ERIC Educational Resources Information Center
Shea, Nicole A.; Mouza, Chrystalla; Drewes, Andrea
2016-01-01
In this work, we present the design, implementation, and initial outcomes of the Climate Academy, a hybrid professional development program delivered through a combination of face-to-face and online interactions, intended to prepare formal and informal science teachers (grades 5-16) in teaching about climate change. The Climate Academy was…
Climate change refugia as a tool for climate adaptation
Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...
Rachel E. Schattman; V. Ernesto Méndez; Scott C. Merrill; Asim Zia
2018-01-01
The relationships among farmers' belief in climate change, perceptions of climate-related risk, and use of climate adaptation practices is a growing topic of interest in U.S. scholarship. The northeast region is not well represented in the literature, although it is highly agricultural and will likely face climaterelated risks that differ from those faced in other...
NASA Astrophysics Data System (ADS)
PytlikZillig, L. M.; Tomkins, A. J.; Harrington, J. A.
2012-12-01
As part of a broader regional effort focused on climate change education and rural communities, this paper focuses on a specific effort to understand effective approaches to two presumably complementary goals: The goal of increasing knowledge about climate change and climate science in a community, and the goal of having communities use climate change and climate science information when making decisions. In this paper, we explore the argument that people do not need or want to know about climate change, in order to make responsible and sustainable energy decisions. Furthermore, we hypothesize that involvement in making responsible and sustainable energy decisions will increase openness and readiness to process climate science information, and thus increase learning about climate change in subsequent exposures to such information. Support for these hypotheses would suggest that rather than encouraging education to enable action (including engagement in attempts to make responsible decisions), efforts should focus on encouraging actions first and education second. To investigate our hypotheses, we will analyze and report results from efforts to engage residents from a medium-sized Midwestern city to give input on future programs involving sustainable energy use. The engagement process (which will not be complete until after the AGU deadline) involves an online survey and an optional face-to-face discussion with city officials and experts in energy-related areas. The online survey includes brief information about current local energy programs, questions assessing knowledge of climate change, and an open-ended question asking what additional information residents need in order to make good decisions and recommendations concerning the energy programs. To examine support for our hypotheses, we will report (1) relationships between subjective and objective knowledge of climate science and willingness to attend the face-to-face discussion about the city's energy decisions and actual attendance at the event, (2) a content analysis of what residents say they want and need to know in order to make decisions and recommendations about the city's energy programs, and (3) pilot results from a comparison of learning from a reading about climate change presented prior to the event, after the event, or presented to those who were willing to attend the face-to-face event but did not attend. We will discuss the results in terms of their implications for the relationship between knowledge and behavior, versus change in knowledge and change in behavior.
Recent Challenges Facing US Government Climate Science Access and Application
NASA Astrophysics Data System (ADS)
Goldman, G. T.; Carter, J. M.; Licker, R.
2017-12-01
Climate scientists have long faced politicization of their work, especially those working within the US federal government. However, political interference in federal government climate change science has escalated in the current political era with efforts by political actors to undermine and disrupt infrastructure supporting climate science. This has included funding changes, decreased access to climate science information on federal agency websites, restrictions on media access to scientific experts within the government, and rolling back of science-based policies designed to incorporate and respond to climate science findings. What are the impacts of such changes for both the climate science community and the broader public? What can be done to ensure that access to and application of climate change-related research to policy decisions continues? We will summarize and analyze the state of climate change research and application in the US government. The impacts of political interference in climate change science as well as opportunities the scientific community has to support climate science in the US government, will be discussed.
Improving Undergraduate Climate Change Literacy through Writing: A Pilot Study
ERIC Educational Resources Information Center
Small Griswold, Jennifer D.
2017-01-01
A climate-literate population, capable of making informed decisions related to climate change, is of critical importance as society faces ever-increasing global temperatures and changes in the climate system. This project evaluates the effectiveness of a novel instructional approach that incorporates climate change science into a first-year…
Earth Futures: a General Education Sustainability Course at the Pennsylvania State University
NASA Astrophysics Data System (ADS)
Bralower, T. J.; Bice, D. M.; Barron, E. J.
2012-12-01
Earth in the Future: Predicting Climate Change and Its Impacts Over the Next Century has been taught at The Pennsylvania State University since 2000. The course is a general education course designed to give a broad survey of the science underlying climate change as well as the impacts on natural and human systems. The course has three major goals: (1) to provide an understanding of climate science and of the possible scenarios of how climate may change in the future; (2) to analyze the linkages between climate and major human and natural systems, including agriculture, water, ocean circulation, and coastal ecosystems, necessary to assess the potential impacts of climate change; and (3) to understand the potential responses to climate change, including both adaptation to, and mitigation of change. The general education course is the entry point for a new BS-degree program, Earth System Science and Policy (ESSP). Initially the course was taught face to face on a yearly basis. Recently we have developed an on-line version of the course, and, in Fall semester, 2012, we are teaching a revised version of the course face-to-face and on-line. Both versions of the course are being assessed using survey instruments developed for InTeGrate courses. The simultaneous instruction provides a unique opportunity to compare the strengths and weaknesses of the two different modes of education. From its beginning, the course has included laboratory exercises designed to enhance the student's understanding of climate science. The revised course includes laboratory exercises in every module, including STELLA-based model experiments. These exercises form an essential part of the on-line version of the course, however, the identical exercises are involved in the face-to-face version. In our presentation, we provide preliminary comparison of the two instructional modes as well as their effectiveness in recruiting students to the ESSP major.
Informing Public Perceptions About Climate Change: A 'Mental Models' Approach.
Wong-Parodi, Gabrielle; Bruine de Bruin, Wändi
2017-10-01
As the specter of climate change looms on the horizon, people will face complex decisions about whether to support climate change policies and how to cope with climate change impacts on their lives. Without some grasp of the relevant science, they may find it hard to make informed decisions. Climate experts therefore face the ethical need to effectively communicate to non-expert audiences. Unfortunately, climate experts may inadvertently violate the maxims of effective communication, which require sharing communications that are truthful, brief, relevant, clear, and tested for effectiveness. Here, we discuss the 'mental models' approach towards developing communications, which aims to help experts to meet the maxims of effective communications, and to better inform the judgments and decisions of non-expert audiences.
Climate change beliefs and hazard mitigation behaviors: Homeowners and wildfire risk
Hannah Brenkert-Smith; James R. Meldrum; Patricia A. Champ
2015-01-01
Downscaled climate models provide projections of how climate change may exacerbate the local impacts of natural hazards. The extent to which people facing exacerbated hazard conditions understand or respond to climate-related changes to local hazards has been largely overlooked. In this article, we examine the relationships among climate change beliefs, environmental...
Obstacles facing Africa's young climate scientists
NASA Astrophysics Data System (ADS)
Dike, Victor Nnamdi; Addi, Martin; Andang'o, Hezron Awiti; Attig, Bahar Faten; Barimalala, Rondrotiana; Diasso, Ulrich Jacques; Du Plessis, Marcel; Lamine, Salim; Mongwe, Precious N.; Zaroug, Modathir; Ochanda, Valentine Khasenye
2018-06-01
Current and future climate change poses a substantial threat to the African continent. Young scientists are needed to advance Earth systems science on the continent, but they face significant challenges.
Climate Change Challenges for Extension Educators: Technical Capacity and Cultural Attitudes
ERIC Educational Resources Information Center
Becerra, Terrie A.; Middendorf, Gerad; Campbell, Amber; Tomlinson, Peter
2016-01-01
We surveyed Extension educators in the southern Great Plains about their attitudes and beliefs regarding climate change, their interactions with constituents surrounding climate change, and challenges they face in engaging constituents on the topic of climate change. Production-oriented and sociocultural challenges in meeting constituents'…
Climate change response framework overview: Chapter 1
Chris Swanston; Maria Janowiak; Patricia Butler
2012-01-01
Managers currently face the immense challenge of anticipating the effects of climate change on forest ecosystems and then developing and applying management responses for adapting forests to future conditions. The Climate Change Response Framework (CCRF) is a highly collaborative approach to helping land managers understand the potential effects of climate change on...
Paerl, Hans W; Gardner, Wayne S; Havens, Karl E; Joyner, Alan R; McCarthy, Mark J; Newell, Silvia E; Qin, Boqiang; Scott, J Thad
2016-04-01
Mitigating the global expansion of cyanobacterial harmful blooms (CyanoHABs) is a major challenge facing researchers and resource managers. A variety of traditional (e.g., nutrient load reduction) and experimental (e.g., artificial mixing and flushing, omnivorous fish removal) approaches have been used to reduce bloom occurrences. Managers now face the additional effects of climate change on watershed hydrologic and nutrient loading dynamics, lake and estuary temperature, mixing regime, internal nutrient dynamics, and other factors. Those changes favor CyanoHABs over other phytoplankton and could influence the efficacy of control measures. Virtually all mitigation strategies are influenced by climate changes, which may require setting new nutrient input reduction targets and establishing nutrient-bloom thresholds for impacted waters. Physical-forcing mitigation techniques, such as flushing and artificial mixing, will need adjustments to deal with the ramifications of climate change. Here, we examine the suite of current mitigation strategies and the potential options for adapting and optimizing them in a world facing increasing human population pressure and climate change. Copyright © 2015 Elsevier B.V. All rights reserved.
Managing fish and wildlife habitat in the face of climate change: USDA Forest Service perspective
Gregory D. Hayward; Curtis H. Flather; Erin Uloth; Hugh D. Safford; David A. Cleaves
2009-01-01
The spatial and temporal scope of environmental change anticipated during the next century as a result of climate change presents unprecedented challenges for fish and wildlife management. The Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC 2007) suggested impacts from climate change on natural systems will be more grave than earlier...
USDA-ARS?s Scientific Manuscript database
Predicted climate change impacts include increased weather variability and increased occurrences of extreme events such as drought. Such climate changes potentially affect cattle performance as well as pasture and range productivity. These climate induced risks are often coupled with variable market...
Arbuckle, J Gordon; Morton, Lois Wright; Hobbs, Jon
2015-02-01
Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers' trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management).
NASA Astrophysics Data System (ADS)
Gordon, K.; Houser, T.; Kopp, R. E., III; Hsiang, S. M.; Larsen, K.; Jina, A.; Delgado, M.; Muir-Wood, R.; Rasmussen, D.; Rising, J.; Mastrandrea, M.; Wilson, P. S.
2014-12-01
The United States faces a range of economic risks from global climate change - from increased flooding and storm damage, to climate-driven changes in crop yields and labor productivity, to heat-related strains on energy and public health systems. The Risky Business Project commissioned a groundbreaking new analysis of these and other climate risks by region of the country and sector of the economy. The American Climate Prospectus (ACP) links state-of-the-art climate models with econometric research of human responses to climate variability and cutting edge private sector risk assessment tools, the ACP offers decision-makers a data driven assessment of the specific risks they face. We describe the challenge, methods, findings, and policy implications of the national risk analysis, with particular focus on methodological innovations and novel insights.
Optimal timing for managed relocation of species faced with climate change
NASA Astrophysics Data System (ADS)
McDonald-Madden, Eve; Runge, Michael C.; Possingham, Hugh P.; Martin, Tara G.
2011-08-01
Managed relocation is a controversial climate-adaptation strategy to combat negative climate change impacts on biodiversity. While the scientific community debates the merits of managed relocation, species are already being moved to new areas predicted to be more suitable under climate change. To inform these moves, we construct a quantitative decision framework to evaluate the timing of relocation in the face of climate change. We find that the optimal timing depends on many factors, including the size of the population, the demographic costs of translocation and the expected carrying capacities over time in the source and destination habitats. In some settings, such as when a small population would benefit from time to grow before risking translocation losses, haste is ill advised. We also find that active adaptive management is valuable when the effect of climate change on source habitat is uncertain, and leads to delayed movement.
ERIC Educational Resources Information Center
Drewes, Andrea; Henderson, Joseph; Mouza, Chrystalla
2018-01-01
Climate change is one of the most pressing challenges facing society, and climate change educational models are emerging in response. This study investigates the implementation and enactment of a climate change professional development (PD) model for science educators and its impact on student learning. Using an intrinsic case study methodology,…
ERIC Educational Resources Information Center
Dawson, Vaille
2015-01-01
Climate change is one of the most significant science issues facing humanity; yet, teaching students about climate change is challenging: not only is it multidisciplinary, but also it is contentious and debated in political, social and media forums. Students need to be equipped with an understanding of climate change science to be able to…
More harmful climate change impacts in polluted forests – a review
E Paoletti; NE Grulke; A Bytnerowicz
2009-01-01
Forests are facing significant pressures from climate change and air pollution. Air pollution is the main driver of the ongoing climate change. Current knowledge suggests that climate change may become more harmful to pollution-affected forests, although the magnitude of these feedbacks is still to be determined. At present, the air pollutants of most concern to...
Climate change and the possible health effects on older Australians.
Saniotis, Arthur; Irvine, Rod
2010-01-01
Climate change is an important issue for Australia. Climate change research forecasts that Australia will experience accelerated warming due to anthrogenic activities. Australia's aging society will face special challenges that demand current attention. This paper discusses two issues in relation to climate change and older Australians: first, pharmacology and autoregulation; and second, mental health among older Australians.
ERIC Educational Resources Information Center
Eggert, Sabina; Nitsch, Anne; Boone, William J.; Nückles, Matthias; Bögeholz, Susanne
2017-01-01
Climate change is one of the most challenging problems facing today's global society (e.g., IPCC 2013). While climate change is a widely covered topic in the media, and abundant information is made available through the internet, the causes and consequences of climate change in its full complexity are difficult for individuals, especially…
ERIC Educational Resources Information Center
Kern, Anne Liu; Honwad, Sameer; McLain, Ed
2017-01-01
The science of climate change is a complex subject to teach. Teachers find climate change a challenging topic to teach due to a myriad of reasons. Gayford, 2010 describes some of the challenges teachers face while teaching climate change science as "first, the controversial nature of the topic; second, it does not relate well to the normal…
National Security and Global Climate Change
2008-01-01
The uncertainty, confusion, and speculation about the causes, effects, and implications of global climate change (GCC) often paralyze serious...against scientific indications of global climate change , but to consider how it would pose challenges to national security, explore options for facing...generals and admirals, released a report concluding that projected climate change poses a serious threat to America’s national security. This article
NASA Astrophysics Data System (ADS)
Shea, Nicole A.; Mouza, Chrystalla; Drewes, Andrea
2016-04-01
In this work, we present the design, implementation, and initial outcomes of the Climate Academy, a hybrid professional development program delivered through a combination of face-to-face and online interactions, intended to prepare formal and informal science teachers (grades 5-16) in teaching about climate change. The Climate Academy was designed around core elements of successful environmental professional development programs and aligned with practices advocated in benchmarked science standards. Data were collected from multiple sources including observations of professional development events, participants' reflections on their learning, and collection of instructional units designed during the Academy. Data were also collected from a focal case study teacher in a middle school setting. Case study data included classroom observations, teacher interviews, and student beliefs toward climate change. Results indicated that the Climate Academy fostered increased learning among participants of both climate science content and pedagogical strategies for teaching about climate change. Additionally, results indicated that participants applied their new learning in the design of climate change instructional units. Finally, results from the case study indicated positive impacts on student beliefs and greater awareness about climate change. Results have implications for the design of professional development programs on climate change, a topic included for the first time in national standards.
Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation
Morton, Lois Wright; Hobbs, Jon
2015-01-01
Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers’ trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management). PMID:25983336
Adapting to the health impacts of climate change in a sustainable manner.
Hoy, Damian; Roth, Adam; Lepers, Christelle; Durham, Jo; Bell, Johann; Durand, Alexis; Lal, Padma Narsey; Souares, Yvan
2014-12-11
The climate is changing and this poses significant threats to human health. Climate change is one of the greatest challenges facing Pacific Island countries and territories due to their unique geophysical features, and their social, economic and cultural characteristics. The Pacific region also faces challenges with widely dispersed populations, limited resources and fragmented health systems. Over the past few years, there has been a substantial increase in international aid for health activities aimed at adapting to the threats of climate change. This funding needs to be used strategically to ensure an effective approach to reducing the health risk from climate change. Respecting the principles of development effectiveness will result in more effective and sustainable adaptation, in particular, 1) processes should be owned and driven by local communities, 2) investments should be aligned with existing national priorities and policies, and 3) existing systems must not be ignored, but rather expanded upon and reinforced.
Western water and climate change
Dettinger, Michael; Udall, Bradley; Georgakakos, Aris P.
2015-01-01
In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries and agricultural demands. Finally, California's Bay-Delta system is a remarkably localized and severe weakness at the heart of the region's trillion-dollar economy. It is threatened by the full range of potential climate-change impacts expected across the West, along with major vulnerabilities to increased flooding and rising sea levels.
Tra, Tran Van; Thinh, Nguyen Xuan; Greiving, Stefan
2018-07-15
Vu Gia- Thu Bon (VGTB) River Basin, located in the Central Coastal zone of Viet Nam currently faces water shortage. Climate change is expected to exacerbate the challenge. Therefore, there is a need to study the impacts of climate change on water shortage in the river basin. The study adopts a combined top-down and bottom-up climate change impact assessment to address the impacts of climate change on water shortage in the VGTB River Basin. A MIKE BASIN water balance model for the river basin was established to simulate the response of the hydrological system. Simulations were performed through parametrically varying temperature and precipitation to determine the vulnerability space of water shortage. General Circulation Models (GCMs) were then utilized to provide climate projections for the river basin. The output from GCMs was then mapped onto the vulnerability space determined earlier. In total, 9 out of 55 water demand nodes in the simulation are expected to face problematic conditions as future climate changes. Copyright © 2018 Elsevier B.V. All rights reserved.
Facing climate change in forests and fields
Amy Daniels; Nancy Shaw; Dave Peterson; Keith Nislow; Monica Tomosy; Mary Rowland
2014-01-01
As a growing body of science shows, climate change impacts on wildlife are already profound - from shifting species' ranges and altering the synchronicity of food sources to changing the availability of water. Such impacts are only expected to increase in the coming decades. As climate change shapes complex, interwoven ecological processes, novel conditions and...
Flow Down! Can managing forests help maintain water supplies in the face of climate change?
Stephanie Laseter; Chelcy Miniat; James Vose
2014-01-01
Climate change can have a direct and indirect impacts on water resources. Direct impacts of climate change can be seen by the presence of more extreme weather events. Extreme weather events include things like heat waves and droughts. Droughts have a direct impact on water and water supply. The indirect impacts of climate change on water resources relate to temperature...
Optimal timing for managed relocation of species faced with climate change
McDonald Madden, Eve; Runge, Michael C.; Possingham, Hugh P.; Martin, Tara G.
2011-01-01
Managed relocation is a controversial climate-adaptation strategy to combat negative climate change impacts on biodiversity. While the scientific community debates the merits of managed relocation1,2,3,4,5,6,7,8,9,10,11,12, species are already being moved to new areas predicted to be more suitable under climate change13,14. To inform these moves, we construct a quantitative decision framework to evaluate the timing of relocation in the face of climate change. We find that the optimal timing depends on many factors, including the size of the population, the demographic costs of translocation and the expected carrying capacities over time in the source and destination habitats. In some settings, such as when a small population would benefit from time to grow before risking translocation losses, haste is ill advised. We also find that active adaptive management15,16 is valuable when the effect of climate change on source habitat is uncertain, and leads to delayed movement.
Simulating Global Climate Summits
ERIC Educational Resources Information Center
Vesperman, Dean P.; Haste, Turtle; Alrivy, Stéphane
2014-01-01
One of the most persistent and controversial issues facing the global community is climate change. With the creation of the UN Framework Convention on Climate Change (UNFCCC) in 1992 and the Kyoto Protocol (1997), the global community established some common ground on how to address this issue. However, the last several climate summits have failed…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... analyses of risks to infrastructure sectors from climate change and other hazards, such as the Northeast... interdependencies within and across communities and infrastructure sectors; changes to climate and development... biodiversity, and conserve natural resources in the face of a changing climate . . .'' h. HUD Review of Covered...
Hydrologic refugia, plants, and climate change.
McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E
2017-08-01
Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.
Managing for multiple resources under climate change: national forests
Linda A. Joyce; Geoffrey M. Blate; Steven G. McNulty; Constance I. Millar; Susanne Moser; Ronald P. Neilson; David L. Peterson
2009-01-01
This study explores potential adaptation approaches in planning andmanagement that theUnited States Forest Servicemight adopt to help achieve its goals and objectives in the face of climate change. Availability of information, vulnerability of ecological and socio-economic systems, and uncertainties associated with climate change, as well as the interacting non-...
Exploring the role of traditional ecological knowledge in climate change initiatives
Kirsten Vinyeta; Kathy Lynn
2013-01-01
Indigenous populations are projected to face disproportionate impacts as a result of climate change in comparison to nonindigenous populations. For this reason, many American Indian and Alaska Native tribes are identifying and implementing culturally appropriate strategies to assess climate impacts and adapt to projected changes. Traditional ecological knowledge (TEK...
Global climate change: A strategic issue facing Illinois
DOE Office of Scientific and Technical Information (OSTI.GOV)
Womeldorff, P.J.
1995-12-31
This paper discusses global climate change, summarizes activities related to climate change, and identifies possible outcomes of the current debate on the subject. Aspects of climate change related to economic issues are very briefly summarized; it is suggested that the end result will be a change in lifestyle in developed countries. International activities, with an emphasis on the Framework Convention on Climate Change, and U.S. activities are outlined. It is recommended that the minimum action required is to work to understand the issue and prepare for possible action.
Linda M. Nagel; Brian J. Palik; Michael A. Battaglia; Anthony W. D' Amato; James M. Guldin; Chris Swanston; Maria K. Janowiak; Matthew P. Powers; Linda A. Joyce; Constance I. Millar; David L. Peterson; Lisa M. Ganio; Chad Kirschbaum; Molly R. Roske
2017-01-01
Forest managers in the United States must respond to the need for climate-adaptive strategies in the face of observed and projected climatic changes. However, there is a lack of on-the-ground forest adaptation research to indicate what adaptation measures or tactics might be effective in preparing forest ecosystems to deal with climate change. Natural resource managers...
Masud, Muhammad Mehedi; Akhatr, Rulia; Nasrin, Shamima; Adamu, Ibrahim Mohammed
2017-12-01
Socio-demographic factors play a significant role in increasing the individual's climate change awareness and in setting a favorable individual attitude towards its mitigation. To better understand how the adversative effects of climate change can be mitigated, this study attempts to investigate the impact of socio-demographic factors on the mitigating actions of the individuals (MAOI) on climate change. Qualitative data were collected from a face-to-face survey of 360 respondents in the Kuala Lumpur region of Malaysia through a close-ended questionnaire. Analysis was conducted on the mediating effects of attitudinal variables through the path model by using the SEM. Findings indicate that the socio-demographic factors such as gender, age, education, income, and ethnicity can greatly influence the individual's awareness, attitude, risk perception, and knowledge of climate change issues. The results drawn from this study also revealed that the attitudinal factors act as a mediating effect between the socio-demographic factors and the MAOI, thereby, indicating that both the socio-demographic factors and the attitudinal factors have significant effects on the MAOI towards climate change. The outcome of this study can help policy makers and other private organizations to decide on the appropriate actions to take in managing climate change effects. These actions which encompass improving basic climate change education and making the public more aware of the local dimensions of climate change are important for harnessing public engagement and support that can also stimulate climate change awareness and promote mitigating actions to n protect the environment from the impact of climate change.
Slow Response or No Response? Distinguishing Non-Climatic Range Limits from Demographic Inertia
NASA Astrophysics Data System (ADS)
Hillerislambers, J.; Anderegg, L. D. L.; Breckheimer, I.; Ford, K.; Kroiss, S.
2016-12-01
One of the greatest challenges ecologists face is forecasting how species distributions will respond to climate change. In general, species distributions have moved polewards and upslope with recent climate change (i.e. range shifts), supporting the assumption that range limits are climatically determined. However, studies also document a surprising number of species whose distributions have remained unchanged in the last 50-100 years, despite significant warming during that time period. This apparent lack of response to warming can arise for species whose range limits are determined by factors other than climate (e.g. species interactions) OR for long-lived, slow-growing, and/or dispersal-limited species whose range shifts are unable to keep pace with rapid climate change. Unfortunately, while these two possibilities are often difficult to distinguish, they have very different implications for the long-term viability of the species in question. Here, we use extensive demographic data for long-lived and slow-growing conifers collected across a large climatic gradient at Mount Rainier (WA, USA) to explore A) evidence for climatically determined range limits and B) the rate at which altitudinal distributions could shift in response to climate change in the region. In doing so, we highlight some of the complications we face in identifying whether species will be sensitive or resilient to climate change.
Beyond Quarterly Earnings: Preparing the Business Community for Long-term Climate Risks
NASA Astrophysics Data System (ADS)
Carlson, C.; Goldman, G. T.
2014-12-01
The business community stands to be highly impacted by climate change. In both short and long-term timescales, climate change presents material and financial risks to companies in diverse economic sectors. How the private sector accounts for long-term risks while making short-term decisions about operations is a complex challenge. Companies are accountable to shareholders and must report performance to them on a quarterly basis. At the same time, company investors are exposed to long-term climate-related risks and face losses if companies fail to prepare for climate impacts. The US Securities and Exchange Commission (SEC) obligates publicly traded companies to discuss risks that might materially affect their business and since 2010, the agency recommends that companies consider and discuss any significant risks to their business from climate change. Some companies have complied with this guidance and comprehensively analyze potential climate change impacts, yet others fail to consider climate change at all. Such omissions leave companies without plans for addressing future risks and expose investors and the public to potential catastrophic events from climate change impacts. Climate risk projections can inform companies about the vulnerability of their facilities, supply chains, transportation pathways, and other assets. Such projections can help put climate-related risks in terms of material costs for companies and their investors. Focusing on the vulnerability of coastal facilities, we will use climate change impact projections to demonstrate the economic impacts of climate change faced by the private sector. These risks are then compared to company disclosures to the SEC to assess the degree to which companies have considered their vulnerability to climate change. Finally, we will discuss ways that companies can better assess and manage long-term climate risks.
Global Priority Conservation Areas in the Face of 21st Century Climate Change
Li, Junsheng; Lin, Xin; Chen, Anping; Peterson, Townsend; Ma, Keping; Bertzky, Monika; Ciais, Philippe; Kapos, Valerie; Peng, Changhui; Poulter, Benjamin
2013-01-01
In an era when global biodiversity is increasingly impacted by rapidly changing climate, efforts to conserve global biodiversity may be compromised if we do not consider the uneven distribution of climate-induced threats. Here, via a novel application of an aggregate Regional Climate Change Index (RCCI) that combines changes in mean annual temperature and precipitation with changes in their interannual variability, we assess multi-dimensional climate changes across the “Global 200” ecoregions – a set of priority ecoregions designed to “achieve the goal of saving a broad diversity of the Earth’s ecosystems” – over the 21st century. Using an ensemble of 62 climate scenarios, our analyses show that, between 1991–2010 and 2081–2100, 96% of the ecoregions considered will be likely (more than 66% probability) to face moderate-to-pronounced climate changes, when compared to the magnitudes of change during the past five decades. Ecoregions at high northern latitudes are projected to experience most pronounced climate change, followed by those in the Mediterranean Basin, Amazon Basin, East Africa, and South Asia. Relatively modest RCCI signals are expected over ecoregions in Northwest South America, West Africa, and Southeast Asia, yet with considerable uncertainties. Although not indicative of climate-change impacts per se, the RCCI-based assessment can help policy-makers gain a quantitative and comprehensive overview of the unevenly distributed climate risks across the G200 ecoregions. Whether due to significant climate change signals or large uncertainties, the ecoregions highlighted in the assessment deserve special attention in more detailed impact assessments to inform effective conservation strategies under future climate change. PMID:23359638
Conservation in the face of climate change: recent developments.
Lawler, Joshua; Watson, James; Game, Edward
2015-01-01
An increased understanding of the current and potential future impacts of climate change has significantly influenced conservation in practice in recent years. Climate change has necessitated a shift toward longer planning time horizons, moving baselines, and evolving conservation goals and targets. This shift has resulted in new perspectives on, and changes in, the basic approaches practitioners use to conserve biodiversity. Restoration, spatial planning and reserve selection, connectivity modelling, extinction risk assessment, and species translocations have all been reimagined in the face of climate change. Restoration is being conducted with a new acceptance of uncertainty and an understanding that goals will need to shift through time. New conservation targets, such as geophysical settings and climatic refugia, are being incorporated into conservation plans. Risk assessments have begun to consider the potentially synergistic impacts of climate change and other threats. Assisted colonization has gained acceptance in recent years as a viable and necessary conservation tool. This evolution has paralleled a larger trend in conservation-a shift toward conservation actions that benefit both people and nature. As we look forward, it is clear that more change is on the horizon. To protect biodiversity and essential ecosystem services, conservation will need to anticipate the human response to climate change and to focus not only on resistance and resilience but on transitions to new states and new ecosystems.
Heather T. Root; Bruce McCune; Sarah Jovan
2014-01-01
Because of their unique physiology, lichen communities are highly sensitive to climatic conditions,making them ideal bioindicators for climate change. Southeast and south-central Alaska host diverse and abundant lichen communities and are faced with a more rapidly changing climate than many more southerly latitudes. We develop sensitive lichen-based indicators for...
Evaluating the sources of potential migrant species: implications under climate change
Ines Ibanez; James S. Clark; Michael C. Dietze
2008-01-01
As changes in climate become more apparent, ecologists face the challenge of predicting species responses to the new conditions. Most forecasts are based on climate envelopes (CE), correlative approaches that project future distributions on the basis of the current climate often assuming some dispersal lag. One major caveat with this approach is that it ignores the...
Analysis of potential impacts of climate change on wildlife habitats in the U.S.
Linda A. Joyce; Curtis H. Flather; Marni Koopman
2008-01-01
Resource managers face many challenges in developing management recommendations for wildlife habitat under a changing climate. Our research results offer states a more consistent and holistic approach to analyzing potential threats of climate change to terrestrial wildlife habitat. This process integrates a review of the scientific literature, the State Wildlife Action...
Quantitative metrics for assessing predicted climate change pressure on North American tree species
Kevin M. Potter; William W. Hargrove
2013-01-01
Changing climate may pose a threat to forest tree species, forcing three potential population-level responses: toleration/adaptation, movement to suitable environmental conditions, or local extirpation. Assessments that prioritize and classify tree species for management and conservation activities in the face of climate change will need to incorporate estimates of the...
Karletta Chief; John J. Daigle; Kathy Lynn; Kyle Powys Whyte
2014-01-01
The recognition of climate change issues facing tribal communities and indigenous peoples in the United States is growing, and understanding its impacts is rooted in indigenous ethical perspectives and systems of ecological knowledge. This foundation presents a context and guide for contemporary indigenous approaches to address climate change impacts that are...
Conroy, M.J.; Runge, M.C.; Nichols, J.D.; Stodola, K.W.; Cooper, R.J.
2011-01-01
The broad physical and biological principles behind climate change and its potential large scale ecological impacts on biota are fairly well understood, although likely responses of biotic communities at fine spatio-temporal scales are not, limiting the ability of conservation programs to respond effectively to climate change outside the range of human experience. Much of the climate debate has focused on attempts to resolve key uncertainties in a hypothesis-testing framework. However, conservation decisions cannot await resolution of these scientific issues and instead must proceed in the face of uncertainty. We suggest that conservation should precede in an adaptive management framework, in which decisions are guided by predictions under multiple, plausible hypotheses about climate impacts. Under this plan, monitoring is used to evaluate the response of the system to climate drivers, and management actions (perhaps experimental) are used to confront testable predictions with data, in turn providing feedback for future decision making. We illustrate these principles with the problem of mitigating the effects of climate change on terrestrial bird communities in the southern Appalachian Mountains, USA. ?? 2010 Elsevier Ltd.
Climate Change Research - What Do We Need Really?
NASA Astrophysics Data System (ADS)
Rama Chandra Prasad, P.
2015-01-01
This research note focuses on the current climate change research scenario and discusses primarily what is required in the present global climate change conditions. Most of the climate change research and models predict adverse future conditions that have to be faced by humanity, with less emphasis on mitigation measures. Moreover, research ends as reports on the shelves of scientists and researchers and as publications in journals. At this juncture the major focus should be on research that helps in reducing the impact rather than on analysing future scenarios of climate change using different models. The article raises several questions and suggestions regards climate change research and lays emphasis on what we really need from climate change researchers.
NASA Astrophysics Data System (ADS)
Dannenberg, Astrid
2014-12-01
Climate change perhaps is the greatest collective action problem mankind has ever faced and the international community is still at a loss for how to get the ever rising greenhouse gas emissions under control. Does the risk of crossing a "dangerous" climate threshold improve the prospects of collective action?
Managing climate change refugia for climate adaptation
Morelli, Toni L.; Jackson, Stephen T.
2016-01-01
Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.
Managing Climate Change Refugia for Climate Adaptation.
Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R
2016-01-01
Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.
Managing Climate Change Refugia for Climate Adaptation
Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.
2016-01-01
Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088
ERIC Educational Resources Information Center
Tasquier, Giulia; Pongiglione, Francesca
2017-01-01
Climate change is one of the significant global challenges currently facing humanity. Even though its seriousness seems to be common knowledge among the public, the reaction of individuals to it has been slow and uncertain. Many studies assert that simply knowing about climate change is not enough to generate people's behavioural response. They…
NASA Astrophysics Data System (ADS)
Foster, I.; Elliott, J. W.; Jones, J.; Montella, R.
2013-12-01
Issues relating to climate change and food security require an understanding of the interaction between the natural world and human society over long time scales. Understanding climate change, its impacts on the natural world and society, and the tradeoffs inherent in societal responses demands an unprecedented degree of cooperation across academic fields. New data sources on expected future climate, soil characteristics, economic activity, historical weather, population, and land cover, provide a potential basis for this cooperation. New methods are needed for sharing within and across communities not only data but the software used to generate, synthesize, and analyze it. Progress on these research challenges is hindered by the extreme difficulties that researchers, collaborators, and the community experiences when they collaborate around data. Multiplicity of data formats; inadequate computational tools; difficulty in sharing data and programs, lack of incentives for pro-social behavior and large data volumes are among the technology barriers. The FACE-IT project at the University of Chicago, NASA, and University of Florida employs an integrated approach to cyberinfrastructure to advance the characterization of vulnerabilities, impacts, mitigation, and adaptation to climate change in human and environmental systems. Leveraging existing research cyberinfrastructure the project is creating a full-featured FACE-IT Platform prototype with new capabilities for ingesting, organizing, managing, analyzing and using large quantities of diverse data. The project team collaborates with two distinct interdisciplinary communities to create community specific FACE-IT Instances to both advance their research and enable at-scale evaluation of the utility of the FACE-IT approach. In this talk I will introduce the FACE-IT system and discuss early applications.
ERIC Educational Resources Information Center
Versprille, Ashley; Zabih, Adam; Holme, Thomas A.; McKenzie, Lallie; Mahaffy, Peter; Martin, Brian; Towns, Marcy
2017-01-01
Climate change is one of the most critical problems facing citizens today. Chemistry faculty are presented with the problem of making general chemistry content simultaneously relevant and interesting. Using climate science to teach chemistry allows faculty to help students learn chemistry content in a rich context. Concepts related to…
Climate Change Adaptation Challenges and EO Business Opportunities
NASA Astrophysics Data System (ADS)
Lopez-Baeza, Ernesto; Mathieu, Pierre-Philippe; Bansal, Rahul; Del Rey, Maria; Mohamed, Ebrahim; Ruiz, Paz; Signes, Marcos
Climate change is one of the defining challenges of the 21st century, but is no longer a matter of just scientific concern. It encompasses economics, sociology, global politics as well as national and local politics, law, health and environmental security, etc. The challenge of facing the impacts of climate change is often framed in terms of two potential paths that civilization might take: mitigation and adaptation. On the one hand, mitigation involves reducing the magnitude of climate change itself and is composed of emissions reductions and geoengineering. On the other hand and by contrast, adaptation involves efforts to limit our vulnerability to climate change impacts through various measures. It refers to our ability to adjust ourselves to climate change -including climate variability and extremes, to moderate potential damage, to take advantage of opportunities, or to cope with the consequences. Therefore, we are now faced with a double challenge: next to deep cuts in greenhouse gas emissions, we also need to adapt to the changing climate conditions. The use of satellites to monitor processes and trends at the global scale is essential in the context of climate change. Earth Observation has the potential to improve our predictive vision and to advance climate models. Space sciences and technologies constitute a significant issue in Education and Public Awareness of Science. Space missions face the probably largest scientific and industrial challenges of humanity. It is thus a fact that space drives innovation in the major breakthrough and cutting edge technological advances of mankind (techniques, processes, new products, … as well as in markets and business models). Technology and innovation is the basis of all space activities. Space agencies offer an entire range of space-related activities - from space science and environmental monitoring to industrial competitiveness and end-user services. More specifically, Earth Observation satellites have a unique global view of planet Earth, providing us -with better data- with consistent and frequent information on the state of our environment at the regional and global scale, also in important but remote areas. Climate Knowledge and Innovation Communities (Climate-KIC), a relatively new initiative from the European Institute of Innovation & Technology (EIT), provides the innovations, entrepreneurship, education and expert guidance needed to shape Europe's climate change agenda. This paper shows some initiatives that the University of Valencia Climate-KIC Education Group is carrying out in collaboration with the Climate-KIC Central Education Lead in the field of space education to foster and encourage students and entrepreneurs to endevour in these new space business opportunities offered by this step forward towards climate change adaptation challenges.
Climate change and outdoor recreation participation in the Southern United States
J.M. Bowker; Ashley E. Askew; Neelam Poudyal; Stanley J. Zarnoch; Lynne Seymour; H. Ken Cordell
2014-01-01
In this chapter we begin to assess the potential effects of climate change on future outdoor recreation in the South, a region spanning 13 states from Virginia to Texas (Chapter 1). Our goal is to provide some useful insights about future natural resource-based recreation-an important nontimber product derived from southern forests-in the face of climate change. We...
A new way to study the changing Arctic ecosystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, Susan
2011-09-12
Berkeley Lab scientists Susan Hubbard and Margaret Torn discuss the proposed Next Generation Ecosystem Experiment, which is designed to answer one of the most urgent questions facing researchers today: How will a changing climate impact the Arctic, and how will this in turn impact the planet's climate? More info: http://newscenter.lbl.gov/feature-stories/2011/09/14/alaska-climate-change/
Cascabel prescribed fire long-term watershed study: an opportunity to monitor climate change
Gerald Gottfried; Daniel Neary; Peter Ffolliott; Karen Koestner
2012-01-01
Experimental watershed studies can provide answers to new challenges facing land managers and society including the impacts of fires and climate change on upstream and regional hydrology. The Cascabel Watersheds long-term prescribed fire study provides a unique opportunity to monitor climate change because of its location in an oak savanna situated between deserts or...
A new way to study the changing Arctic ecosystem
Hubbard, Susan
2017-12-09
Berkeley Lab scientists Susan Hubbard and Margaret Torn discuss the proposed Next Generation Ecosystem Experiment, which is designed to answer one of the most urgent questions facing researchers today: How will a changing climate impact the Arctic, and how will this in turn impact the planet's climate? More info: http://newscenter.lbl.gov/feature-stories/2011/09/14/alaska-climate-change/
Genecological approaches to predicting the effects of climate change on plant populations
Francis F. Kilkenny
2015-01-01
Climate change threatens native plant populations and plant communities globally. It is critical that land managers have a clear understanding of climate change impacts on plant species and populations so that restoration efforts can be adjusted accordingly. This paper reviews the develop.ment and use of seed transfer guidelines for restoration in the face of global...
Climate-induced changes in vulnerability to biological threats in the southern United States
Rabiu Olatinwo; Qinfeng Guo; Songlin Fei; William Otrosina; Kier Klepzig; Douglas Streett
2014-01-01
Forest land managers face the challenges of preparing their forests for the impacts of climate change. However, climate change adds a new dimension to the task of developing and testing science-based management options to deal with the effects of stressors on forest ecosystems in the southern United States. The large spatial scale and complex interactions make...
NASA Astrophysics Data System (ADS)
Niepold, F.; Byers, A.
2009-12-01
The scientific complexities of global climate change, with wide-ranging economic and social significance, create an intellectual challenge that mandates greater public understanding of climate change research and the concurrent ability to make informed decisions. The critical need for an engaged, science literate public has been repeatedly emphasized by multi-disciplinary entities like the Intergovernmental Panel on Climate Change (IPCC), the National Academies (Rising Above the Gathering Storm report), and the interagency group responsible for the recently updated Climate Literacy: The Essential Principles of Climate Science. There is a clear need for an American public that is climate literate and for K-12 teachers confident in teaching relevant science content. A key goal in the creation of a climate literate society is to enhance teachers’ knowledge of global climate change through a national, scalable, and sustainable professional development system, using compelling climate science data and resources to stimulate inquiry-based student interest in science, technology, engineering, and mathematics (STEM). This session will explore innovative e-learning technologies to address the limitations of one-time, face-to-face workshops, thereby adding significant sustainability and scalability. The resources developed will help teachers sift through the vast volume of global climate change information and provide research-based, high-quality science content and pedagogical information to help teachers effectively teach their students about the complex issues surrounding global climate change. The Learning Center is NSTA's e-professional development portal to help the nations teachers and informal educators learn about the scientific complexities of global climate change through research-based techniques and is proven to significantly improve teacher science content knowledge.
Hybrid Zones: Windows on Climate Change
Larson, Erica L.; Harrison, Richard G.
2016-01-01
Defining the impacts of anthropogenic climate change on biodiversity and species distributions is currently a high priority. Niche models focus primarily on predicted changes in abiotic factors; however, species interactions and adaptive evolution will impact the ability of species to persist in the face of changing climate. Our review focuses on the use of hybrid zones to monitor species' responses to contemporary climate change. Monitoring hybrid zones provides insight into how range boundaries shift in response to climate change by illuminating the combined effects of species interactions and physiological sensitivity. At the same time, the semi-permeable nature of species boundaries allows us to document adaptive introgression of alleles associated with response to climate change. PMID:25982153
Climate change & infectious diseases in India: implications for health care providers.
Dhara, V Ramana; Schramm, Paul J; Luber, George
2013-12-01
Climate change has the potential to influence the earth's biological systems, however, its effects on human health are not well defined. Developing nations with limited resources are expected to face a host of health effects due to climate change, including vector-borne and water-borne diseases such as malaria, cholera, and dengue. This article reviews common and prevalent infectious diseases in India, their links to climate change, and how health care providers might discuss preventive health care strategies with their patients.
Climate change & infectious diseases in India: Implications for health care providers
Dhara, V. Ramana; Schramm, Paul J.; Luber, George
2013-01-01
Climate change has the potential to influence the earth's biological systems, however, its effects on human health are not well defined. Developing nations with limited resources are expected to face a host of health effects due to climate change, including vector-borne and water-borne diseases such as malaria, cholera, and dengue. This article reviews common and prevalent infectious diseases in India, their links to climate change, and how health care providers might discuss preventive health care strategies with their patients. PMID:24521625
Climate Change, Health, and Communication: A Primer.
Chadwick, Amy E
2016-01-01
Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects.
Amy Daniels; Nancy Shaw; Dave Peterson; Keith Nislow; Monica Tomosy; Mary Rowland
2014-01-01
As a growing body of science shows, climate change impacts on wildlife are already profoundâfrom shifting speciesâ ranges and altering the synchronicity of food sources to changing the availability of water. Such impacts are only expected to increase in the coming decades. As climate change shapes complex, interwoven ecological processes, novel conditions and...
Integrating climate change considerations into forest management tools and training
Linda M. Nagel; Christopher W. Swanston; Maria K. Janowiak
2010-01-01
Silviculturists are currently facing the challenge of developing management strategies that meet broad ecological and social considerations in spite of a high degree of uncertainty in future climatic conditions. Forest managers need state-of-the-art knowledge about climate change and potential impacts to facilitate development of silvicultural objectives and...
Climate Education: Empowering Today's Youth to Meet Tomorrow's Challenges
ERIC Educational Resources Information Center
Schreiner, Camilla; Henriksen, Ellen K.; Kirkeby Hansen, Pal J.
2005-01-01
An enhanced greenhouse effect, leading to global warming and associated changes in the climate system, is arguably one of the greatest environmental challenges facing humankind in the 21st century. The challenge extends to the scientific, political, economic and ethical domains of the human enterprise. The science of climate change involves…
Nicole M. Herman-Mercer; Elli Matkin; Melinda J. Laituri; Ryan C. Toohey; Maggie Massey; Kelly Elder; Paul F. Schuster; Edda A. Mutter
2016-01-01
Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK) and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation...
Examining the effects of transportation governance on infrastructure adaptation to climate change.
DOT National Transportation Integrated Search
2015-05-01
Transportation agencies across the United States are faced with the challenge of effectively : adapting infrastructure to withstand the predicted effects of climate change. This challenge is : magnified by a nationwide funding shortage, uncertainty a...
Conservation in the face of climate change: recent developments
Lawler, Joshua; Watson, James; Game, Edward
2015-01-01
An increased understanding of the current and potential future impacts of climate change has significantly influenced conservation in practice in recent years. Climate change has necessitated a shift toward longer planning time horizons, moving baselines, and evolving conservation goals and targets. This shift has resulted in new perspectives on, and changes in, the basic approaches practitioners use to conserve biodiversity. Restoration, spatial planning and reserve selection, connectivity modelling, extinction risk assessment, and species translocations have all been reimagined in the face of climate change. Restoration is being conducted with a new acceptance of uncertainty and an understanding that goals will need to shift through time. New conservation targets, such as geophysical settings and climatic refugia, are being incorporated into conservation plans. Risk assessments have begun to consider the potentially synergistic impacts of climate change and other threats. Assisted colonization has gained acceptance in recent years as a viable and necessary conservation tool. This evolution has paralleled a larger trend in conservation—a shift toward conservation actions that benefit both people and nature. As we look forward, it is clear that more change is on the horizon. To protect biodiversity and essential ecosystem services, conservation will need to anticipate the human response to climate change and to focus not only on resistance and resilience but on transitions to new states and new ecosystems. PMID:26937271
Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition.
Myers, Samuel S; Smith, Matthew R; Guth, Sarah; Golden, Christopher D; Vaitla, Bapu; Mueller, Nathaniel D; Dangour, Alan D; Huybers, Peter
2017-03-20
Great progress has been made in addressing global undernutrition over the past several decades, in part because of large increases in food production from agricultural expansion and intensification. Food systems, however, face continued increases in demand and growing environmental pressures. Most prominently, human-caused climate change will influence the quality and quantity of food we produce and our ability to distribute it equitably. Our capacity to ensure food security and nutritional adequacy in the face of rapidly changing biophysical conditions will be a major determinant of the next century's global burden of disease. In this article, we review the main pathways by which climate change may affect our food production systems-agriculture, fisheries, and livestock-as well as the socioeconomic forces that may influence equitable distribution.
Nan Lu; Ge Sun; Xiaoming Feng; Bojie Fu
2013-01-01
China is facing a growing water crisis due to climate and land use change, and rise in human water demand across this rapidly developing country. Understanding the spatial and temporal ecohydrologic responses to climate change is critical to sustainable water resource management. We investigated water yield (WY) responses to historical (1981â2000) and projected...
USDA-ARS?s Scientific Manuscript database
Adapting to the anticipated impacts of climate change is a pressing issue facing agriculture, as precipitation and temperature changes are expected to have major effects on agricultural production in many regions of the world. These changes will also affect soil organic matter (SOM) decomposition an...
Conservation and adaptation to climate change.
Brooke, Cassandra
2008-12-01
The need to adapt to climate change has become increasingly apparent, and many believe the practice of biodiversity conservation will need to alter to face this challenge. Conservation organizations are eager to determine how they should adapt their practices to climate change. This involves asking the fundamental question of what adaptation to climate change means. Most studies on climate change and conservation, if they consider adaptation at all, assume it is equivalent to the ability of species to adapt naturally to climate change as stated in Article 2 of the United Nations Framework Convention on Climate Change. Adaptation, however, can refer to an array of activities that range from natural adaptation, at one end of the spectrum, to sustainability science in coupled human and natural systems at the other. Most conservation organizations deal with complex systems in which adaptation to climate change involves making decisions on priorities for biodiversity conservation in the face of dynamic risks and involving the public in these decisions. Discursive methods such as analytic deliberation are useful for integrating scientific knowledge with public perceptions and values, particularly when large uncertainties and risks are involved. The use of scenarios in conservation planning is a useful way to build shared understanding at the science-policy interface. Similarly, boundary organizations-organizations or institutions that bridge different scales or mediate the relationship between science and policy-could prove useful for managing the transdisciplinary nature of adaptation to climate change, providing communication and brokerage services and helping to build adaptive capacity. The fact that some nongovernmental organizations (NGOs) are active across the areas of science, policy, and practice makes them well placed to fulfill this role in integrated assessments of biodiversity conservation and adaptation to climate change.
