission factors and empirical relationships, tend to provide better tools for decision support, whereas more complex farm simulations provide better tools for research and education. To look beyond the farm boundaries, life cycle assessment provides an environmental accounting tool for quantifying and evaluating emissions over the full cycle, from producing the resources used on the farm through processing, distribution, consumption, and waste handling of the milk and dairy products produced. Models are useful for improving our understanding of farm processes and their interacting effects on greenhouse gas emissions. Through better understanding, they assist in the development and evaluation of mitigation strategies for reducing emissions and improving overall sustainability of dairy farms. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article

  8. 24 CFR 968.225 - Budget revisions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Budget revisions. 968.225 Section... Fewer Than 250 Units) § 968.225 Budget revisions. (a) A PHA shall not incur any modernization cost in excess of the total HUD-approved CIAP budget. A PHA shall submit a budget revision, in a form prescribed...

  9. Methane Emission by Camelids

    PubMed Central

    Dittmann, Marie T.; Runge, Ullrich; Lang, Richard A.; Moser, Dario; Galeffi, Cordula; Kreuzer, Michael; Clauss, Marcus

    2014-01-01

    Methane emissions from ruminant livestock have been intensively studied in order to reduce contribution to the greenhouse effect. Ruminants were found to produce more enteric methane than other mammalian herbivores. As camelids share some features of their digestive anatomy and physiology with ruminants, it has been proposed that they produce similar amounts of methane per unit of body mass. This is of special relevance for countrywide greenhouse gas budgets of countries that harbor large populations of camelids like Australia. However, hardly any quantitative methane emission measurements have been performed in camelids. In order to fill this gap, we carried out respiration chamber measurements with three camelid species (Vicugna pacos, Lama glama, Camelus bactrianus; n = 16 in total), all kept on a diet consisting of food produced from alfalfa only. The camelids produced less methane expressed on the basis of body mass (0.32±0.11 L kg−1 d−1) when compared to literature data on domestic ruminants fed on roughage diets (0.58±0.16 L kg−1 d−1). However, there was no significant difference between the two suborders when methane emission was expressed on the basis of digestible neutral detergent fiber intake (92.7±33.9 L kg−1 in camelids vs. 86.2±12.1 L kg−1 in ruminants). This implies that the pathways of methanogenesis forming part of the microbial digestion of fiber in the foregut are similar between the groups, and that the lower methane emission of camelids can be explained by their generally lower relative food intake. Our results suggest that the methane emission of Australia's feral camels corresponds only to 1 to 2% of the methane amount produced by the countries' domestic ruminants and that calculations of greenhouse gas budgets of countries with large camelid populations based on equations developed for ruminants are generally overestimating the actual levels. PMID:24718604

  10. 40 CFR 62.4681 - Effective date.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Louisiana Mercury Emissions from Coal... the plan applicable to mercury budget units at coal-fired electric steam generating units and coal...

  11. 40 CFR 62.4681 - Effective date.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Louisiana Mercury Emissions from Coal... the plan applicable to mercury budget units at coal-fired electric steam generating units and coal...

  12. 40 CFR 62.4681 - Effective date.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Louisiana Mercury Emissions from Coal... the plan applicable to mercury budget units at coal-fired electric steam generating units and coal...

  13. 40 CFR 62.4681 - Effective date.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Louisiana Mercury Emissions from Coal... the plan applicable to mercury budget units at coal-fired electric steam generating units and coal...

  14. 40 CFR 62.4681 - Effective date.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Louisiana Mercury Emissions from Coal... the plan applicable to mercury budget units at coal-fired electric steam generating units and coal...

  15. Seasonal climate change patterns due to cumulative CO 2 emissions

    DOE PAGES

    Partanen, Antti-Ilari; Leduc, Martin; Matthews, H. Damon

    2017-06-28

    Cumulative CO 2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO 2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO 2 concentration growing at an annual rate of 1% using data from 12 Earth system models frommore » the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Here, our results suggest that cumulative CO 2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.« less

  16. Seasonal climate change patterns due to cumulative CO2 emissions

    NASA Astrophysics Data System (ADS)

    Partanen, Antti-Ilari; Leduc, Martin; Damon Matthews, H.

    2017-07-01

    Cumulative CO2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO2 concentration growing at an annual rate of 1% using data from 12 Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Our results suggest that cumulative CO2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.

  17. Seasonal climate change patterns due to cumulative CO 2 emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partanen, Antti-Ilari; Leduc, Martin; Matthews, H. Damon

    Cumulative CO 2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO 2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO 2 concentration growing at an annual rate of 1% using data from 12 Earth system models frommore » the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Here, our results suggest that cumulative CO 2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.« less

  18. 7 CFR 955.41 - Budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 955.41 Section 955.41 Agriculture Regulations... Assessments § 955.41 Budget. At least 60 days prior to each fiscal period, or such other date as may be... budget of income and expenditures necessary for the administration of this part. The committee may...

  19. 25 CFR 122.7 - Budget.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Budget. 122.7 Section 122.7 Indians BUREAU OF INDIAN... § 122.7 Budget. (a) By August 1 of each year, the Osage Tribal Education Committee will submit a proposed budget to the Assistant Secretary or to his/her designated representative for formal approval...

  20. Impact of aromatic concentration in marine fuels on particle emissions

    NASA Astrophysics Data System (ADS)

    Zetterdahl, Maria; Salo, Kent; Fridell, Erik; Sjöblom, Jonas

    2017-09-01

    The fuel sulfur content in marine fuels has been regulated in Sulfur Emission Control Areas (SECAs) since January 2015. However, other fuel characteristics are also believed to have an impact on particle emissions, particularly on the number of particles emitted. This study investigates the impact of the content of aromatics in fuel. To achieve fuel blends with concentrations of aromatics similar to those found in marine fuel oils, i.e. 20%-30% by volume (%vol.), normal diesel oil (4%-5% vol. aromatics) is doped with a mixture of aromatics. Emission measurements are conducted in test-bed engine facilities and particle emissions over a wide size range are analyzed. Results show a decreased number of particles emitted (or not change) with an increase in the aromatic concentration in fuel. This is because there is a reduction in the cetane number of the fuel with an increased aromatic content, which effects the combustion process and results in decreased particle formation. However, when ignition improver is used to increase the cetane number, particle emissions remain at a lower level than for normal diesel oil; thereby emphasizing the presence of other factors in the formation of particles.

