Science.gov

Sample records for facilitynevada test site

  1. STREAMLINED APPROACH FOR ENVIRONMENTAL RESTORATION PLAN FOR CORRECTIVE ACTION UNIT 116: AREA 25 TEST CELL C FACILITYNEVADA TEST SITE, NEVADA

    SciTech Connect

    2006-07-01

    This Streamlined Approach for Environmental Restoration Plan identifies the activities required for the closure of Corrective Action Unit 116, Area 25 Test Cell C Facility. The Test Cell C Facility is located in Area 25 of the Nevada Test Site approximately 25 miles northwest of Mercury, Nevada.

  2. CELT site testing program

    NASA Astrophysics Data System (ADS)

    Schoeck, Matthias; Erasmus, D. Andre; Djorgovski, S. George; Chanan, Gary A.; Nelson, Jerry E.

    2003-01-01

    The California Extremely Large Telescope, CELT, is a proposed 30-m telescope. Choosing the best possible site for CELT is essential in order to extract the best science from the observations and to reduce the complexity of the telescope. Site selection is therefore currently one of the most critical pacing items of the CELT project. In this paper, we first present selected results from a survey of the atmospheric transparency at optical and infrared wavelengths over the southwestern USA and northern Mexico using satellite data. Results of a similar study of South America have been reported elsewhere. These studies will serve as the pre-selection criterion of the sites at which we will perform on-site testing. We then describe the current status of on-site turbulence evaluation efforts and the future plans of the CELT site testing program.

  3. Nevada Test Site Sensor Test Facility

    SciTech Connect

    Gomez, B.J.; Boyer, W.B.

    1996-12-01

    A Sensor Test Facility (STF) was recently established at the Department of Energy`s Nevada Test Site (NTS). It has been used for a series of sensor tests that have demonstrated the usefulness of the testbed. The facility consists of a cut-and-cover bunker complex and the two square mile surrounding area. The STF was developed as a scientific testbed optimized for the development and evaluation of advanced sensor systems, including ground sensor systems designed to identify and detect hardened underground facilities. This was accomplished by identifying a facility in a remote location where seismic, acoustic, and electromagnetic interference would be minimal, establishing a testbed that would be accommodating to field testing, and conducting a thorough geophysical characterization of the area surrounding the facility in order to understand the local geology and its effects on geophysical signals emanating from the facility. The STF is representative of a number of cut-and-cover bunkers around the world that are used for the manufacture and/or storage of weapons of mass destruction. This paper provides a general description of the Nevada Test Site, the Sensor Test Facility, and the Geophysical Site Characterization.

  4. Nevada Test Site closure program

    SciTech Connect

    Shenk, D.P.

    1994-08-01

    This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use.

  5. Desert Test Site Uniformity Analysis

    NASA Technical Reports Server (NTRS)

    Kerola, Dana X.; Bruegge, Carol J.

    2009-01-01

    Desert test sites such as Railroad Valley (RRV) Nevada, Egypt-1, and Libya-4 are commonly targeted to assess the on-orbit radiometric performance of sensors. Railroad Valley is used for vicarious calibration experiments, where a field-team makes ground measurements to produce accurate estimates of top-of-atmosphere (TOA) radiances. The Sahara desert test sites are not instrumented, but provide a stable target that can be used for sensor cross-comparisons, or for stability monitoring of a single sensor. These sites are of interest to NASA's Atmospheric Carbon Observation from Space (ACOS) and JAXA's Greenhouse Gas Observation SATellite (GOSAT) programs. This study assesses the utility of these three test sites to the ACOS and GOSAT calibration teams. To simulate errors in sensor-measured radiance with pointing errors, simulated data have been created using MODIS Aqua data. MODIS data are further utilized to validate the campaign data acquired from June 22 through July 5, 2009. The first GOSAT vicarious calibration experiment was conducted during this timeframe.

  6. SLS Test Stand Site Selection

    NASA Technical Reports Server (NTRS)

    Crowe, Kathryn; Williams, Michael

    2015-01-01

    Test site selection is a critical element of the design, development and production of a new system. With the advent of the new Space Launch System (SLS), the National Aeronautics and Space Administration (NASA) had a number of test site selection decisions that needed to be made early enough in the Program to support the planned Launch Readiness Date (LRD). This case study focuses on decisions that needed to be made in 2011 and 2012 in preparation for the April 2013 DPMC decision about where to execute the Main Propulsion Test that is commonly referred to as "Green Run." Those decisions relied upon cooperative analysis between the Program, the Test Lab and Center Operations. The SLS is a human spaceflight vehicle designed to carry a crew farther into space than humans have previously flown. The vehicle consists of four parts: the crew capsule, the upper stage, the core stage, and the first stage solid rocket boosters. The crew capsule carries the astronauts, while the upper stage, the core stage, and solid rocket boosters provide thrust for the vehicle. In other words, the stages provide the "lift" part of the lift vehicle. In conjunction with the solid rocket boosters, the core stage provides the initial "get-off-the-ground" thrust to the vehicle. The ignition of the four core stage engines and two solid rocket boosters is the first step in the launch portion of the mission. The solid rocket boosters burn out after about 2 minutes of flight, and are then jettisoned. The core stage provides thrust until the vehicle reaches a specific altitude and speed, at which point the core stage is shut off and jettisoned, and the upper stage provides vehicle thrust for subsequent mission trajectories. The integrated core stage primarily consists of a liquid oxygen tank, a liquid hydrogen tank, and the four core stage engines. For the SLS program, four RS-25 engines were selected as the four core stage engines. The RS-25 engine is the same engine that was used for Space

  7. VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST TOWER VIEW INCLUDES STRUCTURAL DYNAMICS TEST STAND COLD CALIBRATION TEST STAND AND COMPONENTS TEST LAB. - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL

  8. Nevada Test Site Waste Acceptance Criteria

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-05-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site.

  9. 30 CFR 36.40 - Test site.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test site. 36.40 Section 36.40 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.40 Test site. Tests shall be conducted at MSHA's Diesel Testing Laboratory or...

  10. 30 CFR 36.40 - Test site.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test site. 36.40 Section 36.40 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.40 Test site. Tests shall be conducted at MSHA's Diesel Testing Laboratory or...

  11. 30 CFR 36.40 - Test site.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test site. 36.40 Section 36.40 Mineral... MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.40 Test site. Tests shall be conducted at MSHA's Diesel Testing Laboratory or...

  12. Nevada Test Site Wetlands Assessment

    SciTech Connect

    D. J. Hansen

    1997-05-01

    This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authority of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.

  13. 30 CFR 33.30 - Test site.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test site. 33.30 Section 33.30 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.30 Test site. Tests shall be conducted at an appropriate location determined by MSHA....

  14. 30 CFR 33.30 - Test site.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test site. 33.30 Section 33.30 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.30 Test site. Tests shall be conducted at an appropriate location determined by MSHA....

  15. 30 CFR 33.30 - Test site.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test site. 33.30 Section 33.30 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.30 Test site. Tests shall be conducted at an appropriate location determined by MSHA....

  16. VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST TOWER VIEW INCLUDES SATURN V STAND (BACKGROUND), BLOCK HOUSE (MIDDLE GROUND), STRUCTURAL DYNAMICS TEST STAND (FAR RIGHT). - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL

  17. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    SciTech Connect

    NNSA /NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  18. VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST TOWER VIEW INCLUDES POWER PLANT TEST STAND AND SATURN V TEST STAND IN THE WEST TEST AREA (FAR BACKGROUND). - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL

  19. Colloid research for the Nevada Test Site

    SciTech Connect

    Bryant, E.A.

    1992-05-01

    Research is needed to understand the role of particulates in the migration of radionuclides away from the sites of nuclear tests at the Nevada Test Site. The process of testing itself may produce a reservoir of particles to serve as vectors for the transport of long-lived radionuclides in groundwater. Exploratory experiments indicate the presence of numerous particulates in the vicinity of the Cambric test but a much lower loading in a nearby well that has been pumped continuously for 15 years. Recent groundwater colloid research is briefly reviewed to identify sampling and characterization methods that may be applicable at the Nevada Test Site.

  20. Nevada Test Site Environmental Report 2004

    SciTech Connect

    BECHTEL NEVADA

    2005-10-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders.

  1. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    SciTech Connect

    Cathy A. Wills

    2006-10-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  2. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    SciTech Connect

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-07-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  3. Double tracks test site characterization report

    SciTech Connect

    1996-05-01

    This report presents the results of site characterization activities performed at the Double Tracks Test Site, located on Range 71 North, of the Nellis Air Force Range (NAFR) in southern Nevada. Site characterization activities included reviewing historical data from the Double Tracks experiment, previous site investigation efforts, and recent site characterization data. The most recent site characterization activities were conducted in support of an interim corrective action to remediate the Double Tracks Test Site to an acceptable risk to human health and the environment. Site characterization was performed using a phased approach. First, previously collected data and historical records sere compiled and reviewed. Generalized scopes of work were then prepared to fill known data gaps. Field activities were conducted and the collected data were then reviewed to determine whether data gaps were filled and whether other areas needed to be investigated. Additional field efforts were then conducted, as required, to adequately characterize the site. Characterization of the Double Tracks Test Site was conducted in accordance with the US Department of Energy`s (DOE) Streamlined Approach for Environmental Restoration (SAFER).

  4. 14. "SITE WORK, CIVIL, SITE PLAN." Test Area 1120. Specifications ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. "SITE WORK, CIVIL, SITE PLAN." Test Area 1-120. Specifications No. OC2-55-72; Drawing No. 60-09-12; sheet 7 of 148; file no. 1320/58, Rev. C. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338 Rev. C, Date: 16 April 1957. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  5. 30 CFR 33.30 - Test site.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test site. 33.30 Section 33.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test...

  6. 30 CFR 33.30 - Test site.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test site. 33.30 Section 33.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test...

  7. Nevada Test Site Environmental Report 2007 Attachment A: Site Description

    SciTech Connect

    Cathy Wills

    2008-09-01

    This appendix expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2007 (U.S. Department of Energy [DOE], 2008). Included are subsections that summarize the site's geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  8. Nevada Test Site Environmental Report 2003

    SciTech Connect

    Bechtel Nevada

    2004-10-01

    The Nevada Test Site Environmental Report 2003 was prepared by Bechtel Nevada to meet the requirements and guidelines of the U.S. Department of Energy and the information needs of the public. This report is meant to be useful to members of the public, public officials, regulators, and Nevada Test Site contractors. The Executive Summary strives to present in a concise format the purpose of the document, the NTS mission and major programs, a summary of radiological releases and doses to the public resulting from site operations, a summary of non-radiological releases, and an overview of the Nevada Test Site Environmental Management System. The Executive Summary, combined with the following Compliance Summary, are written to meet all the objectives of the report and to be stand-alone sections for those who choose not to read the entire document.

  9. Nevada Test Site Environmental Report 2009, Attachment A: Site Description

    SciTech Connect

    Cathy Wills, ed.

    2010-09-13

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2009. Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  10. Nevada Test Site Environmental Report 2008 Attachment A: Site Description

    SciTech Connect

    Cathy A. Wills

    2009-09-01

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2008 (National Security Technologies, LLC [NSTec], 2009a). Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  11. Nevada Test Site seismic: telemetry measurements

    SciTech Connect

    Albright, J N; Parker, L E; Horton, E H

    1983-08-01

    The feasibility and limitations of surface-to-tunnel seismic telemetry at the Nevada Test Site were explored through field measurements using current technology. Range functions for signaling were determined through analysis of monofrequency seismic signals injected into the earth at various sites as far as 70 km (43 mi) from installations of seismometers in the G-Tunnel complex of Rainier Mesa. Transmitted signal power at 16, 24, and 32 Hz was measured at two locations in G-Tunnel separated by 670 m (2200 ft). Transmissions from 58 surface sites distributed primarily along three azimuths from G-Tunnel were studied. The G-Tunnel noise environment was monitored over the 20-day duration of the field tests. Noise-power probability functions were calculated for 20-s and 280-s seismic-record populations. Signaling rates were calculated for signals transmitted from superior transmitter sites to G-Tunnel. A detection threshold of 13 dB re 1 nm/sup 2/ displacement power at 95% reliability was demanded. Consideration of field results suggests that even for the frequency range used in this study, substantially higher signaling rates are likely to be obtained in future work in view of the present lack of information relevant to hardware-siting criteria and the seismic propagation paths at the Nevada Test Site. 12 references.

  12. Nevada Test Site Environmental Report 2008 Summary

    SciTech Connect

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  13. Nevada Test Site Environmental Report 2008

    SciTech Connect

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  14. The Nevada Test Site as a Lunar Analog Test Area

    SciTech Connect

    Sheldon Freid

    2007-02-13

    The Nevada Test Site (NTS) is a large (1,350 square miles) secure site currently operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy and was established in 1951 to provide a venue for testing nuclear weapons. Three areas with a variety of elevation and geological parameters were used for testing, but the largest number of tests was in Yucca Flat. The Yucca Flat area is approximately 5 miles wide and 20 miles long and approximately 460 subsidence craters resulted from testing in this area. The Sedan crater displaced approximately 12 million tons of earth and is the largest of these craters at 1,280 feet across and 320 feet deep. The profiles of Sedan and the other craters offer a wide variety of shapes and depths that are ideally suited for lunar analog testing.

  15. Nevada Test Site Environmental Summary Report 2006

    SciTech Connect

    Cathy Wills

    2007-10-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). The NTS is the nation's historical testing site for nuclear weapons from 1951 through 1992 and is currently the nation's unique site for ongoing national-security related missions and high-risk operations. NNSA/NSO strives to provide to the public an understanding of the current activities on the NTS, including environmental monitoring and compliance activities aimed at protecting the public and the environment from radiation hazards and from nonradiological impacts. This document is a summary of the Nevada Test Site Environmental Report (NTSER) for calendar year 2006 (see attached compact disc on inside back cover). The NTSER is a comprehensive report of environmental activities performed at the NTS and its satellite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. To provide an abbreviated and more readable version of the NTSER, this summary report is produced. This summary does not include detailed data tables, monitoring methods or design, a description of the NTS environment, or a discussion of all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  16. Nevada Test Site Summary 2006 (Volume 2)

    SciTech Connect

    Cathy Wills

    2007-10-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). The NTS is the nation's historical testing site for nuclear weapons from 1951 through 1992 and is currently the nation's unique site for ongoing national-security-related missions and high-risk operations. NNSA/NSO strives to provide to the public an understanding of the current activities on the NTS, including environmental monitoring and compliance activities aimed at protecting the public and the environment from radiation hazards and from nonradiological impacts. This document is a summary of the Nevada Test Site Environmental Report (NTSER) for calendar year 2006 (see attached compact disc on inside back cover). The NTSER is a comprehensive report of environmental activities performed at the NTS and its satellite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. To provide an abbreviated and more readable version of the NTSER, this summary report is produced. This summary does not include detailed data tables, monitoring methods or design, a description of the NTS environment, or a discussion of all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  17. Nevada Test Site Environmental Report 2007 Summary

    SciTech Connect

    Cathy Wills

    2008-09-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). The NTS is the nation's historical testing site for nuclear weapons from 1951 through 1992 and is currently the nation's unique site for ongoing national-security related missions and high-risk operations. NNSA/NSO strives to provide to the public an understanding of the current activities on the NTS, including environmental monitoring and compliance activities aimed at protecting the public and the environment from radiation hazards and from nonradiological impacts. This document is a summary of the Nevada Test Site Environmental Report (NTSER) for calendar year 2007 (see attached compact disc on inside back cover). The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. To provide an abbreviated and more readable version of the NTSER, this summary report is produced. This summary does not include detailed data tables, monitoring methods or design, a description of the NTS environment, or a discussion of all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  18. Nevada Test Site Environmental Report 2007

    SciTech Connect

    Cathy Wills

    2008-09-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report.

  19. Tonopah Test Range closure sites revegetation plan

    SciTech Connect

    Anderson, D.C.; Hall, D.B.

    1997-05-01

    This document is a revegetation plan for long-term stabilization (revegetation) of land disturbed by activities associated with the closure of a Bomblet Pit and the Five Points Landfill. Both sites are on the Tonopah Test Range (TTR) located in south-central Nevada. This document contains general reclamation practices and procedures that will be followed during the revegetation of these sites. The revegetation procedures proposed have been developed over several years of research and include the results of reclamation trials at Area 11 and Area 19 on the Nevada Test Site (NTS), and more recently at the Double Tracks (Nellis Air Force Range) reclamation demonstration plots. In addition, the results of reclamation efforts and concurrent research efforts at the Yucca Mountain Project have been considered in the preparation of this revegetation plan.

  20. Nevada Test Site annual site environmental report, 1989

    SciTech Connect

    Wruble, D T; McDowell, E M

    1990-11-01

    Prior to 1989 annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the offsite radiological surveillance program conducted by the US Environmental Protection Agency (EPA), Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, were reported separately by that Agency. Beginning with this 1989 annual Site environmental report for the NTS, these two documents are being combined into a single report to provide a more comprehensive annual documentation of the environmental protection program conducted for the nuclear testing program and other nuclear and non-nuclear activities at the Site. The two agencies have coordinated preparation of this combined onsite and offsite report through sharing of information on environmental releases and meteorological, hydrological, and other supporting data used in dose-estimate calculations. 57 refs., 52 figs., 65 tabs.

  1. Nevada Test Site Environmental Report 2009

    SciTech Connect

    Cathy Wills, ed.

    2010-09-13

    The Nevada Test Site Environmental Report 2009 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ Nevada Test Site Environmental Reports (NTSERs) are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx. This NTSER was prepared to satisfy DOE Order DOE O 231.1A, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NTSER summarizes data and compliance status for calendar year 2009 at the Nevada Test Site (NTS) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory (RSL)-Nellis. It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.

  2. Astronomical Site Testing Initiatives in Africa

    NASA Astrophysics Data System (ADS)

    Buckley, David A. H.; Graham, Edward; Vaughan, Richard; Belay, Solomon; Biressa, Tolu

    2015-08-01

    Two astronomical site testing initiatives are beginning in both Kenya and Ethiopia, with the aim of selecting suitable locations in those countries for modest sized (1-2m) optical telescopes.The first project, in Kenya, has initially involved a desk-top study of ~30 years of low resolution (~80 km) meteorological satellite data from the European Centre for Medium Range Weather Forecasting (so called “ERA-reanalysis” data). This was later supplemented by ~2 years of higher resolution (~12 km) United Kingdom Met Office Limited Area Model for Africa (“Africa-LAM”) data, kindly made available by the British Atmospheric Data Centre (BADC).The analysis looked at cloud cover, aerosol distribution, integrated water vapour and wind conditions, On the basis of this study, we determined a number of regions in the north of Kenya, east of the Rift Valley, which show promise as potential observatory sites. We are now in the process of installing Automatic Weather Stations (AWS) at 3 selected sites (~2000-2700 m altitude) to begin monitoring meteorological conditions over the next few years. It is eventually hoped to supplement this study with instrumentation to allow the measurement of sky brightness, local cloud cover and seeing (e.g. with a DIMM system).A similar program of astronomical site testing is due to start in 2015 in the Lalibela region of northern Ethiopia, at three potential dark sky sites with expected relatively low cloud cover, ranging in altitude from ~3600 to 4100 m.

  3. Nevada Test Site Radiation Protection Program

    SciTech Connect

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  4. Nevada Test Site Environmental Report 2005

    SciTech Connect

    Cathy A. Wills

    2006-10-01

    The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts.

  5. Nevada Test Site Waste Acceptance Criteria

    SciTech Connect

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-10-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  6. Hydrogeologic investigations at the Nevada Test Site

    SciTech Connect

    Hawkins, W L; Trudeau, D A; Drellack, S L

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices and, since 1963, all nuclear detonations there have been underground. Most tests are conducted in vertical shafts with a small percentage conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks or alluvium. In the testing areas the water table is 450--700 m below the surface. Pre- and post- event geologic investigations are conducted for each test location and long-term studies assess the impact of underground testing on a more regional scale. Studies in progress have not identified any impact on the regional ground water system from testing, but some local effects have been recognized. In some areas where several large tests have been conducted below the water table, water levels hundreds of meters above the regional water table have been measured and radioactivity has been discovered associated with fractures in a few holes. Flow-through and straddle packer testing has revealed unexpectedly high hydraulic pressures at depth. Recently, a multiple completion monitoring well installed to study three zones has confirmed the existence of a significant upward hydraulic gradient. These observations of local pressurization and fracture flow are being further explored to determine the influence of underground nuclear testing on the regional hydrogeologic system.

  7. On site testing of the compound spiral

    SciTech Connect

    MacNamara, L.; Toney, T.A.; Moorhead, R.G.; Davies, P.; Miles, N.J.; Bethell, P.; Everitt, B.

    1996-12-31

    Research undertaken over the last few years has shown that a short turn spiral can effectively replace a conventional full length spiral. A recent development of this work has been the design of a Compound spiral, incorporating two short turn units on one central column. Conventional spirals have become almost universally applied to clean 14M x 100M size fine coal in the Eastern and Midwestern U.S. coal fields and widely used in UK coal preparation plants to process fine coal. Compound spiral were installed at Cyprus Amax`s Lady Dunn Plant in West Virginia for on site testing and, at the time of going to press, at a UK coal preparation plant operated by RJB Mining (UK) for comparison testing with a conventional duplex spiral. This paper describes the testing approach used by Cyprus Amax and Krebs Engineers to test a compound spiral at Cyprus Amax`s Lady Dunn Plant.

  8. Site acceptance test, W-030 MICON system

    SciTech Connect

    Hill, L.F., Westinghouse Hanford

    1996-06-10

    Monitoring and control of the W-030 ventilation upgrade is provided by a distributed control system (DCS) furnished by MICON Corporation. After shipment to the Hanford Site, the site acceptance test (SAT) for this system was conducted in a laboratory environment over a six month period, involving four distinct phases and numerous hardware and software modifications required to correct test exceptions. The final results is a system which is not fully compliant with procurement specifications but is determined to meet minimum Project W-030 safety and functional requirements. A negotiated settlement was reached with the supplier to establish a `path forward` for system implementation. This report documents the `as-run` status of the SAT. The SAT was completed in August of 1995. It was later followed by comprehensive acceptance testing of the W-030 control-logic configuration software; results are documented in WHC-SD-W030-ATR-011. Further testing is reported as part of process system startup operational testing, performed after the MICON installation.

  9. Spent fuel test project, Climax granitic stock, Nevada Test Site

    SciTech Connect

    Ramspott, L.D.

    1980-10-24

    The Spent Fuel Test-Climax (SFT-C) is a test of dry geologic storage of spent nuclear reactor fuel. The SFT-C is located at a depth of 420 m in the Climax granitic stock at the Nevada Test Site. Eleven canisters of spent commercial PWR fuel assemblies are to be stored for 3 to 5 years. Additional heat is supplied by electrical heaters, and more than 800 channels of technical information are being recorded. The measurements include rock temperature, rock displacement and stress, joint motion, and monitoring of the ventilation air volume, temperature, and dewpoint.

  10. Nevada Test Site Environmental Report Summary 2009

    SciTech Connect

    Cathy Wills, ed.

    2010-09-13

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). NNSA/NSO prepares the Nevada Test Site Environmental Report (NTSER) to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the NTS to protect the public and the environment from radiation hazards and from nonradiological impacts. The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. This summary provides an abbreviated and more readable version of the NTSER. It does not contain detailed descriptions or presentations of monitoring designs, data collection methods, data tables, the NTS environment, or all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  11. Population dose near the Semipalatinsk test site.

    PubMed

    Hille, R; Hill, P; Bouisset, P; Calmet, D; Kluson, J; Seisebaev, A; Smagulov, S

    1998-10-01

    To determine the consequences of atmospheric atomic bomb tests for the population in the surroundings of the former nuclear weapons test site near Semipalatinsk in Kazakhstan, a pilot study was performed by an international cooperation between Kazakh, French, Czech and German institutions at two villages, Mostik and Maisk. Together with Kazakh scientists, eight experts from Europe carried out a field mission in September 1995 to assess, within the framework of a NATO supported project, the radiological situation as far as external doses, environmental contamination and body burden of man were concerned. A summary of the results obtained is presented. The actual radiological situation near the test site is characterized by fallout contaminations. Cs was found in upper soil layers in concentrations similar to those of the global fallout. Also Sr, Am and Co were observed. The resulting present dose to the population is low. Mean external doses from soil contamination for Maisk and Mostik (0.60-0.63 mSv/year) presently correspond to mean external doses in normal environments. Mean values of the annual internal doses observed in these two villages are below 2 microSv/year for 90Sr. For other radionuclides the internal doses are also negligible.

  12. Nevada test site water-supply wells

    SciTech Connect

    Gillespie, D.; Donithan, D.; Seaber, P.

    1996-05-01

    A total of 15 water-supply wells are currently being used at the Nevada Test Site (NTS). The purpose of this report is to bring together the information gleaned from investigations of these water-supply wells. This report should serve as a reference on well construction and completion, static water levels, lithologic and hydrologic characteristics of aquifers penetrated, and general water quality of water-supply wells at the NTS. Possible sources for contamination of the water-supply wells are also evaluated. Existing wells and underground nuclear tests conducted near (within 25 meters (m)) or below the water table within 2 kilometers (km) of a water-supply were located and their hydrogeologic relationship to the water-supply well determined.

  13. Radionuclide Mobility at the Nevada Test Site

    SciTech Connect

    Hu, Q; Smith, D; Rose, T; Glascoe, L; Steefel, C; Zavarin, M

    2003-11-13

    Underground nuclear tests conducted at the Nevada Test Site (NTS) are characterized by abundant fission product and actinide source terms. Included are {sup 99}Tc and other soluble radionuclides ({sup 3}H, {sup 14}C, {sup 36}Cl, {sup 85}Kr, and {sup 129}I), which are presumably mobile in groundwater and potentially toxic to down-gradient receptors. NTS provides the Office of Civilian Radioactive Waste Management (OCRWM) with an analog of the release of these radionuclides from a nuclear waste repository in the absence of engineered barriers. The investigation described in this report synthesizes a substantial body of data collected on the identity and distribution of soluble radionuclides at field scales over distances of hundreds of meters, for durations up to 40 years, and under hydrogeologic conditions very similar to the proposed geological repository at Yucca Mountain. This body of data is complemented by laboratory transport studies and a synthesis of recent modeling investigations from the NTS, with an emphasis on the ongoing Yucca Mountain Program (YMP) efforts. Overall, understanding the controls of radionuclide mobility associated with these nuclear tests will provide insight into the repository's future performance as well as bounds and calibrations for the numerical predictions of long-term radionuclide releases and migration.

  14. Nevada test site waste acceptance criteria

    SciTech Connect

    1996-09-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  15. Nevada Test Site Resource Management Plan

    SciTech Connect

    1998-12-01

    The Nevada Test Site (NTS) Resource Management Plan (RMP) describes the NTS Stewardship Mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. The NTS Stewardship Mission is to manage the land and facilities at the NTS as a unique and valuable national resource. The RMP has defined goals for twelve resource areas based on the principles of ecosystem management. These goals were established using an interdisciplinary team of DOE/NV resource specialists with input from surrounding land managers, private parties, and representatives of Native American governments. The overall goal of the RMP is to facilitate improved NTS land use management decisions within the Great Basin and Mojave Desert ecoregions.

  16. Sensor test facilities and capabilities at the Nevada test site

    NASA Astrophysics Data System (ADS)

    Boyer, William B.; Burke, Larry J.; Gomez, Bernard J.; Livingston, Leonard; Nelson, Daniel S.; Smathers, Douglas C.

    1997-07-01

    Sandia National Laboratories has recently developed two major field test capabilities for unattended ground sensor systems at the Department of Energy's Nevada Test Site (NTS). The first capability utilizes the NTS large area, varied terrain, and intrasite communications systems for testing sensors for detecting and tracking vehicular traffic. Sensor and ground truth data can be collected at either of two secure control centers. This system also includes an automated ground truth capability that consists of differential Global Positioning Satellite receivers on test vehicles and live TV coverage of critical road sections. Finally there is a high-speed, secure computer network link between the control centers and the Air Force's Theater Air Command and Control Simulation Facility in Albuquerque NM. The second capability is Bunker 2-300. It is a facility for evaluating advanced sensor systems for monitoring activities in underground cut-and-cover facilities. The main part of the facility consists of an underground bunker with three large rooms for operating various types of equipment. This equipment includes simulated chemical production machinery and controlled seismic and acoustic signal sources. There has been a thorough geologic and electromagnetic characterization of the region around the bunker. Since the facility is in a remote location, it is well-isolated from seismic, acoustic, and electromagnetic interference.

  17. Multidisciplinary study on Wyoming test sites

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.; Borgman, L. E.

    1975-01-01

    The author has identified the following significant results. Ten EREP data passes over the Wyoming test site provided excellent S190A and S190B coverage and some useful S192 imagery. These data were employed in an evaluation of the EREP imaging sensors in several earth resources applications. Boysen Reservoir and Hyattsville were test areas for band to band comparison of the S190 and S192 sensors and for evaluation of the image data for geologic mapping. Contrast measurements were made from the S192 image data for typical sequence of sedimentary rocks. Histograms compiled from these measurements show that near infrared S192 bands provide the greatest amount of contrast between geologic units. Comparison was also made between LANDSAT imagery and S190B and aerial photography for regional land use mapping. The S190B photography was found far superior to the color composite LANDSAT imagery and was almost as effective as the 1:120,000 scale aerial photography. A map of linear elements prepared from LANDSAT and EREP imagery of the southwestern Bighorn Mountains provided an important aid in defining the relationship between fracture and ground water movement through the Madison aquifer.

  18. Environmental assessment for double tracks test site, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    1996-04-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), with appropriate approvals from the U.S. Air Force (USAF), proposes to conduct environmental restoration operations at the Double Tracks test site located on the Nellis Air Force Range (NAFR) in Nye County, Nevada. This environmental assessment (EA) evaluates the potential environmental consequences of four alternative actions for conducting the restoration operation and of the no action alternative. The EA also identifies mitigation measures, where appropriate, designed to protect natural and cultural resources and reduce impacts to human health and safety. The environmental restoration operation at the Double Tracks test site would serve two primary objectives. First, the proposed work would evaluate the effectiveness of future restoration operations involving contamination over larger areas. The project would implement remediation technology options and evaluate how these technologies could be applied to the larger areas of contaminated soils on the Nevada Test Site (NTS), the Tonopah Test Range (TTR), and the NAFR. Second, the remediation would provide for the removal of plutonium contamination down to or below a predetermined level which would require cleanup of 1 hectare (ha) (2.5 acres), for the most likely case, or up to 3.0 ha (7.4 acres) of contaminated soil, for the upper bounding case.

  19. Photographic copy of site plan for proposed Test Stand "D" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of site plan for proposed Test Stand "D" in 1958. The contemporary site plans of test stands "A," "B," and "C" are also visible, along with the interconnecting tunnel system. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering "Site Plan for Proposed Test Stand "D" - Edwards Test Station," drawing no. ESP/22-0, 14 November 1958 - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  20. Structural geology report: Spent Fuel Test - Climax Nevada Test Site

    SciTech Connect

    Wilder, D.G.; Yow, J.L. Jr.

    1984-10-01

    We performed underground mapping and core logging in the Climax Stock, a granitic intrusive at the Nevada Test Site, as part of a major field test to determine the feasibility of using granitic or crystalline rock for the underground storage of spent fuel from a nuclear reactor. This mapping and logging identified more than 2500 fractures, over 1500 of which were described in enough detail to allow statistical analyses and orientation studies to be performed. We identified eight joint sets, three major shear sets, and a fault zone within the Spent Fuel Test - Climax (SFT-C) portion of the Stock. Joint sets identified within the SFT-C and elsewhere in the Stock correlated well. The orientations of joint sets identified by other investigators were consistent with our findings, indicating that the joint sets are persistent and have a relatively uniform orientation throughout a major portion of the Stock. The one joint set not seen elsewhere in the Stock is healed and the wall rock is altered, implying that healed joints were not included in the mapping criteria used by other investigators. The shear sets were distinguished from the joint sets by virtue of crushed minerals, continuous clay infilling, and other evidences of shearing, and from faults by the lack of offsetting. Previous investigators working mainly in the Pile Driver Drifts identified two of the shear sets. The third set, being nearly parallel to these Drifts had not been identified previously. The fault zone identified at the far (Receiving Room) end of the project is oriented approximately N45{sup 0}E-75{sup 0}SE, similar to both the Boundary and Shaft Station Faults. We have, therefore, concluded that the Receiving Room Fault is one of a series of normal faults that occur within the Climax Stock and that are possibly related, in both age and genesis, to the Boundary Fault. 52 refs., 26 figs., 11 tabs.

  1. Evaluation of potential geopressure geothermal test sites in southern Louisiana

    SciTech Connect

    Bassiouni, Z.

    1980-04-01

    Six geopressured-geothermal prospects in southern Louisiana were studied in detail to assess their potential use as test sites for the production of geopressure-geothermal energy. Each of the six sites contains substantial quantities of energy. Three of these prospects, Grand Lake, Lake Theriot, and Bayou Hebert, appear to be suitable for a test site. A summary of the findings is presented.

  2. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    SciTech Connect

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan.

  3. 13. Photographic copy of site plan displaying Test Stand 'C' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photographic copy of site plan displaying Test Stand 'C' (4217/E-18), Test Stand 'D' (4223/E-24), and Control and Recording Center (4221/E-22) with ancillary structures, and connecting roads and services. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office 'Repairs to Test Stand 'C,' Edwards Test Station, Legend & Site Plan M-1,' drawing no. ESP/115, August 14, 1987. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA

  4. Testing Pearl Model In Three European Sites

    NASA Astrophysics Data System (ADS)

    Bouraoui, F.; Bidoglio, G.

    The Plant Protection Product Directive (91/414/EEC) stresses the need of validated models to calculate predicted environmental concentrations. The use of models has become an unavoidable step before pesticide registration. In this context, European Commission, and in particular DGVI, set up a FOrum for the Co-ordination of pes- ticide fate models and their USe (FOCUS). In a complementary effort, DG research supported the APECOP project, with one of its objective being the validation and im- provement of existing pesticide fate models. The main topic of research presented here is the validation of the PEARL model for different sites in Europe. The PEARL model, actually used in the Dutch pesticide registration procedure, was validated in three well- instrumented sites: Vredepeel (the Netherlands), Brimstone (UK), and Lanna (Swe- den). A step-wise procedure was used for the validation of the PEARL model. First the water transport module was calibrated, and then the solute transport module, using tracer measurements keeping unchanged the water transport parameters. The Vrede- peel site is characterised by a sandy soil. Fourteen months of measurements were used for the calibration. Two pesticides were applied on the site: bentazone and etho- prophos. PEARL predictions were very satisfactory for both soil moisture content, and pesticide concentration in the soil profile. The Brimstone site is characterised by a cracking clay soil. The calibration was conducted on a time series measurement of 7 years. The validation consisted in comparing predictions and measurement of soil moisture at different soil depths, and in comparing the predicted and measured con- centration of isoproturon in the drainage water. The results, even if in good agreement with the measuremens, highlighted the limitation of the model when the preferential flow becomes a dominant process. PEARL did not reproduce well soil moisture pro- file during summer months, and also under-predicted the arrival of

  5. Site Testing in the Northwest of Argentina

    NASA Astrophysics Data System (ADS)

    Recabarren, P.; García Lambas, D.; Muriel, H.; Stasyszyn, F.; Renzi, V.; Vrech, R.; Viramonte, J.; Sarazin, M.

    2009-05-01

    We present results of the characterization of the Tolar Grande-Macon Range site in the North-West of Argentina. This project is being developed by the IATE in collaboration with ESO in the framework of the E-ELT project. We present and discuss one year of image quality measurements with MASS and DIMM, three years of meteorological data and detailed studies of seismic activity and geo-technical aspects as well as diverse logistic issues.

  6. Hanford Site Emergency Alerting System siren testing report

    SciTech Connect

    Weidner, L.B.

    1997-08-13

    The purpose of the test was to determine the effective coverage of the proposed upgrades to the existing Hanford Site Emergency Alerting System (HSEAS). The upgrades are to enhance the existing HSEAS along the Columbia River from the Vernita Bridge to the White Bluffs Boat Launch as well as install a new alerting system in the 400 Area on the Hanford Site. Five siren sites along the Columbia River and two sites in the 400 Area were tested to determine the site locations that will provide the desired coverage.

  7. Nevada Test Site Treatment Plan. Revision 2

    SciTech Connect

    1996-03-01

    Treatment Plans (STPS) are required for facilities at which the US Department of Energy (DOE) or stores mixed waste, defined by the Federal Facility Compliance Act (FFCAct) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act and a radioactive material subject to the Atomic Energy Act. On April 6, 1993, DOE published a Federal Register notice (58 FR 17875) describing its proposed process for developing the STPs in three phases including a Conceptual, a Draft, and a Proposed Site Treatment Plan (PSTP). All of the DOE Nevada Operations Office STP iterations have been developed with the state of Nevada`s input. The options and schedules reflect a ``bottoms-up`` approach and have been evaluated for impacts on other DOE sites, as well as impacts to the overall DOE program. Changes may have occurred in the preferred option and associated schedules between the PSTP, which was submitted to the state of Nevada and US Environmental Protection Agency April 1995, and the Final STP (hereafter referred to as the STP) as treatment evaluations progressed. The STP includes changes that have occurred since the submittal of the PSTP as a result of state-to-state and DOE-to-state discussions.

  8. Journey to the Nevada Test Site Radioactive Waste Management Complex

    ScienceCinema

    None

    2016-07-12

    Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.

  9. 77 FR 14319 - Unmanned Aircraft System Test Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478), as well as at... Federal Aviation Administration 14 CFR Part 91 Unmanned Aircraft System Test Sites AGENCY: Federal... test ranges/sites to integrate unmanned aircraft systems (UAS) into the National Airspace System...

  10. 78 FR 12259 - Unmanned Aircraft System Test Site Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Privacy Act Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478... Federal Aviation Administration 14 CFR Part 91 Unmanned Aircraft System Test Site Program AGENCY: Federal... Administration and the Department of Defense, develop a test site program for the integration of...

  11. When Web Sites Post Test Answers, Professors Worry

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    2008-01-01

    Several Web sites have emerged in recent years that encourage students to upload old exams to build a bank of test questions and answers that can be consulted by other students. This article reports that some professors have raised concerns about these sites, arguing that these could be used to cheat, especially if professors reuse old tests.…

  12. Nevada Test Site Waste Acceptance Criteria, December 2000

    SciTech Connect

    2000-12-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  13. On-site cell field test support program

    NASA Astrophysics Data System (ADS)

    Staniunas, J. W.; Merten, G. P.

    1982-09-01

    Utility sites for data monitoring were reviewed and selected. Each of these sites will be instrumented and its energy requirements monitored and analyzed for one year prior to the selection of 40 Kilowatt fuel cell field test sites. Analyses in support of the selection of sites for instrumentation shows that many building sectors offered considerable market potential. These sectors include nursing home, health club, restaurant, industrial, hotel/motel and apartment.

  14. Beta site testing: risky business or rewarding opportunity?

    PubMed

    Knox, C; Swango, J

    1989-06-01

    Beta site testing in the HIS industry is as important as test driving a new car or test marketing a new consumer product. The end-user or manufacturer wants to make sure the product or service does everything it is supposed to do. And no hospital wants to purchase an information system that hasn't been put to the test.

  15. Genetic testing by cancer site: endocrine system.

    PubMed

    Pilarski, Robert; Nagy, Rebecca

    2012-01-01

    Numerous hereditary syndromes, caused by mutations in multiple tumor suppressor genes and oncogenes, can cause tumors in organs of the endocrine system. The primary syndromes (and genes) addressed here include multiple endocrine neoplasia types 1 and 2 (MEN1 and RET genes), Cowden syndrome (PTEN), hereditary pheochromocytoma/paraganglioma syndromes (multiple genes), and von Hippel-Lindau disease (VHL). Clinical genetic testing is available for each of these syndromes and is generally directed to individuals with endocrine or other tumors and additional features suggestive of a hereditary syndrome. However, for some endocrine tumors, the proportion because of heredity is so high that genetic testing may be appropriate for all affected individuals. Management for hereditary cases typically involves aggressive screening and/or surgical protocols, starting at young ages to minimize morbidity and mortality. Endocrine tumors can be less commonly seen in a number of other hereditary syndromes (eg, neurofibromatosis), which are not reviewed in this section.

  16. Phoenix Test Sample Site in Color

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image, acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 7, the seventh day of the mission (June 1, 2008), shows the so-called 'Knave of Hearts' first-dig test area to the north of the lander. The Robotic Arm's scraping blade left a small horizontal depression above where the sample was taken.

    Scientists speculate that white material in the depression left by the dig could represent ice or salts that precipitated into the soil. This material is likely the same white material observed in the sample in the Robotic Arm's scoop.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Stereo View of Phoenix Test Sample Site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This anaglyph image, acquired by NASA's Phoenix Lander's Surface Stereo Imager on Sol 7, the seventh day of the mission (June 1, 2008), shows a stereoscopic 3D view of the so-called 'Knave of Hearts' first-dig test area to the north of the lander. The Robotic Arm's scraping blade left a small horizontal depression above where the sample was taken.

    Scientists speculate that white material in the depression left by the dig could represent ice or salts that precipitated into the soil. This material is likely the same white material observed in the sample in the Robotic Arm's scoop.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Salient Characteristics for Terrestrial Analog Engineering Test Sites

    NASA Technical Reports Server (NTRS)

    Watson, J.K.; Blaisdell, G. L.

    2000-01-01

    The use of terrestrial analog sites is an essential component of the development process for systems that are planned for lunar and planetary surfaces. These sites can also be valuable for training personnel who are expected to operate those systems. The fact that the site is an integral element, capable of influencing data and impacting test results, must not be overlooked. For tests performed in analog environments to be truly valid it is essential that the relevant characteristics of the employed sites be thoroughly understood. It is also critical that a comparative evaluation be made to assess the similarity of the analog sites to target planetary sites. Examples of relevant characteristics include terrain, soil properties, meteorology, geologic features, biological history, and remoteness. The importance of each of the characteristics varies with the type of extraterrestrial activity to be conducted. As a result, a site that is ideal for one purpose may be totally inadequate for another. It may also be appropriate to utilize multiple sites of increasing fidelity as the development process evolves. For example, early in the development process, the use of lower-fidelity sites may be elected - especially if they are available for a lower cost. Later, it may be necessary to employ higher-fidelity sites to capture greater realism, even if there is an associated increased cost. Finally, when interpreting the results of field tests, it is necessary to understand the sensitivity of the results to the relevant conditions. Knowledge of characteristics and sensitivity of results is particularly important when using field test results to validate analytical model predictions. This is especially true for activities that involve physical interaction with the site. Examples would include tests of rovers or other vehicles and associated trafficability modeling, spacesuit mobility tests, and tests associated with system deployment operations.

  19. Tools for DIY site-testing

    NASA Astrophysics Data System (ADS)

    Flores, Federico; Rondanelli, Roberto; Abarca, Accel; Diaz, Marcos; Querel, Richard

    2012-09-01

    Our group has designed, sourced and constructed a radiosonde/ground-station pair using inexpensive opensource hardware. Based on the Arduino platform, the easy to build radiosonde allows the atmospheric science community to test and deploy instrumentation packages that can be fully customized to their individual sensing requirements. This sensing/transmitter package has been successfully deployed on a tethered-balloon, a weather balloon, a UAV airplane, and is currently being integrated into a UAV quadcopter and a student-built rocket. In this paper, the system, field measurements and potential applications will be described. As will the science drivers of having full control and open access to a measurement system in an age when commercial solutions have become popular but are restrictive in terms of proprietary sensor specifications, "black-box" calibration operations or data handling routines, etc. The ability to modify and experiment with both the hardware and software tools is an essential part of the scientific process. Without an understanding of the intrinsic biases or limitations in your instruments and system, it becomes difficult to improve them or advance the knowledge in any given field.

  20. Parabolic dish test site: History and operating experience

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Compiler)

    1985-01-01

    The parabolic dish test site (PDTS) was established for testing point-focusing solar concentrator systems operating at temperatures approaching 1650 C. Among tests run were evaluation and performance characterization of parabolic dish concentrators, receivers, power conversion units, and solar/fossil-fuel hybrid systems. The PDTS was fully operational until its closure in June, 1984. The evolution of the test program, a chronological listing of the experiments run, and data summaries for most of the tests conducted are presented.

  1. 49 CFR 325.53 - Site characteristics; stationary test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... characteristics; stationary test. (a)(1) The motor vehicle to be tested shall be parked on the test site. A... in which the motor vehicle is parked at a point that is within 3 feet (.9 m) of the longitudinal position of the vehicle's exhaust system outlet(s). A microphone location point shall be established on...

  2. 49 CFR 325.53 - Site characteristics; stationary test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... characteristics; stationary test. (a)(1) The motor vehicle to be tested shall be parked on the test site. A... in which the motor vehicle is parked at a point that is within 3 feet (.9 m) of the longitudinal position of the vehicle's exhaust system outlet(s). A microphone location point shall be established on...

  3. Hanford tank initiative test facility site selection study

    SciTech Connect

    Staehr, T.W.

    1997-04-03

    The Hanford Tanks Initiative (HTI) project is developing equipment for the removal of hard heel waste from the Hanford Site underground single-shell waste storage tanks. The HTI equipment will initially be installed in the 241-C-106 tank where its operation will be demonstrated. This study evaluates existing Hanford Site facilities and other sites for functional testing of the HTI equipment before it is installed into the 241-C-106 tank.

  4. Noteworthy mammal distribution records for the Nevada test site

    SciTech Connect

    Medica, P.A.

    1989-06-01

    Nevada Test Site records for the gray fox Urocyon cinereoargenteus scottii and the dark kangaroo mouse Microdipodops meqacephalus sabulonis are substantiated, and a range extension for Mustela frenata nevadensis documented. 17 refs.

  5. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2009-06-01

    Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

  6. Nevada Test Site Environmental Report 2006 and Site Description (Volume 1)

    SciTech Connect

    Cathy Wills

    2007-10-01

    The Nevada Test Site Environmental Report 2006 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2006 produced to be a more cost-effective means of distributing information contained in the NTSER to interested DOE stakeholders.

  7. Thirty Meter Telescope Site Testing VI: Turbulence Profiles

    NASA Astrophysics Data System (ADS)

    Els, S. G.; Travouillon, T.; Schöck, M.; Riddle, R.; Skidmore, W.; Seguel, J.; Bustos, E.; Walker, D.

    2009-05-01

    The results on the vertical distribution of optical turbulence above the five mountains which were investigated by the site testing for the Thirty Meter Telescope (TMT) are reported. On San Pedro Mártir in Mexico; the 13 North site on Mauna Kea; and three mountains in northern Chile: Cerro Tolar, Cerro Armazones, and Cerro Tolonchar; MASS-DIMM turbulence profilers have been operated over at least two years. Acoustic turbulence profilers—SODARs—were also operated at these sites. The obtained turbulence profiles indicate that at all sites the lowest 200 m are the main source of the total seeing observed, with the Chilean sites showing a weaker ground layer than the other two sites. The two northern hemisphere sites have weaker turbulence at altitudes above 500 m, with 13N showing the weakest turbulence at 16 km, responsible for the large isoplanatic angle at this site. The influence of the jetstream and wind speeds close to the ground on the clear sky turbulence strength throughout the atmosphere are discussed, as well as seasonal and nocturnal variations. This is the sixth article in a series discussing the TMT site testing project.

  8. 75 FR 20832 - Environmental Management Site-Specific Advisory Board, Nevada Test Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Nevada Test Site. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal...

  9. Thirty Meter Telescope Site Testing V: Seeing and Isoplanatic Angle

    NASA Astrophysics Data System (ADS)

    Skidmore, Warren; Els, Sebastian; Travouillon, Tony; Riddle, Reed; Schöck, Matthias; Bustos, Edison; Seguel, Juan; Walker, David

    2009-10-01

    In this article we present an analysis of the statistical and temporal properties of seeing and isoplanatic angle measurements obtained with combined Differential Image Motion Monitor (DIMM) and Multi-Aperture Scintillation Sensor (MASS) units at the Thirty Meter Telescope (TMT) candidate sites. For each of the five candidate sites we obtained multiyear, high-cadence, high-quality seeing measurements. These data allow for a broad and detailed analysis, giving us a good understanding of the characteristics of each of the sites. The overall seeing statistics for the five candidate sites are presented, broken into total seeing (measured by the DIMM), free-atmosphere seeing and isoplanatic angle (measured by the MASS), and ground-layer seeing (difference between the total and free-atmosphere seeing). We examine the statistical distributions of seeing measurements and investigate annual and nightly behavior. The properties of the seeing measurements are discussed in terms of the geography and meteorological conditions at each site. The temporal variability of the seeing measurements over timescales of minutes to hours is derived for each site. We find that each of the TMT candidate sites has its own strengths and weaknesses when compared against the other candidate sites. The results presented in this article form part of the full set of results that are used for the TMT site-selection process. This is the fifth article in a series discussing the TMT site-testing project.

  10. Overview of software development at the parabolic dish test site

    NASA Technical Reports Server (NTRS)

    Miyazono, C. K.

    1985-01-01

    The development history of the data acquisition and data analysis software is discussed. The software development occurred between 1978 and 1984 in support of solar energy module testing at the Jet Propulsion Laboratory's Parabolic Dish Test Site, located within Edwards Test Station. The development went through incremental stages, starting with a simple single-user BASIC set of programs, and progressing to the relative complex multi-user FORTRAN system that was used until the termination of the project. Additional software in support of testing is discussed including software in support of a meteorological subsystem and the Test Bed Concentrator Control Console interface. Conclusions and recommendations for further development are discussed.

  11. Thirty Meter Telescope Site Testing VII: Turbulence Coherence Time

    NASA Astrophysics Data System (ADS)

    Travouillon, Tony; Els, Sebastian; Riddle, Reed L.; Schöck, Matthias; Skidmore, Warren

    2009-07-01

    As one of the atmospheric turbulence figures of merit, the Thirty Meter Telescope (TMT) site-testing campaign is aimed at measuring the time constant that dictates adaptive optics observations. We hence present the coherence time statistics of the TMT candidate sites, measured using a Multi Aperture Scintillation sensor (MASS) and a Differential Image Motion Monitor (DIMM). We find, using radiosonde and NCEP reanalysis data, that the MASS underestimates the free atmosphere component of the coherence time by a factor of 1.73. After debias of the MASS data and including the ground layer component, we find median coherence times ranging from 4.2 to 5.6 ms for our five candidate sites. This is the seventh article in a series discussing the TMT site-testing project.

  12. Astronomy Developments and Site Testing in East Africa

    NASA Astrophysics Data System (ADS)

    Buckley, D. A. H.