Connolly, Katherine; Mbutu, Mwaura; Bartram, Jamie; Fuente, David
2018-06-01
The ability of water and wastewater utilities to provide safe and reliable water and sanitation services now and in the future will be determined, in part, by their resilience to climate change. Investment in infrastructure, planning, and operational practices that increase resilience are affected, in turn, by how water sector professionals perceive the risks posed to utilities by climate change and its related impacts. We surveyed water sector professionals at the 2016 African Water Association's Congress in Nairobi, Kenya to assess their perceptions of climate-specific and general risks that may disrupt utility service. We find that water sector professionals are most concerned about climate-specific and general risks that affect utility water supplies (quantity), followed by adequacy of utility infrastructure. We also find that professionals tend to rank climate-specific risks as less concerning than general risks facing utilities. Furthermore, non-utility professionals are more concerned about climate-specific risks and climate change in general than utility professionals. These findings highlight the multiple, competing risks utilities face and the need for adaptation strategies that simultaneously address climate-specific and general concerns of utilities. Copyright © 2018 Elsevier GmbH. All rights reserved.
Vulnerability of forests of the Midwest and Northeast United States to climate change
Chris Swanston; Leslie A. Brandt; Maria K. Janowiak; Stephen D. Handler; Patricia Butler-Leopold; Louis Iverson; Frank R. Thompson; Todd A. Ontl; P. Danielle Shannon
2018-01-01
Forests of the Midwest and Northeast significantly define the character, culture, and economy of this large region but face an uncertain future as the climate continues to change. Forests vary widely across the region, and vulnerabilities are strongly influenced by regional differences in climate impacts and adaptive capacity. Not all forests are vulnerable; longer...
Maria K. Janowiak; Christopher W. Swanston; Linda M. Nagel; Christopher R. Webster; Brian J. Palik; Mark J. Twery; John B. Bradford; Linda R. Parker; Andrea T. Hille; Sheela M. Johnson
2011-01-01
Land managers across the country face the immense challenge of developing and applying appropriate management strategies as forests respond to climate change. We hosted a workshop to explore silvicultural strategies for addressing the uncertainties surrounding climate change and forest response in the northeastern and north-central United States. Outcomes of this...
Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska
Sarah F. Trainor; Monika Calef; David Natcher; F. Stuart Chapin; A. David McGuire; Orville Huntington; Paul Duffy; T. Scott Rupp; La' Ona DeWilde; Mary Kwart; Nancy Fresco; Amy Lauren Lovecraft
2009-01-01
We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources, and institutional connections...
Readying health services for climate change: a policy framework for regional development.
Bell, Erica
2011-05-01
Climate change presents the biggest threat to human health in the 21st century. However, many public health leaders feel ill equipped to face the challenges of climate change and have been unable to make climate change a priority in service development. I explore how to achieve a regionally responsive whole-of-systems approach to climate change in the key operational areas of a health service: service governance and culture, service delivery, workforce development, asset management, and financing. The relative neglect of implementation science means that policymakers need to be proactive about sourcing and developing models and processes to make health services ready for climate change. Health research funding agencies should urgently prioritize applied, regionally responsive health services research for a future of climate change.
Readying Health Services for Climate Change: A Policy Framework for Regional Development
2011-01-01
Climate change presents the biggest threat to human health in the 21st century. However, many public health leaders feel ill equipped to face the challenges of climate change and have been unable to make climate change a priority in service development. I explore how to achieve a regionally responsive whole-of-systems approach to climate change in the key operational areas of a health service: service governance and culture, service delivery, workforce development, asset management, and financing. The relative neglect of implementation science means that policymakers need to be proactive about sourcing and developing models and processes to make health services ready for climate change. Health research funding agencies should urgently prioritize applied, regionally responsive health services research for a future of climate change. PMID:21421953
Weaver, C. P.; Moss, Richard H.; Ebi, Kristie L.; ...
2017-07-21
Climate change is a risk management challenge for society, with uncertain but potentially severe outcomes affecting natural and human systems, across generations. Managing climate-related risks will be more difficult without a base of knowledge and practice aimed at identifying and evaluating specific risks, and their likelihood and consequences, as well as potential actions to promote resilience in the face of these risks. Here, we suggest three improvements to the process of conducting climate change assessments to better characterize risk and inform risk management actions.
Appropriate technology and climate change adaptation
NASA Astrophysics Data System (ADS)
Bandala, Erick R.; Patiño-Gomez, Carlos
2016-02-01
Climate change is emerging as the greatest significant environmental problem for the 21st Century and the most important global challenge faced by human kind. Based on evidence recognized by the international scientific community, climate change is already an unquestionable reality, whose first effects are beginning to be measured. Available climate projections and models can assist in anticipating potential far-reaching consequences for development processes. Climatic transformations will impact the environment, biodiversity and water resources, putting several productive processes at risk; and will represent a threat to public health and water availability in quantity and quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, C. P.; Moss, Richard H.; Ebi, Kristie L.
Climate change is a risk management challenge for society, with uncertain but potentially severe outcomes affecting natural and human systems, across generations. Managing climate-related risks will be more difficult without a base of knowledge and practice aimed at identifying and evaluating specific risks, and their likelihood and consequences, as well as potential actions to promote resilience in the face of these risks. Here, we suggest three improvements to the process of conducting climate change assessments to better characterize risk and inform risk management actions.
Maria K. Janowiak; Louis R. Iverson; David J. Mladenoff; Emily Peters; Kirk R. Wythers; Weimin Xi; Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; P. Danielle Shannon; Chris Swanston; Linda R. Parker; Amy J. Amman; Brian Bogaczyk; Christine Handler; Ellen Lesch; Peter B. Reich; Stephen Matthews; Matthew Peters; Anantha Prasad; Sami Khanal; Feng Liu; Tara Bal; Dustin Bronson; Andrew Burton; Jim Ferris; Jon Fosgitt; Shawn Hagan; Erin Johnston; Evan Kane; Colleen Matula; Ryan O' Connor; Dale Higgins; Matt St. Pierre; Jad Daley; Mae Davenport; Marla R. Emery; David Fehringer; Christopher L. Hoving; Gary Johnson; David Neitzel; Michael Notaro; Adena Rissman; Chadwick Rittenhouse; Robert Ziel
2014-01-01
Forest ecosystems across the Northwoods will face direct and indirect impacts from a changing climate over the 21st century. This assessment evaluates the vulnerability of forest ecosystems in the Laurentian Mixed Forest Province of northern Wisconsin and western Upper Michigan under a range of future climates. Information on current forest conditions, observed climate...
Modeling Earth system changes of the past
NASA Technical Reports Server (NTRS)
Kutzbach, John E.
1992-01-01
This review outlines some of the challenging problems to be faced in understanding the causes and mechanisms of large climatic changes and gives examples of initial studies of these problems with climate models. The review covers climatic changes in three main periods of earth history: (1) the past several centuries; (2) the past several glacial-interglacial cycles; and (3) the past several million years. The review will concentrate on studies of climate but, where possible, will mention broader aspects of the earth system.
Assessing and managing stressors in a changing marine environment.
Chapman, Peter M
2017-11-30
We are facing a dynamic future in the face of multiple stressors acting individually and in combination: climate change; habitat change/loss; overfishing; invasive species; harmful algal blooms/eutrophication; and, chemical contaminants. Historic assessment and management approaches will be inadequate for addressing risks from climate change and other stressors. Wicked problems (non-linear, complex, competing risks and benefits, not easily solvable), will become increasingly common. We are facing irreversible changes to our planetary living conditions. Agreed protection goals and considering both the negatives (risks) and the positives (benefits) of all any and all actions are required, as is judicious and appropriate use of the Precautionary Principle. Researchers and managers need to focus on: determining tipping points (alternative stable points); maintaining ecosystem services; and, managing competing ecosystem services. Marine (and other) scientists are urged to focus their research on wicked problems to allow for informed decision-making on a planetary basis. Copyright © 2016 Elsevier Ltd. All rights reserved.
The impacts of climate change on the wintering distribution of an endangered migratory bird.
Hu, Junhua; Hu, Huijian; Jiang, Zhigang
2010-10-01
There is now ample evidence of the effects of anthropogenic climate change on the distribution and abundance of species. The black-faced spoonbill (Platalea minor) is an endangered migratory species and endemic to East Asia. Using a maximum entropy approach, we predicted the potential wintering distribution for spoonbills and modeled the effects of future climate change. Elevation, human influence index and precipitation during the coldest quarter contributed most to model development. Five regions, including western Taiwan, scattered locations from eastern coastal to central mainland China, coastal areas surrounding the South China Sea, northeastern coastal areas of Vietnam and sites along the coast of Japan, were found to have a high probability of presence and showed good agreement with historical records. Assuming no limits to the spread of this species, the wintering range is predicted to increase somewhat under a changing climate. However, three currently highly suitable regions (northeastern Vietnam, Taiwan and coastal areas surrounding the South China Sea) may face strong reductions in range by 2080. We also found that the center of the predicted range of spoonbills will undergo a latitudinal shift northwards by as much as 240, 450, and 600 km by 2020, 2050 and 2080, respectively. Our findings suggest that species distribution modeling can inform the current and future management of the black-faced spoonbill throughout Asia. It is clear that a strong international strategy is needed to conserve spoonbill populations under a changing climate.
Climate Change and Water Resources Management: A Federal Perspective
Brekke, Levi D.; Kiang, Julie E.; Olsen, J. Rolf; Pulwarty, Roger S.; Raff, David A.; Turnipseed, D. Phil; Webb, Robert S.; White, Kathleen D.
2009-01-01
Many challenges, including climate change, face the Nation's water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.
NASA Astrophysics Data System (ADS)
Vicuna, S.; Melo, O.; Meza, F. J.; Medellin-Azuara, J.; Herman, J. D.; Sandoval Solis, S.
2017-12-01
California and Chile share similarities in terms of climate, ecosystems, topography and water use. In both regions, the hydro-climatologic system is characterized by a typical Mediterranean climate, rainy winters and dry summers, highly variable annual precipitation, and snowmelt-dependent water supply systems. Water use in both regions has also key similarities, with the highest share devoted to high-value irrigated crops, followed by urban water use and a significant hydropower-driven power supply system. Snowmelt-driven basins in semiarid regions are highly sensitive to climate change for two reasons, temperature effects on snowmelt timing and water resources scarcity in these regions subject to ever-increasing demands. Research in both regions also coincide in terms of the potential climate change impacts. Expected impacts on California and Chile water resources have been well-documented in terms of changes in water supply and water demand, though significant uncertainties remain. Both regions have recently experienced prolonged droughts, providing an opportunity to understand the future challenges and potential adaptive responses under climate change. This study connects researchers from Chile and California with the goal of understanding the problem of how to adapt to climate change impacts on water resources and agriculture at the various spatial and temporal scales. The project takes advantage of the complementary contexts between Chile and California in terms of similar climate and hydrologic conditions, water management institutions, patterns of water consumption and, importantly, a similar challenge facing recent drought scenarios to understand the challenges faced by a changing climate.
The concept of resilience has been evolving over the past decade as a way to address the current and future challenges nations, states, and cities face from a changing climate. Understanding how the environment (natural and built), climate event risk, societal interactions, and g...
Rose A. Graves; Scott M. Pearson; Monica G. Turner
2016-01-01
Rural landscapes face changing climate, shifting development pressure, and loss of agricultural land. Perennial bioenergy crops grown on existing agricultural land may provide an opportunity to conserve rural landscapes while addressing increased demand for biofuels. However, increased bioenergy production and changing land use raise concerns for tradeoffs...
Forecasting Climate-Induced Ecosystem Changes on Military Installations
James D. Westervelt; William W. Hargrove
2011-01-01
Military installation training lands must be managed to support species at risk as well as to be effective training environments for soldiers. Forecasts from various global climate change models suggest that the habitats associated with some military training installations will face pressures that induce biome-shifts, invasive species, loss of habitat, and changes in...
Citizenship for a Changing Global Climate: Learning from New Zealand and Norway
ERIC Educational Resources Information Center
Hayward, Bronwyn; Selboe, Elin; Plew, Elizabeth
2015-01-01
Young citizens under the age of 25?years make up just under half of the world's population. Globally, they face new, interrelated problems of dangerous environmental change, including increasing incidence of severe storms associated with a changing climate, and related new threats to human security. Addressing the complex challenge of climate…
Haase, Dagmar; Volk, Martin
2017-01-01
Over the 20th century, urbanization has substantially shaped the surface of Earth. With population rapidly shifting from rural locations towards the cities, urban areas have dramatically expanded on a global scale and represent crystallization points of social, cultural and economic assets and activities. This trend is estimated to persist for the next decades, and particularly the developing countries are expected to face rapid urban growth. The management of this growth will require good governance strategies and planning. By threatening the livelihoods, assets and health as foundations of human activities, another major global change contributor, climate change, became an equally important concern of stakeholders. Based on the climate trends observed over the 20th century, and a spatially explicit model of urbanization, this paper investigates the impacts of climate change in relation to different stages of development of urban areas, thus evolving a more integrated perspective on both processes. As a result, an integrative measure of climate change trends and impacts is proposed and estimated for urban areas worldwide. We show that those areas facing major urban growth are to a large extent also hotspots of climate change. Since most of these hotspots are located in the Global South, we emphasize the need for stakeholders to co-manage both drivers of global change. The presented integrative perspective is seen as a starting point to foster such co-management, and furthermore as a means to facilitate communication and knowledge exchange on climate change impacts. PMID:29232695
Scheuer, Sebastian; Haase, Dagmar; Volk, Martin
2017-01-01
Over the 20th century, urbanization has substantially shaped the surface of Earth. With population rapidly shifting from rural locations towards the cities, urban areas have dramatically expanded on a global scale and represent crystallization points of social, cultural and economic assets and activities. This trend is estimated to persist for the next decades, and particularly the developing countries are expected to face rapid urban growth. The management of this growth will require good governance strategies and planning. By threatening the livelihoods, assets and health as foundations of human activities, another major global change contributor, climate change, became an equally important concern of stakeholders. Based on the climate trends observed over the 20th century, and a spatially explicit model of urbanization, this paper investigates the impacts of climate change in relation to different stages of development of urban areas, thus evolving a more integrated perspective on both processes. As a result, an integrative measure of climate change trends and impacts is proposed and estimated for urban areas worldwide. We show that those areas facing major urban growth are to a large extent also hotspots of climate change. Since most of these hotspots are located in the Global South, we emphasize the need for stakeholders to co-manage both drivers of global change. The presented integrative perspective is seen as a starting point to foster such co-management, and furthermore as a means to facilitate communication and knowledge exchange on climate change impacts.
Using the adaptive cycle in climate-risk insurance to design resilient futures
NASA Astrophysics Data System (ADS)
Cremades, R.; Surminski, S.; Máñez Costa, M.; Hudson, P.; Shrivastava, P.; Gascoigne, J.
2018-01-01
Assessing the dynamics of resilience could help insurers and governments reduce the costs of climate-risk insurance schemes and secure future insurability in the face of an increase in extreme hydro-meteorological events related to climate change.
Mechanistic Toxicology in the Face of Global Climate Change
To incorporate effects of global climate change (GCC) into regulatory assessments of chemical risk, damage and restoration needs, an understanding is needed of GCC effects on mechanisms of chemical toxicity and the implications of those effects when placed in context with GCC eff...
Climate change and tools for collective action
As climate change alters the quality and quantity of water in local ecosystems, we will be faced with management challenges. Research experience in the St. Louis River Area of Concern would indicate that collective action is possible in response to the threat of degraded water qu...
Climate change: a call for adaptation and mitigation strategies
USDA-ARS?s Scientific Manuscript database
Projected climate change is expected to substantially affect crop and livestock production, and water availability and quality. Concomitantly, the agricultural community is faced with a challenge of increasing food production by more than 70% to meet demand from global population increase by the mid...
Role-play simulations for climate change adaptation education and engagement
NASA Astrophysics Data System (ADS)
Rumore, Danya; Schenk, Todd; Susskind, Lawrence
2016-08-01
In order to effectively adapt to climate change, public officials and other stakeholders need to rapidly enhance their understanding of local risks and their ability to collaboratively and adaptively respond to them. We argue that science-based role-play simulation exercises -- a type of 'serious game' involving face-to-face mock decision-making -- have considerable potential as education and engagement tools for enhancing readiness to adapt. Prior research suggests role-play simulations and other serious games can foster public learning and encourage collective action in public policy-making contexts. However, the effectiveness of such exercises in the context of climate change adaptation education and engagement has heretofore been underexplored. We share results from two research projects that demonstrate the effectiveness of role-play simulations in cultivating climate change adaptation literacy, enhancing collaborative capacity and facilitating social learning. Based on our findings, we suggest such exercises should be more widely embraced as part of adaptation professionals' education and engagement toolkits.
NASA Astrophysics Data System (ADS)
Unger, M.; Rockwell, A.
2014-12-01
Conversations about climate change can easily devolve into polarization and political finger-pointing, where there should be a civilized discussion and enthusiastic brainstorming. How can we change the pugilistic back into the personable? We will examine some examples of reinstating dialogue in various settings, drawing on our experiences working with the public, students and educators in our visitor centers and public areas at the National Center for Atmospheric Research (NCAR), as well as using off-the-clock opportunities to communicate about our work in social and other informal settings. We will share lessons about what works and what doesn't when communicating about climate online and offline, and the differences in discussions that occur in virtual, digital settings and face-to-face.
Extinction debt from climate change for frogs in the wet tropics
Brook, Barry W.; Hoskin, Conrad J.; Pressey, Robert L.; VanDerWal, Jeremy; Williams, Stephen E.
2016-01-01
The effect of twenty-first-century climate change on biodiversity is commonly forecast based on modelled shifts in species ranges, linked to habitat suitability. These projections have been coupled with species–area relationships (SAR) to infer extinction rates indirectly as a result of the loss of climatically suitable areas and associated habitat. This approach does not model population dynamics explicitly, and so accepts that extinctions might occur after substantial (but unknown) delays—an extinction debt. Here we explicitly couple bioclimatic envelope models of climate and habitat suitability with generic life-history models for 24 species of frogs found in the Australian Wet Tropics (AWT). We show that (i) as many as four species of frogs face imminent extinction by 2080, due primarily to climate change; (ii) three frogs face delayed extinctions; and (iii) this extinction debt will take at least a century to be realized in full. Furthermore, we find congruence between forecast rates of extinction using SARs, and demographic models with an extinction lag of 120 years. We conclude that SAR approaches can provide useful advice to conservation on climate change impacts, provided there is a good understanding of the time lags over which delayed extinctions are likely to occur. PMID:27729484
NASA Astrophysics Data System (ADS)
Veldey, S. H.
2016-12-01
On-going research in climate science communication through environmental media has uncovered critical barriers to reducing denial and increasing agency in addressing the threat of climate change. Similar to framing of our changing environment as "global warming", the term "climate change" also fails to properly frame the most critical challenge our species has faced. In a set of preliminary studies, significant changes in climate crisis denial, both positive and negative, have resulted from different media messaging. Continuation of this research utilizes social judgement theory (SJT) to classify a broader spectrum of effective avenues for environmental communication. The specificity of the terms global warming and climate change limit inclusion of issues critical to understanding their impacts. Now that the masses know what climate change is, it's time to teach them what it means.
Worker health and safety and climate change in the Americas: issues and research needs.
Kiefer, Max; Rodríguez-Guzmán, Julietta; Watson, Joanna; van Wendel de Joode, Berna; Mergler, Donna; da Silva, Agnes Soares
2016-09-01
SYNOPSIS This report summarizes and discusses current knowledge on the impact that climate change can have on occupational safety and health (OSH), with a particular focus on the Americas. Worker safety and health issues are presented on topics related to specific stressors (e.g., temperature extremes), climate associated impacts (e.g., ice melt in the Arctic), and a health condition associated with climate change (chronic kidney disease of non-traditional etiology). The article discusses research needs, including hazards, surveillance, and risk assessment activities to better characterize and understand how OSH may be associated with climate change events. Also discussed are the actions that OSH professionals can take to ensure worker health and safety in the face of climate change.
Worker health and safety and climate change in the Americas: issues and research needs
Kiefer, Max; Rodríguez-Guzmán, Julietta; Watson, Joanna; van Wendel de Joode, Berna; Mergler, Donna; da Silva, Agnes Soares
2016-01-01
SYNOPSIS This report summarizes and discusses current knowledge on the impact that climate change can have on occupational safety and health (OSH), with a particular focus on the Americas. Worker safety and health issues are presented on topics related to specific stressors (e.g., temperature extremes), climate associated impacts (e.g., ice melt in the Arctic), and a health condition associated with climate change (chronic kidney disease of non-traditional etiology). The article discusses research needs, including hazards, surveillance, and risk assessment activities to better characterize and understand how OSH may be associated with climate change events. Also discussed are the actions that OSH professionals can take to ensure worker health and safety in the face of climate change. PMID:27991978
Unique challenges facing Southwestern tribes: Chapter 17
Hiza, Margaret; Chief, Karletta; Bemis, Kirk; Gautam, Mahesh; Middleton, Beth Rose; Tsosie, Rebecca
2013-01-01
•\tTribes are taking action to address climate change by instituting climate-change mitigation initiatives, including utility-scale, alternative-energy projects, and energy-conservation projects. Tribes are also evaluating their existing capacity to engage in effective adaptation planning, even though financial and social capital is limited.
Climate change and health research in the Eastern Mediterranean Region.
Habib, Rima R; Zein, Kareem El; Ghanawi, Joly
2010-06-01
Anthropologically induced climate change, caused by an increased concentration of greenhouse gases in the atmosphere, is an emerging threat to human health. Consequences of climate change may affect the prevalence of various diseases and environmental and social maladies that affect population health. In this article, we reviewed the literature on climate change and health in the Eastern Mediterranean Region. This region already faces numerous humanitarian crises, from conflicts to natural hazards and a high burden of disease. Climate change is likely to aggravate these emergencies, necessitating a strengthening of health systems and capacities in the region. However, the existing literature on climate change from the region is sparse and informational gaps stand in the way of regional preparedness and adaptation. Further research is needed to assess climatic changes and related health impacts in the Eastern Mediterranean Region. Such knowledge will allow countries to identify preparedness vulnerabilities, evaluate capacity to adapt to climate change, and develop adaptation strategies to allay the health impacts of climate change.
Fostering Climate Change Literacy Through Rural-Urban Collaborations and GIS
NASA Astrophysics Data System (ADS)
Boger, R. A.; Low, R.; Gorokhovich, Y.; Mandryk, C.
2012-12-01
Three universities, University of Nebraska-Lincoln (UNL), Brooklyn College, and Lehman College, shared expertise and resources to expand the spectrum of climate change topics offered at these institutions. Through this collaboration, four independent but linked modules that incorporate geographic information systems (GIS) and remote sensing desktop and web-based tools and resources (e.g., NASA, NOAA, USGS, and a variety of universities and organizations) have been developed for use by instructors in all three institutions. Module 1 theme is an introduction to sustainability, climate, with an introduction to remote sensing and online GIS tools. The theme for Module 2 is water resources while Module 3 explores local meteorological data and global climate change models. The last module focuses on food production and independent research building on the urban farm movement in New York City and the agricultural stronghold of Nebraska. The hybrid online and face-face course, Global Climate Change, Food Security, and Local Sustainability, was piloted Fall 2012 in a jointly-taught course offered through UNL and Brooklyn College. The online portion was offered through the CAMEL Climate Change website to foster interactions between the rural Nebraska and urban New York City students. A major objective of the course materials is to foster rural-urban student exchanges while motivating students to make connections between climate change and the potential impacts on health, food, and water in their local communities, the nation and around the world. The research component of the project focuses on understanding the importance of spatial literacy in climate change understanding, and is supported by assessment instruments designed specifically for this course. In addition, the formal evaluation will determine whether our rural-urban, local-global approach will empower students to better understand the causes and impacts of climate change.
Full annual cycle climate change vulnerability assessment for migratory birds
Culp, Leah A.; Cohen, Emily B.; Scarpignato, Amy L.; Thogmartin, Wayne E.; Marra, Peter P.
2017-01-01
Climate change is a serious challenge faced by all plant and animal species. Climate change vulnerability assessments (CCVAs) are one method to assess risk and are increasingly used as a tool to inform management plans. Migratory animals move across regions and continents during their annual cycles where they are exposed to diverse climatic conditions. Climate change during any period and in any region of the annual cycle could influence survival, reproduction, or the cues used to optimize timing of migration. Therefore, CCVAs for migratory animals best estimate risk when they include climate exposure during the entire annual cycle. We developed a CCVA incorporating the full annual cycle and applied this method to 46 species of migratory birds breeding in the Upper Midwest and Great Lakes (UMGL) region of the United States. Our methodology included background risk, climate change exposure × climate sensitivity, adaptive capacity to climate change, and indirect effects of climate change. We compiled information about migratory connectivity between breeding and stationary non-breeding areas using literature searches and U.S. Geological Survey banding and re-encounter data. Climate change exposure (temperature and moisture) was assessed using UMGL breeding season climate and winter climate from non-breeding regions for each species. Where possible, we focused on non-breeding regions known to be linked through migratory connectivity. We ranked 10 species as highly vulnerable to climate change and two as having low vulnerability. The remaining 34 species were ranked as moderately vulnerable. In general, including non-breeding data provided more robust results that were highly individualistic by species. Two species were found to be highly vulnerable throughout their annual cycle. Projected drying will have the greatest effect during the non-breeding season for species overwintering in Mexico and the Caribbean. Projected temperature increases will have the greatest effect during the breeding season in UMGL as well as during the non-breeding season for species overwintering in South America. We provide a model for adaptive management of migratory animals in the face of projected climate change, including identification of priority species, research needs, and regions within non-breeding ranges for potential conservation partnerships.
NASA Astrophysics Data System (ADS)
Athearn, N.; Schlafmann, D.
2015-12-01
The 22 Landscape Conservation Cooperatives (LCCs) form a "network of networks," each defined by the characteristics of its ecoregion and its unique community of conservation managers, practitioners, and scientists. As self-directed partnerships, LCCs are strongly influenced not only by the landscape but by the evolving cultures and values that define the multi-faceted relationships between people and place. LCCs maintain an ecologically connected network across these diverse landscapes by transcending borders and leveraging resources. Natural resource managers are challenged to make decisions in the face of multiple uncertainties, and several partners across the network have recognized that climate change is one important uncertainty that spans boundaries - both across the conservation community and beyond. The impacts of climate change across the LCC Network are likely to be as diverse as the network itself - manifesting as, for example, sea level rise, ocean acidification, loss of sea ice, and shifts in climate patterns and timing - but synergies are being leveraged within and between LCCs and national climate-focused programs to systematically address the needs of the network to support a collaborative conservation vision that addresses multiple landscape-scale stressors in the face of climate uncertainties. This vision is being achieved by leveraging the convening power of the LCCs and collaborating with DOI Climate Science Centers and others. Selected case studies will demonstrate how the network finds strength in its differences, but also reveals powerful collaborative opportunities through integrated science, shared conservation strategies, and strategic approaches for translating targeted science to conservation action. These examples exemplify past successes as well as ongoing efforts as the network continues to bring about effective application of climate science to achieve conservation outcomes across the LCC Network in an uncertain future climate.
Linking Climate Risk, Policy Networks and Adaptation Planning in Public Lands
NASA Astrophysics Data System (ADS)
Lubell, M.; Schwartz, M.; Peters, C.
2014-12-01
Federal public land management agencies in the United States have engaged a variety of planning efforts to address climate adaptation. A major goal of these efforts is to build policy networks that enable land managers to access information and expertise needed for responding to local climate risks. This paper investigates whether the perceived and modeled climate risk faced by different land managers is leading to larger networks or more participating in climate adaptation. In theory, the benefits of climate planning networks are larger when land managers are facing more potential changes. The basic hypothesis is tested with a survey of public land managers from hundreds of local and regional public lands management units in the Southwestern United States, as well as other stakeholders involved with climate adaptation planning. All survey respondents report their perceptions of climate risk along a variety of dimensions, as well as their participation in climate adaptation planning and information sharing networks. For a subset of respondents, we have spatially explicity GIS data about their location, which will be linked with downscaled climate model data. With the focus on climate change, the analysis is a subset of the overall idea of linking social and ecological systems.
Miller, Brian W.; Morisette, Jeffrey T.
2014-01-01
Developing resource management strategies in the face of climate change is complicated by the considerable uncertainty associated with projections of climate and its impacts and by the complex interactions between social and ecological variables. The broad, interconnected nature of this challenge has resulted in calls for analytical frameworks that integrate research tools and can support natural resource management decision making in the face of uncertainty and complex interactions. We respond to this call by first reviewing three methods that have proven useful for climate change research, but whose application and development have been largely isolated: species distribution modeling, scenario planning, and simulation modeling. Species distribution models provide data-driven estimates of the future distributions of species of interest, but they face several limitations and their output alone is not sufficient to guide complex decisions for how best to manage resources given social and economic considerations along with dynamic and uncertain future conditions. Researchers and managers are increasingly exploring potential futures of social-ecological systems through scenario planning, but this process often lacks quantitative response modeling and validation procedures. Simulation models are well placed to provide added rigor to scenario planning because of their ability to reproduce complex system dynamics, but the scenarios and management options explored in simulations are often not developed by stakeholders, and there is not a clear consensus on how to include climate model outputs. We see these strengths and weaknesses as complementarities and offer an analytical framework for integrating these three tools. We then describe the ways in which this framework can help shift climate change research from useful to usable.
Mapping vulnerability to climate change and its repercussions on human health in Pakistan.
Malik, Sadia Mariam; Awan, Haroon; Khan, Niazullah
2012-09-03
Pakistan is highly vulnerable to climate change due to its geographic location, high dependence on agriculture and water resources, low adaptive capacity of its people, and weak system of emergency preparedness. This paper is the first ever attempt to rank the agro-ecological zones in Pakistan according to their vulnerability to climate change and to identify the potential health repercussions of each manifestation of climate change in the context of Pakistan. A climate change vulnerability index is constructed as an un-weighted average of three sub-indices measuring (a) the ecological exposure of each region to climate change, (b) sensitivity of the population to climate change and (c) the adaptive capacity of the population inhabiting a particular region. The regions are ranked according to the value of this index and its components. Since health is one of the most important dimensions of human wellbeing, this paper also identifies the potential health repercussions of each manifestations of climate change and links it with the key manifestations of climate change in the context of Pakistan. The results indicate that Balochistan is the most vulnerable region with high sensitivity and low adaptive capacity followed by low-intensity Punjab (mostly consisting of South Punjab) and Cotton/Wheat Sindh. The health risks that each of these regions face depend upon the type of threat that they face from climate change. Greater incidence of flooding, which may occur due to climate variability, poses the risk of diarrhoea and gastroenteritis; skin and eye Infections; acute respiratory infections; and malaria. Exposure to drought poses the potential health risks in the form of food insecurity and malnutrition; anaemia; night blindness; and scurvy. Increases in temperature pose health risks of heat stroke; malaria; dengue; respiratory diseases; and cardiovascular diseases. The study concludes that geographical zones that are more exposed to climate change in ecological and geographic terms- such as Balochistan, Low-Intensity Punjab, and Cotton-Wheat Sindh -also happen to be the most deprived regions in Pakistan in terms of socio-economic indicators, suggesting that the government needs to direct its efforts to the socio-economic uplift of these lagging regions to reduce their vulnerability to the adverse effects of climate change.
Bowen, Kathryn J.; Friel, Sharon; Ebi, Kristie; Butler, Colin D.; Miller, Fiona; McMichael, Anthony J.
2011-01-01
Enhancing the adaptive capacity of individuals, communities, institutions and nations is pivotal to protecting and improving human health and well-being in the face of systemic social inequity plus dangerous climate change. However, research on the determinants of adaptive capacity in relation to health, particularly concerning the role of governance, is in its infancy. This paper highlights the intersections between global health, climate change and governance. It presents an overview of these key concerns, their relation to each other, and the potential that a greater understanding of governance may present opportunities to strengthen policy and action responses to the health effects of climate change. Important parallels between addressing health inequities and sustainable development practices in the face of global environmental change are also highlighted. We propose that governance can be investigated through two key lenses within the earth system governance theoretical framework; agency and architecture. These two governance concepts can be evaluated using methods of social network research and policy analysis using case studies and is the subject of further research. PMID:22470278
Facing the limit of resilience: perceptions of climate change among reindeer herding Sami in Sweden.
Furberg, Maria; Evengård, Birgitta; Nilsson, Maria
2011-01-01
The Arctic area is a part of the globe where the increase in global temperature has had the earliest noticeable effect and indigenous peoples, including the Swedish reindeer herding Sami, are amongst the first to be affected by these changes. To explore the experiences and perceptions of climate change among Swedish reindeer herding Sami. In-depth interviews with 14 Swedish reindeer herding Sami were performed, with purposive sampling. The interviews focused on the herders experiences of climate change, observed consequences and thoughts about this. The interviews were analysed using content analysis. One core theme emerged from the interviews: facing the limit of resilience. Swedish reindeer-herding Sami perceive climate change as yet another stressor in their daily struggle. They have experienced severe and more rapidly shifting, unstable weather with associated changes in vegetation and alterations in the freeze-thaw cycle, all of which affect reindeer herding. The forecasts about climate change from authorities and scientists have contributed to stress and anxiety. Other societal developments have lead to decreased flexibility that obstructs adaptation. Some adaptive strategies are discordant with the traditional life of reindeer herding, and there is a fear among the Sami of being the last generation practising traditional reindeer herding. The study illustrates the vulnerable situation of the reindeer herders and that climate change impact may have serious consequences for the trade and their overall way of life. Decision makers on all levels, both in Sweden and internationally, need improved insights into these complex issues to be able to make adequate decisions about adaptive climate change strategies.
Janine Rice; Tim Bardsley; Pete Gomben; Dustin Bambrough; Stacey Weems; Allen Huber; Linda A. Joyce
2017-01-01
Aspen ecosystems are valued because they add biodiversity and ecological value to the landscape. They provide rich and productive habitats and increase aesthetic value. Climate change poses the risk of altering and disrupting these ecosystems, and it may worsen the effects of non-climate stressors. To provide scientific information for land managers facing the...
Ackerly, David D.; Cornwell, William K.; Weiss, Stuart B.; Flint, Lorraine E.; Flint, Alan L.
2015-01-01
Changes in climate projected for the 21st century are expected to trigger widespread and pervasive biotic impacts. Forecasting these changes and their implications for ecosystem services is a major research goal. Much of the research on biotic responses to climate change has focused on either projected shifts in individual species distributions or broad-scale changes in biome distributions. Here, we introduce a novel application of multinomial logistic regression as a powerful approach to model vegetation distributions and potential responses to 21st century climate change. We modeled the distribution of 22 major vegetation types, most defined by a single dominant woody species, across the San Francisco Bay Area. Predictor variables included climate and topographic variables. The novel aspect of our model is the output: a vector of relative probabilities for each vegetation type in each location within the study domain. The model was then projected for 54 future climate scenarios, spanning a representative range of temperature and precipitation projections from the CMIP3 and CMIP5 ensembles. We found that sensitivity of vegetation to climate change is highly heterogeneous across the region. Surprisingly, sensitivity to climate change is higher closer to the coast, on lower insolation, north-facing slopes and in areas of higher precipitation. While such sites may provide refugia for mesic and cool-adapted vegetation in the face of a warming climate, the model suggests they will still be highly dynamic and relatively sensitive to climate-driven vegetation transitions. The greater sensitivity of moist and low insolation sites is an unexpected outcome that challenges views on the location and stability of climate refugia. Projections provide a foundation for conservation planning and land management, and highlight the need for a greater understanding of the mechanisms and time scales of potential climate-driven vegetation transitions. PMID:26115485
Mental health risk and resilience among climate scientists
NASA Astrophysics Data System (ADS)
Clayton, Susan
2018-04-01
Awareness of the threats to mental health posed by climate change leads to questions about the potential impacts on climate scientists because they are immersed in depressing information and may face apathy, denial and even hostility from others. But they also have sources of resilience.
Spatial forecasting of switchgrass productivity under current and future climate change scenarios
USDA-ARS?s Scientific Manuscript database
Evaluating the potential of alternative energy crops across large geographic regions and over time is necessary to determine if feedstock production is feasible and sustainable in the face of growing production demands and climatic change. Panicum virgatum L., a perennial herbaceous grass, is a prom...
Extension Agents' Awareness of Climate Change in Ethiopia
ERIC Educational Resources Information Center
Abegaz, Dagmawi M.; Wims, Padraig
2015-01-01
Purpose: The fact that highly vulnerable countries like Ethiopia face far greater challenges from climate change makes agricultural adaptation a top priority. Even though the public agriculture extension system in Ethiopia plays a central role in facilitating and supporting adaptation, very limited information is available on how aware the actual…
Contemplating the Future: Building Student Resilience in Climate Change Education
NASA Astrophysics Data System (ADS)
Allison, E.
2015-12-01
Climate change research has largely focused on the biophysical, economic, and political aspects of the phenomenon, its projected impacts, and the possibilities for adaptation (Carey et al. 2014; Castree et al. 2014). In the classroom, too, climate change is generally presented as a scientific, technological, political, and economic challenge. However, defining climate change as physical challenge, divorced from its cultural causes and responses, forecloses some pathways of inquiry and limits the possibilities for adaptation (Adger et al. 2013). Recent perspectives by the environmental historian Mark Carey and colleagues (2014) and by the geographer Noel Castree and colleagues (2014) contend that ethnographic, narrative, social scientific, and humanistic insights are necessary additions to the climate change policy process and can contribute to deliberate, resilient responses to climate change. Among the humanistic insights needed are strategies and practices to maintain fortitude and persistence in the midst of dispiriting ecological trends. Students facing the "gloom and doom" of climate change data in environmental studies courses can experience negative states of mind such as denial, despair, burnout, and grief. Emerging research, however, demonstrates how contemplative practice can shift consciousness and promote resilience. Contemplative practices are those that consciously direct calm, focused attention. Such practices can build internal resilience, by promoting a greater sense of calm and well-being, decreasing stress, and sharpening focus and concentration. In addition, contemplative practices improve relationships with other people, through increasing compassion and flexibility in thinking. They also strengthen relationships with the surrounding world by increasing our ability to question, explore, and cope with rapid change and complexity. This presentation provides a context for incorporating contemplative practices, including mindfulness exercises, creative expression, and meditation, into the environmental studies classroom, and discusses how these practices can cultivate well-being and resilience in the face of climate change.
Ray B. Bryant; Haiming Lu; Kyle R. Elkin; Anthony R. Buda; Amy S. Collick; Gordon J. Folmar; Peter J. Kleinman
2016-01-01
Climate change has emerged as a key issue facing agriculture and water resources in the US. Long-term (1968-2012) temperature, precipitation and streamflow data from a small (7.3 km2) watershed in east-central Pennsylvania was used to examine climatic and hydrologic trends in the context of recent climate change. Annual mean temperatures increased 0.38°C per decade,...
ERIC Educational Resources Information Center
McNeal, Karen S.; Walker, Scott L.; Rutherford, David
2014-01-01
The southeastern United States (SEUS) faces numerous potential impacts from a changing climate; however, the population has been characterized with a predominance of naysayers and few climate policies have been implemented by state governments in the region. As such, public education is an important avenue for achieving a climate literate…
Bai, Yunjun; Wei, Xueping
2018-01-01
Background The ongoing change in climate is predicted to exert unprecedented effects on Earth’s biodiversity at all levels of organization. Biological conservation is important to prevent biodiversity loss, especially for species facing a high risk of extinction. Understanding the past responses of species to climate change is helpful for revealing response mechanisms, which will contribute to the development of effective conservation strategies in the future. Methods In this study, we modelled the distributional dynamics of a ‘Vulnerable’ species, Pseudolarix amabilis, in response to late Quaternary glacial-interglacial cycles and future 2080 climate change using an ecological niche model (MaxEnt). We also performed migration vector analysis to reveal the potential migration of the population over time. Results Historical modelling indicates that the range dynamics of P. amabilis is highly sensitive to climate change and that its long-distance dispersal ability and potential for evolutionary adaption are limited. Compared to the current climatically suitable areas for this species, future modelling showed significant migration northward towards future potential climatically suitable areas. Discussion In combination with the predicted future distribution, the mechanism revealed by the historical response suggests that this species will not be able to fully occupy the future expanded areas of suitable climate or adapt to the unsuitable climate across the future contraction regions. As a result, we suggest assisted migration as an effective supplementary means of conserving this vulnerable species in the face of the unprecedentedly rapid climate change of the 21st century. As a study case, this work highlights the significance of introducing historical perspectives while researching species conservation, especially for currently vulnerable or endangered taxa that once had a wider distribution in geological time. PMID:29362700
Bai, Yunjun; Wei, Xueping; Li, Xiaoqiang
2018-01-01
The ongoing change in climate is predicted to exert unprecedented effects on Earth's biodiversity at all levels of organization. Biological conservation is important to prevent biodiversity loss, especially for species facing a high risk of extinction. Understanding the past responses of species to climate change is helpful for revealing response mechanisms, which will contribute to the development of effective conservation strategies in the future. In this study, we modelled the distributional dynamics of a 'Vulnerable' species, Pseudolarix amabilis , in response to late Quaternary glacial-interglacial cycles and future 2080 climate change using an ecological niche model (MaxEnt). We also performed migration vector analysis to reveal the potential migration of the population over time. Historical modelling indicates that the range dynamics of P. amabilis is highly sensitive to climate change and that its long-distance dispersal ability and potential for evolutionary adaption are limited. Compared to the current climatically suitable areas for this species, future modelling showed significant migration northward towards future potential climatically suitable areas. In combination with the predicted future distribution, the mechanism revealed by the historical response suggests that this species will not be able to fully occupy the future expanded areas of suitable climate or adapt to the unsuitable climate across the future contraction regions. As a result, we suggest assisted migration as an effective supplementary means of conserving this vulnerable species in the face of the unprecedentedly rapid climate change of the 21st century. As a study case, this work highlights the significance of introducing historical perspectives while researching species conservation, especially for currently vulnerable or endangered taxa that once had a wider distribution in geological time.
Schoen, Erik R.; Wipfli, Mark S.; Trammell, Jamie; Rinella, Daniel J.; Floyd, Angelica L.; Grunblatt, Jess; McCarthy, Molly D.; Meyer, Benjamin E.; Morton, John M.; Powell, James E.; Prakash, Anupma; Reimer, Matthew N.; Stuefer, Svetlana L.; Toniolo, Horacio; Wells, Brett M.; Witmer, Frank D. W.
2017-01-01
Pacific salmon Oncorhynchus spp. face serious challenges from climate and landscape change, particularly in the southern portion of their native range. Conversely, climate warming appears to be allowing salmon to expand northwards into the Arctic. Between these geographic extremes, in the Gulf of Alaska region, salmon are at historically high abundances but face an uncertain future due to rapid environmental change. We examined changes in climate, hydrology, land cover, salmon populations, and fisheries over the past 30–70 years in this region. We focused on the Kenai River, which supports world-famous fisheries but where Chinook Salmon O. tshawytscha populations have declined, raising concerns about their future resilience. The region is warming and experiencing drier summers and wetter autumns. The landscape is also changing, with melting glaciers, wetland loss, wildfires, and human development. This environmental transformation will likely harm some salmon populations while benefiting others. Lowland salmon streams are especially vulnerable, but retreating glaciers may allow production gains in other streams. Some fishing communities harvest a diverse portfolio of fluctuating resources, whereas others have specialized over time, potentially limiting their resilience. Maintaining diverse habitats and salmon runs may allow ecosystems and fisheries to continue to thrive amidst these changes.
NASA Astrophysics Data System (ADS)
Dilling, L.; Daly, M.; Travis, W.; Wilhelmi, O.; Klein, R.; Kenney, D.; Ray, A. J.; Miller, K.
2013-12-01
Recent reports and scholarship have suggested that adapting to current climate variability may represent a "no regrets" strategy for adapting to climate change. Filling "adaptation deficits" and other approaches that rely on addressing current vulnerabilities are of course helpful for responding to current climate variability, but we find here that they are not sufficient for adapting to climate change. First, following a comprehensive review and unique synthesis of the natural hazards and climate adaptation literatures, we advance six reasons why adapting to climate variability is not sufficient for adapting to climate change: 1) Vulnerability is different at different levels of exposure; 2) Coping with climate variability is not equivalent to adaptation to longer term change; 3) The socioeconomic context for vulnerability is constantly changing; 4) The perception of risk associated with climate variability does not necessarily promote adaptive behavior in the face of climate change; 5) Adaptations made to short term climate variability may reduce the flexibility of the system in the long term; and 6) Adaptive actions may shift vulnerabilities to other parts of the system or to other people. Instead we suggest that decision makers faced with choices to adapt to climate change must consider the dynamics of vulnerability in a connected system-- how choices made in one part of the system might impact other valued outcomes or even create new vulnerabilities. Furthermore we suggest that rather than expressing climate change adaptation as an extension of adaptation to climate variability, the research and practice communities would do well to articulate adaptation as an imperfect policy, with tradeoffs and consequences and that decisions be prioritized to preserve flexibility be revisited often as climate change unfolds. We then present the results of a number of empirical studies of decision making for drought in urban water systems in the United States to understand: a) the variety of actions taken; b) the limitations of actions available to water managers; and c) the effectiveness of actions taken to date. Time permitting, we briefly present the results of 3 in-depth case studies of drought response and current perception of preparedness with respect to future drought and climate change among urban water system managers. We examine the role of governance, system connectivity, public perceptions and other factors in driving decision making and outcomes.
Separating sensitivity from exposure in assessing extinction risk from climate change.
Dickinson, Maria G; Orme, C David L; Suttle, K Blake; Mace, Georgina M
2014-11-04
Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk.
Separating sensitivity from exposure in assessing extinction risk from climate change
Dickinson, Maria G.; Orme, C. David L.; Suttle, K. Blake; Mace, Georgina M.
2014-01-01
Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk. PMID:25367429
Integrating Climate and Ocean Change Vulnerability into Conservation Planning
NASA Astrophysics Data System (ADS)
Mcleod, E.; Green, A.; Game, E.; Anthony, K.; Cinner, J.; Heron, S. F.; Kleypas, J. A.; Lovelock, C.; Pandolfi, J.; Pressey, B.; Salm, R.; Schill, S.; Woodroffe, C. D.
2013-05-01
Tropical coastal and marine ecosystems are particularly vulnerable to ocean warming, ocean acidification, and sea-level rise. Yet these projected climate and ocean change impacts are rarely considered in conservation planning due to the lack of guidance on how existing climate and ocean change models, tools, and data can be applied. We address this gap by describing how conservation planning can use available tools and data for assessing the vulnerability of tropical marine ecosystems to key climate threats. Additionally, we identify limitations of existing tools and provide recommendations for future research to improve integration of climate and ocean change information and conservation planning. Such information is critical for developing a conservation response that adequately protects these ecosystems and dependent coastal communities in the face of climate and ocean change.
Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries
2013-02-01
Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change.
Damschen, Ellen Ingman; Harrison, Susan; Grace, James B.
2010-01-01
Species with relatively narrow niches, such as plants restricted (endemic) to particular soils, may be especially vulnerable to extinction under a changing climate due to the enhanced difficulty they face in migrating to suitable new sites. To test for community-level effects of climate change, and to compare such effects in a highly endemic-rich flora on unproductive serpentine soils vs. the flora of normal (diorite) soils, in 2007 we resampled as closely as possible 108 sites originally studied by ecologist Robert H. Whittaker from 1949 to 1951 in the Siskiyou Mountains of southern Oregon, USA. We found sharp declines in herb cover and richness on both serpentine and diorite soils. Declines were strongest in species of northern biogeographic affinity, species endemic to the region (in serpentine communities only), and species endemic to serpentine soils. Consistent with climatic warming, herb communities have shifted from 1949-1951 to 2007 to more closely resemble communities found on xeric (warm, dry) south-facing slopes. The changes found in the Siskiyou herb flora suggest that biotas rich in narrowly distributed endemics may be particularly susceptible to the effects of a warming climate.
Developing Effective Communications about Extreme Weather Risks.
NASA Astrophysics Data System (ADS)
Bruine de Bruin, W.
2014-12-01
Members of the general public often face complex decisions about the risks that they face, including those associated with extreme weather and climate change adaptation. Scientific experts may be asked to develop communications with the goal of improving people's understanding of weather and climate risks, and informing people's decisions about how to protect against these risks. Unfortunately, scientific experts' communication efforts may fail if they lack information about what people need or want to know to make more informed decisions or what wording people prefer use to describe relevant concepts. This presentation provides general principles for developing effective risk communication materials that aim for widespread dissemination, such as brochures and websites. After a brief review of the social science evidence on how to design effective risk communication materials, examples will focus on communications about extreme weather events and climate change. Specifically, data will be presented from ongoing projects on flood risk perception, public preparedness for heat waves, and public perceptions of climate change. The presentation will end with specific recommendations about how to improve recipients' understanding about risks and inform decisions. These recommendations should be useful to scientific experts who aim to communicate about extreme weather, climate change, or other risks.