  1. Beyond Zero Based Budgeting.

    ERIC Educational Resources Information Center

    Ogden, Daniel M., Jr.

    1978-01-01

    Suggests that the most practical budgeting system for most managers is a formalized combination of incremental and zero-based analysis because little can be learned about most programs from an annual zero-based budget. (Author/IRT)

  2. Emission of greenhouse gases from waste incineration in Korea.

    PubMed

    Hwang, Kum-Lok; Choi, Sang-Min; Kim, Moon-Kyung; Heo, Jong-Bae; Zoh, Kyung-Duk

    2017-07-01

    Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NO x ) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 ± 17 kg CO 2 ton -1 , 88 ± 36 g CH 4 ton -1 , and 69 ± 16 g N 2 O ton -1 , while those for CSW incineration were 22.56 g CH 4 ton -1 and 259.76 g N 2 O ton -1 , and for SW incineration emission factors were 2959 kg CO 2 ton -1 , 43.44 g CH 4 ton -1 and 401.21 g N 2 O ton -1 , respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO 2 -eq yr -1 for A facility and 11,082 ton CO 2 -eq yr -1 for B facility, while those of IPCC default values were 13,167 ton CO 2- eq yr -1 for A facility and 32,916 ton CO 2- eq yr -1 , indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO 2 -eq yr -1 , while those of SW for D to I facilities was 28,830 ton CO 2 -eq yr -1 . The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and

  3. Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland

    NASA Astrophysics Data System (ADS)

    Olson, D. M.; Griffis, T. J.; Noormets, A.; Kolka, R.; Chen, J.

    2013-03-01

    Three years (2009-2011) of near-continuous methane (CH4) and carbon dioxide (CO2) fluxes were measured with the eddy covariance (EC) technique at a temperate peatland located within the Marcell Experimental Forest, in northern Minnesota, USA. The peatland was a net source of CH4 and a net sink of CO2 in each year with annual carbon budgets of -26.8 (±18.7), -15.5 (±14.8), and -14.6 (±21.5) g C m-2 yr-1 for 2009-2011, respectively. Differences in the seasonal hydrometeorological conditions among the three study years were most pronounced during 2011, which was considerably warmer (+1.3°C) and wetter (+40 mm) than the 30 year average. The annual CH4 budget was +11.8 (±3.1), +12.2 (±3.0), and +24.9 (±5.6) g C m-2 yr-1 for the respective years and accounted for 23%-39% of the annual carbon budget. The larger CH4 emission in 2011 is attributed to significant warming of the peat column coupled with a high water table position throughout the entire growing season. Historical (1991-2011) CH4 emissions were estimated based on long-term hydrometeorological records and functional relationships derived from our 3 year field study. The predicted historical annual CH4 budget ranged from +7.8 to +15.2 (±2.7) g CH4-C m-2 yr-1. Recent (2007-2011) increases in temperature, precipitation, and rising water table at this site suggest that CH4 emissions have been increasing, but were generally greater from 1991 to 1999 when average soil temperature and precipitation were higher than in recent years. The global warming potential (considering CO2 and CH4) for this peatland was calculated based on a 100 year time horizon. In all three study years, the peatland had a net positive radiative forcing on climate and was greatest (+187 g C m-2) in 2011. The interannual variability in CH4 exchange at this site suggests high sensitivity to variations in hydrometeorological conditions.

  4. Radiative Energy Budget Studies Using Observations from the Earth Radiation Budget Experiment (ERBE)

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Frey, R.; Shie, M.; Olson, R.; Collimore, C.; Friedman, M.

    1997-01-01

    Our research activities under this NASA grant have focused on two broad topics associated with the Earth Radiation Budget Experiment (ERBE): (1) the role of clouds and the surface in modifying the radiative balance; and (2) the spatial and temporal variability of the earth's radiation budget. Each of these broad topics is discussed separately in the text that follows. The major points of the thesis are summarized in section 3 of this report. Other dissertation focuses on deriving the radiation budget over the TOGA COARE region.

  5. Nanotechnology on a dime: building affordable research facilities

    NASA Astrophysics Data System (ADS)

    DiBattista, Jeff; Clare, Donna; Lynch, David

    2005-08-01

    Designing buildings to house nanotechnology research presents a multitude of well-recognized challenges to architectural and engineering design teams, from environmental control to spatial arrangements to operational functionality. These technical challenges can be solved with relative ease on projects with large budgets: designers have the option of selecting leading-edge systems without undue regard for their expense. This is reflected in the construction cost of many nanotechnology research facilities that run well into the hundreds of millions of dollars. Smaller universities and other institutions need not be shut out of the nanotechnology research field simply because their construction budgets are tens of millions of dollars or less. The key to success for these less expensive projects lies with making good strategic decisions: identifying priorities for the facility in terms of what it will is--and will not--provide to the researchers. Making these strategic decisions puts bounds on the tactical, technical problems that the design team at large must address, allowing them to focus their efforts on the key areas for success. The process and challenges of this strategic decision-making process are examined, with emphasis placed on the types of decisions that must be made and the factors that must be considered when making them. Case study examples of projects undertaken at the University of Alberta are used to illustrate how strategic-level decision-making sets the stage for cutting-edge success on a modest budget.

  6. 40 CFR Table Jj-1 to Subpart Jj of... - Animal Population Threshold Level Below Which Facilities Are Not Required To Report Emissions...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Animal Population Threshold Level Below Which Facilities Are Not Required To Report Emissions Under Subpart JJ 1,2 JJ Table JJ-1 to Subpart JJ of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING...