    2015-04-01

    Two astronomical site testing initiatives are beginning in both Kenya and Ethiopia, with the aim of selecting suitable locations in those countries for initially modest sized (1-2m) optical telescopes. The first project, in Kenya, has to date involved a study of existing meteorological satellite data, from which potential sites have been selected for further studies (see paper by Graham et al. in these proceedings). A similar program of astronomical site testing, including using DIMMs, will begin later in 2014 in the Lalibela region of northern Ethiopia, at three potential sites ranging in altitude from ∼3600 to 4500 m. In parallel to this, the Entoto Observatory and Research Centre (EO), comprising twin 1-m alt-az telescopes, has been established at Mt. Entoto, on the outskirts of Addis Ababa, and science operations are due to begin in early 2015.

  13. 13. "CIVIL, SITE PLAN AND VICINITY MAP, AREA LOCATIONS." Test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. "CIVIL, SITE PLAN AND VICINITY MAP, AREA LOCATIONS." Test Area 1-125. Specifications No. ENG (NASA)-04-35363-1; Drawing No. 60-09-34; sheet 11. Ref. No. C-l. D.O. SERIES 1597/1. Approved for siting on 24 April 1962. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  14. Site Release Reports for C-Well Pipeline, UE-25 Large Rocks Test Site, and 29 GSF Test Pits

    SciTech Connect

    K.E. Rasmuson

    2002-04-02

    The U.S. Department of Energy has implemented a program to reclaim lands disturbed by site characterization at Yucca Mountain. Long term goals of the program are to re-establish processes on disturbed sites that will lead to self-sustaining plant communities. The Biological Opinion for Yucca Mountain Site Characterization Studies required that the U.S. Department of Energy develop a Reclamation Standards and Monitoring Plan to evaluate the success of reclamation efforts. According to the Reclamation Standards and Monitoring Plan, reclaimed sites will be monitored periodically, remediated if necessary, and eventually compared to an appropriate reference area to determine whether reclamation goals have been achieved and the site can be released from further monitoring. Plant cover, density, and species richness (success parameters) on reclaimed sites are compared to 60 percent of the values (success criteria) for the same parameters on the reference area. Small sites (less than 0.1 ha) are evaluated for release using qualitative methods while large sites (greater than 0.1 ha) are evaluated using quantitative methods. In the summer of 2000, 31 small sites reclaimed in 1993 and 1994 were evaluated for reclamation success and potential release from further monitoring. Plant density, cover, and species richness were estimated on the C-Well Pipeline, UE-25 Large Rocks test site, and 29 ground surface facility test pits. Evidence of erosion, reproduction and natural recruitment, exotic species abundance, and animal use (key attributes) also were recorded for each site and used in success evaluations. The C-Well Pipeline and ground surface facility test pits were located in a ''Larrea tridentata - Ephedra nevadensis'' vegetation association while the UE-25 Large Rocks test site was located in an area dominated by ''Coleogyne ramosissima and Ephedra nevadensis''. Reference areas in the same vegetation associations with similar slope and aspect were chosen for comparison to

  15. Reactor-pumped laser facility at DOE's Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Lipinski, Ronald J.

    1994-05-01

    The Nevada Test Site (NTS) is one excellent possibility for a laser power beaming site. It is in the low latitudes of the U.S., is in an exceptionally cloud-free area of the southwest, is already an area of restricted access (which enhances safety considerations), and possesses a highly skilled technical team with extensive engineering and research capabilities from underground testing of our nation's nuclear deterrence. The average availability of cloud-free clear line of site to a given point in space is about 84%. With a beaming angle of +/- 60 degree(s) from the zenith, about 52 geostationary-orbit (GEO) satellites could be accessed continuously from NTS. In addition, the site would provide an average view factor of about 10% for orbital transfer from low earth orbit to GEO. One of the major candidates for a long-duration, high- power laser is a reactor-pumped laser being developed by DOE. The extensive nuclear expertise at NTS makes this site a prime candidate for utilizing the capabilities of a rector pumped laser for power beaming. The site then could be used for many dual-use roles such as industrial material processing research, defense testing, and removing space debris.

  16. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    SciTech Connect

    DeAnn Long; Michael Murphy

    2008-07-01

    Prior to April 2007, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site (NTS) was performed by the Radiological Health Instrumentation department. Calibration and performance testing on the PM-700 personnel portal monitor was performed, but there was no test program for the VM-250 vehicle portal monitor. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no performance test program. In April of 2007, the Material Control and Accountability Manager volunteered to take over performance testing of all SNM portal monitors at NTS in order to strengthen the program and meet U.S. Department of Energy Order requirements. This paper will discuss the following activities associated with developing a performance testing program: changing the culture, learning the systems, developing and implementing procedures, troubleshooting and repair, validating the process, physical control of equipment, acquisition of new systems, and implementing the performance test program.

  17. GIS Surface Effects Map Archive, Nevada Test Site, Nevada

    SciTech Connect

    Grasso, Dennis N.

    2003-08-28

    The GIS Surface Effects Map Archive contains a comprehensive collection of maps showing the surface effects produced by underground nuclear testing at the Nevada Test Site. From 1951 to 1992, scientists with the U.S. Geological Survey and agencies of the U.S. Department of Energy used field and aerial-photo mapping techniques to painstakingly map such surface effects as collapse sinks, craters, cracks, fractures, faults, and pressure ridges. Shortly after each test, a complex surface effects map was produced. Of the more than 920 underground detonations conducted at the Nevada Test Site, 688 were mapped for surface effects. This archive preserves these original maps in digital format. A Geographic Information System (GIS) was used to digitally reproduce each original, hand-drawn surface effects map and to assemble these maps into the digital data sets of this archive. The archive was designed to allow easy access to the maps, while preserving the original maps for perpetuity. Users can query the detonation sites database; prepare, view, and print individual or composite maps; and perform various types of scientific analysis and management tasks. Spatial analyses and queries can be performed on detonation sites and related surface effects in conjunction with other chronological, geographical, geological, or hydrological information via links to external maps and databases. This browser interface provides information about the archive, the history of surface effects mapping at the Nevada Test Site, the methods used to produce the digital surface effects maps, and links to published reports, data tables, and maps. Location maps show testing areas, operational areas, and detonation sites. Demonstration maps illustrate the methods used to produce the digital surface effects maps and exhibit some of the characteristics and uses for these data. Use the links below to view and print individual surface effects maps, retrieve information about the detonations and types of

  18. Subsurface novel gas transport at the Nevada Test Site

    SciTech Connect

    Thompson, J.L.; Guell, M.A.; Hunt, J.R.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of our research was to explain the results of a groundwater pumping test done from 1975 to 1991 at the location of the nuclear test {open_quotes}Cambric{close_quotes} on the Nevada Test Site. The elution data from the pumped well indicated that krypton was delayed relative to tritium in the eluate and that less than half of the calculated Kr-85 source term was removed (though over 92% of the tritium was removed). We postulated an explanation for these observations and tested it with a mathematical model that simulated the movement of tritium and krypton at this site. The model showed that the hypothesis was consistent with the observed behavior; but the model was very sensitive to assumptions about initial radionuclide distributions and to hydrologic parameters. 1 ref.

  19. Closure Report for Corrective Action Unit 396: Area 20 Spill Sites, Nevada Test Site, Nevada

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2004-06-01

    Corrective Action Unit (CAU) 396, Area 20 Spill Sites, is located on the Nevada Test Site approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada. CAU 396 is listed in Appendix II of the Federal Facility Agreement and Consent Order of 1996 and consists of the following four Corrective Action Sites (CASs) located in Area 20 of the Nevada Test Site: CAS 20-25-01, Oil Spills (2); CAS 20-25-02, Oil Spills; CAS 20-25-03, Oil Spill; CAS 20-99-08, Spill. Closure activities for CAU 396 were conducted in accordance with the Federal Facility Agreement and Consent Order and the Nevada Division of Environmental Protection-approved Streamlined Approach for Environmental Restoration Plan for CAU 396.

  20. Site characterization data from the Area 5 science boreholes, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Blout, D.O.; Hammermeister, P.; Zukosky, K.A.

    1995-02-01

    The Science Borehole Project consists of eight boreholes that were drilled (from 45.7 m [150 ft] to 83.8 m [275 ft] depth) in Area 5 of the Nevada Test Site, Nye County, Nevada, on behalf of the US Department of Energy. These boreholes are part of the Area 5 Site Characterization Program developed to meet data needs associated with regulatory requirements applicable to the disposal of low-level and mixed waste at this site. This series of boreholes was specifically designed to characterize parameters controlling near-surface gas transport and to monitor changes in these and liquid flow-related parameters over time. These boreholes are located along the four sides of the approximately 2.6-km{sup 2} (1-mi{sup 2}) Area 5 Radioactive Waste Management Site to provide reasonable spatial coverage for sampling and characterization. Laboratory testing results of samples taken from core and drill cuttings are reported.

  1. Land utilization and water resource inventories over extended test sites

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.

    1972-01-01

    In addition to the work on the corn blight this year, several other analysis tests were completed which resulted in significant findings. These aspects are discussed as follows: (1) field spectral measurements of soil conditions; (2) analysis of extended test site data; this discussion involves three different sets of data analysis sequences; (3) urban land use analysis, for studying water runoff potentials; and (4) thermal data quality study, as an expansion of our water resources studies involving temperature calibration techniques.

  2. Geomechanics of the Climax mine-by, Nevada Test Site

    SciTech Connect

    Heuze, F.E.

    1981-03-01

    A generic test of retrievable geologic storage of spent fuel assemblies in an underground chamber is being conducted at the Nevada Test Site. The horizontal shrinkage of the pillars is not explainable, but the vertical pillar stresses are easily understood. A two-phase project was initiated to estimate the in-situ deformability of the Climax granite and to refine the in-situ stress field data, and to model the mine-by. (DLC)

  3. Nevada Test Site environmental data report for calendar year 1996

    SciTech Connect

    Black, S.C.; Townsend, Y.E.; Kinnison, R.R.

    1998-03-01

    US Department of Energy (DOE) Order 5400.1, ``General Environmental Protection Program,`` establishes environmental protection program requirements, authorities, and responsibilities for DOE operations. These mandates require compliance with applicable federal, state, and local environmental protection regulations. During calendar year (CY) 1996, environmental protection and monitoring programs were conducted at the Nevada Test Site and other DOE Nevada Operations Office (DOE/NV)-managed sites in Nevada and across the US. A detailed discussion of these environmental protection and monitoring programs and summary data and assessments for environmental monitoring results are provided in the DOE/NV Annual Site Environmental Report-1996 (ASER), DOE/NV/11718-137. This document provides summary data results and detailed assessments for the environmental monitoring conducted for all DOE/NV-managed sites in CY1996.

  4. Aerial radiological survey of Area 11, Nevada Test Site

    SciTech Connect

    1983-06-01

    An aerial radiological survey of Area 11's Plutonium Valley was conducted at the Nevada Test Site from 18 to 30 January 1982. Contour maps representing terrestrial exposure rates and soil concentrations of transuranics, /sup 235/U and /sup 137/Cs are presented on an aerial photograph. Inventories of the locale's transuranic and uranium activities are also included.

  5. 49 CFR 325.53 - Site characteristics; stationary test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Site characteristics; stationary test. 325.53 Section 325.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL REGULATIONS COMPLIANCE WITH...

  6. 49 CFR 325.53 - Site characteristics; stationary test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Site characteristics; stationary test. 325.53 Section 325.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL REGULATIONS COMPLIANCE WITH...

  7. 49 CFR 325.53 - Site characteristics; stationary test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Site characteristics; stationary test. 325.53 Section 325.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL REGULATIONS COMPLIANCE WITH...

  8. Test-Site Evaluation of ICU/PLANIT.

    ERIC Educational Resources Information Center

    Frederick, Terry J.

    Test-site evaluation of the Instructor's Computer Utility/Programing Language of Interactive Teaching (ICU/PLANIT) was conducted. Goals included: 1) analysis of the operation of ICU/PLANIT; 2) development of two PLANIT. Modifications were made in a distrubuted version, cost analyses were in man hours and quantities of machine resources consumed,…

  9. 78 FR 68360 - Unmanned Aircraft System Test Site Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... comments published in the Federal Register on February 22, 2013 (78 FR 12259), Docket No. FAA-2013-0061... (78 FR 18932), Docket No. FAA-2013-0061- 0050. In addition, this document publishes the FAA's Final... Federal Aviation Administration 14 CFR Part 91 Unmanned Aircraft System Test Site Program AGENCY:...

  10. Nevada Test Site Radiological Control Manual. Revision 1

    SciTech Connect

    None, None

    2010-02-09

    This document supersedes DOE/NV/25946--801, “Nevada Test Site Radiological Control Manual,” Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

  11. Smallpox Vaccination of Laboratory Workers at US Variola Testing Sites.

    PubMed

    Medcalf, Sharon; Bilek, Laura; Hartman, Teresa; Iwen, Peter C; Leuschen, Patricia; Miller, Hannah; O'Keefe, Anne; Sayles, Harlan; Smith, Philip W

    2015-08-01

    To evaluate the need to revaccinate laboratory workers against smallpox, we assessed regular revaccination at the US Laboratory Response Network's variola testing sites by examining barriers to revaccination and the potential for persistence of immunity. Our data do not provide evidence to suggest prolonging the recommended interval for revaccination.

  12. Closure Report for Corrective Action Unit 540: Spill Sites, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    McClure, Lloyd

    2006-10-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 540: Spill Sites, Nevada Test Site, Nevada. This CR complies with the requirements of the 'Federal Facility Agreement and Consent Order' (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 540 is located within Areas 12 and 19 of the Nevada Test Site and is comprised of the following Corrective Action Sites (CASs): CAS 12-44-01, ER 12-1 Well Site Release; CAS 12-99-01, Oil Stained Dirt; CAS 19-25-02, Oil Spill; CAS 19-25-04, Oil Spill; CAS 19-25-05, Oil Spill; CAS 19-25-06, Oil Spill; CAS 19-25-07, Oil Spill; CAS 19-25-08, Oil Spills (3); and CAS 19-44-03, U-19bf Drill Site Release. The purpose of this CR is to provide documentation supporting recommendations of no further action for the CASs within CAU 540. To achieve this, the following actions were performed: (1) Reviewed the current site conditions, including the concentration and extent of contamination; (2) Performed closure activities to address the presence of substances regulated by 'Nevada Administrative Code' 445A.2272 (NAC, 2002); and (3) Documented Notice of Completion and closure of CAU 540 issued by the Nevada Division of Environmental Protection.

  13. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    SciTech Connect

    Not Available

    1994-06-01

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field-investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans.

  14. Geohydrologic data for test well UE-25bH, Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Lobmeyer, D.H.; Whitfield, M.S.; Lahoud, R.G.; Bruckheimer, Laura

    1983-01-01

    Data were collected to determine the hydraulic characteristics of rocks penetrated in test well UE-25b number 1. This well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site in a program conducted in cooperation with the U.S. Department of Energy. These investigations are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high level radioactive wastes. Data on drilling operations, lithology , core analyses, borehole geophysics, hydrologic monitoring, hydraulic testing, and groundwater chemistry for test well UE-25b number 1 are reported. (Author 's abstract)

  15. Evaluation of soil radioactivity data from the Nevada Test Site

    SciTech Connect

    1995-03-01

    Since 1951, 933 nuclear tests have been conducted at the Nevada Test Site (NTS) and test areas on the adjacent Tonopah Test Range (TTR) and Nellis Air Force Range (NAFR). Until the early 1960s. the majority of tests were atmospheric, involving detonation of nuclear explosive devices on the ground or on a tower, suspended from a balloon or dropped from an airplane. Since the signing of the Limited Test Ban Treaty in 1963, most tests have been conducted underground, although several shallow subsurface tests took place between 1962 and 1968. As a result of the aboveground and near-surface nuclear explosions, as well as ventings of underground tests, destruction of nuclear devices with conventional explosives, and nuclear-rocket engine tests, the surface soil on portions of the NTS has been contaminated with radionuclides. Relatively little consideration was given to the environmental effects of nuclear testing during the first two decades of operations at the NTS. Since the early 1970s, however, increasingly strict environmental regulations have forced greater attention to be given to contamination problems at the site and how to remediate them. One key element in the current environmental restoration program at the NTS is determining the amount and extent of radioactivity in the surface soil. The general distribution of soil radioactivity on the NTS is already well known as a result of several programs carried out in the 1970s and 1980s. However, questions have been raised as to whether the data from those earlier studies are suitable for use in the current environmental assessments and risk analyses. The primary purpose of this preliminary data review is to determine to what extent the historical data collected at the NTS can be used in the characterization/remediation process.

  16. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    SciTech Connect

    Not Available

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

  17. Nevada Test Site Radiation Protection Program - Revision 1

    SciTech Connect

    Radiological Control Managers' Council

    2008-06-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

  18. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006

    SciTech Connect

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    2006-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  19. Land reclamation on the Nevada Test Site: A field tour

    SciTech Connect

    Winkel, V.K.; Ostler, W.K.

    1993-12-31

    An all-day tour to observe and land reclamation on the Nevada Test Site was conducted in conjunction with the 8th Wildland Shrub and Arid Land Restoration Symposium. Tour participants were introduced to the US Department of Energy reclamation programs for Yucca Mountain Site Characterization Project and Treatability Studies for Soil Media (TSSM) Project. The tour consisted of several stops that covered a variety of topics and studies including revegetation by seeding, topsoil stockpile stabilization, erosion control, shrub transplanting, shrub herbivory, irrigation, mulching, water harvesting, and weather monitoring.

  20. Closure Report for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada

    SciTech Connect

    K. B. Campbell

    2003-04-01

    This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996, and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SA4FER) Plan for CAU 398: Area 25 Spill Sites, Nevada Test Site, Nevada (U.S. Department of Energy, Nevada Operations Office [DOEN], 2001). CAU 398 consists of the following thirteen Corrective Action Sites (CASs) all located in Area 25 of the Nevada Test Site (NTS) (Figure 1): CAS 25-25-02, Oil Spills, CAS 25-25-03, Oil Spills, CAS 25-25-04, Oil Spills, CAS 25-25-05, Oil Spills, CAS 25-25-06, Oil Spills, CAS 25-25-07, Hydraulic Oil Spill(s), CAS 25-25-08, Hydraulic Oil Spill(s), CAS 25-25-16, Diesel Spill (from CAS 25-01-02), CAS 25-25-17, Subsurface Hydraulic Oil Spill, CAS 25-44-0 1, Fuel Spill, CAS 25-44-04, Acid Spill (from CAS 25-01-01), CAS 25-44-02, Spill, and CAS 25-44-03, Spill. Copies of the analytical results for the site verification samples are included in Appendix B. Copies of the CAU Use Restriction Information forms are included in Appendix C.

  1. Plutonium Particle Migration in the Shallow Vadose Zone: The Nevada Test Site as an Analog Site

    NASA Astrophysics Data System (ADS)

    Hunt, J. R.; Smith, D. K.

    2004-12-01

    The upper meter of the vadose zone in desert environments is the horizon where wastes have been released and human exposure is determined through dermal, inhalation, and food uptake pathways. This region is also characterized by numerous coupled processes that determine contaminant transport, including precipitation infiltration, evapotranspiration, daily and annual temperature cycling, dust resuspension, animal burrowing, and geochemical weathering reactions. While there is considerable interest in colloidal transport of minerals, pathogenic organisms, and contaminants in the vadose zone, there are limited field sites where the actual occurrence of contaminant migration can be quantified over the appropriate spatial and temporal scales of interest. At the US Department of Energy Nevada Test Site, there have been numerous releases of radionuclides since the 1950's that have become field-scale tracer tests. One series of tests was the four safety shots conducted in an alluvial valley of Area 11 in the 1950's. These experiments tested the ability of nuclear materials to survive chemical explosions without initiating fission reactions. Four above-ground tests were conducted and they released plutonium and uranium on the desert valley floor with only one of the tests undergoing some fission. Shortly after the tests, the sites were surveyed for radionuclide distribution on the land surface using aerial surveys and with depth. Additional studies were conducted in the 1970's to better understand the fate of plutonium in the desert that included studies of depth distribution and dust resuspension. More recently, plutonium particle distribution in the soil profile was detected using autoradiography. The results to date demonstrate the vertical migration of plutonium particles to depths in excess of 30 cm in this arid vadose zone. While plutonium migration at the Nevada Test Site has been and continues to be a concern, these field experiments have become analog sites for the

  2. Site study plan for intermediate hydrology clusters tests wells Deaf Smith County Site, Texas

    SciTech Connect

    Not Available

    1988-01-01

    To characterize the geologic, geochemical, and hydrologic characteristics of intermediate-depth formations at the proposed Deaf Smith County, Texas, repository site, wells called Intermediate Hydrology clusters will test the Dewey Lake, Alibates, Salado, Yates, Upper and Lower Seven Rivers, and Queen Grayburg Formations. Sixteen wells will be installed at six locations. One location will have four wills, two locations will have three wells, and three locations will have two wells for a total of 16 wells. Testing of the formations is to proceed from the bottom up, with 2-day pumping tests at the less permeable formations. Tracer tests and tests for verticall hydraulic properties will be designed and performed after other hydrologic tests are completed. After testing, selected wells are to be completed as single or possibly dual monitoring wells to observe water-level trends. To develop a hydrogeologic testing plan, the response of each formation to potential testing procedures was evaluated using design values and an assumend range for hydraulic parameters. These evaluations indicate that hydraulic properties of a sandy zone of the Dockum, the lower Sever Rivers, and possibly the Alibates and Queen/Grayburg can be determined by pumping tests. Standard of shut-in slug tests must be conducted in the remaining formations. Tests of very long duration would be required to determine the verticla properties of less permeable formations. Tracer tests would also require weeks or months. 61 figs., 34 refs., 4 tabs.

  3. Closure Report for Corrective Action Unit 350: Miscellaneous Housekeeping Sites, Nevada Test Site, Nevada

    SciTech Connect

    R. B. Jackson

    2003-05-01

    This Closure Report documents the closure activities conducted for Corrective Action Unit (CAU) 350: Miscellaneous Housekeeping sites. CAU 350 is listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996) and consists of the following eight Corrective Action Sites (CASs) located in Areas 12 and 15 of the Nevada Test Site (NTS): CAS 12-26-01, Lead Shot; CAS 15-22-04, Drums(2); CAS 15-22-06, Drums(10); CAS 15-22-16, Drums(3); CAS 15-22-22, Hydrocarbon Impacted Soil; CAS 15-22-29, Drums(2); CAS 15-24-07, Batteries; and CAS 15-99-02, Gas Cylinder. Closure activities consisted of closing each CAS by removing debris and/or material, disposing of the generated waste, and verifying that each site was clean-closed by visual inspection and/or laboratory analysis of soil samples.

  4. GIS Modelling of Radionuclide Transport from the Semipalatinsk Test Site

    NASA Astrophysics Data System (ADS)

    Balakay, L.; Zakarin, E.; Mahura, A.; Baklanov, A.; Sorensen, J. H.

    2009-04-01

    In this study, the software complex GIS-project MigRad (Migration of Radionuclide) was developed, tested and applied for the territory of the Semipalatinsk test site/ polygon (Republic of Kazakhstan), where since 1961, in total 348 underground nuclear explosions were conducted. The MigRad is oriented on integration of large volumes of different information (mapping, ground-based, and satellite-based survey): and also includes modeling on its base local redistribution of radionuclides by precipitation and surface waters and by long-range transport of radioactive aerosols. The existing thermal anomaly on territory of the polygon was investigated in details, and the object-oriented analysis was applied for the studied area. Employing the RUNOFF model, the simulation of radionuclides migration with surface waters was performed. Employing the DERMA model, the simulation of long-term atmospheric transport, dispersion and deposition patterns for cesium was conducted from 3 selected locations (Balapan, Delegen, and Experimental Field). Employing geoinformation technology, the mapping of the of the high temperature zones and epicenters of radioactive aerosols transport for the territory of the test site was carried out with post-processing and integration of modelling results into GIS environment. Contamination levels of pollution due to former nuclear explosions for population and environment of the surrounding polygon territories of Kazakhstan as well as adjacent countries were analyzed and evaluated. The MigRad was designed as instrument for comprehensive analysis of complex territorial processes influenced by former nuclear explosions on the territory of Semipalatinsk test site. It provides possibilities in detailed analyses for (i) extensive cartographic material, remote sensing, and field measurements data collected in different level databases; (ii) radionuclide migration with flows using accumulation and redistribution of soil particles; (iii) thermal anomalies

  5. Geologic surface effects of underground nuclear testing, Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    Grasso, D.N.

    2000-05-31

    This report presents a new Geographic Information System composite map of the geologic surface effects caused by underground nuclear testing in the Yucca Flat Physiographic Area of the Nevada Test Site, Nye County, Nevada. The Nevada Test Site (NTS) was established in 1951 as a continental location for testing nuclear devices (Allen and others, 1997, p.3). Originally known as the ''Nevada Proving Ground'', the NTS hosted a total of 928 nuclear detonations, of which 828 were conducted underground (U.S. Department of Energy, 1994). Three principal testing areas of the NTS were used: (1) Yucca Flat, (2) Pahute Mesa, and (3) Rainier Mesa including Aqueduct Mesa. Underground detonations at Yucca Flat and Pahute Mesa were typically emplaced in vertical drill holes, while others were tunnel emplacements. Of the three testing areas, Yucca Flat was the most extensively used, hosting 658 underground tests (747 detonations) located at 719 individual sites (Allen and others, 1997, p.3-4). Figure 1 shows the location of Yucca Flat and other testing areas of the NTS. Figure 2 shows the locations of underground nuclear detonation sites at Yucca Flat. Table 1 lists the number of underground nuclear detonations conducted, the number of borehole sites utilized, and the number of detonations mapped for surface effects at Yucca Flat by NTS Operational Area.

  6. Site Characterization for a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Hardin, E. L.; Freeze, G. A.; Sassani, D.; Brady, P. V.

    2015-12-01

    The US Department of Energy Office of Nuclear Energy is at the beginning of 5-year Deep Borehole Field Test (DBFT) to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages over mined repositories, including incremental construction and loading, the enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Site characterization efforts need to determine an eligible site that does not have the following disqualifying characteristics: greater than 2 km to crystalline basement, upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection to the shallow subsurface, and significant probability of future seismic or volcanic activity. Site characterization activities for the DBFT will include geomechanical (i.e., rock in situ stress state, and fluid pressure), geological (i.e., rock and fracture infill lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), and geochemical (i.e., rock-water interaction and natural tracers) aspects. Both direct (i.e., sampling and in situ testing) and indirect (i.e., borehole geophysical) methods are planned for efficient and effective characterization of these site aspects and physical processes. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth, and interpretation of material and system parameters relevant to numerical site simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  7. Automated test-site radiometer for vicarious calibration

    NASA Astrophysics Data System (ADS)

    Li, Xin; Yin, Ya-peng; Liu, En-chao; Zhang, Yan-na; Xun, Li-na; Wei, Wei; Zhang, Zhi-peng; Qiu, Gang-gang; Zhang, Quan; Zheng, Xiao-bing

    2014-11-01

    In order to realize unmanned vicarious calibration, Automated Test-site Radiometer (ATR) was developed for surface reflectance measurements. ATR samples the spectrum from 400nm-1600 nm with 8 interference filters coupled with silicon and InGaAs detectors. The field of view each channel is 10 ° with parallel optical axis. One SWIR channel lies in the center and the other seven VNIR channels are on the circle of 4.8cm diameters which guarantee each channel to view nearly the same section of ground. The optical head as a whole is temperature controlled utilizing a TE cooler for greater stability and lower noise. ATR is powered by a solar panel and transmit its data through a BDS (China's BeiDou Navigation Satellite System) terminator for long-term measurements without personnel in site. ATR deployed in Dunhuang test site with ground field about 30-cm-diameter area for multi-spectral reflectance measurements. Other instruments at the site include a Cimel sunphotometer and a diffuser-to-globe irradiance meter for atmosphere observations. The methodology for band-averaged reflectance retrieval and hyperspectral reflectance fitting process are described. Then the hyperspectral reflectance and atmospheric parameters are put into 6s code to predict TOA radiance which compare with MODIS radiance.

  8. Creation of geographic information database of subsatellite calibration test site

    NASA Astrophysics Data System (ADS)

    Zyelyk, Ya. I.; Semeniv, O. V.

    2014-12-01

    The prototype of geographic information database (DB) of the sub-satellite calibration test site has been created, to which user can be accessed from the free open-source geographic information system Quantum GIS (QGIS) environment. QGIS is used as an integrator of all data and applications and visualizer of the satellite imagery and vector layers of test sites in the cartographic interface. Conversion of the database from the local representation in the MS Access to the server representation in the PostgreSQL environment has been performed. Dynamic application to QGIS for user interaction from QGIS environment with the object-relational database and to display information from the database has been created. Functional-algorithmic part of these application and the interface for user interaction with the database has been developed.

  9. Nevada Test Site tortoise population monitoring study. Final report

    SciTech Connect

    Mueller, J.M.; Zander, K.K.

    1994-12-01

    A Tortoise Population Monitoring Study was initiated to determine and monitor the density of desert tortoises (Gopherus agassizii) on the Nevada Test Site. Quadrat sampling was conducted following methodology described in the Draft Desert Tortoise Recovery Plan (FWS, 1993). So few tortoises were found that densities could not be calculated. Based on estimates of capture probabilities and densities from other studies, it was determined that 1-km{sup 2} (0.4 mi{sup 2}) plots did not contain enough tortoises for estimating densities with the Recovery Plan methods. It was recommended that additional surveys on the Nevada Test Site using those methods not be conducted. Any future efforts to monitor desert tortoise densities should start by identifying other possible methods, determining their relative power to detect changes, and estimating their cost.

  10. 2003 Nevada Test Site Annual Illness and Injury Surveillance Report

    SciTech Connect

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-05-23

    Annual Illness and Injury Surveillance Program report for 2003 for the Nevada Test Site. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  11. Evaluation of transition year Canadian test sites. [Saskatchewan Province

    NASA Technical Reports Server (NTRS)

    Payne, R. W. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. The spring small grain proportion accuracy in 15 Saskatchewan test sites was found to be comparable to that of the Large Area Crop Inventory Experiment Phase 3 and Transition Year results in the U.S. spring wheat states. Spring small grain labeling accuracy was 94%, and the direct wheat labeling accuracy was 89%, despite the low barley separation accuracy of 30%.

  12. The Use of Scintillation for Astronomical Site Testing

    NASA Astrophysics Data System (ADS)

    Sarazin, M. S.; Tokovinin, A.

    2009-09-01

    When site testing for future astronomical facilities (Extremely Large Telescopes, ELT), teams around the world use scintillation to locate the optically turbulent layers within the atmosphere. Several dedicated instruments are described which have been developed to retrieve the whole vertical Cn2 profile from close to the ground up to about 20km. MASS (Multi Aperture Scintillation Sensor) high altitude profilers in particular, when used in a network, can provide a 3D tracking of clear air turbulence during nighttime over large areas.

  13. Numerical Simulation of Groundwater Withdrawal at the Nevada Test Site

    SciTech Connect

    Carroll, Rosemary; Giroux, Brian; Pohll, Greg; Hershey, Ronald; Russell, Charles; Howcroft, William

    2004-01-28

    Alternative uses of the Nevada Test Site (NTS) may require large amounts of water to construct and/or operate. The only abundant source of water at the NTS is groundwater. This report describes preliminary modeling to quantify the amount of groundwater available for development from three hydrographic areas at the NTS. Modeling was conducted with a three-dimensional transient numerical groundwater flow model.

  14. Development testing of grouting and liner technology for humid sites

    SciTech Connect

    Vaughan, N.D.

    1981-01-01

    Shallow land burial, although practiced for many years, has not always secured radionuclides from the biosphere in humid environments. To develop and demonstrate improved burial technology the Engineered Test Facility was implemented. An integral part of this experiment was site characterization, with geologic and hydrologic factors as major the components. Improved techniques for burial of low-level waste were developed and tested in the laboratory before being applied in the field. The two techniques studied were membrane trench liner and grouting void spaces.

  15. Magnetotelluric Data, Southern Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Southern Yucca Flat, Profile 4, as shown in Figure 1. No interpretation of the data is included here.

  16. Magnetotelluric Data, Central Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Central Yucca Flat, Profile 1, as shown in figure 1. No interpretation of the data is included here.

  17. Magnetotelluric Data, Northern Frenchman Flat, Nevada Test Site Nevada

    SciTech Connect

    J.M. Williams; B.D. Rodriguez, and T. H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Frenchman Flat Profile 3, as shown in Figure 1. No interpretation of the data is included here.

  18. DOUBLE TRACKS Test Site interim corrective action plan

    SciTech Connect

    1996-06-01

    The DOUBLE TRACKS site is located on Range 71 north of the Nellis Air Force Range, northwest of the Nevada Test Site (NTS). DOUBLE TRACKS was the first of four experiments that constituted Operation ROLLER COASTER. On May 15, 1963, weapons-grade plutonium and depleted uranium were dispersed using 54 kilograms of trinitrotoluene (TNT) explosive. The explosion occurred in the open, 0.3 m above the steel plate. No fission yield was detected from the test, and the total amount of plutonium deposited on the ground surface was estimated to be between 980 and 1,600 grams. The test device was composed primarily of uranium-238 and plutonium-239. The mass ratio of uranium to plutonium was 4.35. The objective of the corrective action is to reduce the potential risk to human health and the environment and to demonstrate technically viable and cost-effective excavation, transportation, and disposal. To achieve these objectives, Bechtel Nevada (BN) will remove soil with a total transuranic activity greater then 200 pCI/g, containerize the soil in ``supersacks,`` transport the filled ``supersacks`` to the NTS, and dispose of them in the Area 3 Radioactive Waste Management Site. During this interim corrective action, BN will also conduct a limited demonstration of an alternative method for excavation of radioactive near-surface soil contamination.

  19. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  20. Deep Resistivity Structure of Mid Valley, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Wallin, Erin L.; Rodriguez, Brian D.; Williams, Jackie M.

    2009-01-01

    The U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site northwest of Las Vegas (DOE UGTA, 2003). Most of these tests were conducted hundreds of feet above the ground-water table; however, more than 200 of the tests were near, or within, the water table. This underground testing was limited to specific areas of the Nevada Test Site including Pahute Mesa, Rainier Mesa/Shoshone Mountain (RM-SM), Frenchman Flat, and Yucca Flat. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain (RM-SM) Corrective Action Unit (CAU) (National Security Technologies, 2007). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-Tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, and 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006) located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat, further refining what is known about the pre

  1. An aerial radiological survey of the Nevada Test Site

    SciTech Connect

    Hendricks, T J; Riedhauser, S R

    1999-12-01

    A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys.

  2. Los Alamos studies of the Nevada test site facilities for the testing of nuclear rockets

    NASA Technical Reports Server (NTRS)

    Hynes, Michael V.

    1993-01-01

    The topics are presented in viewgraph form and include the following: Nevada test site geographic location; location of NRDA facilities, area 25; assessment program plan; program goal, scope, and process -- the New Nuclear Rocket Program; nuclear rocket engine test facilities; EMAD Facility; summary of final assessment results; ETS-1 Facility; and facilities cost summary.

  3. Los Alamos studies of the Nevada test site facilities for the testing of nuclear rockets

    NASA Astrophysics Data System (ADS)

    Hynes, Michael V.

    The topics are presented in viewgraph form and include the following: Nevada test site geographic location; location of NRDA facilities, area 25; assessment program plan; program goal, scope, and process -- the New Nuclear Rocket Program; nuclear rocket engine test facilities; EMAD Facility; summary of final assessment results; ETS-1 Facility; and facilities cost summary.

  4. Hydrogeologic testing plan for Deep Hydronest Test Wells, Deaf Smith County site, Texas

    SciTech Connect

    Not Available

    1987-12-01

    This report discusses methods of hydraulic testing which are recommended for use in the Deep Hydronest Test Wells at the proposed high level nuclear waste repository site in Deaf Smith County, Texas. The deep hydronest wells are intended to provide geologic, geophysical and hydrologic information on the interval from the Upper San Andres Formation to the base of the Pennsylvanian system at the site. Following the period of drilling and testing, the wells will be converted into permanent monitoring installations through which fluid pressures and water quality can be monitored at various depths in the section. 19 refs., 17 figs., 2 tabs.

  5. Test site experiments with a reconfigurable stepped frequency GPR

    NASA Astrophysics Data System (ADS)

    Persico, Raffaele; Matera, Loredana; Piro, Salvatore; Rizzo, Enzo; Capozzoli, Luigi

    2016-04-01

    In this contribution, some new possibilities offered by a reconfigurable stepped frequency GPR system are exposed. In particular, results achieved from a prototypal system achieved in two scientific test sites will be shown together with the results achieved in the same test sites with traditional systems. Moreover a novel technique for the rejection of undesired interferences is shown, with the use of interferences caused on purpose. Key words GPR, reconfigurable stepped frequency. Introduction A reconfigurable GPR system is meant as a GPR where some parameter can be changed vs. the frequency (if the system is stepped frequency) or vs. the time (if the system is pulsed) in a programmable way. The programming should then account for the conditions met in the scenario at hand [1]. Within the research project AITECH (http://www.aitechnet.com/ibam.html), the Institute for Archaeological and Monumental Heritage, together with the University of Florence and the IDS corporation have implemented a prototype, that has been used in sites of cultural interest in Italy [2], but also abroad in Norway and Malta. The system is a stepped frequency GPR working in the frequency range 50-1000 MHz, and its reconfigurability consists in three properties. The first one is the fact that the length of the antennas can be modulated by the aperture and closure of two electronic switches present along the arms of the antennas, so that the antennas can become electrically (and electronically) longer or shorter, so becoming more suitable to radiate some frequencies rather than some other. In particular, the system can radiate three different bands in the comprehensive range between 50-1000 MHz, so being suitable for different depth range of the buried targets, and the three bands are gathered in a unique "going through" because for each measurement point the system can sweep the entire frequency range trhee times, one for each configuration of the switchres on the arms. The second property is

  6. Test site experiments with a reconfigurable stepped frequency GPR

    NASA Astrophysics Data System (ADS)

    Persico, Raffaele; Matera, Loredana; Piro, Salvatore; Rizzo, Enzo; Capozzoli, Luigi

    2016-04-01

    In this contribution, some new possibilities offered by a reconfigurable stepped frequency GPR system are exposed. In particular, results achieved from a prototypal system achieved in two scientific test sites will be shown together with the results achieved in the same test sites with traditional systems. Moreover a novel technique for the rejection of undesired interferences is shown, with the use of interferences caused on purpose. Key words GPR, reconfigurable stepped frequency. Introduction A reconfigurable GPR system is meant as a GPR where some parameter can be changed vs. the frequency (if the system is stepped frequency) or vs. the time (if the system is pulsed) in a programmable way. The programming should then account for the conditions met in the scenario at hand [1]. Within the research project AITECH (http://www.aitechnet.com/ibam.html), the Institute for Archaeological and Monumental Heritage, together with the University of Florence and the IDS corporation have implemented a prototype, that has been used in sites of cultural interest in Italy [2], but also abroad in Norway and Malta. The system is a stepped frequency GPR working in the frequency range 50-1000 MHz, and its reconfigurability consists in three properties. The first one is the fact that the length of the antennas can be modulated by the aperture and closure of two electronic switches present along the arms of the antennas, so that the antennas can become electrically (and electronically) longer or shorter, so becoming more suitable to radiate some frequencies rather than some other. In particular, the system can radiate three different bands in the comprehensive range between 50-1000 MHz, so being suitable for different depth range of the buried targets, and the three bands are gathered in a unique "going through" because for each measurement point the system can sweep the entire frequency range trhee times, one for each configuration of the switchres on the arms. The second property is

  7. OSI Passive Seismic Experiment at the Former Nevada Test Site

    SciTech Connect

    Sweeney, J J; Harben, P

    2010-11-11

    On-site inspection (OSI) is one of the four verification provisions of the Comprehensive Nuclear Test Ban Treaty (CTBT). Under the provisions of the CTBT, once the Treaty has entered into force, any signatory party can request an on-site inspection, which can then be carried out after approval (by majority voting) of the Executive Council. Once an OSI is approved, a team of 40 inspectors will be assembled to carry out an inspection to ''clarify whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of Article I''. One challenging aspect of carrying out an on-site inspection (OSI) in the case of a purported underground nuclear explosion is to detect and locate the underground effects of an explosion, which may include an explosion cavity, a zone of damaged rock, and/or a rubble zone associated with an underground collapsed cavity. The CTBT (Protocol, Section II part D, paragraph 69) prescribes several types of geophysical investigations that can be carried out for this purpose. One of the methods allowed by the CTBT for geophysical investigation is referred to in the Treaty Protocol as ''resonance seismometry''. This method, which was proposed and strongly promoted by Russia during the Treaty negotiations, is not described in the Treaty. Some clarification about the nature of the resonance method can be gained from OSI workshop presentations by Russian experts in the late 1990s. Our understanding is that resonance seismometry is a passive method that relies on seismic reverberations set up in an underground cavity by the passage of waves from regional and teleseismic sources. Only a few examples of the use of this method for detection of underground cavities have been presented, and those were done in cases where the existence and precise location of an underground cavity was known. As is the case with many of the geophysical methods allowed during an OSI under the Treaty, how resonance seismology really works and

  8. Savannah River Site TEP-SET tests uncertainty report

    SciTech Connect

    Taylor, D.J.N.

    1993-09-01

    This document presents a measurement uncertainty analysis for the instruments used for the Phase I, II and III of the Savannah River One-Fourth Linear Scale, One-Sixth Sector, Tank/Muff/Pump (TMP) Separate Effects Tests (SET) Experiment Series. The Idaho National Engineering Laboratory conducted the tests for the Savannah River Site (SRS). The tests represented a range of hydraulic conditions and geometries that bound anticipated Large Break Loss of Coolant Accidents in the SRS reactors. Important hydraulic phenomena were identified from experiments. In addition, code calculations will be benchmarked from these experiments. The experimental system includes the following measurement groups: coolant density; absolute and differential pressures; turbine flowmeters (liquid phase); thermal flowmeters (gas phase); ultrasonic liquid level meters; temperatures; pump torque; pump speed; moderator tank liquid inventory via a load cells measurement; and relative humidity meters. This document also analyzes data acquisition system including the presampling filters as it relates to these measurements.

  9. Determination of in situ state of stress at the Spent Fuel Test-Climax site, Climax Stock, Nevada Test Site

    USGS Publications Warehouse

    Ellis, W.L.; Magner, J.E.

    1982-01-01

    Determination of the in situ state of stress at the site of the Spent Fuel Test--Climax, using the U.S. Bureau of Mines overcore method, indicates principal stress magnitudes of 11.6 MPa, 7.1 MPa, and 2.8 MPa. The bearing and plunge of the maximum and minimum principal stress components are, respectively: N. 56? E., 29? NE; and N. 42? W., 14? NW. The vertical stress magnitude of 7.9 MPa calculated from the overcore data is significantly less than expected from overburden pressure, suggesting the stress field is influenced by local or areal geologic factors. Results from this investigation indicate (1) the stress state at the Spent Fuel Test--Climax site deviates significantly from a gravitational stress field, both in relative stress magnitudes and in orientation; (2) numerical modeling will not realistically simulate the near-field response of the Spent Fuel Test--Climax site if gravitational and (or) horizontal and vertical applied stress boundary conditions are assumed; and (3) substantial stress variations may occur spatially within the stock.

  10. Excess plutonium in soil near the Nevada Test Site, USA.

    PubMed

    Turner, Mary; Rudin, Mark; Cizdziel, James; Hodge, Vernon

    2003-01-01

    Two soil profiles were collected from undisturbed areas near the Nevada Test Site (NTS). The activity of 137Cs in the surface layer of the downwind Queen City Summit profile is three times higher than at the upwind site at Searchlight, NV (41.1+/-0.6 mBq/g vs. 13.0+/-0.4 mBq/g), and the 239,240Pu activity is 100 times greater (51+/-2 mBq/g vs. 0.52+/-0.03 mBq/g). An examination of the literature suggests that the 137Cs/239,240Pu and the 239,240Pu/238Pu activity ratios in soils and sediments from the northern hemisphere, due to fallout from atmospheric atomic weapons testing, have generalized values of 36+/-4 and 30+/-4, respectively (as of 1 July 1995). Deviations from these values may indicate possible contamination by sources other than fallout. Data from the surface soil of the downwind Queen City Summit profile yield a 137Cs/239,240Pu ratio of 0.81+/-0.02 and a 239,240Pu/238Pu ratio of 78+/-6. Clearly, an increase in 239,240Pu relative to 137Cs or 238Pu can account for these observations. There is compelling evidence that this "excess" 239,240Pu came from activities at the NTS during the aboveground testing of nuclear devices, more than likely from safety tests, some 40 years ago, and/or during the interim by the wind-driven resuspension of contaminated surface soil on the NTS and its transport off-site. Moreover, the two concentration profiles show that high percentages of both of these elements are retained for decades in the upper few centimeters of soil in Nevada's desert environment.

  11. Environmental Survey preliminary report, Nevada Test Site, Mercury, Nevada

    SciTech Connect

    Not Available

    1988-04-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Nevada Test Site (NTS), conducted June 22 through July 10, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the NTS. The Survey covers all environment media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations and activities performed at the NTS, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by the Battelle Columbus Division under contract with DOE. When completed, the results will be incorporated into the NTS Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the NTS Survey. 165 refs., 42 figs., 52 tabs.

  12. The Kauring Airborne Gravity Test Site, Western Australia

    NASA Astrophysics Data System (ADS)

    Lane, R. J.; Grujic, M.; Aravanis, T.; Tracey, R.; Dransfield, M.; Howard, D.; Smith, B.

    2009-12-01

    A test site for airborne gravity (AG) systems has been established at Kauring, approximately 100 km east of Perth, Western Australia. The site was chosen using a range of criteria that included being within 200 km of Jandakot Airport in Perth where most of the airborne systems would be based at one time or another when operating in Australia, being free of low level flight restrictions, having minimal human infrastructure in the central 20 by 20 km area, and the presence of gentle to rolling terrain rather than deeply incised topography or an extensive flat plain with very low relief. In anticipation of catering for airborne gravity gradiometer (AGG) systems, the site was required to have a gravity gradient feature with clear response in the wavelength range of 100 m to 2 km in a 5 by 5 km core region. The existence of closely-spaced, high quality ground gravity data would have been a positive factor for selecting a test site, but a search of the national gravity database indicated that there were no such data sets in the search area. Consequently, a ground vertical gravity acquisition program for the chosen site at Kauring was arranged by the Geological Survey of Western Australia (GSWA), Geoscience Australia (GA), and Rio Tinto Exploration. To support AG system tests, a 150 by 150 km area was covered with a maximum station spacing of 2 by 2 km, and the central area of 20 by 20 km was covered with a maximum station spacing of 0.5 by 0.5 km. These data are freely available from GSWA and GA. To support AGG system tests, the core 5 by 5 km area would need to have stations with much closer spacing (e.g., 100 by 100 m). A variety of publicly available digital terrain data sets are available (e.g., SRTM 3-second data (~90 m), ASTER GDEM 1-second data (~30 m), GEODATA 9-second data (~300 m), etc.). Acquisition of a LIDAR-based high-resolution digital terrain model (DTM) for the central 20 by 20 km area is being considered. A DTM of this nature for the core 5 by 5 km area

  13. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    SciTech Connect

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  14. Corrective Action Decision Document for Corrective Action Unit 340: Pesticide Release sites, Nevada Test Site, Nevada

    SciTech Connect

    DOE /NV

    1998-12-08

    This Corrective Action Decision Document has been prepared for Corrective Action Unit 340, the NTS Pesticide Release Sites, in accordance with the Federal Facility Agreement and Consent Order of 1996 (FFACO, 1996). Corrective Action Unit 340 is located at the Nevada Test Site, Nevada, and is comprised of the following Corrective Action Sites: 23-21-01, Area 23 Quonset Hut 800 Pesticide Release Ditch; 23-18-03, Area 23 Skid Huts Pesticide Storage; and 15-18-02, Area 15 Quonset Hut 15-11 Pesticide Storage. The purpose of this Corrective Action Decision Document is to identify and provide a rationale for the selection of a recommended corrective action alternative for each Corrective Action Site. The scope of this Corrective Action Decision Document consists of the following tasks: Develop corrective action objectives; Identify corrective action alternative screening criteria; Develop corrective action alternatives; Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria; and Recommend and justify a preferred corrective action alternative for each Corrective Action Site.

  15. Closure Report for Corrective Action Unit 392: Spill Sites and Construction Materials, Nevada Test Site, Nevada

    SciTech Connect

    R. B. Jackson

    2002-02-01

    This Closure Report documents the closure activities that were conducted to close Corrective Action Unit (CAU) 392--Spill Sites and Construction Materials located on the Nevada Test Site (NTS). CAU 392 is listed on in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996) and consists of the following six Corrective Action Sites (CASs) located in Areas 5 and 6 of the NTS: CAS 05-17-02 Construction Materials/Lead Bricks; CAS 06-17-03 Cement Mud Pit; CAS 06-1 9-01 Cable Pile; Powder Piles (3); CAS 06-44-02 Paint Spill; CAS 06-44-03 Plaster Spill; CAS 06-44-04 Cutting Fluid Discharge Ditch. Closure activities were performed in two phases. Phase 1 activities consisted of collecting waste characterization samples of soil and material present on-site, and where appropriate, performing radiological screening of debris at the six CASs. Results were used to determine how waste generated during closure activities would be handled and disposed of, i.e., as nonhazardous sanitary or hazardous waste, etc. Phase 2 activities consisted of closing each CAS by removing debris and/or soil, disposing of the generated waste, and verifying that each CAS was clean closed by visual inspection and/or by the collecting soil verification samples for laboratory analysis. Copies of the analytical results for the site verification samples are included in Appendix A. Copies of the Sectored Housekeeping Site Closure Verification Form for each of the six CASs are included in Appendix 8. Appendix C contains a copy of the Bechtel Nevada (BN) On-site Waste Transport Manifest for the hazardous waste generated during closure of CAS 06-44-02.

  16. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  17. Site characterization and monitoring data from Area 5 Pilot Wells, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    1994-02-01

    The Special Projects Section (SPS) of Reynolds Electrical & Engineering Co., Inc. (REECO) is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division, Waste Operations Branch. The three Pilot Wells that comprise the Pilot Well Project are an important part of the Area 5 Site Characterization Program designed to determine the suitability of the Area 5 RWMS for disposal of low-level waste (LLW), mixed waste (MW), and transuranic waste (TRU). The primary purpose of the Pilot Well Project is two-fold: first, to characterize important water quality and hydrologic properties of the uppermost aquifer; and second, to characterize the lithologic, stratigraphic, and hydrologic conditions which influence infiltration, redistribution, and percolation, and chemical transport through the thick vadose zone in the vicinity of the Area 5 RWMS. This report describes Pilot Well drilling and coring, geophysical logging, instrumentation and stemming, laboratory testing, and in situ testing and monitoring activities.

  18. An adaptive atmospheric transport model for the Nevada Test Site

    SciTech Connect

    Pepper, D.W.; Randerson, D.