Effects of climate change on evapotranspiration over the Okavango Delta water resources
NASA Astrophysics Data System (ADS)
Moses, Oliver; Hambira, Wame L.
2018-06-01
In semi-arid developing countries, most poor people depend on contaminated surface or groundwater resources since they do not have access to safe and centrally supplied water. These water resources are threatened by several factors that include high evapotranspiration rates. In the Okavango Delta region in the north-western Botswana, communities facing insufficient centrally supplied water rely mainly on the surface water resources of the Delta. The Delta loses about 98% of its water through evapotranspiration. However, the 2% remaining water rescues the communities facing insufficient water from the main stream water supply. To understand the effects of climate change on evapotranspiration over the Okavango Delta water resources, this study analysed trends in the main climatic parameters needed as input variables in evapotranspiration models. The Mann Kendall test was used in the analysis. Trend analysis is crucial since it reveals the direction of trends in the climatic parameters, which is helpful in determining the effects of climate change on evapotranspiration. The main climatic parameters required as input variables in evapotranspiration models that were of interest in this study were wind speeds, solar radiation and relative humidity. Very little research has been conducted on these climatic parameters in the Okavango Delta region. The conducted trend analysis was more on wind speeds, which had relatively longer data records than the other two climatic parameters of interest. Generally, statistically significant increasing trends have been found, which suggests that climate change is likely to further increase evapotranspiration over the Okavango Delta water resources.
NASA Astrophysics Data System (ADS)
Stylinski, C.; Griswold, M.
2012-12-01
Improving climate literacy is necessary to effectively respond to climate change impacts. However, climate change education efforts face significant hurdles both in the classroom and in out-of-school settings. These include addressing uncertainity and the complex mix of drivers and impacts that occur over large spatial and temporal scales. These efforts are further hampered by audiences who are disinterested and resisant to discussions of anthropogenic climate change. Bridging formal and informal education experiences focused on climate change offers a potentially powerful strategy to tackle these challenges. In this session, we will describe our NSF-funded Maryland-Delaware Climate Change Education, Assessment and Research (MADE-CLEAR) project, which applies a comprehensive regional partnership among scientists, education researchers, K-12 and informal education practitioners, and other stakeholders to improve public and student understanding of and engagement in climate change issues and solutions. To better understand gaps and opportunities, we have conducted surveys and interviews with K-12, informal, and undergraduate educators and administrators. We found that climate change education aligns with most institutions' missions and efforts, that most educators do not face institutional barriers to climate change education, and that climate change is typically incorporated as part of a host of environmental issues. Despite this, climate change education is still quite limited with few institutions explicitly focusing on climate change in their programming. Additionally, there is little apparent communication among these institutions with regard to this issue. In response to these needs, we have focused the MADE-CLEAR project on creating and providing regionally-relevant resouces and professional development on climate change science, impacts and solutions for both formal and informal educators. Our approach is collaborative and includes strategies to promote networking within and among these two groups. For example, we will lead joint workshops where K-12 teachers can share their in-depth understanding of climate change concepts and links to education standards, while free-choice-learning practitioners can provide their expertise in engaging diverse audiences and supporting more learner-centered teaching. Our resources will further support a formal-informal bridge by helping both groups of educators make climate change relevant to their audiences with local examples of impacts and ways to mitigate or adapt to these impacts. Our project includes design-based research, and thus we will examine how our professional development is translated into practice at different types of institutions and the impact of our approach on enhancing formal-informal education collaborations focused on climate change education.
A climate-compatible approach to development practice by international humanitarian NGOs.
Clarke, Matthew; de Cruz, Ian
2015-01-01
If current climate-change predictions prove accurate, non-linear change, including potentially catastrophic change, is possible and the environments in which international humanitarian NGOs operate will change figuratively and literally. This paper proposes that a new approach to development is required that takes changing climate into account. This 'climate-compatible approach' to development is a bleak shift from some of the current orthodox positions and will be a major challenge to international humanitarian NGOs working with the most vulnerable. However, it is necessary to address the challenges and context such NGOs face, and the need to be resilient and adaptive to these changes. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.
Maria K. Janowiak; Anthony W. D' Amato; Christopher W. Swanston; Louis Iverson; Frank R. Thompson; William D. Dijak; Stephen Matthews; Matthew P. Peters; Anantha Prasad; Jacob S. Fraser; Leslie A. Brandt; Patricia Butler-Leopold; Stephen D. Handler; P. Danielle Shannon; Diane Burbank; John Campbell; Charles Cogbill; Matthew J. Duveneck; Marla R. Emery; Nicholas Fisichelli; Jane Foster; Jennifer Hushaw; Laura Kenefic; Amanda Mahaffey; Toni Lyn Morelli; Nicholas J. Reo; Paul G. Schaberg; K. Rogers Simmons; Aaron Weiskittel; Sandy Wilmot; David Hollinger; Erin Lane; Lindsey Rustad; Pamela H. Templer
2018-01-01
Forest ecosystems will face direct and indirect impacts from a changing climate over the 21st century. This assessment evaluates the vulnerability of forest ecosystems across the New England region (Connecticut, Maine, Massachusetts, New Hampshire, northern New York, Rhode Island, and Vermont) under a range of future climates. We synthesized and summarized information...
Revised U.S. Climate Science Plan Still Lacking in Key Areas
NASA Astrophysics Data System (ADS)
Showstack, Randy
2004-03-01
A U.S. National Research Council committee has found that a revised strategic plan for the U.S. Climate Change Science Program (CCSP) includes elements ``that could permit it to effectively guide research on climate and associated global changes over the next decades.'' However, the committee noted that the revision, issued by the CCSP, faces major hurdles related to funding, program priorities, management structure, and maintaining political independence.
Spatial and temporal variation in climate change: A bird’s eye view
Fontaine, Joseph J.; Decker, Karie L.; Skagen, Susan K.; van Riper, Charles
2009-01-01
Recent changes in global climate have dramatically altered worldwide temperatures and the corresponding timing of seasonal climate conditions. Recognizing the degree to which species respond to changing climates is therefore an area of increasing conservation concern as species that are unable to respond face increased risk of extinction. Here we examine spatial and temporal heterogeneity in the rate of climate change across western North America and discuss the potential for conditions to arise that may limit the ability of western migratory birds to adapt to changing climates. Based on 52 years of climate data, we show that changes in temperature and precipitation differ significantly between spring migration habitats in the desert southwest and breeding habitats throughout western North America. Such differences may ultimately increase costs to individual birds and thereby threaten the long-term population viability of many species.
Human Behavioral Contributions to Climate Change: Psychological and Contextual Drivers
ERIC Educational Resources Information Center
Swim, Janet K.; Clayton, Susan; Howard, George S.
2011-01-01
We are facing rapid changes in the global climate, and these changes are attributable to human behavior. Humans produce this global impact through our use of natural resources, multiplied by the vast increase in population seen in the past 50 to 100 years. Our goal in this article is to examine the underlying psychosocial causes of human impact,…
Understanding the science of climate change: Talking points - Impacts to the Pacific Islands
Amanda Schramm; Rachel Loehman
2011-01-01
The Pacific islands face a variety of impacts as a result of climate change. Already-observed changes include increased average temperatures, coral bleaching, sea level rise and associated coastal erosion, increased intensity of cyclones, and a trend toward drier conditions. In the next century, sea level rise and associated erosion are expected to shrink shorelines...
Extinction debt from climate change for frogs in the wet tropics.
Fordham, Damien A; Brook, Barry W; Hoskin, Conrad J; Pressey, Robert L; VanDerWal, Jeremy; Williams, Stephen E
2016-10-01
The effect of twenty-first-century climate change on biodiversity is commonly forecast based on modelled shifts in species ranges, linked to habitat suitability. These projections have been coupled with species-area relationships (SAR) to infer extinction rates indirectly as a result of the loss of climatically suitable areas and associated habitat. This approach does not model population dynamics explicitly, and so accepts that extinctions might occur after substantial (but unknown) delays-an extinction debt. Here we explicitly couple bioclimatic envelope models of climate and habitat suitability with generic life-history models for 24 species of frogs found in the Australian Wet Tropics (AWT). We show that (i) as many as four species of frogs face imminent extinction by 2080, due primarily to climate change; (ii) three frogs face delayed extinctions; and (iii) this extinction debt will take at least a century to be realized in full. Furthermore, we find congruence between forecast rates of extinction using SARs, and demographic models with an extinction lag of 120 years. We conclude that SAR approaches can provide useful advice to conservation on climate change impacts, provided there is a good understanding of the time lags over which delayed extinctions are likely to occur. © 2016 The Author(s).
2003-12-01
Archaeology at the University of California at Santa Barbara, “is a chronicle of human vulnerability in the face of sudden climate change.”15 A bad...droughts. A growing body of evidence from joint archaeological and paleoclimatological studies is demonstrating that abrupt climate shifts may be linked to...Haug et al., “Climate and the Collapse of Maya Civilization,” Science 299 (March 14, 2003). 17 P.B. deMenocal, “Cultural Responses to Climate Change
Modeling impacts of CO2, ozone, and climate change on tree growth
George E. Host; Gary W. Theseira; J. G. Isebrands
1996-01-01
Understanding the influence of ozone, CO2, and changing climatic regimes on basic plant physiological processes is essential for predicting the response of forest ecosystems. To understand the relationships among these interacting factors, in the face of genetic and other environmental variability, requires a means of synthesis. Physiological...
USDA-ARS?s Scientific Manuscript database
Society faces substantial challenges to expand food production while adapting to climatic changes and ensuring ecosystem services are maintained. A convergence of these issues is occurring in the Midwestern United States, i.e., the ‘cornbelt’ region that provides substantial grain supplies to world ...
Water Resources Management and Hydrologic Design Under Uncertain Climate Change Scenarios
NASA Astrophysics Data System (ADS)
Teegavarapu, R. S.
2008-05-01
The impact of climate change on hydrologic design and management of water resource systems could be one of the important challenges faced by future practicing hydrologists and water resources managers. Many water resources managers currently rely on the historical hydrological data and adaptive real-time operations without consideration of the impact of climate change on major inputs influencing the behavior of hydrologic systems and the operating rules. Issues such as risk, reliability and robustness of water resources systems under different climate change scenarios were addressed in the past. However, water resources management with the decision maker's preferences attached to climate change has never been dealt with. This presentation discusses issues related to impacts of climate change on water resources management and application of a soft-computing approach, fuzzy set theory, for climate-sensitive management of water resources systems. A real-life case study example is presented to illustrate the applicability of soft-computing approach for handling the decision maker's preferences in accepting or rejecting the magnitude and direction of climate change.
NASA Astrophysics Data System (ADS)
McKenzie, L.; Versprille, A.; Towns, M.; Mahaffy, P.; Martin, B.; Kirchhoff, M.
2013-12-01
Global climate change is one of the most pressing environmental challenges facing humanity. Many of the important underlying concepts require mental models that are built on a fundamental understanding of chemistry, yet connections to climate science and global climate change are largely missing from undergraduate chemistry courses for science majors. In Visualizing the Chemistry of Climate Change (VC3Chem), we have developed and piloted a set of online modules that addresses this gap by teaching core chemistry concepts through the rich context of climate science. These interactive web-based digital learning experiences enable students to learn about isotopes and their relevance in determining historical temperature records, IR absorption by greenhouse gases, and acid/base chemistry and the impacts on changing ocean pH. The efficacy of these tools and this approach has been assessed through measuring changes in students' understanding about both climate change and core chemistry concepts.
Environmental gradients and grassland trait variation: Insight into the effects of climate change
NASA Astrophysics Data System (ADS)
Tardella, Federico M.; Piermarteri, Karina; Malatesta, Luca; Catorci, Andrea
2016-10-01
The research aim was to understand how variation of temperature and water availability drives trait assemblage of seminatural grasslands in sub-Mediterranean climate, where climate change is expected to intensify summer aridity. In the central Italy, we recorded species abundance and elevation, slope aspect and angle in 129 plots. The traits we analysed were life span, growth form, clonality, belowground organs, leaf traits, plant height, seed mass, and palatability. We used Ellenberg's indicators as a proxy to assess air temperature and soil moisture gradients. From productive to harsh conditions, we observed a shift from tolerance to avoidance strategies, and a change in resource allocation strategies to face competition and stress or that maximize exploitation of patchily distributed soil resource niches. In addition, we found that the increase of temperature and water scarcity leads to the establishment of regeneration strategies that enable plants to cope with the unpredictability of changes in stress intensity and duration. Since the dry habitats of higher elevations are also constrained by winter cold stress, we argue that, within the sub-Mediterranean bioclimate, climate change will likely lead to a variation in dominance inside plant communities rather than a shift upwards of species ranges. At higher elevations, drought-adaptive traits might become more abundant on south-facing slopes that are less stressed by winter low temperatures; traits related to productive conditions and cold stress would be replaced on north-facing slopes by those adapted to overcome both the drought and the cold stresses.
Facing the limit of resilience: perceptions of climate change among reindeer herding Sami in Sweden
Furberg, Maria; Evengård, Birgitta; Nilsson, Maria
2011-01-01
Background The Arctic area is a part of the globe where the increase in global temperature has had the earliest noticeable effect and indigenous peoples, including the Swedish reindeer herding Sami, are amongst the first to be affected by these changes. Objective To explore the experiences and perceptions of climate change among Swedish reindeer herding Sami. Study design In-depth interviews with 14 Swedish reindeer herding Sami were performed, with purposive sampling. The interviews focused on the herders experiences of climate change, observed consequences and thoughts about this. The interviews were analysed using content analysis. Results One core theme emerged from the interviews: facing the limit of resilience. Swedish reindeer-herding Sami perceive climate change as yet another stressor in their daily struggle. They have experienced severe and more rapidly shifting, unstable weather with associated changes in vegetation and alterations in the freeze–thaw cycle, all of which affect reindeer herding. The forecasts about climate change from authorities and scientists have contributed to stress and anxiety. Other societal developments have lead to decreased flexibility that obstructs adaptation. Some adaptive strategies are discordant with the traditional life of reindeer herding, and there is a fear among the Sami of being the last generation practising traditional reindeer herding. Conclusions The study illustrates the vulnerable situation of the reindeer herders and that climate change impact may have serious consequences for the trade and their overall way of life. Decision makers on all levels, both in Sweden and internationally, need improved insights into these complex issues to be able to make adequate decisions about adaptive climate change strategies. PMID:22043218
Projected climate change threatens pollinators and crop production in Brazil
Costa, Wilian França; Cordeiro, Guaraci Duran; Imperatriz-Fonseca, Vera Lucia; Saraiva, Antonio Mauro; Biesmeijer, Jacobus; Garibaldi, Lucas Alejandro
2017-01-01
Animal pollination can impact food security since many crops depend on pollinators to produce fruits and seeds. However, the effects of projected climate change on crop pollinators and therefore on crop production are still unclear, especially for wild pollinators and aggregate community responses. Using species distributional modeling, we assessed the effects of climate change on the geographic distribution of 95 pollinator species of 13 Brazilian crops, and we estimated their relative impacts on crop production. We described these effects at the municipality level, and we assessed the crops that were grown, the gross production volume of these crops, the total crop production value, and the number of inhabitants. Overall, considering all crop species, we found that the projected climate change will reduce the probability of pollinator occurrence by almost 0.13 by 2050. Our models predict that almost 90% of the municipalities analyzed will face species loss. Decreases in the pollinator occurrence probability varied from 0.08 (persimmon) to 0.25 (tomato) and will potentially affect 9% (mandarin) to 100% (sunflower) of the municipalities that produce each crop. Municipalities in central and southern Brazil will potentially face relatively large impacts on crop production due to pollinator loss. In contrast, some municipalities in northern Brazil, particularly in the northwestern Amazon, could potentially benefit from climate change because pollinators of some crops may increase. The decline in the probability of pollinator occurrence is found in a large number of municipalities with the lowest GDP and will also likely affect some places where crop production is high (20% to 90% of the GDP) and where the number of inhabitants is also high (more than 6 million people). Our study highlights key municipalities where crops are economically important and where pollinators will potentially face the worst conditions due to climate change. However, pollinators may be able to find new suitable areas that have the potential to improve crop production. The results shown here could guide policy decisions for adapting to climate change and for preventing the loss of pollinator species and crop production. PMID:28792956
Projected climate change threatens pollinators and crop production in Brazil.
Giannini, Tereza Cristina; Costa, Wilian França; Cordeiro, Guaraci Duran; Imperatriz-Fonseca, Vera Lucia; Saraiva, Antonio Mauro; Biesmeijer, Jacobus; Garibaldi, Lucas Alejandro
2017-01-01
Animal pollination can impact food security since many crops depend on pollinators to produce fruits and seeds. However, the effects of projected climate change on crop pollinators and therefore on crop production are still unclear, especially for wild pollinators and aggregate community responses. Using species distributional modeling, we assessed the effects of climate change on the geographic distribution of 95 pollinator species of 13 Brazilian crops, and we estimated their relative impacts on crop production. We described these effects at the municipality level, and we assessed the crops that were grown, the gross production volume of these crops, the total crop production value, and the number of inhabitants. Overall, considering all crop species, we found that the projected climate change will reduce the probability of pollinator occurrence by almost 0.13 by 2050. Our models predict that almost 90% of the municipalities analyzed will face species loss. Decreases in the pollinator occurrence probability varied from 0.08 (persimmon) to 0.25 (tomato) and will potentially affect 9% (mandarin) to 100% (sunflower) of the municipalities that produce each crop. Municipalities in central and southern Brazil will potentially face relatively large impacts on crop production due to pollinator loss. In contrast, some municipalities in northern Brazil, particularly in the northwestern Amazon, could potentially benefit from climate change because pollinators of some crops may increase. The decline in the probability of pollinator occurrence is found in a large number of municipalities with the lowest GDP and will also likely affect some places where crop production is high (20% to 90% of the GDP) and where the number of inhabitants is also high (more than 6 million people). Our study highlights key municipalities where crops are economically important and where pollinators will potentially face the worst conditions due to climate change. However, pollinators may be able to find new suitable areas that have the potential to improve crop production. The results shown here could guide policy decisions for adapting to climate change and for preventing the loss of pollinator species and crop production.
Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change.
Carroll, Carlos; Lawler, Joshua J; Roberts, David R; Hamann, Andreas
2015-01-01
Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth's surface to maintain constant climatic conditions. However, "analog-based" velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961-2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site's future climate, can facilitate conservation of diversity at multiple scales in the face of climate change.
Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change
Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas
2015-01-01
Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating lower and upper bounds on migration rates, can inform conservation of species and locally-adapted populations, respectively, and in combination with backward velocity, a function of distance to a source of colonizers adapted to a site’s future climate, can facilitate conservation of diversity at multiple scales in the face of climate change. PMID:26466364
Undocumented migration in response to climate change
Riosmena, Fernando; Hunter, Lori M.; Runfola, Daniel M.
2016-01-01
In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986–1999. We employ two measures of climate change, the warm spell duration index (WSDI) and the precipitation during extremely wet days (R99PTOT). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification. PMID:27570840
Undocumented migration in response to climate change.
Nawrotzki, Raphael J; Riosmena, Fernando; Hunter, Lori M; Runfola, Daniel M
In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986-1999. We employ two measures of climate change, the warm spell duration index ( WSDI ) and the precipitation during extremely wet days ( R99PTOT ). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification.
Climate change and adverse health events: community perceptions from the Tanahu district of Nepal
NASA Astrophysics Data System (ADS)
Mishra, Shiva Raj; Mani Bhandari, Parash; Issa, Rita; Neupane, Dinesh; Gurung, Swadesh; Khanal, Vishnu
2015-03-01
Nepal is a country economically dependent on climate-sensitive industries. It is highly vulnerable to the environmental, social, economic and health impacts of climate change. The objective of this study is to explore community perceptions of climate variability and human health risks. In this letter, we present a cross sectional study conducted between August 2013 and July 2014 in the Tanahu district of Nepal. Our analysis is based on 258 face-to-face interviews with household heads utilizing structured questionnaires. Over half of the respondents (54.7%) had perceived a change in climate, 53.9% had perceived an increase in temperature in the summer and 49.2% had perceived an increase in rainfall during the rainy season. Half of the respondents perceived an increase in the number of diseases during the summer, 46.5% perceived an increase during the rainy season and 48.8% during winter. Only 8.9% of the respondents felt that the government was doing enough to prevent climate change and its impact on their community. Belonging to the Janajati (indigenous) ethnic group, living in a pakki, super-pakki house and belonging to poor or mid-level income were related to higher odds of perceiving climate variability. Illiterates were less likely to perceive climate variability. Respondents living in a pakki house, super-pakki, or those who were poor were more likely to perceive health risks. Illiterates were less likely to perceive health risks.
NASA Astrophysics Data System (ADS)
Zebisch, Marc; Schneiderbauer, Stefan; Petitta, Marcello
2015-04-01
In the last decade the scope of climate change science has broadened significantly. 15 years ago the focus was mainly on understanding climate change, providing climate change scenarios and giving ideas about potential climate change impacts. Today, adaptation to climate change has become an increasingly important field of politics and one role of science is to inform and consult this process. Therefore, climate change science is not anymore focusing on data driven approaches only (such as climate or climate impact models) but is progressively applying and relying on qualitative approaches including opinion and expertise acquired through interactive processes with local stakeholders and decision maker. Furthermore, climate change science is facing the challenge of normative questions, such us 'how important is a decrease of yield in a developed country where agriculture only represents 3% of the GDP and the supply with agricultural products is strongly linked to global markets and less depending on local production?'. In this talk we will present examples from various applied research and consultancy projects on climate change vulnerabilities including data driven methods (e.g. remote sensing and modelling) to semi-quantitative and qualitative assessment approaches. Furthermore, we will discuss bottlenecks, pitfalls and opportunities in transferring climate change science to policy and decision maker oriented climate services.
Mapping vulnerability to climate change and its repercussions on human health in Pakistan
2012-01-01
Background Pakistan is highly vulnerable to climate change due to its geographic location, high dependence on agriculture and water resources, low adaptive capacity of its people, and weak system of emergency preparedness. This paper is the first ever attempt to rank the agro-ecological zones in Pakistan according to their vulnerability to climate change and to identify the potential health repercussions of each manifestation of climate change in the context of Pakistan. Methods A climate change vulnerability index is constructed as an un-weighted average of three sub-indices measuring (a) the ecological exposure of each region to climate change, (b) sensitivity of the population to climate change and (c) the adaptive capacity of the population inhabiting a particular region. The regions are ranked according to the value of this index and its components. Since health is one of the most important dimensions of human wellbeing, this paper also identifies the potential health repercussions of each manifestations of climate change and links it with the key manifestations of climate change in the context of Pakistan. Results The results indicate that Balochistan is the most vulnerable region with high sensitivity and low adaptive capacity followed by low-intensity Punjab (mostly consisting of South Punjab) and Cotton/Wheat Sindh. The health risks that each of these regions face depend upon the type of threat that they face from climate change. Greater incidence of flooding, which may occur due to climate variability, poses the risk of diarrhoea and gastroenteritis; skin and eye Infections; acute respiratory infections; and malaria. Exposure to drought poses the potential health risks in the form of food insecurity and malnutrition; anaemia; night blindness; and scurvy. Increases in temperature pose health risks of heat stroke; malaria; dengue; respiratory diseases; and cardiovascular diseases. Conclusion The study concludes that geographical zones that are more exposed to climate change in ecological and geographic terms- such as Balochistan, Low-Intensity Punjab, and Cotton-Wheat Sindh -also happen to be the most deprived regions in Pakistan in terms of socio-economic indicators, suggesting that the government needs to direct its efforts to the socio-economic uplift of these lagging regions to reduce their vulnerability to the adverse effects of climate change. PMID:22938568
Climate Change: The Physical Basis and Latest Results
Stocker, Thomas
2018-05-18
The 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concludes: "Warming in the climate system is unequivocal." Without the contribution of Physics to climate science over many decades, such a statement would not have been possible. Experimental physics enables us to read climate archives such as polar ice cores and so provides the context for the current changes. For example, today the concentration of CO2 in the atmosphere, the second most important greenhouse gas, is 28% higher than any time during the last 800,000 years. Classical fluid mechanics and numerical mathematics are the basis of climate models from which estimates of future climate change are obtained. But major instabilities and surprises in the Earth System are still unknown. These are also to be considered when the climatic consequences of proposals for geo-engineering are estimated. Only Physics will permit us to further improve our understanding in order to provide the foundation for policy decisions facing the global climate change challenge.
Climate change games as tools for education and engagement
NASA Astrophysics Data System (ADS)
Wu, Jason S.; Lee, Joey J.
2015-05-01
Scientists, educators and policymakers continue to face challenges when it comes to finding effective strategies to engage the public on climate change. We argue that games on the subject of climate change are well-suited to address these challenges because they can serve as effective tools for education and engagement. Recently, there has been a dramatic increase in the development of such games, many featuring innovative designs that blur traditional boundaries (for example, those that involve social media, alternative reality games, or those that involve direct action upon the real world). Here, we present an overview of the types of climate change game currently available, the benefits and trade-offs of their use, and reasons why they hold such promise for education and engagement regarding climate change.
Baldcypress swamp management and climate change
Middleton, Beth A.
2006-01-01
In the future, climates may become warmer and drier in the southeastern United States; as a result, the range of baldcypress (Taxodium distichum) swamps may shrink. Managers of baldcypress swamps at the southern edge of the range may face special challenges in attempting to preserve these swamp habitats in the future if climates become warmer and drier.
Creating Extension Programs for Change: Forest Landowners and Climate Change Communication
ERIC Educational Resources Information Center
Krantz, Shelby; Monroe, Martha; Bartels, Wendy-Lin
2013-01-01
The Cooperative Extension Service in the United States can play an important role in educating forest landowners to improve forest resilience in the face of climatic uncertainty. Two focus groups in Florida informed the development of a program that was conducted in Leon County; presurveys and postsurveys and observation provided evaluation data.…
ERIC Educational Resources Information Center
Ojala, Maria
2016-01-01
This article discusses the need for critical emotional awareness in environmental and sustainability education that aspires to result in transgressive learning and transformation. The focus is on the emotions of anxiety/worry and hope, and their role in climate change education. By disrupting unsustainable norms and habits, hope for another way of…
Adaptation: Forests as water infrastructure in a changing climate
Todd Gartner; Heather McGray; James Mulligan; Jonas Epstein; Ayesha Dinshaw
2014-01-01
Natural ecosystems like forests and wetlands provide a suite of water-related services that are increasingly critical for communities as the impacts of climate change intensify. Yet, these natural ecosystems are increasingly lost or degraded. In the face of growing water-related challenges in an age of fiscal austerity, investing in the conservation, restoration, and...
Prioritization of gene conservation activities in the face of changing climates
J. Bradley St.Clair; Andy Bower; Vicky Erickson; Glenn Howe
2017-01-01
Several analyses have been done or are underway to evaluate the vulnerability of individual forest tree species to climate change. Species vulnerability assessments allow managers to allocate limited resources to the management of those species that are most threatened. But we also know that threats to individual populations of species may vary across the landscape,...
Scaling ozone responses of forest trees to the ecosystem level in a changing climate
D.F. Karnosky; K.S. Pregitzer; D.R. Zak; M.E. Kubiske; G.R. Hendrey; D. Weinstein; M. Nosal; K.E. Percy
2005-01-01
Many uncertainties remain regarding how climate change will alter the structure and function of forest ecosystems. At the Aspen FACE experiment in northern Wisconsin, we are attempting to understand how an aspen/birch/maple forest ecosystem responds to long-term exposure to elevated carbon dioxide (CO2) and ozone (O3),...
Strategies for conserving forest genetic resources in the face of climate change
John Bradley St. Clair; Glenn Thomas Howe
2011-01-01
Conservation of genetic diversity is important for continued evolution of populations to new environments, as well as continued availability of traits of interest in genetic improvement programs. Rapidly changing climates present new threats to the conservation of forest genetic resources. We can no longer assume that in situ reserves will continue to preserve existing...
Managing Climate Change Refugia for Climate Adaptation ...
The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, locations that may be unusually buffered from climate change effects so as to increase persistence of valued resources. Here we distinguish between paleoecological and contemporary viewpoints, characterize physical and ecological processes that create and maintain climate change refugia, summarize the process of identifying and mapping them, and delineate how refugia can fit into the existing framework of natural resource management. We also suggest three primary courses of action at these sites: prioritization, protection, and propagation. Although not a panacea, managing climate change refugia can be an important adaptation option for conserving valuable resources in the face of ongoing and future climate change. “In a nutshell” (100 words) • Climate change refugia are defined as areas relatively buffered from contemporary climate change, enabling persistence of valued physical, ecological, and cultural resources. • Refugia can be incorporated as key components of a climate adaptation strategy because their prioritization by management may enable their associated resources to persist locally and eventually spread to future suitable habitat. • Steps for
Nhamo, Godwell
2016-01-01
The mining sector is a significant contributor to the gross domestic product of many global economies. Given the increasing trends in climate-induced disasters and the growing desire to find lasting solutions, information and communication technology (ICT) has been introduced into the climate change adaptation mix. Climate change-induced extreme weather events such as flooding, drought, excessive fog, and cyclones have compounded the environmental challenges faced by the mining sector. This article presents the adoption of ICT innovation as part of the adaptation strategies towards reducing the mining sector’s vulnerability and exposure to climate change disaster risks. Document analysis and systematic literature review were adopted as the methodology. Findings from the study reflect how ICT intervention orchestrated changes in communication patterns which are tailored towards the reduction in climate change vulnerability and exposure. The research concludes with a proposition that ICT intervention must be part of the bigger and ongoing climate change adaptation agenda in the mining sector.
Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries
2013-01-01
Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change. PMID:23467649
Han, Ying; Hou, Xiang-yang
2011-04-01
Desert steppe is very vulnerable to climate change. The herders caring for their livestock in such a natural environment have to face the challenges of rapid climate change. In this paper, a household-level questionnaire was conducted in the Suniteyou District of Inner Mongolia, China, aimed to analyze the herders' perceptions and adaptation strategies to climate change, extreme climate events in particular. In this Steppe where precipitation is rare and meteorological disasters are frequent, drought is the main extreme climate event with the broadest affecting area, the highest affecting degree, and the greatest frequency. The sensitivity of the herders to drought is far higher than that to other extreme climate events, and also, the perceptions to drought induce the herders having deep perceptions to the extreme climate events such as strong wing, dust storm, and heavy snow. Relative to the perceptions to long-term climate change, the perceptions to short-term climate change are more deep and precise. The herders can estimate the long-term climate change trend according to their perceptions to the latest 10 years climate change. They attribute the poor livestock health and the reduced forage yield greatly to climate change. Yet, the herders are inexperienced in implementing efficient adaptation strategies. Generally, their adaptation measures are quite simplex and rather passive.
Barbet-Massin, Morgane; Walther, Bruno A.; Thuiller, Wilfried; Rahbek, Carsten; Jiguet, Frédéric
2009-01-01
We modelled the present and future sub-Saharan winter distributions of 64 trans-Saharan migrant passerines to predict the potential impacts of climate change. These predictions used the recent ensemble modelling developments and the latest IPCC climatic simulations to account for possible methodological uncertainties. Results suggest that 37 species would face a range reduction by 2100 (16 of these by more than 50%); however, the median range size variation is −13 per cent (from −97 to +980%) under a full dispersal hypothesis. Range centroids were predicted to shift by 500±373 km. Predicted changes in range size and location were spatially structured, with species that winter in southern and eastern Africa facing larger range contractions and shifts. Predicted changes in regional species richness for these long-distance migrants are increases just south of the Sahara and on the Arabian Peninsula and major decreases in southern and eastern Africa. PMID:19324660
Responding to the Consequences of Climate Change
NASA Technical Reports Server (NTRS)
Hildebrand, Peter H.
2011-01-01
The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Dean N.
The climate and weather data science community gathered December 3–5, 2013, at Lawrence Livermore National Laboratory, in Livermore, California, for the third annual Earth System Grid Federation (ESGF) and Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Meeting, which was hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UV-CDAT are global collaborations designed to develop a new generation of open-source software infrastructure that provides distributed access and analysis to observed andmore » simulated data from the climate and weather communities. The tools and infrastructure developed under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change, while the F2F meetings help to build a stronger climate and weather data science community and stronger federated software infrastructure. The 2013 F2F meeting determined requirements for existing and impending national and international community projects; enhancements needed for data distribution, analysis, and visualization infrastructure; and standards and resources needed for better collaborations.« less
The future of terrestrial mammals in the Mediterranean basin under climate change
Maiorano, Luigi; Falcucci, Alessandra; Zimmermann, Niklaus E.; Psomas, Achilleas; Pottier, Julien; Baisero, Daniele; Rondinini, Carlo; Guisan, Antoine; Boitani, Luigi
2011-01-01
The Mediterranean basin is considered a hotspot of biological diversity with a long history of modification of natural ecosystems by human activities, and is one of the regions that will face extensive changes in climate. For 181 terrestrial mammals (68% of all Mediterranean mammals), we used an ensemble forecasting approach to model the future (approx. 2100) potential distribution under climate change considering five climate change model outputs for two climate scenarios. Overall, a substantial number of Mediterranean mammals will be severely threatened by future climate change, particularly endemic species. Moreover, we found important changes in potential species richness owing to climate change, with some areas (e.g. montane region in central Italy) gaining species, while most of the region will be losing species (mainly Spain and North Africa). Existing protected areas (PAs) will probably be strongly influenced by climate change, with most PAs in Africa, the Middle East and Spain losing a substantial number of species, and those PAs gaining species (e.g. central Italy and southern France) will experience a substantial shift in species composition. PMID:21844047
2016-06-10
expected risks posed by climate change will reshape the Bulgarian Army structure and capabilities if the Army is to develop the proficiency to face...thousands of local timber based manufacturers and small scaled industries, and a few big and international oriented pulp, paper and board producers...prevention, social timber supply, etc.55 54 Union of Concerned Scientists, “Climate Hot Map,” accessed 20
USDA-ARS?s Scientific Manuscript database
As climate and weather become more variable, hop growers face increased uncertainty in making decisions about their crop. Given the unprecedented nature of these changes, growers may no longer have enough information and intuitive understanding to adequately assess the situation and evaluate their m...
Tong, Michael Xiaoliang; Hansen, Alana; Hanson-Easey, Scott; Xiang, Jianjun; Cameron, Scott; Liu, Qiyong; Liu, Xiaobo; Sun, Yehuan; Weinstein, Philip; Han, Gil-Soo; Williams, Craig; Bi, Peng
2016-07-01
Dengue fever is an important climate-sensitive mosquito-borne viral disease that poses a risk to half the world's population. The disease is a major public health issue in China where in 2014 a major outbreak occurred in Guangdong Province. This study aims to gauge health professionals' perceptions about the capacity of infectious disease control and prevention to meet the challenge of dengue fever in the face of climate change in Guangdong Province, China. A cross-sectional questionnaire survey was administered among staff in the Centers for Disease Control and Prevention (CDCs) in Guangdong Province. Data analysis was undertaken using descriptive methods and logistic regression. In total, 260 questionnaires were completed. Most participants (80.7%) thought climate change would have a negative effect on population health, and 98.4% of participants reported dengue fever had emerged or re-emerged in China in recent years. Additionally, 74.9% of them indicated that the capability of the CDCs to detect infectious disease outbreak/epidemic at an early stage was excellent; 86.3% indicated laboratories could provide diagnostic support rapidly; and 83.1% believed levels of current staff would be adequate in the event of a major outbreak. Logistic regression analysis showed higher levels of CDCs were perceived to have better capacity for infectious disease control and prevention. Only 26.8% of participants thought they had a good understanding of climate change, and most (85.4%) thought they needed more information about the health impacts of climate change. Most surveyed staff suggested the following strategies to curb the public health impact of infectious diseases in relation to climate change: primary prevention measures, strengthening the monitoring of infectious diseases, the ability to actively forecast disease outbreaks by early warning systems, and more funding for public health education programs. Vigilant disease and vector surveillance, preventive practice and health promotion programs will likely be significant in addressing the threat of dengue fever in the future. Further efforts are needed to strengthen the awareness of climate change among health professionals, and to promote relevant actions to minimize the health burden of infectious diseases in a changing climate. Results will be critical for policy makers facing the current and future challenges associated with infectious disease prevention and control in China. Copyright © 2016 Elsevier Inc. All rights reserved.
Western water and climate change.
Dettinger, Michael; Udall, Bradley; Georgakakos, Aris
2015-12-01
The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries and agricultural demands. Finally, California's Bay-Delta system is a remarkably localized and severe weakness at the heart of the region's trillion-dollar economy. It is threatened by the full range of potential climate-change impacts expected across the West, along with major vulnerabilities to increased flooding and rising sea levels.
An interactive web application for visualizing climate data
Alder, J.; Hostetler, S.; Williams, D.
2013-01-01
Massive volumes of data are being created as modeling centers from around the world finalize their submission of climate simulations for the Coupled Model Intercomparison Project, phase 5 (CMIP5), in preparation for the forthcoming Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Scientists, resource managers, and other potential users of climate data are faced with the daunting task of analyzing, distilling, and summarizing this unprecedented wealth of climate information.
An Interactive Web Application for Visualizing Climate Data
NASA Astrophysics Data System (ADS)
Alder, J.; Hostetler, S.; Williams, D.
2013-05-01
Massive volumes of data are being created as modeling centers from around the world finalize their submission of climate simulations for the Coupled Model Intercomparison Project, phase 5 (CMIP5), in preparation for the forthcoming Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Scientists, resource managers, and other potential users of climate data are faced with the daunting task of analyzing, distilling, and summarizing this unprecedented wealth of climate information.
Saving Grace - A Climate Change Documentary Education Program
NASA Astrophysics Data System (ADS)
Byrne, J. M.; McDaniel, S.; Graham, J.; Little, L.; Hoggan, J. C.
2012-12-01
Saving Grace conveys climate change knowledge from the best international scientists and social scientists using a series of new media formats. An Education and Communication Plan (ECP) has been developed to disseminate climate change knowledge on impacts, mitigation and adaptation for individuals, and for all sectors of society. The research team is seeking contacts with science and social science colleagues around the world to provide the knowledge base for the ECP. Poverty enslaves…and climate change has, and will, spread and deepen poverty to hundreds of millions of people, primarily in the developing world. And make no mistake; we are enslaving hundreds of millions of people in a depressing and debilitating poverty that in numbers will far surpass the horrors of the slave trade of past centuries. Saving Grace is the story of that poverty - and minimizing that poverty. Saving Grace stars the best of the world's climate researchers. Saving Grace presents the science; who, where and why of greenhouse gases that drive climate change; current and projected impacts of a changing climate around the world; and most important, solutions to the climate change challenges we face.
USDA-ARS?s Scientific Manuscript database
Climate change has emerged as a key issue facing agriculture and water resources in the US. Long-term (1968-2012) temperature, precipitation and streamflow data from a small (7.3 km2) watershed in east-central Pennsylvania was used to examine climatic and hydrologic trends in the context of recent c...
Linda Moon Stumpff
2011-01-01
This paper explores frameworks for expanding agreements between indigenous peoples, governments, and partner organizations to conserve and restore wild and protected areas impacted by climate change. From the Indigenous Peoples Treaty Project to the expansion of Federal nation to nation consultation with Tribes in the United States, new initiatives create models for...
From medicine to butterflies and back again
Parmesan, Camille
2014-01-01
My research focuses on the current impacts of climate change on wildlife, from field-based work on butterflies to synthetic analyses of global impacts on a broad range of species across terrestrial and marine biomes. I work actively with governmental agencies and NGOs to help develop conservation assessment and planning tools aimed at preserving biodiversity in the face of climate change. PMID:27583283
Janine Rice; Tim Bardsley; Pete Gomben; Dustin Bambrough; Stacey Weems; Sarah Leahy; Christopher Plunkett; Charles Condrat; Linda A. Joyce
2017-01-01
Watersheds on the Uinta-Wasatch-Cache and Ashley National Forests provide many ecosystem services, and climate change poses a risk to these services. We developed a watershed vulnerability assessment to provide scientific information for land managers facing the challenge of managing these watersheds. Literature-based information and expert elicitation is used to...
NASA Astrophysics Data System (ADS)
Alrazi, B.; Mat Husin, N.
2016-03-01
Electricity industry is the major contributor of the global carbon emissions which has been scientifically identified as the main cause of climate change. With the various initiatives being implemented at the international, national, and industry levels, companies in the electricity industry are currently facing immense pressure from various stakeholders to demonstrate their policies, initiatives, targets, and performance on climate change. Against this background, accounting system is argued to be able to be play important roles in combating climate change. Using institutional governance as the underlying framework, we have identified several governance mechanisms as the determining factors for companies to have a systematic accounting system related to carbon emissions. The factors include environmental management system certification, environmental organization, publication of stand-alone sustainability reports, the use of GRI guidelines, environmental strategic planning, governance quality, and participation in CDP surveys and emissions trading scheme. We explored this issue in the context of major electricity generating companies in Malaysia and found that except for certified environmental management system, the other governance mechanisms are still lacking. The findings suggest that companies in Malaysia, in particular, from the electricity industry are not well prepared in facing risks related to climate change.
Connecting Alaskan Youth, Elders, and Scientists in Climate Change Research and Community Resilience
NASA Astrophysics Data System (ADS)
Spellman, K.; Sparrow, E.
2017-12-01
Integrated science, technology, engineering and math (STEM) solutions and effective, relevant learning processes are required to address the challenges that a changing climate presents to many Arctic communities. Learning that can both enhance a community's understanding and generate new knowledge about climate change impacts at both local and continental scales are needed to efficiently build the capacity to navigate these changes. The Arctic and Earth STEM Integrating GLOBE and NASA (SIGNs) program is developing a learning model to engage Alaskan rural and indigenous communities in climate change learning, research and action. Youth, elders, educators, community leaders and scientists collaborate to address a pressing local climate change concern. The program trains teams of educators and long-time community members on climate change concepts and environmental observing protocols in face-to-face or online workshops together with Arctic and NASA subject matter experts. Community teams return to their community to identify local data or information needs that align with their student's interests and the observations of local elders. They deepen their understanding of the subject through culturally responsive curriculum materials, and collaborate with a scientist to develop an investigation with their students to address the identified need. Youth make observations using GLOBE (Global Learning and Observations to Benefit the Environment) protocols that best fit the issue, analyze the data they have collected, and utilize indigenous or knowledge, and NASA data to address the issue. The use of GLOBE protocols allow for communities to engage in climate change research at both local and global scales, as over 110 nations worldwide are using these standardized protocols. Teams work to communicate their investigation results back to their community and other scientists, and apply their results to local stewardship action or climate adaptation projects. In this presentation, we report the progress of community teams currently engaged in this program from throughout Alaska.
States at Risk: America's Preparedness Report Card
NASA Astrophysics Data System (ADS)
Yu, R. M. S.; Strauss, B.; Kulp, S. A.; Bronzan, J.; Rodehorst, B.; Bhat, C.; Dix, B.; Savonis, M.; Wiles, R.
2015-12-01
Many states are already experiencing the costly impacts of extreme climate and weather events. The occurrence, frequency and intensity of these events may change under future climates. Preparing for these changes takes time, and state government agencies and communities need to recognize the risks they could potentially face and the response actions already undertaken. The States at Risk: America's Preparedness Report Card project is the first-ever study that quantifies five climate-change-driven hazards, and the relevant state government response actions in each of the 50 states. The changing characteristics of extreme heat, drought, wildfires, inland and coastal flooding were assessed for the baseline period (around year 2000) through the years 2030 and 2050 across all 50 states. Bias-corrected statistically-downscaled (BCSD) climate projections (Reclamation, 2013) and hydrology projections (Reclamation, 2014) from the Coupled Model Intercomparison Project phase 5 (CMIP5) under RCP8.5 were used. The climate change response action analysis covers five critical sectors: Transportation, Energy, Water, Human Health and Communities. It examined whether there is evidence that the state is taking action to (1) reduce current risks, (2) raise its awareness of future risks, (3) plan for adaptation to the future risks, and (4) implement specific actions to reduce future risks for each applicable hazards. Results from the two analyses were aggregated and translated into a rating system that standardizes assessments across states, which can be easily understood by both technical and non-technical audiences. The findings in this study not only serve as a screening tool for states to recognize the hazards they could potentially face as climate changes, but also serve as a roadmap for states to address the gaps in response actions, and to improve climate preparedness and resilience.
Co-benefits of addressing climate change can motivate action around the world
NASA Astrophysics Data System (ADS)
Bain, Paul G.; Milfont, Taciano L.; Kashima, Yoshihisa; Bilewicz, Michał; Doron, Guy; Garðarsdóttir, Ragna B.; Gouveia, Valdiney V.; Guan, Yanjun; Johansson, Lars-Olof; Pasquali, Carlota; Corral-Verdugo, Victor; Aragones, Juan Ignacio; Utsugi, Akira; Demarque, Christophe; Otto, Siegmar; Park, Joonha; Soland, Martin; Steg, Linda; González, Roberto; Lebedeva, Nadezhda; Madsen, Ole Jacob; Wagner, Claire; Akotia, Charity S.; Kurz, Tim; Saiz, José L.; Schultz, P. Wesley; Einarsdóttir, Gró; Saviolidis, Nina M.
2016-02-01
Personal and political action on climate change is traditionally thought to be motivated by people accepting its reality and importance. However, convincing the public that climate change is real faces powerful ideological obstacles, and climate change is slipping in public importance in many countries. Here we investigate a different approach, identifying whether potential co-benefits of addressing climate change could motivate pro-environmental behaviour around the world for both those convinced and unconvinced that climate change is real. We describe an integrated framework for assessing beliefs about co-benefits, distinguishing social conditions (for example, economic development, reduced pollution or disease) and community character (for example, benevolence, competence). Data from all inhabited continents (24 countries; 6,196 participants) showed that two co-benefit types, Development (economic and scientific advancement) and Benevolence (a more moral and caring community), motivated public, private and financial actions to address climate change to a similar degree as believing climate change is important. Critically, relationships were similar for both convinced and unconvinced participants, showing that co-benefits can motivate action across ideological divides. These relationships were also independent of perceived climate change importance, and could not be explained by political ideology, age, or gender. Communicating co-benefits could motivate action on climate change where traditional approaches have stalled.
Hellmann, Jessica J.; Grundel, Ralph; Hoving, Chris; Schuurman, Gregor W.
2016-01-01
As climate change moves insect systems into uncharted territory, more knowledge about insect dynamics and the factors that drive them could enable us to better manage and conserve insect communities. Climate change may also require us revisit insect management goals and strategies and lead to a new kind of scientific engagement in management decision-making. Here we make five key points about the role of insect science in aiding and crafting management decisions, and we illustrate those points with the monarch butterfly and the Karner blue butterfly, two species undergoing considerable change and facing new management dilemmas. Insect biology has a strong history of engagement in applied problems, and as the impacts of climate change increase, a reimagined ethic of entomology in service of broader society may emerge. We hope to motivate insect biologists to contribute time and effort toward solving the challenges of climate change.
Adapting agriculture to climate change in Kenya: household strategies and determinants.
Bryan, Elizabeth; Ringler, Claudia; Okoba, Barrack; Roncoli, Carla; Silvestri, Silvia; Herrero, Mario
2013-01-15
Countries in Sub-Saharan Africa are particularly vulnerable to climate change, given dependence on agricultural production and limited adaptive capacity. Based on farm household and Participatory Rural Appraisal data collected from districts in various agroecological zones in Kenya, this paper examines farmers' perceptions of climate change, ongoing adaptation measures, and factors influencing farmers' decisions to adapt. The results show that households face considerable challenges in adapting to climate change. While many households have made small adjustments to their farming practices in response to climate change (in particular, changing planting decisions), few households are able to make more costly investments, for example in agroforestry or irrigation, although there is a desire to invest in such measures. This emphasizes the need for greater investments in rural and agricultural development to support the ability of households to make strategic, long-term decisions that affect their future well-being. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tong, Michael Xiaoliang; Hansen, Alana; Hanson-Easey, Scott; Cameron, Scott; Xiang, Jianjun; Liu, Qiyong; Liu, Xiaobo; Sun, Yehuan; Weinstein, Philip; Han, Gil-Soo; Williams, Craig; Bi, Peng
2017-03-31
Though there was the significant decrease in the incidence of malaria in central and southwest China during the 1980s and 1990s, there has been a re-emergence of malaria since 2000. A cross-sectional survey was conducted amongst the staff of eleven Centers for Disease Control and Prevention (CDC) in China to gauge their perceptions regarding the impacts of climate change on malaria transmission and its control and prevention. Descriptive analysis was performed to study CDC staff's knowledge, attitudes, perceptions and suggestions for malaria control in the face of climate change. A majority (79.8%) of CDC staff were concerned about climate change and 79.7% believed the weather was becoming warmer. Most participants (90.3%) indicated climate change had a negative effect on population health, 92.6 and 86.8% considered that increasing temperatures and precipitation would influence the transmission of vector-borne diseases including malaria. About half (50.9%) of the surveyed staff indicated malaria had re-emerged in recent years, and some outbreaks were occurring in new geographic areas. The main reasons for such re-emergence were perceived to be: mosquitoes in high-density, numerous imported cases, climate change, poor environmental conditions, internal migrant populations, and lack of health awareness. This study found most CDC staff endorsed the statement that climate change had a negative impact on infectious disease transmission. Malaria had re-emerged in some areas of China, and most of the staff believed that this can be managed. However, high densities of mosquitoes and the continuous increase in imported cases of malaria in local areas, together with environmental changes are bringing about critical challenges to malaria control in China. This study contributes to an understanding of climate change related perceptions of malaria control and prevention amongst CDC staff. It may help to formulate in-house training guidelines, community health promotion programmes and policies to improve the capacity of malaria control and prevention in the face of climate change in China.