  7. Budgeting in Nonprofit Organizations.

    ERIC Educational Resources Information Center

    Kelly, Lauren

    1985-01-01

    This description of the role of budgets in nonprofit organizations uses libraries as an example. Four types of budgets--legislative, management, cash, and capital--are critiqued in terms of cost effectiveness, implementation, and facilitation of organizational control and objectives. (CLB)

  8. Permanent Shift?: Library Budgets 2010

    ERIC Educational Resources Information Center

    Oder, Norman

    2010-01-01

    It's no surprise that libraries in "LJ"'s annual budget survey reported an overall downward trend, with the expected decline in total budgets some 2.6% and the change in materials budgets 3.5%. Per capita funding is nudging down after years of steady if sometimes modest increases, with a projected decline of 1.6% in FY10. After all, the country…

  9. Greenhouse gas budget (CO2, CH4 and N2O) of intensively managed grassland following restoration.

    PubMed

    Merbold, Lutz; Eugster, Werner; Stieger, Jacqueline; Zahniser, Mark; Nelson, David; Buchmann, Nina

    2014-06-01

    The first full greenhouse gas (GHG) flux budget of an intensively managed grassland in Switzerland (Chamau) is presented. The three major trace gases, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were measured with the eddy covariance (EC) technique. For CO2 concentrations, an open-path infrared gas analyzer was used, while N2O and CH4 concentrations were measured with a recently developed continuous-wave quantum cascade laser absorption spectrometer (QCLAS). We investigated the magnitude of these trace gas emissions after grassland restoration, including ploughing, harrowing, sowing, and fertilization with inorganic and organic fertilizers in 2012. Large peaks of N2O fluxes (20-50 nmol m(-2) s(-1) compared with a <5 nmol m(-2) s(-1) background) were observed during thawing of the soil after the winter period and after mineral fertilizer application followed by re-sowing in the beginning of the summer season. Nitrous oxide (N2O) fluxes were controlled by nitrogen input, plant productivity, soil water content and temperature. Management activities led to increased variations of N2O fluxes up to 14 days after the management event as compared with background fluxes measured during periods without management (<5 nmol m(-2) s(-1)). Fluxes of CO2 remained small until full plant development in early summer 2012. In contrast, methane emissions showed only minor variations over time. The annual GHG flux budget was dominated by N2O (48% contribution) and CO2 emissions (44%). CH4 flux contribution to the annual budget was only minor (8%). We conclude that recently developed multi-species QCLAS in an EC system open new opportunities to determine the temporal variation of N2O and CH4 fluxes, which further allow to quantify annual emissions. With respect to grassland restoration, our study emphasizes the key role of N2O and CO2 losses after ploughing, changing a permanent grassland from a carbon sink to a significant carbon source. © 2014 John Wiley & Sons Ltd.

  10. Hazardous Waste Treatment, Storage, and Disposal Facilities-Organic Air Emission Standards for Process Vents and Equipment Leaks - Technical Amendment - Federal Register Notice, April 26, 1991

    EPA Pesticide Factsheets

    This document corrects typographical errors in the regulatory text of the final standards that would limit organic air emissions as a class at hazardous waste treatment, storage, and disposal facilities (TSDF) that are subject to regulation under subtitle

  11. EPA Facility Registry Service (FRS): NEI

    EPA Pesticide Factsheets

    This web feature service contains location and facility identification information from EPA's Facility Registry Service (FRS) for the subset of facilities that link to the National Emissions Inventory (NEI) Program dataset. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA's national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. Additional information on FRS is available at the EPA website https://www.epa.gov/enviro/facility-registry-service-frs

  12. QA procedures and emissions from nonstandard sources in AQUIS, a PC-based emission inventory and air permit manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.E.; Tschanz, J.; Monarch, M.

    1996-05-01

    The Air Quality Utility Information System (AQUIS) is a database management system that operates under dBASE IV. It runs on an IBM-compatible personal computer (PC) with MS DOS 5.0 or later, 4 megabytes of memory, and 30 megabytes of disk space. AQUIS calculates emissions for both traditional and toxic pollutants and reports emissions in user-defined formats. The system was originally designed for use at 7 facilities of the Air Force Materiel Command, and now more than 50 facilities use it. Within the last two years, the system has been used in support of Title V permit applications at Department ofmore » Defense facilities. Growth in the user community, changes and additions to reference emission factor data, and changing regulatory requirements have demanded additions and enhancements to the system. These changes have ranged from adding or updating an emission factor to restructuring databases and adding new capabilities. Quality assurance (QA) procedures have been developed to ensure that emission calculations are correct even when databases are reconfigured and major changes in calculation procedures are implemented. This paper describes these QA and updating procedures. Some user facilities include light industrial operations associated with aircraft maintenance. These facilities have operations such as fiberglass and composite layup and plating operations for which standard emission factors are not available or are inadequate. In addition, generally applied procedures such as material balances may need special treatment to work in an automated environment, for example, in the use of oils and greases and when materials such as polyurethane paints react chemically during application. Some techniques used in these situations are highlighted here. To provide a framework for the main discussions, this paper begins with a description of AQUIS.« less

  13. FY 2012 Educational Facilities Master Plan and the Amended FY 2011-2016 Capital Improvements Program

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2011

    2011-01-01

    The FY 2012 Educational Facilities Master Plan (Master Plan) and Amendments to the FY 2011-2016 Capital Improvements Program (CIP) reflect the adopted actions of the Montgomery County (Maryland) Council and integrate the facilities planning process with the annual capital budget and the six-year CIP. The CIP is developed in accordance with the…

  14. Cities and “budget-based” management of the energy-water-climate nexus: Case studies in transportation policy, infrastructure systems, and urban utility risk management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperling, Joshua B.; Ramaswami, Anu

    This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as

  15. Cities and “budget-based” management of the energy-water-climate nexus: Case studies in transportation policy, infrastructure systems, and urban utility risk management

    DOE PAGES

    Sperling, Joshua B.; Ramaswami, Anu

    2017-11-03

    This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as

  16. Acoustic Emission Analysis Applet (AEAA) Software

    NASA Technical Reports Server (NTRS)

    Nichols, Charles T.; Roth, Don J.