    1998-12-31

    The need to accurately calculate the transport of hazardous material is paramount to environmental safety and health activities, as well as to establish a sound emergency response capability, in the western United States and at the Nevada Test Site (NTS). Current efforts are under way at the University of Nevada, Las Vegas (UNLV) and the NOAA Air Resources Laboratory in Las Vegas to develop a state-of-the-art atmospheric flow and species transport model that will accurately calculate wind fields and atmospheric particulate transport over complex terrain. In addition, research efforts are needed to improve predictive capabilities for catastrophic events, e.g., volcanic eruptions, thunderstorms, heavy rains and floods, and dust storms. The model has a wide range of environmental, safety, and health applications as required by the US Department of Energy for NTS programs, including those activities associated with emergency response, the Hazard Material Spill Center, and site restoration and remediation.

  19. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 395: AREA 19 SPILL SITES, NEVADA TEST SITE, NEVADA

    SciTech Connect

    2005-10-01

    Corrective Action Unit (CAU) 395, Area 19 Spill Sites, consists of nine Corrective Action Sites (CASs) located in Area 19 of the Nevada Test Site. Closure activities performed at each CAS include: (1) CAS 19-19-04, Concrete Spill: A concrete spill could not be located at the site. Therefore, no further action was taken. (2) CAS 19-25-03, Oil Spills: Approximately five cubic yards of hydrocarbon-impacted soil and various used oil filters were removed from the site and transported to the Area 6 Hydrocarbon Landfill for disposal. (3) CAS 19-44-02, Fuel Spill: Less than 0.5 cubic feet of hydrocarbon-impacted soil was removed from a concrete pad and transported to the Area 6 Hydrocarbon Landfill for disposal. (4) CAS 19-44-04, U-19bk Drill Site Release: Approximately four cubic yards of hydrocarbon-impacted soil were removed from the site and transported to the Area 6 Hydrocarbon Landfill for disposal. (5) CAS 19-44-05, U-19bh Drill Site Release: Evidence of an oil spill could not be found at the site. Therefore, no further action was taken. (6) CAS 19-99-05, Pile; Unknown Material: Based on previous sampling activities by International Technology (IT) Corporation the material was determined to be non-hazardous. Due to the remote location of the material and the determination that removal of the material would constitute an unnecessary ground disturbance as defined in the Sectored Housekeeping Work Plan, the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) and Nevada Division of Environmental Protection (NDEP) agreed that the site would be closed by taking no further action. (7) CAS 19-99-07, Cement Spill: Based on previous sampling activities by IT Corporation the material was determined to be non-hazardous. Due to the remote location of the material and the determination that removal of the material would constitute an unnecessary ground disturbance as defined in the Sectored Housekeeping Work Plan, the NNSA/NSO and

  20. Site Guidelines for a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Sassani, D.; Kuhlman, K. L.; Freeze, G. A.; MacKinnon, R. J.; Perry, F.

    2015-12-01

    The US DOE Office of Nuclear Energy Used Nuclear Fuel Disposition Campaign (UFDC) is initiating a Deep Borehole Field Test (DBFT), without use of any radioactive waste, to evaluate the geoscience of the approach and technical capabilities for implementation. DOE has identified Sandia National Laboratories (SNL) as the Technical Lead for the UFDC DBFT Project, with the role of supporting DOE in (i) developing the overall DBFT Project Plan, (ii) management and integration of all DBFT Project activities, and (iii) providing Project technical guidance to DOE, other DOE National Laboratories, and university partners. The DBFT includes drilling one Characterization Borehole (CB-8.5" diameter), followed by an optional Field Test Borehole (FTB), to a depth of about 5,000 m (16,400 feet) into crystalline basement rock in a geologically stable continental location. The DBFT CB will be drilled and completed to facilitate downhole scientific testing and analyses. If site conditions are found to be favorable, DOE may drill the larger-diameter (17") FTB to facilitate proof-of-concept of handling, emplacement, and retrieval activities using surrogate waste containers. Guidelines for favorable DBFT site geohydrochemical and geomechanical conditions will be discussed and status of the DBFT Project will be provided. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6426A.

  1. Ingestion of Nevada Test Site Fallout: Internal dose estimates

    SciTech Connect

    Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1996-10-01

    This paper summarizes individual and collective dose estimates for the internal organs of hypothetical yet representative residents of selected communities that received measurable fallout from nuclear detonations at the Nevada Test Site. The doses, which resulted from ingestion of local and regional food products contaminated with over 20 radionuclides, were estimated with use of the PATHWAY food-chain-transport model to provide estimates of central tendency and uncertainty. The thyroid gland received much higher doses than other internal organs and tissues. In a avery few cases, infants might have received thyroid doses in excess of 1 Gy, depending on location, diet, and timing of fallout. {sup 131}I was the primary thyroid dose contributor, and fresh milk was the main exposure pathway. With the exception of the thyroid, organ doses from the ingestion pathway were much smaller (<3%) than those from external gamma exposure to deposited fallout. Doses to residents living closest to the Nevada Test Site were contributed mainly by a few fallout events; doses to more distantly located people were generally smaller, but a greater number of events provided measurable contributions. The effectiveness of different fallout events in producing internal organ doses through ingestion varied dramatically with seasonal timing of the test, with maximum dose per unit fallout occurring for early summer depositions when milk cows were on pasture and fresh, local vegetables were used. Within specific communities, internal doses differed by age, sex, and lifestyle. Collective internal dose estimates for specific geographic areas are provided.

  2. Magnetotelluric Data, Northern Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Profile 2, (fig. 1), located in the northern Yucca Flat area. No interpretation of the data is included here.

  3. Magnetotelluric Data, Across Quartzite Ridge, Nevada Test Site, Nevada

    SciTech Connect

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT soundings across Quartzite Ridge, Profiles 5, 6a, and 6b, as shown in Figure 1. No interpretation of the data is included here.

  4. Magnetotelluric Data, North Central Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for north central Yucca Flat, Profile 7, as shown in Figure 1. No interpretation of the data is included here.

  5. Drilling Automation Tests At A Lunar/Mars Analog Site

    NASA Technical Reports Server (NTRS)

    Glass, B.; Cannon, H.; Hanagud, S.; Lee, P.; Paulsen, G.

    2006-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. The limited mass, energy and manpower in planetary drilling situations makes application of terrestrial drilling techniques problematic. The Drilling Automation for Mars Exploration (DAME) project is developing drilling automation and robotics for projected use in missions to the Moon and Mars in the 2011-15 period. This has been tested recently, drilling in permafrost at a lunar/martian analog site (Haughton Crater, Devon Island, Canada).

  6. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.

    SciTech Connect

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

  7. Evaluation of Mapping Methodologies at a Legacy Test Site

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Schultz-Fellenz, E. S.; Roback, R. C.; Kelley, R. E.; Drellack, S.; Reed, D.; Miller, E.; Cooper, D. I.; Sandoval, M.; Wang, R.

    2013-12-01

    On June 12th, 1985, a nuclear test with an announced yield between 20-150kt was detonated in rhyolitic lava in a vertical emplacement borehole at a depth of 608m below the surface. This test did not collapse to the surface and form a crater, but rather resulted in a subsurface collapse with more subtle surface expressions of deformation, providing an opportunity to evaluate the site using a number of surface mapping methodologies. The site was investigated over a two-year time span by several mapping teams. In order to determine the most time efficient and accurate approach for mapping post-shot surface features at a legacy test site, a number of different techniques were employed. The site was initially divided into four quarters, with teams applying various methodologies, techniques, and instrumentations to each quarter. Early methods included transect lines and site gridding with a Brunton pocket transit, flagging tape, measuring tape, and stakes; surveying using a hand-held personal GPS to locate observed features with an accuracy of × 5-10m; and extensive photo-documentation. More recent methods have incorporated the use of near survey grade GPS devices to allow careful location and mapping of surface features. Initially, gridding was employed along with the high resolution GPS surveys, but this was found to be time consuming and of little observational value. Raw visual observation (VOB) data included GPS coordinates for artifacts or features of interest, field notes, and photographs. A categorization system was used to organize the myriad of items, in order to aid in database searches and for visual presentation of findings. The collected data set was imported into a geographic information system (GIS) as points, lines, or polygons and overlain onto a digital color orthophoto map of the test site. Once these data were mapped, spectral data were collected using a high resolution field spectrometer. In addition to geo-locating the field observations with 10cm

  8. Site study plan for Deep Hydronest Test Wells, Deaf Smith County Site, Texas: Preliminary draft

    SciTech Connect

    Not Available

    1987-05-01

    Wells called Deep Hydronest Wells will be installed at six locations at the Deaf Smith County Site to characterize hydraulic parameters in the geologic column between the top of the San Andres Formation and the base of Pennsylvanian System. Three hydronests will be drilled during early stages of site characterization to provide data for performance assessment modeling. Four wells are proposed for each of these 3 nests. Results of drilling, testing, and preliminary modeling will direct drilling and testing activities at the last 3 nests. Two wells are proposed at each of the last 3 nests for a total of 18 wells. The Salt Repository Project (SRP) Networks specify the schedule under which this program will operate. Drilling and hydrologic testing of the first Deep Hydronest will begin early in the Surface Investigation Program. Drilling and testing of the first three Deep Hydronests will require about 18 months. After 12 months of evaluating and analyzing data from the first three hydronests, the remaining three hydronests will be drilled during a 12-month period. The Technical Field Services Contractor is responsible for conducting the field program. Samples and data will be handled and reported in accordance with established SRP procedures. A quality assurance program will be used to assure that activities affecting quality are performed correctly and that the appropriate documentation is maintained. 36 refs., 20 figs., 6 tabs.

  9. Source physics experiments at the Nevada Test Site.

    SciTech Connect

    Lee, Ping; Snelson, Catherine; Abbott, Robert; Coblentz, David D.; Corbell, Robert; Bowyer, Theodore W.; Sussman, Aviva J.; Carrigan, Charles R.; Bradley, Christopher R.; Patton, Howard J.; Seifert, Carolyn E.; Sweeney, Jerry J.; Brunish, Wendee M.; Hawkins, Ward L.; Antoun,Tarabay H.; Wohletz, Kenneth H.; Zucca, John Jay

    2010-10-01

    The U. S. capability to monitor foreign underground nuclear test activities relies heavily on measurement of explosion phenomena, including characteristic seismic, infrasound, radionuclide, and acoustic signals. Despite recent advances in each of these fields, empirical, rather than physics-based, approaches are used to predict and explain observations. Seismologists rely on prior knowledge of the variations of teleseismic and regional seismic parameters such as p- and s-wave arrivals from simple one-dimensional models for the teleseismic case to somewhat more complicated enhanced two-dimensional models for the regional case. Likewise, radionuclide experts rely on empirical results from a handful of limited experiments to determine the radiological source terms present at the surface after an underground test. To make the next step in the advancement of the science of monitoring we need to transform these fields to enable predictive, physics-based modeling and analysis. The Nevada Test Site Source Physics Experiments (N-SPE) provide a unique opportunity to gather precise data from well-designed experiments to improve physics-based modeling capability. In the seismic experiments, data collection will include time domain reflectometry to measure explosive performance and yield, free-field accelerometers, extensive seismic arrays, and infrasound and acoustic measurements. The improved modeling capability that we will develop using this data should enable important advances in our ability to monitor worldwide for nuclear testing. The first of a series of source physics experiments will be conducted in the granite of Climax Stock at the NTS, near the locations of the HARD HAT and PILE DRIVER nuclear tests. This site not only provides a fairly homogeneous and well-documented geology, but also an opportunity to improve our understanding of how fractures, joints, and faults affect seismic wave generation and propagation. The Climax Stock experiments will consist of a 220

  10. Deep resistivity structure of Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Asch, Theodore H.; Rodriguez, Brian D.; Sampson, Jay A.; Wallin, Erin L.; Williams, Jackie M.

    2006-01-01

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area project. One issue of concern is the nature of the somewhat poorly constrained pre Tertiary geology and its effects on ground-water flow in the area adjacent to a nuclear test. Ground water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey, supported by the DOE and NNSA-NSO, collected and processed data from 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations at the Nevada Test Site in and near Yucca Flat to assist in characterizing the pre-Tertiary geology in that area. The primary purpose was to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (late Devonian - Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) in the Yucca Flat area. The MT and AMT data have been released in separate USGS Open File Reports. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology beneath each station. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit are generally well determined in the upper 5 km. Inferences can be made regarding the presence of the Lower Clastic Confining Unit at depths below 5 km. Large fault

  11. Deep Resistivity Structure of Yucca Flat, Nevada Test Site, Nevada.

    SciTech Connect

    Theodore H. Asch, Brian D. Rodriguez; Jay A. Sampson; Erin L. Wallin; and Jackie M. Williams.

    2006-09-18

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area project. One issue of concern is the nature of the somewhat poorly constrained pre Tertiary geology and its effects on ground-water flow in the area adjacent to a nuclear test. Ground water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey, supported by the DOE and NNSA-NSO, collected and processed data from 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations at the Nevada Test Site in and near Yucca Flat to assist in characterizing the pre-Tertiary geology in that area. The primary purpose was to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (late Devonian – Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) in the Yucca Flat area. The MT and AMT data have been released in separate USGS Open File Reports. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology beneath each station. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit are generally well determined in the upper 5 km. Inferences can be made regarding the presence of the Lower Clastic Confining Unit at depths below 5 km. Large

  12. Closure Report for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada

    SciTech Connect

    2013-06-27

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 104, Area 7 Yucca Flat Atmospheric Test Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 104 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management. CAU 104 consists of the following 15 Corrective Action Sites (CASs), located in Area 7 of the Nevada National Security Site: · CAS 07-23-03, Atmospheric Test Site T-7C · CAS 07-23-04, Atmospheric Test Site T7-1 · CAS 07-23-05, Atmospheric Test Site · CAS 07-23-06, Atmospheric Test Site T7-5a · CAS 07-23-07, Atmospheric Test Site - Dog (T-S) · CAS 07-23-08, Atmospheric Test Site - Baker (T-S) · CAS 07-23-09, Atmospheric Test Site - Charlie (T-S) · CAS 07-23-10, Atmospheric Test Site - Dixie · CAS 07-23-11, Atmospheric Test Site - Dixie · CAS 07-23-12, Atmospheric Test Site - Charlie (Bus) · CAS 07-23-13, Atmospheric Test Site - Baker (Buster) · CAS 07-23-14, Atmospheric Test Site - Ruth · CAS 07-23-15, Atmospheric Test Site T7-4 · CAS 07-23-16, Atmospheric Test Site B7-b · CAS 07-23-17, Atmospheric Test Site - Climax Closure activities began in October 2012 and were completed in April 2013. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan for CAU 104. The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste, mixed waste, and recyclable material. Some wastes exceeded land disposal limits and required treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite landfills. The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office

  13. Closure Report for Corrective Action Unit 346: Areas 8, 10 Housekeeping Sites, Nevada Test Site, Nevada

    SciTech Connect

    K. B. Campbell

    2003-08-01

    This Closure Report documents the closure activities conducted for Corrective Action Unit (CAU) 346: Areas 8, 10 Housekeeping Sites. CAU 346 is listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996) and consists of the following 14 Corrective Action Sites (CASs) located in Areas 8 and 10 of the Nevada Test Site (NTS): (1) CAS 08-22-04: Drums (2); (2) CAS 08-22-11: Drums; Bucket; (3) CAS 08-24-02: Battery; (4) CAS 10-14-01: Transformer; (5) CAS 10-22-06: Drum (Gas Block); (6) CAS 10-22-10: Drum (Gas Block); (7) CAS 10-22-12: Drum (Gas Block); (8) CAS 10-22-13: Drum (Gas Block); (9) CAS 10-22-16: Drum (Gas Block); (10) CAS 10-22-22: Drum; (11) CAS 10-22-25: Drum; (12) CAS 10-22-36: Paint Can; (13) CAS 10-22-37: Gas Block; and (14) CAS 10-24-11: Battery. Closure activities consisted of closing each CAS by removing debris and/or material, disposing of the generated waste, and verifying that each site was clean-closed by visual inspection and/or laboratory analysis of soil verification samples.

  14. Calcination/dissolution testing for Hanford Site tank wastes

    SciTech Connect

    Colby, S.A.; Delegard, C.H.; McLaughlin, D.F.; Danielson, M.J.

    1994-07-01

    Thermal treatment by calcination offers several benefits for the treatment of Hanford Site tank wastes, including the destruction of organics and ferrocyanides and an hydroxide fusion that permits the bulk of the mostly soluble nonradioactive constituents to be easily separated from the insoluble transuranic residue. Critical design parameters were tested, including: (1) calciner equipment design, (2) hydroxide fusion chemistry, and (3) equipment corrosion. A 2 gal/minute pilot plant processed a simulated Tank 101-SY waste and produced a free flowing 700 C molten calcine with an average calciner retention time of 20 minutes and >95% organic, nitrate, and nitrite destruction. Laboratory experiments using actual radioactive tank waste and the simulated waste pilot experiments indicate that 98 wt% of the calcine produced is soluble in water, leaving an insoluble transuranic fraction. All of the Hanford Site tank wastes can benefit from calcination/dissolution processing, contingent upon blending various tank waste types to ensure a target of 70 wt% sodium hydroxide/nitrate/nitrite fluxing agent. Finally, corrosion testing indicates that a jacketed nickel liner cooled to below 400 C would corrode <2 mil/year (0.05 mm/year) from molten calcine attack.

  15. Chemistry and movement of ground water, Nevada Test Site

    USGS Publications Warehouse

    Schoff, S.L.; Moore, J.E.

    1964-01-01

    Three chemical types of ground water are distinguished at the Nevada Test Site and vicinity. A sodium-potassium water is related to tuff (in part zeolitized) and to alluvium containing detrital tuff. A calcium-magnesium water is related to limestone and dolomite, or to alluvium containing detritus of these rock types. A mixed chemical type, containing about as much sodium and potassium as calcium and magnesium, may result from the addition of one of the first two types of water to the other; to passage of water first through tuff and then through carbonate rock, or vice versa; and to ion-exchange during water travel. Consideration of the distribution of these water types, together with the distribution of sodium in the water and progressive changes in the dissolved solids, suggests that the ground water in the Nevada Test Site probably moves toward the Amargosa Desert, not into Indian Spring Valley and thence southeastward toward Las Vegas. The low dissolved solids content of ground-water reservoirs in alluvium and tuff of the enclosed basins indicates that recharge is local in origin.

  16. Closure Report for Corrective Action Unit 537: Waste Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Envirornmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 537 is identified in the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 as Waste Sites. CAU 537 is located in Areas 3 and 19 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada, and consists of the following two Corrective Action Sites (CASs): CAS 03-23-06, Bucket; Yellow Tagged Bags; and CAS 19-19-01, Trash Pit. CAU 537 closure activities were conducted in April 2007 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). At CAS 03-23-06, closure activities included removal and disposal of a 15-foot (ft) by 15-ft by 8-ft tall wooden shed containing wood and metal debris and a 5-gallon plastic bucket containing deteriorated plastic bags with yellow radioactive contamination tape. The debris was transported to the Area 9 U10c Landfill for disposal after being screened for radiological contamination according to the ''NV/YMP Radiological Control Manual'' (NNSA/NSO, 2004). At CAS 19-19-01, closure activities included segregation, removal, and disposal of non-friable, non-regulated asbestos-containing material (ACM) and construction debris. The ACM was determined to be non-friable by waste characterization samples collected prior to closure activities. The ACM was removed and double-bagged by licensed, trained asbestos workers and transported to the Area 9 U10c Landfill for disposal. Construction debris was transported in end-dump trucks to the Area 9 U10c Landfill for disposal. Closure activities generated sanitary waste/construction debris and ACM. Waste generated during closure activities was appropriately managed and disposed. Waste characterization sample results are included as Appendix A of this report, and waste disposition documentation is included as Appendix B of this report. Copies of the Sectored Housekeeping Site Closure

  17. Flood Assessment Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    NSTec Environmental Management

    2007-07-01

    A flood assessment was conducted at the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) in Nye County, Nevada (Figure 1-1). The study area encompasses the watershed of Yucca Flat, a closed basin approximately 780 square kilometers (km2) (300 square miles) in size. The focus of this effort was on a drainage area of approximately 94 km2 (36 mi2), determined from review of topographic maps and aerial photographs to be the only part of the Yucca Flat watershed that could directly impact the Area 3 RWMS. This smaller area encompasses portions of the Halfpint Range, including Paiute Ridge, Jangle Ridge, Carbonate Ridge, Slanted Buttes, Cockeyed Ridge, and Banded Mountain. The Area 3 RWMS is located on coalescing alluvial fans emanating from this drainage area.

  18. Barometric pressure transient testing applications at the Nevada Test Site: formation permeability analysis. Final report

    SciTech Connect

    Hanson, J.M.

    1984-12-01

    The report evaluates previous investigations of the gas permeability of the rock surrounding emplacement holes at the Nevada Test Site. The discussion sets the framework from which the present uncertainty in gas permeability can be overcome. The usefulness of the barometric pressure testing method has been established. Flow models were used to evaluate barometric pressure transients taken at NTS holes U2fe, U19ac and U20ai. 31 refs., 103 figs., 18 tabs. (ACR)

  19. Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management Site

    SciTech Connect

    NSTec Environmental Management

    2007-03-01

    This paper presents an overview of the strategy for closure of part of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada (Figure 1). The Area 5 RWMS is in the northern part of Frenchman Flat, approximately 14 miles north of Mercury. The Area 5 RWMS encompasses 732 acres subdivided into quadrants, and is bounded by a 1,000-foot (ft)-wide buffer zone. The northwest and southwest quadrants have not been developed. The northeast and southeast quadrants have been used for disposal of unclassified low-level radioactive waste (LLW) and indefinite storage of classified materials. This paper focuses on closure of the 38 waste disposal and classified material storage units within the southeast quadrant of the Area 5 RWMS, called the ''92-Acre Area''. The U.S Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently planning to close the 92-Acre Area by 2011. Closure planning for this site must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. For ease of discussion, the 92-Acre Area has been subdivided into six closure units defined by waste type, location, and similarity in regulatory requirements. Each of the closure units contains one or more waste disposal units; waste disposal units are also called waste disposal cells. The paper provides a brief background of the Area 5 RWMS, identifies key closure issues for the 92-Acre Area, recommends actions to address the issues, and provides the National Security Technologies, LLC (NSTec), schedule for closure.

  20. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    SciTech Connect

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

  1. Underground radionuclide migration at the Nevada Test Site

    SciTech Connect

    Nimz, G.J. ); Thompson, J.L. )

    1992-06-22

    This document reviews results from a number of studies concerning underground migration of radionuclides from nuclear test cavities at the Nevada Test Site (NTS). Discussed are all cases known to the Department of Energy's Hydrology and Radionuclide Migration Program where radionuclides have been detected outside of the immediate vicinity of nuclear test cavities that are identifiable as the-source of the nuclides, as well as cases where radionuclides might have been expected and were intentionally sought but not fixed. There are nine locations where source-identifiable radionuclide migration has been detected, one where migration was purposely induced by pumping, and three where migration might be expected but was not found. In five of the nine cases of non-induced migration, the inferred migration mechanism is prompt fracture injection during detonation. In the other four cases, the inferred migration mechanism is water movement. In only a few of the reviewed cases can the actual migration mechanism be stated with confidence, and the attempt has been made to indicate the level of confidence for each case. References are cited where more information may be obtained. As an aid to future study, this document concludes with a brief discussion of the aspects of radionuclide migration that, as the present review indicates, are not yet understood. A course of action is suggested that would produce a better understanding of the phenomenon of radionuclide migration.

  2. Preliminary gravity investigations of the Wahmonie Site, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Ponce, D.A.

    1981-12-31

    A gravity survey of the southwest corner of the Nevada Test Site was completed during 1979 to 1980 as part of an effort to characterize a possible radioactive waste storage site in granitic rocks. The survey outlined a large, broad, and flat gravity high centered near Wahmonie Site. Combined geophysical data indicate that the anomalous area is underlain by a dense, magnetic, and possibly intrusive body. Gravity data show a +15 milligal Bouguer anomaly coincident with a large positive aeromagnetic anomaly. The data reveal a prominent fault at the west edge of the inferred intrusive. Both gravity and magnetic anomalous highs extend NNE over a horst composed predominantly of rhyodacite of the Tertiary Salyer Formation. Local aeromagnetic highs are closely associated with two granodiorite exposures on the eastern edge of the horst. A local gravity high of about +2 milligal is centered directly over the southern granodiorite exposure and another high is centered over the northern exposure. A steep gravity gradient outlining the gravity high coincides with the outer edge of a zone of hydrothermal alteration which surrounds the horst. The gravity gradient probably marks the approximate limit of an intrusive body.

  3. Classification of groundwater at the Nevada Test Site

    SciTech Connect

    Chapman, J.B.

    1994-08-01

    Groundwater occurring at the Nevada Test Site (NTS) has been classified according to the ``Guidelines for Ground-Water Classification Under the US Environmental Protection Agency (EPA) Ground-Water Protection Strategy`` (June 1988). All of the groundwater units at the NTS are Class II, groundwater currently (IIA) or potentially (IIB) a source of drinking water. The Classification Review Area (CRA) for the NTS is defined as the standard two-mile distance from the facility boundary recommended by EPA. The possibility of expanding the CRA was evaluated, but the two-mile distance encompasses the area expected to be impacted by contaminant transport during a 10-year period (EPA,s suggested limit), should a release occur. The CRA is very large as a consequence of the large size of the NTS and the decision to classify the entire site, not individual areas of activity. Because most activities are located many miles hydraulically upgradient of the NTS boundary, the CRA generally provides much more than the usual two-mile buffer required by EPA. The CRA is considered sufficiently large to allow confident determination of the use and value of groundwater and identification of potentially affected users. The size and complex hydrogeology of the NTS are inconsistent with the EPA guideline assumption of a high degree of hydrologic interconnection throughout the review area. To more realistically depict the site hydrogeology, the CRA is subdivided into eight groundwater units. Two main aquifer systems are recognized: the lower carbonate aquifer system and the Cenozoic aquifer system (consisting of aquifers in Quaternary valley fill and Tertiary volcanics). These aquifer systems are further divided geographically based on the location of low permeability boundaries.

  4. Development of Onsite Transportation Safety Documents for Nevada Test Site

    SciTech Connect

    Frank Hand, Willard Thomas, Frank Sciacca, Manny Negrete, Susan Kelley

    2008-05-08

    Department of Energy (DOE) Orders require each DOE site to develop onsite transportation safety documents (OTSDs). The Nevada Test Site approach divided all onsite transfers into two groups with each group covered by a standalone OTSD identified as Non-Nuclear and Nuclear. The Non-Nuclear transfers involve all radioactive hazardous material in less than Hazard Category (HC)-3 quantities and all chemically hazardous materials. The Nuclear transfers involve all radioactive material equal to or greater than HC-3 quantities and radioactive material mated with high explosives regardless of quantity. Both OTSDs comply with DOE O 460.1B requirements. The Nuclear OTSD also complies with DOE O 461.1A requirements and includes a DOE-STD-3009 approach to hazard analysis (HA) and accident analysis as needed. All Nuclear OTSD proposed transfers were determined to be non-equivalent and a methodology was developed to determine if “equivalent safety” to a fully compliant Department of Transportation (DOT) transfer was achieved. For each HA scenario, three hypothetical transfers were evaluated: a DOT-compliant, uncontrolled, and controlled transfer. Equivalent safety is demonstrated when the risk level for each controlled transfer is equal to or less than the corresponding DOT-compliant transfer risk level. In this comparison the typical DOE-STD-3009 risk matrix was modified to reflect transportation requirements. Design basis conditions (DBCs) were developed for each non-equivalent transfer. Initial DBCs were based solely upon the amount of material present. Route-, transfer-, and site-specific conditions were evaluated and the initial DBCs revised as needed. Final DBCs were evaluated for each transfer’s packaging and its contents.

  5. Integrated Geophysical Analysis at a Legacy Test Site

    NASA Astrophysics Data System (ADS)

    Yang, X.; Mellors, R. J.; Sweeney, J. J.; Sussman, A. J.

    2015-12-01

    We integrate magnetic, electromagnetic (EM), gravity, and seismic data to develop a unified and consistent model of the subsurface at the U20ak site on Pahute Mesa at the Nevada National Nuclear Security Site (NNSS). The 1985 test, conducted in tuff at a depth of approximately 600 m did not collapse to the surface or produce a crater. The purpose of the geophysical measurements is to characterize the subsurface above and around the presumed explosion cavity. The magnetic data are used to locate steel borehole casings and pipes and are correlated with surface observations. The EM data show variation in lithology at depth and clear signatures from borehole casings and surface cables. The gravity survey detects a clear gravity low in the area of the explosion. The seismic data indicates shallow low velocity zone and indications of a deeper low velocity zones. In this study, we conduct 2D inversion of EM data for better characterization of site geology and use a common 3D density model to jointly interpret both the seismic and gravity data along with constraints on lithology boundaries from the EM. The integration of disparate geophysical datasets allows improved understanding of the non-prompt physical signatures of an underground nuclear explosion (UNE). LLNL Release Number: LLNL-ABS-675677. The authors express their gratitude to the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, and the Comprehensive Inspection Technologies and UNESE working group, a multi-institutional and interdisciplinary group of scientists and engineers. This work was performed by Lawrence Livermore National Laboratory and Los Alamos National Laboratory under award number DE-AC52-06NA25946.

  6. Coda Spectral Peaking for Nevada Nuclear Test Site Explosions

    SciTech Connect

    Murphy, K R; Mayeda, K; Walter, W R

    2007-09-10

    We have applied the regional S-wave coda calibration technique of Mayeda et al. (2003) to earthquake data in and around the Nevada Test Site (NTS) using 4 regional broadband stations from the LLNL seismic network. We applied the same path and site corrections to tamped nuclear explosion data and averaged the source spectra over the four stations. Narrowband coda amplitudes from the spectra were then regressed against inferred yield based on the regional m{sub b}(Pn) magnitude of Denny et al. (1987), along with the yield formulation of Vergino and Mensing (1990). We find the following: (1) The coda-derived spectra show a peak which is dependent upon emplacement depth, not event size; (2) Source size estimates are stable for the coda and show a dependence upon the near-source strength and gas porosity; (3) For explosions with the same m{sub b}(Pn) or inferred yield, those in weaker material have lower coda amplitudes at 1-3 Hz.

  7. 1997 annual site environmental report, Tonopah Test Range, Nevada

    SciTech Connect

    Culp, Todd; Duncan, Dianne; Forston, William; Sanchez, Rebecca

    1998-08-01

    Sandia National Laboratories (SNL) operates the Tonopah Test Range for the Department of Energy's (DOE) Weapons Ordnance Program. Thes annual report (calendar year 1997) summarizes the compliance status to environmental regulations applicable at the site including those statutes that govern air and water quality, waste management, cleanup of contaminated areas, control of toxic substances, and adherence to requirements as related to the National Environmental Policy Act. In compliance with DOE orders, SNL also conducts environmental surveillance for radiological and nonradiological contaminants. SNL's responsibility for environmental surveillance extends only to those activities performed by SNL or under its direction. Annual radiological and nonradiological routine releases and unplanned releases (occurrences) are also summarized. This report has been prepared as required by DOE Order 5400.1, General Environmental Protection Program.

  8. 1996 Site environmental report Tonopah test range Tonopah, Nevada

    SciTech Connect

    Culp, T.; Forston, W.; Duncan, D.; Sanchez, R.

    1997-08-01

    Sandia National Laboratories (SNL) operates the Tonopah Test Range (TTR) for the Department of Energy`s (DOE) Weapons Ordnance Program. This annual report (calendar year 1996) summarizes the compliance status to environmental regulations applicable at the site including those statutes that govern air and water quality, waste management, clean-up of contaminated areas, control of toxic substances, and adherence to requirements as related to the National Environmental Policy Act (NEPA). In compliance with DOE Orders, SNL also conducts environmental surveillance for radiological and nonradiological contaminants. SNL`s responsibility for environmentals surveillance for radiological and nonradiological contaminants. SNL`s responsibility for environmental surveillance extends only to those activities performed by SNL or under its direction. Annual radiological and nonradiological routine releases and unplanned releases (occurrences) are also summarized herein.

  9. 1998 Annual Site Environmental Report Tonopah Test Range, Nevada

    SciTech Connect

    Duncan, D.K.; Fink, C.H.; Sanchez, R.V.

    1999-09-01

    Sandia National Laboratories (SNL) operates the Tonopah Test Range (TTR) for the Department of Energy (DOE) Weapons Ordnance Program. This annual report (calendar year 1998) summarizes the compliance status to environmental regulations applicable at the site including those statutes that govern air and water quality, waste management cleanup of contaminated areas, control of toxic substances, and adherence to requirements as related to the National Environmental Policy Act (NEPA). In compliance with DOE orders, SNL also conducts environmental surveillance for radiological and nonradiological contaminants. SNL's responsibility for environmental surveillance at TTR extends only to those areas where SNL activities are carried out. Annual radiological and nonradiological routine releases and unplanned releases (occurrences) are also summarized. This report has been prepared in accordance with DOE Order 5400.1, General Environmental Protection Program (DOE 1990a).

  10. Nevada Test Site waste acceptance criteria [Revision 1

    SciTech Connect

    1997-08-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  11. Biodiversity Analysis of Vegetation on the Nevada Test Site

    SciTech Connect

    W. K. Ostler; D. J. Hansen

    2001-06-01

    The Nevada Test Site (NTS) located in south central Nevada encompasses approximately 3,561 square kilometers and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996-1998, more than 1,500 ecological landform units were sampled at the NTS for numerous biotic and abiotic parameters. These data provide a basis for spatial evaluations of biodiversity over landscape scales at the NTS. Species diversity maps (species richness vs. species abundance) have been produced. Differences in ecosystem diversity at the ecoregion, alliance, association, and ecological landform unit levels are presented. Spatial distribution maps of species presence and abundance provide evidence of where transition zones occur and the resulting impact on biodiversity. The influences of abiotic factors (elevation, soil, precipitation) and anthropogenic disturbance on biodiversity are assessed.

  12. Biodiversity analysis of vegetation on the Nevada Test Site

    SciTech Connect

    W. K. Ostler; D. J. Hansen

    2000-06-30

    The Nevada Test Site (NTS), located in south-central Nevada, encompasses approximately 3,500 square kilometers and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996 to 1998, more than 1,500 ecological landform units were sampled at the NTS for numerous biotic and abiotic parameters. The data provide a basis for spatial evaluations of biodiversity over landscape scales at the NTS. Biodiversity maps (species richness vs. species abundance) have been produced. Differences in biodiversity among ecoregions and vegetation alliances are presented. Spatial distribution maps of species' presence and abundance provide evidence of where transition zones occur and the resulting impact on biodiversity. The influences of abiotic factors, such as elevation, soil, and precipitation, on biodiversity are assessed.

  13. Nevada Test Site Experimental Farm: summary report 1963-1981

    SciTech Connect

    Black, S.C.; Smith, D.D.

    1984-08-01

    This report summarizes the findings from experiments conducted at the Experimental Dairy Farm located on the Nevada Test Site. These experiments included the air-forage-cow-milk transport of the radioiodines, and the metabolism and milk transfer of other fission products and several actinides. Major studies are listed in chronological order from 1964 to 1978 and include the purpose, procedures, isotopes used, and findings for each such study. Animal exposures occurred from fallout, from artificial aerosol generation, and from oral or intravenous administration. A complete bibliography and references to published reports of the experiments are included. The findings from the radioisotope studies at the Experimental Dairy Farm and the results obtained from the Animal Investigation Program provide a rationale for making predictions and for planning protective actions that could be useful in emergency response to accidental contaminating events where fresh fission products are involved. 61 references.

  14. Relative abundance of desert tortoises on the Nevada Test Site

    SciTech Connect

    Rautenstrauch, K.R.; O`Farrell, T.P.

    1993-12-31

    Seven hundred fifty-nine transects having a total length of 1,191 km were walked during 1981--1986 to determine the distribution and relative abundance of desert tortoises (Gopherus agassizii) on the Nevada Test Site (NTS). The abundance of tortoises on NTS was low to very low relative to other populations in the Mojave Desert. Sign of tortoises was found from 880 to 1,570 m elevation and was more abundant above 1,200 m than has been reported previously for Nevada. Tortoises were more abundant on NTS on the upper alluvial fans and slopes of mountains than in valley bottoms. They also were more common on or near limestone and dolomite mountains than on mountains of volcanic origin.

  15. Nevada Test Site annual site environmental report for calendar year 1998

    SciTech Connect

    Black, S.C.; Townsend, Y.E.

    1999-10-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring Programs conducted by the US Environmental Protection Agency's (EPA) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this tenth combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations.

  16. Nevada Test Site Annual Site Environmental Report for Calendar Year - 1999

    SciTech Connect

    Townsend, Y.E.; Grossman, R.F.

    2000-10-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the U.S. Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring programs conducted by the U.S. Environmental Protection Agency's (EPA's) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this eleventh combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations.

  17. Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2007-06-01

    Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): {sm_bullet} CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536 Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure

  18. Radiological effluents released from nuclear rocket and ramjet engine tests at the Nevada Test Site 1959 through 1969: Fact Book

    SciTech Connect

    Friesen, H.N.

    1995-06-01

    Nuclear rocket and ramjet engine tests were conducted on the Nevada Test Site (NTS) in Area 25 and Area 26, about 80 miles northwest of Las Vegas, Nevada, from July 1959 through September 1969. This document presents a brief history of the nuclear rocket engine tests, information on the off-site radiological monitoring, and descriptions of the tests.

  19. Initial basalt target site selection evaluation for the Mars penetrator drop test

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Quaide, W. L.; Polkowski, G.

    1976-01-01

    Potential basalt target sites for an air drop penetrator test were described and the criteria involved in site selection were discussed. A summary of the background field geology and recommendations for optimum sites are also presented.

  20. Land surface cleanup of plutonium at the Nevada Test Site

    SciTech Connect

    Ebeling, L.L.; Evans, R.B.; Walsh, E.J.

    1991-01-01

    The Nevada Test Site (NTS) covers approximately 3300 km{sup 2} of high desert and is located approximately 100 km northwest of Las Vegas, Nevada. Soil contaminated by plutonium exists on the NTS and surrounding areas from safety tests conducted in the 1950s and 1960s. About 150 curies of contamination have been measured over 1200 hectares of land surface. Most contamination is found in the top 5 cm of soil but may be found deep as 25 cm. The cost of conventional removal and disposal of the full soil volume has been estimated at over $500,000,000. This study is directed toward minimizing the volume of waste which must be further processed and disposed of by precisely controlling soil removal depth. The following soil removal machines were demonstrated at the NTS: (1) a CMI Corporation Model PR-500FL pavement profiler, (2) a CMI Corporation Model Tr-225B trimmer reclaimer, (3) a Caterpillar Model 623 elevating scraper equipped with laser depth control, (4) a Caterpillar Model 14G motor grader equipped with laser depth control, (5) a Caterpillar Model 637 auger scraper, and (6) a XCR Series Guzzler vacuum truck. 5 refs., 5 figs.

  1. Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Williams, Jackie M.; Wallin, Erin L.; Rodriguez, Brian D.; Lindsey, Charles R.; Sampson, Jay A.

    2007-01-01

    Introduction The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-Tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research. In early 2005 we extended that research with 26 additional MT data stations, located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in northern Yucca Flat basin. That work was done to better determine the extent and thickness of the UCCU near

  2. Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada.

    SciTech Connect

    Jackie M. Williams; Erin L. Wallin; Brian D. Rodriguez; Charles R. Lindsay; and Jay A. Sampson

    2007-08-15

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU) (Bechtel Nevada, 2006). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006), located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in

  3. Closure Report for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2008-09-01

    Corrective Action Unit (CAU) 121 is identified in the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008) as Storage Tanks and Miscellaneous Sites. CAU 121 consists of the following three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 12-01-01, Aboveground Storage Tank; (2) CAS 12-01-02, Aboveground Storage Tank; and (3) CAS 12-22-26, Drums; 2 AST's. CAU 121 closure activities were conducted according to the FFACO and the Streamlined Approach for Environmental Restoration Plan for CAU 121 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007). Field work took place from February through September 2008. Samples were collected to determine the path forward to close each site. Closure activities were completed as defined in the plan based on sample analytical results and site conditions. No contaminants of concern (COCs) were present at CAS 12-01-01; therefore, no further action was chosen as the corrective action alternative. As a best management practice (BMP), the empty aboveground storage tank (AST) was removed and disposed as sanitary waste. At CAS 12-01-02, polychlorinated biphenyls (PCBs) were present above the preliminary action level (PAL) in the soil beneath the AST that could possibly have originated from the AST contents. Therefore, PCBs were considered COCs, and the site was clean closed by excavating and disposing of soil containing PCBs. Approximately 5 cubic yards (yd{sup 3}) of soil were excavated and disposed as petroleum hydrocarbon PCB remediation waste, and approximately 13 yd3 of soil were excavated and disposed as PCB remediation waste. Cleanup samples were collected to confirm that the remaining soil did not contain PCBs above the PAL. Other compounds detected in the soil above PALs (i.e., total petroleum hydrocarbons [TPH] and semi-volatile organic compounds [SVOCs]) were

  4. Hydrogeology and results of injection tests at waste-injection test sites in Pinellas County, Florida

    USGS Publications Warehouse

    Hickey, John J.

    1982-01-01

    Potential benefits or hazards to freshwater resources could result from subsurface injection of treated wastewater. Recognizing this, the U.S. Geological Survey, in cooperation with Pinellas County and the city of St. Petersburg, undertook an evaluation of the hydrogeology and injection of wastewater at proposed test sites on the Pinellas peninsula. The injection sites are underlain by sedimentary rocks ranging in age from Cretaceous to Pleistocene. Lower Eocene carbonate rocks were penetrated to a maximum depth of 3,504 feet and were found to have relatively low water yields. The most permeable part of the investigated section was in rocks of middle Eocene age within the Floridan aquifer. At the injection sites, the Floridan aquifer was subdivided into four permeable zones and three semiconfining beds. The test injection zone is within the Avon Park Limestone, the most productive of the identified permeable zones, with a transmissivity of about 1,000,000 feet squared per day. Two semiconfining beds are above the injection zone in the Suwannee Limestone and Ocala Limestone and have vertical hydraulic conductivities estimated to range from about 0.1 to 1 foot per day where these beds do not contain clay. Limited fresh ground-water supplies exist in the Floridan aquifer within the Pinellas peninsula. At all test sites, chloride concentration in the injection zone ranged from 19,000 to 20,000 milligrams per liter. Injection tests ranging in duration from 3 to 91.1 days were run at three different sites. Pressure buildup occurred in permeable zones above and below the injection zone during these tests. Calculated pressure buildup in observation wells close to and at some distance from the test wells was typically less than 1 pound per square inch. Injection and formation water will probably move slowly through the semiconfining bed overlying the injection zone, and long-term injection tests will be needed to determine the effectiveness of these beds to retard flow. The

  5. In situ geomechanics: Climax granite, Nevada Test Site

    SciTech Connect

    Heuze, F.E.; Patrick, W.C.; De la Cruz, R.V.; Voss, C.F.

    1981-04-01

    The in situ modulus of the Climax granite in the Spent Fuel Test (SFT-C) area of the Nevada Test Site was estimated using six different approaches. Our best estimate of field modulus as E/sub f/ = 26 GPa was obtained from a comparison of the various approaches. A best estimate of laboratory modulus acquired by comparing three different sources was E/sub l/ = 70 GPa. Therefore, the modulus reduction factor for the Climax granite appears to be E/sub f//E/sub l/ = 0.37. In turn, our estimate of in situ rock-mass deformability was used to back-calculate in situ values for the normal stiffness of the granite joints. Our analysis of former stress measurements by the US Geological Survey (USGS) shows that the horizontal stresses in the vicinity of SFT-C vary greatly with azimuth. An unexplained feature of the stresses at SFT-C is the fact that the vertical stress appears to be only 65 to 75% of the calculated lithostatic burden. From the three-dimensional stress ellipsoid at mid-length in the tunnels, assuming a plane strain condition, we were able to estimate an in situ Poisson`s ratio of the rock mass as {nu} = 0.246. Two other techniques were applied in an attempt to measure the stresses around the SFT-C heater and canister drifts: the undercoring method and the borehole jack fracturing approach. The former technique appears to have given reasonable estimates of tangential stresses in the roof of the heater drifts; the latter appears to give low results for stresses in the pillars. Specific recommendations are made for future tests to further characterize the mechanical properties of the Climax granite and the in situ stresses at SFT-C.

  6. Preoperational test report, cross-site transfer system integrated test (POTR-007)

    SciTech Connect

    Pacquet, E.A.

    1998-04-02

    This report documents the results obtained during the performance of Preoperational Test POTP-007, from December 12, 1997 to March 27, 1998. The main objectives were to demonstrate the operation of the following Cross-Site Transfer System components: Booster pumps P-3125A and P-3125B interlocks and controls, both local and remote; Booster pump P-3125A and P-3125B and associated variable speed drives VSD-1 and VSD-2 performance in both manual and automatic modes; and Water filling, circulation, venting and draining of the transfer headers (supernate and slurry line). As described in reference 1, the following components of the Cross-Site Transfer System that would normally be used during an actual waste transfer, are not used in this specific test: Water Flush System; Valving and instrumentation associated with the 241-SY-A valve pit jumpers; and Valving and instrumentation associated with the 244-A lift station.

  7. Nevada Test Site 2007 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect

    NSTec Environmental Management

    2008-01-01

    This report is a compilation of the groundwater sampling results from three monitoring wells located near the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), Nye County, Nevada, for calendar year 2007. The NTS is an approximately 3,561 square kilometer (1,375 square mile) restricted-access federal installation located approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada (Figure 1). Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 are used to monitor the groundwater at the Area 5 RWMS (Figure 2). In addition to groundwater monitoring results, this report includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 RWMS. The disposal of low-level radioactive waste and mixed low-level radioactive waste at the Area 5 RWMS is regulated by U.S. Department of Energy (DOE) Order 435.1, 'Radioactive Waste Management'. The disposal of mixed low-level radioactive waste is also regulated by the state of Nevada under the Resource Conservation and Recovery Act (RCRA) regulation Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities' (CFR, 1999). The format of this report was requested by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 12, 1997. The appearance and arrangement of this document have been modified slightly since that date to provide additional information and to facilitate the readability of the document. The objective of this report is to satisfy any Area 5 RWMS reporting agreements between DOE and NDEP.

  8. Testing the FOCUS model PEARL in an Italian site

    NASA Astrophysics Data System (ADS)

    Bouraoui, F.; Bidoglio, G.

    2003-04-01

    Pesticides are integral part of the modern agricultural production system . The use of pesticide has soared during the post war period, and now the consumption of pesticide has been reducing in Europe. However, the reduction is difficult to attribute to one specific factor since the application of pesticide is highly variable and linked to climatic, out-breaks of diseases, etc. Furthermore, new molecules are being produced which are more efficient and require a lower dosage. In the EU, the placing on the market of Plant Protection Products (PPP) is regulated at the Community Level by the Council Directive (91/414/EEC). The PPP stresses the need of validated models to calculate predicted environmental concentrations. In this context, European Commission set up a FOrum for the Co-ordination of pesticide fate models and their USe (FOCUS). In a complementary effort, DG research supported the APECOP project with one major objective being the validation and improvement of existing pesticide fate models. The research presented here focuses on the validation of the PEARL model in an Italian site. The PEARL model, which is one of the FOCUS model, is actually used in the Dutch pesticide registration procedure. The test site is located near Bologna (Italy). The 35 months long experiment was conducted on a 107m by 28m plot with a loamy soil for . The experiment involved the application of KBr as a tracer and two applications of ethoprophos and three applications of Aclonifen. A sequential approach was used for the Bologna site. During this exercise only the measured soil physical parameters were used. The simulation with the PEARL model yielded negative values for both soil moisture profile and pesticide content. In a second step, the water transport module was calibrated, using measured soil moisture profile. This improved greatly the prediction of the soil water balance. Information relative to pesticide degradation and sorption where then included. This allowed a good

  9. Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site

    SciTech Connect

    Murphy, R.W.; Domingo, N.

    1982-05-01

    Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote some relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.

  10. Particle-Size-Distribution of Nevada Test Site Soils

    SciTech Connect

    Spriggs, G; Ray-Maitra, A

    2007-09-17

    The amount of each size particle in a given soil is called the particle-size distribution (PSD), and the way it feels to the touch is called the soil texture. Sand, silt, and clay are the three particle sizes of mineral material found in soils. Sand is the largest sized particle and it feels gritty; silt is medium sized and it feels floury; and clay is the smallest and if feels sticky. Knowing the particle-size distribution of a soil sample helps to understand many soil properties such as how much water, heat, and nutrients the soil will hold, how fast water and heat will move through the soil, and what kind of structure, bulk density and consistence the soil will have. Furthermore, the native particle-size distribution of the soil in the vicinity of ground zero of a nuclear detonation plays a major role in nuclear fallout. For soils that have a high-sand content, the near-range fallout will be relatively high and the far-range fallout will be relatively light. Whereas, for soils that have a high-silt and high-clay content, the near-range fallout will be significantly lower and the far-range fallout will be significantly higher. As part of a program funded by the Defense Threat Reduction Agency (DTRA), the Lawrence Livermore National Laboratory (LLNL) has recently measured the PSDs from the various major areas at the Nevada Test Site where atmospheric detonations and/or nuclear weapon safety tests were performed back in the 50s and 60s. The purpose of this report is to document those results.

  11. Transuranic (TRU) Waste Repackaging at the Nevada Test Site

    SciTech Connect

    E.F. Di Sanza; G. Pyles; J. Ciucci; P. Arnold

    2009-03-01

    This paper describes the activities required to modify a facility and the process of characterizing, repackaging, and preparing for shipment the Nevada Test Site’s (NTS) legacy transuranic (TRU) waste in 58 oversize boxes (OSB). The waste, generated at other U.S. Department of Energy (DOE) sites and shipped to the NTS between 1974 and 1990, requires size-reduction for off-site shipment and disposal. The waste processing approach was tailored to reduce the volume of TRU waste by employing decontamination and non-destructive assay. As a result, the low-level waste (LLW) generated by this process was packaged, with minimal size reduction, in large sea-land containers for disposal at the NTS Area 5 Radioactive Waste Management Complex (RWMC). The remaining TRU waste was repackaged and sent to the Idaho National Laboratory Consolidation Site for additional characterization in preparation for disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The DOE National Nuclear Security Administration Nevada Site Office and the NTS Management and Operating (M&O) contractor, NSTec, successfully partnered to modify and upgrade an existing facility, the Visual Examination and Repackaging Building (VERB). The VERB modifications, including a new ventilation system and modified containment structure, required an approved Preliminary Documented Safety Analysis prior to project procurement and construction. Upgrade of the VERB from a radiological facility to a Hazard Category 3 Nuclear Facility required new rigor in the design and construction areas and was executed on an aggressive schedule. The facility Documented Safety Analysis required that OSBs be vented prior to introduction into the VERB. Box venting was safely completed after developing and implementing two types of custom venting systems for the heavy gauge box construction. A remotely operated punching process was used on boxes with wall thickness of up to 3.05 mm (0.120 in) to insert aluminum

  12. Technical safety appraisal of the Nevada Test Site

    SciTech Connect

    1990-12-01

    This report presents the results of one of a series of Technical Safety Appraisals (TSAs) being conducted of Department of Energy (DOE) operations (nuclear and non-nuclear) by the Assistant Secretary of Environment, Safety and Health (ES&H), Office of Safety Appraisals. These TSAs are one of the initiatives announced by the Secretary of Energy on September 18, 1985, to enhance the DOE`s environment, safety, and health program. This TSA report focuses on the safety and health operations of the Nevada Operations Office (NV) at the Nevada Test Site (NTS), which was conducted concurrently, with and supporting a Tiger Team Assessment. The total effort of all the Tiger Team assessment, including environmental and manager evaluations, is reported in the Tiger Team Report, issued January 1990. The assessment of the NTS began November 5, 1989 with the briefing of the Tiger Team in Las Vegas at the Nevada Operations Office. The TSA team evaluation was conducted November 6--17, and November 26--December 1, 1989 at the NTS.