NASA Astrophysics Data System (ADS)
Carroll, F. J.; McNeal, K. S.; Hammerman, J.; Christiansen, J.
2013-05-01
The Climate Literacy Partnership in the Southeast (CLiPSE, http://CLiPSE-project.org), funded through the National Science Foundation Climate Change Education Partnership program, is dedicated to improving climate literacy in the Southeastern United States (SE US). By promoting science-based formal and informal educational resources, CLiPSE works through a diverse network of key partner organizations in the SE US to conduct effective public dialogues that address diverse audiences and support learning about climate, climate change, and its impact on human and environmental systems. The CLiPSE project successfully created partnerships with more than fifty key stakeholders, including agriculture, education, leisure, and religious organizations, along with culturally diverse communities. This presentation will explain the CLiPSE model for reaching key publics who hold traditional ideologies typically perceived as incompatible with climate change science. We will discuss the results of our interactions with the leaders of our partnering organizations, their knowledge, perceptions, needs, and input in crafting effective messages for their audiences, through addressing both learners' affective and cognitive domains. For the informal education sector, CLiPSE utilized several open discussion and learning forums aimed to promote critical thinking and civil conversation about climate change. Focusing on Faith-based audiences, a key demographic, in the Southeast US, CLiPSE also conducted an online, moderated, author-attended book study, discussing the thoughts and ideas contained in the work, "Green Like God," by Jonathan Merritt. We will share the questions we faced as we focused on and learned about faith-based audiences, such as: What are the barriers and opportunities?; How do we break out of the assumptions that we have to find the common ground?; How do the audiences understand the issues?; How do we understand the issues?; What common language can we find?; What happens when we bringing the multiple the multiple identities of faith and science together within ourselves and those we are trying to build relationships with? We will also share the lessons we learned while attempting to answer these questions, such as the role of trust and key influentials/leaders in talking with target audiences, the importance of face-to-face dialog and relationships in trust building.
The application of genomics and bioinformatics to accelerate crop improvement in a changing climate.
Batley, Jacqueline; Edwards, David
2016-04-01
The changing climate and growing global population will increase pressure on our ability to produce sufficient food. The breeding of novel crops and the adaptation of current crops to the new environment are required to ensure continued food production. Advances in genomics offer the potential to accelerate the genomics based breeding of crop plants. However, relating genomic data to climate related agronomic traits for use in breeding remains a huge challenge, and one which will require coordination of diverse skills and expertise. Bioinformatics, when combined with genomics has the potential to help maintain food security in the face of climate change through the accelerated production of climate ready crops. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Peru, climate change and non-communicable diseases: ¿where are we and where are we headed?].
Avilez, José L; Bazalar, Janina; Azañedo, Diego; Miranda, J Jaime
2016-03-01
The world is facing a crisis of noncommunicable diseases alongside a state of climate volatility. Of the total health burden attributable to climate change, 99% will be assumed by developing countries. In light of climate change, Peru's best opportunity is to create mitigation and adaptation policies focused on developing health co-benefits, which will improve the state of noncommunicable diseases and the climate system. This article presents Peru's compromises in terms of mitigation of greenhouse gas emissions; identifies public health opportunities for Peru under the Paris Agreement signed in the 21st Conference of the Parties (COP21); and makes recommendations for evidence and policy generation for the National Academy of Medicine and the Peruvian government.
NASA Astrophysics Data System (ADS)
Fløjgaard, Camilla; Morueta-Holme, Naia; Skov, Flemming; Madsen, Aksel Bo; Svenning, Jens-Christian
2009-11-01
The moderate temperature increase of 0.74 °C in the 20th century has caused latitudinal and altitudinal range shifts in many species including mammals. Therefore, given the more dramatic temperature increase predicted for the 21st century, we can therefore expect even stronger range shifts as well. However, European mammals are already faced with other anthropogenic pressures, notably habitat loss, pollution, overexploitation, and invasive species, and will have to face the combined challenge posed by climate change in a landscape highly influenced by human activities. As an example of the possible consequences of land use, invasive species, and climate change for the regional-scale mammal species composition, we here focus on the potential 21st century changes to the mammal fauna of Denmark. Supported by species distribution modelling, we present a discussion of the possible changes to the Danish mammal fauna: Which species are likely to become locally extinct? Which new species are most likely to immigrate? And, what is the potential threat from invasive species? We find that future climate change is likely to cause a general enrichment of the Danish mammal fauna by the potential immigration of seventeen new species. Only the northern birch mouse (Sicista betulina) is at risk of extinction from climate change predicted. The European native mammals are not anticipated to contribute to the invasive-species problem as they coexist with most Danish species in other parts of Europe. However, non-European invasive species are also likely to enter the Danish fauna and may negatively impact the native species.
DOI Climate Science Centers--Regional science to address management priorities
O'Malley, Robin
2012-01-01
Our Nation's lands, waters, and ecosystems and the living and cultural resources they contain face myriad challenges from invasive species, the effects of changing land and water use, habitat fragmentation and degradation, and other influences. These challenges are compounded by increasing influences from a changing climate—higher temperatures, increasing droughts, floods, and wildfires, and overall increasing variability in weather and climate. The Department of the Interior (DOI) has established eight regional Climate Science Centers (CSC) (fig. 1) that will provide scientific information and tools to natural and cultural resource managers as they plan for conserving these resources in a changing world. The U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) is managing the CSCs on behalf of the DOI.
NASA Astrophysics Data System (ADS)
Flint, L. E.; Flint, A. L.; Weiss, S. B.; Micheli, E. R.
2010-12-01
In the face of rapid climate change, fine-scale predictions of landscape change are of extreme interest to land managers that endeavor to develop long term adaptive strategies for maintaining biodiversity and ecosystem services. Global climate model (GCM) outputs, which generally focus on estimated increases in air temperature, are increasingly applied to species habitat distribution models. For sensitive species subject to climate change, habitat models predict significant migration (either northward or towards higher elevations), or complete extinction. Current studies typically rely on large spatial scale GCM projections (> 10 km) of changes in precipitation and air temperature: at this scale, these models necessarily neglect subtleties of topographic shading, geomorphic expression of the landscape, and fine-scale differences in soil properties - data that is readily available at meaningful local scales. Recent advances in modeling take advantage of available soils, geology, and topographic data to construct watershed-scale scenarios using GCM inputs and result in improved correlations of vegetation distribution with temperature. For this study, future climate projections were downscaled to 270-m and applied to a physically-based hydrologic model to calculate future changes in recharge, runoff, and climatic water deficit (CWD) for basins draining into the northern San Francisco Bay. CWD was analyzed for mapped vegetation types to evaluate the range of CWD for historic time periods in comparison to future time periods. For several forest communities (including blue oak woodlands, montane hardwoods, douglas-fir, and coast redwood) existing landscape area exhibiting suitable CWD diminishes by up 80 percent in the next century, with a trend towards increased CWD throughout the region. However, no forest community loses all suitable habitat, with islands of potential habitat primarily remaining on north facing slopes and deeper soils. Creation of new suitable habitat is also predicted throughout the region. Results have direct application to management issues of habitat connectivity, forest land protection and acquisition, and active management solutions such as transplanting or assisted migration. Although this analysis considers only one driver of forest habitat distribution, consideration of hydrologic derivatives at a fine scale explains current forest community distributions and provides a far more informed perspective on potential future forest distributions. Results demonstrate the utility of fine-scale modeling and provide landscape managers and conservation agencies valuable management tools in fine-scale future forest scenarios and a framework for evaluating forest resiliency in a changing climate.
Stem respiration of Populus species in the third year of free-air CO2 enrichment.
Gielen, Birgit; Scarascia-Mugnozza, Giuseppe; Ceulemans, Reinhart
2003-04-01
Carbon cycling in ecosystems, and especially in forests, is intensively studied to predict the effects of global climate change, and the role which forests may play in 'changing climate change'. One of the questions is whether the carbon balance of forests will be affected by increasing atmospheric CO2 concentrations. Regarding this question, effects of elevated [CO2] on woody-tissue respiration have frequently been neglected. Stem respiration of three Populus species (P. alba L. (Clone 2AS-11), P. nigra L. (Clone Jean Pourtet), and P. x euramericana (Clone I-214)) was measured in a managed, high-density forest plantation exposed to free-air CO2 enrichment (POPFACE). During the period of measurements, in May of the third year, stem respiration rates were not affected by the FACE treatment. Moreover, FACE did not influence the relationships between respiration rate and both stem temperature and relative growth rate. The results were supported by the reported absence of a FACE-effect on growth and stem wood density.
Climate change and health in Bangladesh: a baseline cross-sectional survey.
Kabir, Md Iqbal; Rahman, Md Bayzidur; Smith, Wayne; Lusha, Mirza Afreen Fatima; Milton, Abul Hasnat
2016-01-01
Bangladesh is facing the unavoidable challenge of adaptation to climate change. However, very little is known in relation to climate change and health. This article provides information on potential climate change impact on health, magnitude of climate-sensitive diseases, and baseline scenarios of health systems to climate variability and change. A cross-sectional study using multistage cluster sampling framework was conducted in 2012 among 6,720 households of 224 rural villages in seven vulnerable districts of Bangladesh. Information was obtained from head of the households using a pretested, interviewer-administered, structured questionnaire. A total of 6,720 individuals participated in the study with written, informed consent. The majority of the respondents were from the low-income vulnerable group (60% farmers or day labourers) with an average of 30 years' stay in their locality. Most of them (96%) had faced extreme weather events, 45% of people had become homeless and displaced for a mean duration of 38 days in the past 10 years. Almost all of the respondents (97.8%) believe that health care expenditure increased after the extreme weather events. Mean annual total health care expenditure was 6,555 Bangladeshi Taka (BDT) (1 USD=77 BDT in 2015) and exclusively out of pocket of the respondents. Incidence of dengue was 1.29 (95% CI 0.65-2.56) and malaria 13.86 (95% CI 6.00-32.01) per 1,000 adult population for 12 months preceding the data collection. Incidence of diarrhoea and pneumonia among under-five children of the households for the preceding month was 10.3% (95% CI 9.16-11.66) and 7.3% (95% CI 6.35-8.46), respectively. The findings of this survey indicate that climate change has a potential adverse impact on human health in Bangladesh. The magnitude of malaria, dengue, childhood diarrhoea, and pneumonia was high among the vulnerable communities. Community-based adaptation strategy for health could be beneficial to minimise climate change attributed health burden of Bangladesh.
Improving poverty and inequality modelling in climate research
NASA Astrophysics Data System (ADS)
Rao, Narasimha D.; van Ruijven, Bas J.; Riahi, Keywan; Bosetti, Valentina
2017-12-01
As climate change progresses, the risk of adverse impacts on vulnerable populations is growing. As governments seek increased and drastic action, policymakers are likely to seek quantification of climate-change impacts and the consequences of mitigation policies on these populations. Current models used in climate research have a limited ability to represent the poor and vulnerable, or the different dimensions along which they face these risks. Best practices need to be adopted more widely, and new model features that incorporate social heterogeneity and different policy mechanisms need to be developed. Increased collaboration between modellers, economists, and other social scientists could aid these developments.
NASA Astrophysics Data System (ADS)
Drewes, Andrea; Henderson, Joseph; Mouza, Chrystalla
2018-01-01
Climate change is one of the most pressing challenges facing society, and climate change educational models are emerging in response. This study investigates the implementation and enactment of a climate change professional development (PD) model for science educators and its impact on student learning. Using an intrinsic case study methodology, we focused analytic attention on how one teacher made particular pedagogical and content decisions, and the implications for student's conceptual learning. Using anthropological theories of conceptual travel, we traced salient ideas through instructional delivery and into student reasoning. Analysis showed that students gained an increased understanding of the enhanced greenhouse effect and the implications of human activity on this enhanced effect at statistically significant levels and with moderate effect sizes. However, students demonstrated a limited, though non-significant gain on the likely effects of climate change. Student reasoning on the tangible actions to deal with these problems also remained underdeveloped, reflecting omissions in both PD and teacher enactment. We discuss implications for the emerging field of climate change education.
Declining body size: a third universal response to warming?
Gardner, Janet L; Peters, Anne; Kearney, Michael R; Joseph, Leo; Heinsohn, Robert
2011-06-01
A recently documented correlate of anthropogenic climate change involves reductions in body size, the nature and scale of the pattern leading to suggestions of a third universal response to climate warming. Because body size affects thermoregulation and energetics, changing body size has implications for resilience in the face of climate change. A review of recent studies shows heterogeneity in the magnitude and direction of size responses, exposing a need for large-scale phylogenetically controlled comparative analyses of temporal size change. Integrative analyses of museum data combined with new theoretical models of size-dependent thermoregulatory and metabolic responses will increase both understanding of the underlying mechanisms and physiological consequences of size shifts and, therefore, the ability to predict the sensitivities of species to climate change. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tseng, William Wei-Chun; Hsu, Shu-Han; Chen, Chi-Chung
2015-12-30
Coral reefs constitute the most biologically productive and diverse ecosystem, and provide various goods and services including those related to fisheries, marine tourism, coastal protection, and medicine. However, they are sensitive to climate change and rising temperatures. Taiwan is located in the central part of the world's distribution of coral reefs and has about one third of the coral species in the world. This study estimates the welfare losses associated with the potential damage to coral reefs in Taiwan caused by climate change. The contingent valuation method adopted includes a pre-survey, a face-to-face formal survey, and photo illustrations used to obtain reliable data. Average annual personal willingness to pay is found to be around US$35.75 resulting in a total annual willingness to pay of around US$0.43 billion. These high values demonstrate that coral reefs in Taiwan deserve to be well preserved, which would require a dedicated agency and ocean reserves.
Andrew Hansen; Kathryn Ireland; Kristin Legg; Robert Keane; Edward Barge; Martha Jenkins; Michiel Pillet
2016-01-01
Climate suitability is projected to decline for many subalpine species, raising questions about managing species under a deteriorating climate. Whitebark pine (WBP) (Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE) crystalizes the challenges that natural resource managers of many high mountain ecosystems will likely face in the coming decades. We...
California golden trout and climate change: Is their stream habitat vulnerable to climate warming?
Kathleen R. Matthews
2010-01-01
The California golden trout (CGT) Oncorhynchus mykiss aguabonita is one of the few native high-elevation fish in the Sierra Nevada. They are already in trouble because of exotic trout, genetic introgression, and degraded habitat, and now face further stress from climate warming. Their native habitat on the Kern Plateau meadows mostly in the Golden...
ERIC Educational Resources Information Center
Ojala, Maria
2015-01-01
Is hope concerning climate change related to environmental engagement, or is it rather associated with unrealistic optimism and inactivity? This study on Swedish high school students identified two kinds of hope: constructive hope and hope based on denial. Constructive hope was positively associated with engagement and a perception that teachers…
Rebecca Flitcroft; Kelly Burnett; Kelly Christiansen
2013-01-01
Diadromous aquatic species that cross a diverse range of habitats (including marine, estuarine, and freshwater) face different effects of climate change in each environment. One such group of species is the anadromous Pacific salmon (Oncorhynchus spp.). Studies of the potential effects of climate change on salmonids have focused on both marine and...
Fitzpatrick, Joan; Gray, Floyd; Dubiel, Russell; Langman, Jeff; Moring, J. Bruce; Norman, Laura M.; Page, William R.; Parcher, Jean W.
2013-01-01
The prediction of global climate change in response to both natural forces and human activity is one of the defining issues of our times. The unprecedented observational capacity of modern earth-orbiting satellites coupled with the development of robust computational representations (models) of the Earth’s weather and climate systems afford us the opportunity to observe and investigate how these systems work now, how they have worked in the past, and how they will work in the future when forced in specific ways. In the most recent report on global climate change by the Intergovernmental Panel on Climate Change (IPCC; Solomon and others, 2007), analyses using multiple climate models support recent observations that the Earth’s climate is changing in response to a combination of natural and human-induced causes. These changes will be significant in the United States–Mexican border region, where the process of climate change affects all of the Borderlands challenge themes discussed in the preceding chapters. The dual possibilities of both significantly-changed climate and increasing variability in climate make it challenging to take full measure of the potential effects because the Borderlands already experience a high degree of interannual variability and climatological extremes.
Chronic disease and climate change: understanding co-benefits and their policy implications.
Capon, Anthony G; Rissel, Chris E
2010-01-01
Chronic disease and climate change are major public policy challenges facing governments around the world. An improved understanding of the relationship between chronic disease and climate change should enable improved policy formulation to support both human health and the health of the planet. Chronic disease and climate change are both unintended consequences of our way of life, and are attributable in part to the ready availability of inexpensive fossil fuel energy. There are co-benefits for health from actions to address climate change. For example, substituting physical activity and a vegetable-rich diet for motor vehicle transport and a meat-rich diet is both good for health and good for the planet. We should encourage ways of living that use less carbon as these can be healthy ways of living, for both individuals and society. Quantitative modelling of co-benefits should inform policy responses.
Behavioral flexibility as a mechanism for coping with climate change
Beever, Erik; Hall, L. Embere; Varner, Johanna; Loosen, Anne E.; Dunham, Jason B.; Gahl, Megan K.; Smith, Felisa A.; Lawler, Joshua J.
2017-01-01
Of the primary responses to contemporary climate change – “move, adapt, acclimate, or die” – that are available to organisms, “acclimate” may be effectively achieved through behavioral modification. Behavioral flexibility allows animals to rapidly cope with changing environmental conditions, and behavior represents an important component of a species’ adaptive capacity in the face of climate change. However, there is currently a lack of knowledge about the limits or constraints on behavioral responses to changing conditions. Here, we characterize the contexts in which organisms respond to climate variability through behavior. First, we quantify patterns in behavioral responses across taxa with respect to timescales, climatic stimuli, life-history traits, and ecology. Next, we identify existing knowledge gaps, research biases, and other challenges. Finally, we discuss how conservation practitioners and resource managers can incorporate an improved understanding of behavioral flexibility into natural resource management and policy decisions.
A multi-model analysis of risk of ecosystem shifts under climate change
NASA Astrophysics Data System (ADS)
Warszawski, Lila; Friend, Andrew; Ostberg, Sebastian; Frieler, Katja; Lucht, Wolfgang; Schaphoff, Sibyll; Beerling, David; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B.; Kahana, Ron; Ito, Akihiko; Keribin, Rozenn; Kleidon, Axel; Lomas, Mark; Nishina, Kazuya; Pavlick, Ryan; Tito Rademacher, Tim; Buechner, Matthias; Piontek, Franziska; Schewe, Jacob; Serdeczny, Olivia; Schellnhuber, Hans Joachim
2013-12-01
Climate change may pose a high risk of change to Earth’s ecosystems: shifting climatic boundaries may induce changes in the biogeochemical functioning and structures of ecosystems that render it difficult for endemic plant and animal species to survive in their current habitats. Here we aggregate changes in the biogeochemical ecosystem state as a proxy for the risk of these shifts at different levels of global warming. Estimates are based on simulations from seven global vegetation models (GVMs) driven by future climate scenarios, allowing for a quantification of the related uncertainties. 5-19% of the naturally vegetated land surface is projected to be at risk of severe ecosystem change at 2 ° C of global warming (ΔGMT) above 1980-2010 levels. However, there is limited agreement across the models about which geographical regions face the highest risk of change. The extent of regions at risk of severe ecosystem change is projected to rise with ΔGMT, approximately doubling between ΔGMT = 2 and 3 ° C, and reaching a median value of 35% of the naturally vegetated land surface for ΔGMT = 4 °C. The regions projected to face the highest risk of severe ecosystem changes above ΔGMT = 4 °C or earlier include the tundra and shrublands of the Tibetan Plateau, grasslands of eastern India, the boreal forests of northern Canada and Russia, the savanna region in the Horn of Africa, and the Amazon rainforest.
Faleiro, Filipa; Baptista, Miguel; Santos, Catarina; Aurélio, Maria L; Pimentel, Marta; Pegado, Maria Rita; Paula, José Ricardo; Calado, Ricardo; Repolho, Tiago; Rosa, Rui
2015-01-01
Seahorses are currently facing great challenges in the wild, including habitat degradation and overexploitation, and how they will endure additional stress from rapid climate change has yet to be determined. Unlike most fishes, the poor swimming skills of seahorses, along with the ecological and biological constraints of their unique lifestyle, place great weight on their physiological ability to cope with climate changes. In the present study, we evaluate the effects of ocean warming (+4°C) and acidification (ΔpH = -0.5 units) on the physiological and behavioural ecology of adult temperate seahorses, Hippocampus guttulatus. Adult seahorses were found to be relatively well prepared to face future changes in ocean temperature, but not the combined effect of warming and acidification. Seahorse metabolism increased normally with warming, and behavioural and feeding responses were not significantly affected. However, during hypercapnia the seahorses exhibited signs of lethargy (i.e. reduced activity levels) combined with a reduction of feeding and ventilation rates. Nonetheless, metabolic rates were not significantly affected. Future ocean changes, particularly ocean acidification, may further threaten seahorse conservation, turning these charismatic fishes into important flagship species for global climate change issues.
Fortini, Lucas B.; Dye, Kaipo
2017-01-01
found other (but not all) anthropogenic threats are also similarly associated with more threats. Our findings serve as a reminder that ecological research should seriously consider these potential threat interactions, especially for species under elevated conservation concern.
Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest
Malhi, Yadvinder; Aragão, Luiz E. O. C.; Galbraith, David; Huntingford, Chris; Fisher, Rosie; Zelazowski, Przemyslaw; Sitch, Stephen; McSweeney, Carol; Meir, Patrick
2009-01-01
We examine the evidence for the possibility that 21st-century climate change may cause a large-scale “dieback” or degradation of Amazonian rainforest. We employ a new framework for evaluating the rainfall regime of tropical forests and from this deduce precipitation-based boundaries for current forest viability. We then examine climate simulations by 19 global climate models (GCMs) in this context and find that most tend to underestimate current rainfall. GCMs also vary greatly in their projections of future climate change in Amazonia. We attempt to take into account the differences between GCM-simulated and observed rainfall regimes in the 20th century. Our analysis suggests that dry-season water stress is likely to increase in E. Amazonia over the 21st century, but the region tends toward a climate more appropriate to seasonal forest than to savanna. These seasonal forests may be resilient to seasonal drought but are likely to face intensified water stress caused by higher temperatures and to be vulnerable to fires, which are at present naturally rare in much of Amazonia. The spread of fire ignition associated with advancing deforestation, logging, and fragmentation may act as nucleation points that trigger the transition of these seasonal forests into fire-dominated, low biomass forests. Conversely, deliberate limitation of deforestation and fire may be an effective intervention to maintain Amazonian forest resilience in the face of imposed 21st-century climate change. Such intervention may be enough to navigate E. Amazonia away from a possible “tipping point,” beyond which extensive rainforest would become unsustainable. PMID:19218454
Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest.
Malhi, Yadvinder; Aragão, Luiz E O C; Galbraith, David; Huntingford, Chris; Fisher, Rosie; Zelazowski, Przemyslaw; Sitch, Stephen; McSweeney, Carol; Meir, Patrick
2009-12-08
We examine the evidence for the possibility that 21st-century climate change may cause a large-scale "dieback" or degradation of Amazonian rainforest. We employ a new framework for evaluating the rainfall regime of tropical forests and from this deduce precipitation-based boundaries for current forest viability. We then examine climate simulations by 19 global climate models (GCMs) in this context and find that most tend to underestimate current rainfall. GCMs also vary greatly in their projections of future climate change in Amazonia. We attempt to take into account the differences between GCM-simulated and observed rainfall regimes in the 20th century. Our analysis suggests that dry-season water stress is likely to increase in E. Amazonia over the 21st century, but the region tends toward a climate more appropriate to seasonal forest than to savanna. These seasonal forests may be resilient to seasonal drought but are likely to face intensified water stress caused by higher temperatures and to be vulnerable to fires, which are at present naturally rare in much of Amazonia. The spread of fire ignition associated with advancing deforestation, logging, and fragmentation may act as nucleation points that trigger the transition of these seasonal forests into fire-dominated, low biomass forests. Conversely, deliberate limitation of deforestation and fire may be an effective intervention to maintain Amazonian forest resilience in the face of imposed 21st-century climate change. Such intervention may be enough to navigate E. Amazonia away from a possible "tipping point," beyond which extensive rainforest would become unsustainable.
Targeted conservation to safeguard a biodiversity hotspot from climate and land-cover change.
Struebig, Matthew J; Wilting, Andreas; Gaveau, David L A; Meijaard, Erik; Smith, Robert J; Fischer, Manuela; Metcalfe, Kristian; Kramer-Schadt, Stephanie
2015-02-02
Responses of biodiversity to changes in both land cover and climate are recognized [1] but still poorly understood [2]. This poses significant challenges for spatial planning as species could shift, contract, expand, or maintain their range inside or outside protected areas [2-4]. We examine this problem in Borneo, a global biodiversity hotspot [5], using spatial prioritization analyses that maximize species conservation under multiple environmental-change forecasts. Climate projections indicate that 11%-36% of Bornean mammal species will lose ≥ 30% of their habitat by 2080, and suitable ecological conditions will shift upslope for 23%-46%. Deforestation exacerbates this process, increasing the proportion of species facing comparable habitat loss to 30%-49%, a 2-fold increase on historical trends. Accommodating these distributional changes will require conserving land outside existing protected areas, but this may be less than anticipated from models incorporating deforestation alone because some species will colonize high-elevation reserves. Our results demonstrate the increasing importance of upland reserves and that relatively small additions (16,000-28,000 km(2)) to the current conservation estate could provide substantial benefits to biodiversity facing changes to land cover and climate. On Borneo, much of this land is under forestry jurisdiction, warranting targeted conservation partnerships to safeguard biodiversity in an era of global change. Copyright © 2015 Elsevier Ltd. All rights reserved.
The impacts of climate change in coastal marine systems.
Harley, Christopher D G; Randall Hughes, A; Hultgren, Kristin M; Miner, Benjamin G; Sorte, Cascade J B; Thornber, Carol S; Rodriguez, Laura F; Tomanek, Lars; Williams, Susan L
2006-02-01
Anthropogenically induced global climate change has profound implications for marine ecosystems and the economic and social systems that depend upon them. The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature. However, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex. For example, changes in ocean chemistry may be more important than changes in temperature for the performance and survival of many organisms. Ocean circulation, which drives larval transport, will also change, with important consequences for population dynamics. Furthermore, climatic impacts on one or a few 'leverage species' may result in sweeping community-level changes. Finally, synergistic effects between climate and other anthropogenic variables, particularly fishing pressure, will likely exacerbate climate-induced changes. Efforts to manage and conserve living marine systems in the face of climate change will require improvements to the existing predictive framework. Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populations' ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond.
Climate variability and vulnerability to climate change: a review
Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J
2014-01-01
The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802
Designing climate-smart conservation: guidance and case studies.
Hansen, Lara; Hoffman, Jennifer; Drews, Carlos; Mielbrecht, Eric
2010-02-01
To be successful, conservation practitioners and resource managers must fully integrate the effects of climate change into all planning projects. Some conservation practitioners are beginning to develop, test, and implement new approaches that are designed to deal with climate change. We devised four basic tenets that are essential in climate-change adaptation for conservation: protect adequate and appropriate space, reduce nonclimate stresses, use adaptive management to implement and test climate-change adaptation strategies, and work to reduce the rate and extent of climate change to reduce overall risk. To illustrate how this approach applies in the real world, we explored case studies of coral reefs in the Florida Keys; mangrove forests in Fiji, Tanzania, and Cameroon; sea-level rise and sea turtles in the Caribbean; tigers in the Sundarbans of India; and national planning in Madagascar. Through implementation of these tenets conservation efforts in each of these regions can be made more robust in the face of climate change. Although these approaches require reconsidering some traditional approaches to conservation, this new paradigm is technologically, economically, and intellectually feasible.
Parasite biodiversity faces extinction and redistribution in a changing climate.
Carlson, Colin J; Burgio, Kevin R; Dougherty, Eric R; Phillips, Anna J; Bueno, Veronica M; Clements, Christopher F; Castaldo, Giovanni; Dallas, Tad A; Cizauskas, Carrie A; Cumming, Graeme S; Doña, Jorge; Harris, Nyeema C; Jovani, Roger; Mironov, Sergey; Muellerklein, Oliver C; Proctor, Heather C; Getz, Wayne M
2017-09-01
Climate change is a well-documented driver of both wildlife extinction and disease emergence, but the negative impacts of climate change on parasite diversity are undocumented. We compiled the most comprehensive spatially explicit data set available for parasites, projected range shifts in a changing climate, and estimated extinction rates for eight major parasite clades. On the basis of 53,133 occurrences capturing the geographic ranges of 457 parasite species, conservative model projections suggest that 5 to 10% of these species are committed to extinction by 2070 from climate-driven habitat loss alone. We find no evidence that parasites with zoonotic potential have a significantly higher potential to gain range in a changing climate, but we do find that ectoparasites (especially ticks) fare disproportionately worse than endoparasites. Accounting for host-driven coextinctions, models predict that up to 30% of parasitic worms are committed to extinction, driven by a combination of direct and indirect pressures. Despite high local extinction rates, parasite richness could still increase by an order of magnitude in some places, because species successfully tracking climate change invade temperate ecosystems and replace native species with unpredictable ecological consequences.
NASA Earth Observations Informing Energy Management Decision Making
NASA Technical Reports Server (NTRS)
Eckman, Richard; Stackhouse, Paul
2017-01-01
The Energy Sector is experiencing increasing impacts from severe weather and shifting climatic trends, as well as facing a changing political climate, adding uncertainty for stakeholders as they make short- and long-term planning investments. Climate changes such as prolonged extreme heat and drought (leading to wildfire spread, for example), sea level rise, and extreme storms are changing the ways that utilities operate. Energy infrastructure located in coastal or flood-prone areas faces inundation risks, such as damage to energy facilities. The use of renewable energy resources is increasing, requiring more information about their intermittency and spatial patterns. In light of these challenges, public and private stakeholders have collaborated to identify potential data sources, tools, and programmatic ideas. For example, utilities across the country are using cutting-edge technology and data to plan for and adapt to these changes. In the Federal Government, NASA has invested in preliminary work to identify needs and opportunities for satellite data in energy sector application, and the Department of Energy has similarly brought together stakeholders to understand the landscape of climate vulnerability and resilience for utilities and others. However, have these efforts improved community-scale resilience and adaptation efforts? Further, some communities are more vulnerable to climate change and infrastructure impacts than others. This session has two goals. First, panelists seek to share existing and ongoing efforts related to energy management. Second, the session seeks to engage with attendees via group knowledge exchange to connect national energy management efforts to local practice for increased community resilience.
Cross-scale modeling of surface temperature and tree seedling establishment inmountain landscapes
Dingman, John; Sweet, Lynn C.; McCullough, Ian M.; Davis, Frank W.; Flint, Alan L.; Franklin, Janet; Flint, Lorraine E.
2013-01-01
Abstract: Introduction: Estimating surface temperature from above-ground field measurements is important for understanding the complex landscape patterns of plant seedling survival and establishment, processes which occur at heights of only several centimeters. Currently, future climate models predict temperature at 2 m above ground, leaving ground-surface microclimate not well characterized. Methods: Using a network of field temperature sensors and climate models, a ground-surface temperature method was used to estimate microclimate variability of minimum and maximum temperature. Temperature lapse rates were derived from field temperature sensors and distributed across the landscape capturing differences in solar radiation and cold air drainages modeled at a 30-m spatial resolution. Results: The surface temperature estimation method used for this analysis successfully estimated minimum surface temperatures on north-facing, south-facing, valley, and ridgeline topographic settings, and when compared to measured temperatures yielded an R2 of 0.88, 0.80, 0.88, and 0.80, respectively. Maximum surface temperatures generally had slightly more spatial variability than minimum surface temperatures, resulting in R2 values of 0.86, 0.77, 0.72, and 0.79 for north-facing, south-facing, valley, and ridgeline topographic settings. Quasi-Poisson regressions predicting recruitment of Quercus kelloggii (black oak) seedlings from temperature variables were significantly improved using these estimates of surface temperature compared to air temperature modeled at 2 m. Conclusion: Predicting minimum and maximum ground-surface temperatures using a downscaled climate model coupled with temperature lapse rates estimated from field measurements provides a method for modeling temperature effects on plant recruitment. Such methods could be applied to improve projections of species’ range shifts under climate change. Areas of complex topography can provide intricate microclimates that may allow species to redistribute locally as climate changes.
DOT National Transportation Integrated Search
2009-09-01
Among the major environmental threats facing the world today, climate change stands out as both the largest in scope and the most unique in character, in the sense that the atmosphere : truly does not recognize national boundaries when it comes to ca...
NASA Astrophysics Data System (ADS)
Dawson, Vaille
2015-05-01
Climate change is one of the most significant science issues facing humanity; yet, teaching students about climate change is challenging: not only is it multidisciplinary, but also it is contentious and debated in political, social and media forums. Students need to be equipped with an understanding of climate change science to be able to participate in this discourse. The purpose of this study was to examine Western Australian high school students' understanding of climate change and the greenhouse effect, in order to identify their alternative conceptions about climate change science and provide a baseline for more effective teaching. A questionnaire designed to elicit students' understanding and alternative conceptions was completed by 438 Year 10 students (14-15 years old). A further 20 students were interviewed. Results showed that students know different features of both climate change and the greenhouse effect, however not necessarily all of them and the relationships between. Five categories of alternative conceptions were identified. The categories were (1) the greenhouse effect and the ozone layer; (2) types of greenhouse gases; (3) types of radiation; (4) weather and climate and (5) air pollution. These findings provide science educators a basis upon which to develop strategies and curriculum resources to improve their students' understanding and decision-making skills about the socioscientific issue, climate change.
NASA Astrophysics Data System (ADS)
Ferguson, I. M.; McGuire, M.; Broman, D.; Gangopadhyay, S.
2017-12-01
The Bureau of Reclamation is a Federal agency tasked with developing and managing water supply and hydropower projects in the Western U.S. Climate and hydrologic variability and change significantly impact management actions and outcomes across Reclamation's programs and initiatives, including water resource planning and operations, infrastructure design and maintenance, hydropower generation, and ecosystem restoration, among others. Planning, design, and implementation of these programs therefore requires consideration of future climate and hydrologic conditions will impact program objectives. Over the past decade, Reclamation and other Federal agencies have adopted new guidelines, directives, and mandates that require consideration of climate change in water resources planning and decision making. Meanwhile, the scientific community has developed a large number of climate projections, along with an array of models, methods, and tools to facilitate consideration of climate projections in planning and decision making. However, water resources engineers, planners, and decision makers continue to face challenges regarding how best to use the available data and tools to support major decisions, including decisions regarding infrastructure investments and long-term operating criteria. This presentation will discuss recent and ongoing research towards understanding, improving, and expanding consideration of climate projections and related uncertainties in Federal water resources planning and decision making. These research efforts address a variety of challenges, including: How to choose between available climate projection datasets and related methods, models, and tools—many of which are considered experimental or research tools? How to select an appropriate decision framework when design or operating alternatives may differ between climate scenarios? How to effectively communicate results of a climate impacts analysis to decision makers? And, how to improve robustness and resilience of water resources systems in the face of significant uncertainty? Discussion will focus on the intersection between technical challenges and decision making paradigms and the need for improved scientist-decision maker engagement through the lens of this Federal water management agency.
U.S. Global Climate Change Impacts Report, Adaptation
NASA Astrophysics Data System (ADS)
Pulwarty, R.
2009-12-01
Adaptation measures improve our ability to cope with or avoid harmful climate impacts and take advantage of beneficial ones, now and as climate varies and changes. Adaptation and mitigation are necessary elements of an effective response to climate change. Adaptation options also have the potential to moderate harmful impacts of current and future climate variability and change. The Global Climate Change Impacts Report identifies examples of adaptation-related actions currently being pursued in various sectors and regions to address climate change, as well as other environmental problems that could be exacerbated by climate change such as urban air pollution and heat waves. Some adaptation options that are currently being pursued in various regions and sectors to deal with climate change and/or other environmental issues are identified in this report. A range of adaptation responses can be employed to reduce risks through redesign or relocation of infrastructure, sustainability of ecosystem services, increased redundancy of critical social services, and operational improvements. Adapting to climate change is an evolutionary process and requires both analytic and deliberative decision support. Many of the climate change impacts described in the report have economic consequences. A significant part of these consequences flow through public and private insurance markets, which essentially aggregate and distribute society's risk. However, in most cases, there is currently insufficient robust information to evaluate the practicality, efficiency, effectiveness, costs, or benefits of adaptation measures, highlighting a need for research. Adaptation planning efforts such as that being conducted in New York City and the Colorado River will be described. Climate will be continually changing, moving at a relatively rapid rate, outside the range to which society has adapted in the past. The precise amounts and timing of these changes will not be known with certainty. The disaster research and emergency management communities have shown over that early warnings of impending hazards need to be complemented by information on the risks actually posed by the hazards (including those resulting from low levels of preparedness), existing strategies on the ground, and likely pathways to mitigate the loss and damage in the particular context in which they arise. Effective adaptations require information for long-term infrastructural planning and as critically deliberative mechanisms to structure learning and redesign in the face of emergent problems. Adaptation tends to be reactive, unevenly distributed, and focused on coping rather than preventing problems. Reduction in vulnerability will require anticipatory deliberative processes focused on incorporating adaptation into long-term municipal and public service planning, including energy, water, and health services, in the face of changing climate-related risks combined with ongoing changes in population, land use and development patterns.
"Don't Take Our Voices Away": A Role Play on the Indigenous Peoples' Global Summit on Climate Change
ERIC Educational Resources Information Center
O'Neill, Julie Treick; Swinehart, Tim
2010-01-01
The Indigenous Peoples' Climate Summit role play grew out of the Portland Area Rethinking Schools Earth in Crisis Curriculum Workgroup and the Oregon Writing Project. It was designed to introduce students to the broad injustice of the climate crisis and to familiarize them with some of the specific issues faced by different indigenous groups…
Climate change, cranes, and temperate floodplain ecosystems
King, Sammy L.
2010-01-01
Floodplain ecosystems provide important habitat to cranes globally. Lateral, longitudinal, vertical, and temporal hydrologic connectivity in rivers is essential to maintaining the functions and values of these systems. Agricultural development, flood control, water diversions, dams, and other anthropogenic activities have greatly affected hydrologic connectivity of river systems worldwide and altered the functional capacity of these systems. Although the specific effects of climate change in any given area are unknown, increased intensity and frequency of flooding and droughts and increased air and water temperatures are among many potential effects that can act synergistically with existing human modifications in these systems to create even greater challenges in maintaining ecosystem productivity. In this paper, I review basic hydrologic and geomorphic processes of river systems and use three North American rivers (Guadalupe, Platte, and Rio Grande) that are important to cranes as case studies to illustrate the challenges facing managers tasked with balancing the needs of cranes and people in the face of an uncertain climatic future. Each river system has unique natural and anthropogenic characteristics that will affect conservation strategies. Mitigating the effects of climate change on river systems necessitates an understanding of river/floodplain/landscape linkages, which include people and their laws as well as existing floodplain ecosystem conditions.
Potential Impacts of Climate Change in the United States
2009-05-01
could experience what are now considered 100-year floods every three to four years by the end of the 21st century.75 Ocean Acidification . The world’s...could be particularly harmful.81 In addition, shellfish, plankton, and corals face a highly uncertain threat from acidification of the world’s...eds., Climate Change 2007: Impacts, Adaptation and Vulnerability, p. 213; Raven and others, Ocean Acidification Due to Increasing Atmospheric
Daniel L. Childers; Mary L. Cadenasso; J. Morgan Grove; Victoria Marshall; Brian McGrath; Steward T.A. Pickett
2015-01-01
Cities around the world are facing an ever-increasing variety of challenges that seem to make more sustainable urban futures elusive. Many of these challenges are being driven by, and exacerbated by, increases in urban populations and climate change. Novel solutions are needed today if our cities are to have any hope of more sustainable and resilient futures. Because...
Water Planning in Phoenix: Managing Risk in the Face of Climatic Uncertainty
NASA Astrophysics Data System (ADS)
Gober, P.
2009-12-01
The Decision Center for a Desert City (DCDC) was founded in 2004 to develop scientifically-credible support tools to improve water management decisions in the face of growing climatic uncertainty and rapid urbanization in metropolitan Phoenix. At the center of DCDC's effort is WaterSim, a model that integrates information about water supply from groundwater, the Colorado River, and upstream watersheds and water demand from land use change and population growth. Decision levers enable users to manipulate model outcomes in response to climate change scenarios, drought conditions, population growth rates, technology innovations, lifestyle changes, and policy decisions. WaterSim allows users to examine the risks of water shortage from global climate change, the tradeoffs between groundwater sustainability and lifestyle choices, the effects of various policy decisions, and the consequences of delaying policy for the exposure to risk. WaterSim is an important point of contact for DCDC’s relationships with local decision makers. Knowledge, tools, and visualizations are co-produced—by scientists and policy makers, and the Center’s social scientists mine this co-production process for new insights about model development and application. WaterSim is less a static scientific product and more a dynamic process of engagement between decision makers and scientists.
Food security in a changing climate
Pulwarty, Roger; Eilerts, Gary; Verdin, James
2012-01-01
By 2080 the effects of climate change—on heat waves, floods, sea level rise, and drought—could push an additional 600 million people into malnutrition and increase the number of people facing water scarcity by 1.8 billion. The precise impacts will, however, strongly depend on socioeconomic conditions such as local markets and food import dependence. In the near term, two factors are also changing the nature of food security: (1) rapid urbanization, with the proportion of the global population living in urban areas expanding from 13 percent in 1975 to greater than 50 percent at present, and (2) trade and domestic market liberalization since 1993, which has promoted removal of import controls, deregulation of prices, and the loss of preferential markets for many small economies. Over the last two years, the worst drought in decades has devastated eastern Africa. The resulting food-security crisis has affected roughly 13 million people and has reminded us that there is still a long way to go in addressing current climate-related risks. In the face of such profound changes and uncertainties, our approaches to food security must evolve. In this article, we describe four key elements that, in our view, will be essential to the success of efforts to address the linked challenges of food security and climate change.
The Intersection of National Security and Climate Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hund, Gretchen; Fankhauser, Jana G.; Kurzrok, Andrew J.
On June 4, 2014, the Henry M. Jackson Foundation and the Pacific Northwest National Laboratory hosted a groundbreaking symposium in Seattle, Washington, that brought together 36 leaders from federal agencies, state and local governments, NGOs, business, and academia. The participants examined approaches and tools to help decision makers make informed choices about the climate and security risks they face. The following executive summary is based on the day’s discussions and examines the problem of climate change and its impact on national security, the responses to date, and future considerations.
Farmers' perceptions of climate change and agricultural adaptation strategies in rural Sahel.
Mertz, Ole; Mbow, Cheikh; Reenberg, Anette; Diouf, Awa
2009-05-01
Farmers in the Sahel have always been facing climatic variability at intra- and inter-annual and decadal time scales. While coping and adaptation strategies have traditionally included crop diversification, mobility, livelihood diversification, and migration, singling out climate as a direct driver of changes is not so simple. Using focus group interviews and a household survey, this study analyzes the perceptions of climate change and the strategies for coping and adaptation by sedentary farmers in the savanna zone of central Senegal. Households are aware of climate variability and identify wind and occasional excess rainfall as the most destructive climate factors. Households attribute poor livestock health, reduced crop yields and a range of other problems to climate factors, especially wind. However, when questions on land use and livelihood change are not asked directly in a climate context, households and groups assign economic, political, and social rather than climate factors as the main reasons for change. It is concluded that the communities studied have a high awareness of climate issues, but climatic narratives are likely to influence responses when questions mention climate. Change in land use and livelihood strategies is driven by adaptation to a range of factors of which climate appears not to be the most important. Implications for policy-making on agricultural and economic development will be to focus on providing flexible options rather than specific solutions to uncertain climate.
NASA Astrophysics Data System (ADS)
Kinzig, Ann P.
2015-03-01
This paper is intended as a brief introduction to climate adaptation in a conference devoted otherwise to the physics of sustainable energy. Whereas mitigation involves measures to reduce the probability of a potential event, such as climate change, adaptation refers to actions that lessen the impact of climate change. Mitigation and adaptation differ in other ways as well. Adaptation does not necessarily have to be implemented immediately to be effective; it only needs to be in place before the threat arrives. Also, adaptation does not necessarily require global, coordinated action; many effective adaptation actions can be local. Some urban communities, because of land-use change and the urban heat-island effect, currently face changes similar to some expected under climate change, such as changes in water availability, heat-related morbidity, or changes in disease patterns. Concern over those impacts might motivate the implementation of measures that would also help in climate adaptation, despite skepticism among some policy makers about anthropogenic global warming. Studies of ancient civilizations in the southwestern US lends some insight into factors that may or may not be important to successful adaptation.
Sutton, William B.; Barrett, Kyle; Moody, Allison T.; Loftin, Cynthia S.; deMaynadier, Phillip G.; Nanjappa, Priya
2015-01-01
Global climate change represents one of the most extensive and pervasive threats to wildlife populations. Amphibians, specifically salamanders, are particularly susceptible to the effects of changing climates due to their restrictive physiological requirements and low vagility; however, little is known about which landscapes and species are vulnerable to climate change. Our study objectives included, (1) evaluating species-specific predictions (based on 2050 climate projections) and vulnerabilities to climate change and (2) using collective species responses to identify areas of climate refugia for conservation priority salamanders in the northeastern United States. All evaluated salamander species were projected to lose a portion of their climatic niche. Averaged projected losses ranged from 3%–100% for individual species, with the Cow Knob Salamander (Plethodon punctatus), Cheat Mountain Salamander (Plethodon nettingi), Shenandoah Mountain Salamander (Plethodon virginia), Mabee’s Salamander (Ambystoma mabeei), and Streamside Salamander (Ambystoma barbouri) predicted to lose at least 97% of their landscape-scale climatic niche. The Western Allegheny Plateau was predicted to lose the greatest salamander climate refugia richness (i.e., number of species with a climatically-suitable niche in a landscape patch), whereas the Central Appalachians provided refugia for the greatest number of species during current and projected climate scenarios. Our results can be used to identify species and landscapes that are likely to be further affected by climate change and potentially resilient habitats that will provide consistent climatic conditions in the face of environmental change.
Human behavioral contributions to climate change: psychological and contextual drivers.
Swim, Janet K; Clayton, Susan; Howard, George S
2011-01-01
We are facing rapid changes in the global climate, and these changes are attributable to human behavior. Humans produce this global impact through our use of natural resources, multiplied by the vast increase in population seen in the past 50 to 100 years. Our goal in this article is to examine the underlying psychosocial causes of human impact, primarily through patterns of reproduction and consumption. We identify and distinguish individual, societal, and behavioral predictors of environmental impact. Relevant research in these areas (as well as areas that would be aided by greater attention by psychologists) are reviewed. We conclude by highlighting ethical issues that emerge when considering how to address human behavioral contributions to climate change.
Climate Change and Health in the Urban Context: The Experience of Barcelona.
Villalbí, Joan R; Ventayol, Irma
2016-07-01
Climate change poses huge challenges for public health, and cities are at the forefront of this process. The purpose of this paper is to present the issues climate change poses for public health in the city of Barcelona, how they are being addressed, and what are the current major challenges, trying to contribute to the development of a baseline understanding of the status of adaptation in cities from a public health perspective. The major issues related to climate change faced by the city are common to other urban centers in a Mediterranean climate: heat waves, water availability and quality, air quality, and diseases transmitted by vectors, and all are reviewed in detail with empirical data. They are not a potential threat for the future, but have actually challenged the city services and infrastructure over the last years, requiring sustainable responses and rigorous planning. © The Author(s) 2016.
Local oceanographic variability influences the performance of juvenile abalone under climate change.