    2013-01-01

    NASA Glenn Research and NASA White Sands Test Facility have developed software supporting an automated pressure vessel structural health monitoring (SHM) system based on acoustic emissions (AE). The software, referred to as the Acoustic Emission Analysis Applet (AEAA), provides analysts with a tool that can interrogate data collected on Digital Wave Corp. and Physical Acoustics Corp. software using a wide spectrum of powerful filters and charts. This software can be made to work with any data once the data format is known. The applet will compute basic AE statistics, and statistics as a function of time and pressure (see figure). AEAA provides value added beyond the analysis provided by the respective vendors' analysis software. The software can handle data sets of unlimited size. A wide variety of government and commercial applications could benefit from this technology, notably requalification and usage tests for compressed gas and hydrogen-fueled vehicles. Future enhancements will add features similar to a "check engine" light on a vehicle. Once installed, the system will ultimately be used to alert International Space Station crewmembers to critical structural instabilities, but will have little impact to missions otherwise. Diagnostic information could then be transmitted to experienced technicians on the ground in a timely manner to determine whether pressure vessels have been impacted, are structurally unsound, or can be safely used to complete the mission.

  17. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. B.; Alden, C.; White, J. W. C.

    2015-04-01

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere

  18. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    DOE PAGES

    Ballantyne, A. P.; Andres, R.; Houghton, R.; ...

    2015-04-30

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we concludemore » that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr ₋1 in the 1960s to 0.3 Pg C yr ₋1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr ₋1 in the 1960s to almost 1.0 Pg C yr ₋1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO 2 emissions from

  19. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport systems

    NASA Astrophysics Data System (ADS)

    Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael

    1999-07-01

    The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.

  20. Telescope Fabra ROA Montsec: A New Robotic Wide Field Baker-Nunn Facility

    NASA Astrophysics Data System (ADS)

    Fors, Octavi; Núñez, Jorge; Muiños, José Luis; Montojo, Francisco Javier; Baena-Gallé, Roberto; Boloix, Jaime; Morcillo, Ricardo; Merino, María Teresa; Downey, Elwood C.; Mazur, Michael J.

    2013-05-01

    A Baker-Nunn Camera (BNC), originally installed at the Real Instituto y Observatorio de la Armada (ROA) in 1958, was refurbished and robotized. The new facility, called Telescope Fabra ROA Montsec (TFRM), was installed at the Observatori Astronòmic del Montsec (OAdM). The process of refurbishment is described in detail. Most of the steps of the refurbishment project were accomplished by purchasing commercial components, which involve little posterior engineering assembling work. The TFRM is a 0.5 m aperture f/0.96 optically modified BNC, which offers a unique combination of instrumental specifications: fully robotic and remote operation, wide field of view (4°.4 × 4°.4), moderate limiting magnitude (V ˜ 19.5 mag), ability of tracking at arbitrary right ascension (α) and declination (δ) rates, as well as opening and closing CCD shutter at will during an exposure. Nearly all kinds of image survey programs can benefit from those specifications. Apart from other less time-consuming programs, since the beginning of science TFRM operations we have been conducting two specific and distinct surveys: super-Earths transiting around M-type dwarfs stars, and geostationary debris in the context of Space Situational Awareness/Space Surveillance and Tracking (SSA/SST) programs. Preliminary results for both cases will be shown.

  1. 30 CFR 250.304 - Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR... indicates that emissions from existing facilities may be significantly affecting the air quality of the... Regional Supervisor which demonstrates that the facility is not significantly affecting the air quality of...

  2. Fiscal Year 2007 Budget Press Conference

    NASA Image and Video Library

    2006-02-06

    NASA Administrator Michael Griffin, seated center, outlines the President's budget for fiscal year 2007 during a news conference, Monday, Feb. 6, 2006, at NASA Headquarters in Washington. The administrator was joined by the heads of NASA's four mission directorates to explain how the proposed $16.8 billion dollar budget supports the Vision for Space Exploration. The budget represents a 3.2% increase above the Fiscal Year 2006 appropriated budget. Photo Credit: (NASA/Bill Ingalls)

  3. Carbon budget of tropical forests in Southeast Asia and the effects of deforestation: an approach using a process-based model and field measurements

    NASA Astrophysics Data System (ADS)

    Adachi, M.; Ito, A.; Ishida, A.; Kadir, W. R.; Ladpala, P.; Yamagata, Y.

    2011-03-01

    More reliable estimates of carbon (C) stock within forest ecosystems and C emission induced by deforestation are urgently needed to mitigate the effects of emissions on climate change. A process-based terrestrial biogeochemical model (VISIT) was applied to tropical primary forests of two types (a seasonal dry forest in Thailand and a rainforest in Malaysia) and one agro-forest (an oil palm plantation in Malaysia) to estimate the C budget of tropical ecosystems, including the impacts of land-use conversion, in Southeast Asia. Observations and VISIT model simulations indicated that the primary forests had high photosynthetic uptake: gross primary production was estimated at 31.5-35.5 t C ha-1 yr-1. In the VISIT model simulation, the rainforest had a higher total C stock (plant biomass and soil organic matter, 301.5 t C ha-1) than that in the seasonal dry forest (266.5 t C ha-1) in 2008. The VISIT model appropriately captured the impacts of disturbances such as deforestation and land-use conversions on the C budget. Results of sensitivity analysis implied that the ratio of remaining residual debris was a key parameter determining the soil C budget after deforestation events. The C stock of the oil palm plantation was about 46% of the rainforest's C at 30 yr following initiation of the plantation, when the ratio of remaining residual debris was assumed to be about 33%. These results show that adequate forest management is important for reducing C emission from soil and C budget of each ecosystem must be evaluated over a long term using both the model simulations and observations.