  13. Superposed fold-thrust events at the Nevada Test Site

    USGS Publications Warehouse

    Cashman, Patricia H.; Cole, James C.; Trexler, James H.

    2000-01-01

    The Nevada Test Site (NTS), in southern Nye County, Nevada, straddles significant pre-Tertiary structural and stratigraphic boundaries. Detailed stratigraphy and biostratigraphy of the Upper Paleozoic section delineates the regional trust sheets and constrains their burial histories. The Paleozoic rocks record three phases of contractional deformation, overprinted by strike-slip faulting. These occured in the folloing order: (1) foreland-vergant folding and imbricate thrusting in the footwall of the Belted Range thrust; (2) hinterland-vergent folding and thrusting; and (3) north-vergant folding that we interpret as footwall deformation below a third major thrust system. Sinistral slip, typically accompanied by minor east-west shortening, has occured along a series of north-northeast--north-northwest--striking faults around Yucca Flat. This strike-slip faulting postdates both foreland-vergent and hinterland-vergent deformation, and predates the Cretaceous Climax stock; its age relative to the north-vergent folding and thrusting is unknown. Our new understanding of the geometry of these structures provides new insights into the correlation and interpretation of regional structural features. Field trip stops will examine: (1) the stratigraphic differences that allow us to distinguish the regional thrust sheets and constrain their burial histories; and (2) the field relationships that document the kinematics and relative ages of the penetrative deformational events.

  14. Construction site Voice Operated Information System (VOIS) test

    NASA Astrophysics Data System (ADS)

    Lawrence, Debbie J.; Hettchen, William

    1991-01-01

    The Voice Activated Information System (VAIS), developed by USACERL, allows inspectors to verbally log on-site inspection reports on a hand held tape recorder. The tape is later processed by the VAIS, which enters the information into the system's database and produces a written report. The Voice Operated Information System (VOIS), developed by USACERL and Automated Sciences Group, through a ESACERL cooperative research and development agreement (CRDA), is an improved voice recognition system based on the concepts and function of the VAIS. To determine the applicability of the VOIS to Corps of Engineers construction projects, Technology Transfer Test Bad (T3B) funds were provided to the Corps of Engineers National Security Agency (NSA) Area Office (Fort Meade) to procure and implement the VOIS, and to train personnel in its use. This report summarizes the NSA application of the VOIS to quality assurance inspection of radio frequency shielding and to progress payment logs, and concludes that the VOIS is an easily implemented system that can offer improvements when applied to repetitive inspection procedures. Use of VOIS can save time during inspection, improve documentation storage, and provide flexible retrieval of stored information.

  15. Recent Solar Measurements Results at the Parabolic Dish Test Site

    NASA Technical Reports Server (NTRS)

    Ross, D. L.

    1984-01-01

    After the Mexican volcanic eruptions of March 28, April 3 and 4, 1982, the question of its effect on insolation levels at the Parabolic Dish Test Site (PDTS) naturally arose. Clearly, the answer to the original question is that the Mexican volcanic explosion had a significant impact on energy and insolation levels at the PDTS and, furthermore, it has been quite long lasting. The first really significant decrease in energy and insolation levels occurred in June 1982 when the energy level decreased by 19.7% while the peak insolation levels went down by 4.0%. June of 1982 was also the first month (of 13 consecutive months) when peak insolation levels did not equal or exceed 1,000 W/sq m. Signs of a recovery from the effects of the volcanic explosion began to appear in May of 1983, when the energy level exceeded that of May 1981 as well as May 1982. It would appear that energy and insolation levels are improving at the PDTS, but have not quite reached normal or pre-volcanic levels. At this time the data would seem to suggest a return to normal energy and insolation levels will occur in the very near future.

  16. Recharge from a subsidence crater at the Nevada test site

    USGS Publications Warehouse

    Wilson, G. V.; Ely, D.M.; Hokett, S. L.; Gillespie, D. R.

    2000-01-01

    Current recharge through the alluvial fans of the Nevada Test Site (NTS) is considered to be negligible, but the impact of more than 400 nuclear subsidence craters on recharge is uncertain. Many of the craters contain a playa region, but the impact of these playas has not been addressed. It was hypothesized that a crater playa would focus infiltration through the surrounding coarser-grained material, thereby increasing recharge. Crater U5a was selected because it represented a worst case for runoff into craters. A borehole was instrumented for neutron logging beneath the playa center and immediately outside the crater. Physical and hydraulic properties were measured along a transect in the crater and outside the crater. Particle-size analysis of the 14.6 m of sediment in the crater and morphological features of the crater suggest that a large ponding event of ≈63000 m3 had occurred since crater formation. Water flow simulations with HYDRUS-2D, which were corroborated by the measured water contents, suggest that the wetting front advanced initially by as much as 30 m yr−1 with a recharge rate 32 yr after the event of 2.5 m yr−1Simulations based on the measured properties of the sediments suggest that infiltration will occur preferentially around the playa perimeter. However, these sediments were shown to effectively restrict future recharge by storing water until removal by evapotranspiration (ET). This work demonstrated that subsidence craters may be self-healing.

  17. The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site

    SciTech Connect

    Ray, J.M.; Newsom, J.C.

    1994-12-01

    The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from seven holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain.

  18. The Field Lysimeter Test Facility (FLTF) at the Hanford Site: Installation and initial tests

    SciTech Connect

    Gee, G.W.; Kirkham, R.R.; Downs, J.L.; Campbell, M.D.

    1989-02-01

    The objectives of this program are to test barrier design concepts and to demonstrate a barrier design that meets established performance criteria for use in isolating wastes disposed of near-surface at the Hanford Site. Specifically, the program is designed to assess how well the barriers perform in controlling biointrusion, water infiltration, and erosion, as well as evaluating interactions between environmental variables and design factors of the barriers. To assess barrier performance and design with respect to infiltration control, field lysimeters and small- and large-scale field plots are planned to test the performance of specific barrier designs under actual and modified (enhanced precipitation) climatic conditions. The Field Lysimeter Test Facility (FLTF) is located in the 600 Area of the Hanford Site just east of the 200 West Area and adjacent to the Hanford Meteorological Station. The FLTF data will be used to assess the effectiveness of selected protective barrier configurations in controlling water infiltration. The facility consists of 14 drainage lysimeters (2 m dia x 3 m deep) and four precision weighing lysimeters (1.5 m x 1.5 m x 1.7 m deep). The lysimeters are buried at grade and aligned in a parallel configuration, with nine lysimeters on each side of an underground instrument chamber. The lysimeters were filled with materials to simulate a multilayer protective barrier system. Data gathered from the FLTF will be used to compare key barrier components and to calibrate and test models for predicting long-term barrier performance.

  19. Integrated Mapping and Imaging at a Legacy Test Site (Invited)

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Schultz-Fellenz, E. S.; Kelley, R. E.; Sweeney, J. J.; Vigil, S.; DiBenedetto, J.; Chipman, V.

    2013-12-01

    A team of multi-disciplinary geoscientists was tasked to characterize and evaluate a legacy nuclear detonation site in order to develop research locations with the long-term goal of improving treaty monitoring, verification, and other national security applications. There was a test at the site of interest that was detonated on June 12, 1985 in a vertical emplacement borehole at a depth of 608m below the surface in rhyolites. With announced yield of 20-150 kt, the event did not collapse to the surface and form a crater, but rather experienced a subsurface collapse with more subtle surface expressions of deformation. This result provides the team with an opportunity to evaluate a number of surface and subsurface inspection technologies in a broad context. The team collected ground-based visual observation, ground penetrating radar, electromagnetic, ground-based and airborne LiDAR, ground-based and airborne hyperspectral, gravity and magnetics, dc and induction electrical methods, and active seismic data during field campaigns in the summers of 2012 and 2013. Detection of features was performed using various approaches that were assessed for accuracy, efficiency and diversity of target features. For example, whereas the primary target of the ground-based visual observation survey was to map the surface features, the target of the gravity survey was to attempt the detection of a possible subsurface collapse zone which might be located as little as 200 meters below the surface. The datasets from surveys described above are integrated into a geographical information system (GIS) database for analysis and visualization. Other presentations during this session provide further details as to some of the work conducted. Work by Los Alamos National Laboratory and Lawrence Livermore National Laboratory was sponsored by the National Nuclear Security Administration Award No. DE-AC52-06NA25946/NST10-NCNS-PD00. Work by National Security Technologies, LLC, was performed under

  20. Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada

    SciTech Connect

    NSTec Environmental Management

    2006-07-01

    Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lack of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries (line

  1. Tsunami Questionnaire Survey in Heraklion Test Site, Crete Island, Greece

    NASA Astrophysics Data System (ADS)

    Papageorgiou, Antonia; Tsimi, Christina; Orfanogiannaki, Katerina; Papadopoulos, Gerassimos; Sachpazi, Maria; Lavigne, Franck; Grancher, Delphine

    2015-04-01

    The Heraklion city (Crete Island, Greece) has been chosen as one of the test-sites for the EU-FP7ASTARTE tsunami project. Heraklion is the biggest city in Crete Isl. and the fourth biggest in Greece with a population of about 120,000 which, however, during the summer vacation period nearly doubles. In the past, Heraklion was hit by strong, destructive tsunamis such as the ones of AD 8 August 1303, 10 October 1650 and 9 July 1956. The first and the third were caused by large tectonic earthquakes associated with the eastern segment of the Hellenic Arc the first and with the back-arc extensional regime the third. The one of 1650 was associated with the eruption of the Columbo submarine volcano in the Santorini volcanic complex. One of the activities scheduled for WP9 of ASTARTE project, which aims at building tsunami resilient societies in Europe, is dedicated to organize questionnaire surveys among the populations of the several ASTARTE test-sites. Although the questionnaire is comprised by more than 50 questions, the central concept is to better understand what people know about tsunamis and if they are ready to cope with risks associated with future tsunami occurrences. In Heraklion the survey was conducted during tourism peak season of July 2014, thus questionnaires were collected by both local people and tourists, thus representing a variety of countries. We attempted to keep balance between males and females, while the age ranged from 15 to 65. Totally, 113 persons were interviewed of which 62 were females and 51 males. From the point of view of origin, 58 out of 113 were local people and residents, 22 were Greek tourists and 29 foreign tourists. Generally, the questionnaire consists of four parts. In the first, people were asked about their relation with the area of Heraklion. In the second part, the questions considered the knowledge that people have on tsunamis as a natural, hazardous phenomenon. More precisely, people were asked questions such as what a

  2. CEOS database of worldwide calibration facilities and validation test sites

    NASA Astrophysics Data System (ADS)

    Butler, James J.; Wanchoo, Lalit; Le, Truong

    2001-02-01

    12 Since 1995, the CEOS Calibration/Validation (Cal/Val) Database has provided the international Earth remote sensing science community with a) a central repository for information on current and planned Calibration/Validation activities and b) a means to foster collaboration on common Cal/Val issues. The Cal/Val Database uses an ORACLE relation database management system to store the data and is accessed via the World Wide Web (WWW) using PERL scripts to search and query the database. The search queries are structured such that users can define any combination of fields, either through selection of valids, or by directly typing the information. All query results are displayed in the text form. The text displays are interactive allowing the user to point and click to access more detailed information. System functionality provides an on-line form of all of the three questionnaires for submitting new information and allows a user with the assigned password to edit archived information for their facility. This functionality allows users to update information, as it becomes available. In 2000, the Cal/Val database was updated through a process of additional surveying of existing and planned Cal/Val capabilities to support the NASA's Earth Science Enterprise (ESE) and other international Earth observing missions. A set of three updated questionnaires was prepared: one for calibration laboratories, one for test sites, and one for field instruments. The information requested included: a description of the facility, instruments available, instrument characteristics, types of measurements performed, programs/projects that have used the facility, etc. These questionnaires with cover letter were mailed to over 250 research groups that included CEOS members and facilities within the USA. The information collected from worldwide facilities was used to construct and update this on-line database for use not only by the CEOS members, but also the broader international Earth

  3. New hydrogeophysical methods examined at the test-site Schillerslage

    NASA Astrophysics Data System (ADS)

    Dlugosch, Raphael; Holland, Raphael; Holzhauer, Julia; Günther, Thomas; Yaramanci, Ugur

    2010-05-01

    Hydrogeophysical methods have proved to yield valuable information to characterise aquifers. However, in order to obtain reliable hydraulic properties such as porosity and hydraulic conductivity (kf), new methods need to be applied and improved. Among them, spectral induced polarisation (SIP) and magnetic resonance sounding (MRS) are promising, since the data are directly related to pore geometry and therefore storage properties. However, they are susceptible to noise and need methodological improvements. These methods are evaluated at the new LIAG test site Schillerslage. The subsurface consists of two shallow quaternary aquifers (1-12m and 16-22m depth) separated by a till layer over cretaceous marls as typical in northern Germany. The subsurface structure was investigated by GPR and seismic surveys as well as drilling and borehole geophysics. Kf and porosity values are obtained by pumping tests to access field scale properties; lab kf measurements and grain size analyses to yield these parameters on a small scale. Laboratory NMR and SIP measurements on core samples can be directly compared to hydrological data. Both methods provide relaxation spectra that are connected to the pore size distribution. With these pore size estimations coarse and fine grained parts of the aquifer can qualitatively be distinguished. For quantification, different approaches for estimating hydraulic conductivity from relaxation times and measured SIP phases are applied. All values are in similar order of the magnitude compared to the directly measured. However, variations of unidentified origin occur too. Field measurements using MRS and SIP soundings have been carried out in the vicinity of the main borehole. Their inversion reveals the expected general layering. However, there is significant ambiguity in the inversion results that can only be diminished by additional information as known layer boundaries. The calculated porosities are 20-30% by SIP and 25-33% by NMR for the upper

  4. Nevada Test Site annual site environmental report for calendar year 1997

    SciTech Connect

    Black, S.C.; Townsend, Y.E.

    1998-10-01

    Monitoring and surveillance, on and around the Nevada Test Site, (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1997, indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above existing background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency`s (EPA`s) Clean Air Package 1988 (CAP88)-PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.089 mrem. Hazardous wastes were shipped offsite to approved disposal facilities.

  5. Nevada test site annual site environmental report for calendar year 1995

    SciTech Connect

    1996-09-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1995 indicated that operations on the NTS were conducted in compliance with applicable federal and DOE regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of effluents, or resuspension was not detectable offsite, and no measurable net exposure to members of the offsite population was detected through the offsite dosimetry program. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits.

  6. Nevada Test Site 2008 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect

    NSTec Environmental Management

    2009-06-23

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2008 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities.

  7. [Study on Tritium Content in Soil at Sites of Nuclear Explosions on the Territory of Semipalatinsk Test Site].

    PubMed

    Timonova, L V; Lyakhova, O N; Lukashenko, S N; Aidarkhanov, A O

    2015-01-01

    As a result of investigations carried out on the territory of Semipalatinsk Test Site, tritium was found in different environmental objects--surface and ground waters, vegetation, air environment, and snow cover. The analysis of the data obtained has shown that contamination of environmental objects at the Semipalatinsk Test Site with tritium is associated with the places where underground nuclear tests were performed. Since tritium can originate from an activation reaction and be trapped by pock particles during a test, it was decided to examine the soil in the sites where surface and excavation tests took place. It was found that the concentration of tritium in soil correlates with the concentration of europium. Probably, the concentration of tritium in the soil depends on the character and yield of the tests performed. Findings of the study have revealed that tritium can be found in soil in significant amounts not only in sites where underground nuclear tests took place but also in sites where surface and excavation nuclear tests were carried out. PMID:26964352

  8. [Study on Tritium Content in Soil at Sites of Nuclear Explosions on the Territory of Semipalatinsk Test Site].

    PubMed

    Timonova, L V; Lyakhova, O N; Lukashenko, S N; Aidarkhanov, A O

    2015-01-01

    As a result of investigations carried out on the territory of Semipalatinsk Test Site, tritium was found in different environmental objects--surface and ground waters, vegetation, air environment, and snow cover. The analysis of the data obtained has shown that contamination of environmental objects at the Semipalatinsk Test Site with tritium is associated with the places where underground nuclear tests were performed. Since tritium can originate from an activation reaction and be trapped by pock particles during a test, it was decided to examine the soil in the sites where surface and excavation tests took place. It was found that the concentration of tritium in soil correlates with the concentration of europium. Probably, the concentration of tritium in the soil depends on the character and yield of the tests performed. Findings of the study have revealed that tritium can be found in soil in significant amounts not only in sites where underground nuclear tests took place but also in sites where surface and excavation nuclear tests were carried out.

  9. Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site

    SciTech Connect

    NSTec Environmental Management

    2007-09-01

    The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure

  10. Space Radar Image of Raco, Michigan, ecological test site

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-band image of seasonal changes at the ecological test site of Raco, Michigan, located south of Whitefish Bay on Lake Superior. The image is centered at about 46 degrees north latitude and 85 degrees west longitude. This image was acquired by the X-band Synthetic Aperture Radar onboard the space shuttle Endeavour on April 10th, 1994, and on October 1, 1994. The areas shown in red correspond to the April 10th data; the areas in blue correspond to data acquired on October 1, 1994; green indicates the ratio of data acquired on April 10 and October 1, 1994. The area shown is 22.7 kilometers by 53 kilometers (14 miles by 33 miles). Lake Superior in the upper right was frozen in April and had small waves (ripples) on its surface in October. The land area contains mostly forests and, to a lesser extent, agricultural regions. In April the area was covered in wet snow. By October, there agricultural areas were covered with grass. Vegetation and soils were moist due to rainfalls three days before the data was acquired on October 1, 1994. The bright light green/yellow tones in the lower half of the image show the stronger reflections of the snow-covered agricultural fields. The pinkish color corresponds to the coniferous and deciduous forests. The green area represents red pines. These trees are smaller than the surrounding forest cover and allow more radar penetration. The area is green because the radar is sensing the surface, which undergoes great change from snow to grass and fern undergrowth between April and October. The bright green triangle in the upper half of the image is an old airstrip, while the modern airport can be seen on the bottom right side of the image. The Raco site is an important location for monitoring seasonal changes and future global change because it is situated at the ecological transition zone between the boreal forests and the northern temperate forests. This transitional zone is expected to be ecologically sensitive to anticipated

  11. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2008-09-30

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (FFACO, 1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (1) CAS 01-23-02, Atmospheric Test Site - High Alt; (2) CAS 02-23-02, Contaminated Areas (2); (3) CAS 02-23-03, Contaminated Berm; (4) CAS 02-23-10, Gourd-Amber Contamination Area; (5) CAS 02-23-11, Sappho Contamination Area; (6) CAS 02-23-12, Scuttle Contamination Area; (7) CAS 03-23-24, Seaweed B Contamination Area; (8) CAS 03-23-27, Adze Contamination Area; (9) CAS 03-23-28, Manzanas Contamination Area; (10) CAS 03-23-29, Truchas-Chamisal Contamination Area; (11) CAS 04-23-02, Atmospheric Test Site T4-a; (12) CAS 05-23-06, Atmospheric Test Site; (13) CAS 09-23-06, Mound of Contaminated Soil; (14) CAS 10-23-04, Atmospheric Test Site M-10; and (15) CAS 18-23-02, U-18d Crater (Sulky). Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107. CAU 107 closure activities will consist of verifying that the current postings required under Title 10 Code of Federal Regulations (CFR) Part 835 are in place and implementing use restrictions (URs) at two sites, CAS 03-23-29 and CAS 18-23-02. The current radiological postings combined with the URs are adequate administrative controls to limit site access and worker dose.

  12. Closure report for housekeeping category, Corrective Action Unit 349, Area 12, Nevada Test Site

    SciTech Connect

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 349 Area 12 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms.

  13. Role of Groundwater Monitoring for Closure of Underground Nuclear Tests on the Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Chapman, J. B.; Pohlmann, K.; Pohll, G.; Russell, C.

    2009-12-01

    Over 800 underground nuclear tests were conducted at the Nevada Test Site in a variety of hydrogeologic environments. As of the 1996 Environmental Impact Statement for the site, more than 100 million curies of radioactivity remained in the subsurface from these tests, much of it near or below the water table. The U.S. Department of Energy Environmental Management program is implementing a closure strategy for these sites that anticipates closure-in-place, natural attenuation, and institutional controls. Groundwater monitoring is a key component of this strategy, but its role is significantly evolved from that of a detection- or compliance-based monitoring concept. Indeed, monitoring is part of the integrated closure process itself, not an activity confined to a static post-closure period. The reasons for this evolution derive from the complex hydrogeologic conditions, the long time-frames of concern, and recognition that a significant degree of uncertainty is irreducible. The hundreds of test locations are grouped into Corrective Action Units that measure over 100 km2 in area and extend to depths in excess of 1000 m. Despite concerted data collection efforts, the technical basis for closure of these large regions relies heavily on complex numerical models of flow and transport. The inherent uncertainties in these models present challenges for reaching regulatory acceptance of closure, and challenges for confidently locating monitoring wells. The solution now being pursued for the NTS is to integrate model evaluation and monitoring. In addition to standard goals of contaminant detection and protection of human health, an explicit monitoring objective is to increase confidence in model results by assessing the reliability of model forecasts. The initial monitoring network is expected to eventually transition to a long-term closure design, with less emphasis on confidence-building as uncertainty in forecasts is reduced. The methodology for this iterative process of

  14. Nevada Test Site annual site environmental report for calendar year 1996

    SciTech Connect

    Black, S.C.; Townsend, Y.E.

    1997-10-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1996 indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency`s (EPA) Clean Air Package 1988 (CAP88)PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.11 mrem. This value is less than 2 percent of the federal dose limit prescribed for radionuclide air emissions. Any person receiving this dose would also have received 144 mrem from natural background radiation. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations have complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits as mandated for each location.

  15. Safer Work Plan for CAUs 452, 454, 456, and 464 Closure of Historical UST Release Sites Nevada Test Site

    SciTech Connect

    Jerry Bonn

    1997-08-01

    This plan addresses characterization and closure of nine underground storage tank petroleum hydrocarbon release sites. The sites are located at the Nevada Test Site in Areas 2, 9, 12, 23, and 25. The underground storage tanks associated with the release sites and addressed by this plan were closed between 1990 and 1996 by the U. S. Department of Energy, Nevada Operations Office. One underground storage tank was closed in place (23-111-1) while the remaining eight were closed by removal. Hydrocarbon releases were identified at each of the sites based upon laboratory analytical data samples collected below the tank bottoms. The objective of this plan is to provide a method for implementing characterization and closure of historical underground storage tank hydrocarbon release sites.

  16. Launch site payload test configurations for Space Shuttle scientific payloads

    NASA Astrophysics Data System (ADS)

    Schuiling, Roelof L.; Mayer, Maynette S.

    1989-01-01

    This paper provides an overview of the test configurations which are utilized in prelaunch testing at the John F. Kennedy Space Center (KSC) for those scientific payloads which are flown in the National Space Transportation System (NSTS) Space Shuttle. A generalized view of the payload prelaunch processing is provided and the major types of payload configurations are described. The majority of the prelaunch test activity involves the verification of experiment functions, compatibility of experiment-to-carrier interfaces and payload-to-orbiter interfaces. The Shuttle's avionics system is presented as it relates to payloads. The testing of Spacelab experiments and the experiment-to-Spacelab compatibility verification is described as is the test activity for partial payloads and their experiments. Test operations which involve simulated orbiter interface verification and actual payload-to-orbiter testing are discussed. An overview of the Space Station payload processing concept is presented.

  17. 78 FR 77646 - Proposed Information Collection; Comment Request; 2014 Census Site Test

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Census Bureau Proposed Information Collection; Comment Request; 2014 Census Site Test AGENCY: U.S. Census..., reducing the need for more costly enumerator-administered options. The 2014 Census Site Test will allow the... under consideration for the 2020 Census. To improve self- response, the Census Bureau plans to test...

  18. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2009-03-31

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. {sm_bullet} CAS 01-23-02, Atmospheric Test Site - High Alt{sm_bullet} CAS 02-23-02, Contaminated Areas (2){sm_bullet} CAS 02-23-03, Contaminated Berm{sm_bullet} CAS 02-23-10, Gourd-Amber Contamination Area{sm_bullet} CAS 02-23-11, Sappho Contamination Area{sm_bullet} CAS 02-23-12, Scuttle Contamination Area{sm_bullet} CAS 03-23-24, Seaweed B Contamination Area{sm_bullet} CAS 03-23-27, Adze Contamination Area{sm_bullet} CAS 03-23-28, Manzanas Contamination Area{sm_bullet} CAS 03-23-29, Truchas-Chamisal Contamination Area{sm_bullet} CAS 04-23-02, Atmospheric Test Site T4-a{sm_bullet} CAS 05-23-06, Atmospheric Test Site{sm_bullet} CAS 09-23-06, Mound of Contaminated Soil{sm_bullet} CAS 10-23-04, Atmospheric Test Site M-10{sm_bullet} CAS 18-23-02, U-18d Crater (Sulky) Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107.

  19. Path Length Fluctuations Derived from Site Testing Interferometer Data

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Nessel, James A.; Morse, Jacquelynne R.

    2010-01-01

    To evaluate possible sites for NASA's proposed Ka-band antenna array, the NASA Glenn Research Center has constructed atmospheric phase monitors (APM) which directly measure the tropospheric phase stability. These instruments observe an unmodulated 20.2 GHz beacon signal broadcast from a geostationary satellite (Anik F2) and measure the phase difference between the signals received by the two antennas. Two APM's have been deployed, one at the NASA Deep Space Network (DSN) Tracking Complex in Goldstone, California, and the other at the NASA White Sands Complex, in Las Cruces, New Mexico. Two station-years of atmospheric phase fluctuation data have been collected at Goldstone since operations commenced in May 2007 and 0.5 station-years of data have been collected at White Sands since operations began February 2009. With identical instruments operating simultaneously, we can directly compare the phase stability at the two sites. Phase stability is analyzed statistically in terms of the root-mean-square (rms) of the tropospheric path length fluctuations over 10 min blocks. Correlation between surface wind speed and relative humidity with interferometer phase are discussed. For 2 years, the path length fluctuations at the DSN site in Goldstone, California, have been better than 757 micrometer (with reference to a 300 m baseline and to Zenith) for 90 percent of the time. For the 6 months of data collected at White Sands, New Mexico, the path length fluctuations have been better than 830 micrometers (with reference to a 300 m baseline and to Zenith) for 90 percent of the time. This type of data analysis, as well as many other site quality characteristics (e.g., rain attenuation, infrastructure, etc.), will be used to determine the suitability of both sites for NASA s future communication services at Ka-band using an array of antennas.

  20. TWRS tank waste pretreatment process development hot test siting report

    SciTech Connect

    Howden, G.F.; Banning, D.L.; Dodd, D.A.; Smith, D.A.; Stevens, P.F.; Hansen, R.I.; Reynolds, B.A.

    1995-02-01

    This report is the sixth in a series that have assessed the hot testing requirements for TWRS pretreatment process development and identified the hot testing support requirements. This report, based on the previous work, identifies specific hot test work packages, matches those packages to specific hot cell facilities, and provides recommendations of specific facilities to be employed for the pretreatment hot test work. Also identified are serious limitations in the tank waste sample retrieval and handling infrastructure. Recommendations are provided for staged development of 500 mL, 3 L, 25 L and 4000 L sample recovery systems and specific actions to provide those capabilities.

  1. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    SciTech Connect

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  2. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect

    Y. E.Townsend

    2001-02-01

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

  3. CORRECTIVE ACTION PLAN FOR CORRECTIVE ACTION UNIT 536: AREA 3 RELEASE SITE, NEVADA TEST SITE, NEVADA

    SciTech Connect

    2005-09-01

    CAU 536 consists of CAS 03-44-02, Steam Jenny Discharge, located in Area 3 of the NTS. The site was characterized in 2004 according to the approved CAIP and the site characterization results are reported in the CAU 536 CADD. The purpose of this Corrective Action Plan (CAP) is to provide the detailed scope of work required to implement the recommended corrective actions as specified in the approved CAU 536 CADD.

  4. Stability Tests with Actual Savannah River Site Radioactive Waste

    SciTech Connect

    Walker, D.D.

    2002-09-09

    solutions in two laboratory experiments. The first experiment tested four waste solutions for supersaturation of aluminum by monitoring the aluminum concentration after seeding with gibbsite. The second experiment tested two waste samples for precipitation of aluminosilicates by heating the solutions to accelerate solids formation. The results of the experiments with actual waste solutions are supported in this report.

  5. Solar Energy Research Institute Validation Test House Site Handbook

    SciTech Connect

    Burch, J.; Wortman, D.; Judkoff, R.; Hunn, B.

    1985-05-01

    The Validation Test House at the Solar Energy Research Institute in Golden, Colorado, is being used to collect performance data for analysis/design tool validation as part of the DOE Passive Solar Class A Performance Evaluation Program.

  6. Radiation doses to local populations near nuclear weapons test sites worldwide.

    PubMed

    Simon, Steven L; Bouville, André

    2002-05-01

    Nuclear weapons testing was conducted in the atmosphere at numerous sites worldwide between 1946 and 1980, which resulted in exposures to local populations as a consequence of fallout of radioactive debris. The nuclear tests were conducted by five nations (United States, Soviet Union, United Kingdom, France, and China) primarily at 16 sites. The 16 testing sites, located in nine different countries on five continents (plus Oceania) contributed nearly all of the radioactive materials released to the environment by atmospheric testing; only small amounts were released at a fewother minor testing sites. The 16 sites discussed here are Nevada Test Site, USA (North American continent), Bikini and Enewetak, Marshall Islands (Oceania); Johnston Island, USA (Oceania), Christmas and Malden Island, Kiribati (Oceania); Emu Field, Maralinga, and Monte Bello Islands, Australia (Australian continent); Mururoa and Fangataufa, French Polynesia (Oceania), Reggane, Algeria (Africa), Novaya Zemlya and Kapustin Yar, Russia (Europe), Semipalatinsk, Kazakhstan (Asia), and Lop Nor, China (Asia). There were large differences in the numbers of tests conducted at each location and in the total explosive yields. Those factors, as well as differences in population density, lifestyle, environment, and climate at each site, led to large differences in the doses received by local populations. In general, the tests conducted earliest led to the highest individual and population exposures, although the amount of information available for a few of these sites is insufficient to provide any detailed evaluation of radiation exposures. The most comprehensive information for any site is for the Nevada Test Site. The disparities in available information add difficulty to determining the radiation exposures of local populations at each site. It is the goal of this paper to summarize the available information on external and internal doses received by the public living in the regions near each of the

  7. Hydrogeologic data for the South Cross Bayou test injection site, Pinellas County, Florida

    USGS Publications Warehouse

    Hickey, John J.

    1978-01-01

    One exploratory hole, a test injection well, and nine monitor wells were constructed at the South Cross Bayou test-injection site between January 1973 and October 1975. At the test site, the first 125 feet below land surface is predominantly limestone and clay; from 125 to 3,280 feet it is mostly limestone and dolomite. Gypsum is also present below 1,260 feet. Wells within about a 1-mi radius of the test injection site were sampled and analyzed to provide water-quality background data prior to anticipated long-term injection at the test site. Locations of the wells sampled are shown, reported construction data are given, and the chemical analyses of water from these wells are tabulated. Chloride concentration of water from the wells near the test site ranged between 9.8 to 290 mg/L. Reported depth of these wells ranged from 25 to 302 ft. (Woodard-USGS)

  8. Streamlined Approach for Environmental Restoration Work Plan for Corrective Action Unit 461: Joint Test Assembly Sites and Corrective Action Unit 495: Unconfirmed Joint Test Assembly Sites Tonopah Test Range, Nevada

    SciTech Connect

    Jeff Smith

    1998-08-01

    This Streamlined Approach for Environmental Restoration plan addresses the action necessary for the clean closure of Corrective Action Unit 461 (Test Area Joint Test Assembly Sites) and Corrective Action Unit 495 (Unconfirmed Joint Test Assembly Sites). The Corrective Action Units are located at the Tonopah Test Range in south central Nevada. Closure for these sites will be completed by excavating and evaluating the condition of each artillery round (if found); detonating the rounds (if necessary); excavating the impacted soil and debris; collecting verification samples; backfilling the excavations; disposing of the impacted soil and debris at an approved low-level waste repository at the Nevada Test Site

  9. Neptunium Transport Behavior in the Vicinity of Underground Nuclear Tests at the Nevada Test Site

    SciTech Connect

    Zhao, P; Tinnacher, R M; Zavarin, M; Williams, R W; Kersting, A B

    2010-12-03

    We used short lived {sup 239}Np as a yield tracer and state of the art magnetic sector ICP-MS to measure ultra low levels of {sup 237}Np in a number of 'hot wells' at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site (NTS). The results indicate that {sup 237}Np concentrations at the Almendro, Cambric, Dalhart, Cheshire and Chancellor sites, are in the range of 3 x 10{sup -5} to 7 x 10{sup -2} pCi/L and well below the MCL for alpha emitting radionuclides (15 pCi/L) (EPA, 2009). Thus, while Np transport is believed to occur at the NNSS, activities are expected to be well below the regulatory limits for alpha-emitting radionuclides. We also compared {sup 237}Np concentration data to other radionuclides, including tritium, {sup 14}C, {sup 36}Cl, {sup 99}Tc, {sup 129}I, and plutonium, to evaluate the relative {sup 237}Np transport behavior. Based on isotope ratios relative to published unclassified Radiologic Source Terms (Bowen et al., 1999) and taking into consideration radionuclide distribution between melt glass, rubble and groundwater (IAEA, 1998), {sup 237}Np appears to be substantially less mobile than tritium and other non-sorbing radionuclides, as expected. However, this analysis also suggests that {sup 237}Np mobility is surprisingly similar to that of plutonium. The similar transport behavior of Np and Pu can be explained by one of two possibilities: (1) Np(IV) and Pu(IV) oxidation states dominate under mildly reducing NNSS groundwater conditions resulting in similar transport behavior or (2) apparent Np transport is the result of transport of its parent {sup 241}Pu and {sup 241}Am isotopes and subsequent decay to {sup 237}Np. Finally, measured {sup 237}Np concentrations were compared to recent Hydrologic Source Term (HST) models. The 237Np data collected from three wells in Frenchman Flat (RNM-1, RNM-2S, and UE-5n) are in good agreement with recent HST transport model predictions (Carle et al., 2005). The agreement provides

  10. Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    David A. Strand

    2004-10-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 554: Area 23 Release Site, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 554 is located in Area 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 554 is comprised of one Corrective Action Site (CAS), which is: 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. This site consists of soil contamination resulting from a fuel release from underground storage tanks (USTs). Corrective Action Site 23-02-08 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document for CAU 554. Corrective Action Site 23-02-08 will be investigated based on the data quality objectives (DQOs) developed on July 15, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; and contractor personnel. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 554.

  11. Site testing for submillimetre astronomy at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Tremblin, P.; Minier, V.; Schneider, N.; Durand, G. Al.; Ashley, M. C. B.; Lawrence, J. S.; Luong-van, D. M.; Storey, J. W. V.; Durand, G. An.; Reinert, Y.; Veyssiere, C.; Walter, C.; Ade, P.; Calisse, P. G.; Challita, Z.; Fossat, E.; Sabbatini, L.; Pellegrini, A.; Ricaud, P.; Urban, J.

    2011-11-01

    Aims: Over the past few years a major effort has been put into the exploration of potential sites for the deployment of submillimetre astronomical facilities. Amongst the most important sites are Dome C and Dome A on the Antarctic Plateau, and the Chajnantor area in Chile. In this context, we report on measurements of the sky opacity at 200 μm over a period of three years at the French-Italian station, Concordia, at Dome C, Antarctica. We also present some solutions to the challenges of operating in the harsh polar environment. Methods: The 200-μm atmospheric opacity was measured with a tipper. The forward atmospheric model MOLIERE (Microwave Observation LIne Estimation and REtrieval) was used to calculate the atmospheric transmission and to evaluate the precipitable water vapour content (PWV) from the observed sky opacity. These results have been compared with satellite measurements from the Infrared Atmospheric Sounding Interferometer (IASI) on Metop-A, with balloon humidity sondes and with results obtained by a ground-based microwave radiometer (HAMSTRAD). In addition, a series of experiments has been designed to study frost formation on surfaces, and the temporal and spatial evolution of thermal gradients in the low atmosphere. Results: Dome C offers exceptional conditions in terms of absolute atmospheric transmission and stability for submillimetre astronomy. Over the austral winter the PWV exhibits long periods during which it is stable and at a very low level (0.1 to 0.3 mm). Higher values (0.2 to 0.8 mm) of PWV are observed during the short summer period. Based on observations over three years, a transmission of around 50% at 350 μm is achieved for 75% of the time. The 200-μm window opens with a typical transmission of 10% to 15% for 25% of the time. Conclusions: Dome C is one of the best accessible sites on Earth for submillimetre astronomy. Observations at 350 or 450 μm are possible all year round, and the 200-μm window opens long enough and with a

  12. Complete Bouguer gravity map of the Nevada Test Site and vicinity, Nevada

    SciTech Connect

    Healey, D.L.; Harris, R.N.; Ponce, D.A.; Oliver, H.W.

    1987-12-31

    About 15,000 gravity stations were used to create the gravity map. Gravity studies at the Nevada Test Site were undertaken to help locate geologically favorable areas for underground nuclear tests and to help characterize potential high-level nuclear waste storage sites. 48 refs. (TEM)

  13. Effects of effluent spray irrigation on ground water at a test site near Tarpon Springs, Florida

    USGS Publications Warehouse

    Brown, D.P.

    1982-01-01

    Secondary-treated effluent was applied to a 7.2-acre test site near Tarpon Springs, Fla., for about 1 year at an average rate of 0.06 million gallons per day and 3 years at 0.11 million gallons per day. Chemical fertilizer was applied periodically to the test site and adjacent areas. Periodic mounding of the water table occurred due to effluent irrigation, inducing radial flow from the test site. Physical, geochemical, biochemical processes effectively reduced total nitrogen concentration 90% and total phosphorous concentration more than 95% in the ground water of the surficial aquifer about 300 feet downgradient from the test site from that of the applied effluent. Downgradient, total nitrogen averaged 2.4 milligrams per liter and total phosphorus averaged 0.17 milligrams per liter. Substantial increases in total phosphorus were observed when the pH of the ground water increased. Total coliform bacteria in the ground water of the surficial aquifer were generally less than 100 colonies per 100 milliliters. Fecal coliform bacteria were generally less than 25 colonies per 100 milliliters at the test site and were not detected downgradient or near the test site. Fecal streptococcal bacteria were generally less than 100 colonies per 100 milliliters at the test site, but were detected on three occasions near the test site. (USGS)

  14. Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico

    SciTech Connect

    Pohll, G.; Pohlmann, K.

    1996-08-01

    A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site.

  15. Gravity and magnetic evidence for a granitic intrusion near Wahmonie Site, Nevada Test Site, Nevada

    SciTech Connect

    Ponce, D.A.

    1984-10-10

    Gravity and magnetic data outline a broad anomaly near Wahmonie Site, Nye County, Nevada. A positive 15-mGal gravity anomaly with a steep western gradient and a broad magnetic anomaly coincident with the gravity high characterize the area. Two-dimensional computer models of the gravity data were made using magnetic, seismic, and electric data as independent constraints. The models indicate the presence of a shallow, relatively high density body of 2.65 kg m{sup -3} buried near Wahmonie Site. Aeromagnetic and ground magnetic data also indicate the presence of a large, shallow body. Two smaller local magnetic highs that occur along a magnetic prominence extending northward from the broad anomaly directly correlate to granodiorite outcrops. This indicates that the main anomaly is produced by a large shallow intrusion.

  16. Geohydrologic and drill-hole data for test well USW H-1, adjacent to Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Rush, F. Eugene; Thordarson, William; Bruckheimer, Laura

    1983-01-01

    This report presents data collected to determine the hydraulic characteristics of rocks penetrated in test well USW H-1. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted on behalf of the U.S. Department of Energy. These investigations are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high-level radioactive wastes. Data on drilling operations, lithology, borehole geophysics, hydrologic monitoring, core analysis, ground-water chemistry and pumping and injection tests for well USW H-1 are contained in this report.

  17. Closure Report for Corrective Action Unit 340: NTS Pesticide Release Sites Nevada Test Site, Nevada

    SciTech Connect

    C. M. Obi

    2000-05-01

    The purpose of this report is to provide documentation of the completed corrective action and to provide data confirming the corrective action. The corrective action was performed in accordance with the approved Corrective Action Plan (CAP) (U.S. Department of Energy [DOE], 1999) and consisted of clean closure by excavation and disposal. The Area 15 Quonset Hut 15-11 was formerly used for storage of farm supplies including pesticides, herbicides, and fertilizers. The Area 23 Quonset Hut 800 was formerly used to clean pesticide and herbicide equipment. Steam-cleaning rinsate and sink drainage occasionally overflowed a sump into adjoining drainage ditches. One ditch flows south and is referred to as the quonset hut ditch. The other ditch flows southeast and is referred to as the inner drainage ditch. The Area 23 Skid Huts were formerly used for storing and mixing pesticide and herbicide solutions. Excess solutions were released directly to the ground near the skid huts. The skid huts were moved to a nearby location prior to the site characterization performed in 1998 and reported in the Corrective Action Decision Document (CADD) (DOE, 1998). The vicinity and site plans of the Area 23 sites are shown in Figures 2 and 3, respectively.

  18. Closure Report for Corrective Action Unit 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site, Nevada

    SciTech Connect

    A. T. Urbon

    2003-07-01

    This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 330: Areas 6, 22, and 23 Tanks and Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO of 1996), and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site (NTS), Nevada (U.S. Department of Energy, National Nuclear Security Administration Nevada Operation Office [NNSA/NV], 2001). CAU 330 consists of the following four Corrective Action Sites (CASs): 06-02-04, 22-99-06, 23-01-02, and 23-25-05 (Figure 1).

  19. Waste inventory and preliminary source term model for the Greater Confinement Disposal site at the Nevada Test Site

    SciTech Connect

    Chu, M.S.Y.; Bernard, E.A.

    1991-12-01

    Currently, there are several Greater Confinement Disposal (GCD) boreholes at the Radioactive Waste Management Site (RWMS) for the Nevada Test Site. These are intermediate-depth boreholes used for the disposal of special case wastes, that is, radioactive waste within the Department of Energy complex that do not meet the criteria established for disposal of high-level waste, transuranic waste, or low-level waste. A performance assessment is needed to evaluate the safety of the GCD site, and to examine the feasibility of the GCD disposal concept as a disposal solution for special case wastes in general. This report documents the effort in defining all the waste inventory presently disposed of at the GCD site, and the inventory and release model to be used in a performance assessment for compliance with the Environmental Protection Agency`s 40 CFR 191.

  20. Environmental test program for superconducting materials and devices: Preliminary results of testing program at Savannah River Site

    SciTech Connect

    Randolph, H. ); Verebelyi, D. Clemson Univ., SC )

    1991-05-30

    The properties of YBa{sub 2}Cu{sub 3}O{sub 7-x} superconducting tapes designed and fabricated into SAFIRE-type, encapsulated, grounding links by the Ceramic Engineering Department at Clemson University are under investigation. Testing at the Savannah River Site will include gamma irradiation, vibration, and long-term evaluation. The gamma irradiation portion of testing has been completed. The long-term testing began in January and will continue. The vibration test has yet to be started.

  1. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect

    Patrick Matthews

    2012-10-01

    CAU 104 comprises the following corrective action sites (CASs): • 07-23-03, Atmospheric Test Site T-7C • 07-23-04, Atmospheric Test Site T7-1 • 07-23-05, Atmospheric Test Site • 07-23-06, Atmospheric Test Site T7-5a • 07-23-07, Atmospheric Test Site - Dog (T-S) • 07-23-08, Atmospheric Test Site - Baker (T-S) • 07-23-09, Atmospheric Test Site - Charlie (T-S) • 07-23-10, Atmospheric Test Site - Dixie • 07-23-11, Atmospheric Test Site - Dixie • 07-23-12, Atmospheric Test Site - Charlie (Bus) • 07-23-13, Atmospheric Test Site - Baker (Buster) • 07-23-14, Atmospheric Test Site - Ruth • 07-23-15, Atmospheric Test Site T7-4 • 07-23-16, Atmospheric Test Site B7-b • 07-23-17, Atmospheric Test Site - Climax These 15 CASs include releases from 30 atmospheric tests conducted in the approximately 1 square mile of CAU 104. Because releases associated with the CASs included in this CAU overlap and are not separate and distinguishable, these CASs are addressed jointly at the CAU level. The purpose of this CADD/CAP is to evaluate potential corrective action alternatives (CAAs), provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 104. Corrective action investigation (CAI) activities were performed from October 4, 2011, through May 3, 2012, as set forth in the CAU 104 Corrective Action Investigation Plan.

  2. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    SciTech Connect

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-06-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area.

  3. Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites

    NASA Astrophysics Data System (ADS)

    Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.

    2015-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.

  4. Resettlement of Bikini Atoll U.S. Nuclear Test Site

    SciTech Connect

    Robinson, W.L.; Conrado, C.L.; Stuart, M.L.; Stoker, A.C.; Hamilton, T.F.

    1999-09-09

    The US conducted a nuclear testing program at Bikini and Enewetak Atolls in the Marshall Islands from 1946 through 1958. Several atolls, including Bikini, were contaminated as a result of the nuclear detonations. Since 1974 the authors have conducted an extensive research and monitoring program to determine the radiological conditions at the atolls, identify the critical radionuclides and pathways, estimate the radiological dose to current or resettling populations, and develop remedial measures to reduce the dose to atoll populations. This paper describes exposure pathways and radionuclides; composition of atoll soils; radionuclide transport and dose estimates; remedial measures; and reduction in dose from a combined option.

  5. 1993 site environmental report Tonopah Test Range, Tonopah, Nevada

    SciTech Connect

    Culp, T.; Howard, D.; McClellan, Y.

    1994-10-01

    This report summarizes the environmental surveillance activities conducted by Sandia National Laboratories, the US Environmental Protection Agency, and Reynolds Electrical and Engineering Company for the Tonopah Test Range operated by Sandia National Laboratories. Sandia National Laboratories` responsibility for environmental monitoring results extend to those activities performed by Sandia National Laboratories or under its direction. Results from other environmental monitoring activities are included to provide a measure of completeness in reporting. Other environmental compliance programs such as the National Environmental Policy Act of 1969, environmental permits, and environmental restoration and waste management programs are also included in this report, prepared for the US Department of Energy in compliance with DOE Order 5400.1.

  6. 1994 site environmental report, Tonopah Test Range, Tonopah, Nevada

    SciTech Connect

    Culp, T.; Forston, W.

    1995-09-01

    This report summarizes the environmental surveillance activities conducted by Sandia National Laboratories, the US Environmental Protection Agency, and Kirk-Mayer, Inc., for the Tonopah Test Range operated by Sandia National Laboratories. Sandia National Laboratories` responsibility for environmental surveillance results extends to those activities performed by Sandia National Laboratories or under its direction. Results from other environmental surveillance activities are included to provide a measure of completeness in reporting. Other environmental compliance programs such as the National Environmental Policy Act of 1969, environmental permits, and environmental restoration and waste management programs are also included in this report, prepared for the US Department of Energy (DOE) in compliance with DOE Order 5400. 1.

  7. SITE project. Phase 1: Continuous data bit-error-rate testing

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene; Kerczewski, Robert J.

    1992-01-01

    The Systems Integration, Test, and Evaluation (SITE) Project at NASA LeRC encompasses a number of research and technology areas of satellite communications systems. Phase 1 of this project established a complete satellite link simulator system. The evaluation of proof-of-concept microwave devices, radiofrequency (RF) and bit-error-rate (BER) testing of hardware, testing of remote airlinks, and other tests were performed as part of this first testing phase. This final report covers the test results produced in phase 1 of the SITE Project. The data presented include 20-GHz high-power-amplifier testing, 30-GHz low-noise-receiver testing, amplitude equalization, transponder baseline testing, switch matrix tests, and continuous-wave and modulated interference tests. The report also presents the methods used to measure the RF and BER performance of the complete system. Correlations of the RF and BER data are summarized to note the effects of the RF responses on the BER.

  8. Nevada Test Site 2002 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect

    Y. E. Townsend

    2003-02-01

    This report is a compilation of the calendar year 2002 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for the required analytes: pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Results from all samples collected in 2002 were within established criteria. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act(RCRA) regulated unit within the RWMS-5 and confirm that the detections of TOC and TOX in 2000 were false positives. Contamination indicator data are presented in control chart and tabular form with investigation levels (ILs) indicated. Gross water chemistry data are presented in graphical and tabular form. There were no major changes noted in the monitored groundwater elevation. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

  9. Nevada Test Site 2001 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect

    Y. E. Townsend

    2002-02-01

    This report is a compilation of the calendar year 2001 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (ILs) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for the required analytes: pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Due to detections of TOC and TOX in some samples collected in 2000, a plan, as approved by the Nevada Division of Environmental Protection (NDEP), was executed to collect an increased number and type of samples in 2001. Results from all samples collected in 2001 were below ILs. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 RWMS and confirm that the detections of TOC and TOX in 2000 were false positives. There were no major changes noted in the monitored groundwater elevation. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year.

  10. Nevada Test Site 2009 Data Report: Groundwater Monitoring Program, Area 5 Radioactive Waste Management Site

    SciTech Connect

    NSTec Environmental Management

    2010-01-19

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2009 results. During 2009, groundwater at each of the three pilot wells was sampled on March 10, 2009, and August 18, 2009, and water levels at each of the three pilot wells were measured on February 17, May 6, August 17, and November 10, 2009. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2009 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  11. Status report on the spent fuel test-Climax, Nevada Test Site: A test of dry storage of spent fuel in a deep granite location

    SciTech Connect

    Ramspott, L.D.; Ballou, L.B.; Patrick, W.C.

    1982-12-31

    The Spent Fuel Test-Climax (SFT-C) is located at a depth of 420 m in the Climax granite at the Nevada Test Site. The test array contains 11 canistered PWR fuel assemblies, plus associated electrical simulators and electrical heaters. There are nearly 900 channels of thermal, radiation, stress, displacement, and test control instrumentation.