Boch, C A; Micheli, F; AlNajjar, M; Monismith, S G; Beers, J M; Bonilla, J C; Espinoza, A M; Vazquez-Vera, L; Woodson, C B
2018-04-03
Climate change is causing warming, deoxygenation, and acidification of the global ocean. However, manifestation of climate change may vary at local scales due to oceanographic conditions. Variation in stressors, such as high temperature and low oxygen, at local scales may lead to variable biological responses and spatial refuges from climate impacts. We conducted outplant experiments at two locations separated by ~2.5 km and two sites at each location separated by ~200 m in the nearshore of Isla Natividad, Mexico to assess how local ocean conditions (warming and hypoxia) may affect juvenile abalone performance. Here, we show that abalone growth and mortality mapped to variability in stress exposure across sites and locations. These insights indicate that management decisions aimed at maintaining and recovering valuable marine species in the face of climate change need to be informed by local variability in environmental conditions.
Port Communities Face Many Challenges: • Climate change – Sea Level Rise, Extreme Events: “Assets” become Vulnerabilities; Nuisance flooding; Changes in waste water and stormwater capacity; Changes in near-shore ecology and water quality • Port Exp...
Global climate changes, natural disasters, and travel health risks.
Diaz, James H
2006-01-01
Whether the result of cyclical atmospheric changes, anthropogenic activities, or combinations of both, authorities now agree that the earth is warming from a variety of climatic effects, including the cascading effects of greenhouse gas emissions to support human activities. To date, most reports of the public health outcomes of global warming have been anecdotal and retrospective in design and have focused on heat stroke deaths following heat waves, drowning deaths in floods and tsunamis, and mosquito-borne infectious disease outbreaks following tropical storms and cyclones. Accurate predictions of the true public health outcomes of global climate change are confounded by several effect modifiers including human acclimatization and adaptation, the contributions of natural climatic changes, and many conflicting atmospheric models of climate change. Nevertheless, temporal relationships between environmental factors and human health outcomes have been identified and may be used as criteria to judge the causality of associations between the human health outcomes of climate changes and climate-driven natural disasters. Travel medicine physicians are obligated to educate their patients about the known public health outcomes of climate changes, about the disease and injury risk factors their patients may face from climate-spawned natural disasters, and about the best preventive measures to reduce infectious diseases and injuries following natural disasters throughout the world.
Climate change, extreme weather events, air pollution and respiratory health in Europe.
De Sario, M; Katsouyanni, K; Michelozzi, P
2013-09-01
Due to climate change and other factors, air pollution patterns are changing in several urbanised areas of the world, with a significant effect on respiratory health both independently and synergistically with weather conditions; climate scenarios show Europe as one of the most vulnerable regions. European studies on heatwave episodes have consistently shown a synergistic effect of air pollution and high temperatures, while the potential weather-air pollution interaction during wildfires and dust storms is unknown. Allergen patterns are also changing in response to climate change, and air pollution can modify the allergenic potential of pollens, especially in the presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known; the health consequences vary from decreases in lung function to allergic diseases, new onset of diseases, exacerbation of chronic respiratory diseases, and premature death. These multidimensional climate-pollution-allergen effects need to be taken into account in estimating both climate and air pollution-related respiratory effects, in order to set up adequate policy and public health actions to face both the current and future climate and pollution challenges.
The adaptation challenge in the Arctic
NASA Astrophysics Data System (ADS)
Ford, James D.; McDowell, Graham; Pearce, Tristan
2015-12-01
It is commonly asserted that human communities in the Arctic are highly vulnerable to climate change, with the magnitude of projected impacts limiting their ability to adapt. At the same time, an increasing number of field studies demonstrate significant adaptive capacity. Given this paradox, we review climate change adaptation, resilience and vulnerability research to identify and characterize the nature and magnitude of the adaptation challenge facing the Arctic. We find that the challenge of adaptation in the Arctic is formidable, but suggest that drivers of vulnerability and barriers to adaptation can be overcome, avoided or reduced by individual and collective efforts across scales for many, if not all, climate change risks.
Genetic strategies for reforestation in the face of global climate change
F. Thomas Ledig; J.H. Kitzmiller
1992-01-01
If global warming materializes as projected, natural or artificial regeneration of forests with local seed sources will become increasingly difficult. However, global warming is far from a certainty and predictions of its magnitude and timing vary at least twofold, In the face of such uncertainty, reforestation strategies should emphasize conservation, diversification...
realfriends: A Student Social Action Project
ERIC Educational Resources Information Center
Van Zoost, Steven
2012-01-01
"realfriends" is a social action project created by Grade 12 English students in Windsor, Nova Scotia. Its purpose was to create a face-to-face social network that would help change the school climate into a more social space. Interest in socializing is nothing new for teenagers, but these students articulated a worry that people their…
Carbon and nitrogen pools in oak-hickory forests of varying productivity
Donald J. Kaczmarek; Karyn S. Rodkey; Robert T. Reber; Phillip E. Pope; Felix, Jr. Ponder
1995-01-01
Carbon (C) and nitrogen (N) storage capacities are critical issues facing forest ecosystem management in the face of potential global climate change. The amount of C sequestered by forest ecosystems can be a significant sink for increasing atmospheric CO2 levels. N availability can interact with other environmental factors such as water...
Projected response of an endangered marine turtle population to climate change
NASA Astrophysics Data System (ADS)
Saba, Vincent S.; Stock, Charles A.; Spotila, James R.; Paladino, Frank V.; Tomillo, Pilar Santidrián
2012-11-01
Assessing the potential impacts of climate change on individual species and populations is essential for the stewardship of ecosystems and biodiversity. Critically endangered leatherback turtles in the eastern Pacific Ocean are excellent candidates for such an assessment because their sensitivity to contemporary climate variability has been substantially studied. If incidental fisheries mortality is eliminated, this population still faces the challenge of recovery in a rapidly changing climate. Here we combined an Earth system model, climate model projections assessed by the Intergovernmental Panel on Climate Change and a population dynamics model to estimate a 7% per decade decline in the Costa Rica nesting population over the twenty-first century. Whereas changes in ocean conditions had a small effect on the population, the ~2.5°C warming of the nesting beach was the primary driver of the decline through reduced hatching success and hatchling emergence rate. Hatchling sex ratio did not substantially change. Adjusting nesting phenology or changing nesting sites may not entirely prevent the decline, but could offset the decline rate. However, if future observations show a long-term decline in hatching success and emergence rate, anthropogenic climate mitigation of nests (for example, shading, irrigation) may be able to preserve the nesting population.
Conserving the zoological resources of Bangladesh under a changing climate.
DAS, Bidhan C
2009-06-01
It is now well recognized that Bangladesh is one of the world's most vulnerable countries to climate change and sea level rise. Low levels of natural resources and a high occurrence of natural disasters further add to the challenges faced by the country. The impacts of climate change are anticipated to exacerbate these existing stresses and constitute a serious impediment to poverty reduction and economic development. Ecosystems and biodiversity are important key sectors of the economy and natural resources of the country are selected as the most vulnerable to climate change. It is for these reasons that Bangladesh should prepare to conserve its natural resources under changed climatic conditions. Unfortunately, the development of specific strategies and policies to address the effects of climate change on the ecosystem and on biodiversity has not commenced in Bangladesh. Here, I present a detailed review of animal resources of Bangladesh, an outline of the major areas in zoological research to be integrated to adapt to climate change, and identified few components for each of the aforesaid areas in relation to the natural resource conservation and management in the country. © 2009 ISZS, Blackwell Publishing and IOZ/CAS.
Phosphorus acquisition and utilisation in crop legumes under global change.
Pang, Jiayin; Ryan, Megan H; Lambers, Hans; Siddique, Kadambot Hm
2018-05-28
Improving phosphorus (P)-use efficiency in legumes is a worldwide challenge in the face of an increasing world population, dwindling global rock phosphate reserves, the relatively high P demand of legumes and global change. This review focuses on P acquisition of crop legumes in response to climate change. We advocate further studies on: firstly, the response of carboxylate exudation, mycorrhizas and root morphology to climate change and their role in P acquisition as dependent on edaphic factors; secondly, developing intercropping systems with a combination of a legume and another crop species to enhance P acquisition; and thirdly, the impact of the interactions of the major climate change factors on P acquisition in the field. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wiley, Lindsay F
2010-01-01
The time is ripe for innovation in global health governance if we are to achieve global health and development objectives in the face of formidable challenges. Integration of global health concerns into the law and governance of other, related disciplines should be given high priority. This article explores opportunities for health policymaking in the global response to climate change. Climate change and environmental degradation will affect weather disasters, food and water security, infectious disease patterns, and air pollution. Although scientific research has pointed to the interdependence of the global environment and human health, policymakers have been slow to integrate their approaches to environmental and health concerns. A robust response to climate change will require improved integration on two fronts: health concerns must be given higher priority in the response to climate change and threats associated with climate change and environmental degradation must be more adequately addressed by global health law and governance. The mitigation/adaptation response paradigm developing within and beyond the United Nations Framework Convention on Climate Change provides a useful framework for thinking about global health law and governance with respect to climate change, environmental degradation, and possibly other upstream determinants of health as well. © 2010 American Society of Law, Medicine & Ethics, Inc.
Enhancing watershed research capacity: the role of data management
USDA-ARS?s Scientific Manuscript database
Water resources are under growing pressure globally, and in the face of projected climate change, changes in precipitation frequency and intensity; evapotranspiration, runoff, and snowmelt pose severe societal challenges. Interdisciplinary environmental research across natural and social sciences to...
NASA Astrophysics Data System (ADS)
Choudhary, S.; Nayak, R.; Gore, A.
2013-12-01
There is an overwhelming international scientific consensus on climate change; however, the global community still lacks the resolve to implement meaningful solutions. No meaningful solutions can be found without educating and engaging non-scientific community in addressing the climate change. With more than 41 percent of world's population falling under 10-34 years age group, the future citizens, inspiring them is a great challenge for the climate scientists. In order to educate the youth and students in India, a model program named 'Climeducate' was created with the help of scientists in Indian Polar Research Network (IPRN), trained climate leaders in ';The Climate Reality Project', and a local organization (Planature Consultancy Services). This model was developed keeping in mind the obstacles that may be faced in reaching out to non-specialist audiences in different parts of India. The identified obstacles were 1- making such a presentation that could reveal the truth about the climate crisis in a way that ignites the moral courage in non-specialist audience 2- lack of funding for travel and boarding expenses of a climate communicator, 3- language barrier in educating local audiences, 4- logistical arrangements at the venue. In this presentation we will share how all the four obstacles were overcome. Audiences were also given short questionnaires before and after the presentation. Remarkable changes in the pattern of answers, data would be shared in the presentation, were observed between the two questionnaires. More importantly, a significant difference in audience engagement was observed comparing a presentation that integrated scientific data with audiovisuals prepared by The Climate Reality Project Chairman, Al Gore (also Former US Vice President) and the other using simple PowerPoint slides. With the success of this program which was implemented among 500 audiences in the eastern India, we aim to replicate this program soon in other parts of India. This presentation will outline how scientific story telling through an effective collaboration of network of scientists, climate mentors, school teachers and local organizations would derive significant results in inspiring, engaging and preparing non-specialists audiences to face the realities of climate change.
Climate change and elevated extinction rates of reptiles from Mediterranean Islands.
Foufopoulos, Johannes; Kilpatrick, A Marm; Ives, Anthony R
2011-01-01
Recent climate change has caused the distributions of many species to shift poleward, yet few empirical studies have addressed which species will be vulnerable to longer-term climate changes. To investigate past consequences of climate change, we calculated the population extinction rates of 35 reptile species from 87 Greek land-bridge islands in the Mediterranean that occurred over the past 16,000 years. Population extinction rates were higher for those species that today have more northern distributions. We further found that northern species requiring cool, mesic habitats had less available suitable habitat among islands, implicating loss of suitable habitat in their elevated extinction rates. These extinctions occurred in the context of increasing habitat fragmentation, with islands shrinking and separating as sea levels rose. Thus, the circumstances faced by reptiles on the islands are similar to challenges for numerous species today that must cope with a changing climate while living in an increasingly human-fragmented landscape. Our island-biogeographical approach to investigating historical population extinctions gives insight into the long-term patterns of species responses to climate change.
Assessment of Coastal Governance for Climate Change Adaptation in Kenya
NASA Astrophysics Data System (ADS)
Ojwang, Lenice; Rosendo, Sergio; Celliers, Louis; Obura, David; Muiti, Anastasia; Kamula, James; Mwangi, Maina
2017-11-01
The coastline of Kenya already experiences effects of climate change, adding to existing pressures such as urbanization. Integrated coastal management (ICM) is increasingly recognized as a key policy response to deal with the multiple challenges facing coastal zones, including climate change. It can create an enabling governance environment for effective local action on climate change by facilitating a structured approach to dealing with coastal issues. It encompasses the actions of a wide range of actors, including local governments close to people and their activities affected by climate change. Functioning ICM also offers opportunities for reducing risks and building resilience. This article applied a modified capitals approach framework (CAF), consisting of five "capitals," to assess the status of county government capacity to respond to climate change within the context of coastal governance in three county governments in Kenya. The baseline was defined in terms of governance relating to the implementation of the interrelated policy systems of ICM and coastal climate change adaptation (CCA). The CAF framework provided a systematic approach to building a governance baseline against which to assess the progress of county governments in responding to climate change. It identified gaps in human capacity, financial resource allocation to adaptation and access to climate change information. Furthermore, it showed that having well-developed institutions, including regulatory frameworks at the national level can facilitate but does not automatically enable adaptation at the county level.
Managing United States public lands in response to climate change: a view from the ground up.
Ellenwood, Mikaela S; Dilling, Lisa; Milford, Jana B
2012-05-01
Federal land managers are faced with the task of balancing multiple uses and goals when making decisions about land use and the activities that occur on public lands. Though climate change is now well recognized by federal agencies and their local land and resource managers, it is not yet clear how issues related to climate change will be incorporated into on-the-ground decision making within the framework of multiple use objectives. We conducted a case study of a federal land management agency field office, the San Juan Public Lands Center in Durango, CO, U.S.A., to understand from their perspective how decisions are currently made, and how climate change and carbon management are being factored into decision making. We evaluated three major management sectors in which climate change or carbon management may intersect other use goals: forests, biofuels, and grazing. While land managers are aware of climate change and eager to understand more about how it might affect land resources, the incorporation of climate change considerations into everyday decision making is currently quite limited. Climate change is therefore on the radar screen, but remains a lower priority than other issues. To assist the office in making decisions that are based on sound scientific information, further research is needed into how management activities influence carbon storage and resilience of the landscape under climate change.
Climate Change and Children: Health Risks of Abatement Inaction, Health Gains from Action.
McMichael, Anthony J
2014-08-14
As human-driven climate change advances, many adults fret about the losses of livelihoods, houses and farms that may result. Children fret about their parents' worries and about information they hear, but do not really understand about the world's climate and perhaps about their own futures. In chronically worried or anxious children, blood cortisol levels rise and adverse changes accrue in various organ systems that prefigure adult-life diseases. Meanwhile, for many millions of children in poor countries who hear little news and live with day-to-day fatalism, climate change threatens the fundamentals of life-food sufficiency, safe drinking water and physical security-and heightens the risks of diarrhoeal disease, malaria and other climate-sensitive infections. Poor and disadvantaged populations, and especially their children, will bear the brunt of climate-related trauma, disease and premature death over the next few decades and, less directly, from social disruption, impoverishment and displacement. The recent droughts in Somalia as the Indian Ocean warmed and monsoonal rains failed, on top of chronic civil war, forced hundreds of thousands of Somali families into north-eastern Kenya's vast Dadaab refugee camps, where, for children, shortages of food, water, hygiene and schooling has endangered physical, emotional and mental health. Children warrant special concern, both as children per se and as the coming generation likely to face ever more extreme climate conditions later this century. As children, they face diverse risks, from violent weather, proliferating aeroallergens, heat extremes and mobilised microbes, through to reduced recreational facilities, chronic anxieties about the future and health hazards of displacement and local resource conflict. Many will come to regard their parents' generation and complacency as culpable.
Engaging Communities using a MOOC combined with Public Library Discussions
NASA Astrophysics Data System (ADS)
Ackerman, S. A.; Mooney, M. E.; Morrill, J.; Handlos, Z.; Morrill, S.
2015-12-01
A massive open online course, or MOOC, is an noncredit education activity that delivers learning content to anyone with access to the Internet. Individual courses are generally free of charge, while a certificate can have small costs. The University of Wisconsin-Madison has exploring the use of MOOC as part of its Wisconsin Idea. In the 2015, a series of MOOCs focusing on the environment were offered via Coursera. One of those MOOCS was "Changing Weather and Climate of the Great Lakes Region." This 4-week course features a new season each week through short lectures and activities covering Great Lakes weather, observed changes in the climate, and societal impacts of climate change. (https://www.coursera.org/course/greatlakesclimate) The MOOC conveyed information from NOAA's National Weather Service (NWS) Weather-Ready Nation initiative as well as findings from the recent National Climate Assessment and the Wisconsin Initiative on Climate Change Impacts (WICCI). The course was organized by members of the Department of Atmospheric and Oceanic Sciences and the Cooperative Institute for Meteorological Satellite Studies; material included discussion, videos for lectures as well as guest lecturers. There were also weekly visits by the course team to 21 public libraries throughout the state of WI. The library collaboration as facilitated by WiLS (Wisconsin Library Services - wils.org), who organized the application and selection process. The public libraries hosted local residents and course instructors in discussions of course content in the context of their communities as well as strategies to mitigate the climate change impacts. This presentation will discuss the public library discussions experience and the our evaluation of the impact of including a face-to-face component in the MOOC activity on engagement and learning.
Leslie A. Brandt; Abigail Derby Lewis; Lydia Scott; Lindsay Darling; Robert T. Fahey; Louis Iverson; David J. Nowak; Allison R. Bodine; Andrew Bell; Shannon Still; Patricia R. Butler; Andrea Dierich; Stephen D. Handler; Maria K. Janowiak; Stephen N. Matthews; Jason W. Miesbauer; Matthew Peters; Anantha Prasad; P. Danielle Shannon; Douglas Stotz; Christopher W. Swanston
2017-01-01
The urban forest of the Chicago Wilderness region, a 7-million-acre area covering portions of Illinois, Indiana, Michigan, and Wisconsin, will face direct and indirect impacts from a changing climate over the 21st century. This assessment evaluates the vulnerability of urban trees and natural and developed landscapes within the Chicago Wilderness region to a range of...
Zhang, Ke; de Almeida Castanho, Andrea D; Galbraith, David R; Moghim, Sanaz; Levine, Naomi M; Bras, Rafael L; Coe, Michael T; Costa, Marcos H; Malhi, Yadvinder; Longo, Marcos; Knox, Ryan G; McKnight, Shawna; Wang, Jingfeng; Moorcroft, Paul R
2015-02-20
There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO 2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias-corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land-use change scenarios. We assess the relative roles of climate change, CO 2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO 2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land-use change and climate-driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO 2 impacts varies considerably, depending on both the climate and land-use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors - climate change, CO 2 fertilization effects, fire, and land use - to the fate of the Amazon over the coming century. © 2015 John Wiley & Sons Ltd.
Restoring whitebark pine ecosystems in the face of climate change
Robert E. Keane; Lisa M. Holsinger; Mary F. Mahalovich; Diana F. Tomback
2017-01-01
Whitebark pine (Pinus albicaulis) forests have been declining throughout their range in western North America from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the exotic disease white pine blister rust (Cronartium ribicola). Projected warming and drying trends in climate may exacerbate this decline;...
Climate change and the Rocky Mountains: Chapter 20
Byrne, James M.; Fagre, Daniel B.; MacDonald, Ryan; Muhlfeld, Clint C.
2014-01-01
For at least half of the year, the Rocky Mountains are shrouded in snow that feeds a multitude of glaciers. Snow and ice eventually melt into rivers that have eroded deep valleys that contain rich aquatic and terrestrial ecosystems. Because the Rocky Mountains are the major divide on the continent, rainfall and melt water from glaciers and snowfields feed major river systems that run to the Pacific, Atlantic, and Arctic oceans. The Rockies truly are the water tower for much of North America, and part of the Alpine backbone of North and South America. For purposes of this chapter, we limit our discussion to the Rocky Mountains of the Canadian provinces of Alberta and British Columbia, and the U.S. states of Montana, Idaho, Wyoming, and Colorado. Similar to other mountain systems, the altitude of the Rocky Mountains condenses the weather, climate and ecosystems of thousands of kilometres of latitude into very short vertical distances. In one good day, a strong hiker can journey by foot from the mid-latitude climates of the great plains of North America to an arctic climate near the top of Rocky Mountain peaks. The steep climatic gradients of mountain terrain create some of the most diverse ecosystems in the world, but it is those rapid changes in microclimate and ecology that make mountains sensitive to climate change. The energy budget in mountains varies dramatically not only with elevation but with slope and aspect. A modest change in the slope of the terrain over short distances may radically change the solar radiation available in that location. Shaded or north facing slopes have very different microclimates than the same elevations in a sunlit location, or for a hill slope facing south. The complexities associated with the mountain terrain of the Rockies compound complexities of weather and climate to create diverse, amazing ecosystems. This chapter addresses the impacts of climate change on Rocky Mountain ecosystems in light of their complexities and sensitivities. The chapter emphasizes how climate change affects aquatic resources of the Rockies because they are impacted so directly by the changing snow and ice regimes. The chapter also suggests some approaches for coping with these impacts. Climate change is real and ever present, and the role of each of us in changing the climate is also real and present. The Rocky Mountains are a vast and complex region that is valuable both for resources and ecosystems, but the Rockies cannot provide the valuable resources we need, unless we protect and conserve mountain ecosystems. Hopefully this discussion of the major changes ongoing in the Rocky Mountains due to climate change will add to the collective societal will to minimize this change in the future.
Thomas, Chris D
2011-05-01
Many of the species at greatest risk of extinction from anthropogenic climate change are narrow endemics that face insurmountable dispersal barriers. In this review, I argue that the only viable option to maintain populations of these species in the wild is to translocate them to other locations where the climate is suitable. Risks of extinction to native species in destination areas are small, provided that translocations take place within the same broad geographic region and that the destinations lack local endemics. Biological communities in these areas are in the process of receiving many hundreds of other immigrant species as a result of climate change; ensuring that some of the 'new' inhabitants are climate-endangered species could reduce the net rate of extinction. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vallam, P.; Qin, X. S.
2017-07-01
Flooding risk is increasing in many parts of the world and may worsen under climate change conditions. The accuracy of predicting flooding risk relies on reasonable projection of meteorological data (especially rainfall) at the local scale. The current statistical downscaling approaches face the difficulty of projecting multi-site climate information for future conditions while conserving spatial information. This study presents a combined Long Ashton Research Station Weather Generator (LARS-WG) stochastic weather generator and multi-site rainfall simulator RainSim (CLWRS) approach to investigate flow regimes under future conditions in the Kootenay Watershed, Canada. To understand the uncertainty effect stemming from different scenarios, the climate output is fed into a hydrologic model. The results showed different variation trends of annual peak flows (in 2080-2099) based on different climate change scenarios and demonstrated that the hydrological impact would be driven by the interaction between snowmelt and peak flows. The proposed CLWRS approach is useful where there is a need for projection of potential climate change scenarios.
Population trends influence species ability to track climate change.
Ralston, Joel; DeLuca, William V; Feldman, Richard E; King, David I
2017-04-01
Shifts of distributions have been attributed to species tracking their fundamental climate niches through space. However, several studies have now demonstrated that niche tracking is imperfect, that species' climate niches may vary with population trends, and that geographic distributions may lag behind rapid climate change. These reports of imperfect niche tracking imply shifts in species' realized climate niches. We argue that quantifying climate niche shifts and analyzing them for a suite of species reveal general patterns of niche shifts and the factors affecting species' ability to track climate change. We analyzed changes in realized climate niche between 1984 and 2012 for 46 species of North American birds in relation to population trends in an effort to determine whether species differ in the ability to track climate change and whether differences in niche tracking are related to population trends. We found that increasingly abundant species tended to show greater levels of niche expansion (climate space occupied in 2012 but not in 1980) compared to declining species. Declining species had significantly greater niche unfilling (climate space occupied in 1980 but not in 2012) compared to increasing species due to an inability to colonize new sites beyond their range peripheries after climate had changed at sites of occurrence. Increasing species, conversely, were better able to colonize new sites and therefore showed very little niche unfilling. Our results indicate that species with increasing trends are better able to geographically track climate change compared to declining species, which exhibited lags relative to changes in climate. These findings have important implications for understanding past changes in distribution, as well as modeling dynamic species distributions in the face of climate change. © 2016 John Wiley & Sons Ltd.
Herrmann, Alina; Sauerborn, Rainer
2018-04-24
Heat health impacts (HHI) on the elderly are a growing concern in the face of climate change and aging populations. General practitioners (GPs) have an important role in health care for the elderly. To inform the development of effective prevention measures, it is important to investigate GPs’ perceptions of HHI. Twenty four qualitative expert interviews were conducted with GPs and analyzed using the framework approach. GPs were generally aware of heat health impacts, focusing on cardiovascular morbidity and volume imbalances. Perceptions of mortality and for instance impacts on respiratory diseases or potentially risky drugs in heat waves partly diverged from findings in literature. GPs judged the current relevance of HHI differently depending on their attitudes towards: (i) sensitivity of the elderly, (ii) status of nursing care and (iii) heat exposure in Baden-Württemberg. Future relevance of HHI was perceived to be increasing by most GPs. The main cause identified for this was population aging, while impacts of climate change were judged as uncertain by many. GPs’ perceptions, partly diverging from literature, show that GPs’ knowledge and awareness on HHI and climate change needs to be strengthened. However, they also emphasize the need for more research on HHI in the ambulant health care setting. Furthermore, GPs perceptions suggest that strong nursing care and social networks for elderly are major elements of a climate resilient health system.
Baptista, Miguel; Santos, Catarina; Aurélio, Maria L; Pimentel, Marta; Pegado, Maria Rita; Paula, José Ricardo; Calado, Ricardo; Repolho, Tiago; Rosa, Rui
2015-01-01
Abstract Seahorses are currently facing great challenges in the wild, including habitat degradation and overexploitation, and how they will endure additional stress from rapid climate change has yet to be determined. Unlike most fishes, the poor swimming skills of seahorses, along with the ecological and biological constraints of their unique lifestyle, place great weight on their physiological ability to cope with climate changes. In the present study, we evaluate the effects of ocean warming (+4°C) and acidification (ΔpH = −0.5 units) on the physiological and behavioural ecology of adult temperate seahorses, Hippocampus guttulatus. Adult seahorses were found to be relatively well prepared to face future changes in ocean temperature, but not the combined effect of warming and acidification. Seahorse metabolism increased normally with warming, and behavioural and feeding responses were not significantly affected. However, during hypercapnia the seahorses exhibited signs of lethargy (i.e. reduced activity levels) combined with a reduction of feeding and ventilation rates. Nonetheless, metabolic rates were not significantly affected. Future ocean changes, particularly ocean acidification, may further threaten seahorse conservation, turning these charismatic fishes into important flagship species for global climate change issues. PMID:27293694
Double Exposure: Photographing Climate Change
NASA Astrophysics Data System (ADS)
Arnold, D. P.; Wake, C. P.; Romanow, G. B.
2008-12-01
Double Exposure, Photographing Climate Change, is a fine-art photography exhibition that examines climate change through the prism of melting glaciers. The photographs are twinned shots of glaciers, taken in the mid-20th century by world-renowned photographer Brad Washburn, and in the past two years by Boston journalist/photographer David Arnold. Arnold flew in Washburn's aerial "footprints", replicating stunning black and white photographs, and documenting one irreversible aspect of climate change. Double Exposure is art with a purpose. It is designed to educate, alarm and inspire its audiences. Its power lies in its beauty and the shocking changes it has captured through a camera lens. The interpretive text, guided by numerous experts in the fields of glaciology, global warming and geology, helps convey the message that climate change has already forced permanent changes on the face of our planet. The traveling exhibit premiered at Boston's Museum of Science in April and is now criss-crossing the nation. The exhibit covers changes in the 15 glaciers that have been photographed as well as related information about global warming's effect on the planet today.
Headlines: Planet Earth: Improving Climate Literacy with Short Format News Videos
NASA Astrophysics Data System (ADS)
Tenenbaum, L. F.; Kulikov, A.; Jackson, R.
2012-12-01
One of the challenges of communicating climate science is the sense that climate change is remote and unconnected to daily life--something that's happening to someone else or in the future. To help face this challenge, NASA's Global Climate Change website http://climate.nasa.gov has launched a new video series, "Headlines: Planet Earth," which focuses on current climate news events. This rapid-response video series uses 3D video visualization technology combined with real-time satellite data and images, to throw a spotlight on real-world events.. The "Headlines: Planet Earth" news video products will be deployed frequently, ensuring timeliness. NASA's Global Climate Change Website makes extensive use of interactive media, immersive visualizations, ground-based and remote images, narrated and time-lapse videos, time-series animations, and real-time scientific data, plus maps and user-friendly graphics that make the scientific content both accessible and engaging to the public. The site has also won two consecutive Webby Awards for Best Science Website. Connecting climate science to current real-world events will contribute to improving climate literacy by making climate science relevant to everyday life.
Climate change impacts on human exposures to air pollution ...
This is an abstract for a presentations at the Annual Conference of the International Society on Exposure Science and Environmental Epidemiology. This presentation will serve as an introduction to the symposium. As we consider the potential health impacts of a warming planet, the relationships between climate change and air pollutants become increasingly important to understand. These relationships are complex and highly variable, causing a variety of environmental impacts at local, regional and global scales. Human exposures and health impacts for air pollutants have the potential to be altered by changes in climate through multiple factors that drive population exposures to these pollutants. Research on this topic will provide both state and local governments with the tools and scientific knowledge base to undertake any necessary adaptation of the air pollution regulations and/or public health management systems in the face of climate change.
Assessing vulnerability of giant pandas to climate change in the Qinling Mountains of China.
Li, Jia; Liu, Fang; Xue, Yadong; Zhang, Yu; Li, Diqiang
2017-06-01
Climate change might pose an additional threat to the already vulnerable giant panda ( Ailuropoda melanoleuca ). Effective conservation efforts require projections of vulnerability of the giant panda in facing climate change and proactive strategies to reduce emerging climate-related threats. We used the maximum entropy model to assess the vulnerability of giant panda to climate change in the Qinling Mountains of China. The results of modeling included the following findings: (1) the area of suitable habitat for giant pandas was projected to decrease by 281 km 2 from climate change by the 2050s; (2) the mean elevation of suitable habitat of giant panda was predicted to shift 30 m higher due to climate change over this period; (3) the network of nature reserves protect 61.73% of current suitable habitat for the species, and 59.23% of future suitable habitat; (4) current suitable habitat mainly located in Chenggu, Taibai, and Yangxian counties (with a total area of 987 km 2 ) was predicted to be vulnerable. Assessing the vulnerability of giant panda provided adaptive strategies for conservation programs and national park construction. We proposed adaptation strategies to ameliorate the predicted impacts of climate change on giant panda, including establishing and adjusting reserves, establishing habitat corridors, improving adaptive capacity to climate change, and strengthening monitoring of giant panda.
Parasite biodiversity faces extinction and redistribution in a changing climate
Carlson, Colin J.; Burgio, Kevin R.; Dougherty, Eric R.; Phillips, Anna J.; Bueno, Veronica M.; Clements, Christopher F.; Castaldo, Giovanni; Dallas, Tad A.; Cizauskas, Carrie A.; Cumming, Graeme S.; Doña, Jorge; Harris, Nyeema C.; Jovani, Roger; Mironov, Sergey; Muellerklein, Oliver C.; Proctor, Heather C.; Getz, Wayne M.
2017-01-01
Climate change is a well-documented driver of both wildlife extinction and disease emergence, but the negative impacts of climate change on parasite diversity are undocumented. We compiled the most comprehensive spatially explicit data set available for parasites, projected range shifts in a changing climate, and estimated extinction rates for eight major parasite clades. On the basis of 53,133 occurrences capturing the geographic ranges of 457 parasite species, conservative model projections suggest that 5 to 10% of these species are committed to extinction by 2070 from climate-driven habitat loss alone. We find no evidence that parasites with zoonotic potential have a significantly higher potential to gain range in a changing climate, but we do find that ectoparasites (especially ticks) fare disproportionately worse than endoparasites. Accounting for host-driven coextinctions, models predict that up to 30% of parasitic worms are committed to extinction, driven by a combination of direct and indirect pressures. Despite high local extinction rates, parasite richness could still increase by an order of magnitude in some places, because species successfully tracking climate change invade temperate ecosystems and replace native species with unpredictable ecological consequences. PMID:28913417
Climate change and health in Bangladesh: a baseline cross-sectional survey
Kabir, Md Iqbal; Rahman, Md Bayzidur; Smith, Wayne; Lusha, Mirza Afreen Fatima; Milton, Abul Hasnat
2016-01-01
Background Bangladesh is facing the unavoidable challenge of adaptation to climate change. However, very little is known in relation to climate change and health. This article provides information on potential climate change impact on health, magnitude of climate-sensitive diseases, and baseline scenarios of health systems to climate variability and change. Design A cross-sectional study using multistage cluster sampling framework was conducted in 2012 among 6,720 households of 224 rural villages in seven vulnerable districts of Bangladesh. Information was obtained from head of the households using a pretested, interviewer-administered, structured questionnaire. A total of 6,720 individuals participated in the study with written, informed consent. Results The majority of the respondents were from the low-income vulnerable group (60% farmers or day labourers) with an average of 30 years’ stay in their locality. Most of them (96%) had faced extreme weather events, 45% of people had become homeless and displaced for a mean duration of 38 days in the past 10 years. Almost all of the respondents (97.8%) believe that health care expenditure increased after the extreme weather events. Mean annual total health care expenditure was 6,555 Bangladeshi Taka (BDT) (1 USD=77 BDT in 2015) and exclusively out of pocket of the respondents. Incidence of dengue was 1.29 (95% CI 0.65–2.56) and malaria 13.86 (95% CI 6.00–32.01) per 1,000 adult population for 12 months preceding the data collection. Incidence of diarrhoea and pneumonia among under-five children of the households for the preceding month was 10.3% (95% CI 9.16–11.66) and 7.3% (95% CI 6.35–8.46), respectively. Conclusions The findings of this survey indicate that climate change has a potential adverse impact on human health in Bangladesh. The magnitude of malaria, dengue, childhood diarrhoea, and pneumonia was high among the vulnerable communities. Community-based adaptation strategy for health could be beneficial to minimise climate change attributed health burden of Bangladesh. PMID:27049012
NASA Astrophysics Data System (ADS)
Tayne, K.
2015-12-01
As K12 teachers seek ways to provide meaningful learning opportunities for students to understand climate change, they often face barriers to teaching about climate and/or lack relevant resources on the topic. In an effort to better understand how to support K12 teachers in this role, a survey about "teaching climate change" was created and distributed. The results of the 2015 survey are presented, based on more than 200 teacher responses. Respondents included National Science Teachers Association (NSTA) members, 2015 STEM Teacher and Researcher (STAR) Fellows and science teachers from several U.S. school districts. The survey identifies teachers' perceived barriers to teaching climate change, for example difficulty integrating climate change concepts into specific core courses (i.e., biology), as well as desired classroom resources, such as climate change project-based learning (PBL) units that connect to the Next Generation Science Standards (NGSS). Survey results also indicate possible pathways for federal agencies, non-profits, universities and other organizations to have a more significant impact on climate literacy in the classroom. In response to the survey results, a comprehensive guide is being created to teach climate change in K12 classrooms, addressing barriers and providing resources for teachers. For example, in the survey, some teachers indicated that they lacked confidence in their content knowledge and understanding of climate change, so this guide provides web-based resources to help further an educator's understanding of climate change, as well as opportunities for relevant online and in-person professional development. In this quest for desired resources to teach climate change, gaps in accessible and available online resources are being identified. Information about these "gaps" may help organizations that strive to support climate literacy in the classroom better serve teachers.
EPA's Sustainable Port Communities: Anticipating Changes in ...
Port Communities Face Many Challenges: • Climate change – Sea Level Rise, Extreme Events: “Assets” become Vulnerabilities; Nuisance flooding; Changes in waste water and stormwater capacity; Changes in near-shore ecology and water quality • Port Expansion: Increasing multi-modal cargo transport, bigger ships; Energy use, transport; Invasive species; Homeland security; Increased development pressure (land use); Population growth • EJ Communities: Hazardous waste, cargo; Changes in emissions (amount, type, distribution) Changes in demographics, real estate values Disproportionately impacted by climate change • Competing Economic Interests Tourism and historical resources Protection of ecosystem services To make other federal agencies involved in resilience research aware of our study and to solicit collaboration.
Shope, James B.; Storlazzi, Curt; Hoeke, Ron
2017-01-01
Atoll islands are dynamic features that respond to seasonal alterations in wave conditions and sea level. It is unclear how shoreline wave run-up and erosion patterns along these low elevation islands will respond to projected sea-level rise (SLR) and changes in wave climate over the next century, hindering communities' preparation for the future. To elucidate how these processes may respond to climate change, extreme boreal winter and summer wave conditions under future sea-level rise (SLR) and wave climate scenarios were simulated at two atolls, Wake and Midway, using a shallow-water hydrodynamic model. Nearshore wave conditions were used to compute the potential longshore sediment flux along island shorelines via the CERC empirical formula and wave-driven erosion was calculated as the divergence of the longshore drift; run-up and the locations where the run-up exceed the berm elevation were also determined. SLR is projected to predominantly drive future island morphological change and flooding. Seaward shorelines (i.e., ocean fronted shorelines directly facing incident wave energy) were projected to experience greater erosion and flooding with SLR and in hypothetical scenarios where changes to deep water wave directions were altered, as informed by previous climate change forced Pacific wave modeling efforts. These changes caused nearshore waves to become more shore-normal, increasing wave attack along previously protected shorelines. With SLR, leeward shorelines (i.e., an ocean facing shoreline but sheltered from incident wave energy) became more accretive on windward islands and marginally more erosive along leeward islands. These shorelines became more accretionary and subject to more flooding with nearshore waves becoming more shore-normal. Lagoon shorelines demonstrated the greatest SLR-driven increase in erosion and run-up. They exhibited the greatest relative change with increasing wave heights where both erosion and run-up magnitudes increased. Wider reef flat-fronted seaward shorelines became more accretive as all oceanographic forcing parameters increased in magnitude and exhibited large run-up increases following increasing wave heights. Island end shorelines became subject to increased flooding, erosion at Wake, and accretion at Midway with SLR. Under future conditions, windward and leeward islands are projected to become thinner as ocean facing and lagoonal shorelines erode, with leeward islands becoming more elongate. Island shorelines will change dramatically over the next century as SLR and altered wave climates drive new erosional regimes. It is vital to the sustainability of island communities that the relative magnitudes of these effects are addressed when planning for projected future climates.
NASA Astrophysics Data System (ADS)
Shope, James B.; Storlazzi, Curt D.; Hoeke, Ron K.
2017-10-01
Atoll islands are dynamic features that respond to seasonal alterations in wave conditions and sea level. It is unclear how shoreline wave run-up and erosion patterns along these low elevation islands will respond to projected sea-level rise (SLR) and changes in wave climate over the next century, hindering communities' preparation for the future. To elucidate how these processes may respond to climate change, extreme boreal winter and summer wave conditions under future sea-level rise (SLR) and wave climate scenarios were simulated at two atolls, Wake and Midway, using a shallow-water hydrodynamic model. Nearshore wave conditions were used to compute the potential longshore sediment flux along island shorelines via the CERC empirical formula and wave-driven erosion was calculated as the divergence of the longshore drift; run-up and the locations where the run-up exceed the berm elevation were also determined. SLR is projected to predominantly drive future island morphological change and flooding. Seaward shorelines (i.e., ocean fronted shorelines directly facing incident wave energy) were projected to experience greater erosion and flooding with SLR and in hypothetical scenarios where changes to deep water wave directions were altered, as informed by previous climate change forced Pacific wave modeling efforts. These changes caused nearshore waves to become more shore-normal, increasing wave attack along previously protected shorelines. With SLR, leeward shorelines (i.e., an ocean facing shoreline but sheltered from incident wave energy) became more accretive on windward islands and marginally more erosive along leeward islands. These shorelines became more accretionary and subject to more flooding with nearshore waves becoming more shore-normal. Lagoon shorelines demonstrated the greatest SLR-driven increase in erosion and run-up. They exhibited the greatest relative change with increasing wave heights where both erosion and run-up magnitudes increased. Wider reef flat-fronted seaward shorelines became more accretive as all oceanographic forcing parameters increased in magnitude and exhibited large run-up increases following increasing wave heights. Island end shorelines became subject to increased flooding, erosion at Wake, and accretion at Midway with SLR. Under future conditions, windward and leeward islands are projected to become thinner as ocean facing and lagoonal shorelines erode, with leeward islands becoming more elongate. Island shorelines will change dramatically over the next century as SLR and altered wave climates drive new erosional regimes. It is vital to the sustainability of island communities that the relative magnitudes of these effects are addressed when planning for projected future climates.
Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change
NASA Technical Reports Server (NTRS)
Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.
2016-01-01
Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.
Port Communities Face Many Challenges: Climate change – Sea Level Rise, Extreme Events - “Assets” become vulnerabilities, nuisance flooding, changes in waste water and stormwater capacity, changes in near-shore ecology and water quality. Port Expansion - Incr...
Climate Change Science, Impacts, Solutions - A Senior Science Course for Post-Secondary Students
NASA Astrophysics Data System (ADS)
Byrne, J. M.; Little, L. J.; Barnes, C. C.; Mirmasoudi, S.; Mansouri Kouhestani, F.; Reiger, C.; Rodriguez Bueno, R. A.
2015-12-01
The role of humanity in warming the global climate is well defined. The research community has predicted and documented many of the early impacts of climate change. The research literature has extensive assessments of future impacts on environment, cities, agriculture, human health, infrastructure, social and political changes, and the risks of military conflict. Society is facing massive infrastructure redevelopment, protection and possible abandonment due to increasing weather extremes. We have reached the point where science consensus is obvious and the population over much of the developed and developing world understands the urgency - humanity is changing the climate. The challenge is helping people help themselves. People understand there are consequences - they want to know how to minimize those consequences, and how to adapt to minimize the impacts. There is a dire need for a senior level course that addresses the key issues across disciplines. This course should cover a range of topics across many disciplinary boundaries, including: an introduction to the science, politics, health and well-being challenges of climate change; likely changes to personal and community lifestyles; consumption of energy and other resources. Population migration due to climate change impacts is a critical topic. Most important, the course must address the solutions to climate change. The population is demanding the power to address this massive challenge. This course will provide a multimedia curriculum on the impacts and solutions to our climate change dilemma.
Small-Scale Farming in Semi-Arid Areas: Livelihood Dynamics between 1997 and 2010 in Laikipia, Kenya
ERIC Educational Resources Information Center
Ulrich, Anne; Speranza, Chinwe Ifejika; Roden, Paul; Kiteme, Boniface; Wiesmann, Urs; Nusser, Marcus
2012-01-01
The rural population of semi-arid lands in Kenya face multiple challenges that result from population growth, poor markets, land use and climatic changes. In particular, subsistence oriented farmers face various risks and opportunities in their attempt to secure their livelihoods. This paper presents an analysis on how livelihood assets and…
USDA-ARS?s Scientific Manuscript database
The Soybean Free Air Concentration Enrichment (SoyFACE) facility is an open-air field "laboratory" for investigating the effects of elevated concentrations of CO2 and ozone, higher temperatures and altered soil water availability on field crops. For over a decade, experiments have examined the produ...
Joining forces for genetic conservation
Gary Man; Emily Boes; Rhoda Maurer; Michael Dosmann; Matt Lobdell; Kevin Conrad; Mike Kintgen; Rebecca Sucher; Martin Nicholson; David Stevenson; Brianna McTeague; Evan Heck; Richard A. Sniezko
2017-01-01
Facing a Challenge Non-native diseases and insects as well as a changing climate pose serious threats to native trees in North America. Genetic variation in a species is key to its enduring persistence in the face of these abiotic and biotic threats. Efforts to conserve genetic diversity of North American tree at-risk species will ensure the genetic...
Taking a climate chance: a procedural critique of Vietnam's climate change strategy.
Fortier, François
2010-01-01
This article asks through what processes and for which interests the emerging Vietnamese climate change strategy is being designed, and if, ultimately, it is likely or not to be effective in the face of the looming threat. Through a review of an emerging body of literature and field observations, the paper finds the strategy partial and problematic in several ways. Its technocratic process prevents a pluralist representation of interests, obfuscating and perpetuating sectorial ones, at the expense of a more transparent and democratic resource allocation. The strategy therefore reflects and reinforces existing power relations in both politics and production. It feeds into a business-as-usual complacency, protecting national and international interests vested in unchallenged continuity, even when considering post-carbon technological fixes, which largely serve to expand capital accumulation opportunities. The article concludes that the national climate change strategy provides an illusion of intervention and security, but largely fails to identify and mitigate the underlying causes of climate change, or to lay the ground for a robust mid- and long-term adaptation strategy that can cope with yet unknown levels of climatic and other structural changes.
The rise and fall of infectious disease in a warmer world
Lafferty, Kevin D.; Mordecai, Erin A.
2016-01-01
Now-outdated estimates proposed that climate change should have increased the number of people at risk of malaria, yet malaria and several other infectious diseases have declined. Although some diseases have increased as the climate has warmed, evidence for widespread climate-driven disease expansion has not materialized, despite increased research attention. Biological responses to warming depend on the non-linear relationships between physiological performance and temperature, called the thermal response curve. This leads performance to rise and fall with temperature. Under climate change, host species and their associated parasites face extinction if they cannot either thermoregulate or adapt by shifting phenology or geographic range. Climate change might also affect disease transmission through increases or decreases in host susceptibility and infective stage (and vector) production, longevity, and pathology. Many other factors drive disease transmission, especially economics, and some change in time along with temperature, making it hard to distinguish whether temperature drives disease or just correlates with disease drivers. Although it is difficult to predict how climate change will affect infectious disease, an ecological approach can help meet the challenge.
Using biological data to test climate change refugia
NASA Astrophysics Data System (ADS)
Morelli, T. L.; Maher, S. P.
2015-12-01
The concept of refugia has been discussed from theoretical and paleontological perspectives to address how populations persisted during periods of unfavorable climate. Recently, several studies have applied the idea to contemporary landscapes to identify locations that are buffered from climate change effects so as to favor greater persistence of valued resources relative to other areas. Refugia are now being discussed among natural resource agencies as a potential adaptation option in the face of anthropogenic climate change. Using downscaled climate data, we identified hypothetical refugial meadows in the Sierra Nevada and then tested them using survey and genetic data from Belding's ground squirrel (Urocitellus beldingi) populations. We predicted that refugial meadows would show higher genetic diversity, higher rates of occupancy and lower rates of extirpation over time. At each step of the research, we worked with managers to ensure the largest impact. Although no panacea, identifying climate change refugia could be an important strategy for prioritizing habitats for management intervention in order to conserve populations. This research was supported by the California LCC, the Northeast Climate Science Center, and NSF.
NASA Astrophysics Data System (ADS)
Kynett, K.; Azimi-Gaylon, S.; Doidic, C.
2014-12-01
The Sacramento-San Joaquin Delta and Suisun Marsh (Delta) is the largest estuary on the West Coast of the Americas and is a resource of local, State, and national significance. The Delta is simultaneously the most critical component of California's water supply, a primary focus of the state's ecological conservation measures, and a vital resource deeply imperiled by degraded water quality. Delta waterbodies are identified as impaired by salinity, excess nutrients, low dissolved oxygen, pathogens, pesticides, heavy metals, and other contaminants. Climate change is expected to exacerbate the impacts of existing stressors in the Delta and magnify the challenges of managing this natural resource. A clear understanding of the current state of the watershed is needed to better inform scientists, decision makers, and the public about potential impacts from climate change. The Delta Watershed Initiative Network (Delta WIN) leverages the ecological benefits of healthy watersheds, and enhances, expands and creates opportunities for greater watershed health by coordinating with agencies, established programs, and local organizations. At this critical junction, Delta WIN is coordinating data integration and analysis to develop better understanding of the existing and emerging water quality concerns. As first steps, Delta WIN is integrating existing water quality data, analyzing trends, and monitoring to fill data gaps and to evaluate indicators of climate change impacts. Available data will be used for trend analysis; Delta WIN will continue to monitor where data is incomplete and new questions arise. Understanding how climate change conditions may affect water quality will be used to inform efforts to build resilience and maintain water quality levels which sustain aquatic life and human needs. Assessments of historical and new data will aid in recognition of potential climate change impacts and in initiating implementation of best management practices in collaboration with State and local agencies. Ultimately, Delta WIN can inform responsive science and adaptive management in other estuaries and critical natural resource areas facing times of change.