  4. Green house emissions, inventories and evaluation of marine environment visa vis offshore oil field development activities Bombay high (west coast) upstream petroleum sector, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, J.S.; Ahmed, S.; Negi, C.V.S.

    1996-12-31

    Wide use of petroleum products contributes significant amount of emission to the global environment and hence maintaining emission inventories are of great importance while assessing the global green house emissions. The present paper describes a brief account of green house emission and inventories for CO{sub 2}, CO, NO{sub x}, HC particulate and SO{sub 2} emissions generated due to upstream petroleum sector activities viz. discharges of gaseous emission, combustion of Natural Gas anti HSD from production and drilling facilities of Bombay offshore area located in Exclusive Economic Zone (EEZ) west coast of India. Besides, authors have also given an account onmore » west coast marine base line status including impact of oil field activities on marine ecosystem.« less

  5. Internal combustion engine run on biogas is a potential solution to meet Indonesia emission target

    NASA Astrophysics Data System (ADS)

    Ambarita, Himsar

    2017-09-01

    Indonesia has released two different Greenhouse Gas (GHG) emissions reduction targets. The first target, released in 2009, is reduction GHG emissions 26% from Business-as-Usual (BAU) level using own budget and up 41% if supported international aids by 2020. The second target is reduction 29% and 41% from BAU by 2030 using own budget and with international support, respectively. In this paper, the BAU emissions and emissions reduction target of these two targets are elaborated. In addition, the characteristics of emissions from transportation sector are discussed. One of the potential mitigation actions is switching fuel in transportation sector. The results the most promising mitigation action in the transportation is switching oil fuel with biofuel. The Government of Indonesia (GoI) focuses on using biodiesel and bioethanol to run internal combustion engine in transportation sector and biogas is aimed to fuel power plant unit. However, there is very limited of success stories on using biogas in the power plant. The barriers and challenges will be discussed here. It is suggested to run internal combustion engine with biogas.

  6. Home studio acoustic treatments on a budget

    NASA Astrophysics Data System (ADS)

    Haverstick, Gavin A.

    2003-04-01

    Digital technology in the recording industry has evolved and expanded, allowing it to be widely available to the public at a significantly lower cost than in previous years. Due to this fact, numerous home studios are either being built inside or converted from bedrooms, dens, and basements. Hobbyists and part-time musicians that typically do not have the advantage of a large recording budget operate the majority of these home studios. Along with digital equipment, acoustic treatment has become more affordable over the years giving many musicians the ability to write, record, and produce an entire album in the comfort of their own home without having to sacrifice acoustical quality along the way. Three separate case studies were conducted on rooms with various sizes, applications, and budgets. Acoustical treatment such as absorption, diffusion, and bass trapping were implemented to reduce the effects of issues such as flutter echo, excessive reverberation, and bass build-up among others. Reactions and subjective comments from each individual studio owner were gathered and assessed to determine how effective home studios can be on a personal and professional level if accurately treated acoustically.

  7. Ozone and carbon monoxide budgets over the Eastern Mediterranean.

    PubMed

    Myriokefalitakis, S; Daskalakis, N; Fanourgakis, G S; Voulgarakis, A; Krol, M C; Aan de Brugh, J M J; Kanakidou, M

    2016-09-01

    The importance of the long-range transport (LRT) on O3 and CO budgets over the Eastern Mediterranean has been investigated using the state-of-the-art 3-dimensional global chemistry-transport model TM4-ECPL. A 3-D budget analysis has been performed separating the Eastern from the Western basins and the boundary layer (BL) from the free troposphere (FT). The FT of the Eastern Mediterranean is shown to be a strong receptor of polluted air masses from the Western Mediterranean, and the most important source of polluted air masses for the Eastern Mediterranean BL, with about 40% of O3 and of CO in the BL to be transported from the FT aloft. Regional anthropogenic sources are found to have relatively small impact on regional air quality in the area, contributing by about 8% and 18% to surface levels of O3 and CO, respectively. Projections using anthropogenic emissions for the year 2050 but neglecting climate change calculate a surface O3 decrease of about 11% together with a surface CO increase of roughly 10% in the Eastern Mediterranean. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...

  9. Colorado Children's Budget 2013

    ERIC Educational Resources Information Center

    Buck, Beverly; Baker, Robin

    2013-01-01

    The "Colorado Children's Budget" presents and analyzes investments and spending trends during the past five state fiscal years on services that benefit children. The "Children's Budget" focuses mainly on state investment and spending, with some analysis of federal investments and spending to provide broader context of state…

  10. Measurement of gas and aerosol agricultural emissions

    USDA-ARS?s Scientific Manuscript database

    Studies of air quality indicate that agricultural emissions may impact particulate mass concentrations through both primary and secondary processes. Agriculture impacts can include primary dust emission, on-facility combustion from vehicles or seasonal field burning, and gaseous emissions from waste...

  11. [The department budget, in the context of the hospital global budget. Initial results in general medicine].

    PubMed

    Besançon, F

    1984-02-23

    In a general hospital (Hôtel-Dieu, in the center of Paris), run with a global budget, budgets determined for each unit were introduced as an experiment in 1980. Physicians were in charge of certain expenses, mainly: linen, drugs, transportation of patients to and from other hospitals within Paris, and blood fractions. The whole does not exceed 4% of the turnover (FF 20 millions in 1980) of a 67 bed internal medicine unit. Other accounts deal with the stays, admissions, prescriptions of technical acts, laboratory analyses, and X-rays. In 1980, expenses were 11% more than budgeted, but the increase in stays and particularly in admissions was significantly greater. The resulting savings were 8.8% and 18.7% for stays and admissions respectively. Psychic reactions were variable. The subsequent budgets followed the fluctuations of recorded expenses, which were fairly important in both directions. The unit budget may be an advance or a regression, in a restrictive and past-perpetuating context. The coherence between the unit budget and the global hospital budget is questionable. Physicians were willing to take part in accounting and saving. They have good reason for not enlarging their financial responsibilities. Conversely, they may give more attention to diseases of public opinion.