  12. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  13. Corrective action investigation plan for Corrective Action Unit 340, Pesticide Release Sites, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    1998-01-01

    This Correction Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense. As required by the FFACO (1996), this document provides or references all of the specific information for planning investigation activities associated with three Corrective Action Sites (CASs) located at the Nevada Test Site (NTS). These CASs are collectively known as Corrective Action Unit (CAU) 340, Pesticide Release Sites. According to the FFACO, CASs are sites that may require corrective action(s) and may include solid waste management units or individual disposal or release sites. These sites are CAS 23-21-01, Area 23 Quonset Hut 800 (Q800) Pesticide Release Ditch; CAS 23-18-03, Area 23 Skid Huts Pesticide Storage; and CAS 15-18-02, Area 15 Quonset Hut 15-11 Pesticide Storage (Q15-11). The purpose of this CAIP for CAU 340 is to direct and guide the investigation for the evaluation of the nature and extent of pesticides, herbicides, and other contaminants of potential concern (COPCs) that were stored, mixed, and/or disposed of at each of the CASs.

  14. Study of the Nevada Test Site using Landsat satellite imagery

    SciTech Connect

    Zimmerman, P.D.

    1993-07-01

    In the period covered by the purchase order CSIS has obtained one Landsat image and determined that two images previously supplied to the principal investigator under a subcontract with George Washington University were inherently defective. We have negotiated with EOSAT over the reprocessing of those scenes and anticipate final delivery within the next few weeks. A critical early purchase during the subcontract period was of an EXABYTE tape drive, Adaptec SCSI interface, and the appropriate software with which to read Landsat images at CSIS. This gives us the capability of reading and manipulating imagery in house without reliance on outside services which have not proven satisfactory. In addition to obtaining imagery for the study, we have also performed considerable analytic work on the newly and previously purchased images. A technique developed under an earlier subcontract for identifying underground nuclear tests at Pahute Mesa has been significantly refined, and similar techniques were applied to the summit of Rainier Mesa and to the Yucca Flats area. An entirely new technique for enhancing the spectral signatures of different regions of NTS was recently developed, and appears to have great promise of success.

  15. Geology of the Chinese nuclear test site near Lop Nor, Xinjiang Uygur Autonomous Region, China

    USGS Publications Warehouse

    Matzko, J.R.

    1994-01-01

    The Chinese underground nuclear test site in the Kuruktag and Kyzyltag mountains of the Xinjiang Uygur Autonomous Region of northwest China, is the location of sixteen underground tests that occurred between 1969 and 1992. The largest test to date, conducted on 21 May 1992, had a reported yield of about one megaton. Geophysical properties of the rocks and a large-scale geologic map of part of the test area were published by the Chinese in 1986 and 1987 and are the first site-specific data available for this test site. In areas of low relief, underground nuclear testing has occurred below the water table, in shafts drilled vertically into dense, low porosity Paleozoic granitic and metasedimentary rocks. Additional testing in areas of more rugged terrain has occurred in horizontal tunnels, probably above the water table. At least one of these tunnels was driven into granite. The upper 50 m of the rock in the area of the vertical tests is weathered and fractured; these conditions have been shown to influence the magnitude of the disturbance of the land surface after a nuclear explosion. These descriptions suggest hard rock coupling at depth and a closer resemblance to the former Soviet test site in eastern Kazakhstan than to the U.S. test site in Nevada. ?? 1994.

  16. THE POTENTIAL OF AN EARTHWORM AVOIDANCE TEST FOR EVALUATION OF HAZARDOUS WASTE SITES

    EPA Science Inventory

    An earthworm avoidance test has potential advantages for use in evaluation of hazardous wastes sites. Because organisms often exhibit behavioral responses at lower levels of stress than those that acute toxicity tests are able to detect, avoidance tests could provide increased se...

  17. Geology, physical properties, and surface effects at Discus Thrower Site, Yucca Flat, Nevada test site

    USGS Publications Warehouse

    Carr, Wilfred James; Miller, C.H.; Dodge, Harry W.

    1975-01-01

    Geologic studies in connection with Project Discus Thrower have furnished detailed stratigraphic and structural information about northwestern Yucca Flat. The Paleozoic rocks consist of a lower carbonate sequence, argillite of the Eleana Formation, and an upper carbonate sequence. The distribution of these rocks suggests that both top and bottom of the Eleana are structural contacts, probably thrusts or reverse faults. The overlying tuff includes several units recognized in the subsurface, such as the Fraction Tuff and tuff of Redrock Valley. Other units recognized include bedded tuff associated with the Grouse Canyon Member of Belted Range Tuff, and the Rainier Mesa and Ammonia Tanks Members of the Timber Mountain Tuff. The Timber Mountain and Grouse Canyon are extensively altered to montmorillonite (a swelling clay), possibly as a result of ponding of alkaline water. The overlying alluvium locally contains at the base a clayey, tuffaceous sandstone. Geophysical logs were used as an aid in locating geologic contacts and determining in situ physical properties. Graphic logs are presented that show the correlation of lithology and geophysical logs. Many of the rock units have characteristic log responses, but alteration within rock units affects the logs strikingly in some drill holes. The most significant surface effect of the experiment was the formation of a 4-foot fault scarp northwest of the site.

  18. Closure Report for Corrective Action Unit 538: Spill Sites, Nevada Test Site, Nevada with ROTC-1, Revision 0

    SciTech Connect

    Alfred Wickline

    2007-02-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 538, Spill Sites, located at the Nevada Test Site (NTS) in Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The corrective action sites (CASs) within CAU 538 are located within Areas 2, 3, 6, 12, and 23 of the NTS. The purpose of this CR is to provide documentation for the absence of contamination or that the closure objectives have been met for each CAS within CAU 538.

  19. Assessment of hydrologic transport of radionuclides from the Rulison Underground Nuclear Test Site, Colorado

    SciTech Connect

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Rulison site in west-central Colorado was the location of an underground detonation of a 40-kiloton nuclear device in 1969. The test took place 2,568 m below ground surface in the Mesaverde Formation. Though located below the regional water table, none of the bedrock formations at the site yielded water during hydraulic tests, indicating extremely low permeability conditions. The scenario evaluated was the migration of radionuclides from the blast-created cavity through the Mesaverde Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity and the correlation scale of hydraulic conductivity, with transport of strontium and cesium also sensitive to the sorption coefficient.

  20. Hydrogeologic data for existing excavations and the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Not Available

    1993-12-01

    The Special Projects Section of Reynolds Electrical & Engineering Co., Inc. is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Office of Environmental Restoration and Waste Management Waste Management Division. Geologic description, in situ testing, and laboratory analyses of alluvium exposed in existing excavations are important subparts to the Area 5 Site Characterization Program designed to determine the suitability of the RWMS for disposal of low level waste mixed waste and transuranic waste. The primary purpose of the Existing Excavation Project is two-fold: first, to characterize important hydrologic properties of the near surface alluvium, thought to play an important role in the infiltration and redistribution of water and solutes through the upper unsaturated zone at the Area 5 RWMS; and second, to provide guidance for the design of future sampling and testing programs. The justification for this work comes from the state of Nevada review of the original DOE/NV Part B Permit application submitted in 1988 for disposal of mixed wastes at the RWMS. The state of Nevada determined that the permit was deficient in characterization data concerning the hydrogeology of the unsaturated zone. DOE/NV agreed with the state and proposed the study of alluvium exposed in existing excavations as one step toward satisfying these important site characterization data requirements. Other components of the site characterization process include the Science Trench Borehole and Pilot Well Projects.

  1. On-site inspection: A brief overview and bibliography of techniques pertinent to assessing suspected nuclear test sites

    SciTech Connect

    Carrigan, C.R.

    1993-03-01

    The purpose of this report is to provide a brief overview and bibliography of those techniques that may have application for the evaluation of a site to determine if a high energy release event is nuclear in nature. This effort is motivated by recognition of the changing world political climate and the perception that low yield and non-proliferation issues will grow in importance as countries become increasingly involved as signators to treaties that are intended to limit the development and testing of nuclear weapons. Along with an increasing interest in such issues is the awareness of the need to implement improved capabilities for treaty monitoring programs that must deal with assessing suspicious occurrences of high energy release events. In preparing this report, it is recognized that monitoring can take two main forms. The first involves the resolution of unidentified events detected by seismic and satellite National Technical Means. Events of an indeterminate nature could occur world-wide and could induce tension in neighboring countries. If an on-site measurement capability were available, a monitoring team could be sent to the suspected site of an event to take measurements that could confirm or disprove the occurrence of a clandestine nuclear test. The second monitoring form is the confirmation that a clandestine event is not masked by a declared event. For example, a large mining explosion could mask a decoupled nuclear explosion. On-site measurements before and during the test could confirm that a clandestine event did not occur and could provide assurance that the party carrying out the explosion is not taking advantage of clandestine testing opportunities. 48 refs.

  2. [Assessment of modern radioecological situation at nuclear explosion "Chagan" (Balapan Site, Semipalatinsk Nuclear Test Site, Kazakhstan)].

    PubMed

    Evseeva, T I; Maĭstrenko, T A; Geras'kin, S A; Belykh, E S; Umarov, M A; Sergeeva, I Iu; Sergeev, V Iu

    2008-01-01

    Results on estimation of modern radioecological situation at nuclear explosion "Chagan" based on large-scale cartographic studies (1:25000) of a test area (4 km2) are presented. Maximum gamma-irradiation doses were observed at bulk of ground surrounded a crater and at radioactive fall-outs extended to the North-East and to the SouthWest from the crater. Based on data on artificial radionuclide specific activity most part of soil samples were attributed to radioactive wastes according to IAEA (1996) and OSPORB (1999). Natural decrease of soil radioactivity up to safety level due to 60Co, 137Cs, 90Sr, 152Eu, 154Eu radioactive decay and 241Am accumulation-decay will not take place within the next 60 years at the studied area.

  3. Interpretations of magnetic anomalies at a potential repository site located in the Yucca Mountain area, Nevada Test Site

    SciTech Connect

    Bath, G.D.; Jahren, C.E.

    1984-12-31

    In the Yucca Mountain area near the southwestern border of the Nevada Test Site, studies of the relation of magnetic properties to geologic features have provided structural information at and near a potential site for storage or radioactive waste. Interpreted features include a tabular mass of magnetized sedimentary rock beneath thick deposits of volcanic rock, and 11 major faults that strike generally northward and displace magnetized volcanic rock. A positive anomaly in a high-altitude aeromagnetic survey over exposures of strongly magnetized argillite of the Eleana Formation extends westward 20 km into the site area where interpretations indicate an argillite thickness of 800 m at a depth of 2.25 km. The high magnetite content of the argillite is not typical of the region, and was probably introduced by the heating effects of an underlying pluton. The basis for mapping traces of faults, and identifying their upthrown sides, was developed elsewhere at Yucca fault in the relatively simple volcanic terrains of Yucca Flat. In the site area, analyses of aeromagnetic anomalies from a low-altitude east-west aeromagnetic survey show the Topopah Spring Member of the Paintbrush Tuff as the primary source of anomalies from faulted sequences of volcanic rock. Faults related to belts of positive and negative anomalies surrounding the site have been identified. The possibility that an east-west pattern of anomalies is related to structure crossing the site was investigated by a recent aeromagnetic survey flown at low altitude in north-south directions. A significant reduction in amplitude of these anomalies resulted when effects of the deeply buried argillite were removed. The remaining anomalies over the site can be explained by a change in lateral extent, or magnetic properties, of volcanic units beneath the Topopah Spring Member. 37 references, 22 figures, 1 table.

  4. Status report on the Spent-Fuel Test-Climax, Nevada Test Site: a test of dry storage of spent fuel in a deep granite location

    SciTech Connect

    Ramspott, L.D.; Ballou, L.B.; Patrick, W.C.

    1982-03-01

    The Spent Fuel Test-Climax (SFT-C) is located at a depth of 420 m in the Climax granite at the Nevada Test Site. The test array contains 11 canistered PWR fuel assemblies, plus associated electrical simulators and electrical heaters. There are nearly 900 channels of thermal, radiation, stress, displacement, and test control instrumentation. This paper is a general status report on the test, which started in May 1980.

  5. Card-Sorting Usability Tests of the WMU Libraries' Web Site

    ERIC Educational Resources Information Center

    Whang, Michael

    2008-01-01

    This article describes the card-sorting techniques used by several academic libraries, reports and discusses the results of card-sorting usability tests of the Western Michigan University Libraries' Web site, and reveals how the WMU libraries incorporated the findings into a new Web site redesign, setting the design direction early on. The article…

  6. 78 FR 18932 - Public Meeting: Unmanned Aircraft Systems Test Site Program; Privacy Approach

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... the Federal Register on February 22, 2013 (78 FR 12259), Docket No. FAA-2013-0061. In that document... operation of unmanned aircraft systems within the test site program (78 FR 12259). The proposed privacy... at http://www.faa.gov/about/initiatives/uas/ when all details are finalized. This Web site will...

  7. Closure Report for Corrective Action Unit 210: Storage Areas and Contaminated Material, Nevada Test Site, Nevada

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2004-06-01

    Corrective Action Unit 210, Storage Areas and Contaminated Material, is identified in the Federal Facilities Agreement and Consent Order. This Corrective Action Unit consists of four Corrective Action Sites located in Areas 10, 12, and 15 of the Nevada Test Site. This report documents that the closure activities conducted meet the approved closure standards.

  8. Technology Demonstration Summary Technology Evaluation Report, Site Demonstration Test, Hazcon Solidification, Douglassville, Pennsylvania

    EPA Science Inventory

    The major objective of the HAZCON Solidification SITE Program Demonstration Test was to develop reliable performance and cost information. The demonstration occurred at a 50-acre site of a former oil reprocessing plant at Douglassville, PA containing a wide range of organic...

  9. Annual Report - FY 1998, Shipments to and from the Nevada Test Site (NTS)

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office

    1999-02-01

    This report summarizes waste shipments to the Nevada Test Site Radioactive Waste Management Sites at Area 3 and Area 5 during fiscal year 1998. In addition this report provides a summary evaluation of each shipping campaign by source (waste generator) which identifies observable incidents, if any, associated with the actual waste shipments.

  10. An inventory of long-lived radionuclides residual from underground nuclear testing at the Nevada test site, 1951-1992.

    PubMed

    Smith, D K; Finnegan, D L; Bowen, S M

    2003-01-01

    An inventory of long-lived radionuclides produced by 828 underground nuclear tests conducted at the Nevada test site (NTS) from 1951 to 1992 includes residual tritium, fission products, actinides, and activation products. Recently, the US Department of Energy approved the declassification of the NTS radionuclide inventory by principal geographic test centers. This permits unclassified publication of radionuclide totals for the Yucca Flat, Pahute Mesa-Area 19, Pahute Mesa-Area 20, Frenchman Flat, and Rainier Mesa/Shoshone Mountain testing locations. Activities are reported as of September 23, 1992, the date of the last underground nuclear test conducted at the NTS, and September 23, 2492, after 500 years of radioactive decay. The availability of these data affords an opportunity for the analysis of the radiologic source term within the boundaries of local hydrogeologic units and provides insight to where radionuclides are sited relative to potential exposure pathways. PMID:12634000

  11. Quantitative relationship between reflectance and transpiration of phreatophytes, Gila River test site

    NASA Technical Reports Server (NTRS)

    Culler, R. C.; Jones, J. E.; Turner, R. N.

    1972-01-01

    The use of IR aerial photographs for determining the dynamic characteristics of evapotranspiration at the Gila River Test Site is discussed. Evapotranspiration was measured as a function of plant volume, surface conditions, soil moisture storage, and ground water levels.

  12. Detection of electrically failed photovoltaic modules at selected MIT Lincoln Laboratory test sites

    SciTech Connect

    Forman, S. E.

    1981-01-01

    The US Department of Energy has set a 20-year lifetime goal for terrestrial photovoltaic modules. In its capacity as a Photovoltaic Field Tests and Applications Center, Massachusetts Institute of Technology Lincoln Laboratory has established various experimental test sites throughout the United States, ranging in size from 1.5 to 100 kW of peak power. These sites contain modules from several manufacturers and serve as test beds for photovoltaic system components. From May 1977 to date, over 11,000 modules have been placed in service at these sites, of which a total of 250 have suffered electrical failures. In previous reports emphasis has been placed on failure modes and the types of physical and electrical degradation found in modules. The methods used to detect failures in operational photovoltaic power-generating systems are reported for several Lincoln Laboratory test sites.

  13. Calendar year 2007 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii,

    SciTech Connect

    Agogino, Karen; Sanchez, Rebecca

    2008-09-30

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE)/National Nuclear Security Administration (NNSA), through the Sandia Site Offi ce (SSO), in Albuquerque, NM, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Washington Group International subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2007. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Site Offi ce (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting Manual (DOE 2007).

  14. Calendar year 2003 : annual site enviromental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    SciTech Connect

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2004-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2003. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2003) and DOE Order 231.1 Chg 2., Environment, Safety, and Health Reporting (DOE 1996).

  15. Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    SciTech Connect

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2003-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

  16. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    SciTech Connect

    NSTec Environmental Management

    2009-05-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  17. On-site fuel cell field test support program. Annual report Jul 81-Jun 82

    SciTech Connect

    Staniunas, J.W.; Merten, G.P.

    1982-09-01

    United continued this past year to assist the utilities and the Gas Research Institute in the review and selection of sites for data monitoring. Each of these sites will be instrumented and its energy requirements monitored and analyzed for one year prior to the selection of 40 Kilowatt fuel cell field test sites. Analyses in support of the selection of sites for instrumentation continued to show that many building sectors offered considerable market potential. These sectors include nursing home, health club, restaurant, industrial, hotel/motel and apartment.

  18. ANNUAL TRANSPORTATION REPORT FY 2007, Radioactive Waste Shipments to and from the Nevada Test Site (NTS)

    SciTech Connect

    DOE NNSA NEVADA SITE OFFICE

    2007-12-01

    In February 1997, the U.S. Department of Energy, Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site Radioactive Waste Management Site at Area 5. No shipments were disposed of at Area 3 in fiscal year 2007. This document satisfies requirements regarding low-level radioactive waste and mixed low-level radioactive waste transported to or from the NTS during fiscal year 2007.

  19. Geologic, geochemical, microbiologic, and hydrologic characterization at the In Situ Redox Manipulation Test Site

    SciTech Connect

    Vermeul, V.R.; Teel, S.S.; Amonette, J.E.

    1995-07-01

    This report documents results from characterization activities at the In Situ Redox Manipulation (ISRM) Field Test Site which is located within the 100-HR-3 Operable Unit of the US Department of Energy`s (DOE`s) Hanford Site in Richland, Washington. Information obtained during hydrogeologic characterization of the site included sediment physical properties, geochemical properties, microbiologic population data, and aquifer hydraulic properties. The purpose of obtaining this information was to improve the conceptual understanding of the hydrogeology beneath the ISRM test site and provide detailed, site specific hydrogeologic parameter estimates. The resulting characterization data will be incorporated into a numerical model developed to simulate the physical and chemical processes associated with the field experiment and aid in experiment design and interpretation.

  20. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2009-02-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. No shipments were disposed of at Area 3 in fiscal year (FY) 2008. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during FY 2008. No transuranic (TRU) waste shipments were made from or to the NTS during FY 2008.

  1. Corrective Action Investigation Plan for Corrective Action Unit 370: T-4 Atmospheric Test Site, Nevada Test Site, Nevada with ROTC-1, Revision 0

    SciTech Connect

    Pat Matthews

    2008-04-01

    Corrective Action Unit (CAU) 370 is located in Area 4 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 370 is comprised of Corrective Action Site (CAS) 04-23-01, Atmospheric Test Site T-4. This site is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and/or implement a corrective action. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The investigation results may also be used to evaluate improvements in the Soils Project strategy to be implemented. The site will be investigated based on the data quality objectives (DQOs) developed on December 10, 2007, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Desert Research Institute; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 370. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to the CAS. The scope of the CAI for CAU 370 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys. • Perform field screening. • Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern are present. • If contaminants of concern are present, collect samples to define the extent of the

  2. Gene Tree Affects Inference of Sites Under Selection by the Branch-Site Test of Positive Selection

    PubMed Central

    Diekmann, Yoan; Pereira-Leal, José B.

    2015-01-01

    The branch-site test of positive selection is a standard approach to detect past episodic positive selection in a priori-specified branches of a gene phylogeny. Here, we ask if differences in the topology of the gene tree have any influence on the ability to infer positively selected sites. Using simulated sequences, we compare the results obtained for true and rearranged topologies. We find a strong relationship between “conflicting branch length,” which occurs when the set of sequences that experiences selection for a given topology and foreground is changed, and the ability to predict positively selected sites. Moreover, by reanalyzing a previously published data set, we show that the choice of a gene tree also affects the results obtained for real-world sequences. This is the first study to demonstrate that tree topology has a clear effect on the inference of positive selection. We conclude that the choice of a gene tree is an important factor for the branch-site analysis of positive selection. PMID:26819542

  3. Microwave radiometer experiment of soil moisture sensing at BARC test site during summer 1981

    NASA Technical Reports Server (NTRS)

    Wang, J.; Jackson, T.; Engman, E. T.; Gould, W.; Fuchs, J.; Glazer, W.; Oneill, P.; Schmugge, T. J.; Mcmurtrey, J., III

    1984-01-01

    Soil moisture was measured by truck mounted microwave radiometers at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz. The soil textures in the two test sites were different so that the soil type effect of microwave radiometric response could be studied. Several fields in each test site were prepared with different surface roughnesses and vegetation covers. Ground truth on the soil moisture, temperature, and the biomass of the vegetation was acquired in support of the microwave radiometric measurements. Soil bulk density for each of the fields in both test sites was sampled. The soils in both sites were measured mechanically and chemically. A tabulation of the measured data is presented and the sensors and operational problems associated with the measurements are discussed.

  4. Desert Research and Technology Studies (RATS) Local and Remote Test Sites

    NASA Technical Reports Server (NTRS)

    Janoiko, Barbara; Kosmo, Joseph; Eppler, Dean

    2007-01-01

    Desert RATS (Research and Technology Studies) is a combined group of inter-NASA center scientists and engineers, collaborating with representatives of industry and academia, for the purpose of conducting remote field exercises. These exercises provide the capability to validate experimental hardware and software, to evaluate and develop mission operational techniques, and to identify and establish technical requirements applicable for future planetary exploration. D-RATS completed its ninth year of field testing in September 2006. Dry run test activities prior to testing at designated remote field site locations are initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. The majority of the remote field tests have been subsequently conducted in various high desert areas adjacent to Flagstaff, Arizona. Both the local JSC and remote field test sites have terrain conditions that are representative of both the Moon and Mars, such as strewn rock and volcanic ash fields, meteorite crater ejecta blankets, rolling plains, hills, gullies, slopes, and outcrops. Flagstaff is the preferred remote test site location for many reasons. First, there are nine potential test sites with representative terrain features within a 75-mile radius. Second, Flagstaff is the location of the United States Geologic Survey (USGS)/Astrogeology Branch, which historically supported Apollo astronaut geologic training and currently supports and provides host accommodations to the D-RATS team. Finally, in considering the importance of logistics in regard to providing the necessary level of support capabilities, the Flagstaff area provides substantial logistics support and lodging accommodations to take care of team members during long hours of field operations.

  5. Hydraulic testing of Salado Formation evaporites at the Waste Isolation Pilot Plant site: Second interpretive report

    SciTech Connect

    Beauheim, R.L.; Roberts, R.M.; Dale, T.F.; Fort, M.D.; Stensrud, W.A.

    1993-12-01

    Pressure-pulse, constant-pressure flow, and pressure-buildup tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Transmissivities have been interpreted from six sequences of tests conducted on five stratigraphic intervals within 15 m of the WIPP underground excavations.

  6. Environmental Assessment and Finding of No Significant Impact: The Nevada Test Site Development Corporations's Desert Rock Sky Park at the Nevada Test Site

    SciTech Connect

    N /A

    2000-03-01

    The United States Department of Energy has prepared an Environmental Assessment (DOE/EA-1300) (EA) which analyzes the potential environmental effects of developing operating and maintaining a commercial/industrial park in Area 22 of the Nevada Test Site, between Mercury Camp and U.S. Highway 95 and east of Desert Rock Airport. The EA evaluates the potential impacts of infrastructure improvements necessary to support fill build out of the 512-acre Desert Rock Sky Park. Two alternative actions were evaluated: (1) Develop, operate and maintain a commercial/industrial park in Area 22 of the Nevada Test Site, and (2) taking no action. The purpose and need for the commercial industrial park are addressed in Section 1.0 of the EA. A detailed description of the proposed action and alternatives is in section 2.0. Section 3.0 describes the affected environment. Section 4.0 the environmental consequences of the proposed action and alternative. Cumulative effects are addressed in Section 5.0. Mitigation measures are addressed in Section 6.0. The Department of Energy determined that the proposed action of developing, operating and maintaining a commercial/industrial park in Area 22 of the Nevada Test Site would best meet the needs of the agency.

  7. Characterization ReportOperational Closure Covers for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    SciTech Connect

    Bechtel Nevada Geotechnical Sciences

    2005-06-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Area 3 RWMS is located in south-central Yucca Flat and the Area 5 RWMS is located about 15 miles south, in north-central Frenchman Flat. Though located in two separate topographically closed basins, they are similar in climate and hydrogeologic setting. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste, while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. Over the next several decades, most waste disposal units at both the Area 3 and Area 5 RWMSs are anticipated to be closed. Closure of the Area 3 and Area 5 RWMSs will proceed through three phases: operational closure, final closure, and institutional control. Many waste disposal units at the Area 5RWMS are operationally closed and final closure has been placed on one unit at the Area 3 RWMS (U-3ax/bl). Because of the similarities between the two sites (e.g., type of wastes, environmental factors, operational closure cover designs, etc.), many characterization studies and data collected at the Area 3 RWMS are relevant and applicable to the Area 5 RWMS. For this reason, data and closure strategies from the Area 3 RWMS are referred to as applicable. This document is an interim Characterization Report – Operational Closure Covers, for the Area 5 RWMS. The report briefly describes the Area 5 RWMS and the physical environment where it is located, identifies the regulatory requirements, reviews the approach and schedule for closing, summarizes the monitoring programs, summarizes characterization studies and results, and then presents conclusions and recommendations.

  8. Assessment of hydrologic transport of radionuclides from the Gnome underground nuclear test site, New Mexico

    SciTech Connect

    Earman, S.; Chapman, J.; Pohlmann, K.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary site risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gnome site in southeastern New Mexico was the location of an underground detonation of a 3.5-kiloton nuclear device in 1961, and a hydrologic tracer test using radionuclides in 1963. The tracer test involved the injection of tritium, {sup 90}Sr, and {sup 137}Cs directly into the Culebra Dolomite, a nine to ten-meter-thick aquifer located approximately 150 in below land surface. The Gnome nuclear test was carried out in the Salado Formation, a thick salt deposit located 200 in below the Culebra. Because salt behaves plastically, the cavity created by the explosion is expected to close, and although there is no evidence that migration has actually occurred, it is assumed that radionuclides from the cavity are released into the overlying Culebra Dolomite during this closure process. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides may be present in concentrations exceeding drinking water regulations outside the drilling exclusion boundary established by DOE. Calculated mean tritium concentrations peak at values exceeding the U.S. Environmental Protection Agency drinking water standard of 20,000 pCi/L at distances of up to almost eight kilometers west of the nuclear test.

  9. Migration of fission products at the Nevada Test Site: Detection with an isotopic tracer

    SciTech Connect

    Thompton, J.L.; Gilmore, J.S. )

    1989-01-01

    Researchers at Los Alamos National Laboratory are studying the migration of fission products away from explosion cavities formed by underground nuclear tests at the Nevada Test Site. In some cases, the isotopic composition of the fission products or activation products associated with a particular test are distinctive and we may identify them many years after the event. In this paper we describe a case in which we used rhodium isotopes to identify the source of radioactive material that had moved some 350 m from the explosion site. 4 refs., 2 figs., 2 tabs.

  10. Role of underground testing to determine suitability of Yucca Mountain as a potential repository site

    SciTech Connect

    Kalia, H.N.

    1990-02-01

    A brief description of the Exploratory Shaft based site characterization testing program for the Yucca Mountain Project of the permanent disposal of high level radioactive waste is briefly described in this paper. Details of the testing program are presented in the DOE-issued Site Characterization Plan. Overview of the current planning process and status of various activities is briefly described. This study will reevaluate the mining method, ESF location and any changes in the ESF testing program. 2 refs., 2 figs., 1 tab.

  11. ASME N510 test results for Savannah River Site AACS filter compartments

    SciTech Connect

    Paul, J.D.; Punch, T.M.

    1995-02-01

    The K-Reactor at the Savannah River Site recently implemented design improvements for the Airborne Activity Confinement System (AACS) by procuring, installing, and testing new Air Cleaning Units, or filter compartments, to ASME AG-11, N509, and N510 requirements. Specifically, these new units provide documentable seismic resistance to a Design Basis Accident earthquake, provide 2 inch adsorber beds with 0.25 second residence time, and meet all AG-1, N509, and N510 requirements for testability and maintainability. This paper presents the results of the Site acceptance testing and discusses an issue associated with sample manifold qualification testing.

  12. Effects of groundwater on radionuclides buried at the Nevada Test Site

    SciTech Connect

    Martinez, B.A.; Maestas, S.; Thompson, J.L.

    1997-12-31

    A large fraction of the radioactive source from a nuclear test is confined to the cavity created by the event. A {open_quotes}melt glass{close_quotes} accumulates at the bottom of the cavity where the highest concentrations of refractory radionuclides (e.g., Zr-95, Eu-155, Pu-239) are found. Most of the movement of radionuclides underground at the Nevada Test Site occurs through the agency of moving groundwater. Results from samples that were taken from the cavity formed in 1981 by the underground test named Baseball indicate that radioactive materials have remained where they were deposited during the formation of the cavity and chimney. There may not be a mechanism for radionuclides to migrate at this location due to small hydraulic gradients and a low hydraulic conductivity. The study done at this site offers further evidence that extensive migration of radioactive materials away from underground nuclear test sites does not occur in the absence of appreciable groundwater movement.

  13. On-site testing of illicit drugs: the use of the drug-testing device "Toxiquick".

    PubMed

    Biermann, T; Schwarze, B; Zedler, B; Betz, P

    2004-06-30

    Since 1998, driving under the influence of drugs such as amphetamine, MDMA, MDE, cannabis, cocaine, heroine and morphine is sanctioned due to Section 24a of the Road Traffic Regulations of Germany. Therefore, from December 2000 to June 2002 altogether 751 roadside tests with the immunochemical test device Toxiquick were conducted on 302 drivers (273 male and 29 female) on oral fluid samples obtained during control actions in Franconia. The results of the tests are compared to the results obtained through quantification of corresponding blood samples by GC/MS. In general, in 75% the roadside test produced correct results and therefore gave helpful assistance to the police officers into the right direction regarding drug abuse. Except for cannabinoids, the number of false negative results was relatively small, whereas false positive results ranged between 32.2% for opiates and 10.7% for benzoylecgonine. PMID:15177627

  14. Analysis of the rock mechanics properties of volcanic tuff units from Yucca Mountain, Nevada Test Site

    SciTech Connect

    Price, R. H.

    1983-08-01

    Over two hundred fifty mechanical experiments have been run on samples of tuff from Yucca Mountain, Nevada Test Site. Cores from the Topopah Spring, Calico Hills, Bullfrog and Tram tuff units were deformed to collect data for an initial evaluation of mechanical (elastic and strength) properties of the potential horizons for emplacement of commercial nuclear wastes. The experimental conditions ranged in sample saturation from room dry to fully saturated, confining pressure from 0.1 to 20 MPa, pore pressure from 0.1 to 5 MPa, temperature from 23 to 200{sup 0}C, and strain rate from 10{sup -7} to 10{sup -2} s{sup -1}. These test data have been analyzed for variations in elastic and strength properties with changes in test conditions, and to study the effects of bulk-rock characteristics on mechanical properties. In addition to the site-specific data on Yucca Mountain tuff, mechanical test results on silicic tuff from Rainier Mesa, Nevada Test Site, are also discussed. These data both overlap and augment the Yucca Mountain tuff data, allowing more definitive conclusions to be reached, as well as providing data at some test conditions not covered by the site-specific tests.

  15. Compilation of modal analyses of volcanic rocks from the Nevada Test Site area, Nye County, Nevada

    SciTech Connect

    Page, W.R.

    1990-10-01

    Volcanic rock samples collected from the Nevada Test Site, Nye County, Nevada, between 1960 and 1985 were analyzed by thin section to obtain petrographic mode data. In order to provide rapid accessibility to the entire database, all data from the cards were entered into a computerized database. This computer format will enable workers involved in stratigraphic studies in the Nevada Test Site area and other locations in southern Nevada to perform independent analyses of the data. The data were compiled from the mode cards into two separate computer files. The first file consists of data collected from core samples taken from drill holes in the Yucca Mountain area. The second group of samples were collected from measured sections and surface mapping traverses in the Nevada Test Site area. Each data file is composed of computer printouts of tables with mode data from thin section point counts, comments on additional data, and location data. Tremendous care was taken in transferring the data from the cards to computer, in order to preserve the original information and interpretations provided by the analyzer. In addition to the data files above, a file is included that consists of Nevada Test Site petrographic data published in other US Geological Survey and Los Alamos National Laboratory reports. These data are presented to supply the user with an essentially complete modal database of samples from the volcanic stratigraphic section in the Nevada Test Site area. 18 refs., 4 figs.

  16. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    SciTech Connect

    NSTec Environmental Programs

    2010-03-31

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by

  17. The potential of an earthworm avoidance test for evaluation of hazardous waste sites

    SciTech Connect

    Yeardley, R.B. Jr.; Gast, L.C.; Lazorchak, J.M.

    1996-09-01

    An earthworm avoidance test has potential advantages for use in evaluation of hazardous wastes sites. Because organisms often exhibit behavioral responses at lower levels of stress than those that acute toxicity tests are able to detect, avoidance tests could provide increased sensitivity to hazardous chemicals. Avoidance is an ecologically relevant endpoint that neither acute nor sublethal tests measure. Avoidance can potentially indicate sublethal stress in a short period of time, testing is easily done in a soil matrix, and an avoidance test has the potential for specialized applications for soil testing. Dual-control test data established that, in absence of a toxicant, worms did not congregate, but instead distributed themselves fairly randomly with respect to the two sides of the test chambers, that is, they did not display behavior that might be mistaken for avoidance. In tests with artificial soil spiked with reference toxicants and hazardous site soils, worms avoided soils containing various toxic chemicals. Avoidance behavior proved in most cases be a more sensitive indicator of chemical contamination than acute tests. Determination of avoidance was possible in 1 to 2 d, much less than the current duration of acute and sublethal earthworm tests.

  18. Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada

    SciTech Connect

    V. Yucel

    2001-09-01

    This report summarizes the results of a Composite Analysis (CA) for the Area 5 Radioactive Waste Management Site (RWMS). The Area 5 RWMS is a US Department of Energy (DOE)-operated low-level radioactive waste (LLW) management site located in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS has disposed of low-level radioactive waste in shallow unlined pits and trenches since 1960. Transuranic waste (TRU) and high-specific activity waste was disposed in Greater Confinement Disposal (GCD) boreholes from 1983 to 1989. The purpose of this CA is to determine if continuing operation of the Area 5 RWMS poses an acceptable or unacceptable risk to the public considering the total waste inventory and all other interacting sources of radioactive material in the vicinity. Continuing operation of the Area 5 RWMS will be considered acceptable if the total effective dose equivalent (TEDE) is less than 100 mrem in a year. If the TEDE exceeds 30 mrem in a year, a cost-benefit options analysis must be performed to determine if cost-effective management options exist to reduce the dose further. If the TEDE is found to be less than 30 mrem in a year, an analysis may be performed if warranted to determine if doses are as low as reasonably achievable (ALARA).

  19. Annual Report - FY 2001, Radioactive Waste Shipments To and From the Nevada Test Site, February 2002

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration, Nevada Operations Office

    2002-02-01

    In February 1997, the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV) issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). NNSA/NV committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMSs) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY 2001).

  20. Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    Wickline, Alfred

    2006-12-01

    Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present

  1. Industrial Sites Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (including Record of Technical Change Nos. 1, 2, 3, and 4)

    SciTech Connect

    DOE /NV

    1998-12-18

    This Leachfield Corrective Action Units (CAUs) Work Plan has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the U.S. Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the U.S. Department of Defense (FFACO, 1996). Under the FFACO, a work plan is an optional planning document that provides information for a CAU or group of CAUs where significant commonality exists. A work plan may be developed that can be referenced by leachfield Corrective Action Investigation Plans (CAIPs) to eliminate redundant CAU documentation. This Work Plan includes FFACO-required management, technical, quality assurance (QA), health and safety, public involvement, field sampling, and waste management documentation common to several CAUs with similar site histories and characteristics, namely the leachfield systems at the Nevada Test Site (NTS) and the Tonopah Test Range (TT R). For each CAU, a CAIP will be prepared to present detailed, site-specific information regarding contaminants of potential concern (COPCs), sampling locations, and investigation methods.

  2. Concentration of Actinides in Plant Mounds at Safety Test Nuclear Sites in Nevada

    SciTech Connect

    David S. Shafer; Jenna Gommes

    2008-09-15

    Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around large shrubs and are common features in deserts in the southwestern United States. Believed to be an important factor in their formation, the shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, {sup 241}Am, and U in plant mounds at safety test sites. The NAEG studies found concentrations of these contaminants to be greater in shrub mounds than in the surrounding areas of desert pavement. For example, at Project 57 on the NTTR, it was estimated that 15 percent of the radionuclide inventory of the site was associated with shrub mounds, which accounted for 17 percent of the surface area of the site, a ratio of inventory to area of 0.85. At Clean Slate III at the TTR, 29 percent of the inventory was associated with approximately 32 percent of the site covered by shrub mounds, a ratio of 0.91. While the total inventory of radionuclides in intershrub areas was greater, the ratio of radionuclide inventory to area was 0.40 and 0.38, respectively, at the two sites. The comparison between the shrub mounds and adjacent desert pavement areas was made for only the top 5 cm since radionuclides at safety test sites are concentrated in the top 5 cm of intershrub areas. Not accounting for radionuclides associated with the shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. As part of its Environmental Restoration Soils Subproject, the U.S. Department of Energy (DOE), National Nuclear

  3. Post-Closure Strategy for Use-Restricted Sites on the Nevada National Security Site, Nevada Test and Training Range, and Tonopah Test Range, Nevada

    SciTech Connect

    Silvas, A. J.

    2014-03-26

    The purpose of this Post-Closure Strategy is to provide a consistent methodology for continual evaluation of post-closure requirements for use-restricted areas on the Nevada National Security Site (NNSS), Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR) to consolidate, modify, or streamline the program. In addition, this document stipulates the creation of a single consolidated Post-Closure Plan that will detail the current post-closure requirements for all active use restrictions (URs) and outlines its implementation and subsequent revision. This strategy will ensure effective management and control of the post-closure sites. There are currently over 200 URs located on the NNSS, NTTR, and TTR. Post-closure requirements were initially established in the Closure Report for each site. In some cases, changes to the post-closure requirements have been implemented through addenda, errata sheets, records of technical change, or letters. Post-closure requirements have been collected from these multiple sources and consolidated into several formats, such as summaries and databases. This structure increases the possibility of inconsistencies and uncertainty. As more URs are established and the post-closure program is expanded, the need for a comprehensive approach for managing the program will increase. Not only should the current requirements be obtainable from a single source that supersedes all previous requirements, but the strategy for modifying the requirements should be standardized. This will enable more effective management of the program into the future. This strategy document and the subsequent comprehensive plan are to be implemented under the assumption that the NNSS and outlying sites will be under the purview of the U.S. Department of Energy, National Nuclear Security Administration for the foreseeable future. This strategy was also developed assuming that regulatory control of the sites remains static. The comprehensive plan is not

  4. Safety-analysis report. MISR qualification test system and test site (Modular Industrial Solar Retrofit Project)

    SciTech Connect

    Alvis, R.L.

    1982-09-01

    The basic Modular Industrial Solar Retrofit (MISR) system has only thermal energy output, incorporates only line-focus type solar collectors, is modular in design, and is capable of operating in an unattended mode. The purpose of the reported safety analysis is to address (1) the potential hazards to the health and safety of the public and Laboratory personnel at Sandia National Laboratories, where qualification testing is to be done, and (2) the adequateness of the protection provided to environment, personnel, and property resulting from the operation and testing of the MISR qualifications test system (QTS). All potential hazards of the MISR systems not routinely encountered and/or accepted by the general public are assessed. These include hazards related to hot surfaces and heat transfer fluids and rotating machinery and optical hazards. Safe operating procedures and emergency procedures are discussed. (LEW)

  5. The Cambric Ditch at the Nevada Test Site as a Long-term Vadose Zone Test Bed

    NASA Astrophysics Data System (ADS)

    Tompson, A. F.; Hunt, J. R.; Hudson, G. B.

    2004-12-01

    Atomic weapons testing at the Nevada Test Site introduced many tracers for quantifying hydrologic transport processes in arid climates. The particular experiment at the Cambric site in Frenchman Flat represents an ongoing 29-year field test that could never be repeated and continues to offer opportunities for vadose zone studies. The Cambric test released the energy yield equivalent of 0.75 kt of TNT when it was detonated 294 m below the land surface and 73 m below the water table in Frenchman Flat in May 1965. Beginning in 1975, groundwater was pumped steadily from a well located 91 m from the detonation point in order to elicit information on radionuclide migration. The pumping well effluent was monitored, discharged to an unlined ditch, and allowed to flow towards a dry lake 1.6 km away. Approximately one third of this flow was lost to infiltration. Over the next 16 years, pumped groundwater was shown to contain tritium, fission products (technetium-99, iodine-129) and activation products (chlorine-36), all of which can be used to trace water flow in the vadose zone. Bromide was also added as an additional tracer into the ditch. Multi-year records exist for water migration in the shallow vadose zone along with temperature profiles. Over the course of the pumping experiment, vegetation developed in and near the ditch, providing an additional pathway for water loss by transpiration and selective radionuclide transport. Significant water has not flowed in the ditch since 1991 and the site remains an ideal analog site for the studying drying in arid climates, the adaptability of vegetation under changing water conditions, and the use of helium-3 as a tracer of soil-atmosphere exchange and vadose zone - groundwater interactions. In addition, there is evidence that tritiated water and chlorine-36 have infiltrated over 200 meters vertically in the vadose zone and have become a source term for groundwater contamination. The Cambric Ditch remains as a field site ideally

  6. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2009-06-30

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as “Aboveground Storage Tanks” and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: · CAS 03-01-03, Aboveground Storage Tank · CAS 03-01-04, Tank · CAS 15-01-05, Aboveground Storage Tank · CAS 29-01-01, Hydrocarbon Stain

  7. Closure Report for Housekeeping Category Corrective Action Unit 524 Nevada Test Site Nevada

    SciTech Connect

    A. T. Urbon

    2000-11-01

    This Closure Report for Corrective Action Unit (CAU) 524 summarizes the disposition of four Corrective Action Sites (CAS) located in Area 25 of the Nevada Test Site, Nevada. The table listed in the report provides a description of each CAS and the status of its associated waste as listed in the ''Federal Facilities Agreement and Consent Order'' (FFACO, 1996). Copies of the Sectored Housekeeping Site Closure Verification Form for each CAS are included as Attachment A. Two of the sites required sampling for waste disposal purposes, CAS 25-22-18 and 25-22-20. The material sampled at these two sites were found to be not hazardous. Results of the sampling are included in Attachment B.

  8. Permeability testing of fractures in climax stock granite at the Nevada Test Site

    SciTech Connect

    Murray, W.A.

    1980-12-31

    Permeability tests conducted in the Climax stock granitic rock mass indicate that the bulk rock permeability can be highly variable. If moderately to highly fractured zones are encountered, the permeability values may lie in the range of 10{sup -4} to 10{sup -1} darcies. If, on the other hand, only intact rock or healed fractures are encountered, the permeability is found to be less than 10{sup -9} darcies. In order to assess the thermomechanical effect on fracture permeability, discrete fractures will be packed off and tested periodically throughout the thermal cycle caused by the emplacement of spent nuclear fuel in the Climax stock.

  9. Corrective Action Investigation Plan for Corrective Action Unit 557: Spills and Tank Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Alfred Wickline

    2008-07-01

    Corrective Action Unit (CAU) 557 is located in Areas 1, 3, 6, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada, and is comprised of the four corrective action sites (CASs) listed below: • 01-25-02, Fuel Spill • 03-02-02, Area 3 Subdock UST • 06-99-10, Tar Spills • 25-25-18, Train Maintenance Bldg 3901 Spill Site These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 3, 2008, by representatives of the Nevada Division of Environmental Protection (NDEP); U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 557. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 557 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological survey at CAS 25-25-18. • Perform field screening. • Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern are present. • If contaminants of concern are present, collect additional step

  10. Integrated test plan for crosswell compressional and shear wave seismic tomography for site characterization at the VOC Arid Site

    SciTech Connect

    Elbring, G.J.; Narbutovskih, S.M.

    1994-02-01

    This integrated test plan describes the demonstration of the crosswell acoustic tomography technique as part of the Volatile Organic Compounds-Arid Integrated Demonstration (VOC-Arid ID). The purpose of this demonstration is to image the subsurface seismic velocity structure and to relate the resulting velocity model to lithology and saturation. In fiscal year (FY) 1994 an initial fielding will test three different downhole sources at two different sites at the Hanford US Department of Energy facility to identify which sources will provide the energy required to propagate between existing steel-cased wells at these two sites. Once this has been established, a second fielding will perform a full compressional and shear wave tomographic survey at the most favorable site. Data reduction, analysis, and interpretation of this full data set will be completed by the end of this fiscal year. Data collection for a second survey will be completed by the end of the fiscal year, and data reduction for this data set will be completed in FY 1995. The specific need is detailed subsurface characterization with minimum intrusion. This technique also has applications for long term vadose zone monitoring for both Resource Conservation and Recovery Act (RCRA) waste storage facilities and for remediation monitoring. Images produced are continuous between boreholes. This is a significant improvement over the single point data derived solely from core information. Saturation changes, either naturally occurring (e.g., perched water tables) or remediation induced (e.g., water table mounding from injection wells or during inwell air sparging) could be imaged. These crosswell data allow optimal borehole placement for groundwater remediation, associated monitoring wells and possibly evaluation of the effective influence of a particular remediation technique.

  11. Assessment of hydrologic transport of radionuclides from the Rio Blanco underground nuclear test site, Colorado

    SciTech Connect

    Chapman, J.; Earman, S.; Andricevic, R.

    1996-10-01

    DOE is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations used for nuclear testing. Evaluation of radionuclide transport by groundwater is part of preliminary risk analysis. These evaluations allow prioritization of test areas in terms of risk, provide a basis for discussions with regulators and the public about future work, and provide a framework for assessing site characterization data needs. The Rio Blanco site in Colorado was the location of the simultaneous detonation of three 30-kiloton nuclear devices. The devices were located 1780, 1899, and 2039 below ground surface in the Fort Union and Mesaverde formations. Although all the bedrock formations at the site are thought to contain water, those below the Green River Formation (below 1000 in depth) are also gas-bearing, and have very low permeabilities. The transport scenario evaluated was the migration of radionuclides from the blast-created cavity through the Fort Union Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. This modeling was performed to investigate how the uncertainty in various physical parameters affect radionuclide transport at the site, and to serve as a starting point for discussion regarding further investigation; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values. Given the sparse data, the modeling results may differ significantly from reality. Confidence in transport predictions can be increased by obtaining more site data, including the amount of radionuclides which would have been available for transport (i.e., not trapped in melt glass or vented during gas flow testing), and the hydraulic properties of the formation. 38 refs., 6 figs., 1 tab.

  12. From regional to site specific SPTHA through inundation simulations: a case study for three test sites in Central Mediterranean

    NASA Astrophysics Data System (ADS)

    Selva, Jacopo; Tonini, Roberto; Romano, Fabrizio; Volpe, Manuela; Brizuela, Beatriz; Piatanesi, Alessio; Basili, Roberto; Lorito, Stefano

    2016-04-01

    We propose a procedure that enables the quantification of tsunami hazard at specific target sites through numerical simulations, accounting for the full variability of potential seismic sources. To this end, we developed a method that reduces the computational effort required by a very large number of detailed inundation simulations by adopting the offshore tsunami propagation patterns used for regional Seismic PTHA (SPTHA) as a proxy for the subsequent hazard estimate. The reduction of the computational effort is based on a two steps filtering procedure of the offshore SPTHA, through which a reduced number of scenarios to be modelled for inundation is selected. Each scenario represents a larger set of sources that form a cluster of potential tsunamis with similar impact on the target area. This filtering procedure is completely based on the tsunami profiles offshore, and it represents a generalization of the method proposed in Lorito et al. (2015) allowing i) to consider a much larger set of input linear simulations, and ii) to control the within-cluster variance of each selected cluster of seismic sources (thence, indirectly the artificial uncertainty introduced in probabilistic inundation maps by this filtering process). Here we present the preliminary results obtained for three test sites in central Mediterranean (Milazzo and Siracusa, Southern Italy, and Thessaloniki, Northern Greece). We preliminary perform a regional SPTHA covering the whole Mediterranean, in which the aleatory variability is quantified considering about 2 × 107 different seismic sources, and epistemic uncertainty is explored through an ensemble model based on more than ×105 alternative model implementations. For each site, separately, few hundreds of "representative scenarios" are filtered out of all the potential seismic sources. Then, the inundations caused by such scenarios is explicitly modelled and the site-specific SPTHA obtained, allowing a complete characterization of the tsunami

  13. Reactor-pumped laser facility at DOE`s Nevada Test Site

    SciTech Connect

    Lipinski, R.J.

    1994-02-01

    The Nevada Test Site (NTS) is one excellent possibility for a laser power beaming site. It is in the low latitudes of the US, is in an exceptionally cloud-free area of the southwest, is already an area of restricted access (which enhances safety considerations), and possesses a highly-skilled technical team with extensive engineering and research capabilities from underground testing of our nation`s nuclear deterrence. The average availability of cloud-free clear line of site to a given point in space is about 84%. With a beaming angle of {plus_minus}60{degree} from the zenith, about 52 geostationary-orbit (GEO) satellites could be accessed continuously from NTS. In addition, the site would provide an average view factor of about 10% for orbital transfer from low earth orbit to GEO. One of the major candidates for a long-duration, high-power laser is a reactor-pumped laser being developed by DOE. The extensive nuclear expertise at NTS makes this site a prime candidate for utilizing the capabilities of a reactor pumped laser for power beaming. The site then could be used for many dual-use roles such as industrial material processing research, defense testing, and removing space debris.

  14. Housekeeping Closure Report for Corrective Action Unit 119: Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office

    2000-06-26

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, US Department of Energy, and US Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts to the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purpose of determining appropriate corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 19 CASs with in CAU 119 on the NTS. The form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Activities included verification of the prior removal of both aboveground and underground gas/oil storage tanks, gas sampling tanks, pressure fuel tanks, tank stands, trailers, debris, and other material. Based on these former activities, no further action is required at these CASs.