NASA Astrophysics Data System (ADS)
Takakura, Hiroki
2016-09-01
This article focuses on the pastoral practices of the Sakha people in eastern Siberia to explore the impact of climate change on human livelihood in permafrost regions. Sakha use grassland resources in river terraces and the alaas thermokarst landscape for cattle-horse husbandry. Although they practice a different form of subsistence than other indigenous arctic peoples, such as hunter - gatherers or reindeer herders, the adaptation of Sakha has been relatively resilient in the past 600-800 years. Recent climate change, however, could change this situation. According to hydrologists, increased precipitation is now observed in eastern Siberia, which has resulted in the increase of permafrost thawing, causing forests to die. Moreover, local meteorologists report an increase of flooding in local rivers. How do these changes affect the local pastoral adaptation? While describing recent uses of grassland resource by local people, and their perception of climate change through anthropological field research, I investigated the subtle characteristics of human-environment interactions in pastoral adaptation, in order to identify the limits of adaptation in the face of climate change.
Ebi, Kristie L; Semenza, Jan C; Rocklöv, Joacim
2016-11-11
Three major international agreements signed in 2015 are key milestones for transitioning to more sustainable and resilient societies: the UN 2030 Agenda for Sustainable Development; the Sendai Framework for Disaster Risk Reduction; and the Paris Agreement under the United Nations Framework Convention on Climate Change. Together, these agreements underscore the critical importance of understanding and managing the health risks of global changes, to ensure continued population health improvements in the face of significant social and environmental change over this century. BODY: Funding priorities of major health institutions and organizations in the U.S. and Europe do not match research investments with needs to inform implementation of these international agreements. In the U.S., the National Institutes of Health commit 0.025 % of their annual research budget to climate change and health. The European Union Seventh Framework Programme committed 0.08 % of the total budget to climate change and health; the amount committed under Horizon 2020 was 0.04 % of the budget. Two issues apparently contributing to this mismatch are viewing climate change primarily as an environmental problem, and therefore the responsibility of other research streams; and narrowly framing research into managing the health risks of climate variability and change from the perspective of medicine and traditional public health. This reductionist, top-down perspective focuses on proximate, individual level risk factors. While highly successful in reducing disease burdens, this framing is insufficient to protect health and well-being over a century that will be characterized by profound social and environmental changes. International commitments in 2015 underscored the significant challenges societies will face this century from climate change and other global changes. However, the low priority placed on understanding and managing the associated health risks by national and international research institutions and organizations leaves populations poorly prepared to cope with changing health burdens. Risk-centered, systems approaches can facilitate understanding of the complex interactions and dependencies across environmental, social, and human systems. This understanding is needed to formulate effective interventions targeting socio-environmental factors that are as important for determining health burdens as are individual risk factors.
First AGU Climate Communication Prize awarded
NASA Astrophysics Data System (ADS)
McEntee, Christine
2012-02-01
Gavin Schmidt, a climate scientist at the NASA Goddard Institute for Space Studies and cofounder of the RealClimate blog (http://www.realclimate.org/), received the first AGU Climate Communication Prize at the honors ceremony. The prize recognizes excellence in climate communication as well as the promotion of scientific literacy, clarity of messaging, and efforts to foster respect and understanding for science-based values related to climate change. Sponsored by Nature's Own—a Boulder, Colo.-based company specializing in the sale of minerals, fossils, and decorative stone specimens—the prize comes with a $25,000 cash award. "AGU created this award to raise the visibility of climate change as a critical issue facing the world today, to demonstrate our support for scientists who commit themselves to the effective communication of climate change science, and to encourage more scientists to engage with the public and policy makers on how climate research can contribute to the sustainability of our planet," said AGU president Michael Mc Phaden. "That's why we are so pleased to recognize Gavin for his dedicated leadership and outstanding scientific achievements. We hope that his work will serve as an inspiration for others."
NASA Astrophysics Data System (ADS)
Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.
2014-12-01
China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national agriculture adaptation strategy decisions.
Signs of the Land: Reaching Arctic Communities Facing Climate Change
NASA Astrophysics Data System (ADS)
Sparrow, E. B.; Chase, M. J.; Demientieff, S.; Pfirman, S. L.; Brunacini, J.
2014-12-01
In July 2014, a diverse and intergenerational group of Alaskan Natives came together on Howard Luke's Galee'ya Camp by the Tanana River in Fairbanks, Alaska to talk about climate change and it's impacts on local communities. Over a period of four days, the Signs of the Land Climate Change Camp wove together traditional knowledge, local observations, Native language, and climate science through a mix of storytelling, presentations, dialogue, and hands-on, community-building activities. This camp adapted the model developed several years ago under the Association for Interior Native Educators (AINE)'s Elder Academy. Part of the Polar Learning and Responding Climate Change Education Partnership, the Signs of the Land Climate Change Camp was developed and conducted collaboratively with multiple partners to test a model for engaging indigenous communities in the co-production of climate change knowledge, communication tools, and solutions-building. Native Alaskans have strong subsistence and cultural connections to the land and its resources, and, in addition to being keen observers of their environment, have a long history of adapting to changing conditions. Participants in the camp included Elders, classroom teachers, local resource managers and planners, community members, and climate scientists. Based on their experiences during the camp, participants designed individualized outreach plans for bringing culturally-responsive climate learning to their communities and classrooms throughout the upcoming year. Plans included small group discussions, student projects, teacher training, and conference presentations.
Littlefield, Caitlin E; McRae, Brad H; Michalak, Julia L; Lawler, Joshua J; Carroll, Carlos
2017-12-01
Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate. © 2017 Society for Conservation Biology.
USDA-ARS?s Scientific Manuscript database
Agriculture in grassland environments is facing multiple stresses from: shifting demographics, declining and fragmented agricultural landscapes, declining environmental quality, variable and changing climate, volatile and increasing energy costs, marginal economic returns, and globalization. Degrad...
Assisted migration: What it means to nursery managers and tree planters
Mary I. Williams; R. Kasten Dumroese
2014-01-01
Projections indicate that natural plant adaptation and migration may not keep pace with climate changes. This mismatch in rates will pose significant challenges for practitioners that select, grow, and outplant native tree species. Populations of native tree species planted today must be able to meet the climatic challenges they will face during this century. One...
ERIC Educational Resources Information Center
Bedford, Daniel
2016-01-01
Educators seeking to address global warming in their classrooms face numerous challenges, including the question of whether student opinions about anthropogenic global warming (AGW) can change in response to increased knowledge about the climate system. This article analyzes survey responses from 458 students at a primarily undergraduate…
Issues in Integrating Information Technology in Learning and Teaching EFL: The Saudi Experience
ERIC Educational Resources Information Center
Al-Maini, Yousef Hamad
2013-01-01
The Saudi education system is facing a climate of change characterized by an interest in integrating new technology and educational approaches to improve teaching and learning. In this climate, the present paper explores the issues in integrating information technology in learning and teaching English as a foreign language (EFL) in government…
We Are All Related: Indigenous People Combine Traditional Knowledge, Geo-Science to Save Planet
ERIC Educational Resources Information Center
Wildcat, Daniel
2008-01-01
Through a new working group, tribal colleges and universities (TCUs) are playing a critical leadership role in addressing some of the most difficult climate-related problems now facing the planet. Because of their unique cultural character, TCUs have an important voice. The American Indian and Alaska Native Climate Change Working Group was formed…
Bunn, Christian; Läderach, Peter; Pérez Jimenez, Juan Guillermo; Montagnon, Christophe; Schilling, Timothy
2015-01-01
Cultivation of Coffea arabica is highly sensitive to and has been shown to be negatively impacted by progressive climatic changes. Previous research contributed little to support forward-looking adaptation. Agro-ecological zoning is a common tool to identify homologous environments and prioritize research. We demonstrate here a pragmatic approach to describe spatial changes in agro-climatic zones suitable for coffee under current and future climates. We defined agro-ecological zones suitable to produce arabica coffee by clustering geo-referenced coffee occurrence locations based on bio-climatic variables. We used random forest classification of climate data layers to model the spatial distribution of these agro-ecological zones. We used these zones to identify spatially explicit impact scenarios and to choose locations for the long-term evaluation of adaptation measures as climate changes. We found that in zones currently classified as hot and dry, climate change will impact arabica more than those that are better suited to it. Research in these zones should therefore focus on expanding arabica's environmental limits. Zones that currently have climates better suited for arabica will migrate upwards by about 500m in elevation. In these zones the up-slope migration will be gradual, but will likely have negative ecosystem impacts. Additionally, we identified locations that with high probability will not change their climatic characteristics and are suitable to evaluate C. arabica germplasm in the face of climate change. These locations should be used to investigate long term adaptation strategies to production systems.
The impacts of climate change on the annual cycles of birds
Carey, Cynthia
2009-01-01
Organisms living today are descended from ancestors that experienced considerable climate change in the past. However, they are currently presented with many new, man-made challenges, including rapid climate change. Migration and reproduction of many avian species are controlled by endogenous mechanisms that have been under intense selection over time to ensure that arrival to and departure from breeding grounds is synchronized with moderate temperatures, peak food availability and availability of nesting sites. The timing of egg laying is determined, usually by both endogenous clocks and local factors, so that food availability is near optimal for raising young. Climate change is causing mismatches in food supplies, snow cover and other factors that could severely impact successful migration and reproduction of avian populations unless they are able to adjust to new conditions. Resident (non-migratory) birds also face challenges if precipitation and/or temperature patterns vary in ways that result in mismatches of food and breeding. Predictions that many existing climates will disappear and novel climates will appear in the future suggest that communities will be dramatically restructured by extinctions and changes in range distributions. Species that persist into future climates may be able to do so in part owing to the genetic heritage passed down from ancestors who survived climate changes in the past. PMID:19833644
NASA Astrophysics Data System (ADS)
Folberth, Christian; Yang, Hong; Gaiser, Thomas; Liu, Junguo; Wang, Xiuying; Williams, Jimmy; Schulin, Rainer
2014-04-01
Much of Africa is among the world’s regions with lowest yields in staple food crops, and climate change is expected to make it more difficult to catch up in crop production in particular in the long run. Various agronomic measures have been proposed for lifting agricultural production in Africa and to adapt it to climate change. Here, we present a projection of potential climate change impacts on maize yields under different intensification options in Sub-Saharan Africa (SSA) using an agronomic model, GIS-based EPIC (GEPIC). Fallow and nutrient management options taken into account are (a) conventional intensification with high mineral N supply and a bare fallow, (b) moderate mineral N supply and cowpea rotation, and (c) moderate mineral N supply and rotation with a fast growing N fixing tree Sesbania sesban. The simulations suggest that until the 2040s rotation with Sesbania will lead to an increase in yields due to increasing N supply besides improving water infiltration and soils’ water holding capacity. Intensive cultivation with a bare fallow or an herbaceous crop like cowpea in the rotation is predicted to result in lower yields and increased soil erosion during the same time span. However, yields are projected to decrease in all management scenarios towards the end of the century, should temperature increase beyond critical thresholds. The results suggest that the effect of eco-intensification as a sole means of adapting agriculture to climate change is limited in Sub-Saharan Africa. Highly adverse temperatures would rather have to be faced by improved heat tolerant cultivars, while strongly adverse decreases in precipitation would have to be faced by expanding irrigation where feasible. While the evaluation of changes in agro-environmental variables like soil organic carbon, erosion, and soil humidity hints that these are major factors influencing climate change resilience of the field crop, no direct relationship between these factors, crop yields, and changes in climate variables could be identified. This will need further detailed studies at the field and regional scale.
Technology-Driven and Innovative Training for Sustainable Agriculture in The Face of Climate Change
NASA Astrophysics Data System (ADS)
Wishart, D. N.
2015-12-01
Innovative training in 'Sustainable Agriculture' for an increasingly STEM-dependent agricultural sector will require a combination of approaches and technologies for global agricultural production to increase while offsetting climate change. Climate change impacts the water resources of nations as normal global weather patterns are altered during El Nino events. Agricultural curricula must incorporate awareness of 'climate change' in order to find novel ways to (1) assure global food security; (2) improve soil productivity and conservation; (3) improve crop yields and irrigation; (4) inexpensively develop site specific principles of crop management based on variable soil and associated hydrological properties; and (5) improve precision farming. In February 2015, Central State University (CSU), Ohio became an 1890 Land-Grant institution vital to the sustainability of Ohio's agricultural sector. Besides agricultural extension, the agriculture curriculum at CSU integrates multidisciplinary courses in science, technology engineering, agriculture, and mathematics (STEAM). The agriculture program could benefit from a technology-driven, interdisciplinary soil science course that promotes climate change education and climate literacy while being offered in both a blended and collaborative learning environment. The course will focus on the dynamics of microscale to mesoscale processes occurring in farming systems, those of which impact climate change or could be impacted by climate change. Elements of this course will include: climate change webinars; soil-climate interactions; carbon cycling; the balance of carbon fluxes between soil storage and atmosphere; microorganisms and soil carbon storage; paleoclimate and soil forming processes; geophysical techniques used in the characterization of soil horizons; impact of climate change on soil fertility; experiments; and demonstrations.
Climatically-mediated landcover change: impacts on Brazilian territory.
Zanin, Marina; Tessarolo, Geiziane; Machado, Nathália; Albernaz, Ana Luisa M
2017-01-01
In the face of climate change threats, governments are drawing attention to policies for mitigating its effects on biodiversity. However, the lack of distribution data makes predictions at species level a difficult task, mainly in regions of higher biodiversity. To overcome this problem, we use native landcover as a surrogate biodiversity, because it can represent specialized habitat for species, and investigate the effects of future climate change on Brazilian biomes. We characterize the climatic niches of native landcover and use ecological niche modeling to predict the potential distribution under current and future climate scenarios. Our results highlight expansion of the distribution of open vegetation and the contraction of closed forests. Drier Brazilian biomes, like Caatinga and Cerrado, are predicted to expand their distributions, being the most resistant to climate change impacts. However, these would also be affected by losses of their closed forest enclaves and their habitat-specific or endemic species. Replacement by open vegetation and overall reductions are a considerable risk for closed forest, threatening Amazon and Atlantic forest biomes. Here, we evidence the impacts of climate change on Brazilian biomes, and draw attention to the necessity for management and attenuation plans to guarantee the future of Brazilian biodiversity.
Health Consequence Scales for Use in Health Impact Assessments of Climate Change
Brown, Helen; Spickett, Jeffery
2014-01-01
While health impact assessment (HIA) has typically been applied to projects, plans or policies, it has significant potential with regard to strategic considerations of major health issues facing society such as climate change. Given the complexity of climate change, assessing health impacts presents new challenges that may require different approaches compared to traditional applications of HIA. This research focuses on the development of health consequence scales suited to assessing and comparing health effects associated with climate change and applied within a HIA framework. This assists in setting priorities for adaptation plans to minimize the public health impacts of climate change. The scales presented in this paper were initially developed for a HIA of climate change in Perth in 2050, but they can be applied across spatial and temporal scales. The design is based on a health effects pyramid with health measures expressed in orders of magnitude and linked to baseline population and health data. The health consequence measures are combined with a measure of likelihood to determine the level of risk associated with each health potential health impact. In addition, a simple visual framework that can be used to collate, compare and communicate the level of health risks associated with climate change has been developed. PMID:25229697
NASA Astrophysics Data System (ADS)
Batbaatar, A.; Apichayakul, P.; Tantanee, S.
2018-03-01
Climate change is one of the greatest threats that world is facing today, and having significant deleterious effects on natural and human systems. Recent climate-induced extreme events and their impacts demand timely adaptation actions to the changing odds of their occurrence. The great phenomenon is already being felt in the Mongolian plateau, especially on the livestock sector. The sector provides the main income and livelihood for one-third of the population of about three million people. A high number of livestock is lost due to a unique phenomenon is known as a “dzud”. This paper examines the key stakeholders’ perspectives in the implementation of climate change adaptation and identifies its barriers, with a focus on the livestock sector. In order to meet the objectives, this research used a semi-structured interview with organizations related to the livestock sector and climate change. The extent of stakeholders’ perspectives might be depending on the way they share information, stakeholder engagement, and their experiences with extreme events, as well as their location and level in government. The research findings will indicate an understanding of climate change perspectives, adaptation, and level of capacity of organizations, which can be used as a guideline for organizations to develop climate change adaptation policies related to the livestock sector in Mongolia.
Andresen, Louise C.; Dungait, Jennifer A. J.; Bol, Roland; Selsted, Merete B.; Ambus, Per; Michelsen, Anders
2014-01-01
It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C) dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g−1 soil) of 13C-labeled glycine (13C2, 99 atom %) to soils in situ. Plots were treated with elevated temperature (+1°C, T), summer drought (D) and elevated atmospheric carbon dioxide (510 ppm [CO2]), as well as combined treatments (TD, TCO2, DCO2 and TDCO2). The 13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs) was determined after 24 h. 13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi) was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS). Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated 13C in all treatments, whereas fungi had minor or no glycine derived 13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was 13C-depleted (δ13C = 12.2‰) compared to ambient (δ13C = ∼−8‰), and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal) utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to future changes in substrate availability and climatic factors. PMID:24454793
Climate Change Impacts on Hydrology and Water Management of the San Juan Basin
NASA Astrophysics Data System (ADS)
Rich, P. M.; Weintraub, L. H.; Chen, L.; Herr, J.
2005-12-01
Recent climatic events, including regional drought and increased storm severity, have accentuated concerns that climatic extremes may be increasing in frequency and intensity due to global climate change. As part of the ZeroNet Water-Energy Initiative, the San Juan Decision Support System includes a basin-scale modeling tool to evaluate effects of climate change on water budgets under different climate and management scenarios. The existing Watershed Analysis Risk Management Framework (WARMF) was enhanced with iterative modeling capabilities to enable construction of climate scenarios based on historical and projected data. We applied WARMF to 42,000 km2 (16,000 mi2) of the San Juan Basin (CO, NM) to assess impacts of extended drought and increased temperature on surface water balance. Simulations showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry), and lead to increased frequency of critical shortages. Implementation of potential management alternatives such as "shortage sharing" or degraded water usage during critical years helps improve available water supply. In the face of growing concern over climate change, limited water resources, and competing demands, integrative modeling tools can enable better understanding of complex interconnected systems, and enable better decisions.
Fernandino, Gerson; Elliff, Carla I; Silva, Iracema R
2018-06-01
Climate change effects have the potential of affecting both ocean and atmospheric processes. These changes pose serious threats to the millions of people that live by the coast. Thus, the objective of the present review is to discuss how climate change is altering (and will continue to alter) atmospheric and oceanic processes, what are the main implications of these alterations along the coastline, and which are the ecosystem-based management (EBM) strategies that have been proposed and applied to address these issues. While ocean warming, ocean acidification and increasing sea level have been more extensively studied, investigations on the effects of climate change to wind and wave climates are less frequent. Coastal ecosystems and their respective natural resources will respond differently according to location, environmental drivers and coastal processes. EBM strategies have mostly concentrated on improving ecosystem services, which can be used to assist in mitigating climate change effects. The main challenge for developing nations regards gaps in information and scarcity of resources. Thus, for effective management and adaptive EBM strategies to be developed worldwide, information at a local level is greatly needed. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Heat is On! Confronting Climate Change in the Classroom
NASA Astrophysics Data System (ADS)
Bowman, R.; Atwood-Blaine, D.
2008-12-01
This paper discusses a professional development workshop for K-12 science teachers entitled "The Heat is On! Confronting Climate Change in the Classroom." This workshop was conducted by the Center for Remote Sensing of Ice Sheets (CReSIS), which has the primary goal to understand and predict the role of polar ice sheets in sea level change. The specific objectives of this summer workshop were two-fold; first, to address the need for advancement in science technology engineering and mathematics (STEM) education and second, to address the need for science teacher training in climate change science. Twenty-eight Kansas teachers completed four pre-workshop assignments online in Moodle and attended a one-week workshop. The workshop included lecture presentations by scientists (both face-to-face and via video-conference) and collaboration between teachers and scientists to create online inquiry-based lessons on the water budget, remote sensing, climate data, and glacial modeling. Follow-up opportunities are communicated via the CReSIS Teachers listserv to maintain and further develop the collegial connections and collaborations established during the workshop. Both qualitative and quantitative evaluation results indicate that this workshop was particularly effective in the following four areas: 1) creating meaningful connections between K-12 teachers and CReSIS scientists; 2) integrating distance-learning technologies to facilitate the social construction of knowledge; 3) increasing teachers' content understanding of climate change and its impacts on the cryosphere and global sea level; and 4) increasing teachers' self-efficacy beliefs about teaching climate science. Evaluation methods included formative content understanding assessments (via "clickers") during each scientist's presentation, a qualitative evaluation survey administered at the end of the workshop, and two quantitative evaluation instruments administered pre- and post- workshop. The first of these quantitative instruments measured teachers' efficacy beliefs about teaching climate science and the outcome expectancy they hold for student achievement. The second, a content test, measured the teachers' content knowledge of climate science and the cryosphere. Our results indicate that the teachers participating in the workshops showed significant increase in personal climate science teaching efficacy, outcome expectancy, and content knowledge of climate science, all at the p < 0.01 level. Interestingly, these results appear to be independent of each other. While one may think that changes in efficacy beliefs are caused by gains in content knowledge, our results show low correlation between these two factors.
Climate change, deforestation, and the fate of the Amazon.
Malhi, Yadvinder; Roberts, J Timmons; Betts, Richard A; Killeen, Timothy J; Li, Wenhong; Nobre, Carlos A
2008-01-11
The forest biome of Amazonia is one of Earth's greatest biological treasures and a major component of the Earth system. This century, it faces the dual threats of deforestation and stress from climate change. Here, we summarize some of the latest findings and thinking on these threats, explore the consequences for the forest ecosystem and its human residents, and outline options for the future of Amazonia. We also discuss the implications of new proposals to finance preservation of Amazonian forests.
Ponti, Luigi; Gutierrez, Andrew Paul; Ruti, Paolo Michele; Dell’Aquila, Alessandro
2014-01-01
The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests. PMID:24706833
Ponti, Luigi; Gutierrez, Andrew Paul; Ruti, Paolo Michele; Dell'Aquila, Alessandro
2014-04-15
The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests.
Climate change, coral reef ecosystems, and management options for marine protected areas.
Keller, Brian D; Gleason, Daniel F; McLeod, Elizabeth; Woodley, Christa M; Airamé, Satie; Causey, Billy D; Friedlander, Alan M; Grober-Dunsmore, Rikki; Johnson, Johanna E; Miller, Steven L; Steneck, Robert S
2009-12-01
Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more "traditional" stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation.
Does Polar Research Matter? (Invited)
NASA Astrophysics Data System (ADS)
Holmes, R.
2009-12-01
Climate change is one of the most serious challenges facing humanity. The polar regions are being disproportionately impacted, particularly in the Arctic where warming is greatly amplified. Moreover, there are strong feedbacks from the polar regions to the global climate system and sea level, so changes at the poles have global ramifications. Not surprisingly, polar research is often justified because of its relevance to global climate change. In spite of this, where are the “solutions” in the polar regions? For example, a scientist interested in climate change who studies tropical forests can work toward preserving the forests since deforestation is one of the main contributors to anthropogenic climate change. Are there similar direct solutions in polar regions? I will suggest that the answer is no, since the human controlled causes of climate change take place far removed from the poles. On the other hand, polar research has been absolutely essential for educating the public about climate change: the combination of important science and dramatic stories and images have captured the public’s attention more than for science originating in other regions. I will draw examples from several IPY projects that reached a broad public audience, and suggest that public education and outreach is the most important thing polar scientists can do to “make a difference” with respect to solving the climate crisis because environmental literacy (and an educated electorate) has been the factor that has most limited progress.
Climate change, wine, and conservation.
Hannah, Lee; Roehrdanz, Patrick R; Ikegami, Makihiko; Shepard, Anderson V; Shaw, M Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A; Hijmans, Robert J
2013-04-23
Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects.
Climate change, wine, and conservation
Hannah, Lee; Roehrdanz, Patrick R.; Ikegami, Makihiko; Shepard, Anderson V.; Shaw, M. Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A.; Hijmans, Robert J.
2013-01-01
Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects. PMID:23569231
Assessing Mammal Exposure to Climate Change in the Brazilian Amazon.
Ribeiro, Bruno R; Sales, Lilian P; De Marco, Paulo; Loyola, Rafael
2016-01-01
Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species' response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species' range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species' vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species' ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts.
Assessing Mammal Exposure to Climate Change in the Brazilian Amazon
Ribeiro, Bruno R.; Sales, Lilian P.; De Marco, Paulo; Loyola, Rafael
2016-01-01
Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species’ response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species’ range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species’ vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species’ ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts. PMID:27829036
Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt
2014-01-01
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change. PMID:24823495
Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt
2014-01-01
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species' occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species' occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.
Climate change and Norman Daniels' theory of just health: an essay on basic needs.
Lacey, Joseph
2012-02-01
Norman Daniels, in applying Rawls' theory of justice to the issue of human health, ideally presupposes that society exists in a state of moderate scarcity. However, faced with problems like climate change, many societies find that their state of moderate scarcity is increasingly under threat. The first part of this essay aims to determine the consequences for Daniels' theory of just health when we incorporate into Rawls' understanding of justice the idea that the condition of moderate scarcity can fail. Most significantly, I argue for a generation-neutral principle of basic needs that is lexically prior to Rawls' familiar principles of justice. The second part of this paper aims to demonstrate how my reformulated version of Daniels' conception of just health can help to justify action on climate change and guide climate policy within liberal-egalitarian societies.
Limited evolutionary rescue of locally adapted populations facing climate change.
Schiffers, Katja; Bourne, Elizabeth C; Lavergne, Sébastien; Thuiller, Wilfried; Travis, Justin M J
2013-01-19
Dispersal is a key determinant of a population's evolutionary potential. It facilitates the propagation of beneficial alleles throughout the distributional range of spatially outspread populations and increases the speed of adaptation. However, when habitat is heterogeneous and individuals are locally adapted, dispersal may, at the same time, reduce fitness through increasing maladaptation. Here, we use a spatially explicit, allelic simulation model to quantify how these equivocal effects of dispersal affect a population's evolutionary response to changing climate. Individuals carry a diploid set of chromosomes, with alleles coding for adaptation to non-climatic environmental conditions and climatic conditions, respectively. Our model results demonstrate that the interplay between gene flow and habitat heterogeneity may decrease effective dispersal and population size to such an extent that substantially reduces the likelihood of evolutionary rescue. Importantly, even when evolutionary rescue saves a population from extinction, its spatial range following climate change may be strongly narrowed, that is, the rescue is only partial. These findings emphasize that neglecting the impact of non-climatic, local adaptation might lead to a considerable overestimation of a population's evolvability under rapid environmental change.
How the National Estuary Programs Address Environmental Issues
Estuaries face many challenges including, alteration of natural hydrologic flows, aquatic nuisance species, climate change, declines in fish and wildlife populations, habitat loss and degradation, nutrient loads, pathogens, stormwater and toxics.
Robert B. Rummer
1997-01-01
Logging is facing a world of change. A logger?s niche can be defined by terrain, climate, location, timber and product, local government, Federal government, landowners, and mills. The author offers strategies for survival and successful competition.
NASA Astrophysics Data System (ADS)
Dahal, P.; Shrestha, N. S.; Krakauer, N.; Lakhankar, T.; Panthi, J., Sr.; Pradhanang, S.; Jha, A. K.; Shrestha, M.; Sharma, M.
2015-12-01
In recent years climate change has emerged as a source of vulnerability for agro-livestock smallholders in Nepal where people are mostly dependent on rain-fed agriculture and livestock farming for their livelihoods. There is a need to understand and predict the potential impacts of climate change on agro-livestock farmer to develop effective mitigation and adaptation strategies. To understand dynamics of this vulnerability, we assess the farmers' perceptions of climate change, analysis of historical and future projections of climatic parameters and try to understand impact of climate change on livestock system in Gandaki River Basin of Central Nepal. During the period of 1981-2012, as reported by the mountain communities, the most serious hazards for livestock system and agriculture are the increasing trend of temperature, erratic rainfall patterns and increase in drought. Poor households without irrigated land are facing greater risks and stresses than well-off people. Analysis of historical climate data also supports the farmer perception. Result shows that there is increasing trend of temperature but no consistent trend in precipitation but a notable finding is that wet areas are getting wetter and dry areas getting drier. Besides that, there is increase in percentage of warm days and nights with decrease in the cool nights and days. The magnitude of the trend is found to be higher in high altitude. Trend of wet days has found to be increasing with decreasing in rainy days. Most areas are characterized by increases in both severity and frequency of drought and are more evident in recent years. The summers of 2004/05/06/09 and winters of 2006/08/09 were the worst widespread droughts and have a serious impact on livestock since 1981. Future projected change in temperature and precipitation obtained from downscaling the data global model by regional climate model shows that precipitation in central Nepal will change by -8% to 12% and temperature will change by 1.9 0C to 3 0C in 2031-2060 compared to the baseline period 1970-2000. Since there will be an increase in temperature and most of the area will experience decreasing rainfall we can predict that there will be increasing vulnerability on livestock system in central Nepal in future which is already facing a serious impact.
NASA Astrophysics Data System (ADS)
Halvorsen, K. E.; Kossak, D. J.; Mayer, A. S.; Vivoni, E. R.; Robles-Morua, A.; Gamez Molina, V.; Dana, K.; Mirchi, A.
2013-12-01
Climate change-related impacts on water resources are expected to be particularly severe in the arid developing world. As a result, we conducted a series of participatory modeling workshops on hydrologic and water resources systems modeling in the face of climate change in Sonora, Mexico. Pre-surveys were administered to participants on Day 1 of a series of four workshops spaced out over three months in 2013. Post-surveys repeated many pre-survey questions and included questions assessing the quality of the workshops and models. We report on significant changes in participant perceptions of water resource models and problems and their assessment of the workshops. These findings will be of great value to future participatory modeling efforts, particularly within the developing world.
Catholic School Leadership: School Climate and Culture and the Influence on Principal Satisfaction
ERIC Educational Resources Information Center
Beckley, Gary M.
2012-01-01
Today's Catholic educators face a very different world, creating a change in the role and responsibility of the principal. The purpose of this study was to determine to what extent the culture and climate affect satisfaction in the principal's role that warrants becoming and remaining a principal in today's Catholic schools. This…
Chelcy Ford; Stephanie Laseter; Wayne Swank; James Vose
2011-01-01
Forested watersheds, an important provider of ecosystems services related to water supply, can have their structure, function, and resulting streamflow substantially altered by land use and land cover. Using a retrospective analysis and synthesis of long-term climate and streamflow data (75 years) from six watersheds differing in management histories we explored...
Ecological impacts and management strategies for western larch in the face of climate-change
Gerald E. Rehfeldt; Barry C. Jaquish
2010-01-01
Approximately 185,000 forest inventory and ecological plots from both USA and Canada were used to predict the contemporary distribution of western larch (Larix occidentalis Nutt.) from climate variables. The random forests algorithm, using an 8-variable model, produced an overall error rate of about 2.9 %, nearly all of which consisted of predicting presence at...
Climate change, biotic interactions and ecosystem services
Montoya, José M.; Raffaelli, Dave
2010-01-01
Climate change is real. The wrangling debates are over, and we now need to move onto a predictive ecology that will allow managers of landscapes and policy makers to adapt to the likely changes in biodiversity over the coming decades. There is ample evidence that ecological responses are already occurring at the individual species (population) level. The challenge is how to synthesize the growing list of such observations with a coherent body of theory that will enable us to predict where and when changes will occur, what the consequences might be for the conservation and sustainable use of biodiversity and what we might do practically in order to maintain those systems in as good condition as possible. It is thus necessary to investigate the effects of climate change at the ecosystem level and to consider novel emergent ecosystems composed of new species assemblages arising from differential rates of range shifts of species. Here, we present current knowledge on the effects of climate change on biotic interactions and ecosystem services supply, and summarize the papers included in this volume. We discuss how resilient ecosystems are in the face of the multiple components that characterize climate change, and suggest which current ecological theories may be used as a starting point to predict ecosystem-level effects of climate change. PMID:20513709
NASA Astrophysics Data System (ADS)
Moorcroft, P. R.; Zhang, K.; Castanho, A. D. D. A.; Galbraith, D.; Moghim, S.; Levine, N. M.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Malhi, Y.; Longo, M.; Knox, R. G.; McKnight, S. L.; Wang, J.
2014-12-01
There is considerable interest and uncertainty regarding the expected fate of the Amazon over the coming century in face of the combined impacts of climate change, rising atmospheric CO2 levels, and on-going land transformation in the region. In this analysis, we explore the fate of Amazonian ecosystems under projected climate, CO2 and land-use change in the 21st century using three state-of-the-art terrestrial biosphere models (ED2, IBIS, and JULES) driven by three representative, bias-corrected GCM climate projections (PCM1, CCSM3, and HadCM3) under the SRES A2 scenario, coupled with two land-use change scenarios. We assess the relative roles of climate change, CO2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change depend strongly on the direction and severity of projected changes in precipitation regimes within the region: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%; however, the models predict that CO2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and as a result sustain high biomass forests, even under the driest climate scenario. Land-use change and changes in fire frequency are predicted cause additional aboveground live biomass loss and changes in forest extent. The relative impact of land-use and fire dynamics versus the impacts of climate and CO2 on the Amazon varies considerably, depending on both the climate and land-use scenarios used and on the terrestrial biosphere model, highlighting the importance of improved understanding of all four factors -- future climate, CO2 fertilization effects, fire and land-use -- to the fate of the Amazon over the coming century.
NASA Astrophysics Data System (ADS)
Drewes, A.; Henderson, J.; Mouza, C.
2017-12-01
Climate change is one of the most pressing challenges facing society, and climate change educational models are emerging in response. This study investigates the implementation and enactment of a climate change professional development model for science educators and its impact on student learning. Using an intrinsic case study methodology, we focused analytic attention on how one teacher made specific curricular, pedagogical, and content decisions, and the implications of those decisions for student's conceptual learning.The research presented here reports on the instructional design, pedagogical enactment, and subsequent effects on student learning of a climate change professional development (PD) model in the United States. Using anthropological theories of conceptual travel, we traced salient ideas from the PD through instructional delivery and into the evidence of student reasoning. We sought to address the following research questions: 1) How did a middle school teacher integrate climate change concepts into her science curriculum following PD participation? and 2) How did climate change instruction influence student understanding of key climate change constructs?From observation of the classroom instruction, we determined that the teacher effectively integrated new climate change information into her pre-existing schema. Additionally, through retrospective analysis of the PD, we found the design of the PD foregrounded the causes, mechanisms and likely effects of anthropogenic climate change at the expense of mitigation and adaptation strategies, and this differentially shaped how climate change was taught in the teacher's classroom. Analysis of student reasoning evidence showed that students gained an increased understanding of the enhanced greenhouse effect and the implications of human activity on this enhanced effect at statistically significant levels and with moderate effect sizes. However, students demonstrated a limited, though non-significant gain on the likely effects of climate change. Student reasoning on the tangible actions to deal with these problems also remained underdeveloped, reflecting omissions in both professional development and teacher enactment. We discuss implications and considerations for the emerging field of climate change education.
Linked hydrologic and social systems that support resilience of traditional irrigation communities
USDA-ARS?s Scientific Manuscript database
Southwestern US irrigated landscapes are facing upheaval due to water scarcity and land use conversion associated with climate change, population growth, and changing economics. In the traditionally irrigated valleys of northern New Mexico, these stresses, as well as instances of community longevity...
Herrmann, Alina; Sauerborn, Rainer
2018-01-01
Heat health impacts (HHI) on the elderly are a growing concern in the face of climate change and aging populations. General practitioners (GPs) have an important role in health care for the elderly. To inform the development of effective prevention measures, it is important to investigate GPs’ perceptions of HHI. Twenty four qualitative expert interviews were conducted with GPs and analyzed using the framework approach. GPs were generally aware of heat health impacts, focusing on cardiovascular morbidity and volume imbalances. Perceptions of mortality and for instance impacts on respiratory diseases or potentially risky drugs in heat waves partly diverged from findings in literature. GPs judged the current relevance of HHI differently depending on their attitudes towards: (i) sensitivity of the elderly, (ii) status of nursing care and (iii) heat exposure in Baden-Württemberg. Future relevance of HHI was perceived to be increasing by most GPs. The main cause identified for this was population aging, while impacts of climate change were judged as uncertain by many. GPs’ perceptions, partly diverging from literature, show that GPs’ knowledge and awareness on HHI and climate change needs to be strengthened. However, they also emphasize the need for more research on HHI in the ambulant health care setting. Furthermore, GPs perceptions suggest that strong nursing care and social networks for elderly are major elements of a climate resilient health system. PMID:29695135
Engaging with Underserved Urban Communities on Climate Resilience
NASA Astrophysics Data System (ADS)
Akerlof, K.; Moser, F. C.; Baja, K.; Dindinger, J. M.; Chanse, V.; Rowan, K. E.; Rohring, B.
2016-12-01
Meeting the needs of urban high-risk/low-resource communities is one of the most critical challenges in improving climate resilience nationally, but little tailored information exists to guide community engagement efforts specifically for these contexts. This case study describes a collaboration between universities, local governments, and community members working in underserved neighborhoods of the City of Baltimore and Prince George's County, Maryland. In service of current and developing community programs, the team surveyed residents door-to-door about their perceptions of the socio-environmental risks they face, their priorities for change, and the ways in which communication may build protective social capital. We highlight theoretical, applied, and pedagogical aspects of the study that inform both the promise and limitations of these collaborations. These include: 1) the role of citizen participation in climate adaptation decision-making; 2) the meaning, use, and potential impact of community data; 3) balancing differing organizational priorities, timelines, and cultures within community-based projects; and 4) research participation of undergraduate students. The results of the survey illuminate climate risk perceptions in neighborhoods facing complex stressors with lessons for communication and engagement in other urban areas facing similar adaptation challenges.
Collingsworth, Paris D.; Bunnell, David B.; Murray, Michael W.; Kao, Yu-Chun; Feiner, Zachary S.; Claramunt, Randall M.; Lofgren, Brent M.; Höök, Tomas O.; Ludsin, Stuart A.
2017-01-01
The Laurentian Great Lakes of North America provide valuable ecosystem services, including fisheries, to the surrounding population. Given the prevalence of other anthropogenic stressors that have historically affected the fisheries of the Great Lakes (e.g., eutrophication, invasive species, overfishing), climate change is often viewed as a long-term stressor and, subsequently, may not always be prioritized by managers and researchers. However, climate change has the potential to negatively affect fish and fisheries in the Great Lakes through its influence on habitat. In this paper, we (1) summarize projected changes in climate and fish habitat in the Great Lakes; (2) summarize fish responses to climate change in the Great Lakes; (3) describe key interactions between climate change and other stressors relevant to Great Lakes fish, and (4) summarize how climate change can be incorporated into fisheries management. In general, fish habitat is projected to be characterized by warmer temperatures throughout the water column, less ice cover, longer periods of stratification, and more frequent and widespread periods of bottom hypoxia in productive areas of the Great Lakes. Based solely on thermal habitat, fish populations theoretically could experience prolonged optimal growth environment within a changing climate, however, models that assess physical habitat influences at specific life stages convey a more complex picture. Looking at specific interactions with other stressors, climate change may exacerbate the negative impacts of both eutrophication and invasive species for fish habitat in the Great Lakes. Although expanding monitoring and research to consider climate change interactions with currently studied stressors, may offer managers the best opportunity to keep the valuable Great Lakes fisheries sustainable, this expansion is globally applicable for large lake ecosystem dealing with multiple stressors in the face of continued human-driven changes.
Bunn, Christian; Läderach, Peter; Pérez Jimenez, Juan Guillermo; Montagnon, Christophe; Schilling, Timothy
2015-01-01
Cultivation of Coffea arabica is highly sensitive to and has been shown to be negatively impacted by progressive climatic changes. Previous research contributed little to support forward-looking adaptation. Agro-ecological zoning is a common tool to identify homologous environments and prioritize research. We demonstrate here a pragmatic approach to describe spatial changes in agro-climatic zones suitable for coffee under current and future climates. We defined agro-ecological zones suitable to produce arabica coffee by clustering geo-referenced coffee occurrence locations based on bio-climatic variables. We used random forest classification of climate data layers to model the spatial distribution of these agro-ecological zones. We used these zones to identify spatially explicit impact scenarios and to choose locations for the long-term evaluation of adaptation measures as climate changes. We found that in zones currently classified as hot and dry, climate change will impact arabica more than those that are better suited to it. Research in these zones should therefore focus on expanding arabica's environmental limits. Zones that currently have climates better suited for arabica will migrate upwards by about 500m in elevation. In these zones the up-slope migration will be gradual, but will likely have negative ecosystem impacts. Additionally, we identified locations that with high probability will not change their climatic characteristics and are suitable to evaluate C. arabica germplasm in the face of climate change. These locations should be used to investigate long term adaptation strategies to production systems. PMID:26505637
Green technologies for reducing slope erosion.
DOT National Transportation Integrated Search
2010-01-01
As climate change alters precipitation patterns, departments of transportation will increasingly face the problem of : slope failures, which already cost California millions of dollars in repair work annually. Caltrans hopes to prevent : these failur...
Remote sensing applications of wildland fire and air quality in China
John J. Qu; Xianjun Hao; Yongqiang Liu; Allen R. Riebau; Haoruo Yi; Xianlin Qin
2009-01-01
As one of the most populous and geographically largest countries, China faces many problems including industrial growth, economic sustainability, food security, climate change, and air pollution. Interwoven with these challenges,...
Sujaritpong, Sarunya; Dear, Keith; Cope, Martin; Walsh, Sean; Kjellstrom, Tord
2014-03-01
Climate change has been predicted to affect future air quality, with inevitable consequences for health. Quantifying the health effects of air pollution under a changing climate is crucial to provide evidence for actions to safeguard future populations. In this paper, we review published methods for quantifying health impacts to identify optimal approaches and ways in which existing challenges facing this line of research can be addressed. Most studies have employed a simplified methodology, while only a few have reported sensitivity analyses to assess sources of uncertainty. The limited investigations that do exist suggest that examining the health risk estimates should particularly take into account the uncertainty associated with future air pollution emissions scenarios, concentration-response functions, and future population growth and age structures. Knowledge gaps identified for future research include future health impacts from extreme air pollution events, interactions between temperature and air pollution effects on public health under a changing climate, and how population adaptation and behavioural changes in a warmer climate may modify exposure to air pollution and health consequences.
Smart licensing and environmental flows: Modeling framework and sensitivity testing
NASA Astrophysics Data System (ADS)
Wilby, R. L.; Fenn, C. R.; Wood, P. J.; Timlett, R.; Lequesne, T.
2011-12-01
Adapting to climate change is just one among many challenges facing river managers. The response will involve balancing the long-term water demands of society with the changing needs of the environment in sustainable and cost effective ways. This paper describes a modeling framework for evaluating the sensitivity of low river flows to different configurations of abstraction licensing under both historical climate variability and expected climate change. A rainfall-runoff model is used to quantify trade-offs among environmental flow (e-flow) requirements, potential surface and groundwater abstraction volumes, and the frequency of harmful low-flow conditions. Using the River Itchen in southern England as a case study it is shown that the abstraction volume is more sensitive to uncertainty in the regional climate change projection than to the e-flow target. It is also found that "smarter" licensing arrangements (involving a mix of hands off flows and "rising block" abstraction rules) could achieve e-flow targets more frequently than conventional seasonal abstraction limits, with only modest reductions in average annual yield, even under a hotter, drier climate change scenario.
NASA Astrophysics Data System (ADS)
Hufnagel, Elizabeth J.
As we face the challenges of serious environmental issues, science education has made a commitment to improving environmental literacy, in particular climate literacy (NRC, 2012; 2013). With an increased focus on climate change education in the United States, more research on the teaching and learning of this problem in science classrooms is occurring (e.g. Arslan, Cigdemoglu, & Moseley, 2012; Svihla & Linn, 2012). However, even though people experience a range of emotions about global problems like climate change (Hicks & Holden, 2007; Ojala, 2012; Rickinson, 2001), little attention is given to their emotions about the problem in science classrooms. Because emotions are evaluative (Boler, 1999; Keltner & Gross, 1999), they provided a lens for understanding how students engage personally with climate change. In this study, I drew from sociolinguistics, social psychology, and the sociology of emotions to examine a) the social interactions that allowed for emotional expressions to be constructed and b) the ways in which pre-service elementary teachers constructed emotional expressions about climate change in a science course. Three overall findings emerged: 1) emotions provided a means of understanding how students' conceptualized climate to be relevant to their lives, 2) emotional expressions and the aboutness of these expressions indicated that the students conceptualized climate change as distanced, both temporally and spatially, and 3) although most emotional constructions were distanced, there were multiple instances of emotional expressions in which students took climate change personally. Following a discussion of the findings, implications, limitations, and directions for future research are also described.
Human Health and Climate Change: Leverage Points for Adaptation in Urban Environments
Proust, Katrina; Newell, Barry; Brown, Helen; Capon, Anthony; Browne, Chris; Burton, Anthony; Dixon, Jane; Mu, Lisa; Zarafu, Monica
2012-01-01
The design of adaptation strategies that promote urban health and well-being in the face of climate change requires an understanding of the feedback interactions that take place between the dynamical state of a city, the health of its people, and the state of the planet. Complexity, contingency and uncertainty combine to impede the growth of such systemic understandings. In this paper we suggest that the collaborative development of conceptual models can help a group to identify potential leverage points for effective adaptation. We describe a three-step procedure that leads from the development of a high-level system template, through the selection of a problem space that contains one or more of the group’s adaptive challenges, to a specific conceptual model of a sub-system of importance to the group. This procedure is illustrated by a case study of urban dwellers’ maladaptive dependence on private motor vehicles. We conclude that a system dynamics approach, revolving around the collaborative construction of a set of conceptual models, can help communities to improve their adaptive capacity, and so better meet the challenge of maintaining, and even improving, urban health in the face of climate change. PMID:22829795
Fighting a Headwind: Communicating the Science of Climate Change in a Hostile Environment
NASA Astrophysics Data System (ADS)
Mann, M. E.
2014-12-01
I will share experiences and insights that I have accumulated over the course of my own efforts to inform the public about the reality and threat of climate change. I will discuss the various challenges we scientists confront in our efforts to inform the public discourse on climate change. Chief among them is the headwind we must fight of a concerted disinformation effort intended to confuse the public about the strength of the underlying scientific evidence. The late Stephen Schneider spoke eloquently of the double ethical bind that we face: we must strive to communicate effectively but honestly, even in the face of an opposition that is unfettered by this latter constraint. We must convey what is known in plainspoken jargon-free language, while acknowledging the real uncertainties that exist. Further, we must explain the implications of those uncertainties, which in many cases imply the possibility of greater, not lesser, risk. Finally, we must not be averse to discussing the policy implications of the science, lest we fail to provide our audience with critical information that can help them make informed choices about their own actions as citizens.
Assessing climate adaptation options and uncertainties for cereal systems in West Africa
NASA Astrophysics Data System (ADS)
Guan, K.; Sultan, B.; Biasutti, M.; Lobell, D. B.
2015-12-01
The already fragile agriculture production system in West Africa faces further challenges in meeting food security in the coming decades, primarily due to a fast increasing population and risks of climate change. Successful adaptation of agriculture should not only benefit in the current climate but should also reduce negative (or enhance positive) impacts for climate change. Assessment of various possible adaptation options and their uncertainties provides key information for prioritizing adaptation investments. Here, based on the several robust aspects of climate projections in this region (i.e. temperature increases and rainfall pattern shifts), we use two well-validated crop models (i.e. APSIM and SARRA-H) and an ensemble of downscaled climate forcing to assess five possible and realistic adaptation options (late sowing, intensification, thermal time increase, water harvesting and increased resilience to heat stress) in West Africa for the staple crop production of sorghum. We adopt a new assessment framework to account for both the impacts of adaptation options in current climate and their ability to reduce impacts of future climate change, and also consider changes in both mean yield and its variability. Our results reveal that most proposed "adaptation options" are not more beneficial in the future than in the current climate, i.e. not really reduce the climate change impacts. Increased temperature resilience during grain number formation period is the main adaptation that emerges. We also find that changing from the traditional to modern cultivar, and later sowing in West Sahel appear to be robust adaptations.
Transportation Resilience Tools from the U.S. Department of Transportation
NASA Astrophysics Data System (ADS)
Snow, C.; Rodehorst, B.; Miller, R.; Choate, A.; Hyman, R.; Kafalenos, R.; Beucler, B.
2014-12-01
The U.S. Department of Transportation (U.S. DOT) and ICF International have been working to develop tools and resources to help state departments of transportation (DOTs) and metropolitan planning organizations (MPOs) prepare for the impacts of climate change. U.S. DOT recently released a set of climate change and extreme weather tools for state DOTs and MPOs that address key challenges they have faced in increasing their climate change resilience. The tools were developed under the U.S. DOT Gulf Coast Study, Phase 2. The CMIP Climate Data Processing Tool provides an easy way for users to gather and process downscaled climate model data at the local level, and "translates" that data into information relevant to transportation engineers and planners. The Vulnerability Assessment Scoring Tool (VAST), provides a step-by-step approach for users to assess their vulnerability to climate change in a transparent, cost-effective way. The Transportation Climate Change Sensitivity Matrix provides detailed information on how 11 different climate stressors may affect transportation infrastructure and operations. These tools significantly advance the state of the practice for transportation agencies to respond to climate change impacts, and beta-versions have been used successfully by several state DOTs and MPOs. This presentation will focus on these tools, examples of how they can be applied within transportation agencies, and opportunities to apply the lessons learned from the tools—or even the tools themselves—beyond the transportation sector, including as part of the national Climate Resilience Toolkit.