  12. 78 FR 57211 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... Aviation Safety and Capacity Expansion Act of 1990 (Title IX of the Omnibus Budget Reconciliation Act of... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Monthly...

  13. 78 FR 76382 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... Aviation Safety and Capacity Expansion Act of 1990 (Title IX of the Omnibus Budget Reconciliation Act of... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Monthly...

  14. 75 FR 33376 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... Aviation Safety and Capacity Expansion Act of 1990 (Title IX of the Omnibus Budget Reconciliation Act of... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Monthly...

  15. 78 FR 57205 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... Aviation Safety and Capacity Expansion Act of 1990 (Title IX of the Omnibus Budget Reconciliation Act of... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Monthly...

  16. Benthic Primary Production Budget of a Caribbean Reef Lagoon (Puerto Morelos, Mexico)

    PubMed Central

    Naumann, Malik S.; Jantzen, Carin; Haas, Andreas F.; Iglesias-Prieto, Roberto; Wild, Christian

    2013-01-01

    High photosynthetic benthic primary production (P) represents a key ecosystem service provided by tropical coral reef systems. However, benthic P budgets of specific ecosystem compartments such as macrophyte-dominated reef lagoons are still scarce. To address this, we quantified individual and lagoon-wide net (Pn) and gross (Pg) primary production by all dominant functional groups of benthic primary producers in a typical macrophyte-dominated Caribbean reef lagoon near Puerto Morelos (Mexico) via measurement of O2 fluxes in incubation experiments. The photosynthetically active 3D lagoon surface area was quantified using conversion factors to allow extrapolation to lagoon-wide P budgets. Findings revealed that lagoon 2D benthic cover was primarily composed of sand-associated microphytobenthos (40%), seagrasses (29%) and macroalgae (27%), while seagrasses dominated the lagoon 3D surface area (84%). Individual Pg was highest for macroalgae and scleractinian corals (87 and 86 mmol O2 m−2 specimen area d−1, respectively), however seagrasses contributed highest (59%) to the lagoon-wide Pg. Macroalgae exhibited highest individual Pn rates, but seagrasses generated the largest fraction (51%) of lagoon-wide Pn. Individual R was highest for scleractinian corals and macroalgae, whereas seagrasses again provided the major lagoon-wide share (68%). These findings characterise the investigated lagoon as a net autotrophic coral reef ecosystem compartment revealing similar P compared to other macrophyte-dominated coastal environments such as seagrass meadows and macroalgae beds. Further, high lagoon-wide P (Pg: 488 and Pn: 181 mmol O2 m−2 lagoon area d−1) and overall Pg:R (1.6) indicate substantial benthic excess production within the Puerto Morelos reef lagoon and suggest the export of newly synthesised organic matter to surrounding ecosystems. PMID:24367570

  17. Emission of atmospherically significant halocarbons by naturally occurring and farmed tropical macroalgae

    NASA Astrophysics Data System (ADS)

    Leedham, E. C.; Hughes, C.; Keng, F. S. L.; Phang, S.-M.; Malin, G.; Sturges, W. T.

    2013-01-01

    Current estimates of global halocarbon emissions highlight the tropical coastal environment as an important source of very short-lived (VSL) biogenic halocarbons to the troposphere and stratosphere. This is due to a combination of assumed high primary productivity in tropical coastal waters and the prevalence of deep convective transport potentially capable of rapidly lifting surface emissions to the upper troposphere/lower stratosphere. However, despite this perceived importance direct measurements of tropical coastal biogenic halocarbon emissions, notably from macroalgae (seaweeds), have not been made. In light of this, we provide the first dedicated study of halocarbon production by a range of 15 common tropical macroalgal species and compare these results to those from previous studies of polar and temperate macroalgae. Variation between species was substantial; CHBr3 measured at the end of a 24 h incubation varied from 1.4 to 1129 pmol g FW-1 h-1 (FW = fresh weight of sample). We used our laboratory-determined emission rates to estimate emissions of CHBr3 and CH2Br2 (the two dominant VSL precursors of stratospheric bromine) from the coastlines of Malaysia and South East Asia. We compare these values to previous top-down model estimates of emissions from these regions, and conclude that the contribution of coastal CHBr3 emissions is likely to be lower than previously assumed. The contribution of tropical aquaculture to current emission budgets is also considered. Whilst the current aquaculture contribution to halocarbon emissions in this regional is small, the potential exists for substantial increases in aquaculture to make a significant contribution to regional halocarbon budgets.

  18. Less fog on the Tyne? Programme budgeting in Newcastle and North Tyneside.

    PubMed

    Miller, P; Parkin, D; Craig, N; Lewis, D; Gerard, K

    1997-06-01

    Programme Budgeting (PB) has been widely promoted as a model for the better conduct of the work of Health Authorities in the National Health Service in the United Kingdom. This paper reports on a project which looked at the development of PB in Newcastle and North Tyneside Health Authority (NNTHA), concentrating on the construction of a computerised tool for the compilation and analysis of programme budgets. The main activities carried out were a survey of user requirements for PB, a survey of data availability, the collection of data to construct programme budgets, and development of a relational database for storing and manipulating PB information. The main source of data was the Contract Minimum Data Set, which was supplemented by data from a number of other sources to give comprehensive information on spending in NNTHA. Costed activity data were produced, which could be aggregated in a large number of ways, such as by care setting (inpatient, outpatient, community, general practice, etc.), disease group (ICD9 chapter headings), case mix (Healthcare Resource Groups) and socio-demographic variables (age/sex, locality of GPs practice).