  15. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 204: STORAGE BUNKERS, NEVADA TEST SITE, NEVADA

    SciTech Connect

    2006-04-01

    Corrective Action Unit (CAU) 330 consists of four Corrective Action Sites (CASs) located in Areas 6, 22, and 23 of the Nevada Test Site (NTS). The unit is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites. CAU 330 consists of the following CASs: CAS 06-02-04, Underground Storage Tank (UST) and Piping CAS 22-99-06, Fuel Spill CAS 23-01-02, Large Aboveground Storage Tank (AST) Farm CAS 23-25-05, Asphalt Oil Spill/Tar Release

  16. Construction management at the SP-100 Ground Engineering System Test Site

    SciTech Connect

    Burchell, G.P.; Wilson, L.R.

    1990-05-01

    The SP-100 Ground Engineering System (GES) Test Site is planned for construction at the US Department of Energy`s Hanford Site in Southeastern Washington. This project provides the Hanford Site contractors with a unique opportunity to showcase a number of design and construction innovations that significantly lower the design and construction costs while providing a facility that will effectively meet all of its design objectives. This paper will explain the organization and management of the SP-100 project, specifically those activities relating to facility design modification and construction management, as performed through the joint efforts of Westinghouse Hanford Company (Westinghouse Hanford) and Kaiser Engineers Hanford (KEH).

  17. Analysis of ER-12-3 FY 2005 Hydrologic Testing, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    SciTech Connect

    Bill Fryer

    2006-07-01

    This report documents the analysis of data collected for ER-12-3 during the fiscal year (FY) 2005 Rainier Mesa/Shoshone Mountain well development and hydraulic testing program (herein referred to as the ''testing program''). Well ER-12-3 was constructed and tested as a part of the Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain, Phase I drilling program during FY 2005. These activities were conducted on behalf of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) for the Underground Test Area (UGTA) Project. As shown on Figure 1-1, ER-12-3 is located in central Rainier Mesa, in Area 12 of the Nevada Test Site (NTS). Figure 1-2 shows the well location in relation to the tunnels under Rainier Mesa. The well was drilled to a total depth (TD) of 4,908 feet (ft) below ground surface (bgs) (surface elevation 7,390.8 ft above mean sea level [amsl]) in the area of several tunnels mined into Rainier Mesa that were used historically for nuclear testing (NNSA/NSO, 2006). The closest nuclear test to the well location was YUBA (U-12b.10), conducted in the U-12b Tunnel approximately 1,529 ft northeast of the well site. The YUBA test working point elevation was located at approximately 6,642 ft amsl. The YUBA test had an announced yield of 3.1 kilotons (kt) (SNJV, 2006b). The purpose of this hydrogeologic investigation well is to evaluate the deep Tertiary volcanic section below the tunnel level, which is above the regional water table, and to provide information on the section of the lower carbonate aquifer-thrust plate (LCA3) located below the Tertiary volcanic section (SNJV, 2005b). Details on the drilling and completion program are presented in the ''Completion Report for Well ER-12-3 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain'' (NNSA/NSO, 2006). Development and hydraulic testing of ER-12-3 took place between June 3 and July 22, 2005. The development objectives included removing residual

  18. Electrical studies at the proposed Wahmonie and Calico Hills nuclear waste sites, Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Hoover, D.B.; Chornack, Michael P.; Nervick, K.H.; Broker, M.M.

    1982-01-01

    Two sites in the southwest quadrant of the Nevada Test Site (NTS) were investigated as potential repositories for high-level nuclear waste. These are designated the Wahmonie and Calico Hills sites. The emplacement medium at both sites was to be an inferred intrusive body at shallow depth; the inference of the presence of the body was based on aeromagnetic and regional gravity data. This report summarizes results of Schlumberger VES, induced polarization dipole-dipole traverses and magnetotelluric soundings made in the vicinity of the sites in order to characterize the geoelectric section. At the Wahmonie site VES work identified a low resistivity unit at depth surrounding the inferred intrusive body. The low resistivity unit is believed to be either the argillite (Mississippian Eleana Formation) or a thick unit of altered volcanic rock (Tertiary). Good electrical contrast is provided between the low resistivity unit and a large volume of intermediate resistivity rock correlative with the aeromagnetic and gravity data. The intermediate resistivity unit (100-200 ohm-m) is believed to be the intrusive body. The resistivity values are very low for a fresh, tight intrusive and suggest significant fracturing, alteration and possible mineralization have occurred within the upper kilometer of rock. Induced polarization data supports the VES work, identifies a major fault on the northwest side of the inferred intrusive and significant potential for disseminated mineralization within the body. The mineralization potential is particularly significant because as late as 1928, a strike of high grade silver-gold ore was made at the site. The shallow electrical data at Calico Hills revealed no large volume high resistivity body that could be associated with a tight intrusive mass in the upper kilometer of section. A drill hole UE 25A-3 sunk to 762 m (2500 ft) at the site revealed only units of the Eleana argillite thermally metamorphosed below 396 m (1300 ft) and in part highly

  19. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect

    Matthews, Patrick

    2013-09-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 105 comprises the following five corrective action sites (CASs): -02-23-04 Atmospheric Test Site - Whitney Closure In Place -02-23-05 Atmospheric Test Site T-2A Closure In Place -02-23-06 Atmospheric Test Site T-2B Clean Closure -02-23-08 Atmospheric Test Site T-2 Closure In Place -02-23-09 Atmospheric Test Site - Turk Closure In Place The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  20. Testing contamination risk assessment methods for toxic elements from mine waste sites

    NASA Astrophysics Data System (ADS)

    Abdaal, A.; Jordan, G.; Szilassi, P.; Kiss, J.; Detzky, G.

    2012-04-01

    Major incidents involving mine waste facilities and poor environmental management practices have left a legacy of thousands of contaminated sites like in the historic mining areas in the Carpathian Basin. Associated environmental risks have triggered the development of new EU environmental legislation to prevent and minimize the effects of such incidents. The Mine Waste Directive requires the risk-based inventory of all mine waste sites in Europe by May 2012. In order to address the mining problems a standard risk-based Pre-selection protocol has been developed by the EU Commission. This paper discusses the heavy metal contamination in acid mine drainage (AMD) for risk assessment (RA) along the Source-Pathway-Receptor chain using decision support methods which are intended to aid national and regional organizations in the inventory and assessment of potentially contaminated mine waste sites. Several recognized methods such as the European Environmental Agency (EEA) standard PRAMS model for soil contamination, US EPA-based AIMSS and Irish HMS-IRC models for RA of abandoned sites are reviewed, compared and tested for the mining waste environment. In total 145 ore mine waste sites have been selected for scientific testing using the EU Pre-selection protocol as a case study from Hungary. The proportion of uncertain to certain responses for a site and for the total number of sites may give an insight of specific and overall uncertainty in the data we use. The Pre-selection questions are efficiently linked to a GIS system as database inquiries using digital spatial data to directly generate answers. Key parameters such as distance to the nearest surface and ground water bodies, to settlements and protected areas are calculated and statistically evaluated using STATGRAPHICS® in order to calibrate the RA models. According to our scientific research results, of the 145 sites 11 sites are the most risky having foundation slope >20o, 57 sites are within distance <500m to the

  1. Structural relationships of pre-Tertiary rocks in the Nevada Test Site region, southern Nevada

    SciTech Connect

    Cashman, P.H.; Cole, J.C.

    1999-08-30

    This report summarizes the evidence for a revised interpretation of major structural features in the pre-Tertiary rocks of the region including and surrounding the Nevada Test Site. The thick miogeoclinal section of Late Proterozoic through Lower Permian sedimentary strata records major foreland-vergent thrust faulting, younger hinterland-vergent folding and thrusting, and local extension on low-angle normal faults. In addition, structural discontinuities in the northeastern part of the Nevada Test Site strongly suggest a broad, north-trending zone of sinistral strike-slip faulting that may have had a cumulative offset of many kilometers.

  2. Site Characterization Data from the U3ax/bl Exploratory Boreholes at the Nevada Test Site

    SciTech Connect

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-08-01

    This report provides qualitative analyses and preliminary interpretations of hydrogeologic data obtained from two 45-degree, slanted exploratory boreholes drilled within the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site. Borehole UE-3bl-D1 was drilled beneath the U3ax/bl mixed waste disposal unit, and Borehole UE-3bl-U1 was drilled in undisturbed alluvium adjacent to the disposal unit. The U3ax/bl disposal unit is located within two conjoined subsidence craters, U3ax and U3bl, which were created by underground nuclear testing. Data from these boreholes were collected to support site characterization activities for the U3ax/bl disposal unit and the entire Area 3 RWMS. Site characterization at disposal units within the Area 3 RWMS must address the possibility that subsidence craters and associated disturbed alluvium of the chimneys beneath the craters might serve as pathways for contaminant migration. The two boreholes were drilled and sampled to compare hydrogeologic properties of alluvium below the waste disposal unit with those of adjacent undisturbed alluvium. Whether Borehole UE-3bl-D1 actually penetrated the chimney of the U3bl crater is uncertain. Analyses of core samples showed little difference in hydrogeologic properties between the two boreholes. Important findings of this study include the following: No hazardous or radioactive constituents of waste disposal concern were found in the samples obtained from either borehole. No significant differences in physical and hydrogeologic properties between boreholes is evident, and no evidence of significant trends with depth for any of these properties was observed. The values observed are typical of sandy materials. The alluvium is dry, with volumetric water content ranging from 5.6 to 16.2 percent. Both boreholes exhibit a slight increase in water content with depth, the only such trend observed. Water potential measurements on core samples from both boreholes show a large positive

  3. Hydrogeologic data for the Bear Creek subsurface-injection test site, St. Petersburg, Florida

    USGS Publications Warehouse

    Hickey, John J.

    1978-01-01

    Lithologic, hydraulic, geophysical, and water-quality data were collected at the Bear Creek subsurface-injection test site at St. Petersburg, FL. The data were collected to determine the feasibility of subsurface injection of storm runoff. An exploratory hole and five observation wells were constructed between October 1974 and April 1976. The lithology of the upper 185 feet at the test site is predominantly sand and marl. From 185 feet to 3,504 feet, limestone and dolomite predominate. Also , gypsum is present below 1.290 feet. Vertical intrinsic permeability, porosity, and compressibility of cores are reported. A 73-hour withdrawal test discharging 3,450 gallons per minute was run in the test injection well. At the site, chloride concentration in water from 192 to 340 feet, ranged from 150 to 680 milligrams per liter, and from 500 to 1,267 feet ranged from 16,000 to 20,000 milligrams per liter. Eleven additional wells near the test site were sampled for water quality. (Woodard-USGS)

  4. Animal investigation program for the Nevada Test Site: 1957-1981

    SciTech Connect

    Smith, D.D.; Black, S.C.

    1984-01-01

    This report summarizes the findings of the Animal Investigation Program from its initiation in 1957 to termination in 1981. The Program investigated the effects of nuclear testing at the Nevada Test Site on domestic and wild animals residing on, and in the vicinity of the Test Site. Claims of injury to animals were investigated and a routine program of collecting tissue samples were the principal activities. Tissue samples collected were examined histopathologically and were analyzed for specific radionuclides. Analyses of tissue samples from the Nevada Test Site beef herd occurred semiannually over the entire 25-year period and several other beef herds were analyzed for up to 10-year periods. Other animals sampled for extended periods included mule deer and desert bighorn sheep. The results of the claims investigations are reported as well as analyses for the radionuclides: tritium, strontium-90, iodine-131, cesium-137, and plutonium-239. Also, the results of certain special studies, e.g., in animals around other testing sites such as Mississippi, Colorado, etc., and for special purposes such as at the Rocky Flats Plant in Colorado, and for iodine-129 in thyroids from Nevada cattle are included. Most of the data are presented as trends over time. Calculation of hypothetical doses to man from ingestion of edible tissue are included. 61 references, 9 figures, 4 tables.

  5. Assessment of hydrologic transport of radionuclides from the Gasbuggy underground nuclear test site, New Mexico

    SciTech Connect

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gasbuggy site in northwestern New Mexico was the location of an underground detonation of a 29-kiloton nuclear device in 1967. The test took place in the Lewis Shale, approximately 182 m below the Ojo Alamo Sandstone, which is the aquifer closest to the detonation horizon. The conservative assumption was made that tritium was injected from the blast-created cavity into the Ojo Alamo Sandstone by the force of the explosion, via fractures created by the shot. Model results suggest that if radionuclides produced by the shot entered the Ojo Alamo, they are most likely contained within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity, followed by the variance in hydraulic conductivity, the correlation scale of hydraulic conductivity, the transverse hydrodynamic dispersion coefficient, and uncertainty in the source size. This modeling was performed to investigate how the uncertainty in various physical parameters affects calculations of radionuclide transport at the Gasbuggy site, and to serve as a starting point for discussion regarding further investigation at the site; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values.

  6. Testing an Integrated Ground-Water Monitoring Strategy for Nuclear Waste and Decommissioning Sites

    NASA Astrophysics Data System (ADS)

    Price, V.; Dai, Z.; Heffner, D.; Temples, T. J.; Nicholson, T. J.

    2005-05-01

    This talk discusses a Nuclear Regulatory Commission-sponsored research project designed to develop an integrated and systematic strategy for monitoring ground-water flow and transport through the unsaturated zone to the underlying water-table aquifer at waste disposal sites. The goal is to provide scientifically-based guidance for monitoring across a wide range of geologic settings, waste compositions, and site designs. The monitoring will specifically support performance assessment studies and modeling. The research objectives include: (1) the strategy will couple performance confirmation monitoring to site characterization and performance assessment, and will consist of an ordered and logical sequence of procedures; (2) the research will develop the technical bases as citable references, identified guidance and analytical tools, and test case applications of the developed integrated ground-water monitoring strategy for confirming performance of nuclear waste and decommissioning sites; (3) this strategy will focus on identifying and monitoring critical performance indicators (e.g., water contents over time in the unsaturated zone, and ground-water potentials in the saturated zone) of the hydrologic system; and (4) the strategy will demonstrate the connection between performance indicators and site performance. The monitoring strategy has been developed in draft form, and the testing phase of this work is beginning. The test plan includes: 1. develop testing objectives; 2. develop success criteria based on objectives; 3. select test datasets from field sites; 4. apply the draft strategy to field data; 5. feed-back for strategy improvement. Testing objectives will include: 1. develop rules for selection of performance indicators; 2. evaluate efficient methods to develop conceptual site models; 3. develop rules for selection of monitoring points (in the spatial and temporal domain) and rules for identification of monitoring approaches (e.g., geophysical methods) and

  7. Analysis of Site Response at U1A Hole at the Nevada Test Site From Weak Motion Readings

    SciTech Connect

    Hutchings, L; Furrey, L

    2002-05-21

    We utilize weak motion recordings to evaluate the site response at the U1A hole, Nevada Test site to determine the effect on potential ground motion at the drift of the U1A hole 962 ft deep. We estimated the site response amplification of ground motion at the surface relative to the drift with the spectral ratio method. We utilized Fourier amplitude and absolute acceleration response spectra, and confined our study to frequencies of 0.5 to 25.0 Hz (.04 to 2.0 s periods). We identified 8 earthquakes in the area that were recorded at the bottom and top of the hole that were used for spectral ratios. We calculated the average and one standard deviation of ratios from all the events. Examining the data, we found that: (1) Fourier amplitude spectral ratios provided more detailed information on the site response than the absolute acceleration response that can be directly related to the effect of large earthquakes. (2) plots of the Fourier amplitude spectra for most of the recorded earthquakes show evidence for a spectral hole in the downhole recordings. This is due to downward reflected energy from the surface. This is not evident in absolute acceleration response records. (3) Fourier amplitude spectral ratios show a relative amplification at the surface of about a factor of eight for frequencies between about 9 to 15 Hz (.07 to .ll s periods) due to the spectral hole. (4) The free surface results in an amplification of about a factor of 2 for frequencies of about 13.0 to 25.0 Hz (.04 to .08 s periods). (5) The geology results in an amplification of about a factor 2 of the surface relative to the bottom for frequencies 1.0 to 25.0 Hz (0.04 to 1.0 s period). (6) A full site response function is provided as a function of frequency from the Fourier amplitude spectral ratios. This includes the effect of the spectral hole, free surface effect, and geologic amplification. It shows that strong ground motion would be diminished at the bottom of the U1A hole by a factor of .5 to

  8. Development of Phenomenological Models of Underground Nuclear Tests on Pahute Mesa, Nevada Test Site - BENHAM and TYBO

    SciTech Connect

    Pawloski, G.A.

    1999-09-21

    Although it is well accepted that underground nuclear explosions modify the in situ geologic media around the explosion point, the details of these changes are neither well understood nor well documented. As part of the engineering and containment process before a nuclear test, the physical environment is characterized to some extent to predict how the explosion will interact with the in situ media. However, a more detailed characterization of the physical environment surrounding an expended site is needed to successfully model radionuclide transport in the groundwater away from the detonation point. It is important to understand how the media have been altered and where the radionuclides are deposited. Once understood, this information on modified geologic media can be incorporated into a phenomenological model that is suitable for input to computer simulations of groundwater flow and radionuclide transport. The primary goals of this study are to (1) identify the modification of the media at a pertinent scale, and (2) provide this information to researchers modeling radionuclide transport in groundwater for the US Department of Energy (DOE) Nevada Operations Office Underground Test Area (UGTA) Project. Results from this study are most applicable at near-field scale (a model domain of about 500 m) and intermediate-field scale (a model domain of about 5 km) for which detailed information can be maximized as it is incorporated in the modeling grids. UGTA collected data on radionuclides in groundwater during recent drilling at the ER-20-5 site, which is near BENHAM and TYBO on Pahute Mesa at the Nevada Test Site (NTS). Computer simulations are being performed to better understand radionuclide transport. The objectives of this modeling effort include: evaluating site-specific information from the BENHAM and TYBO tests on Pahute Mesa; augmenting the above data set with generalized containment data; and developing a phenomenological model suitable for input to

  9. Plutonium-aerosol emission rates and potential inhalation exposure during cleanup and treatment test at Area 11, Nevada Test Site

    SciTech Connect

    Shinn, J.H.; Homan, D.N.

    1985-08-13

    A Cleanup and Treatment (CAT) test was conducted in 1981 at Area 11, Nevada Test Site. Its purpose was to evaluate the effectiveness of using a large truck-mounted vacuum cleaner similar to those used to clean paved streets for cleaning radiological contamination from the surface of desert soils. We found that four passes with the vehicle removed 97% of the alpha contamination and reduced resuspension by 99.3 to 99.7%. Potential exposure to cleanup workers was slight when compared to natural background exposure. 7 refs., 1 fig., 2 tabs.

  10. Challenges in defining a radiologic and hydrologic source term for underground nuclear test centers, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Smith, D.K.

    1995-06-01

    The compilation of a radionuclide inventory for long-lived radioactive contaminants residual from nuclear testing provides a partial measure of the radiologic source term at the Nevada Test Site. The radiologic source term also includes potentially mobile short-lived radionuclides excluded from the inventory. The radiologic source term for tritium is known with accuracy and is equivalent to the hydrologic source term within the saturated zone. Definition of the total hydrologic source term for fission and activation products that have high activities for decades following underground testing involves knowledge and assumptions which are presently unavailable. Systematic investigation of the behavior of fission products, activation products and actinides under saturated or Partially saturated conditions is imperative to define a representative total hydrologic source term. This is particularly important given the heterogeneous distribution of radionuclides within testing centers. Data quality objectives which emphasize a combination of measurements and credible estimates of the hydrologic source term are a priority for near-field investigations at the Nevada Test Site.

  11. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect

    NSTec Environmental Programs

    2010-09-14

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan

  12. Thermally-induced ventilation in atria: an atrium classification scheme and promising test sites

    SciTech Connect

    Not Available

    1981-06-01

    In establishing the atrium classification scheme, specific attention was given to: climate (hot-arid, warm-humid, and temperate), atrium configuration (open, closed, and adjustable tops), and thermal mechanism (natural convection, radiative cooling, shading, and others). Application of the resulting three-dimensional (three-coordinate) matrix was considered and tested. Although the testing was for purposes of checking scheme application, the procedure indicated that most of the atria examined were of the adjustable-top configuration with daylighting the principal functional mode. However, it was noted that thermally-induced air flow was present in many of the atria classified. In the identification of promising test sites it was noted that there appears to be a shortage of buildings which meet the atrium definition. Consequently, prospective test sites were categorized as follows based upon anticipated value to the study: commercial atria already constructed, commercial atria planned or under construction, and residential atria already constructed.

  13. Hydrologic data for the southwest subsurface-injection test site, St. Petersburg, Florida

    USGS Publications Warehouse

    Hickey, John J.; Spechler, R.M.

    1978-01-01

    Three injection wells and nine observation wells were constructed at the Southwest St. Petersburg, Fla., site to determine feasibility of injecting wastewater treatment plant effluent into permeable zones containing saline water. Two withdrawal tests and one injection test were performed. Both withdrawal tests ran for about 3 days; one discharging 650 gallons per minute, and the other discharging 6,490 gallons per minute. The injection test was run in one well for 91.1 days at an average rate of 2,830 gallons per minute. Injection well pressure reached a maximum of 48.1 pounds per square inch near the end of the test. Rhodamine WT was used as a tracer during the injection test and was identified in three wells. Before the injection test, chloride concentration in a well 35 feet from the injection well, and in a well 733 feet distant, ranged from 19,000 to 21,000 milligrams per liter. At the end of the test, chloride concentration in one well was 1,800 milligrams per liter and 5,400 milligrams per liter in another. Eleven wells near the site were sampled before the test for water-quality analyses and chlorides ranged from 18 to 1,400 milligrams per liter. (Woodard-USGS)

  14. A test for ancient selective sweeps and an application to candidate sites in modern humans.

    PubMed

    Racimo, Fernando; Kuhlwilm, Martin; Slatkin, Montgomery

    2014-12-01

    We introduce a new method to detect ancient selective sweeps centered on a candidate site. We explored different patterns produced by sweeps around a fixed beneficial mutation, and found that a particularly informative statistic measures the consistency between majority haplotypes near the mutation and genotypic data from a closely related population. We incorporated this statistic into an approximate Bayesian computation (ABC) method that tests for sweeps at a candidate site. We applied this method to simulated data and show that it has some power to detect sweeps that occurred more than 10,000 generations in the past. We also applied it to 1,000 Genomes and Complete Genomics data combined with high-coverage Denisovan and Neanderthal genomes to test for sweeps in modern humans since the separation from the Neanderthal-Denisovan ancestor. We tested sites at which humans are fixed for the derived (i.e., nonchimpanzee allele) whereas the Neanderthal and Denisovan genomes are homozygous for the ancestral allele. We observe only weak differences in statistics indicative of selection between functional categories. When we compare patterns of scaled diversity or use our ABC approach, we fail to find a significant difference in signals of classic selective sweeps between regions surrounding nonsynonymous and synonymous changes, but we detect a slight enrichment for reduced scaled diversity around splice site changes. We also present a list of candidate sites that show high probability of having undergone a classic sweep in the modern human lineage since the split from Neanderthals and Denisovans. PMID:25172957

  15. Parameter optimization of Dome A site testing DIMM by data mining

    NASA Astrophysics Data System (ADS)

    Xu, Lingzhe; Pei, Chong

    2012-10-01

    The extreme environment of Antarctic is valuable for astronomical observations. Dome C is proved has excellent seeing and transmission by site testing works. While the higher, colder inland plateau Dome A is widely predicted as even better astronomical site than Dome C. Preliminary site testing developed since the beginning of 2008 shows that Dome A has lower boundary layer and lower precipitable water vapour. Now the automated seeing monitor is urgently needed to quantify the site's optical character which is necessary for the telescope design and deployment. In addition, it has the requirement that DIMM must realize automatic measurement for nearly one year under the case of unmanned intervention during which a great quantity of data will be generated because of the limitation of Dome A. This paper aims at researching how to use the method of mining association rules to automatically analyze observation data, what the relationship between various parameters effecting on optical quality is, and improving the efficiency of telescope observation by parameter optimization. We have modified a commercial telescope with diameter of 35cm to function as site testing DIMM which has been installed at XingLong observation station of National Astronomical Observatories, Chinese Academy of Sciences, acquired long term observation data, and identified that this method is suitable for optimizing the parameters of DIMM system.

  16. A test for ancient selective sweeps and an application to candidate sites in modern humans.

    PubMed

    Racimo, Fernando; Kuhlwilm, Martin; Slatkin, Montgomery

    2014-12-01

    We introduce a new method to detect ancient selective sweeps centered on a candidate site. We explored different patterns produced by sweeps around a fixed beneficial mutation, and found that a particularly informative statistic measures the consistency between majority haplotypes near the mutation and genotypic data from a closely related population. We incorporated this statistic into an approximate Bayesian computation (ABC) method that tests for sweeps at a candidate site. We applied this method to simulated data and show that it has some power to detect sweeps that occurred more than 10,000 generations in the past. We also applied it to 1,000 Genomes and Complete Genomics data combined with high-coverage Denisovan and Neanderthal genomes to test for sweeps in modern humans since the separation from the Neanderthal-Denisovan ancestor. We tested sites at which humans are fixed for the derived (i.e., nonchimpanzee allele) whereas the Neanderthal and Denisovan genomes are homozygous for the ancestral allele. We observe only weak differences in statistics indicative of selection between functional categories. When we compare patterns of scaled diversity or use our ABC approach, we fail to find a significant difference in signals of classic selective sweeps between regions surrounding nonsynonymous and synonymous changes, but we detect a slight enrichment for reduced scaled diversity around splice site changes. We also present a list of candidate sites that show high probability of having undergone a classic sweep in the modern human lineage since the split from Neanderthals and Denisovans.

  17. Develop and test fuel cell powered on-site integrated total energy system

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Feigenbaum, H.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1983-01-01

    Test results are presented for a 24 cell, two sq ft (4kW) stack. This stack is a precursor to a 25kW stack that is a key milestone. Results are discussed in terms of cell performance, electrolyte management, thermal management, and reactant gas manifolding. The results obtained in preliminary testing of a 50kW methanol processing subsystem are discussed. Subcontracting activities involving application analysis for fuel cell on site integrated energy systems are updated.

  18. Nevada Test Site 2001 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect

    Y. E. Townsend

    2002-06-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2001 was an average rainfall year: rainfall totaled 150 mm (5.9 in) at the Area 3 RWMS and 120 mm (4.7 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2001 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2001 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility performance assessments.

  19. Nevada Test Site 2000 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect

    Yvonne Townsend

    2001-06-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2000 was an average rainfall year: rainfall totaled 167 mm (6.6 in) at the Area 3 RWMS (annual average is 156 mm [6.5 in]) and 123 mm (4.8 in) at the Area 5 RWMS (annual average is 127 mm [5.0 in]). Vadose zone monitoring data indicate that 2000 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2000 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing well at isolating buried waste.

  20. Uncertainties associated with the definition of a hydrologic source term for the Nevada Test Site

    SciTech Connect

    Smith, D.K.; Esser, B.K.; Thompson, J.L.

    1995-05-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV) Environmental Restoration Division is seeking to evaluate groundwater contamination resulting from 30 years of underground nuclear testing at the Nevada Test Site (NTS). This evaluation requires knowledge about what radioactive materials are in the groundwater and how they are transported through the underground environment. This information coupled with models of groundwater flow (flow paths and flow rates) will enable predictions of the arrival of each radionuclide at a selected receptor site. Risk assessment models will then be used to calculate the expected environmental and human doses. The accuracy of our predictions depends on the validity of our hydrologic and risk assessment models and on the quality of the data for radionuclide concentrations in ground water at each underground nuclear test site. This paper summarizes what we currently know about radioactive material in NTS groundwater and suggests how we can best use our limited knowledge to proceed with initial modeling efforts. The amount of a radionuclide available for transport in groundwater at the site of an underground nuclear test is called the hydrologic source term. The radiologic source term is the total amount of residual radionuclides remaining after an underground nuclear test. The hydrologic source term is smaller than the radiologic source term because some or most of the radionuclide residual cannot be transported by groundwater. The radiologic source term has been determined for each of the underground nuclear tests fired at the NTS; however, the hydrologic source term has been estimated from measurements at only a few sites.

  1. Hydrogeologic data for science trench boreholes at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Not Available

    1993-12-01

    A program to conduct drilling, sampling, and laboratory testing was designed and implemented to obtain important physical, geochemical, and hydrologic property information for the near surface portion of thick unsaturated alluvial sediments at the Area 5 Radioactive Waste Management Site (RWMS). These data are required to understand and simulate infiltration and redistribution of water as well as the transport of solutes in the immediate vicinity of existing and future low-level, mixed, and high-specific-activity waste disposal cells at the site. The program was designed specifically to meet data needs associated with a Resource Conservation and Recovery Act (RCRA) Part B permit application for disposal of hazardous mixed waste, possible RCRA waivers involving mixed waste, DOE Order 5820.2A, ``Radioactive Waste Management,`` and 40 Code of Federal Regulations (CFR) 191 requirements for land disposal of radioactive waste. The hydrologic condition data, when combined with hydrologic property data, indicate that very little net liquid flow (if any) is occurring in the upper vadose zone, and the direction of movement is upward. It follows that vapor movement is probably the dominant mechanism of water transport in this upper region, except immediately following precipitation events.

  2. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 390: AREAS 9, 10, AND 12 SPILL SITES, NEVADA TEST SITE, NEVADA

    SciTech Connect

    2005-10-01

    Corrective Action Unit (CAU) 390 consists four Corrective Action Sites (CASs) located in Areas 9, 10, and 12 of the Nevada Test Site. The closure activities performed at the CASs include: (1) CAS 09-99-03, Wax, Paraffin: 2 cubic yards of drilling polymer was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (2) CAS 10-99-01, Epoxy Tar Spill: 2 cubic feet of asphalt waste was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (3) CAS 10-99-03, Tar Spills: 3 cubic yards of deteriorated asphalt waste was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (4) CAS 12-25-03, Oil Stains (2); Container: Approximately 16 ounces of used oil were removed from ventilation equipment on June 28,2005, and recycled. One CAS 10-22-19, Drums, Stains, was originally part of CAU 390 but was transferred out of CAU 390 and into CAU 550, Drums, Batteries, and Lead Materials. The transfer was approved by the Nevada Division of Environmental Protection on August 19,2005, and a copy of the approval letter is included in Appendix D of this report.

  3. Barometric pressure transient testing applications at the Nevada Test Site. Nuclear chimney analysis. Final report

    SciTech Connect

    Hanson, J.M.

    1985-12-01

    Investigations of barometric pressure testing of NTS nuclear chimneys were reviewed. This review includes the models used in the interpretation, methods of analysis, and results. Analytic and semi-analytic models were presented and applied to both historical data and new data taken for this current project. An interpretation technique based on non-linear least squares methods was used to analyze this data in terms of historic and more recent chimney models. Finally, a detailed discussion of radioactive gas transport due to surface barometric pressure fluctuations was presented. This mechanism of transport, referred to as ''barometric pumping,'' is presented in terms of conditions likely to be encountered at the NTS. The report concludes with a discussion of the current understanding of gas flow properties in the alluvial and volcanic areas of the NTS, and suggestions for future efforts directed toward increasing this understanding are presented.

  4. One month circulation test at the Hijiori HDR test site in 1996

    SciTech Connect

    Sato, Yoshiteru; Matsunaga, Isao; Nagai, Masahiro

    1996-12-31

    As shown in Table 1, four wells have been used for circulation tests at Hijiori. The diameters of all the open-hole sections of the wells are 8-{1/2} inches. SKG-2 is an injection well. An 1800 m deep reservoir was stimulated hydraulically by water injection into the open-hole section of SKG-2 in 1986. HDR-1 is also an injection well. A 2200 m deep reservoir was stimulated by water injection into the open-hole section of HDR-1 in 1992. HDR-2a and HDR-3 are used to produce steam and hot water from both reservoirs. The subsurface system was created In granodiorite basement rock with temperatures of 250 {degrees}C at a depth of 2,500 m and 270{degrees} C at depth of 2,700 m.

  5. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    SciTech Connect

    J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

    2009-03-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

  6. Evaluation of the Transient Hydrologic Source Term for the Cambric Underground Nuclear Test at Frenchman Flat, Nevada test Site

    SciTech Connect

    Carle, S F; Maxwell, R M; Pawloski, G A; Shumaker, D E; Tompson, A B; Zavarin, M

    2006-12-12

    The objective of Phase II HST work is to develop a better understanding of the evolution of the HST for 1,000 years at the CAMBRIC underground nuclear test site in Frenchman Flat at the NTS. This work provides a better understanding of activities as they actually occurred, incorporates improvements based on recent data acquisition, and provides a basis to use the CAMBRIC site for model validation and monitoring activities as required by the UGTA Project. CAMBRIC was the only test in Frenchman Flat detonated under the water table and best represents a fully saturated environment. These simulations are part of a broad Phase II Frenchman Flat Corrective Action Unit (CAU) flow and transport modeling effort being conducted by the Department of Energy (DOE) Underground Test Area (UGTA) Project. HST simulations provide, either directly or indirectly, the source term used in the CAU model to calculate a contaminant boundary. Work described in this report augments Phase I HST calculations at CAMBRIC conducted by Tompson et al. (1999) and Pawloski et al. (2001). Phase II HST calculations have been organized to calculate source terms under two scenarios: (1) A representation of the transient flow and radionuclide release behavior at the CAMBRIC site that is more specific than Tompson et al. (1999). This model reflects the influence of the background hydraulic gradient, residual test heat, pumping experiment, and ditch recharge, and takes into account improved data sources and modeling approaches developed since the previous efforts. Collectively, this approach will be referred to as the transient CAMBRIC source term. This report describes the development of the transient CAMBRIC HST. (2) A generic release model made under steady-state flow conditions, in the absence of any transient effects, at the same site with the same radiologic source term. This model is for use in the development of simpler release models for the other nine underground test sites in the Frenchman Flat

  7. In situ radiation measurements at the former Soviet Nuclear Test Site

    SciTech Connect

    Tipton, W.J.

    1996-06-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the former Soviet Nuclear Test Site near Semipalatinsk, Kazakhstan, during the period of July 21-30, 1994. The survey team measured the terrestrial gamma radiation at selected areas on the site to determine the levels of natural and man-made radiation. The survey was part of a cooperative effort between the United States team and teams of radiation scientists from the National Nuclear Center of the Republic of Kazakhstan and the V.G. Khlopin Radium Institute in St. Petersburg, Russia. In addition to in situ radiation measurements made by the United States and Russian teams, soil samples were collected and analyzed by the Russian and Kazakhstani teams. All teams conducted their measurements at ten locations within the test site. The United States team also made a number of additional measurements to locate and verify the positions of three potential fallout plumes containing plutonium contamination from nonnuclear tests. In addition, the United States team made several measurements in Kurchatov City, the housing area used by personnel and their families who work(ed) at the test sites. Comparisons between the United States and Russian in situ measurements and the soil sample results are presented as well as comparisons with a Soviet aerial survey conducted in 1990-1991. The agreement between the different types of measurements made by all three countries was quite good.

  8. UAS Integration in the NAS Project Test Site Kick-off Meeting

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal; Witzberger, Kevin; Hackenberg, Davis L.; Murphy, Jim

    2015-01-01

    This briefing was presented during the Test Site Kick Off Meeting to discuss the contract awards for Task 1 and Task 2. This briefing covered a high level overview for contract deliverables, Task 1 - UAS Traffic Management and Task 2, Live Virtual Constructive Distributed Environment.

  9. Environmental surveillance report for the Nevada Test Site, January-December 1979

    SciTech Connect

    Lantz, M.W.

    1980-06-01

    The environmental surveillance program at the Nevada Test Site as conducted by the Department of Energy (DOE) onsite radiological safety contractor is documented from January 1979 through December 1979. The results and evaluations of measurements of radioactivity in air and water, and of direct gamma radiation exposure rates are presented. Relevancy to DOE concentration guides (CG'S) is established.

  10. AN OPEN-SOURCE COMMUNITY WEB SITE TO SUPPORT GROUND-WATER MODEL TESTING

    EPA Science Inventory

    A community wiki wiki web site has been created as a resource to support ground-water model development and testing. The Groundwater Gourmet wiki is a repository for user supplied analytical and numerical recipes, how-to's, and examples. Members are encouraged to submit analyti...

  11. Loch Linnhe `94: Test operations description and on-site analysis, US activities

    SciTech Connect

    Mantrom, D.D.

    1994-11-01

    A field experiment named Loch Linnhe `94 (LL94) is described. This experiment was conducted in upper Loch Linnhe, Scotland, in September 1994, as an exercise involving UK and US investigators, under the Joint UK/US Radar Ocean Imaging Program. This experiment involved a dual-frequency, dual-polarization hillside real aperture radar operated by the UK, Lawrence Livermore National Laboratory`s (LLNL) current meter array (CMA), in-water hydrodynamic sensors, and meteorological measurements. The primary measurements involved imaging ship-generated and ambient internal waves by the radar and the CMA. This report documents test operations from a US perspective and presents on-site analysis results derived by US investigators. The rationale underlying complementary radar and CMA measurements is described. Descriptions of the test site, platforms, and major US instrument systems are given. A summary of test operations and examples of radar, CMA, water column profile, and meteorological data are provided. A description of the rather extensive analysis of these data performed at the LL94 test site is presented. The products of this analysis are presented and some implications for further analysis and future experiments are discussed. All experimental objectives were either fully or partially met. Powerful on-site analysis capabilities generated many useful products and helped improve subsequent data collection. Significant further data analysis is planned.

  12. 10 CFR 26.715 - Recordkeeping requirements for collection sites, licensee testing facilities, and laboratories...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... testing facilities, and laboratories certified by the Department of Health and Human Services. 26.715... laboratories certified by the Department of Health and Human Services. (a) Collection sites providing services... NRC or by any licensee or other entity for whom services are being provided. (b) Documentation...

  13. 10 CFR 26.715 - Recordkeeping requirements for collection sites, licensee testing facilities, and laboratories...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... testing facilities, and laboratories certified by the Department of Health and Human Services. 26.715... laboratories certified by the Department of Health and Human Services. (a) Collection sites providing services... NRC or by any licensee or other entity for whom services are being provided. (b) Documentation...

  14. 10 CFR 26.715 - Recordkeeping requirements for collection sites, licensee testing facilities, and laboratories...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... testing facilities, and laboratories certified by the Department of Health and Human Services. 26.715... laboratories certified by the Department of Health and Human Services. (a) Collection sites providing services... NRC or by any licensee or other entity for whom services are being provided. (b) Documentation...

  15. 10 CFR 26.715 - Recordkeeping requirements for collection sites, licensee testing facilities, and laboratories...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... testing facilities, and laboratories certified by the Department of Health and Human Services. 26.715... laboratories certified by the Department of Health and Human Services. (a) Collection sites providing services... NRC or by any licensee or other entity for whom services are being provided. (b) Documentation...

  16. 10 CFR 26.715 - Recordkeeping requirements for collection sites, licensee testing facilities, and laboratories...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Recordkeeping requirements for collection sites, licensee testing facilities, and laboratories certified by the Department of Health and Human Services. 26.715 Section 26.715 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Recordkeeping and Reporting Requirements § 26.715...

  17. Focus Groups and Usability Testing in Redesigning an Academic Library's Web Site

    ERIC Educational Resources Information Center

    Oldham, Bonnie W.

    2008-01-01

    As the World Wide Web has advanced since its inception, librarians have endeavored to keep pace with this progress in the design of their library Web pages. User recommendations collected from focus groups and usability testing have indicated that the University of Scranton's Weinberg Memorial Library's Web site was not working as intended, and…

  18. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada

    SciTech Connect

    K. B. Campbell

    2001-11-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the activities necessary to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites. CAU 398, located in Area 25 of the Nevada Test Site, is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996), and consists of the following 13 Corrective Action Sites (CASs) (Figure 1): (1) CAS 25-44-01 , a fuel spill on soil that covers a concrete pad. The origins and use of the spill material are unknown, but the spill is suspected to be railroad bedding material. (2) CAS 25-44-02, a spill of liquid to the soil from leaking drums. (3) CAS 25-44-03, a spill of oil from two leaking drums onto a concrete pad and surrounding soil. (4) CAS 25-44-04, a spill from two tanks containing sulfuric acid and sodium hydroxide used for a water demineralization process. (5) CAS 25-25-02, a fuel or oil spill from leaking drums that were removed in 1992. (6) CAS 25-25-03, an oil spill adjacent to a tipped-over drum. The source of the drum is not listed, although it is noted that the drum was removed in 1991. (7) CAS 25-25-04, an area on the north side of the Engine-Maintenance, Assembly, and Disassembly (E-MAD) facility, where oils and cooling fluids from metal machining operations were poured directly onto the ground. (8) CAS 25-25-05, an area of oil and/or hydraulic fluid spills beneath the heavy equipment once stored there. (9) CAS 25-25-06, an area of diesel fuel staining beneath two generators that have since been removed. (10) CAS 25-25-07, an area of hydraulic oil spills associated with a tunnel-boring machine abandoned inside X-Tunnel. (11) CAS 25-25-08, an area of hydraulic fluid spills associated with a tunnel-boring machine abandoned inside Y-Tunnel. (12) CAS 25-25-16, a diesel fuel spill from an above-ground storage tank located near Building 3320 at Engine Test Stand-1 (ETS-1) that was removed in 1998. (13) CAS 25-25-17, a hydraulic oil spill

  19. Corrective Action Investigation Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect

    Patrick Matthews

    2011-08-01

    CAU 104 comprises the 15 CASs listed below: (1) 07-23-03, Atmospheric Test Site T-7C; (2) 07-23-04, Atmospheric Test Site T7-1; (3) 07-23-05, Atmospheric Test Site; (4) 07-23-06, Atmospheric Test Site T7-5a; (5) 07-23-07, Atmospheric Test Site - Dog (T-S); (6) 07-23-08, Atmospheric Test Site - Baker (T-S); (7) 07-23-09, Atmospheric Test Site - Charlie (T-S); (8) 07-23-10, Atmospheric Test Site - Dixie; (9) 07-23-11, Atmospheric Test Site - Dixie; (10) 07-23-12, Atmospheric Test Site - Charlie (Bus); (11) 07-23-13, Atmospheric Test Site - Baker (Buster); (12) 07-23-14, Atmospheric Test Site - Ruth; (13) 07-23-15, Atmospheric Test Site T7-4; (14) 07-23-16, Atmospheric Test Site B7-b; (15) 07-23-17, Atmospheric Test Site - Climax These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 104. The releases at CAU 104 consist of surface-deposited radionuclides from 30 atmospheric nuclear tests. The presence and nature of contamination at CAU 104 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison

  20. Report on expedited site characterization of the Central Nevada Test Area, Nye County, Nevada

    SciTech Connect

    Yuhr, L.; Wonder, J.D.; Bevolo, A.J.

    1997-09-01

    This report documents data collection, results, and interpretation of the expedited site characterization (ESC) pilot project conducted from September 1996 to June 1997 at the Central Nevada Test Area (CNTA), Nye County, Nevada. Characterization activities were limited to surface sites associated with deep well drilling and ancillary operations at or near three emplacement well areas. Environmental issues related to the underground nuclear detonation (Project Faultless) and hydrologic monitoring wells were not addressed as a part of this project. The CNTA was divided into four functional areas for the purpose of this investigation and report. These areas include the vicinity of three emplacement wells (UC-1, UC-3, and UC-4) and one mud waste drilling mud collection location (Central Mud Pit; CMP). Each of these areas contain multiple, potentially contaminated features, identified either from historic information, on-site inspections, or existing data. These individual features are referred to hereafter as ``sites.`` The project scope of work involved site reconnaissance, establishment of local grid systems, site mapping and surveying, geophysical measurements, and collection and chemical analysis of soil and drilling mud samples. Section 2.0 through Section 4.0 of this report provide essential background information about the site, project, and details of how the ESC method was applied at CNTA. Detailed discussion of the scope of work is provided in Section 5.0, including procedures used and locations and quantities of measurements obtained. Results and interpretations for each of the four functional areas are discussed separately in Sections 6.0, 7.0, 8.0, and 9.0. These sections provide a chronological presentation of data collected and results obtained, followed by interpretation on a site-by-site basis. Key data is presented in the individual sections. The comprehensive set of data is contained in appendices.

  1. Evaluation of habitat restoration needs at Yucca Mountain, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Mitchell, D.L.

    1984-04-01

    Adverse environmental impacts due to site characterization and repository development activities at Yucca Mountain, Nevada Test Site (NTS), Nye County, Nevada, must be minimized and mitigated according to provisions of the Nuclear Waste Policy Act (NWPA) of 1982 and the National Environmental Policy Act (NEPA). The natural Transition Desert ecosystem in the 27.5-sq-mi Yucca Mountain project area is now and will continue to be impacted by removal of native vegetation and topsoil and the destruction and/or displacement of faunal communities. Although it is not known at this time exactly how much land will be affected, it is estimated that about 300 to 400 acres will be disturbed by construction of facility sites, mining spoils piles, roadways, and drilling pads. Planned habitat restoration at Yucca Mountain will mitigate the effects of plant and animal habitat loss over time by increasing the rate of plant succession on disturbed sites. Restoration program elements should combine the appropriate use of native annual and perennial species, irrigation and/or water-harvesting techniques, and salvage and reuse of topsoil. Although general techniques are well-known, specific program details (i.e., which species to use, methods of site preparation with available equipment, methods of saving and applying topsoil, etc.) must be worked out empirically on a site-specific basis over the period of site characterization and any subsequent repository development. Large-scale demonstration areas set up during site characterization will benefit both present abandonments and, if the project is scaled up to include repository development, larger facilities areas including spoils piles. Site-specific demonstration studies will also provide information on the costs per acre associated with alternative restoration strategies.

  2. LPT. Plot plan and site layout. Includes shield test pool/EBOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Plot plan and site layout. Includes shield test pool/EBOR facility. (TAN-645 and -646) low power test building (TAN-640 and -641), water storage tanks, guard house (TAN-642), pump house (TAN-644), driveways, well, chlorination building (TAN-643), septic system. Ralph M. Parsons 1229-12 ANP/GE-7-102. November 1956. Approved by INEEL Classification Office for public release. INEEL index code no. 038-0102-00-693-107261 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. Nuclear facility licensing, doucumentation and reviews, and the SP-100 test site experience

    NASA Astrophysics Data System (ADS)

    Cornwell, Bruce C.; Deobald, Ted L.; Bitten, Ernest J.

    1992-01-01

    The required approvals and permits to test a nuclear facility are extensive. Numerous regulatory requirements result in the preparation of documentation to support the approval process. The principal regulations for the SP-100 Ground Engineering System (GES) include the National Environmental Policy Act, Clean Air Act, and Atomic Energy Act. The documentation prepared for the SP-100 Nuclear Assembly Test (NAT) included an Environmental Assessment, state permit applications, and Safety Analysis Reports. This paper discusses the regulation documentation requirements and SP-100 NAT Test Site experience.

  4. Field vapor extraction test and long-term monitoring at a PCE contaminated site.

    PubMed

    Chai, J-C; Miura, N

    2004-07-01

    The results of a field investigation, vapor extraction tests, and long-term monitoring at a PCE-contaminated site in Saga, Japan, are reported. The field investigation indicated that PCE likely was trapped in a surface clayey sand layer (vadose zone), and soil vapor extraction (SVE) was adopted as the remediation approach. The field test results the effectiveness of SVE in removing volatile organic compounds (VOCs) from contaminated sites. For the case where the radius of influence for an extraction well was 15-20 m, the blower capacity had no obvious effect on the radius of influence possibly due to the short circuiting of air from the ground surface. However, the maximum negative pressure (difference between vapor pressure and ambient pressure) in the extraction well was approximately proportional to blower capacity for the range of blower capacities tested. The long-term monitoring results indicate that PCE concentration varied seasonably, and temperature and rainfall are two of the influencing factors.

  5. Icebreaker-3 Drill Integration and Testing at Two Mars-Analog Sites

    NASA Technical Reports Server (NTRS)

    Glass, B.; Bergman, D.; Yaggi, B.; Dave, A.; Zacny, K.

    2016-01-01

    A decade of evolutionary development of integrated automated drilling and sample handling at analog sites and in test chambers has made it possible to go 1 meter through hard rocks and ice layers on Mars. The latest Icebreaker-3 drill has been field tested in 2014 at the Haughton Crater Marsanalog site in the Arctic and in 2015 with a Mars lander mockup in Rio Tinto, Spain, (with sample transfer arm and with a prototype life-detection instrument). Tests in Rio Tinto in 2015 successfully demonstrated that the drill sample (cuttings) was handed-off from the drill to the sample transfer arm and thence to the on-deck instrument inlet where it was taken in and analyzed ("dirt-to-data").

  6. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    SciTech Connect

    Irene Farnham

    2011-05-01

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  7. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect

    NSTec Environmental Management

    2009-01-31

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  8. Spatial and temporal variability of microbes in selected soils at the Nevada Test Site

    SciTech Connect

    Angerer, J.P.; Winkel, V.K.; Ostler, W.K.; Hall, P.F.

    1993-12-31

    Large areas encompassing almost 800 hectares on the Nevada Test Site, Nellis Air Force Range and the Tonopah Test Range are contaminated with plutonium. Decontamination of plutonium from these sites may involve removal of plants and almost 370,000 cubic meters of soil. The soil may be subjected to a series of processes to remove plutonium. After decontamination, the soils will be returned to the site and revegetated. There is a paucity of information on the spatial and temporal distribution of microbes in soils of the Mojave and Great Basin Deserts. Therefore, this study was initiated to determine the biomass and diversity of microbes in soils prior to decontamination. Soils were collected to a depth of 10 cm along each of five randomly located 30-m transects at each of four sites. To ascertain spatial differences, soils were collected from beneath major shrubs and from associated interspaces. Soils were collected every three to four months to determine temporal (seasonal) differences in microbial parameters. Soils from beneath shrubs generally had greater active fungi and bacteria, and greater non-amended respiration than soils from interspaces. Temporal variability also was found; total and active fungi, and non-amended respiration were correlated with soil moisture at the time of sampling. Information from this study will aid in determining the effects of plutonium decontamination on soil microorganisms, and what measures, if any, will be required to restore microbial populations during revegetation of these sites.

  9. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 496: Buried Rocket Site, Antelope Lake, Tonopah Test Range

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2004-05-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan details the activities necessary to close Corrective Action Unit 496: Buried Rocket Site, Antelope Lake. CAU 496 consists of one site located at the Tonopah Test Range, Nevada.

  10. Estimation of radionuclide ingestion: Lessons from dose reconstruction for fallout from the Nevada Test Site

    SciTech Connect

    Breshears, D.D.; Whicker, F.W.; Kirchner, T.B.; Anspaugh, L.R.