Matyssek, R; Wieser, G; Calfapietra, C; de Vries, W; Dizengremel, P; Ernst, D; Jolivet, Y; Mikkelsen, T N; Mohren, G M J; Le Thiec, D; Tuovinen, J-P; Weatherall, A; Paoletti, E
2012-01-01
Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems ("supersites") will be conducive to addressing these gaps by enabling integration of experimentation and modelling within the soil-plant-atmosphere interface, as well as further model development. Copyright © 2011 Elsevier Ltd. All rights reserved.
Stutzman, Ryan J.; Fontaine, Joseph J
2015-01-01
Changes in temperature and seasonality resulting from climate change are heterogeneous, potentially altering important sources of natural selection acting on species phenology. Some species have apparently adapted to climate change but the ability of most species to adapt remains unknown. The life history strategies of migratory animals are dictated by seasonal factors, which makes these species particularly vulnerable to heterogeneous changes in climate and phenology. Here, we examine the phenology of migratory shorebirds, their habitats, and primary food resources, and we hypothesize how climate change may affect migrants through predicted changes in phenology. Daily abundance of shorebirds at stopover sites was correlated with local phenology and peaked immediately prior to peaks in invertebrate food resources. A close relationship between migrant and invertebrate phenology indicates that shorebirds may be vulnerable to changes in seasonality driven by climate change. It is possible that shifts in migrant and invertebrate phenology will be congruent in magnitude and direction, but because migration phenology is dependent on a suite of ecological factors, any response is likely to occur at a larger temporal scale and may lag behind the response of invertebrate food resources. The resulting lack of sufficient access to food at stopover habitats may cause migrants to extend migration and have cascading effects throughout their life cycle. If the heterogeneous nature of climate change results in uneven changes in phenology between migrants and their prey, it may threaten the long-term viability of migratory populations
Effects of heat stress on working populations when facing climate change.
Lundgren, Karin; Kuklane, Kalev; Gao, Chuansi; Holmér, Ingvar
2013-01-01
It is accepted that the earth's climate is changing in an accelerating pace, with already documented implications for human health and the environment. This literature review provides an overview of existing research findings about the effects of heat stress on the working population in relation to climate change. In the light of climate change adaptation, the purpose of the literature review was to explore recent and previous research into the impacts of heat stress on humans in an occupational setting. Heat stress in the workplace has been researched extensively in the past however, in the contemporary context of climate change, information is lacking on its extent and implications. The main factors found to exacerbate heat stress in the current and future workplace are the urban 'heat island effect', physical work, individual differences, and the developing country context where technological fixes are often not applicable. There is also a lack of information on the effects on vulnerable groups such as elderly people and pregnant women. As increasing temperatures reduce work productivity, world economic productivity could be condensed, affecting developing countries in the tropical climate zone disproportionately. Future research is needed taking an interdisciplinary approach, including social, economic, environmental and technical aspects.
Climate Change and Risks to National Security
NASA Astrophysics Data System (ADS)
Titley, D.
2017-12-01
Climate change impacts national security in three ways: through changes in the operating environments of the military; by increasing risks to security infrastructure, specifically bases and training ranges; and by exacerbating and accelerating the risks of state collapse and conflict in regions that are already fragile and unstable. Additionally there will be unique security challenges in the Arctic as sea-ice melts out and human activities increase across multiple dimensions. Military forces will also likely see increased demand for Humanitarian Assistance and Disaster Relief resulting from a combination of increased human population, rising sea-level, and potentially stronger and wetter storms. The talk will explore some of the lesser known aspects of these changes, examine selected climate-driven 'wild cards' that have the potential to disrupt regional and global security, and explore how migration in the face of a changing climate may heighten security issues. I will assess the positions U.S. executive and legislative branches with respect to climate & security, and how those positions have evolved since the November 2016 election, sometimes in counter-intuitive ways. The talk will close with some recommended courses of action the security enterprise can take to manage this climate risk.
NASA Astrophysics Data System (ADS)
Devineni, N.; Lall, U.
2014-12-01
Where will the food for the 9 billion people we expect on Earth by 2050 come from? The answer to this question depends on where the water and the energy for agriculture will come from. This assumes of course, that our primary food source will continue to be based on production on land, and that irrigation and the use of fertilizers to improve production are needed to address climate shocks and deteriorating soil health. Given this, establishing an economically, environmentally and physically feasible pathway to achieve water, energy and food security in the face of a changing climate is crucial to planetary well-being. A central hypothesis of the proposed paper is that innovation towards agricultural sustainability in countries such as India and China, that have large populations relative to their water, energy and arable land endowment, and yet have opportunity for improvement in productivity metrics such as crop yield per unit water or energy use, can show us the way to achieve global water-food-energy sustainability. These countries experience a monsoonal climate, which has a high frequency of climate extremes (more floods and droughts, and a short rainy season) relative to the developed countries in temperate climates. Global climate change projections indicate that the frequency and severity of extremes may pose a challenge in the future. Thus, strategies that are resilient to such extremes in monsoonal climates may be of global value in a warmer, more variable world. Much of the future population growth is expected to occur in Africa, S. America and S. Asia. Targeting these regions for higher productivity and resilience is consequently important from a national security perspective as well. Through this paper, we propose to (a) layout in detail, the challenges faced by the water, energy and food sectors in emerging countries, with specific focus on India and China and (b) provide the scientific background for an integrated systems analytic approach to formulate solutions at varying scales that can be employed globally. Such coordinated analyses is important for an examination of the future water sustainability in the face of changing climate, agricultural trends, environmental impacts and new energy choices.
Vegetation dynamics of the Guatemalan lowlands from MIS7 to MIS5: Evidence from Lake Petén-Itzá
NASA Astrophysics Data System (ADS)
Cruz-Silva, E.; Correa-Metrio, A.; Bush, M. B.
2013-05-01
Reconstructing vegetation patterns of past warm climatic stages is critical for understanding modern processes that affect diversity and climate. Tropical lowlands are of special interest because of the high biodiversity they foster and the risks they face under a scenario of rapid climate change. With a basal age of more that 191,000 years, core PI-1 from Lake Petén-Itzá, Guatemalan lowlands, offer an exceptional opportunity to investigate the dynamics of the vegetation of the area during climatic stages that might be analogous to today. Pollen analysis of the lower part of this sedimentary record shows a sequence of five different climatic stages of alternating warm and cold conditions. According to our interpretation, tropical forests extended in the area during MIS7 and MIS5, with the former characterized by drier conditions than the latter. Apparently forest dynamics closely followed global climatic changes that were recorded in the Antarctic and the Marine Stack records. Our results confirm that vegetation of the Peninsula, although highly resilient, has been very sensitive to global climatic changes.
NASA Astrophysics Data System (ADS)
Slovic, S.
2015-12-01
I will highlight the following teaching strategies in my presentation: 1) the decision of include climate-related works at the end of syllabi for courses in subjects like "The Literature of Energy" in order to complicate and contextualize readings from earlier in the courses and to delay the climate topic until I feel students are ready to face it; 2) breaking down climate into an array of specific, graspable sub-issues (food, water, transportation, architecture) in courses on sustainability literature; and 3) appreciating the psychology of "numbers and nerves" in course design for topics such as genocide and climate change that seem to require quantitative description (for instance, psychic numbing, pseudoinefficacy, the prominence effect, the asymmetry of trust, and the trans-scalar imaginary). This presentation will briefly describe my own experiences teaching climate change literature at the University of Nevada, Reno, and the University of Idaho and will also draw from my forthcoming book, with psychologist Paul Slovic, titled Numbers and Nerves: Information, Emotion, and Meaning in a World of Data (Oregon State University Press, October 2015).
Laws, Angela Nardoni; Belovsky, Gary E
2010-04-01
An important challenge facing ecologists is to understand how climate change may affect species performance and species interactions. However, predicting how changes in abiotic variables associated with climate change may affect species performance also depends on the biotic context, which can mediate species responses to climatic change. We conducted a 3-yr field experiment to determine how the herbivorous grasshopper Camnula pellucida (Scudder) responds to manipulations of temperature and population density. Grasshopper survival and fecundity decreased with density, indicating the importance of intraspecific competition. Female fecundity tended to increase with temperature, whereas grasshopper survival exhibited a unimodal response to temperature, with highest survival at intermediate temperatures. Grasshopper performance responses to temperature also depended on density. Peak survival in the low-density treatment occurred in warmer conditions than for the high-density treatment, indicating that the intensity of intraspecific competition varies with temperature. Our data show that changes to the temperature regimen can alter grasshopper performance and determine the intensity of intraspecific competition. However, the effects of temperature on grasshopper performance varied with density. Our data indicate the importance of the biotic context in mediating species responses to climatic factors associated with global change.
NASA Astrophysics Data System (ADS)
Tao, Fulu; Feng, Zhaozhong; Tang, Haoye; Chen, Yi; Kobayashi, Kazuhiko
2017-03-01
Air pollution and climate change are increasing threats to agricultural production and food security. Extensive studies have focused on the effect of climate change, but the interactive effects of multiple global change factors are poorly understood. Here, we incorporate the interactions between climate change, carbon dioxide (CO2) and ozone (O3) into an eco-physiological mechanistic model based on three years of O3 Free-Air Concentration Elevation (O3-FACE) experiments. We then investigate the effects of climate change, elevated CO2 concentration ([CO2]) and rising O3 concentration ([O3]) on wheat growth and productivity in eastern China in 1996-2005 (2000s) and 2016-2025 (2020s) under two climate change scenarios, singly and in combination. We find the interactive effects of climate change, CO2 and O3 on wheat productivity have spatially explicit patterns; the effect of climate change dominates the general pattern, which is however subject to the large uncertainties of climate change scenarios. Wheat productivity is estimated to increase by 2.8-9.0% due to elevated [CO2] however decline by 2.8-11.7% due to rising [O3] in the 2020s, relative to the 2000s. The combined effects of CO2 and O3 are less than that of O3 only, on average by 4.6-5.2%, however with O3 damage outweighing CO2 benefit in most of the region. This study demonstrates a more biologically meaningful and appropriate approach for assessing the interactive effects of climate change, CO2 and O3 on crop growth and productivity. Our findings promote the understanding on the interactive effects of multiple global change factors across contrasting climate conditions, cast doubt on the potential of CO2 fertilization effect in offsetting possible negative effect of climate change on crop productivity as suggested by many previous studies.
Livelihood resilience in the face of climate change
NASA Astrophysics Data System (ADS)
Tanner, Thomas; Lewis, David; Wrathall, David; Bronen, Robin; Cradock-Henry, Nick; Huq, Saleemul; Lawless, Chris; Nawrotzki, Raphael; Prasad, Vivek; Rahman, Md. Ashiqur; Alaniz, Ryan; King, Katherine; McNamara, Karen; Nadiruzzaman, Md.; Henly-Shepard, Sarah; Thomalla, Frank
2015-01-01
The resilience concept requires greater attention to human livelihoods if it is to address the limits to adaptation strategies and the development needs of the planet's poorest and most vulnerable people. Although the concept of resilience is increasingly informing research and policy, its transfer from ecological theory to social systems leads to weak engagement with normative, social and political dimensions of climate change adaptation. A livelihood perspective helps to strengthen resilience thinking by placing greater emphasis on human needs and their agency, empowerment and human rights, and considering adaptive livelihood systems in the context of wider transformational changes.
Climate Controls on Tree Growth Across Species and Sites in Northeastern Arizona
NASA Astrophysics Data System (ADS)
Schwan, M. R.; Guiterman, C. H.; Anchukaitis, K. J.
2016-12-01
Understanding how forests will respond to ongoing climate change is important for conservation and resource management. Conifer forests in the US Southwest are predicted to be particularly at risk from increased drought and higher temperatures projected to occur in the region. Tree-ring studies shed light on how trees respond to climate, but there remains considerable uncertainty as to which climate factors are most important, and which species are most at risk. Confounding climate and environmental factors, biological differences among species, and biogeography often complicate cross-species analysis. Here we present a multi-species, multivariate analysis of tree growth response to climate variability. We analyze data from three coexisting conifer tree species at two sites near Canyon de Chelly, Arizona. We use a high-resolution PRISM gridded climate dataset to determine the growth responses across species and sites to temperature and precipitation. We identify both common and differential responses in our data and use these to infer possible risks these forest communities may face under a changing climate.
Climate change adaptation benefits of potential conservation partnerships.
Monahan, William B; Theobald, David M
2018-01-01
We evaluate the world terrestrial network of protected areas (PAs) for its partnership potential in responding to climate change. That is, if a PA engaged in collaborative, trans-boundary management of species, by investing in conservation partnerships with neighboring areas, what climate change adaptation benefits might accrue? We consider core tenets of conservation biology related to protecting large areas with high environmental heterogeneity and low climate change velocity and ask how a series of biodiversity adaptation indicators change across spatial scales encompassing potential PA and non-PA partners. Less than 1% of current world terrestrial PAs equal or exceed the size of established and successful conservation partnerships. Partnering at this scale would increase the biodiversity adaptation indicators by factors up to two orders of magnitude, compared to a null model in which each PA is isolated. Most partnership area surrounding PAs is comprised of non-PAs (70%), indicating the importance of looking beyond the current network of PAs when promoting climate change adaptation. Given monumental challenges with PA-based species conservation in the face of climate change, partnerships provide a logical and achievable strategy for helping areas adapt. Our findings identify where strategic partnering efforts in highly vulnerable areas of the world may prove critical in safeguarding biodiversity.
Climate Hazard Assessment for Stakeholder Adaptation Planning in New York City
NASA Technical Reports Server (NTRS)
Horton, Radley M.; Gornitz, Vivien; Bader, Daniel A.; Ruane, Alex C.; Goldberg, Richard; Rosenzweig, Cynthia
2011-01-01
This paper describes a time-sensitive approach to climate change projections, developed as part of New York City's climate change adaptation process, that has provided decision support to stakeholders from 40 agencies, regional planning associations, and private companies. The approach optimizes production of projections given constraints faced by decision makers as they incorporate climate change into long-term planning and policy. New York City stakeholders, who are well-versed in risk management, helped pre-select the climate variables most likely to impact urban infrastructure, and requested a projection range rather than a single 'most likely' outcome. The climate projections approach is transferable to other regions and consistent with broader efforts to provide climate services, including impact, vulnerability, and adaptation information. The approach uses 16 Global Climate Models (GCMs) and three emissions scenarios to calculate monthly change factors based on 30-year average future time slices relative to a 30- year model baseline. Projecting these model mean changes onto observed station data for New York City yields dramatic changes in the frequency of extreme events such as coastal flooding and dangerous heat events. Based on these methods, the current 1-in-10 year coastal flood is projected to occur more than once every 3 years by the end of the century, and heat events are projected to approximately triple in frequency. These frequency changes are of sufficient magnitude to merit consideration in long-term adaptation planning, even though the precise changes in extreme event frequency are highly uncertain
Patterns and biases of climate change threats in the IUCN Red List.
Trull, Nicholas; Böhm, Monika; Carr, Jamie
2018-02-01
International Union for Conservation of Nature (IUCN) Red List assessments rely on published data and expert inputs, and biases can be introduced where underlying definitions and concepts are ambiguous. Consideration of climate change threat is no exception, and recently numerous approaches to assessing the threat of climate change to species have been developed. We explored IUCN Red List assessments of amphibians and birds to determine whether species listed as threatened by climate change display distinct patterns in terms of habitat occupied and additional nonclimatic threats faced. We compared IUCN Red List data with a published data set of species' biological and ecological traits believed to infer high vulnerability to climate change and determined whether distributions of climate change-threatened species on the IUCN Red List concur with those of climate change-threatened species identified with the trait-based approach and whether species possessing these traits are more likely to have climate change listed as a threat on the IUCN Red List. Species in some ecosystems (e.g., grassland, shrubland) and subject to particular threats (e.g., invasive species) were more likely to have climate change as a listed threat. Geographical patterns of climate change-threatened amphibians and birds on the IUCN Red List were incongruent with patterns of global species richness and patterns identified using trait-based approaches. Certain traits were linked to increases or decreases in the likelihood of a species being threatened by climate change. Broad temperature tolerance of a species was consistently related to an increased likelihood of climate change threat, indicating counterintuitive relationships in IUCN assessments. To improve the robustness of species assessments of the vulnerability or extinction risk associated with climate change, we suggest IUCN adopt a more cohesive approach whereby specific traits highlighted by our results are considered in Red List assessments. To achieve this and to strengthen the climate change-vulnerability assessments approach, it is necessary to identify and implement logical avenues for further research into traits that make species vulnerable to climate change (including population-level threats). © 2017 Society for Conservation Biology.
Predator or Proprietor? Challengers to the Liberal Education Throne
ERIC Educational Resources Information Center
Wittnebel, Leo
2012-01-01
The nature of the changing economic climate has resulted in drastic changes in the postsecondary education landscape. With record numbers of adult learners seeking to further their education, they are faced with numerous outlets, including traditional liberal universities and a variety of for-profit colleges and vocational schools that have…
A New Way for Students and Colleges to Bring about Global Change
ERIC Educational Resources Information Center
Clinton, William Jefferson
2008-01-01
Over the course of history, students and universities have played important, often transformative roles in guiding all people toward a healthier, more equitable, sustainable, and prosperous global community. Today they face unprecedented global challenges relating to climate change, extreme poverty, malnutrition and disease, and equitable…
Curriculum Change and Climate Change: Inside outside Pressures in Higher Education
ERIC Educational Resources Information Center
Fahey, Shireen J.
2012-01-01
In higher education today, institutions are facing a number of challenges--including the challenge to create future-proof graduates. Higher education institutions have a particular mandate to develop future leaders and decision-makers capable of understanding and providing solutions to complex, global issues. Education programmes that focus on…
Monitoring Change: SIPI Students Engage in Long-Term Ecological Research
ERIC Educational Resources Information Center
Porter, Margaret; Bennett, T. M. Bull
2013-01-01
American Indian tribes across the nation are facing pressing ecological challenges related to alterations in species distribution, access and availability of water, shifting community structures, and other phenomena correlated to climate change. At the Southwestern Indian Polytechnic Institute (SIPI, Albuquerque, NM), faculty and staff believe the…
Simulation of Optimal Decision-Making Under the Impacts of Climate Change.
Møller, Lea Ravnkilde; Drews, Martin; Larsen, Morten Andreas Dahl
2017-07-01
Climate change causes transformations to the conditions of existing agricultural practices appointing farmers to continuously evaluate their agricultural strategies, e.g., towards optimising revenue. In this light, this paper presents a framework for applying Bayesian updating to simulate decision-making, reaction patterns and updating of beliefs among farmers in a developing country, when faced with the complexity of adapting agricultural systems to climate change. We apply the approach to a case study from Ghana, where farmers seek to decide on the most profitable of three agricultural systems (dryland crops, irrigated crops and livestock) by a continuous updating of beliefs relative to realised trajectories of climate (change), represented by projections of temperature and precipitation. The climate data is based on combinations of output from three global/regional climate model combinations and two future scenarios (RCP4.5 and RCP8.5) representing moderate and unsubstantial greenhouse gas reduction policies, respectively. The results indicate that the climate scenario (input) holds a significant influence on the development of beliefs, net revenues and thereby optimal farming practices. Further, despite uncertainties in the underlying net revenue functions, the study shows that when the beliefs of the farmer (decision-maker) opposes the development of the realised climate, the Bayesian methodology allows for simulating an adjustment of such beliefs, when improved information becomes available. The framework can, therefore, help facilitating the optimal choice between agricultural systems considering the influence of climate change.
NASA Astrophysics Data System (ADS)
Niepold, F., III; Crim, H.; Fiorile, G.; Eldadah, S.
2017-12-01
Since 2012, the Climate and Energy Literacy community have realized that as cities, nations and the international community seek solutions to global climate change over the coming decades, a more comprehensive, interdisciplinary approach to climate literacy—one that includes economic and social considerations—will play a vital role in knowledgeable planning, decision-making, and governance. City, county and state leaders are now leading the American response to a changing climate by incubating social innovation to prevail in the face of unprecedented change. Cities are beginning to realize the importance of critical investments to support the policies and strategies that will foster the climate literacy necessary for citizens to understand the urgency of climate actions and to succeed in a resilient post-carbon economy and develop the related workforce. Over decade of federal and non-profit Climate Change Education effective methods have been developed that can support municipality's significant educational capabilities for the purpose of strengthening and scaling city, state, business, and education actions designed to sustain and effectively address this significant social change. Looking to foster the effective and innovative strategies that will enable their communities several networks have collaborated to identify recommendations for effective education and communication practices when working with different types of audiences. U.S. National Science Foundation funded Climate Change Education Partnership (CCEP) Alliance, the National Wildlife Federation, NOAA Climate Program Office, Tri-Agency Climate Change Education Collaborative and the Climate Literacy and Energy Awareness Network (CLEAN) are working to develop a new web portal that will highlight "effective" practices that includes the acquisition and use of climate change knowledge to inform decision-making. The purpose of the web portal is to transfer effective practice to support communities to be empowered to address the challenges of a new climate reality and ensure that all people are capable of taking an active role in shaping a sustainable future.
Climate change risks and conservation implications for a threatened small-range mammal species.
Morueta-Holme, Naia; Fløjgaard, Camilla; Svenning, Jens-Christian
2010-04-29
Climate change is already affecting the distributions of many species and may lead to numerous extinctions over the next century. Small-range species are likely to be a special concern, but the extent to which they are sensitive to climate is currently unclear. Species distribution modeling, if carefully implemented, can be used to assess climate sensitivity and potential climate change impacts, even for rare and cryptic species. We used species distribution modeling to assess the climate sensitivity, climate change risks and conservation implications for a threatened small-range mammal species, the Iberian desman (Galemys pyrenaicus), which is a phylogenetically isolated insectivore endemic to south-western Europe. Atlas data on the distribution of G. pyrenaicus was linked to data on climate, topography and human impact using two species distribution modeling algorithms to test hypotheses on the factors that determine the range for this species. Predictive models were developed and projected onto climate scenarios for 2070-2099 to assess climate change risks and conservation possibilities. Mean summer temperature and water balance appeared to be the main factors influencing the distribution of G. pyrenaicus. Climate change was predicted to result in significant reductions of the species' range. However, the severity of these reductions was highly dependent on which predictor was the most important limiting factor. Notably, if mean summer temperature is the main range determinant, G. pyrenaicus is at risk of near total extinction in Spain under the most severe climate change scenario. The range projections for Europe indicate that assisted migration may be a possible long-term conservation strategy for G. pyrenaicus in the face of global warming. Climate change clearly poses a severe threat to this illustrative endemic species. Our findings confirm that endemic species can be highly vulnerable to a warming climate and highlight the fact that assisted migration has potential as a conservation strategy for species threatened by climate change.
Climate Change Risks and Conservation Implications for a Threatened Small-Range Mammal Species
Morueta-Holme, Naia; Fløjgaard, Camilla; Svenning, Jens-Christian
2010-01-01
Background Climate change is already affecting the distributions of many species and may lead to numerous extinctions over the next century. Small-range species are likely to be a special concern, but the extent to which they are sensitive to climate is currently unclear. Species distribution modeling, if carefully implemented, can be used to assess climate sensitivity and potential climate change impacts, even for rare and cryptic species. Methodology/Principal Findings We used species distribution modeling to assess the climate sensitivity, climate change risks and conservation implications for a threatened small-range mammal species, the Iberian desman (Galemys pyrenaicus), which is a phylogenetically isolated insectivore endemic to south-western Europe. Atlas data on the distribution of G. pyrenaicus was linked to data on climate, topography and human impact using two species distribution modeling algorithms to test hypotheses on the factors that determine the range for this species. Predictive models were developed and projected onto climate scenarios for 2070–2099 to assess climate change risks and conservation possibilities. Mean summer temperature and water balance appeared to be the main factors influencing the distribution of G. pyrenaicus. Climate change was predicted to result in significant reductions of the species' range. However, the severity of these reductions was highly dependent on which predictor was the most important limiting factor. Notably, if mean summer temperature is the main range determinant, G. pyrenaicus is at risk of near total extinction in Spain under the most severe climate change scenario. The range projections for Europe indicate that assisted migration may be a possible long-term conservation strategy for G. pyrenaicus in the face of global warming. Conclusions/Significance Climate change clearly poses a severe threat to this illustrative endemic species. Our findings confirm that endemic species can be highly vulnerable to a warming climate and highlight the fact that assisted migration has potential as a conservation strategy for species threatened by climate change. PMID:20454451
Rial-Lovera, Karen; Davies, W Paul; Cannon, Nicola D
2017-01-01
The UK, like the rest of the world, is confronting the impacts of climate change. Further changes are expected and they will have a profound effect on agriculture. Future crop production will take place against increasing CO 2 levels and temperatures, decreasing water availability, and increasing frequency of extreme weather events. This review contributes to research on agricultural practices for climate change, but with a more regional perspective. The present study explores climate change impacts on UK agriculture, particularly food crop production, and how to mitigate and build resilience to climate change by adopting and/or changing soil management practices, including fertilisation and tillage systems, new crop adoption and variety choice. Some mitigation can be adopted in the shorter term, such as changes in crop type and reduction in fertiliser use, but in other cases the options will need greater investment and longer adaptation period. This is the case for new crop variety development and deployment, and possible changes to soil cultivations. Uncertainty of future weather conditions, particularly extreme weather, also affect decision-making for adoption of practices by farmers to ensure more stable and sustainable production. Even when there is real potential for climate change mitigation, it can sometimes be more difficult to accomplish with certainty on-farm. Better future climate projections and long-term investments will be required to create more resilient agricultural systems in the UK in the face of climate change challenges. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Maintaining resilience in the face of climate change: Chapter 8
Camacho, Alejandro E.; Beard, T. Douglas
2014-01-01
Climate change, when combined with more conventional stress from human exploitation, calls into question the capacity of both existing ecological communities and resource management institutions to experience disturbances while substantially retaining their same functions and identities (Zellmer and Gunderson 2009; Ruhl 2011). In other words, the physical and biological effects of climate change raise fundamental challenges to the resilience of natural ecosystems (Gunderson and Holling 2002). Perhaps more importantly, the projected scope of ecological shifts from global climate change-and uncertainty about such changes-significantly stresses the capacity of legal institutions to manage ecosystem change (Camacho 2009). Existing governmental institutions lack the adaptive capacity to manage such substantial changes to ecological and legal systems. In particular, regulators and managers lack information about ecological effects and alternative management strategies for managing the effects of climate change (Karkkainen 2008; Camacho 2009), as well as the institutional infrastructure for obtaining such information (Peters 2008).A number of recent initiatives have been proposed to address the effects of climate change on ecological systems. However, these nascent programs do not fully meet the needs for developing adaptive capacity. A federal, publicly accessible, and system-wide portal and clearinghouse will help regulators at all levels of government manage the effects and uncertainty from climate change (DiMento and Ingram 2005; Farber 2007). Such an information infrastructure, combined with a range of incentives that encourage regulators to engage in adaptive management and programmatic adjustment over time (Baron et al. 2009), will help governmental and private institutions become more resilient and capable of managing the physical and human institutional effects of changing climate (Camacho 2009).
NASA Astrophysics Data System (ADS)
Ruane, A. C.
2016-12-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to build a modeling framework capable of representing the complexities of agriculture, its dependence on climate, and the many elements of society that depend on food systems. AgMIP's 30+ activities explore the interconnected nature of climate, crop, livestock, economics, food security, and nutrition, using common protocols to systematically evaluate the components of agricultural assessment and allow multi-model, multi-scale, and multi-method analysis of intertwining changes in socioeconomic development, environmental change, and technological adaptation. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) with a particular focus on unforeseen consequences of development strategies, interactions between global and local systems, and the resilience of agricultural systems to extreme climate events. Climate extremes shock the agricultural system through local, direct impacts (e.g., droughts, heat waves, floods, severe storms) and also through teleconnections propagated through international trade. As the climate changes, the nature of climate extremes affecting agriculture is also likely to change, leading to shifting intensity, duration, frequency, and geographic extents of extremes. AgMIP researchers are developing new scenario methodologies to represent near-term extreme droughts in a probabilistic manner, field experiments that impose heat wave conditions on crops, increased resolution to differentiate sub-national drought impacts, new behavioral functions that mimic the response of market actors faced with production shortfalls, analysis of impacts from simultaneous failures of multiple breadbasket regions, and more detailed mapping of food and socioeconomic indicators into food security and nutrition metrics that describe the human impact in diverse populations. Agricultural models illustrate the challenges facing agriculture, allowing resilience planning even as precise prediction of extremes remains difficult. Increased research is necessary to understand hazards, vulnerability, and exposure of populations to characterize the risk of shocks and mechanisms by which unexpected losses drive land-use transitions.
NASA Astrophysics Data System (ADS)
Mitchell, K. A.; Pandya, R. E.; Kahn-Thornbrugh, C.; Newberry, T.; Carroll, M.; Guinn, M.; Vanlopik, W.; Haines, C.; Wildcat, D.
2010-12-01
Thirty-six Tribal Colleges and Universities (TCUs) serve over 20,000 Native American undergraduate students across the US. TCUs were created in response to the higher education needs of American Indians and generally serve geographically isolated populations that have no other means accessing education beyond the high school level. TCUs have become increasingly important to educational opportunity for Native American students and are unique institutions that combine personal attention with cultural relevance to encourage Native Americans to overcome the barriers they face to higher education. The American Indian Higher Education Consortium (AIHEC) coordinated development of a semester-long geosciences program of study with a unique curriculum that introduces tribal college students to multiple disciplines in the geosciences within the topic of global climate change. Importantly, the curriculum structure does not parallel typical college climate change survey courses, but rather is taught from the perspective of the traditional ecological knowledge held by native peoples of North America. The richly varied history, geography, ecology, culture and scientific knowledge of Native American tribes across the US serves as the starting point from which students are taught about atmospheric and earth sciences and the connection of climate change to all our lives. In addition, examples and case studies focusing specifically on tribal lands foster the development of future Native American leaders with the scientific, technological and cultural skills required to assist tribal communities in managing their lands and maintaining their cultures as they face a climate-altered future. The "Introduction to Climate Change from an Indigenous Perspective" curriculum was developed by tribal college faculty from multiple institutions through a collaborative workshop process. The course was piloted and taught at 5 tribal colleges during spring semester 2010. This presentation provides an overview of the course goals, content and delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sarah L; Hotchkiss, Elizabeth L; Bilello, Daniel E
Reliable, safe, and secure electricity is essential for economic and social development and a necessary input for many sectors of the economy. However, electricity generation and associated processes make up a significant portion of global greenhouse gas (GHG) emissions contributing to climate change. Furthermore, electricity systems are vulnerable to climate change impacts - both short-term events and changes over the longer term. This vulnerability presents both near-term and chronic challenges in providing reliable, affordable, equitable, and sustainable energy services. Within this context, developing countries face a number of challenges in the energy sector, including the need to reliably meet growingmore » electricity demand, lessen dependence on imported fuels, expand energy access, and improve stressed infrastructure for fuel supply and electricity transmission. Energy efficiency (EE) and renewable energy (RE) technical solutions described in this paper can bridge action across climate change mitigation and resilience through reducing GHG emissions and supporting electric power sector adaptation to increasing climate risk. Integrated planning approaches, also highlighted in this paper, play an integral role in bringing together mitigation and resilience action under broader frameworks. Through supporting EE and RE deployment and integrated planning approaches, unique to specific national and local circumstances, countries can design and implement policies, strategies, and sectoral plans that unite development priorities, climate change mitigation, and resilience.« less
The global land rush and climate change
NASA Astrophysics Data System (ADS)
Davis, Kyle Frankel; Rulli, Maria Cristina; D'Odorico, Paolo
2015-08-01
Climate change poses a serious global challenge in the face of rapidly increasing human demand for energy and food. A recent phenomenon in which climate change may play an important role is the acquisition of large tracts of land in the developing world by governments and corporations. In the target countries, where land is relatively inexpensive, the potential to increase crop yields is generally high and property rights are often poorly defined. By acquiring land, investors can realize large profits and countries can substantially alter the land and water resources under their control, thereby changing their outlook for meeting future demand. While the drivers, actors, and impacts involved with land deals have received substantial attention in the literature, we propose that climate change plays an important yet underappreciated role, both through its direct effects on agricultural production and through its influence on mitigative or adaptive policy decisions. Drawing from various literature sources as well as a new global database on reported land deals, we trace the evolution of the global land rush and highlight prominent examples in which the role of climate change is evident. We find that climate change—both historical and anticipated—interacts substantially with drivers of land acquisitions, having important implications for the resilience of communities in targeted areas. As a result of this synthesis, we ultimately contend that considerations of climate change should be integrated into future policy decisions relating to the large-scale land acquisitions.
Planning for the Maintenance of Floristic Diversity in the Face of Land Cover and Climate Change.
Jewitt, Debbie; Goodman, Peter S; Erasmus, Barend F N; O'Connor, Timothy G; Witkowski, Ed T F
2017-05-01
Habitat loss and climate change are primary drivers of global biodiversity loss. Species will need to track changing environmental conditions through fragmented and transformed landscapes such as KwaZulu-Natal, South Africa. Landscape connectivity is an important tool for maintaining resilience to global change. We develop a coarse-grained connectivity map between protected areas to aid decision-making for implementing corridors to maintain floristic diversity in the face of global change. The spatial location of corridors was prioritised using a biological underpinning of floristic composition that incorporated high beta diversity regions, important plant areas, climate refugia, and aligned to major climatic gradients driving floristic pattern. We used Linkage Mapper to develop the connectivity network. The resistance layer was based on land-cover categories with natural areas discounted according to their contribution towards meeting the biological objectives. Three corridor maps were developed; a conservative option for meeting minimum corridor requirements, an optimal option for meeting a target amount of 50% of the landscape and an option including linkages in highly transformed areas. The importance of various protected areas and critical linkages in maintaining landscape connectivity are discussed, disconnected protected areas and pinch points identified where the loss of small areas could compromise landscape connectivity. This framework is suggested as a way to conserve floristic diversity into the future and is recommended as an approach for other global connectivity initiatives. A lack of implementation of corridors will lead to further habitat loss and fragmentation, resulting in further risk to plant diversity.
Planning for the Maintenance of Floristic Diversity in the Face of Land Cover and Climate Change
NASA Astrophysics Data System (ADS)
Jewitt, Debbie; Goodman, Peter S.; Erasmus, Barend F. N.; O'Connor, Timothy G.; Witkowski, Ed T. F.
2017-05-01
Habitat loss and climate change are primary drivers of global biodiversity loss. Species will need to track changing environmental conditions through fragmented and transformed landscapes such as KwaZulu-Natal, South Africa. Landscape connectivity is an important tool for maintaining resilience to global change. We develop a coarse-grained connectivity map between protected areas to aid decision-making for implementing corridors to maintain floristic diversity in the face of global change. The spatial location of corridors was prioritised using a biological underpinning of floristic composition that incorporated high beta diversity regions, important plant areas, climate refugia, and aligned to major climatic gradients driving floristic pattern. We used Linkage Mapper to develop the connectivity network. The resistance layer was based on land-cover categories with natural areas discounted according to their contribution towards meeting the biological objectives. Three corridor maps were developed; a conservative option for meeting minimum corridor requirements, an optimal option for meeting a target amount of 50% of the landscape and an option including linkages in highly transformed areas. The importance of various protected areas and critical linkages in maintaining landscape connectivity are discussed, disconnected protected areas and pinch points identified where the loss of small areas could compromise landscape connectivity. This framework is suggested as a way to conserve floristic diversity into the future and is recommended as an approach for other global connectivity initiatives. A lack of implementation of corridors will lead to further habitat loss and fragmentation, resulting in further risk to plant diversity.
Human Responses to Climate Variability: The Case of South Africa
NASA Astrophysics Data System (ADS)
Oppenheimer, M.; Licker, R.; Mastrorillo, M.; Bohra-Mishra, P.; Estes, L. D.; Cai, R.
2014-12-01
Climate variability has been associated with a range of societal and individual outcomes including migration, violent conflict, changes in labor productivity, and health impacts. Some of these may be direct responses to changes in mean temperature or precipitation or extreme events, such as displacement of human populations by tropical cyclones. Others may be mediated by a variety of biological, social, or ecological factors such as migration in response to long-term changes in crops yields. Research is beginning to elucidate and distinguish the many channels through which climate variability may influence human behavior (ranging from the individual to the collective, societal level) in order to better understand how to improve resilience in the face of current variability as well as future climate change. Using a variety of data sets from South Africa, we show how climate variability has influenced internal (within country) migration in recent history. We focus on South Africa as it is a country with high levels of internal migration and dramatic temperature and precipitation changes projected for the 21st century. High poverty rates and significant levels of rain-fed, smallholder agriculture leave large portions of South Africa's population base vulnerable to future climate change. In this study, we utilize two complementary statistical models - one micro-level model, driven by individual and household level survey data, and one macro-level model, driven by national census statistics. In both models, we consider the effect of climate on migration both directly (with gridded climate reanalysis data) and indirectly (with agricultural production statistics). With our historical analyses of climate variability, we gain insights into how the migration decisions of South Africans may be influenced by future climate change. We also offer perspective on the utility of micro and macro level approaches in the study of climate change and human migration.
Brown, Kerry A.; Parks, Katherine E.; Bethell, Colin A.; Johnson, Steig E.; Mulligan, Mark
2015-01-01
Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar’s plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future. PMID:25856241
Climate-smart conservation: putting adaption principles into practice
Stein, Bruce A.; Glick, Patty; Edelson, Naomi; Staudt, Amanda
2014-01-01
Climate change already is having significant impacts on the nation’s species and ecosystems, and these effects are projected to increase considerably over time. As a result, climate change is now a primary lens through which conservation and natural resource management must be viewed. How should we prepare for and respond to the impacts of climate change on wildlife and their habitats? What should we be doing differently in light of these climatic shifts, and what actions continue to make sense? Climate-Smart Conservation: Putting Adaptation Principles into Practice offers guidance for designing and carrying out conservation in the face of a rapidly changing climate. Addressing the growing threats brought about or accentuated by rapid climate change requires a fundamental shift in the practice of natural resource management and conservation. Traditionally, conservationists have focused their efforts on protecting and managing systems to maintain their current state, or to restore degraded systems back to a historical state regarded as more desirable. Conservation planners and practitioners will need to adopt forward-looking goals and implement strategies specifically designed to prepare for and adjust to current and future climatic changes, and the associated impacts on natural systems and human communities—an emerging discipline known as climate change adaptation. The field of climate change adaptation is still in its infancy. Although there is increasing attention focused on the subject, much of the guidance developed to date has been general in nature, concentrating on high-level principles rather than specific actions. It is against this backdrop that this guide was prepared as a means for helping put adaptation principles into practice, and for moving adaptation from planning to action.
Brown, Kerry A; Parks, Katherine E; Bethell, Colin A; Johnson, Steig E; Mulligan, Mark
2015-01-01
Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.
Farming with Grass: Achieving Sustainable Mixed Agricultural Landscapes
USDA-ARS?s Scientific Manuscript database
Agriculture in grassland environments is facing multiple stresses from shifting demographics, declining and fragmented agricultural landscapes, declining environmental quality, variable and changing climate, volatile and increasing energy costs, marginal economic returns, and globalization. Grassla...
NASA Astrophysics Data System (ADS)
Tasquier, Giulia; Pongiglione, Francesca
2017-09-01
Climate change is one of the significant global challenges currently facing humanity. Even though its seriousness seems to be common knowledge among the public, the reaction of individuals to it has been slow and uncertain. Many studies assert that simply knowing about climate change is not enough to generate people's behavioural response. They claim, indeed, that in some cases scientific literacy can even obstruct behavioural response instead. However, recent surveys show a rather poor understanding of climate dynamics and argue that lack of knowledge about causal relationships within climate dynamics can hinder behavioural response, since the individual is not able to understand his/her role as causal agent and therefore doesn't know how to take proper action. This study starts from the hypothesis that scientific knowledge focused on clarifying climate dynamics can make people understand not only dynamics themselves, but also their interactive relationship with the environment. Teaching materials on climate change based on such considerations were designed and implemented in a course for secondary-school students with the aim of investigating whether this kind of knowledge had an influence on students' willingness to adopt pro-environmental behaviours. Questionnaires were delivered for testing the effect of the teaching experience on knowledge and behaviour.
Projecting climate change impacts on hydrology: the potential role of daily GCM output
NASA Astrophysics Data System (ADS)
Maurer, E. P.; Hidalgo, H. G.; Das, T.; Dettinger, M. D.; Cayan, D.
2008-12-01
A primary challenge facing resource managers in accommodating climate change is determining the range and uncertainty in regional and local climate projections. This is especially important for assessing changes in extreme events, which will drive many of the more severe impacts of a changed climate. Since global climate models (GCMs) produce output at a spatial scale incompatible with local impact assessment, different techniques have evolved to downscale GCM output so locally important climate features are expressed in the projections. We compared skill and hydrologic projections using two statistical downscaling methods and a distributed hydrology model. The downscaling methods are the constructed analogues (CA) and the bias correction and spatial downscaling (BCSD). CA uses daily GCM output, and can thus capture GCM projections for changing extreme event occurrence, while BCSD uses monthly output and statistically generates historical daily sequences. We evaluate the hydrologic impacts projected using downscaled climate (from the NCEP/NCAR reanalysis as a surrogate GCM) for the late 20th century with both methods, comparing skill in projecting soil moisture, snow pack, and streamflow at key locations in the Western United States. We include an assessment of a new method for correcting for GCM biases in a hybrid method combining the most important characteristics of both methods.
Arne Buechling; Patrick H. Martin; Charles D. Canham; Wayne D. Shepperd; Michael Battaglia
2016-01-01
The increases in seed output observed in this study may promote population fitness of P. engelmannii in the face of changing climate regimes and increasing frequencies of fire- and insect-related tree mortality in the Rocky Mountains. Since this species lacks a persistent seed bank, re-colonization of disturbed areas or dispersal to shifting habitats depends...
U. S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather
2013-07-01
required for enhanced oil recovery, hydraulic fracturing , and refining • Renewable energy resources, particularly hydropower, bioenergy, and...regarding risks, vulnerabilities, and opportunities to build climate-resilient energy systems • Effective coordination mechanisms with federal, state and...oil via hydraulic fracturing faced higher water costs or were denied access to water for 6 weeks or more in several states, including Kansas, Texas
Engaging a moving target: Adapting to rates of climate change
NASA Astrophysics Data System (ADS)
Shayegh, S.; Caldeira, K.; Moreno-Cruz, J.
2015-12-01
Climate change is affecting the planet and its human and natural systems at an increasing rate. As temperatures continue to rise, the international community has increasingly been considering adaptation measures to prepare for future climate change. However, most discussion around adaptation strategies has focused on preparedness for some expected amount of climate change impacts, e.g. 2 meters sea level rise. In this study, we discuss adaptation to rates of change as an alternative conceptual framework for thinking about adaptation. Adaptation is not only about adapting to amounts of change, but the rate at which these changes occur is also critically important. We ground our discussion with an example of optimal coastal investment in the face of ongoing sea level rise. Sea level rise threatens coastal assets. Finite resources could be devoted to building infrastructure further inland or to building coastal defense systems. A possible policy response could be to create a "no-build" coastal buffer zone that anticipates a future higher sea level. We present a quantitative model that illustrates the interplay among various important factors (rate of sea level rise, discount rate, capital depreciation rate, attractiveness of coastal land, etc). For some cases, strategies that combine periodic defensive investments (e.g. dikes) with planned retreat can maximize welfare when adapting to rates of climate change. In other cases, planned retreat may be optimal. It is important to prepare for ongoing increasing amounts of climate change. Preparing for a fixed amount of climate change can lead to a suboptimal solution. Climate is likely to continue changing throughout this century and beyond. To reduce adverse climate impacts, ecosystems and human systems will need to continuously adapt to a moving target.
Climate change adaptation strategies for resource management and conservation planning.
Lawler, Joshua J
2009-04-01
Recent rapid changes in the Earth's climate have altered ecological systems around the globe. Global warming has been linked to changes in physiology, phenology, species distributions, interspecific interactions, and disturbance regimes. Projected future climate change will undoubtedly result in even more dramatic shifts in the states of many ecosystems. These shifts will provide one of the largest challenges to natural resource managers and conservation planners. Managing natural resources and ecosystems in the face of uncertain climate requires new approaches. Here, the many adaptation strategies that have been proposed for managing natural systems in a changing climate are reviewed. Most of the recommended approaches are general principles and many are tools that managers are already using. What is new is a turning toward a more agile management perspective. To address climate change, managers will need to act over different spatial and temporal scales. The focus of restoration will need to shift from historic species assemblages to potential future ecosystem services. Active adaptive management based on potential future climate impact scenarios will need to be a part of everyday operations. And triage will likely become a critical option. Although many concepts and tools for addressing climate change have been proposed, key pieces of information are still missing. To successfully manage for climate change, a better understanding will be needed of which species and systems will likely be most affected by climate change, how to preserve and enhance the evolutionary capacity of species, how to implement effective adaptive management in new systems, and perhaps most importantly, in which situations and systems will the general adaptation strategies that have been proposed work and how can they be effectively applied.
Interweaving climate research and public understanding
NASA Astrophysics Data System (ADS)
Betts, A. K.
2016-12-01
For the past 10 years I have been using research into land-atmosphere-cloud coupling to address Vermont's need to understand climate change, and develop plans for greater resilience in the face of increasing severe weather. The research side has shown that the fraction of days with snow cover determines the cold season climate, because snow acts as a fast climate switch between non-overlapping climates with and without snow cover. Clouds play opposite roles in warm and cold seasons: surface cooling in summer and warming in winter. The later fall freeze-up and earlier spring ice-out on lakes, coupled to the earlier spring phenology, are clear markers both of a warming climate, as well as the large interannual variability. Severe flooding events have come with large-scale quasi-stationary weather patterns. This past decade I have given 230 talks to schools, business and professional groups, as well as legislative committees and state government. I have written 80 environmental columns for two Vermont newspapers, as part of a weekly series I helped start in 2008. Commentaries and interviews on radio and TV enable me to explain directly the issues we face, as the burning of fossil fuels destabilizes the climate system. The public in Vermont is eager to learn and understand these issues since many have roots in the land; while professional groups need all the information and guidance possible to prepare for the future. My task as a scientist is to map out what we know in ways that can readily be grasped in terms of past experience, even though the climate system is already moving outside this range - and at the same time outline general principles and hopeful strategies for dealing with global and local climate change.
Functional consequences of climate change-induced plant species loss in a tallgrass prairie.
Craine, Joseph M; Nippert, Jesse B; Towne, E Gene; Tucker, Sally; Kembel, Steven W; Skibbe, Adam; McLauchlan, Kendra K
2011-04-01
Future climate change is likely to reduce the floristic diversity of grasslands. Yet the potential consequences of climate-induced plant species losses for the functioning of these ecosystems are poorly understood. We investigated how climate change might alter the functional composition of grasslands for Konza Prairie, a diverse tallgrass prairie in central North America. With species-specific climate envelopes, we show that a reduction in mean annual precipitation would preferentially remove species that are more abundant in the more productive lowland positions at Konza. As such, decreases in precipitation could reduce productivity not only by reducing water availability but by also removing species that inhabit the most productive areas and respond the most to climate variability. In support of this prediction, data on species abundance at Konza over 16 years show that species that are more abundant in lowlands than uplands are preferentially reduced in years with low precipitation. Climate change is likely to also preferentially remove species from particular functional groups and clades. For example, warming is forecast to preferentially remove perennials over annuals as well as Cyperaceae species. Despite these predictions, climate change is unlikely to unilaterally alter the functional composition of the tallgrass prairie flora, as many functional traits such as physiological drought tolerance and maximum photosynthetic rates showed little relationship with climate envelope parameters. In all, although climatic drying would indirectly alter grassland productivity through species loss patterns, the insurance afforded by biodiversity to ecosystem function is likely to be sustained in the face of climate change.
NASA Astrophysics Data System (ADS)
Odell, M. R.; Charlevoix, D. J.; Kennedy, T.