  19. Analysis of the X-ray emission spectra of copper, germanium and rubidium plasmas produced at the Phelix laser facility

    NASA Astrophysics Data System (ADS)

    Comet, M.; Pain, J.-C.; Gilleron, F.; Piron, R.; Denis-Petit, D.; Méot, V.; Gosselin, G.; Morel, P.; Hannachi, F.; Gobet, F.; Tarisien, M.; Versteegen, M.

    2017-03-01

    We present the analysis of X-ray emission spectra of copper, germanium and rubidium plasmas measured at the Phelix laser facility. The laser intensity was around 6×1014 W.cm-2. The analysis is based on the hypothesis of an homogeneous plasma in local thermodynamic equilibrium using an effective temperature. This temperature is deduced from hydrodynamic simulations and collisional-radiative computations. Spectra are then calculated using the LTE opacity codes OPAMCDF and SCO-RCG and compared to experimental data.

  20. Defense.gov Special Report: 2014 Budget Proposal

    Science.gov Websites

    Department of Defense Submit Search 2014 Fiscal Budget News Stories Bill Provides Military Pay, Bonuses Describe Effects of Budget Uncertainty With assessments ranging from "sobering" to "painful Predicts Bleak Budget Picture Budget pressures mean defense acquisition workers' lives "are going to

  1. Evaluating emissions of HCHO, HONO, NO2, and SO2 from point sources using portable Imaging DOAS

    NASA Astrophysics Data System (ADS)

    Pikelnaya, O.; Tsai, C.; Herndon, S. C.; Wood, E. C.; Fu, D.; Lefer, B. L.; Flynn, J. H.; Stutz, J.

    2011-12-01

    Our ability to quantitatively describe urban air pollution to a large extent depends on an accurate understanding of anthropogenic emissions. In areas with a high density of individual point sources of pollution, such as petrochemical facilities with multiple flares or regions with active commercial ship traffic, this is particularly challenging as access to facilities and ships is often restricted. Direct formaldehyde emissions from flares may play an important role for ozone chemistry, acting as an initial radical precursor and enhancing the degradation of co-emitted hydrocarbons. HONO is also recognized as an important OH source throughout the day. However, very little is known about direct HCHO and HONO emissions. Imaging Differential Optical Absorption Spectroscopy (I-DOAS), a relatively new remote sensing technique, provides an opportunity to investigate emissions from these sources from a distance, making this technique attractive for fence-line monitoring. In this presentation, we will describe I-DOAS measurements during the FLAIR campaign in the spring/summer of 2009. We performed measurements outside of various industrial facilities in the larger Houston area as well as in the Houston Ship Channel to visualize and quantify the emissions of HCHO, NO2, HONO, and SO2 from flares of petrochemical facilities and ship smoke stacks. We will present the column density images of pollutant plumes as well as fluxes from individual flares calculated from I-DOAS observations. Fluxes from individual flares and smoke stacks determined from the I-DOAS measurements vary widely in time and by the emission sources. We will also present HONO/NOx ratios in ship smoke stacks derived from the combination of I-DOAS and in-situ measurements, and discuss other trace gas ratios in plumes derived from the I-DOAS observations. Finally, we will show images of HCHO, NO2 and SO2 plumes from control burn forest fires observed in November of 2009 at Vandenberg Air Force Base, Santa Maria

  2. Laboratory administration--capital budgeting.

    PubMed

    Butros, F

    1997-01-01

    The process of capital budgeting varies among different health-care institutions. Understanding the concept of present value of money, incremental cash flow statements, and the basic budgeting techniques will enable the laboratory manager to make the rational and logical decisions that are needed in today's competitive health-care environment.

  3. Earth Radiation Budget Science, 1978. 1: Introduction. [to obtain radiation budget measurements by satellite observation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An earth radiation budget satellite system (ERBSS) is planned in order to understand climate on various temporal and spatial scales. The system consists of three satellites and is designed to obtain radiation budget data from the earth's surface. Among the topics discussed are the climate modeling and climate diagnostics, the applications of radiation modeling to ERBSS, and the influence of albedo clouds on radiation budget and atmospheric circulation.

  4. 40 CFR 96.140 - State trading budgets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false State trading budgets. 96.140 Section...) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Allowance Allocations § 96.140 State trading budgets. The State trading budgets for annual...

  5. 40 CFR 96.140 - State trading budgets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false State trading budgets. 96.140 Section...) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Allowance Allocations § 96.140 State trading budgets. The State trading budgets for annual...

  6. 40 CFR 96.140 - State trading budgets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false State trading budgets. 96.140 Section...) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Allowance Allocations § 96.140 State trading budgets. The State trading budgets for annual...

  7. 40 CFR 96.140 - State trading budgets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false State trading budgets. 96.140 Section...) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO 2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Allowance Allocations § 96.140 State trading budgets. The State trading budgets for annual...

  8. 40 CFR 96.140 - State trading budgets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State trading budgets. 96.140 Section...) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Allowance Allocations § 96.140 State trading budgets. The State trading budgets for annual...

  9. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enbar, Nadav; Weng, Dean; Klise, Geoffrey Taylor

    2016-01-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives onmore » current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefit the industry at-large.« less

  10. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enbar, Nadav; Weng, Dean; Klise, Geoffrey Taylor

    2015-12-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives onmore » current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefi t the industry at-large.« less

  11. Link Power Budget and Traffict QoS Performance Analysis of Gygabit Passive Optical Network

    NASA Astrophysics Data System (ADS)

    Ubaidillah, A.; Alfita, R.; Toyyibah

    2018-01-01

    Data service of telecommunication network is needed widely in the world; therefore extra wide bandwidth must be provided. For this case, PT. Telekomunikasi Tbk. applies GPON (Gigabit Passive Optical Network) as optical fibre based on telecommunication network system. GPON is a point to a multipoint technology of FTTx (Fiber to The x) that transmits information signals to the subscriber over optical fibre. In GPON trunking system, from OLT (Optical Line Terminal), the network is split to many ONT (Optical Network Terminal) of the subscribers, so it causes path loss and attenuation. In this research, the GPON performance is measured from the link power budget system and the Quality of Service (QoS) of the traffic. And the observation result shows that the link power budget system of this GPON is in good condition. The link power budget values from the mathematical calculation and direct measurement are satisfy the ITU-T G984 Class B standard, that the power level must be between -8 dBm to -27 dBm. While from the traffic performance, the observation result shows that the network resource utility of the subscribers of the observed area is not optimum. The mean of subscriber utility rate is 27.985 bps for upstream and 79.687 bps for downstream. While maximally, It should be 60.800 bps for upstream and 486.400 bps for downstream.