    1994-09-01

    The United States conducted atmospheric testing of nuclear devices at the Nevada Test Site from 1951 through 1963. In 1979 the U.S. Department of Energy established the Off-Site Radiation Exposure Review Project to compile a data base related to health effects from nuclear testing and to reconstruct doses to public residing off of the Nevada Test Site. This project is the most comprehensive dose reconstruction project to date, and, since similar assessments are currently underway at several other locations within and outside the U.S., lessons from ORERP can be valuable. A major component of dose reconstruction is estimation of dose from radionuclide ingestion. The PATHWAY food-chain model was developed to estimate the amount of radionuclides ingested. For agricultural components of the human diet, PATHWAY predicts radionuclide concentrations and quantities ingested. To improve accuracy and model credibility, four components of model analysis were conducted: estimation of uncertainty in model predictions, estimation of sensitivity of model predictions to input parameters, and testing of model predictions against independent data (validation), and comparing predictions from PATHWAY with those from other models. These results identified strengths and weaknesses in the model and aided in establishing the confidence associated with model prediction, which is a critical component risk assessment and dose reconstruction. For fallout from the Nevada Test Site, by far, the largest internal doses were received by the thyroid. However, the predicted number of fatal cancers from ingestion dose was generally much smaller than the number predicted from external dose. The number of fatal cancers predicted from ingestion dose was also orders of magnitude below the normal projected cancer rate. Several lessons were learned during the study that are relevant to other dose reconstruction efforts.

  11. Magnetotelluric Data, Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada.

    SciTech Connect

    Jackie M. Williams; Jay A. Sampson; Brian D. Rodriguez; and Theodore H. Asch.

    2006-11-03

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site northwest of Las Vegas. Most of these tests were conducted hundreds of feet above the ground-water table; however, more than 200 of the tests were near or within the water table. This underground testing was limited to specific areas of the Nevada Test Site, including Pahute Mesa, Rainier Mesa/Shoshone Mountain, Frenchman Flat, and Yucca Flat. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology, and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (Bechtel Nevada, 2006). During 2005, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data from twenty-six magnetotelluric (MT) and audio-magnetotelluric (AMT) sites at the Nevada Test Site. The 2005 data stations were located on and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend the area of the hydrogeologic study previously conducted in Yucca Flat. This work will help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU – late Devonian to Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) from the Yucca Flat area and west towards

  12. Streamlined approach for environmental restoration closure report for Corrective Action Unit 464: Historical underground storage tank release sites, Nevada Test Site, Nevada

    SciTech Connect

    1998-04-01

    This report addresses the site characterization of two historical underground storage tank petroleum hydrocarbon release sites identified by Corrective Action Site (CAS) Numbers 02-02-03 and 09-02-01. The sites are located at the Nevada Test Site in Areas 2 and 9 and are concrete bunker complexes (Bunker 2-300, and 9-300). Characterization was completed using drilling equipment to delineate the extent of petroleum hydrocarbons at release site 2-300-1 (CAS 02-02-03). Based on site observations, the low hydrocarbon concentrations detected, and the delineation of the vertical and lateral extent of subsurface hydrocarbons, an ``A through K`` evaluation was completed to support a request for an Administrative Closure of the site.

  13. TREATABILITY TEST PLAN FOR DEEP VADOSE ZONE REMEDIATION AT THE HANFORD SITE CENTRAL PLATEAU

    SciTech Connect

    PETERSEN SW; MORSE JG; TRUEX MJ; LAST GV

    2007-11-29

    A treatability test plan has been prepared to address options for remediating portions of the deep vadose zone beneath a portion of the U.S. Department of Energy's (DOE's) Hanford Site. The vadose zone is the region of the subsurface that extends from the ground surface to the water table. The overriding objective of the treatability test plan is to recommend specific remediation technologies and laboratory and field tests to support the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and Resource Conservation and Recovery Act of 1976 remedial decision-making process in the Central Plateau of the Hanford Site. Most of the technologies considered involve removing water from the vadose zone or immobilizing the contaminants to reduce the risk of contaminating groundwater. A multi-element approach to initial treatability testing is recommended, with the goal of providing the information needed to evaluate candidate technologies. The proposed tests focus on mitigating two contaminants--uranium and technetium. Specific technologies are recommended for testing at areas that may affect groundwater in the future, but a strategy to test other technologies is also presented.

  14. Thermal calculations for the design, construction, operation, and evaluation of the Spent Fuel Test - Climax, Nevada Test Site

    SciTech Connect

    Montan, D.N.; Patrick, W.C.

    1981-09-30

    The Spent Fuel Test-Climax (SFT-C) is a test of retrievable deep geologic storage of commercially generated spent nuclear reactor fuel in granitic rock. Eleven spent fuel assemblies, together with six electrical simulators and 20 guard heaters, are emplaced 420 m below the surface in the Climax granite at the US Department of Energy Nevada Test Site. On June 2, 1978 LLNL secured funding for the SFT-C, and completed spent fuel emplacement May 28, 1980. This report documents a series of thermal calculations that were performed in support of the SFT-C. Early calculations employed analytical solutions to address such design and construction issues as drift layout and emplacement hole spacings. Operational aspects of the test required more detailed numerical solutions dealing with ventilation and guard-heater power levels. The final set of calculations presented here provides temperature histories throughout the test facility for evaluation of the response of the SFT-C and for comparison of calculations with acquired data. This final set of calculations employs the as-built test geometry and best-available material properties.

  15. A Survey of Vegetation and Wildland Fire Hazards on the Nevada Test Site, September 2004

    SciTech Connect

    Nevada, Bechtel

    2004-09-01

    In the spring of 2004 a survey was conducted by Bechtel Nevada Ecological Services on the Nevada Test Site to characterize vegetation resources and climatic components of the environment that contribute to wildland fires. The field surveyed assessed 211 sites along major Nevada Test Site corridors for the abundance of native perennial and annual species and invasive weeds. The abundance of fine-textured (grasses and herbs) and coarse-textured (woody) biomass was visually estimated on numerical scales ranging from one to five. Wildland fires are costly to control and to mitigate once they occur. Revegetation of burned areas is very slow without reseeding or transplanting with native species and other rehabilitation efforts. Untreated areas become much more vulnerable to future fires once invasive species, rather than native species, colonize a burned area.The annual assessment of wildland fire hazards on the Nevada Test Site is scheduled to be implemented each spring in the near future with results being reported directly to the U.S. Department of Energy and the Bechtel Nevada Fire Marshal.

  16. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    SciTech Connect

    1997-10-01

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  17. Closure Report for Corrective Action Unit 499: Hydrocarbon Spill Site, Tonopah Test Range, Nevada

    SciTech Connect

    K. B. Campbell

    2002-07-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 499: Hydrocarbon Spill Site, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 499: Hydrocarbon Spill Site, Tonopah Test Range (TTR), Nevada (US Department of Energy, Nevada Operations Office [DOE/NV], 2001). CAU 499 consists of one Corrective Action Site (CAS): RG-25-001-RD24: Radar 24 Diesel Spill Site which is approximately 4.0 kilometers (2.5 miles) southwest of the Area 3 Compound at the end of Avenue 24. The Hydrocarbon Spill Site is a diesel fuel release site that is assumed to have been caused by numerous small historical over-fillings, spills, and leaks from an above-ground storage tank (AST) over a period of approximately 36 years. The tank was located on the east side of Building 24-50 on the TTR.

  18. Preoperational test report, cross-site transfer water flush system (POTP-001)

    SciTech Connect

    Parsons, G.L.

    1998-02-20

    This report documents the results of the testing performed per POTP-001, for the Cross-Site Transfer Water Flush System. (HNF-1552, Rev. 0) The Flush System consists of a 47,000 gallon tank (302C), a 20 hp pump, two 498kW heaters, a caustic addition pump, various valves, instruments, and piping. The purpose of this system is to provide flush water at 140 F, 140gpm, and pH 11-12 for the Cross-Site Transfer System operation.

  19. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2007-06-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 121, Storage Tanks and Miscellaneous Sites. CAU 121 is currently listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO, 1996) and consists of three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site (NTS): CAS 12-01-01, Aboveground Storage Tank; CAS 12-01-02, Aboveground Storage Tank; and CAS 12-22-26, Drums; 2 AST's. CASs 12-01-01 and 12-01-02 are located to the west of the Area 12 Camp, and CAS 12-22-26 is located near the U-12g Tunnel, also known as G-tunnel, in Area 12 (Figure 1). The aboveground storage tanks (ASTs) present at CASs 12-01-01 and 12-01-02 will be removed and disposed of at an appropriate facility. Soil below the ASTs will be sampled to identify whether it has been impacted with chemicals or radioactivity above action levels. If impacted soil above action levels is present, the soil will be excavated and disposed of at an appropriate facility. The CAS 12-22-26 site is composed of two overlapping areas, one where drums had formerly been stored, and the other where an AST was used to dispense diesel for locomotives used at G-tunnel. This area is located above an underground radioactive materials area (URMA), and within an area that may have elevated background radioactivity because of containment breaches during nuclear tests and associated tunnel reentry operations. CAS 12-22-26 does not include the URMA or the elevated background radioactivity. An AST that had previously been used to store liquid magnesium chloride (MgCl) was properly disposed of several years ago, and releases from this tank are not an environmental concern. The diesel AST will be removed and disposed of at an appropriate facility. Soil at the former drum area and the diesel AST area will be sampled to identify whether it has been impacted by releases, from the drums or the

  20. Hydraulic Testing of Silurian and Ordovician Strata at the Bruce Site

    NASA Astrophysics Data System (ADS)

    Beauheim, R. L.; Avis, J. D.; Chace, D. A.; Roberts, R. M.; Toll, N. J.

    2009-05-01

    Ontario Power Generation is proposing a Deep Geologic Repository (DGR) for the long-term management of its Low and Intermediate Level Radioactive Waste (L&ILW) within a Paleozoic-age sedimentary sequence beneath the Bruce Site near Tiverton, Ontario, Canada. The concept envisions that the DGR would be excavated at a depth of approximately 680 m within the Ordovician Cobourg Formation, a massive, dense, argillaceous limestone. A key attribute of the Bruce site is the extremely low permeabilities associated with the thick Ordovician carbonate and argillaceous bedrock formations that will host and enclose the DGR. Such rock mass permeabilities are thought sufficiently low to contribute toward or govern a diffusion-dominated transport regime. To support this concept, hydraulic testing was performed in 2008 and 2009 in two deep boreholes at the proposed repository site, DGR-3 and DGR-4. The hydraulic testing was performed using a straddle-packer tool with a 30.74-m test interval. Sequential tests were performed over the entire open lengths of the boreholes from the F Unit of the Silurian Salina Formation into the Ordovician Gull River Formation, a distance of approximately 635 m. The tests consisted primarily of pressure-pulse tests, with a few slug tests performed in several of the higher permeability Silurian units. The tests are analyzed using the nSIGHTS code, which allows the entire pressure history a test interval has experienced since it was penetrated by the drill bit to be included in the test simulation. nSIGHTS also allows the model fit to the test data to be optimized over an n-dimensional parameter space to ensure that the final solution represents a true global minimum rather than simply a local minimum. The test results show that the Ordovician-age strata above the Coboconk Formation (70+ m below the Cobourg) have average horizontal hydraulic conductivities of 1E-13 m/s or less. Coboconk and Gull River hydraulic conductivities are as high as 1E-11 m

  1. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada with Errata Sheet

    SciTech Connect

    NNSA /NV

    2002-11-12

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions identified in

  2. Radiostrontium contamination of soil and vegetation within the Semipalatinsk test site.

    PubMed

    Howard, B J; Semioschkina, N; Voigt, G; Mukusheva, M; Clifford, J

    2004-12-01

    The Semipalatinsk nuclear test site (STS) in the Republic of Kazakhstan was an important site for testing atomic bombs and other civil and military nuclear devices of the former Soviet Union. Results are presented from investigations on the extent of radiostrontium contamination in soils and vegetation at the technical areas of the STS, where the tests were conducted and in pastures used by farmers for grazing animals or for hay production. Our data are compared with those reported largely in the recent Russian language literature that has been reviewed. The extent of (90)Sr contamination of soil is highly variable over the STS with the highest values associated with the technical areas, particularly the Degelen mountains. Recently measured values in both the present data and the Russian language literature confirm the relatively high current contamination of soil and vegetation in the vicinity of tunnels and associated watercourses in the Degelen area. The proportion of (90)Sr in soil which could not be extracted with 6 M HCl was only an average of 20%, which is low compared to other test site areas and possibly indicates a relatively high mobility in this area, because the (90)Sr is derived from leakage from explosion tunnels along watercourses rather than being associated with fused silicates. A comparison of relative activity concentrations in soil and vegetation suggests that the transfer of (90)Sr to vegetation on the STS is high compared to that of (137)Cs and plutonium. PMID:15645315

  3. Evaluation of Daphnia ambigua for Routine Aquatic Toxicity Testing at the Savannah River Site

    SciTech Connect

    Specht, W.L.; Harmon, S.M.

    1997-09-01

    Short-term whole effluent toxicity testing, which is currently a requirement of the U.S. EPA`s National Pollution Discharge Elimination System (NPDES), commonly uses the cladoceran species Ceriodaphnia dubia. Despite the advantages to using a common test species to model the toxic effects of effluents, it could be argued that toxicity test results would be more meaningful if a wider variety of test organisms were commonly used. One particular argument against C. dubia is that tests conducted with this species do not always reflect local, site-specific conditions. The careful selection and use of an indigenous test species would produce a more realistic model of local instream effects and would account for regional differences in water quality. Permitted effluent discharges from Savannah River Site (SRS), a government weapons facility operated by the U.S. Department of Energy, require toxicity testing with C. dubia. However, water quality in these receiving streams is markedly different (lower pH and hardness) from standard laboratory water used for the culturing and testing of C. dubia, and it has been shown that this receiving water presents varying degrees of toxicity to C. dubia. Based on these results, it is possible that toxic effects observed during an effluent study could be the result of test organism stress from the dilution water and not the effects of SRS effluents. Therefore, this study addressed the substitution of C. dubia with an indigenous cladoceran species, Daphnia ambigua for routine regulatory testing at SRS. Given the indigenous nature of this species, combined with the fact that it has been successfully cultured by other investigators, D. ambigua was ideal for consideration as a replacement for C. dubia, but further study of the overall success and sensitivity of laboratory-reared D. ambigua was required. This investigation determined that D. ambigua could be laboratory cultured with only minimal changes to established regulatory protocol and

  4. Analytical evaluation of four on-site oral fluid drug testing devices.

    PubMed

    Vanstechelman, Sylvie; Isalberti, Cristina; Van der Linden, Trudy; Pil, Kristof; Legrand, Sara-Ann; Verstraete, Alain G

    2012-03-01

    The use of oral fluid (OF) as an alternative matrix for the detection of drugs of abuse has increased over the last decade, leading to the need for a rapid, simple, and reliable on-site OF testing device. Four on-site OF drug testing devices (Dräger DrugTest 5000, Cozart DDS, Mavand Rapid STAT, and Innovacon OrAlert) were evaluated on 408 volunteers at drug treatment centers. UPLC-MS-MS results were used as reference to determine sensitivity, specificity and accuracy for each device, applying Belgian legal confirmation cutoffs for benzoylecgonine, cocaine, and THC (10 ng/mL); morphine and 6-acetylmorphine (5 ng/mL); and amphetamine and 3,4-methylenedioxymethylamphetamine (25 ng/mL). Sensitivity for cocaine was 50%, 50%, 27%, and 11% for DrugTest, OrAlert, Rapid STAT, and DDS 806, respectively. For opiates, sensitivities were 84%, 73%, 77%, and 65%, respectively. For THC, the sensitivities were 81%, 23%, 43%, and 28%, respectively. For amphetamines, the sensitivities were 75%, 33%, 17%, and 67%, respectively. Specificity was >88% for opiates and THC, > 90% for amphetamines, and > 97% for cocaine. All tests showed good specificity. DrugTest had the highest sensitivity, although it was still low for some analytes. PMID:22337784

  5. Multiple well-shutdown tests and site-scale flow simulation in fractured rocks.

    PubMed

    Tiedeman, Claire R; Lacombe, Pierre J; Goode, Daniel J

    2010-01-01

    A new method was developed for conducting aquifer tests in fractured-rock flow systems that have a pump-and-treat (P&T) operation for containing and removing groundwater contaminants. The method involves temporary shutdown of individual pumps in wells of the P&T system. Conducting aquifer tests in this manner has several advantages, including (1) no additional contaminated water is withdrawn, and (2) hydraulic containment of contaminants remains largely intact because pumping continues at most wells. The well-shutdown test method was applied at the former Naval Air Warfare Center (NAWC), West Trenton, New Jersey, where a P&T operation is designed to contain and remove trichloroethene and its daughter products in the dipping fractured sedimentary rocks underlying the site. The detailed site-scale subsurface geologic stratigraphy, a three-dimensional MODFLOW model, and inverse methods in UCODE_2005 were used to analyze the shutdown tests. In the model, a deterministic method was used for representing the highly heterogeneous hydraulic conductivity distribution and simulations were conducted using an equivalent porous media method. This approach was very successful for simulating the shutdown tests, contrary to a common perception that flow in fractured rocks must be simulated using a stochastic or discrete fracture representation of heterogeneity. Use of inverse methods to simultaneously calibrate the model to the multiple shutdown tests was integral to the effectiveness of the approach.

  6. Quantum chemical tests of water-water potential for interaction site water models.

    PubMed

    Huš, Matej; Urbič, Tomaž

    2012-09-01

    Accuracy of different simple interaction site water models was tested. Instead of assessing their quality through the calculations of various water physical properties (dipole moment, dielectric constant, phase-equilibria diagrams, etc.) and comparison with experimental values, we calculated water-water potential and compared it with the potential from quantum chemical calculations. Using density functional theory (DFT) water-water potential was calculated for different positions of two water molecules, which was compared with the interaction used in water models. Different simple interaction site water models were then evaluated and assessed. Special emphasis is placed on angle and distance dependence of water-water potential around minima in the potential. Among three-, four-and five-site electrostatic water models, TIP3P, TIP4P/2005 and TIP5P were found to be the most accurate.

  7. Pilot study risk assessment for selected problems at the Nevada Test Site (NTS)

    SciTech Connect

    Daniels, J.I.

    1993-06-01

    The Nevada Test Site (NTS) is located in southwestern Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. A series of tests was conducted in the late 1950s and early 1960s at or near the NTS to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of [sup 239,24O]Pu on the surficial soils at the test locations. Additionally, underground tests of nuclear weapons devices have been conducted at the NTS since late 1962; ground water beneath the NTS has been contaminated with radionuclides produced by these tests. These two important problems have been selected for assessment. Regarding the plutonium contamination, because the residual [sup 239]Pu decays slowly (half-life of 24,110 y), these sites could represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, three basic exposure scenarios were defined that could bring individuals in contact with [sup 239,24O]Pu at the sites: (1) a resident living in a subdivision, (2) a resident farmer, and (3) a worker at a commercial facility -- all located at a test site. The predicted cancer risks for the resident farmer were more than a factor of three times higher than the suburban resident at the median risk level, and about a factor of ten greater than the reference worker at a commercial facility. At 100 y from the present, the 5, 50, and 95th percentile risks for the resident farmer at the most contaminated site were 4 x 10[sup [minus]6], 6 x 10[sup [minus]5], and 5 x 10[sup [minus]4], respectively. For the assessment of Pu in surface soil, the principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung.

  8. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Asch, Theodore H.; Sweetkind, Donald S.; Burton, Bethany L.; Wallin, Erin L.

    2009-01-01

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  9. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  10. Pilot study risk assessment for selected problems at the Nevada Test Site (NTS)

    SciTech Connect

    Daniels, J.I.; Anspaugh, L.R.; Bogen, K.T.; Daniels, J.I.; Layton, D.W.; Straume, T.; Andricevic, R.; Jacobson, R.L.; Meinhold, A.F.; Holtzman, S.; Morris, S.C.; Hamilton, L.D.

    1993-06-01

    The Nevada Test Site (NTS) is located in southwestern Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. A series of tests was conducted in the late 1950s and early 1960s at or near the NTS to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of {sup 239,24O}Pu on the surficial soils at the test locations. Additionally, underground tests of nuclear weapons devices have been conducted at the NTS since late 1962; ground water beneath the NTS has been contaminated with radionuclides produced by these tests. These two important problems have been selected for assessment. Regarding the plutonium contamination, because the residual {sup 239}Pu decays slowly (half-life of 24,110 y), these sites could represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, three basic exposure scenarios were defined that could bring individuals in contact with {sup 239,24O}Pu at the sites: (1) a resident living in a subdivision, (2) a resident farmer, and (3) a worker at a commercial facility -- all located at a test site. The predicted cancer risks for the resident farmer were more than a factor of three times higher than the suburban resident at the median risk level, and about a factor of ten greater than the reference worker at a commercial facility. At 100 y from the present, the 5, 50, and 95th percentile risks for the resident farmer at the most contaminated site were 4 x 10{sup {minus}6}, 6 x 10{sup {minus}5}, and 5 x 10{sup {minus}4}, respectively. For the assessment of Pu in surface soil, the principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung.

  11. Characteristics of acoustic wave from atmospheric nuclear explosions conducted at the USSR Test Sites

    NASA Astrophysics Data System (ADS)

    Sokolova, Inna

    2015-04-01

    Availability of the acoustic wave on the record of microbarograph is one of discriminate signs of atmospheric (surface layer of atmosphere) and contact explosions. Nowadays there is large number of air wave records from chemical explosions recorded by the IMS infrasound stations installed during recent decade. But there is small number of air wave records from nuclear explosions as air and contact nuclear explosions had been conducted since 1945 to 1962, before the Limited Test Ban Treaty was signed in 1963 (the treaty banning nuclear weapon tests in the atmosphere, in outer space and under water) by the Great Britain, USSR and USA. That time there was small number of installed microbarographs. First infrasound stations in the USSR appeared in 1954, and by the moment of the USSR collapse the network consisted of 25 infrasound stations, 3 of which were located on Kazakhstan territory - in Kurchatov (East Kazakhstan), in Borovoye Observatory (North Kazakhstan) and Talgar Observatory (Northern Tien Shan). The microbarograph of Talgar Observatory was installed in 1962 and recorded large number of air nuclear explosions conducted at Semipalatinsk Test Site and Novaya Zemlya Test Site. The epicentral distance to the STS was ~700 km, and to Novaya Zemlya Test Site ~3500 km. The historical analog records of the microbarograph were analyzed on the availability of the acoustic wave. The selected records were digitized, the database of acoustic signals from nuclear explosions was created. In addition, acoustic signals from atmospheric nuclear explosions conducted at the USSR Test Sites were recorded by analogue broadband seismic stations at wide range of epicentral distances, 300-3600 km. These signals coincide well by its form and spectral content with records of microbarographs and can be used for monitoring tasks and discrimination in places where infrasound observations are absent. Nuclear explosions which records contained acoustic wave were from 0.03 to 30 kt yield for

  12. Application of a regional model to astronomical site testing in western Antarctica

    NASA Astrophysics Data System (ADS)

    Falvey, Mark; Rojo, Patricio M.

    2016-08-01

    The quality of ground-based astronomical observations is significantly affected by local atmospheric conditions, and the search for the best sites has led to the construction of observatories at increasingly remote locations, including recent initiatives on the high plateaus of East Antarctica where the calm, dry, and cloud-free conditions during winter are recognized as amongst the best in the world. Site selection is an important phase of any observatory development project, and candidate sites must be tested in the field with specialized equipment, a process both time consuming and costly. A potential means of screening site locations before embarking on field testing is through the use of regional climate models (RCMs). In this study, we describe the application of the Polar version of the Weather Research and Forecasting (WRF) model to the preliminary site suitability assessment of a hitherto unstudied region in West Antarctica. Numerical simulations with WRF were carried out for the winter (MJJA) of 2011 at 3- and 1-km spatial resolution over a region centered on the Ellsworth mountain range. Comparison with observations of surface wind speed and direction, temperature, and specific humidity at nine automatic weather stations indicates that the model performed well in capturing the mean values and time variability of these variables. Credible features revealed by the model includes zones of high winds over the southernmost part of the Ellsworth Mountains, a deep thermal inversion over the Ronne-Fincher Ice Shelf, and strong west to east moisture gradient across the entire study area. Comparison of simulated cloud fraction with a CALIPSO spacebourne Lidar climatology indicates that the model may underestimate cloud occurrence, a problem that has been noted in previous studies. A simple scoring system was applied to reveal the most promising locations. The results of this study indicate that the WRF model is capable of providing useful guidance during the

  13. Hydraulic-fracturing measurmements in two boreholes near the Spent Fuel Test-Climax, Climax Stock, Nevada Test Site

    USGS Publications Warehouse

    Ellis, William L.

    1983-01-01

    Hydraulic-fracturing measurements are used to infer the magnitude of the least principal stress in the vicinity of the Spent Fuel Test-Climax, located in the Climax stock at the Nevada Test Site. The measurements, made at various depths in two exploratory boreholes, suggest that the local stress field is not uniform. Estimates of the least principal stress magnitude vary over distances of a few tens of meters, with the smaller values averaging 2.9 MPa and the larger values averaging 5.5 MPa. The smaller values are in agreement with the minimum-stress magnitude of 2.8 MPa determined in a nearby drift in 1979, using an overcoring technique. Jointing in the granitic rock mass and (or) the influence of nearby faults may account for the apparent variation in minimum-stress magnitude indicated by the hydrofracture data.

  14. Closure Report for Corrective Action Unit 261: Area 25 Test Cell A Leachfield System, Nevada Test Site, Nevada

    SciTech Connect

    T. M. Fitzmaurice

    2001-04-01

    The purpose of this Closure Report (CR) is to provide documentation of the completed corrective action at the Test Cell A Leachfield System and to provide data confirming the corrective action. The Test Cell A Leachfield System is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Corrective Action Unit (CAU) 261. Remediation of CAU 261 is required under the FFACO (1996). CAU 261 is located in Area 25 of the Nevada Test Site (NTS) which is approximately 140 kilometers (87 miles) northwest of Las Vegas, Nevada (Figure 1). CAU 261 consists of two Corrective Action Sites (CASS): CAS 25-05-01, Leachfield; and CAS 25-05-07, Acid Waste Leach Pit (AWLP) (Figures 2 and 3). Test Cell A was operated during the 1960s and 1970s to support the Nuclear Rocket Development Station. Various operations within Building 3124 at Test Cell A resulted in liquid waste releases to the Leachfield and the AWLP. The following existing site conditions were reported in the Corrective Action Decision Document (CADD) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999): Soil in the leachfield was found to exceed the Nevada Division of Environmental Protection (NDEP) Action Level for petroleum hydrocarbons, the U.S. Environmental Protection Agency (EPA) preliminary remediation goals for semi volatile organic compounds, and background concentrations for strontium-90; Soil below the sewer pipe and approximately 4.5 meters (m) (15 feet [ft]) downstream of the initial outfall was found to exceed background concentrations for cesium-137 and strontium-90; Sludge in the leachfield septic tank was found to exceed the NDEP Action Level for petroleum hydrocarbons and to contain americium-241, cesium-137, uranium-234, uranium-238, potassium-40, and strontium-90; No constituents of concern (COC) were identified at the AWLP. The NDEP-approved CADD (DOWNV, 1999) recommended Corrective Action Alternative 2, ''Closure of the Septic Tank and Distribution Box, Partial

  15. Corrective Action Plan for Corrective Action Unit 261: Area 25 Test Cell A Leachfield System, Nevada Test Site, Nevada

    SciTech Connect

    T. M. Fitzmaurice

    2000-08-01

    This Corrective Action Plan (CAP) has been prepared for the Corrective Action Unit (CAU)261 Area 25 Test Cell A Leachfield System in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 1999). Investigation of CAU 261 was conducted from February through May of 1999. There were no Constituents of Concern (COCs) identified at Corrective Action Site (CAS) 25-05-07 Acid Waste Leach Pit (AWLP). COCs identified at CAS 25-05-01 included diesel-range organics and radionuclides. The following closure actions will be implemented under this plan: Because COCs were not found at CAS 25-05-07 AWLP, no action is required; Removal of septage from the septic tank (CAS 25-05-01), the distribution box and the septic tank will be filled with grout; Removal of impacted soils identified near the initial outfall area; and Upon completion of this closure activity and approval of the Closure Report by NDEP, administrative controls, use restrictions, and site postings will be used to prevent intrusive activities at the site.

  16. Supplemental Investigation Plan for FFACO Use Restrictions, Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Lynn Kidman

    2008-02-01

    This document is part of an effort to re-evaluate all FFACO URs against the current RBCA criteria (referred to in this document as the Industrial Sites [IS] RBCA process) as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006a). After reviewing all of the existing FFACO URs, the 12 URs addressed in this Supplemental Investigation Plan (SIP) could not be evaluated against the current RBCA criteria as sufficient information about the contamination at each site was not available. This document presents the plan for conducting field investigations to obtain the needed information. This SIP includes URs from Corrective Action Units (CAUs) 326, 339, 358, 452, 454, 464, and 1010, located in Areas 2, 6, 12, 19, 25, and 29 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada; and CAU 403, located in Area 3 of the Tonopah Test Range, which is approximately 165 miles north of Las Vegas, Nevada.

  17. Closure plan for Corrective Action Unit 109: U-2bu subsidence crater, Nevada Test Site, Nevada

    SciTech Connect

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facility Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). Based on the results of the analyses reported in the site characterization report, the only constituents of concern in the U-2bu subsidence crater include leachable lead and total petroleum hydrocarbons. Closure activities will include the excavation and disposal of impacted soil from the top of the crater. Upon completion of excavation, verification samples will be collected to show that the leachable lead has been removed to concentrations below the regulatory action level. After sample results show that the lead has been removed, the excavated area will be backfilled and a soil flood diversion berm will be constructed as a best management practice. An independent registered professional engineer will certify the site was closed following the approved Closure Plan. Post-closure care is not warranted for this site because closure activities will involve removal of the Resource Conservation and Recovery Act constituents of concern.

  18. Waste Management at the Nevada Test Site Year 2002: Current Status

    SciTech Connect

    Becker, Bruce, D.; Gertz, Carl, P.; Clayton, Wendy, A.; Carilli, Jhon, T.; Crowe, Bruce M.

    2003-02-24

    The performance attributes of the U. S. Department of Energy's National Nuclear Security Administration Nevada Site Office Low-level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other LLW disposal site in the United States. Situated at the southern end of the Great Basin, 244 meters (800 feet) above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity waste, classified material, and high-specific activity special case waste. Fifteen miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMSs since 1961 and 1968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  19. Perennial vegetation data from permanent plots on the Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Webb, Robert H.; Murov, Marilyn B.; Esque, Todd C.; Boyer, Diane E.; DeFalco, Lesley A.; Haines, Dustin F.; Oldershaw, Dominic; Scoles, Sara J.; Thomas, Kathryn A.; Blainey, Joan B.; Medica, Philip A.

    2003-01-01

    Perennial vegetation data from 68 permanent plots on the Nevada Test Site, Nye County, Nevada, are given for the period of 1963 through 2002. Dr. Janice C. Beatley established the plots in 1962 and then remeasured them periodically from 1963 through 1975. We remeasured 67 of these plots between 2000 and 2003; the remaining plot was destroyed at some time between 1975 and 1993. The plots ranged from 935 to 2,274 m in elevation and are representative of common plant associations of the Mojave Desert, the transition to Great Basin Desert, and pinyon-juniper woodlands. The purpose of this report is to describe the complete set of ecological data that Beatley collected from the Nevada Test Site from 1963 through 1975 and to present the data for perennial vegetation collected from 2000 through 2003.

  20. Archaeological investigations at Sample Unit U19aq, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Jones, R.C.; DuBarton, A.; Holz, B.A.; Pippin, L.C.; Beck, C.M.

    1992-01-01

    This report documents the methods and results of archaeological investigations at sample unit U19aq on Pahute Mesa. Seven sites were studied: two lithic artifact scatters (26NY4577 and 26NY4584), two temporary camps (26NY4585 and 26NY4588), two rock rings (26NY4592 and 26NY4593), and two flakes (26NY7855). Surface artifacts were collected from all seven sites. Excavations were confined to one test pit at 26NY4584 and two test pits at 26NY4585. The data retrieved from these investigations include over eight thousand artifacts, such as projectile points, bifaces, debitage, groundstone, pottery and beads. The temporally diagnostic materials indicate periodic use of sample unit U19aq from 3250 B.P. to historic times. Most of the cultural remains reflect the specialized activities of hunters and gatherers occupying temporary camps.

  1. Archaeological investigations at Sample Unit U19aq, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Jones, R.C.; DuBarton, A.; Holz, B.A.; Pippin, L.C.; Beck, C.M.

    1992-12-31

    This report documents the methods and results of archaeological investigations at sample unit U19aq on Pahute Mesa. Seven sites were studied: two lithic artifact scatters (26NY4577 and 26NY4584), two temporary camps (26NY4585 and 26NY4588), two rock rings (26NY4592 and 26NY4593), and two flakes (26NY7855). Surface artifacts were collected from all seven sites. Excavations were confined to one test pit at 26NY4584 and two test pits at 26NY4585. The data retrieved from these investigations include over eight thousand artifacts, such as projectile points, bifaces, debitage, groundstone, pottery and beads. The temporally diagnostic materials indicate periodic use of sample unit U19aq from 3250 B.P. to historic times. Most of the cultural remains reflect the specialized activities of hunters and gatherers occupying temporary camps.

  2. Photo Library of the Nevada Site Office (Includes historical archive of nuclear testing images)

    DOE Data Explorer

    The Nevada Site Office makes available publicly released photos from their archive that includes photos from both current programs and historical activities. The historical collections include atmospheric and underground nuclear testing photos and photos of other events and people related to the Nevada Test Site. Current collections are focused on homeland security, stockpile stewardship, and environmental management and restoration. See also the Historical Film Library at http://www.nv.doe.gov/library/films/testfilms.aspx and the Current Film Library at http://www.nv.doe.gov/library/films/current.aspx. Current films can be viewed online, but only short clips of the historical films are viewable. They can be ordered via an online request form for a very small shipping and handling fee.

  3. MAC Europe 1991 campaign: AIRSAR/AVIRIS data integration for agricultural test site classification

    NASA Technical Reports Server (NTRS)

    Sangiovanni, S.; Buongiorno, M. F.; Ferrarini, M.; Fiumara, A.

    1993-01-01

    During summer 1991, multi-sensor data were acquired over the Italian test site 'Otrepo Pavese', an agricultural flat area in Northern Italy. This area has been the Telespazio pilot test site for experimental activities related to agriculture applications. The aim of the investigation described in the following paper is to assess the amount of information contained in the AIRSAR (Airborne Synthetic Aperture Radar) and AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data, and to evaluate classification results obtained from each sensor data separately and from the combined dataset. All classifications are examined by means of the resulting confusion matrices and Khat coefficients. Improvements of the classification results obtained by using the integrated dataset are finally evaluated.

  4. Seismic evaluation of the U1a complex at the Nevada Test Site

    SciTech Connect

    McCamant, R R; Davito, A M; Hahn, K R; Murray, R C; Ng, D S; Sahni, V K; Schnechter, K M; Van Dyke, M

    1998-10-16

    As part of an overall safety evaluation of the Ula Complex, a seismic evaluation of structures, systems, and components (SSC) was conducted. A team of seismic, safety, and operation engineers from Los Alamos National Laboratory (LANL), Bechtel Nevada (BN) and Lawrence Livermore National Laboratory (LLNL) was chartered to perform the seismic evaluation. The UlA Complex is located in Area 1 of the Nevada Test Site (NTS) in Nevada. The complex is a test facility for physics experiments in support of the Science Based Stockpile Stewardship Program. The Ula Complex consists of surface and subsurface facilities. The subsurface facility is a tunnel complex located 963 feet below the surface. The seismic evaluation of U 1 a Complex is required to comply with the DOE Natural Phenomena Policy. This policy consists of an order, an implementing guide, and standards which provide guidance for design and evaluation of SSCs, categorization of SSCs, characterization of site, and hazard level definition.

  5. TECHNOLOGY EVALUATION REPORT, SITE PROGRAM DEMONSTRATION TEST: SHIRCO PILOT-SCALE INFRARED INCINERATION SYSTEM ROSE TOWNSHIP DEMODE ROAD SUPERFUND SITE - VOLUME II

    EPA Science Inventory

    The performance of the Shirco pilot-scale infrared thermal destruction system has been evaluated at the Rose Township, Demode Road Superfund Site and is presented in the report. The waste tested consisted of solvents, organics and heavy metals in an illegal dump site. Volume I gi...

  6. Analysis of Responses From Hydraulic Testing of the Lower Carbonate Aquifer at Yucca Flat, Nevada Test Site, Nye County, Nevada

    NASA Astrophysics Data System (ADS)

    Bhark, E. W.; Ruskauff, G.

    2005-12-01

    The Yucca Flat corrective action unit extends over an approximately 120 square-mile basin at the Nevada Test Site (NTS), southern Nevada, and was the site for over 650 historical underground nuclear tests. The lower carbonate aquifer (LCA), roughly 1,800 feet below ground surface at Yucca Flat and with a confined thickness of several thousand feet, is the primary aquifer for much of southern Nevada and underlies the full extent of Yucca Flat. Within the last decade, long-term (multiple-day) single- and multiple-well hydraulic tests have been performed to better define aquifer properties over larger scales. The LCA is highly heterogeneous, both laterally and vertically across Yucca Flat, reflecting differences in fracturing and fault density. As such, analysis of the recent testing data requires the consideration of heterogeneous hydraulic properties at multiple spatial scales. Three individual hydraulic tests are presented that portray the marked spatial variability of hydraulic properties related to both local fracturing and basin-scale faulting across Yucca Flat. Two ten-day single-well tests (wells ER-7-1, ER-6-2) and one ninety-day multiple-well test (well cluster ER-6-1) are considered. Interpretive and numerical analyses are based upon the log-log diagnostic plots of drawdown and recovery from pumping, utilizing both the head change and derivative. Heterogeneity is considered using the flow dimension, which represents a variable formation area of flow away from the well, and proves to be a fundamental analytical tool. All hydraulic parameter estimates, including flow dimension, are complete with a measure of uncertainty. The composite interpretation of all data results in a conceptual flow model representative of two spatially continuous scales. At the larger basin (km) scale, the data indicate a fracture- or high permeability strip-dominated flow regime created by fault-related features. Ubiquitous north-south trending faults throughout Yucca Flat appear to

  7. Develop and test fuel cell powered on-site integrated total energy system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Test results are given for a 5 kW stack and initial results for an integrated, grid connected system operating from methanol fuel. Site selection criteria are presented for future demonstration of a 50 or 100 kW OS/IES. Preliminary results are also given with approximate internal rates of return to the building owner. Progress in development and construction of a 50 kW modular methanol/steam reformer is reported.

  8. Nevada Test Site Decontamination and Decommissioning Program History, Regulatory Framework, and Lessons Learned

    SciTech Connect

    Michael R. Kruzic, Bechtel Nevada; Patrick S. Morris, Bechtel Nevada; Jerel G. Nelson, Polestar Applied Technology, Inc.

    2005-08-07

    Decontamination and Decommissioning (D&D) of radiologically and/or chemically contaminated facilities at the Nevada Test Site (NTS) are the responsibility of the Environmental Restoration (ER) Project. Facilities identified for D&D are listed in the Federal Facilities Agreement and Consent Order (FFACO) and closed under the Resource Conservation and Recovery Act process. This paper discusses the NTS D&D program, including facilities history, D&D regulatory framework, and valuable lessons learned.

  9. Commercial geophysical well logs from the USW G-1 drill hole, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Muller, D.C.; Kibler, J.E.

    1983-01-01

    Drill hole USW G-1 was drilled at Yucca Mountain, Nevada Test Site, Nevada, as part of the ongoing exploration program for the Nevada Nuclear Waste Storage Investigations. Contract geophysical well logs run at USW G-1 show only limited stratigraphic correlations, but correlate reasonably well with the welding of the ash-flow and ash-fall tuffs. Rocks in the upper part of the section have highly variable physical properties, but are more uniform and predictably lower in the section.

  10. Shrapnel protection testing in support of the proposed Site 300 Contained Firing Facility

    SciTech Connect

    Pastrnak, J W; Baker, C F; Simmons, L F

    1992-08-04

    In preparation for the planned Contained Firing Facility at LLNL's Site 300, various multi-layered shrapnel protection schemes were investigated with the intent of minimizing the amount of material used in the shielding. As a result of testing, it was found that two pieces of 1-in.-thick mild steel plate provide adequate general-purpose protection from shrapnel generated by normal hydrodynamic and cylinder shots at Bunker 801. 8 refs.

  11. Applicability of land use models for the Houston area test site

    NASA Technical Reports Server (NTRS)

    Petersburg, R. K.; Bradford, L. H.

    1973-01-01

    Descriptions of land use models are presented which were considered for their applicability to the Houston Area Test Site. These models are representative both of the prevailing theories of land use dynamics and of basic approaches to simulation. The models considered are: a model of metropolis, land use simulation model, emperic land use forecasting model, a probabilistic model for residential growth, and the regional environmental management allocation process. Sources of environmental/resource information are listed.

  12. Three computer codes to read, plot and tabulate operational test-site recorded solar data

    NASA Technical Reports Server (NTRS)

    Stewart, S. D.; Sampson, R. S., Jr.; Stonemetz, R. E.; Rouse, S. L.

    1980-01-01

    Computer programs used to process data that will be used in the evaluation of collector efficiency and solar system performance are described. The program, TAPFIL, reads data from an IBM 360 tape containing information (insolation, flowrates, temperatures, etc.) from 48 operational solar heating and cooling test sites. Two other programs, CHPLOT and WRTCNL, plot and tabulate the data from the direct access, unformatted TAPFIL file. The methodology of the programs, their inputs, and their outputs are described.

  13. Nevada Test Site-Directed Research and Development FY 2010 Annual Report

    SciTech Connect

    Howard Bender, comp.

    2011-04-04

    This annual report of the Site-Directed Research and Development (SDRD) program represents the highly significant R&D accomplishments conducted during fiscal year 2010. This year was noteworthy historically, as the Nevada Test Site was renamed to the Nevada National Security Site (NNSS). This change not only recognizes how the site's mission has evolved, but also heralds a future of new challenges and opportunities for the NNSS. In many ways, since its inception in 2002, the SDRD program has helped shape that evolving mission. As we approach 2012, SDRD will also mark a milestone, having completed its first full decade of innovative R&D in support of the site and national security. The program continues to fund advanced science and technology development across traditional Department of Energy (DOE) nuclear security areas such as stockpile stewardship and non-proliferation while also supporting Department of Homeland Security (DHS) needs, and specialized work for government agencies like the Department of Defense (DoD) and others. The NNSS will also contribute technologies in the areas of treaty verification and monitoring, two areas of increasing importance to national security. Keyed to the NNSS's broadened scope, the SDRD program will continue to anticipate and advance R&D projects that will help the NNSS meet forthcoming challenges.

  14. The competition plot: a simple test of whether two reactions occur at the same active site.

    PubMed Central

    Chevillard, C; Cárdenas, M L; Cornish-Bowden, A

    1993-01-01

    The competition plot is a method for determining whether or not two enzyme-catalysed reactions occur at the same active site. It is a plot of total rate against p, where p varies from 0 to 1 and specifies the concentrations (1-p)a0 and pb0 of two substrates in terms of reference concentrations a0 and b0 chosen so as to give the same rates at p = 0 and p = 1. If the two substrates react at the same site, the competition plot gives a horizontal straight line, i.e. the total rate is independent of p. Independent reactions at two separate sites give a curve with a maximum; separate reactions with cross-inhibition generate curves with either maxima or minima according to whether the Michaelis constants of the two substrates are smaller or larger than their inhibition constants in the other reactions. Although ambiguous results can sometimes arise, experimental strategies exist for avoiding them, for example working as close as possible to the lower of the two limiting rates. When tested with yeast hexokinase, the plot indicated phosphorylation of glucose and fructose at the same site. Conversely, with a mixture of yeast hexokinase and galactokinase it indicated phosphorylation of glucose and galactose at different sites. In both cases the observed behaviour agreed with the known properties of the enzymes. A slight modification to the definition of this plot allows it to be applied also to enzymes that deviate from Michaelis-Menten kinetics. PMID:8424801

  15. Dust resuspension from soil in a semi-arid environment at the Nevada Test Site

    SciTech Connect

    Eckart, R.; Chen, H. )

    1993-01-01

    The resuspension and transport of contaminated dust at an and or semi-arid site create a major source of exposure to people who use the site and to off-site populations. At the Nevada Test Site (NTS), a preliminary base-line risk assessment conducted by the University of Cincinnati indicated that [approximately]90% of the annual effective dose equivalent is derived from inhalation of contaminated dust. Despite the importance of this pathway, very few models exist to predict the resuspension of the soil from the desert pavement. There are no good models to predict the resuspension of soil after soil cleaning or site restoration. There are three types of resuspension processes: 1. wind-related resuspension/suspension; (2) mechanical resuspension/suspension; and (3) local resuspension or suspension. Mechanical and local resuspension originate from mechanical disturbance of the soil. This paper discusses the analysis of wind-related resuspension based on physical principles and examines revegetation or mulching of the cleansed soil.

  16. Testing carbon sequestration site monitor instruments using a controlled carbon dioxide release facility

    NASA Astrophysics Data System (ADS)

    Humphries, Seth D.; Nehrir, Amin R.; Keith, Charlie J.; Repasky, Kevin S.; Dobeck, Laura M.; Carlsten, John L.; Spangler, Lee H.

    2008-02-01

    Two laser-based instruments for carbon sequestration site monitoring have been developed and tested at a controlled carbon dioxide (CO2) release facility. The first instrument uses a temperature tunable distributed feedback (DFB) diode laser capable of accessing the 2.0027-2.0042 μm spectral region that contains three CO2 absorption lines and is used for aboveground atmospheric CO2 concentration measurements. The second instrument also uses a temperature tunable DFB diode laser capable of accessing the 2.0032-2.0055 μm spectral region that contains five CO2 absorption lines for underground CO2 soil gas concentration measurements. The performance of these instruments for carbon sequestration site monitoring was studied using a newly developed controlled CO2 release facility. A 0.3 ton CO2/day injection experiment was performed from 3-10 August 2007. The aboveground differential absorption instrument measured an average atmospheric CO2 concentration of 618 parts per million (ppm) over the CO2 injection site compared with an average background atmospheric CO2 concentration of 448 ppm demonstrating this instrument's capability for carbon sequestration site monitoring. The underground differential absorption instrument measured a CO2 soil gas concentration of 100,000 ppm during the CO2 injection, a factor of 25 greater than the measured background CO2 soil gas concentration of 4000 ppm demonstrating this instrument's capability for carbon sequestration site monitoring

  17. Lead test assembly irradiation and analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington

    SciTech Connect

    1997-07-01

    The U.S. Department of Energy (DOE) needs to confirm the viability of using a commercial light water reactor (CLWR) as a potential source for maintaining the nation`s supply of tritium. The Proposed Action discussed in this environmental assessment is a limited scale confirmatory test that would provide DOE with information needed to assess that option. This document contains the environmental assessment results for the Lead test assembly irradiation and analysis for the Watts Bar Nuclear Plant, Tennessee, and the Hanford Site in Richland, Washington.

  18. Lithology and Stratigraphy of Holes Drilled in LANL-Use Areas of the Nevada Test Site

    SciTech Connect

    Lance B. Prothro; Sigmund L. Drellack, Jr.; Brian M. Allen

    1999-07-01

    Geologic data for ten holes drilled in areas used by Los Alamos National Laboratory at the Nevada Test Site are presented in this report. The holes include emplacement holes, instrumentation holes, and Underground Test Area wells drilled during calendar years 1991 through 1995. For each hole a stratigraphic log, a detailed lithologic log, and one or two geologic cross sections are presented, along with a supplemental data sheet containing information about the drilling operations, geology, or references. For three of the holes, graphic data summary sheets with geologic and geophysical data are provided as plates.

  19. Addendum to environmental monitoring plan Nevada Test Site and support facilities

    SciTech Connect

    1992-11-01

    This 1992 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/1 0630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1992 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  20. Testing in support of on-site storage of residues in the Pipe Overpack Container

    SciTech Connect

    Ammerman, D.J.; Bobbe, J.G.; Arviso, M.

    1997-02-01

    The disposition of the large back-log of plutonium residues at the Rocky Flats Environmental Technology Site (Rocky Flats) will require interim storage and subsequent shipment to a waste repository. Current plans call for disposal at the Waste Isolation Pilot Plant (WIPP) and the transportation to WIPP in the TRUPACT-II. The transportation phase will require the residues to be packaged in a container that is more robust than a standard 55-gallon waste drum. Rocky Flats has designed the Pipe Overpack Container to meet this need. It is desirable to use this same waste packaging for interim on-site storage in non-hardened buildings. To meet the safety concerns for this storage the Pipe Overpack Container has been subjected to a series of tests at Sandia National Laboratories in Albuquerque, New Mexico. In addition to the tests required to qualify the Pipe Overpack Container as a waste container for shipment in the TRUPACT-II several tests were performed solely for the purpose of qualifying the container for interim storage. This report will describe these tests and the packages response to the tests. 12 figs., 3 tabs.

  1. Tracing long-term vadose zone processes at the Nevada Test Site, USA

    PubMed Central

    Hunt, James R.; Tompson, Andrew F. B.

    2010-01-01

    The nuclear weapons testing programme of the USA has released radionuclides to the subsurface at the Nevada Test Site. One of these tests has been used to study the hydrological transport of radionuclides for over 25 years in groundwater and the deep unsaturated zone. Ten years after the weapon’s test, a 16 year groundwater pumping experiment was initiated to study the mobility of radionuclides from that test in an alluvial aquifer. The continuously pumped groundwater was released into an unlined ditch where some of the water infiltrated into the 200 m deep vadose zone. The pumped groundwater had well-characterized tritium activities that were utilized to trace water migration in the shallow and deep vadose zones. Within the near-surface vadose zone, tritium levels in the soil water are modelled by a simple one-dimensional, analytical wetting front model. In the case of the near-surface soils at the Cambric Ditch experimental site, water flow and salt accumulation appear to be dominated by rooted vegetation, a mechanism not included within the wetting front model. Simulation results from a two-dimensional vadose groundwater flow model illustrate the dominance of vertical flow in the vadose zone and the recharge of the aquifer with the pumped groundwater. The long-time series of hydrological data provides opportunities to understand contaminant transport processes better in the vadose zone with an appropriate level of modelling. PMID:21785525

  2. Addendum to Environmental Monitoring Plan, Nevada Test Site and Support Facilities; Addendum 2

    SciTech Connect

    1993-11-01

    This 1993 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/10630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Operations Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1993 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  3. New Standards for the Validation of EMC Test Sites particularly above 1 GHz

    NASA Astrophysics Data System (ADS)

    Battermann, S.; Trautnitz, F. W.; Garbe, H.

    2005-05-01

    Standards for the validation of alternative test sites with conducting groundplane exist for the frequency range 30-1000 MHz since the end of the eighties. Recently the procedure for fully anechoic rooms (FAR) has been included in CISPR 16 after more than 10 years intensive discussion in standards committees (CENELEC, 2002; CISPR, 2004). But there are no standards available for the validation of alternative test sites above 1 GHz. The responsible working group (WG1) in CISPR/A has drawn up the 7th common draft (CD). A CDV will be published in spring 2005. The German standards committee VDE AK 767.4.1 participates in the drafting of the standard. All suggested measurement procedures proposed in the last CDs have been investigated by measurements and theoretical analysis. This contribution describes the basic ideas and problems of the validation procedure of the test site. Furthermore measurement results and numerical calculations will be presented especially for the use of omni-directional antennas.