  12. Lean Mean Times--Budgeting for School Media Technology.

    ERIC Educational Resources Information Center

    Johnson, Doug

    1995-01-01

    Discusses budgeting strategies for school media technology programs. Highlights include sources for school funding, school district budget information, control of the budget, how to write an effective budget, working with other community and school groups, local politics, and sidebars that discuss spreadsheets and maintenance budgets. (LRW)

  13. Colorado Children's Budget 2010

    ERIC Educational Resources Information Center

    Colorado Children's Campaign, 2010

    2010-01-01

    The "Children's Budget 2010" is intended to be a resource guide for policymakers and advocates who are interested in better understanding how Colorado funds children's programs and services. It attempts to clarify often confusing budget information and describe where the state's investment trends are and where those trends will lead the…

  14. Quantifying Industrial Methane Emissions from Space with the GHGSat-D Satellite

    NASA Astrophysics Data System (ADS)

    Germain, S.; Durak, B.; Gains, D.; Jervis, D.; McKeever, J.; Sloan, J. J.

    2017-12-01

    In June 2016, GHGSat, Inc. launched GHGSat-D, or "Claire", the world's first satellite capable of measuring greenhouse gas emissions from targeted industrial facilities around the world. The high-level objective of this mission is to demonstrate that a single measurement approach can quantify methane emission rates from selected industrial sources with greater precision, higher frequency, and lower cost than ground-based alternatives, across a wide range of industries. Providing industrial operators and regulators with frequent, cost-effective emission measurements can help identify super-emitters and monitor the progress of mitigation efforts. The GHGSat measurement platform is a 15 kg satellite that measures methane column densities using a novel wide-angle imaging Fabry-Perot spectrometer tuned to the 1600-1700 nm SWIR band. During each measurement sequence, a series of closely overlapping 2D images are taken so that each ground location samples a portion of the SWIR band with 0.1 nm spectral resolution. The data processing algorithm is able to co-register each image and, by comparison with a detailed forward model, perform a retrieval on each of the <50 m GSD over the entire 12 x 12 km2 field of view. Methane emission rates are then estimated using a dispersion model coupled with locally measured wind fields. We will present the economic rationale for satellite-based sensing of methane from industrial sources, introduce the GHGSat measurement concept, report on recent measurement results obtained by Claire, and describe performance upgrades planned for future missions.

  15. 40 CFR 97.140 - State trading budgets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false State trading budgets. 97.140 Section...) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Allowance Allocations § 97.140 State trading budgets. The State trading budgets for annual allocations of CAIR NOX allowances...

  16. 40 CFR 97.140 - State trading budgets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false State trading budgets. 97.140 Section...) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Allowance Allocations § 97.140 State trading budgets. The State trading budgets for annual allocations of CAIR NOX allowances...

  17. 40 CFR 97.140 - State trading budgets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false State trading budgets. 97.140 Section...) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Allowance Allocations § 97.140 State trading budgets. The State trading budgets for annual allocations of CAIR NOX allowances...

  18. 40 CFR 97.140 - State trading budgets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false State trading budgets. 97.140 Section...) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Allowance Allocations § 97.140 State trading budgets. The State trading budgets for annual allocations of CAIR NOX allowances...

  19. 40 CFR 97.140 - State trading budgets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State trading budgets. 97.140 Section...) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Allowance Allocations § 97.140 State trading budgets. The State trading budgets for annual allocations of CAIR NOX allowances...

  20. Historical emissions critical for mapping decarbonization pathways

    NASA Astrophysics Data System (ADS)

    Majkut, J.; Kopp, R. E.; Sarmiento, J. L.; Oppenheimer, M.

    2016-12-01

    Policymakers have set a goal of limiting temperature increase from human influence on the climate. This motivates the identification of decarbonization pathways to stabilize atmospheric concentrations of CO2. In this context, the future behavior of CO2 sources and sinks define the CO2 emissions necessary to meet warming thresholds with specified probabilities. We adopt a simple model of the atmosphere-land-ocean carbon balance to reflect uncertainty in how natural CO2 sinks will respond to increasing atmospheric CO2 and temperature. Bayesian inversion is used to estimate the probability distributions of selected parameters of the carbon model. Prior probability distributions are chosen to reflect the behavior of CMIP5 models. We then update these prior distributions by running historical simulations of the global carbon cycle and inverting with observationally-based inventories and fluxes of anthropogenic carbon in the ocean and atmosphere. The result is a best-estimate of historical CO2 sources and sinks and a model of how CO2 sources and sinks will vary in the future under various emissions scenarios, with uncertainty. By linking the carbon model to a simple climate model, we calculate emissions pathways and carbon budgets consistent with meeting specific temperature thresholds and identify key factors that contribute to remaining uncertainty. In particular, we show how the assumed history of CO2 emissions from land use change (LUC) critically impacts estimates of the strength of the land CO2 sink via CO2 fertilization. Different estimates of historical LUC emissions taken from the literature lead to significantly different parameterizations of the carbon system. High historical CO2 emissions from LUC lead to a more robust CO2 fertilization effect, significantly lower future atmospheric CO2 concentrations, and an increased amount of CO2 that can be emitted to satisfy temperature stabilization targets. Thus, in our model, historical LUC emissions have a