  4. [Trait stability and test site representativeness of sugarcane varieties based on GGE-biplot analysis].

    PubMed

    Luo, Jun; Zhang, Hua; Deng, Zu-Hu; Que, You-Xiong

    2012-05-01

    Arithmetic mean method is commonly used to evaluate the yield stability and adaptability of sugarcane varieties, and variance analysis is applied to estimate the errors in regional trials. However, it is difficult to accurately evaluate the differences of the varieties due to the discrepancies across test sites and years. In this paper, GGE-biplot method was adopted to analyze the data from the regional trials with seven sugarcane varieties at five sites from 2008 to 2009, aimed to objectively evaluate the yield stability and adaptability of sugarcane varieties in China. Among the test sugarcane varieties, Funong No. 30 had higher cane yield and better yield stability, Yuegan No. 18 had higher sugar content and better trait stability, Funong No. 28 and Yunzhe 99-91 had high sucrose content and trait stability, while Yuegan No. 16 had the highest cane yield and sugar content but ordinary stability. In the test sites, Zhangzhou City in Fujian Province and Suixi City in Guangdong Province had the best representativeness and discrimination. This study showed that GGE-biplot analysis provided a simple and effective method to analyze the high yield and stability of sugarcane varieties in regional trials, and supplied the basis for the approval and extension of new sugarcane varieties.

  5. Develop and test fuel cell powered on-site integrated total energy systems

    NASA Astrophysics Data System (ADS)

    Kaufman, A.; Werth, J.

    1984-10-01

    Work has been performed leading toward the development of a 50kW on-site integrated energy system. A sub-scale 5kW system was constructed and tested in the steady-load (with shutdowns) and transient modes. A parallel effort has been conducted to develop the full-size sub-systems for the on-site system; these include the fuel cell stack, a methanol processor, and a d.c.-a.c. power conditioner. Stack technology development activities have been carried out to improve the performance, cost and reliability of stack components and hardware. In the fuel processing area, screening tests have been conducted for various methanol steam-reforming catalysts, and the preferred catalysts have been subjected to extended testing. Application-related work has been pursued largely under subcontracts. A study has been completed in which the applicability of on-site fuel cell cogeneration systems to various building types was analyzed and the potential economic attractiveness ascertained. The overall system was analyzed in terms of its operating characteristics at part load and its response to transients. Preferred heating, ventilating, and air conditioning approaches for various building types using fuel cell cogeneration units are determined.

  6. Closure Plan for Corrective Action Unit 109: U-2bu Subsidence Crater Nevada Test Site, Nevada

    SciTech Connect

    Shannon Parsons

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facilities Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). The subsidence crater was used as a land disposal unit for radioactive and hazardous waste from 1973 to 1988. Site disposal history is supported by memorandums, letters, and personnel who worked at the Nevada Test Site at the time of active disposal. Closure activities will include the excavation and disposal of impacted soil form the tip of the crater. Upon completion of excavation, verification samples will be collected to show that lead has been removed to concentrations be low regulatory action level. The area will then be backfilled and a soil flood diversion berm will be constructed, and certified by an independent professional engineer as to having followed the approved Closure Plan.

  7. Magnetotelluric Data, Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Williams, Jackie M.; Sampson, Jay A.; Rodriguez, Brian D.; Asch, Theodore H.

    2006-01-01

    Introduction: The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. During 2005, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data from twenty-six magnetotelluric (MT) and audio-magnetotelluric (AMT) sites at the Nevada Test Site. The 2005 data stations were located on and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend the area of the hydrogeologic study previously conducted in Yucca Flat. The MT data presented in this report will help refine what is known about the character, thickness, and lateral extent of pre Tertiary confining units. Subsequent interpretation will include a three dimensional (3 D) character analysis and a two-dimensional (2 D) resistivity model. The purpose of this report is to release the MT sounding data. No interpretation of the data is included here.

  8. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    SciTech Connect

    Moser, Duane P.; Bruckner, Jim; Fisher, Jen; Czerwinski, Ken; Russell, Charles E.; Zavarin, Mavrik

    2010-09-01

    This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program’s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  9. Characterization of microbial communities in subsurface nuclear blast cavities of the Nevada Test Site

    SciTech Connect

    Moser, Duane P; Czerwinski, Ken; Russell, Charles E; Zavarin, Mavrik

    2010-07-13

    This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  10. [Trait stability and test site representativeness of sugarcane varieties based on GGE-biplot analysis].

    PubMed

    Luo, Jun; Zhang, Hua; Deng, Zu-Hu; Que, You-Xiong

    2012-05-01

    Arithmetic mean method is commonly used to evaluate the yield stability and adaptability of sugarcane varieties, and variance analysis is applied to estimate the errors in regional trials. However, it is difficult to accurately evaluate the differences of the varieties due to the discrepancies across test sites and years. In this paper, GGE-biplot method was adopted to analyze the data from the regional trials with seven sugarcane varieties at five sites from 2008 to 2009, aimed to objectively evaluate the yield stability and adaptability of sugarcane varieties in China. Among the test sugarcane varieties, Funong No. 30 had higher cane yield and better yield stability, Yuegan No. 18 had higher sugar content and better trait stability, Funong No. 28 and Yunzhe 99-91 had high sucrose content and trait stability, while Yuegan No. 16 had the highest cane yield and sugar content but ordinary stability. In the test sites, Zhangzhou City in Fujian Province and Suixi City in Guangdong Province had the best representativeness and discrimination. This study showed that GGE-biplot analysis provided a simple and effective method to analyze the high yield and stability of sugarcane varieties in regional trials, and supplied the basis for the approval and extension of new sugarcane varieties. PMID:22919843

  11. Site 1 field testing for cooling-water treatment. Final report

    SciTech Connect

    Litherland, S.T.; Owen, M.L.; Scholl, F.A.; Kamas, J.W.; Nassos, P.A.

    1985-06-01

    The Electric Power Research Institute is sponsoring a three phase research project to develop a design and operating methodology for recirculating cooling water systems at high concentration factors. To expand the available data base for cooling water systems at high concentration factors, a portable field test unit (FTU) has been designed and fabricated for operation at sites with different makeup water qualities. For a ten month period during 1981, the FTU was operated at the first site, Comanche Generating Station in Pueblo, Colorado. During the field testing, several cooling water treatment options were used to increase the concentration factor for operating the FTU. These water treatment options included: (1) sulfuric acid addition for alkalinity control; (2) lime-soda makeup softening; (3) lime-soda sidestream softening; (4) combined lime-soda makeup and sidestream softening; and (5) inhibitor addition for gypsum scale control. The purpose of this report is to present a detailed discussion of all Site 1 field test activities, including FTU operation and data interpretation and analyses. 11 refs., 68 figs., 70 tabs.

  12. Implementation of the Panasonic TLD (Thermoluminescent Dosimeter) system for personnel monitoring at the Nevada Test Site

    SciTech Connect

    DeMarre, M.; Teasdale, C.L.; Sygitowicz, L.S.

    1988-01-01

    In January 1987, the dosimetry system at the Nevada Test Site changed from a film badge dosimetry program to the Panasonic Thermoluminescent Dosimeter (TLD) system to monitor external radiation exposure to personnel working at the Nevada Test Site. In order to implement the Panasonic TLD system, a combination dosimeter and security credential badge holder had to be developed, a computer processing system developed, a dose processing algorithm developed and enough Panasonic UD802AS2 TLDs purchased to support a large quarterly exchange. Problems that had to be resolved during the first year of operation were: processing approximately 15,000 dosimeters per quarter; multiple exchange of the same dosimeter in the same quarter due to incoming visitors and vendors; late returns due to the unique user community at the Nevada Test Site; TLD damage experience and unusual TLD anomalies. The experience from the original planning stages for conversion to the TLD system to the reality of the implementation of this system will be discussed.

  13. Basis for in-situ geomechanical testing at the Yucca Mountain site

    SciTech Connect

    Board, M.

    1989-07-01

    This report presents an analysis of the in-situ geomechanical testing needs for the Exploratory Shaft (ES) test facility at the Yucca Mountain site in Nevada. The testing needs are derived from 10CFR60 regulations and simple thermomechanical canister- and room-scale numerical studies. The testing approach suggested is based on an ``iterative`` procedure of full-scale testing combined with numerical and empirical modeling. The testing suggested is based heavily on demonstration of excavation and thermal loading of full-scale repository excavations. Numerical and/or empirical models are compared to the full-scale response, allowing for adjustment of the model and evaluation of confidence in their predictive ability. Additional testing may be specified if confidence in prediction of the rock mass response is low. It is suggested that extensive drifting be conducted within the proposed repository area, including exploration of the bounding Drill Hole Wash and Imbricate fault structures, as well as the Ghost Dance fault. This approach is opposed to an a priori statistical specification of a number of ``point`` tests which attempt to measure a given property at a specific location. 40 refs., 49 figs., 6 tabs.

  14. Closure Report for Corrective Action Unit 130: Storage Tanks Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Alfred Wickline

    2009-03-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 130: Storage Tanks, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 130 are located within Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site. Corrective Action Unit 130 is comprised of the following CASs: • 01-02-01, Underground Storage Tank • 07-02-01, Underground Storage Tanks • 10-02-01, Underground Storage Tank • 20-02-03, Underground Storage Tank • 20-99-05, Tar Residue • 22-02-02, Buried UST Piping • 23-02-07, Underground Storage Tank This CR provides documentation supporting the completed corrective action investigations and provides data confirming that the closure objectives for CASs within CAU 130 were met. To achieve this, the following actions were performed: • Reviewed the current site conditions, including the concentration and extent of contamination. • Implemented any corrective actions necessary to protect human health and the environment. • Properly disposed of corrective action and investigation-derived wastes. From August 4 through September 30, 2008, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 130, Storage Tanks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, confirm that no residual contamination is present, and properly dispose of wastes. Constituents detected during the closure activities were evaluated against final action levels to identify

  15. Nevada Test Site, 2006 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect

    David B. Hudson

    2007-06-30

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2006 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2006; Warren and Grossman, 2007; National Security Technologies, LLC, 2007). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2006 totaled 98.6 millimeters (mm) (3.9 inches [in.]) at the Area 3 RWMS and 80.7 mm (3.2 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 remains at the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that evaporation continues to slowly remove soil moisture that came from the heavy precipitation in the fall of 2004 and the spring of

  16. Addendum 1 Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Vefa Yucel

    2001-11-01

    A disposal authorization statement (DAS) was issued by the U.S. Department of Energy/Headquarters (DOE/HQ) on December 5, 2000, authorizing the DOE's National Nuclear Security Administration Nevada Operations Office to continue the operation of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site for the disposal of low-level waste and mixed low-level waste. Prior to the issuance of the DAS, the Low-Level Waste Disposal Facility Federal Review Group (LFRG) had conducted reviews of the performance assessment (PA) and the composite analysis (CA) for the Area 5 RWMS, in accordance with the requirements of the DOE Radioactive Waste Management Order DOE O 435.1. A brief history of the reviews is as follows. (The reviews were conducted by independent review teams chartered by the LFRG; the review findings and recommendations were issued in review team reports to the LFRG.) The LFRG accepted the initial PA, with conditions, on August 30, 1996. Revision 2.1 to the PA was issued in January 1998, implementing the conditions of acceptance of the 1996 PA. The LFRG reviewed Revision 2.1 as part of the Area 5 RWMS CA review during 2000, and found it acceptable. The CA and the Supplemental Information provided in response to issues identified during the initial review of the CA were accepted by the LFRG. The Supplemental Information (including the responses to four key issues) is included in the Review Team Report to the LFRG, which recommends that it be incorporated into the CA and issued to all known holders of the CA. The Area 5 RWMS DAS requires that the Supplemental Information generated during the DOE/HQ review of the CA be incorporated into the CA within one year of the date of issuance of the DAS. This report, the first addendum to the Area 5 CA, is prepared to fulfill that requirement. The Supplemental Information includes the following: Issues Identified in the Review Team Report; Crosswalk Presentation; and Maintaining Doses As Low As Reasonably

  17. Nevada Test Site 2005 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect

    David B. Hudson, Cathy A. Wills

    2006-08-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2005 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2005; Grossman, 2005; Bechtel Nevada, 2006). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2005 totaled 219.1 millimeters (mm) (8.63 inches [in.]) at the Area 3 RWMS and 201.4 mm (7.93 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 has percolated to the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that precipitation from the fall of 2004 and the spring of 2005 infiltrated past the deepest sensors at 188 centimeters (6.2 feet) and remains in the pit cover

  18. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  19. Prevention of significant deterioration application for approval to construct SP-100 Ground Engineering System Test Site

    SciTech Connect

    Not Available

    1990-04-01

    The following application is being submitted by the US Department of Energy, Richland Operations Office, P.O. Box 550, Richland, Washington 99352, pursuant to WAC 173-403-080, and in compliance with the Department of Ecology Guide to Processing a Prevention of Significant Deterioration (PSD) Permit'' for a new source of airborne radionuclide emissions at the Hanford Site in Washington State. The new source, the SP-100 Ground Engineering System (GES) Test Site, will be located in the 309 Building of the 300 Area. The US Department of Energy (DOE), the National Aeronautics and Space Administration (NASA), and the US Department of Defense (DOD) have entered into an agreement to jointly develop space nuclear reactor power system technology. The DOE has primary responsibility for developing and ground testing the nuclear subsystem. A ground test of a reactor is necessary to demonstrate technology readiness of this major subsystem before proceeding with the flight system development and demonstration. The SP-100 GES Test Site will provide a location for the operation and testing of a prototype space-based, liquid metal-cooled, fast flux nuclear reactor in an environment closely simulating the vacuum and temperature conditions of space operations. The purpose of the GES is to develop safe, compact, light-weight and durable space reactor power system technology. This technology will be used to provide electric power, in the range of tens to hundreds of kilowatts, for a variety of potential future civilian and military space missions requiring long-term, high-power level sources of energy. 20 refs., 8 figs., 7 tabs.

  20. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    SciTech Connect

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  1. Array analysis of regional Pn and Pg wavefields from the Nevada Test Site

    SciTech Connect

    Leonard, M.A. . Dept. of Geology and Geophysics Lawrence Berkeley Lab., CA )

    1991-06-01

    Small-aperture high-frequency seismic arrays with dimensions of a few kilometers or less, can improve our ability to seismically monitor compliance with a low-yield Threshold Test Ban Treaty. This work studies the characteristics and effectiveness of array processing of the regional Pn and Pg wavefields generated by underground nuclear explosions at the Nevada Test Site. Waveform data from the explosion HARDIN (m{sub b} = 5.5) is recorded at a temporary 12-element, 3-component, 1.5 km-aperture array sited in an area of northern Nevada. The explosions VILLE (m{sub b} = 4.4) and SALUT (m{sub b} = 5.5) are recorded at two arrays sited in the Mojave desert, one a 96-element vertical-component 7 km-aperture array and the other a 155-element vertical-component 4 km-aperture array. Among the mean spectra for the m{sub b} = 5.5 events there are significant differences in low-frequency spectral amplitudes between array sites. The spectra become nearly identical beyond about 6 Hz. Spectral ratios are used to examine seismic source properties and the partitioning of energy between Pn and Pg. Frequency-wavenumber analysis at the 12-element array is used to obtain estimates of signal gain, phase velocity, and source azimuth. This analysis reveals frequency-dependent biases in velocity and azimuth of the coherent Pn and Pg arrivals. Signal correlation, the principal factor governing array performance, is examined in terms of spatial coherence estimates. The coherence is found to vary between the three sites. In all cases the coherence of Pn is greater than that for Pg. 81 refs., 92 figs., 5 tabs.

  2. Interpretation of hydraulic tests performed at a carbonate rock site for CO2 storage

    NASA Astrophysics Data System (ADS)

    María Gómez Castro, Berta; Fernández López, Sheila; Carrera, Jesús; de Simone, Silvia; Martínez, Lurdes; Roetting, Tobias; Soler, Joaquim; Ortiz, Gema; de Dios, Carlos; Huber, Christophe

    2014-05-01

    Interpretation of hydraulic tests performed at a carbonate rock site for CO2 storage Berta Gómez, Sheila Fernández, Tobias Roetting, Lurdes Martínez, Silvia de Simone, Joaquim Soler, Jesus Carrera, Gema Ortiz, Christophe Huber, Carlos de Dios Proper design of CO2 geological storage facilities requires knowledge of the reservoir hydraulic parameters. Specifically, permeability controls the flux of CO2, the rate at which it dissolves, local and regional pressure buildup and the likelihood of induced seismicity. Permeability is obtained from hydraulic tests, which may yield local permeability, which controls injectivity, and large scale permeability, which controls pressure buildup at the large scale. If pressure response measurements are obtained at different elevations, hydraulic tests may also yield vertical permeability, which controls the rate at which CO2 dissolves. The objective of this work is to discuss the interpretation of hydraulic tests at deep reservoirs and the conditions under which these permeabilities can be obtained. To achieve this objective, we have built a radially symmetric model, including a skin and radial as well as vertical heterogeneity. We use this model to simulate hydraulic tests with increasing degrees of complexity about the medium response. We start by assuming Darcy flow, then add coupled mechanical effects (fractures opening) and, finally, we add thermal effects. We discuss how these affect the conventional interpretation of the tests and how to identify their presence. We apply these findings to the interpretation of hydraulic tests at Hontomin.

  3. Streamlined approach for environmental restoration workplan for Corrective Action Unit 198: Test Cell C filter tank closure, Nevada Test Site, Nevada. Revision 1

    SciTech Connect

    1998-07-01

    This plan addresses characterization and closure of Corrective Action Unit (CAU) 198 identified in the Federal Facility Agreement and Consent Order. The site is located at the Nevada Test Site (NTS) Area 25 Test Cell C Complex. The CAU consists of one Corrective Action Site (CAS) 25-23-12 which includes two aboveground radioactive wastewater filter tanks. The tanks have an estimated capacity of 2,271 liters (600 gallons) each and were used to filter radioactive wastewater originating from the Test Cell C ``Nuclear Furnace 1`` testing. The tanks contain radioisotopes. Process knowledge indicates that the most likely isotopes of concern include {sup 90}Strontium and {sup 137}Cesium.

  4. Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada

    SciTech Connect

    1997-10-01

    The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the

  5. Final environmental impact statement for the Nevada Test Site and off-site locations in the state of Nevada: Mitigation action plan

    SciTech Connect

    1997-02-01

    The DOE Notice of Availability for this environmental impact statement was published in the Federal Register on Friday, October 18, 1996 (61 FR 54437). The final environmental impact statement identifies potential adverse effects resulting from the four use alternatives evaluated and discusses measures that DOE considered for the mitigation of these potential adverse effects. The Secretary of Energy signed the Record of Decision on the management and operation of the Nevada Test Site and other DOE sites in the state of Nevada on December 9, 1996. These decisions will result in the continuation of the multipurpose, multi-program use of the Nevada Test Site, under which DOE will pursue a further diversification of interagency, private industry, and public-education uses while meeting its Defense Program, Waste Management, and Environmental Restoration mission requirements at the Nevada Test Site and other Nevada sites, including the Tonopah Test Range, the Project Shoal Site, the Central Nevada Test Area, and on the Nellis Air Force Range Complex. The Record of Decision also identifies specific mitigation actions beyond the routine day-to-day physical and administrative controls needed for implementation of the decisions. These specific mitigation actions are focused on the transportation of waste and on groundwater availability. This Mitigation Action Plan elaborates on these mitigation commitments.

  6. Modeling a tracer test at the Grimsel Test Site (GTS) using a lattice Boltzmann method and transmissivity field

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Lanyon, G. W.; Baik, M. H.; Blechschmidt, I.

    2015-12-01

    A series of tracer tests have been conducted in the Migration (MI) Shear Zone at the Grimsel Test Site (GTS) for the Colloid Formation and Migration Project (CFM). As a part of the series, a dipole test (Tracer Test Run 13-05) using radionuclides, colloids and conservative tracers was performed to determine the breakthrough between CRR99.002-i2 and BOMI87.010-i2. To date, the breakthrough data of only the conservative dye tracer (Amino-G acid) are available. In the preceding project, the Colloid and Radionuclide Retardation Project (CRR), a transmissivity field for the MI shear zone was obtained by the geostatistical inverse modeling approach. In this study, the breakthrough of the tracer was computed by a gray lattice Boltzmann method (LBM). The transmissivity field with finite elements grid was transformed to the effective fracture aperture or flow porosity according to the cubic law, and the grid was uniformalized by the interpolation. The uniform mesh of the effective aperture was utilized as the model domain of the gray LBM. In the gray LBM, the heterogeneity of the aperture was dealt with a partial-bounceback scheme. The profiles of hydraulic heads monitored at the boreholes nearby were used as the reference values in the calculation of the pressure distribution in the model domain. The modeling results could reveal a dominant pathway of tracers in the dipole test. The developed model can be utilized in the calculation of the reactive transports of radionuclides and colloids by coupling with a geochemical model, such as Phreeqc, the Geochemist's Workbench, etc.

  7. Preliminary Interpretation of a Radionuclide and Colloid Tracer Test in a Granodiorite Shear Zone at the Grimsel Test Site, Switzerland

    SciTech Connect

    Reimus, Paul W.

    2012-08-30

    In February and March 2012, a tracer test involving the injection of a radionuclide-colloid cocktail was conducted in the MI shear zone at the Grimsel Test Site, Switzerland, as part of the Colloids Formation and Migration (CFM) project. The colloids were derived from FEBEX bentonite, which is mined in Spain and is being considered as a potential waste package backfill in a Spanish nuclear waste repository. The tracer test, designated test 12-02 (second test in 2012), involved the injection of the tracer cocktail into borehole CFM 06.002i2 and extraction from the Pinkel surface packer at the main access tunnel wall approximately 6.1 m from the injection interval. The test configuration is depicted in Figure 1. This configuration has been used in several conservative tracer tests and two colloid-homologue tracer tests since 2007, and it is will be employed in an upcoming test involving the emplacement of a radionuclide-doped bentonite plug into CFM 06.002i2 to evaluate the swelling and erosion of the bentonite and the transport of bentonite colloids and radionuclides from the source to the extraction point at the tunnel wall. Interpretive analyses of several of the previous tracer tests, from 09-01 through 12-02 were provided in two previous Used Fuel Disposition Program milestone reports (Arnold et al., 2011; Kersting et al., 2012). However, only the data for the conservative tracer Amino-G Acid was previously analyzed from test 12-02 because the other tracer data from this test were not available at the time. This report documents the first attempt to quantitatively analyze the radionuclide and colloid breakthrough curves from CFM test 12-02. This report was originally intended to also include an experimental assessment of colloid-facilitated transport of uranium by bentonite colloids in the Grimsel system, but this assessment was not conducted because it was reported by German collaborators at the Karlsruhe Institute of Technology (KIT) that neither uranium nor

  8. Evaluation of the hydrologic source term from underground nuclear tests in Frenchman Flat at the Nevada Test Site: The Cambric test

    SciTech Connect

    Bourcier, W L; Bruton, C J; Carle, S F; Kersting, A B; Pawloski, G A; Rard, J A; Shumaker, D E; Smith, D K; Tompson, A F

    1999-03-23

    The objectives of this project are to develop and apply a modeling frame- work to quantitatively evaluate the nature and extent of radionuclide migration within the immediate, near field environment about an underground nuclear test. Specifically, it will involve evaluation of ² The speciation and abundance of radionuclides that are introduced into groundwater as aqueous species or colloids, and ² The rate and extent of radionuclide movement, dilution, and reaction in groundwater surrounding the working point of a test. To be clear, interest will only be focused on processes that have occurred well after the nuclear test, as opposed to the more dynamic processes that take place during or immediately after detonation. The meaning of "near field" in this case will loosely refer to a volume of diameter 4-8 Rc, centered on the working point and chimney of the test, where Rc is the radius of the blast cavity. For a given nuclear test, this information will collectively comprise the test's "hydrologic source term". This work relies on and is being supported by existing data, analyses, and interpretations that have been made at the Nevada Test Site (NTS) during the American nuclear test program and previous and ongoing studies related to radionuclide migration in the subsurface (Kersting, 1996).

  9. Well ER-6-1 Tracer Test Analysis: Yucca Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    SciTech Connect

    Greg Ruskauff

    2006-09-01

    The ER-6-1 multiple-well aquifer test-tracer test (MWAT-TT) investigated groundwater flow and transport processes relevant to the transport of radionuclides from sources on the Nevada Test Site (NTS) through the lower carbonate aquifer (LCA) hydrostratigraphic unit (HSU). The LCA, which is present beneath much of the NTS, is the principal aquifer for much of southern Nevada. This aquifer consists mostly of limestone and dolomite, and is pervasively fractured. Groundwater flow in this aquifer is primarily in the fractures, and the hydraulic properties are primarily related to fracture frequency and fracture characteristics (e.g., mineral coatings, aperture, connectivity). The objective of the multiple-well aquifer test (MWAT) was to determine flow and hydraulic characteristics for the LCA in Yucca Flat. The data were used to derive representative flow model and parameter values for the LCA. The items of specific interest are: Hydraulic conductivity; Storage parameters; Dual-porosity behavior; and Fracture flow characteristics. The objective of the tracer transport experiment was to evaluate the transport properties and processes of the LCA and to derive representative transport parameter values for the LCA. The properties of specific interest are: Effective porosity; Matrix diffusion; Longitudinal dispersivity; Adsorption characteristics; and Colloid transport characteristics. These properties substantially control the rate of transport of contaminants in the groundwater system and concentration distributions. To best support modeling at the scale of the corrective action unit (CAU), these properties must be investigated at the field scale. The processes represented by these parameters are affected by in-situ factors that are either difficult to investigate at the laboratory scale or operate at a much larger scale than can be reproduced in the laboratory. Measurements at the field scale provide a better understanding of the effective average parameter values. The

  10. Fluidized-bed potato waste drying experiments at the Raft River Geothermal Test Site

    SciTech Connect

    Cole, L.T.; Schmitt, R.C.

    1980-06-01

    A fluidized-bed dryer was built and operated at the Raft River Geothermal Test Site in south central Idaho to test the feasibility of using low-temperature (145/sup 0/C or lower) geothermal fluids as an energy source for drying operations. The dryer performed successfully on two potato industry waste products that had a solid content of 5 to 13%. The dried product was removed as a sand-like granular material or as fines with a flour-like texture. Test results, observations, and design recommendations are presented. Also presented is an economic evaluation for commercial-scale drying plants using either geothermal low-temperature water or oil as a heat source.

  11. Analyst variability in labeling of unsupervised classifications. [test sites for Landsat 5 Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Mcgwire, Kenneth C.

    1992-01-01

    Analyst variability in the labeling of unsupervised classifications is tested for Landsat 5 Thematic Mapper image products covering two test sites in southern California. The accuracy of results are tested using samples from a photo interpreted base map of the area. The significance of differences between analysts is indicated by comparing Kappa statistics derived from error matrices. Analyst variability is found to be statistically significant in most cases. Certain analysts provided consistently better results for a given study area or degree of training. This work demonstrates the potential influence of analyst bias on what would otherwise seem to be a fairly objective method and suggests that controls for this subjectivity should be factored into experimental designs.

  12. Thermally-induced ventilation in atria: an atrium classification scheme and promising test sites

    SciTech Connect

    Leung, S.K.; Kazama, D.B.; Pierson, R.E.; Trenschel, D.A.; Young, M.F.

    1981-10-15

    This report is an element of an overall investigation into thermally-induced ventilation in atria. The principal area of interest is thermally-induced cooling in commercial use buildings. However, heating and heat transfer plus non-commercial applications will be considered as well. The specific topics of this report are: (1) the development and presentation of an atrium classification scheme; and (2) the identification of promising test sites. In establishing the atrium classification scheme, specific attention was given to: climate - hot-arid, warm-humid, and temperate; atrium configuration - open, closed, and adjustable tops; and thermal mechanism - natural convection, radiative cooling, shading, and others. Application of the resulting three-dimensional (three-coordinate) matrix was considered and tested. Although the testing was for purposes of checking scheme application, the procedure indicated that most of the atria examined were of the adjustable-top configuration with daynical considerations: cooling design concepts, thermal alternatives are assessed.

  13. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada; Revision 1

    SciTech Connect

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI.

  14. Facility Closure Report for T-Tunnel (U12t), Area 12, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2008-08-01

    This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD.

  15. Sample Characterization of FIDO-2000 and FIDO-2002 Blind Field Test Sites by an APXS Instrument

    NASA Astrophysics Data System (ADS)

    Economou, T. E.

    2002-12-01

    The Mars Rover Explorer (MER) Project conducted in the past few years two major blind field test that involved the Field Integrated Design and Operations (FIDO) rover, with a payload not quite, but close to the real MER mission flight payload. Since the APXS and the MB spectrometer cannot operate properly in the Earth's atmosphere, a representative variety of rocks and soil samples from designated "landing" sites were collected and sent to the respective laboratories for analyses with these two instruments. During the field tests, the data from FIDO instruments, together with the appropriate data from the APXS and MB spectrometers, which, according to the site operators opinion, most closely resembled the real analyzed samples, were transmitted to the control room at JPL for target evaluation. The APXS analyzed both, the natural side and the fresh cut side, of most of the rocks that were made available. By comparing the analytical results from both sides, it was possible to clearly detect and evaluate alteration rinds and coatings on the analyzed rocks. Desert varnish, thin iron and carbon coatings were found on natural side of some rocks, but not others. The elemental composition results by the APXS contributed synergistically with the other FIDO instruments to derive the mineralogical and geological characterization of the sites by imposing limits on the amounts and the variety of specific minerals. Most of the analyzed samples from both FIDO field test sites were very high in silica and alumina. In a few cases, the analyses were compatible with pure quartz. The alpha mode of the APXS is especially valuable for detecting even small amounts of carbonates. In many instances, it was possible to show that the carbon was only on the surface of some rocks. Examples of the APXS results from both blind field tests will be presented and discussed at the meeting The APXS results will be compared to the Pathfinder APXS rock analyses and conclusions will be made about rinds

  16. Waste Management at the Nevada Test Site Fiscal Year 2001 Current Status

    SciTech Connect

    B. D. Becker; W. A. Clayton; B. M. Crowe

    2002-05-01

    The performance objectives of the U. S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Low-level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the United States. Situated at the southern end of the Great Basin, 244 meters (800 feet) above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity waste, classified radioactive material, and high-specific-activity special case waste. Fifteen miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMSs since 1961 and 1 968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  17. Plutonium and uranium contamination in soils from former nuclear weapon test sites in Australia

    NASA Astrophysics Data System (ADS)

    Child, D. P.; Hotchkis, M. A. C.

    2013-01-01

    The British government performed a number of nuclear weapon tests on Australian territory from 1952 through to 1963 with the cooperation of the Australian government. Nine fission bombs were detonated in South Australia at Emu Junction and Maralinga, and a further three fission weapons were detonated in the Monte Bello Islands off the coast of Western Australia. A number of soil samples were collected by the Australian Radiation Laboratories in 1972 and 1978 during field surveys at these nuclear weapon test sites. They were analysed by gamma spectrometry and, for a select few samples, by alpha spectrometry to measure the remaining activities of fission products, activation products and weapon materials. We have remeasured a number of these Montebello Islands and Emu Junction soil samples using the ANTARES AMS facility, ANSTO. These samples were analysed for plutonium and uranium isotopic ratios and isotopic concentrations. Very low 240Pu/239Pu ratios were measured at both sites (∼0.05 for Alpha Island and ∼0.02 for Emu Field), substantially below global fallout averages. Well correlated but widely varying 236U and plutonium concentrations were measured across both sites, but 233U did not correlate with these other isotopes and instead showed correlation with distance from ground zero, indicating in situ production in the soils.

  18. Environmental assessment for liquid waste treatment at the Nevada Test Site, Nye County, Nevada

    SciTech Connect

    1997-01-01

    This environmental assessment (EA) examines the potential impacts to the environment from treatment of low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the Nevada Test Site (NTS). The potential impacts of the proposed action and alternative actions are discussed herein in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended in Title 42 U.S.C. (4321), and the US Department of Energy (DOE) policies and procedures set forth in Title 10 Code of Federal Regulations (CFR) Part 1021 and DOE Order 451.1, ``NEPA Compliance Program.`` The potential environmental impacts of the proposed action, construction and operation of a centralized liquid waste treatment facility, were addressed in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada. However, DOE is reevaluating the need for a centralized facility and is considering other alternative treatment options. This EA retains a centralized treatment facility as the proposed action but also considers other feasible alternatives.

  19. Surface-based test plan, Deaf Smith County, Texas Site: Draft

    SciTech Connect

    Not Available

    1985-05-08

    The Surface-Based Test Plan (SBTP) is the plan which accounts for all surface-based site field work to be conducted at the Permian salt site selected for characterization. The SBTP relates data needs from program requirement documents and presents plans to satisfy the data needs. The SBTP excludes plans for construction of the Exploratory Shaft Facility (ESF) and plans for the in situ testing. The SBTP is a hierarchical plan stemming from the Technical Program Plan. The SBTP describes in detail the process by which surface-based study plans are defined, developed, and controlled. The plans hierarchy extends downward thru subordinate Site Study Plans (SSPs), which describe in detail elements of field work to be done, to detailed Procedures which document the exact methodologies to be employed in the conduct of field work. The plan is a QA level S document, although some of its elements are at lower QA levels. The plan is a controlled document, and any proposed amendments to the plan or subordinate documents can only be implemented through the specified change control procedure.

  20. Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    Donald Sweetkind; Ronald M. Drake II

    2007-11-27

    During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.

  1. Closure Report for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    SciTech Connect

    D. S. Tobiason

    2002-03-01

    This Closure Report (CR) has been prepared for the Area 25 Contaminated Waste Dumps (CWD), Corrective Action Unit (CAU) 143 in accordance with the Federal Facility Agreement and Consent Order [FFACO] (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 143: Area 25, Contaminated Waste Dumps, Nevada Test Site, Nevada. CAU 143 consists of two Corrective Action Sites (CASs): 25-23-09 CWD No.1, and 25-23-03 CWD No.2. The Area 25 CWDs are historic disposal units within the Area 25 Reactor Maintenance, Assembly, and Disassembly (R-MAD), and Engine Maintenance, Assembly, and Disassembly (E-MAD) compounds located on the Nevada Test Site (NTS). The R-MAD and E-MAD facilities originally supported a portion of the Nuclear Rocket Development Station in Area 25 of the NTS. CWD No.1 CAS 25-23-09 received solid radioactive waste from the R-MAD Compound (East Trestle and West Trench Berms) and 25-23-03 CWD No.2 received solid radioactive waste from the E-MAD Compound (E-MAD Trench).

  2. Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.

  3. Final Report, FY 2001 200 East Vadose Test Site Hanford Washington Electrical Resistance Tomography

    SciTech Connect

    Ramirez, A.; Daily, W.; Binley, A.

    2001-06-30

    This report covers the electrical resistance tomography (ERT) work performed at the Hanford Reservation, 200 East Area Vadose test (Sisson and Lu) site during the period March 23 through May 5,2001. The purposes of the ERT work were to: (1) Compare and contrast the development of the highly concentrated sodium thiosulfate plume (FY 01 work) with the fresh river water plume observed during FY 00. (2) Use the resistance images to infer the dynamics of the plume during two or three of the sodium thio-sulfate releases and during the water ''chaser'' release. (3) Determine the influence of the site's steel casings on the ability to construct reliable ERT images. (4) Determine if the steel casings at the site can be used as long electrodes to provide useful images of at least one release. (5) Develop quantitative estimates of the noise in the data and its effect on reconstructed images. Eleven electrode arrays (nine electrodes arrays available for the FY00 work), each with 15 electrodes, were installed at the site. These were used to perform 3D surveys before, during, and after 3 different spills.

  4. The archaeology of drill hole U20bc, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    McLane, A.R.; Hemphill, M.L.; Livingston, S.J.; Pippin, L.C.; Walsh, L.A.

    1992-01-01

    Impacts to four sites near drill hole U20bc on Pahute Mesa in the northwestern part of the Nevada Test Site were mitigated through data recovery. The work was done during 1988 by the Desert Research Institute for the Department of Energy, Nevada Field Office (DOE/NV)- The four sites that warranted data recovery were 26NY3171, 26NY3173, 26NY5561 and 26NY5566. These sites had previously been determined eligible to the National Register of Historic Places. They were temporary camps that contained lithic debitage, projectile points, milling stones and pottery, and therefore contributed significant information concerning the prehistory of the area. The study of the archaeological remains shows that the prehistoric people subsisted on plant foods and game animals as determined by the artifacts including manos, metates, pottery, lithic scrapers, and projectile points. The time sensitive arfifacts (pottery and diagnostic points) suggest that the region was used from about 12,000 B.P. to just before the historic period, possibly 150 years ago. DOE/NV has met its obligation to mitigate adverse impacts to the cultural resources at U20bc. Therefore, it is recommended that this project proceed as planned.

  5. The archaeology of drill hole U20bc, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    McLane, A.R.; Hemphill, M.L.; Livingston, S.J.; Pippin, L.C.; Walsh, L.A.

    1992-12-31

    Impacts to four sites near drill hole U20bc on Pahute Mesa in the northwestern part of the Nevada Test Site were mitigated through data recovery. The work was done during 1988 by the Desert Research Institute for the Department of Energy, Nevada Field Office (DOE/NV)- The four sites that warranted data recovery were 26NY3171, 26NY3173, 26NY5561 and 26NY5566. These sites had previously been determined eligible to the National Register of Historic Places. They were temporary camps that contained lithic debitage, projectile points, milling stones and pottery, and therefore contributed significant information concerning the prehistory of the area. The study of the archaeological remains shows that the prehistoric people subsisted on plant foods and game animals as determined by the artifacts including manos, metates, pottery, lithic scrapers, and projectile points. The time sensitive arfifacts (pottery and diagnostic points) suggest that the region was used from about 12,000 B.P. to just before the historic period, possibly 150 years ago. DOE/NV has met its obligation to mitigate adverse impacts to the cultural resources at U20bc. Therefore, it is recommended that this project proceed as planned.

  6. Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    SciTech Connect

    NSTec Environmental Restoration

    2006-09-01

    Corrective Action Unit (CAU) 543, Liquid Disposal Units, is listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. CAU 543 consists of seven Corrective Action Sites (CASs) located in Areas 6 and 15 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven CASs: {sm_bullet} CAS 06-07-01, Decon Pad {sm_bullet} CAS 15-01-03, Aboveground Storage Tank {sm_bullet} CAS 15-04-01, Septic Tank {sm_bullet} CAS 15-05-01, Leachfield {sm_bullet} CAS 15-08-01, Liquid Manure Tank {sm_bullet} CAS 15-23-01, Underground Radioactive Material Area {sm_bullet} CAS 15-23-03, Contaminated Sump, Piping From January 24, 2005 through April 14, 2005, CAU 543 site characterization activities were conducted, and are reported in Appendix A of the CAU 543 Corrective Action Decision Document (CADD) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2005). The recommended corrective action as stated in the approved CADD is No Further Action for five of the CAU 543 CASs, and Closure In Place for the remaining two CASs.

  7. DOE's HAZMAT Spill Center at the Nevada Test Site: Activities and Capabilities

    SciTech Connect

    Lelewer, S.A.; Spahn, J.

    1997-07-01

    The U.S. Department of Energy (DOE) owns and operates the Hazardous Materials (HAZMAT) Spill Center (HSC) as a research and demonstration facility available on a user-fee basis to private and public sector test and training sponsors concerned with safety aspects of hazardous materials. Though initially designed to accommodate large liquefied natural gas releasers, the HSC has accommodated hazardous materials training and safety-related testing of most chemicals in commercial use. The HSC is located at DOE's Nevada Test Site (NTS) near Mercury, Nevada. The HSC provides a unique opportunity for industry and other users to conduct hazardous materials testing and training. This is the only facility of its kind for either large- or small-scale testing of hazardous and toxic fluids under controlled conditions. It is ideally suited for test sponsors to develop verified data on release prevention, mitigation, cleanup, and environmental effects of toxic and hazardous materials. The facility site also supports structured training for hazardous spills, nkigation, and cleanup. Since 1986, the HSC has been utilized for releases to evaluate the patterns of dispersion mitigation techniques, and combustion characteristics of select materials. Use of the facility can also aid users in developing emergency planning under U.S. Public Law 99-499; the Superfund Amendments and Reauthorization Act of 1986 (SARA); and other federal, state, and international laws and regulations. The HSC Program is managed by the DOE, OffIce of Emergency Management, Nonproliferation and National Security, with the support and assistance of other divisions of DOE and the U. S. government.

  8. Migration of conservative and sorbing radionuclides in heterogeneous fractured rock aquifers at the Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Boryta, J. R.; Wolfsberg, A. V.

    2003-12-01

    The Nevada Test Site (NTS) is the United States continental nuclear weapons testing site. The larger underground tests, including BENHAM and TYBO, were conducted at Pahute Mesa. The BENHAM test, conducted in 1968, was detonated 1.4 km below the surface and the TYBO test, conducted in 1975, was detonated at a depth of 765 m. Between 1996 and 1998, several radionuclides were discovered in trace concentrations in a monitoring well complex 273 m from TYBO and 1300 m from BENHAM. Previous studies associated with these measurements have focused primarily on a) plutonium discovered in the observation wells, which was identified through isotopic finger printing as originating at BENHAM, b) colloid-facilitated plutonium transport processes, and c) vertical convection in subsurface nuclear test collapse chimneys. In addition to plutonium, several other non-, weakly-, and strongly-sorbing radionuclides were discovered in trace concentrations in the observation wells, including tritium, carbon-14, chlorine-36, iodine-129, technetium-99, neptunium-237, strontium-90, cesium-137, americium-241, and europium-152,154,155. The range in retardation processes affecting these different radionuclides provides additional information for assessing groundwater solute transport model formulations. For all radionuclides, simulation results are most sensitive to the fracture porosity and fracture aperture. Additionally, for weakly sorbing Np, simulation results are highly sensitive to the matrix sorption coefficient. For strongly sorbing species, migration in the absence of colloids can only be simulated if fracture apertures are set very large, reducing the amount of diffusion that can occur. For these species, colloid-facilitated transport appears to be a more likely explanation for the measurements. This is corroborated with colloid-transport model simulations.

  9. Release of Radioactive Scrap Metal/Scrap Metal (RSM/SM) at Nevada Test Site (NTS)

    SciTech Connect

    Not Available

    1993-07-01

    Reynolds Electrical and Engineering Company, Inc. (REECo) is the prime contractor to the US Department of Energy (DOE) in providing service and support for NTS operations. Mercury Base Camp is the main control point for the many forward areas at NTS, which covers 1,350 square miles. The forward areas are where above-ground and underground nuclear tests have been performed over the last 41 years. No metal (or other material) is returned to Mercury without first being tested for radioactivity. No radioactive metals are allowed to reenter Mercury from the forward areas, other than testing equipment. RAMATROL is the monitor check point. They check material in various ways, including swipe tests, and have a large assortment of equipment for testing. Scrap metal is also checked to address Resource Conservation and Recovery Act concerns. After addressing these issues, the scrap metals are categorized. Federal Property Management Regulations (FPMR) are followed by REECo. The nonradioactive scrap material is sold through the GSA on a scheduled basis. Radioactive scrap metal are presently held in forward areas where they were used. REECo has gained approval of their Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements, NVO-325 application, which will allow disposal on site, when RSM is declared a waste. The guideline that REECo uses for release limits is DOE Order 5480.11, Radiation Protection for Occupational Works, Attachment 2, Surface Radioactivity Guides, of this order, give release limits for radioactive materials. However, the removal of radioactive materials from NTS require approval by DOE Nevada Operations Office (DOE/NV) on a case-by-case basis. Requirements to consider before removal are found in DOE Order 5820.2A, Radioactive Waste Management.

  10. Superfund Technology Evaluation Report: SITE Program Demonstration Test Shirco Pilot-Scale Infrared Incineration System at the Rose Township Demode Road Superfund Site Volume I

    EPA Science Inventory

    The Shirco Pilot-Scale Infrared Incineration System was evaluated during a series of seventeen test runs under varied operating conditions at the Demode Road Superfund Site located in Rose Township, Michigan. The tests sought to demonstrate the effectiveness of the unit and the t...

  11. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 115: AREA 25 TEST CELL A FACILITY, NEVADA TEST SITE, NEVADA

    SciTech Connect

    NA

    2006-03-01

    This Closure Report (CR) describes the activities performed to close CAU 115, Area 25 Test Cell A Facility, as presented in the NDEP-approved SAFER Plan (NNSA/NSO, 2004). The SAFER Plan includes a summary of the site history, process knowledge, and closure standards. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical and radiological data to confirm that the remediation goals were met and to document final site conditions. The approved closure alternative as presented in the SAFER Plan for CAU 115 (NNSA/NSO, 2004) was clean closure; however, closure in place was implemented under a Record of Technical Change (ROTC) to the SAFER Plan when radiological surveys indicated that the concrete reactor pad was radiologically activated and could not be decontaminated to meet free release levels. The ROTC is included as Appendix G of this report. The objectives of closure were to remove any trapped residual liquids and gases, dispose regulated and hazardous waste, decontaminate removable radiological contamination, demolish and dispose aboveground structures, remove the dewar as a best management practice (BMP), and characterize and restrict access to all remaining radiological contamination. Radiological contaminants of concern (COCs) included cobalt-60, cesium-137, strontium-90, uranium-234/235/236/238, and plutonium-239/240. Additional COCs included Resource Conservation and Recovery Act (RCRA) metals, polychlorinated biphenyls (PCBs), and asbestos.

  12. Streamlined approach for environmental restoration closure report for Corrective Action Unit 452: Historical underground storage tank release sites, Nevada Test Site, Nevada

    SciTech Connect

    1998-04-01

    This report addresses the site characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 25-3101-1, 25-3102-3, and 25-3152-1. The sites are located within the Nevada Test Site in Area 25 at Buildings 3101, 3102, and 3152. The characterization was completed to support administrative closure of the sites. Characterization was completed using drilling equipment to delineate the extent of hydrocarbon impact. Clean closure had been previously attempted at each of these sites using backhoe equipment without success due to adjacent structures, buried utilities, or depth restrictions associated with each site. Although the depth and extent of hydrocarbon impact was determined to be too extensive for clean closure, it was verified through drilling that the sites should be closed through an administrative closure. The Nevada Administrative Code ``A Through K`` evaluation completed for each site supports that there is no significant risk to human health or the environment from the impacted soils remaining at each site.

  13. Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA

    SciTech Connect

    Eberlein, Susan J.; Parker, Danny L.; Tabor, Cynthia L.; Holm, Melissa J.

    2013-11-11

    A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms.

  14. ESR dosimetry study of population in the vicinity of the Semipalatinsk Nuclear Test Site.

    PubMed

    Zhumadilov, Kassym; Ivannikov, Alexander; Stepanenko, Valeriy; Zharlyganova, Dinara; Toyoda, Shin; Zhumadilov, Zhaxybay; Hoshi, Masaharu

    2013-07-01

    A tooth enamel electron spin resonance (ESR) dosimetry study was carried out with the purpose of obtaining the individual absorbed radiation doses of population from settlements in the Semipalatinsk region of Kazakhstan, which was exposed to radioactive fallout traces from nuclear explosions in the Semipalatinsk Nuclear Test Site and Lop Nor test base, China. Most of the settlements are located near the central axis of radioactive fallout trace from the most contaminating surface nuclear test, which was conducted on 29 August 1949, with the maximum detected excess dose being 430 ± 93 mGy. A maximum dose of 268 ± 79 mGy was determined from the settlements located close to radioactive fallout trace resulting from surface nuclear tests on 24 August 1956 (Ust-Kamenogorsk, Znamenka, Shemonaikha, Glubokoe, Tavriya and Gagarino). An accidental dose of 56 ± 42 mGy was found in Kurchatov city residents located close to fallout trace after the nuclear test on 7 August 1962. This method was applied to human tooth enamel to obtain individual absorbed doses of residents of the Makanchi, Urdzhar and Taskesken settlements located near the Kazakhstan-Chinese border due to the influence of nuclear tests (1964-1981) at Lop Nor. The highest dose was 123 ± 32 mGy.

  15. Department of Health application for approval of construction SP-100 Ground Engineering System Test Site

    SciTech Connect

    Not Available

    1990-04-01

    The following Application For Approval of Construction is being submitted by the US Department of Energy-Richland Operations Office, for the SP-100 Ground Engineering System Test Site, which will provide a new source of radioactive emissions to the atmosphere. The US Department of Energy, the National Aeronautics and Space Administration, and the US Department of Defense have entered into an agreement to jointly develop space nuclear reactor power system technology. A ground test of a reactor is necessary to demonstrate technology readiness of this major subsystem before proceeding with the flight system development and demonstration. It is proposed that the SP-100 test reactor be tested in the existing decommissioned Plutonium Recycle Test Reactor containment building (309 Building). The reactor will be operated for at least three months and up to 2 yr. Following the test, the 309 Building will be decontaminated for potential use in other programs. It is projected this new source of emissions will contribute approximately 0.05 mrem/yr dose to the maximally exposed offsite individual. This application is being submitted in response to those projected emissions that would provide the described offsite dose. 28 refs., 9 figs., 7 tabs.

  16. 40 CFR 201.23 - Test site, weather conditions and background noise criteria for measurement at a 30 meter (100...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rail car operations and locomotive load cell test stands. 201.23 Section 201.23 Protection of... locomotive and rail car operations and locomotive load cell test stands. (a) The standard test site shall be... contribution from the operation of the load cell, if any, including load cell contribution during test....

  17. 40 CFR 201.23 - Test site, weather conditions and background noise criteria for measurement at a 30 meter (100...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rail car operations and locomotive load cell test stands. 201.23 Section 201.23 Protection of... locomotive and rail car operations and locomotive load cell test stands. (a) The standard test site shall be... contribution from the operation of the load cell, if any, including load cell contribution during test....

  18. 40 CFR 201.23 - Test site, weather conditions and background noise criteria for measurement at a 30 meter (100...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rail car operations and locomotive load cell test stands. 201.23 Section 201.23 Protection of... locomotive and rail car operations and locomotive load cell test stands. (a) The standard test site shall be... contribution from the operation of the load cell, if any, including load cell contribution during test....

  19. 40 CFR 201.23 - Test site, weather conditions and background noise criteria for measurement at a 30 meter (100...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rail car operations and locomotive load cell test stands. 201.23 Section 201.23 Protection of... locomotive and rail car operations and locomotive load cell test stands. (a) The standard test site shall be... contribution from the operation of the load cell, if any, including load cell contribution during test....

  20. 40 CFR 201.23 - Test site, weather conditions and background noise criteria for measurement at a 30 meter (100...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rail car operations and locomotive load cell test stands. 201.23 Section 201.23 Protection of... locomotive and rail car operations and locomotive load cell test stands. (a) The standard test site shall be... contribution from the operation of the load cell, if any, including load cell contribution during test....