2011-12-01
The GLOBE Program is an international science and education focused on connecting scientists, teachers and students around relevant, local environmental issues. GLOBE's focus during the next two years in on climate, global change and understanding climate from a scientific perspective. The GLOBE Student Climate Research Campaign (SCRFC) will engage youth from around the world in understanding and researching climate through investigations of local climate challenges. GLOBE teachers are trained in implementation of inquiry in the classroom and the use of scientific data collection protocols to develop inquiry and research projects of the Earth System. In preparation for the SCRC, GLOBE teachers will need additional training in climate science, global change and communicating climate science in the classroom. GLOBE's reach to 111 countries around the world requires development of scalable models for training teachers. In June GLOBE held the first teacher professional development workshop (Learning to Research Summer Institute) in a hybrid format with two-thirds of the teachers participating face-to-face and the remaining teachers participating virtually using Adobe Connect. The week long workshop prepared teachers to integrate climate science inquiry and research projects in the classrooms in the 2011-12 academic year. GLOBE scientists and other climate science experts will work with teachers and their students throughout the year in designing and executing a climate science research project. Final projects and research results will be presented in May 2012 through a virtual conference. This presentation will provide the framework for hybrid teacher professional development in climate science research and inquiry projects as well as summarize the findings from this inaugural session. The GLOBE Program office, headquartered in Boulder, is funded through cooperative agreements with NASA and NOAA with additional support from NSF and the U.S. Department of State. GLOBE is supported in countries around the world through bi-lateral agreements between U.S. Department of state and national governments.
Chardon, Nathalie I.; Cornwell, William K.; Flint, Lorraine E.; Flint, Alan L.; Ackerly, David D.
2015-01-01
With changing climate, many species are projected to move poleward or to higher elevations to track suitable climates. The prediction that species will move poleward assumes that geographically marginal populations are at the edge of the species' climatic range. We studied Pinus coulteri from the center to the northern (poleward) edge of its range, and examined three scenarios regarding the relationship between the geographic and climatic margins of a species' range. We used herbarium and iNaturalist.org records to identify P. coulteri sites, generated a species distribution model based on temperature, precipitation, climatic water deficit, and actual evapotranspiration, and projected suitability under future climate scenarios. In fourteen populations from the central to northern portions of the range, we conducted field studies and recorded elevation, slope and aspect (to estimate solar insolation) to examine relationships between local and regional distributions. We found that northern populations of P. coulteri do not occupy the cold or wet edge of the species' climatic range; mid-latitude, high elevation populations occupy the cold margin. Aspect and insolation of P. coulteri populations changed significantly across latitudes and elevations. Unexpectedly, northern, low-elevation stands occupy north-facing aspects and receive low insolation, while central, high-elevation stands grow on more south-facing aspects that receive higher insolation. Modeled future climate suitability is projected to be highest in the central, high elevation portion of the species range, and in low-lying coastal regions under some scenarios, with declining suitability in northern areas under most future scenarios. For P. coulteri, the lack of high elevation habitat combined with a major dispersal barrier may limit northward movement in response to a warming climate. Our analyses demonstrate the importance of distinguishing geographically vs. climatically marginal populations, and the importance of quantitative analysis of the realized climate space to understand species range limits.
NASA Astrophysics Data System (ADS)
Cullen, H. M.
2010-12-01
In The Weather of the Future, Dr. Heidi Cullen puts a vivid face on climate change, offering a new way of seeing this phenomenon not just as an event set to happen in the distant future but as something happening right now in our own backyards. Arguing that we must connect the weather of today with the climate change of tomorrow, Cullen combines the latest research from scientists on the ground with state-of-the-art climate model projections to create climate-change scenarios for seven of the most at-risk locations around the world. From the Central Valley of California, where coming droughts will jeopardize the entire state’s water supply, to Greenland, where warmer temperatures will give access to mineral wealth buried beneath ice sheets for millennia, Cullen illustrates how, if left unabated, climate change will transform every corner of the world by midcentury. What emerges is a mosaic of changing weather patterns that collectively spell out the range of risks posed by global warming—whether it’s New York City, whose infrastructure is extremely vulnerable even to a relatively weak Category 3 hurricane or to Bangladesh, a country so low-lying that millions of people could become climate refugees thanks to rising sea levels. The Weather of the Future makes climate change local, showing how no two regions of the country or the world will be affected in quite the same way and demonstrating that melting ice is just the beginning.
Stordalen, Gunhild A.; Rocklöv, Joacim; Nilsson, Maria; Byass, Peter
2013-01-01
Background Despite considerable global attention to the issues of climate change, relatively little priority has been given to the likely effects on human health of current and future changes in the global climate. We identify three major societal determinants that influence the impact of climate change on human health, namely the application of scholarship and knowledge; economic and commercial considerations; and actions of governments and global agencies. Discussion The three major areas are each discussed in terms of the ways in which they facilitate and frustrate attempts to protect human health from the effects of climate change. Academia still pays very little attention to the effects of climate on health in poorer countries. Enterprise is starting to recognise that healthy commerce depends on healthy people, and so climate change presents long-term threats if it compromises health. Governments and international agencies are very active, but often face immovable vested interests in other sectors. Overall, there tends to be too little interaction between the three areas, and this means that potential synergies and co-benefits are not always realised. Conclusion More attention from academia, enterprise, and international agencies needs to be given to the potential threats the climate change presents to human health. However, there needs to also be much closer collaboration between all three areas in order to capitalise on possible synergies that can be achieved between them. PMID:23653920
Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska
Trainor, Sarah F.; Calef, Monika; Natcher, David; Chapin, F. Stuart; McGuire, A. David; Huntington, Orville; Duffy, Paul A.; Rupp, T. Scott; DeWilde, La'Ona; Kwart, Mary; Fresco, Nancy; Lovecraft, Amy Lauren
2009-01-01
This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social–ecological system of interior Alaska. We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources and institutional connections vary between urban and rural communities. These differences depend largely on social, economic and institutional factors, and are not necessarily related to biophysical climate impacts per se. Fire management and suppression action motivated by political, economic or other pressures can serve as unintentional or indirect adaptation to climate change. However, this indirect response alone may not sufficiently reduce vulnerability to a changing fire regime. More deliberate and strategic responses may be required, given the magnitude of the expected climate change and the likelihood of an intensification of the fire regime in interior Alaska.
A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming.
Cotto, Olivier; Wessely, Johannes; Georges, Damien; Klonner, Günther; Schmid, Max; Dullinger, Stefan; Thuiller, Wilfried; Guillaume, Frédéric
2017-05-05
Withstanding extinction while facing rapid climate change depends on a species' ability to track its ecological niche or to evolve a new one. Current methods that predict climate-driven species' range shifts use ecological modelling without eco-evolutionary dynamics. Here we present an eco-evolutionary forecasting framework that combines niche modelling with individual-based demographic and genetic simulations. Applying our approach to four endemic perennial plant species of the Austrian Alps, we show that accounting for eco-evolutionary dynamics when predicting species' responses to climate change is crucial. Perennial species persist in unsuitable habitats longer than predicted by niche modelling, causing delayed range losses; however, their evolutionary responses are constrained because long-lived adults produce increasingly maladapted offspring. Decreasing population size due to maladaptation occurs faster than the contraction of the species range, especially for the most abundant species. Monitoring of species' local abundance rather than their range may likely better inform on species' extinction risks under climate change.
Adapting to rates versus amounts of climate change: a case of adaptation to sea-level rise
NASA Astrophysics Data System (ADS)
Shayegh, Soheil; Moreno-Cruz, Juan; Caldeira, Ken
2016-10-01
Adaptation is the process of adjusting to climate change in order to moderate harm or exploit beneficial opportunities associated with it. Most adaptation strategies are designed to adjust to a new climate state. However, despite our best efforts to curtail greenhouse gas emissions, climate is likely to continue changing far into the future. Here, we show how considering rates of change affects the projected optimal adaptation strategy. We ground our discussion with an example of optimal investment in the face of continued sea-level rise, presenting a quantitative model that illustrates the interplay among physical and economic factors governing coastal development decisions such as rate of sea-level rise, land slope, discount rate, and depreciation rate. This model shows that the determination of optimal investment strategies depends on taking into account future rates of sea-level rise, as well as social and political constraints. This general approach also applies to the development of improved strategies to adapt to ongoing trends in temperature, precipitation, and other climate variables. Adaptation to some amount of change instead of adaptation to ongoing rates of change may produce inaccurate estimates of damages to the social systems and their ability to respond to external pressures.
Competitive advantage on a warming planet.
Lash, Jonathan; Wellington, Fred
2007-03-01
Whether you're in a traditional smokestack industry or a "clean" business like investment banking, your company will increasingly feel the effects of climate change. Even people skeptical about global warming's dangers are recognizing that, simply because so many others are concerned, the phenomenon has wide-ranging implications. Investors already are discounting share prices of companies poorly positioned to compete in a warming world. Many businesses face higher raw material and energy costs as more and more governments enact policies placing a cost on emissions. Consumers are taking into account a company's environmental record when making purchasing decisions. There's also a burgeoning market in greenhouse gas emission allowances (the carbon market), with annual trading in these assets valued at tens of billions of dollars. Companies that manage and mitigate their exposure to the risks associated with climate change while seeking new opportunities for profit will generate a competitive advantage over rivals in a carbon-constrained future. This article offers a systematic approach to mapping and responding to climate change risks. According to Jonathan Lash and Fred Wellington of the World Resources Institute, an environmental think tank, the risks can be divided into six categories: regulatory (policies such as new emissions standards), products and technology (the development and marketing of climate-friendly products and services), litigation (lawsuits alleging environmental harm), reputational (how a company's environmental policies affect its brand), supply chain (potentially higher raw material and energy costs), and physical (such as an increase in the incidence of hurricanes). The authors propose a four-step process for responding to climate change risk: Quantify your company's carbon footprint; identify the risks and opportunities you face; adapt your business in response; and do it better than your competitors.
Climate Change: Integrating Science and Economics
NASA Astrophysics Data System (ADS)
Prinn, R. G.
2008-12-01
The world is facing an ever-growing conflict between environment and development. Climate change is a century-scale threat requiring a century-long effort in science, technology and policy analysis, and institutions that can sustain this effort over generations. To inform policy development and implementation there is urgent need for better integration of the diverse components of the problem. Motivated by this challenge, we have developed the Integrated Global System Model (IGSM) at MIT. It comprises coupled sub- models of economic development, atmospheric chemistry, climate dynamics and ecosystems. The results of a recent uncertainty analysis involving hundreds of runs of the IGSM imply that, without mitigation policies, the global average surface temperature may rise much faster than previously estimated. Polar temperatures are projected to rise even faster than the average rate with obvious great risks for high latitude ecosystems and ice sheets at the high end of this range. Analysis of policies for climate mitigation, show that the greatest effect of these policies is to lower the probability of extreme changes as opposed to lowering the medians. Faced with the above estimated impacts, the long lifetimes of most greenhouse gases in the atmosphere, the long delay in ultimate warming due to ocean heat uptake, and the capital-intensive global energy infrastructure, the case is strong for concerted action now. Results of runs of the IGSM indicate the need for transformation of the global energy industry on a very large scale to mitigate climate change. Carbon sequestration, renewable energy sources, and nuclear present new economic, technological, and environmental challenges when implemented at the needed scales. Economic analyses using the IGSM indicate that global implementation of efficient policies could allow the needed transformations at bearable costs.
Climate change will increase the naturalization risk from garden plants in Europe.
Dullinger, Iwona; Wessely, Johannes; Bossdorf, Oliver; Dawson, Wayne; Essl, Franz; Gattringer, Andreas; Klonner, Günther; Kreft, Holger; Kuttner, Michael; Moser, Dietmar; Pergl, Jan; Pyšek, Petr; Thuiller, Wilfried; van Kleunen, Mark; Weigelt, Patrick; Winter, Marten; Dullinger, Stefan; Beaumont, Linda
2017-01-01
Plant invasions often follow initial introduction with a considerable delay. The current non-native flora of a region may hence contain species that are not yet naturalized but may become so in the future, especially if climate change lifts limitations on species spread. In Europe, non-native garden plants represent a huge pool of potential future invaders. Here, we evaluate the naturalization risk from this species pool and how it may change under a warmer climate. Europe. We selected all species naturalized anywhere in the world but not yet in Europe from the set of non-native European garden plants. For this subset of 783 species, we used species distribution models to assess their potential European ranges under different scenarios of climate change. Moreover, we defined geographical hotspots of naturalization risk from those species by combining projections of climatic suitability with maps of the area available for ornamental plant cultivation. Under current climate, 165 species would already find suitable conditions in > 5% of Europe. Although climate change substantially increases the potential range of many species, there are also some that are predicted to lose climatically suitable area under a changing climate, particularly species native to boreal and Mediterranean biomes. Overall, hotspots of naturalization risk defined by climatic suitability alone, or by a combination of climatic suitability and appropriate land cover, are projected to increase by up to 102% or 64%, respectively. Our results suggest that the risk of naturalization of European garden plants will increase with warming climate, and thus it is very likely that the risk of negative impacts from invasion by these plants will also grow. It is therefore crucial to increase awareness of the possibility of biological invasions among horticulturalists, particularly in the face of a warming climate.
NASA Astrophysics Data System (ADS)
Sebastia, M. T.; Verdú, N.
2016-12-01
Although climate change is one of the most pressing challenges faced by humankind, climate change illiteracy is frequent among primary school teacher college students reaching the second school year at the University of Lleida (UdL). Climate change was chosen to structure the course on Experimental Sciences of the bilingual group because this topic involves all sciences, and because of the importance of the subject for future educators. In the bilingual group of the Education Faculty, Experimental Sciences is taught in English, and there are usually 1-2 international students in addition to around 20 local students. To increase the awareness about climate change and make this topic closer to the students' daily experience, a research project on recycling at the University of Lleida was assigned per groups of 4 students. The assignment was semi-structured, the students received a reduced set of instructions and large freedom to focus their particular projects. Additional instructions were provided along the way. We present results from the comparisons among faculties at UdL, and among the different users: students, professors and researchers, and administration staff. We also discuss the impact that this project had in the learning ability of the students and their awareness about climate change.
Tielbörger, Katja; Fleischer, Aliza; Menzel, Lucas; Metz, Johannes; Sternberg, Marcelo
2010-11-28
The eastern Mediterranean faces a severe water crisis: water supply decreases due to climate change, while demand increases due to rapid population growth. The GLOWA Jordan River project generates science-based management strategies for maximizing water productivity under global climate change. We use a novel definition of water productivity as the full range of services provided by landscapes per unit blue (surface) and green (in plants and soil) water. Our combined results from climatological, ecological, economic and hydrological studies suggest that, in Israel, certain landscapes provide high returns as ecosystem services for little input of additional blue water. Specifically, cultural services such as recreation may by far exceed that of food production. Interestingly, some highly valued landscapes (e.g. rangeland) appear resistant to climate change, making them an ideal candidate for adaptive land management. Vice versa, expanding irrigated agriculture is unlikely to be sustainable under global climate change. We advocate the inclusion of a large range of ecosystem services into integrated land and water resources management. The focus on cultural services and integration of irrigation demand will lead to entirely different but productive water and land allocation schemes that may be suitable for withstanding the problems caused by climate change.
Extreme weather events and infectious disease outbreaks.
McMichael, Anthony J
2015-01-01
Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.
NASA Astrophysics Data System (ADS)
Sparrow, E. B.; Spellman, K. V.; Fabbri, C.; Comiso, J. C.; Chase, M.; Fochesatto, G. J.; Butcher, C. E.; Jones, D.; Bacsujlaky, M.; Yoshikawa, K.; Gho, C. L.; Wegner, K.
2016-12-01
To build capacity in navigating challenges associated with a changing climate, learning in Arctic communities must not only increase STEM and climate change literacy, but also generate new knowledge as the rapid changes occur. Among the new NASA Science Mission Directorate Science Education projects, Arctic and Earth SIGNs (STEM Integrating GLOBE and NASA assets) is providing opportunities for K-12 pre-service and in-service teachers, their students, and lifelong learners to engage in citizen science using the Global Learning and Observations to Benefit the Environment (GLOBE) methods and culturally responsive learning to help address climate change challenges within their unique community, and contribute to hypothesis driven research. This project will weave traditional knowledge and western science, and use ground observations and satellite data and best teaching practices in STEM learning, supported through a NASA cooperative agreement and collaborative partnerships. Implementation will begin in rural Alaska and grow within Alaska and throughout the United States to reach underserved and STEM underrepresented populations, through face-to-face and on-line teaching and learning as well as building partnerships among educators, scientists, local and indigenous experts, institutions, agencies, and learning communities. Partners include research and teaching institutions at the University of Alaska Fairbanks, the Association of Interior Native Educators, the North Slope Borough School District and other school districts, the Kenaitze Tribe Environmental Education program, NASA science education and research programs as well as those of NOAA and NSF, the GLOBE Implementation Office, the 4-H program and others. The program resources and model will be shared and disseminated within the United States and globally through partners for local, national and worldwide use in STEM climate change education and citizen empowerment.
Losing your edge: climate change and the conservation value of range-edge populations.
Rehm, Evan M; Olivas, Paulo; Stroud, James; Feeley, Kenneth J
2015-10-01
Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range-edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions. Therefore, range-edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species' persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range-edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species' range edges may expand under future climate change and become more common relative to range-core populations. We also highlight how large-scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest-cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range-edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range-edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change.
Socio-Hydrology Modelling for an Uncertain Future, with Examples from the USA and Canada (Invited)
NASA Astrophysics Data System (ADS)
White, D. D.; Gober, P.; Sampson, D. A.; Quay, R.; Kirkwood, C.
2013-12-01
Socio-hydrology brings an interest in human values, markets, social organizations and public policy to the traditional emphasis of water science on climate, hydrology, toxicology,and ecology. It also conveys a decision focus in the form of decision support tools, engagement, and new knowledge about the science-policy interface. This paper demonstrates how policy decisions and human behavior can be better integrated into climate and hydrological models to improve their usefulness for support in decision making. Examples from the Southwest USA and Western Canada highlight uncertainties, vulnerabilities, and critical tradeoffs facing water decision makers in the face of rapidly changing environmental and societal conditions. Irreducible uncertainties in downscaled climate and hydrological models limit the usefulness of climate-driven, predict-and-plan methods of water resource planning and management. Thus, it is argued that such methods should be replaced by approaches that use exploratory modelling, scenario planning, and risk assessment in which the emphasis is on managing uncertainty rather than on reducing it.
NASA Astrophysics Data System (ADS)
Pathak, T. B.; Doll, J. E.
2016-12-01
It is evident that changes in climate will adversely impact various sectors including agriculture and natural resources worldwide. Increased temperatures, longer than normal growing seasons, more frequent extreme weather events, decreased winter snowpack, earlier snowmelt, and vulnerability to pest are some of the examples of changes and impacts documented in the literature. According to the IPCC 2007, mainstreaming` climate change issues into decision-making is an important aspect for sustainability. Due to the lack of locally and regionally focused educational programs, it becomes difficult for people to translate the science into meaningful actions. One of the strengths of the Cooperative Extension system is that it is one of the most trusted sources of science-based information that is locally relevant. In order to utilize strong network of Cooperative Extension system, we implemented a project to provide regionally tailored climate change and sustainable agriculture professional development for Cooperative Extension and Natural Resources Conservation Services (NRCS) educators in 12 states in north central US. We conducted these activities: 1) creation and dissemination of a Climate Change and Sustainable Agriculture Resource Handbook and a curriculum and 2) two climate change and sustainable agriculture workshops. In general, this project resulted in improved ability of Cooperative Extension academics to respond to climate change questions with science-based information. Several workshop attendees also integrated information provided to them through resource handbook and curriculum into their existing programming. In the long-term, we hope these programs will result in educators and farmers making informed choices and recommendations that lead to sustainable agriculture in the face of climate change.
Yang, Guo-Jing; Utzinger, Jürg; Lv, Shan; Qian, Ying-Jun; Li, Shi-Zhu; Wang, Qiang; Bergquist, Robert; Vounatsou, Penelope; Li, Wei; Yang, Kun; Zhou, Xiao-Nong
2010-01-01
Climate change-according to conventional wisdom-will result in an expansion of tropical parasitic diseases in terms of latitude and altitude, with vector-borne diseases particularly prone to change. However, although a significant rise in temperature occurred over the past century, there is little empirical evidence whether climate change has indeed favoured infectious diseases. This might be explained by the complex relationship between climate change and the frequency and the transmission dynamics of infectious diseases, which is characterised by nonlinear associations and countless other complex factors governing the distribution of infectious diseases. Here, we explore whether and how climate change might impact on diseases targeted by the Regional Network for Asian Schistosomiasis and Other Helminth Zoonoses (RNAS(+)). We start our review with a short summary of the current evidence-base how climate change affects the distribution of infectious diseases. Next, we introduce biology-based models for predicting the distribution of infectious diseases in a future, warmer world. Two case studies are presented: the classical RNAS(+) disease schistosomiasis and an emerging disease, angiostrongyliasis, focussing on their occurrences in the People's Republic of China. Strengths and limitations of current models for predicting the impact of climate change on infectious diseases are discussed, and we propose model extensions to include social and ecological factors. Finally, we recommend that mitigation and adaptation strategies to diminish potential negative effects of climate change need to be developed in concert with key stakeholders so that surveillance and early-warning systems can be strengthened and the most vulnerable population groups protected. Copyright 2010 Elsevier Ltd. All rights reserved.
Implementing climate change mitigation in health services: the importance of context.
Desmond, Sharon
2016-10-01
Academic interest in strategies to reduce the impact of health services on climate change is quickening. Research has largely focused on local innovations with little consideration of the contextual and systemic elements that influence sustainable development across health systems. A realistic framework specifically to guide decision-making by health care providers is still needed. To address this deficit, the literature is explored in relation to health services and climate change mitigation strategies, and the contextual factors that influence efforts to mitigate climate effects in health service delivery environments are highlighted. A conceptual framework is proposed that offers a model for the pursuit of sustainable development practice in health services. A set of propositions is advanced to provide a systems approach to assist decision-making by decoding the challenges faced in implementing sustainable health services. This has important implications for health care providers, funders and legislators since the financial, policy and regulatory environment of health care, along with its leadership and models of care generally conflict with carbon literacy and climate change mitigation strategies. © The Author(s) 2016.
Health Impact of Climate Change in Older People: An Integrative Review and Implications for Nursing.
Leyva, Erwin William A; Beaman, Adam; Davidson, Patricia M
2017-11-01
Older people account for the highest proportion of mortality from extreme weather events associated with climate change. This article aims to describe the health impacts of climate change on older people. An integrative review was conducted with 30 studies retrieved from PubMed, EBSCO, and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) on climate stressors, determinants of resilient capacity, risk factors, and health outcomes. Heat, temperature variability, and air pollution increase mortality risk in older people, especially from cardiovascular and respiratory diseases. Floods are linked with increasing incidence of post-traumatic stress disorder, depression, and anxiety. Facing these adversities, older people exhibit both vulnerability and resilience. Research gaps exist in understanding the full spectrum of the resilience experience of older people, and appreciating areas wherein nursing can play a pivotal role. Recognizing the vulnerabilities of older people in the context of climate change is important. Identifying opportunities to promote resilience is an important focus for nurses to develop tailored and targeted nursing interventions. © 2017 Sigma Theta Tau International.
Husaini, Amjad M
2014-01-01
Kashmir valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as “Karewas”), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a ‘niche crop’ and is a recognized “geographical indication,” growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues. PMID:25072266
Conservation Status of North American Birds in the Face of Future Climate Change.
Langham, Gary M; Schuetz, Justin G; Distler, Trisha; Soykan, Candan U; Wilsey, Chad
2015-01-01
Human-induced climate change is increasingly recognized as a fundamental driver of biological processes and patterns. Historic climate change is known to have caused shifts in the geographic ranges of many taxa and future climate change is expected to result in even greater redistributions of species. As a result, predicting the impact of climate change on future patterns of biodiversity will greatly aid conservation planning. Using the North American Breeding Bird Survey and Audubon Christmas Bird Count, two of the most comprehensive continental datasets of vertebrates in the world, and correlative distribution modeling, we assessed geographic range shifts for 588 North American bird species during both the breeding and non-breeding seasons under a range of future emission scenarios (SRES A2, A1B, B2) through the end of the century. Here we show that 314 species (53%) are projected to lose more than half of their current geographic range across three scenarios of climate change through the end of the century. For 126 species, loss occurs without concomitant range expansion; whereas for 188 species, loss is coupled with potential to colonize new replacement range. We found no strong associations between projected climate sensitivities and existing conservation prioritizations. Moreover, species responses were not clearly associated with habitat affinities, migration strategies, or climate change scenarios. Our results demonstrate the need to include climate sensitivity into current conservation planning and to develop adaptive management strategies that accommodate shrinking and shifting geographic ranges. The persistence of many North American birds will depend on their ability to colonize climatically suitable areas outside of current ranges and management actions that target climate adaptation.
Conservation Status of North American Birds in the Face of Future Climate Change
Langham, Gary M.; Schuetz, Justin G.; Distler, Trisha; Soykan, Candan U.; Wilsey, Chad
2015-01-01
Human-induced climate change is increasingly recognized as a fundamental driver of biological processes and patterns. Historic climate change is known to have caused shifts in the geographic ranges of many taxa and future climate change is expected to result in even greater redistributions of species. As a result, predicting the impact of climate change on future patterns of biodiversity will greatly aid conservation planning. Using the North American Breeding Bird Survey and Audubon Christmas Bird Count, two of the most comprehensive continental datasets of vertebrates in the world, and correlative distribution modeling, we assessed geographic range shifts for 588 North American bird species during both the breeding and non-breeding seasons under a range of future emission scenarios (SRES A2, A1B, B2) through the end of the century. Here we show that 314 species (53%) are projected to lose more than half of their current geographic range across three scenarios of climate change through the end of the century. For 126 species, loss occurs without concomitant range expansion; whereas for 188 species, loss is coupled with potential to colonize new replacement range. We found no strong associations between projected climate sensitivities and existing conservation prioritizations. Moreover, species responses were not clearly associated with habitat affinities, migration strategies, or climate change scenarios. Our results demonstrate the need to include climate sensitivity into current conservation planning and to develop adaptive management strategies that accommodate shrinking and shifting geographic ranges. The persistence of many North American birds will depend on their ability to colonize climatically suitable areas outside of current ranges and management actions that target climate adaptation. PMID:26333202
Inequality, communication, and the avoidance of disastrous climate change in a public goods game.
Tavoni, Alessandro; Dannenberg, Astrid; Kallis, Giorgos; Löschel, Andreas
2011-07-19
International efforts to provide global public goods often face the challenges of coordinating national contributions and distributing costs equitably in the face of uncertainty, inequality, and free-riding incentives. In an experimental setting, we distribute endowments unequally among a group of people who can reach a fixed target sum through successive money contributions, knowing that if they fail, they will lose all their remaining money with 50% probability. In some treatments, we give players the option to communicate intended contributions. We find that inequality reduces the prospects of reaching the target but that communication increases success dramatically. Successful groups tend to eliminate inequality over the course of the game, with rich players signaling willingness to redistribute early on. Our results suggest that coordination-promoting institutions and early redistribution from richer to poorer nations are both decisive for the avoidance of global calamities, such as disruptive climate change.
Inequality, communication, and the avoidance of disastrous climate change in a public goods game
Tavoni, Alessandro; Dannenberg, Astrid; Kallis, Giorgos; Löschel, Andreas
2011-01-01
International efforts to provide global public goods often face the challenges of coordinating national contributions and distributing costs equitably in the face of uncertainty, inequality, and free-riding incentives. In an experimental setting, we distribute endowments unequally among a group of people who can reach a fixed target sum through successive money contributions, knowing that if they fail, they will lose all their remaining money with 50% probability. In some treatments, we give players the option to communicate intended contributions. We find that inequality reduces the prospects of reaching the target but that communication increases success dramatically. Successful groups tend to eliminate inequality over the course of the game, with rich players signaling willingness to redistribute early on. Our results suggest that coordination-promoting institutions and early redistribution from richer to poorer nations are both decisive for the avoidance of global calamities, such as disruptive climate change. PMID:21730154
How Can CO2 Help Agriculture in the Face of Climate Change?
NASA Technical Reports Server (NTRS)
Delphine, Deryng; Elliott, Joshua; Folberth, Christian; Mueller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alexander C.; Gerten, Dieter; Jones, James W.;
2017-01-01
Humans are increasing the amount of carbon dioxide (CO2) in the air through CO2 emissions. This is changing the climate, making life harder for many plants in areas that suffer from heat and drought. However, plants need CO2 to grow, and more CO2 can make them grow better. So will plants overall benefit from increased CO2 level or suffer from it? We wanted to test if the positive effect would offset the negative ones. To do so, we used scientific models to calculate future crop production and water use of four important crops all over the world under different scenarios of CO2 emissions and climate change. Our calculations show that although there will be large reductions in crop yield due to climate change over the next century, some crops will still be able to grow well. This is also because crops can grow with less water when CO2 levels are raised.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Lu, Hui; Ruby Leung, L.
Water resources management, in particular flood control, in the Mekong River Basin (MRB) faces two key challenges in the 21st century: climate change and dam construction. A large scale distributed Geomorphology-Based Hydrological Model coupled with a simple reservoir regulation model (GBHM-MK-SOP) is used to investigate the relative effects of climate change and dam construction on the flood characteristics in the MRB. Results suggest an increase in both flood magnitude and frequency under climate change, which is more severe in the upstream basin and increases over time. However, dam construction and stream regulation reduce flood risk consistently throughout this century, withmore » more obvious effects in the upstream basin where larger reservoirs will be located. The flood mitigation effect of dam regulation dominates over the flood intensification effect of climate change before 2060, but the latter emerges more prominently after 2060 and dominates the flood risk especially in the lower basin.« less
Ford, James D; Vanderbilt, Will; Berrang-Ford, Lea
This essay examines the extent to which we can expect Indigenous Knowledge, understanding, and voices on climate change ('Indigenous content') to be captured in WGII of the IPCC Fifth Assessment Report (AR5), based on an analysis of chapter authorship. Reviewing the publishing history of 309 chapter authors (CAs) to WGII, we document 9 (2.9%) to have published on climate change and Indigenous populations and involved as authors in 6/30 chapters. Drawing upon recent scholarship highlighting how authorship affect structure and content of assessment reports, we argue that, unaddressed, this will affect the extent to which Indigenous content is examined and assessed. While it is too late to alter the structure of AR5, there are opportunities to prioritize the recruitment of contributing authors and reviewers with expertise on Indigenous issues, raise awareness among CAs on the characteristics of impacts, adaptation, and vulnerability faced by Indigenous peoples, and highlight how Indigenous perspectives can help broaden our understanding of climate change and policy interventions.
NASA Astrophysics Data System (ADS)
Wang, Wei; Lu, Hui; Ruby Leung, L.; Li, Hong-Yi; Zhao, Jianshi; Tian, Fuqiang; Yang, Kun; Sothea, Khem
2017-10-01
Water resources management, in particular flood control, in the Lancang-Mekong River Basin (LMRB) faces two key challenges in the 21st century: climate change and dam construction. A large-scale distributed Geomorphology-Based Hydrological Model coupled with a simple reservoir regulation model (GBHM-LMK-SOP) is used to investigate the relative effects of climate change and dam construction on the flood characteristics in the LMRB. Results suggest an increase in both flood magnitude and frequency under climate change, which is more severe in the upstream basin and increases over time. However, stream regulation by dam reduces flood risk consistently throughout this century, with more obvious effects in the upstream basin where larger reservoirs will be located. The flood mitigation effect of dam regulation dominates over the flood intensification effect of climate change before 2060, but the latter emerges more prominently after 2060 and dominates the flood risk especially in the lower basin.
NASA Astrophysics Data System (ADS)
Mills, S. C.; Grab, S. W.
2009-04-01
Despite considerable research attention on apparent periglacial, glacial and sedimentary phenomena in the Maluti-Drakensberg alpine environment, knowledge on the Quaternary environmental history of this important watershed and climate-divide is still rather rudimentary. The dearth of Quaternary environmental indicators (proxy data) in the high Drakensberg is partly owing to the harsh climate (e.g. high wind speeds and high seasonal precipitation), which offers a poor preservation of past biological remains (e.g. bones, dung, middens, pollen). Possibly the best opportunity to reconstruct high Drakensberg palaeoenvironments is from sedimentary sequences exposed along fluvially-incised valley fills. The upper Sehonghong River (3000 to 3200 m a.s.l.) flows in a westerly direction and is flanked by north- and south-facing slopes reaching 3465 m a.s.l. Sediment is exposed on both the north- and south-facing slopes along the river. Despite uniform regional environmental conditions (geology, topography, climate, vegetation), there is a notable absence of similar north-facing deposits in adjacent upper valley catchments to the north and south of Sehonghong Valley. The upper Sehonghong Valley thus presents somewhat ‘unique' evidence for palaeo-slope mass movement in this alpine region. Thick colluvial deposits are most prominent on the south-facing slopes along the Sehonghong River and occur at altitudes between 3100 m a.s.l. and 3150 m a.s.l. The colluvial mantles are approximately 7 m in thickness, however reach up to 13 m in some areas. Although the north-facing lower valley side-slopes are generally absent of deposits, the notable exception is the thick stratified deposit located a few kilometres upstream. Whilst the south-facing deposits are relatively uniform in nature, the north-facing deposits consist of alternating units of gravel and organic sediment, dated to 36 600 ± 1400 14C yrs BP, and reflecting environmental changes during the Late Pleistocene. Mass wasting deposits support enhanced periglacial activity during the Late Pleistocene, particularly on south-facing slopes, and also where conditions were conducive to enhanced sediment transport on the adjacent north-facing slope of the Sehonghong River. Recent published work has suggested evidence for marginal glaciation in the high Drakensberg within 10 km of the Sehonghong Valley, suggesting that whilst particular environmental settings host deposits classified as glacial moraine, adjacent valleys are occupied by deep (~8 m) valley deposits flanking south-facing slopes. We demonstrate that the variable nature of adjacent valley slope deposits at similar altitudes is a product of a past climate that was within the glacial/periglacial equilibrium zone, and influenced by specific topographic and associated micro-climatic thresholds.
Bojovic, Dragana; Bonzanigo, Laura; Giupponi, Carlo; Maziotis, Alexandros
2015-07-01
The new EU strategy on adaptation to climate change suggests flexible and participatory approaches. Face-to-face contact, although it involves time-consuming procedures with a limited audience, has often been considered the most effective participatory approach. In recent years, however, there has been an increase in the visibility of different citizens' initiatives in the online world, which strengthens the possibility of greater citizen agency. This paper investigates whether the Internet can ensure efficient public participation with meaningful engagement in climate change adaptation. In elucidating issues regarding climate change adaptation, we developed an eParticipation framework to explore adaptation capacity of agriculture to climate change in Northern Italy. Farmers were mobilised using a pre-existing online network. First they took part in an online questionnaire for revealing their perceptions of and reactions to the impacts of ongoing changes in agriculture. We used these results to suggest a portfolio of policy measures and to set evaluation criteria. Farmers then evaluated these policy options, using a multi criteria analysis tool with a simple user-friendly interface. Our results showed that eParticipation is efficient: it supports a rapid data collection, while involving high number of participants. Moreover, we demonstrated that the digital divide is decreasingly an obstacle for using online spaces for public engagement. This research does not present eParticipation as a panacea. Rather, eParticipation was implemented with well-established participatory approaches to both validate the results and, consequently, communicate meaningful messages on local agricultural adaptation practices to regional decision-makers. Feedbacks from the regional decision-makers showed their interest in using eParticipation to improve communication with farmers in the future. We expect that, with further Internet proliferation, eParticipation may allow the inclusion of more representative samples, which would contribute to an informed and legitimate decision-making process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Henry, Philippe; Sim, Zijian; Russello, Michael A
2012-01-01
When faced with rapidly changing environments, wildlife species are left to adapt, disperse or disappear. Consequently, there is value in investigating the connectivity of populations of species inhabiting different environments in order to evaluate dispersal as a potential strategy for persistence in the face of climate change. Here, we begin to investigate the processes that shape genetic variation within American pika populations from the northern periphery of their range, the central Coast Mountains of British Columbia, Canada. At these latitudes, pikas inhabit sharp elevation gradients ranging from sea level to 1500 m, providing an excellent system for studying the effects of local environmental conditions on pika population genetic structure and gene flow. We found low levels of neutral genetic variation compared to previous studies from more southerly latitudes, consistent with the relatively recent post-glacial colonization of the study location. Moreover, significant levels of inbreeding and marked genetic structure were detected within and among sites. Although low levels of recent gene flow were revealed among elevations within a transect, potentially admixed individuals and first generation migrants were identified using discriminant analysis of principal components between populations separated by less than five kilometers at the same elevations. There was no evidence for historical population decline, yet there was signal for recent demographic contractions, possibly resulting from environmental stochasticity. Correlative analyses revealed an association between patterns of genetic variation and annual heat-to-moisture ratio, mean annual precipitation, precipitation as snow and mean maximum summer temperature. Changes in climatic regimes forecasted for the region may thus potentially increase the rate of population extirpation by further reducing dispersal between sites. Consequently, American pika may have to rely on local adaptations or phenotypic plasticity in order to survive predicted climate changes, although additional studies are required to investigate the evolutionary potential of this climate change sensitive species.
NASA Astrophysics Data System (ADS)
Kontar, Y. Y.; Eichelberger, J. C.; Rupp, S. T.; Taylor, K.
2014-12-01
The increasing extent and vulnerability of technologically advanced society together with aspects of global climate change intensifies the frequency and severity of natural disasters. Every year, communities around the world face the devastating consequences of hazardous events, including loss of life, property and infrastructure damage, and environmental decline. In this session, we will introduce a new book, entitled New Trends in Communicating Risk and Cultivating Resilience, which is dedicated to those who have directly or indirectly suffered the effects of climate change extreme events with the hope that the advance of knowledge, implementation of sound science and appropriate policies, and use of effective communication will help in reducing their vulnerability while also improving resilience in the face of often devastating natural hazards. This book comprises manuscripts from those whose research, advocacy, work, teaching, or service in the natural or social sciences deals with risk communication and/or management surrounding natural disasters, with a particular focus on climate change-related phenomena. This book is arranged into five sections: The Role of Communication in Fostering Resilient Communities (Reframing the conversation about natural hazards and climate change with a new focus on resilience)Before the Disaster: Prediction, Preparation, and Crisis Communication (The role of communication in predicting and preparing for the unpredictable regarding natural disasters)Mitigating Circumstances: Living Through Change, Uncertainty, and Disaster (Mitigation and the role of communication in minimizing the damage during natural disasters and during an era of climate change)After the Disaster: Response and Recovery Communication (The role of communication after natural disasters)Looking Back and Learning Forward: Best and Worst Practices Exposed (Considering risk and resilience communication of natural disasters with one eye on best practices and one eye on a critical perspective. Case studies of resilience both supported and undermined by communication)During our presentation, we will introduce a case study from every section.
Faisal, Islam M; Parveen, Saila
2004-10-01
Ensuring food security has been one of the major national priorities of Bangladesh since its independence in 1971. Now, this national priority is facing new challenges from the possible impacts of climate change in addition to the already existing threats from rapid population growth, declining availability of cultivable land, and inadequate access to water in the dry season. In this backdrop, this paper has examined the nature and magnitude of these threats for the benchmark years of 2030 and 2050. It has been shown that the overall impact of climate change on the production of food grains in Bangladesh would probably be small in 2030. This is due to the strong positive impact of CO2 fertilization that would compensate for the negative impacts of higher temperature and sea level rise. In 2050, the negative impacts of climate change might become noticeable: production of rice and wheat might drop by 8% and 32%, respectively. However, rice would be less affected by climate change compared to wheat, which is more sensitive to a change in temperature. Based on the population projections and analysis of future agronomic innovations, this study further shows that the availability of cultivable land alone would not be a constraint for achieving food self-sufficiency, provided that the productivity of rice and wheat grows at a rate of 10% or more per decade. However, the situation would be more critical in terms of water availability. If the dry season water availability does not decline from the 1990 level of about 100 Bm3, there would be just enough water in 2030 for meeting both the agricultural and nonagricultural needs. In 2050, the demand for irrigation water to maintain food self-sufficiency would be about 40% to 50% of the dry season water availability. Meeting such a high agricultural water demand might cause significant negative impacts on the domestic and commercial water supply, fisheries, ecosystems, navigation, and salinity management.
Climate change is advancing spring onset across the U.S. national park system
Monahan, William B.; Rosemartin, Alyssa; Gerst, Katharine L.; Fisichelli, Nicholas A.; Ault, Toby R.; Schwartz, Mark D.; Gross, John E.; Weltzin, Jake F.
2016-01-01
Many U.S. national parks are already at the extreme warm end of their historical temperature distributions. With rapidly warming conditions, park resource management will be enhanced by information on seasonality of climate that supports adjustments in the timing of activities such as treating invasive species, operating visitor facilities, and scheduling climate-related events (e.g., flower festivals and fall leaf-viewing). Seasonal changes in vegetation, such as pollen, seed, and fruit production, are important drivers of ecological processes in parks, and phenology has thus been identified as a key indicator for park monitoring. Phenology is also one of the most proximate biological responses to climate change. Here, we use estimates of start of spring based on climatically modeled dates of first leaf and first bloom derived from indicator plant species to evaluate the recent timing of spring onset (past 10–30 yr) in each U.S. natural resource park relative to its historical range of variability across the past 112 yr (1901–2012). Of the 276 high latitude to subtropical parks examined, spring is advancing in approximately three-quarters of parks (76%), and 53% of parks are experiencing “extreme” early springs that exceed 95% of historical conditions. Our results demonstrate how changes in climate seasonality are important for understanding ecological responses to climate change, and further how spatial variability in effects of climate change necessitates different approaches to management. We discuss how our results inform climate change adaptation challenges and opportunities facing parks, with implications for other protected areas, by exploring consequences for resource management and planning.
Climate Change and Forests of the Future: Managing in the Face of Uncertainty
Constance Millar; Nathan L. Stephenson; Scott L. Stephens
2007-01-01
We offer a conceptual framework for managing forested ecosystems under an assumption that future environments will be different from present but that we cannot be certain about the specifics of change. We encourage flexible approaches that promote reversible and incremental steps, and that favor ongoing learning and capacity to modify direction as situations change. We...
ERIC Educational Resources Information Center
Schaefer, Kerrie
2012-01-01
This article examines a programme of work produced by community-based theatre company, Manaton and East Dartmoor (MED) Theatre, addressing issues of climate change as they impact on life in rural Devon, UK. After some discussion of MED Theatre's constitution as a community-based company and the group's long-term engagement with the place, history,…
The Problems Public Schools Face: High School Misbehaviour in 1990 and 2002
ERIC Educational Resources Information Center
Fish, Reva M.; Finn, Kristin V.; Finn, Jeremy D.
2011-01-01
Misbehaviour in high school impacts learning and instruction in the classroom as well as the educational climate of the institution. In this report, changes in administrators', teachers', and students' reports of misbehaviour between 1990 and 2002 were examined using two national US databases. There was little change in administrators'…
NASA Astrophysics Data System (ADS)
Kassam, K. A.; Samimi, C.; Trabucco, A.
2017-12-01
Difference is essential to solving the most complex problems faced by humanity. Anthropogenic climate change is one such "wicked problem" that demands cognitive diversity. Biophysical and social scientists must collaborate with scholars from the humanities to address practical issues of concern to local communities, which are at the forefront of impacts of climatic variation. As such, communities of inquirers (e.g. biophysical and social sciences, humanities) must work in tandem with communities of practice (e.g. farmers, fishers, gatherers, herders, hunters). This leads to co-generated knowledge where an adaptation strategy to climatic variation is locally grounded in the biophysical and sociocultural context of the communities where the impacts of climatic variation are most felt. We will present an innovative and `real time' example participatory and transdisciplinary research from an international project where we are developing integrated biophysical and sociocultural calendars, in short, ecological calendars, which are ecologically and culturally grounded in the local context to develop anticipatory capacity to anthropogenic climate change.
Herman-Mercer, Nicole M.; Matkin, Elli; Laituri, Melinda J.; Toohey, Ryan C; Massey, Maggie; Elder, Kelly; Schuster, Paul F.; Mutter, Edda A.
2016-01-01
Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK) and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation research; however, the cultural dimensions of climate change are equally important because cultural dimensions inform perceptions of risk. Furthermore, many Arctic and Subarctic IK climate change studies document observations of change and knowledge of the elders and older generations in a community, but few include the perspectives of the younger population. These observations by elders and older generations form a historical baseline record of weather and climate observations in these regions. However, many indigenous Arctic and Subarctic communities are composed of primarily younger residents. We focused on the differences in the cultural dimensions of climate change found between young adults and elders. We outlined the findings from interviews conducted in four indigenous communities in Subarctic Alaska. The findings revealed that (1) intergenerational observations of change were common among interview participants in all four communities, (2) older generations observed more overall change than younger generations interviewed by us, and (3) how change was perceived varied between generations. We defined “observations” as the specific examples of environmental and weather change that were described, whereas “perceptions” referred to the manner in which these observations of change were understood and contextualized by the interview participants. Understanding the differences in generational observations and perceptions of change are key issues in the development of climate change adaptation strategies.
NASA Astrophysics Data System (ADS)
Wegner, K.; Herrin, S.; Schmidt, C.
2015-12-01
Scientists play an integral role in the development of climate literacy skills - for both teachers and students alike. By partnering with local scientists, teachers can gain valuable insights into the science practices highlighted by the Next Generation Science Standards (NGSS), as well as a deeper understanding of cutting-edge scientific discoveries and local impacts of climate change. For students, connecting to local scientists can provide a relevant connection to climate science and STEM skills. Over the past two years, the Climate Voices Science Speakers Network (climatevoices.org) has grown to a robust network of nearly 400 climate science speakers across the United States. Formal and informal educators, K-12 students, and community groups connect with our speakers through our interactive map-based website and invite them to meet through face-to-face and virtual presentations, such as webinars and podcasts. But creating a common language between scientists and educators requires coaching on both sides. In this presentation, we will present the "nitty-gritty" of setting up scientist-educator collaborations, as well as the challenges and opportunities that arise from these partnerships. We will share the impact of these collaborations through case studies, including anecdotal feedback and metrics.
NASA Technical Reports Server (NTRS)
Wegner, Kristin; Herrin, Sara; Schmidt, Cynthia
2015-01-01
Scientists play an integral role in the development of climate literacy skills - for both teachers and students alike. By partnering with local scientists, teachers can gain valuable insights into the science practices highlighted by the Next Generation Science Standards (NGSS), as well as a deeper understanding of cutting-edge scientific discoveries and local impacts of climate change. For students, connecting to local scientists can provide a relevant connection to climate science and STEM skills. Over the past two years, the Climate Voices Science Speakers Network (climatevoices.org) has grown to a robust network of nearly 400 climate science speakers across the United States. Formal and informal educators, K-12 students, and community groups connect with our speakers through our interactive map-based website and invite them to meet through face-to-face and virtual presentations, such as webinars and podcasts. But creating a common language between scientists and educators requires coaching on both sides. In this presentation, we will present the "nitty-gritty" of setting up scientist-educator collaborations, as well as the challenges and opportunities that arise from these partnerships. We will share the impact of these collaborations through case studies, including anecdotal feedback and metrics.
Addressing global change challenges for Central Asian socio-ecosystems
NASA Astrophysics Data System (ADS)
Qi, Jiaguo; Bobushev, Temirbek S.; Kulmatov, Rashid; Groisman, Pavel; Gutman, Garik
2012-06-01
Central Asia is one of the most vulnerable regions on the planet earth to global climate change, depending on very fragile natural resources. The Soviet legacy has left the five countries (Kazakhstan, Tajikistan, Kyrgyzstan, Turkmenistan, and Uzbekistan) with a highly integrated system but they are facing great challenges with tensions that hinder regional coordination of food and water resources. With increasing climate variability and warming trend in the region, food and water security issues become even more crucial now and, if not addressed properly, could affect the regional stability. The long-term drivers of these two most critical elements, food and water, are climate change; the immediate and probably more drastic factors affecting the food and water security are land uses driven by institutional change and economic incentives. As a feedback, changes in land use and land cover have directly implications on water uses, food production, and lifestyles of the rural community in the region. Regional and international efforts have been made to holistically understand the cause, extent, rate and societal implications of land use changes in the region. Much of these have been understood, or under investigation by various projects, but solutions or research effort to develop solutions, to these urgent regional issues are lacking. This article, serves as an introduction to the special issue, provides a brief overview of the challenges facing the Central Asian countries and various international efforts in place that resulted in the publications of this special issue.
Impacts of climate change on marine top predators: Advances and future challenges
NASA Astrophysics Data System (ADS)
Hobday, Alistair J.; Arrizabalaga, Haritz; Evans, Karen; Nicol, Simon; Young, Jock W.; Weng, Kevin C.
2015-03-01
Oceanic top predators are the subject of studies by researchers under the international Climate Impacts on Oceanic Top Predators (CLIOTOP) program. A wide range of data sets have shown that environmental conditions, such as temperature and marine productivity, affect the distribution and biological processes of these species, and thus the activities of the humans that depend on them. In this special issue, 25 papers arising from the 2nd CLIOTOP symposium, held in Noumea, New Caledonia in February 2013 report the importance of realistic physical descriptions of oceanic processes for climate change projections, demonstrate a wide range of predator responses to historical climate variability, describe new analytical approaches for understanding the physiology, behaviour and trophodynamics, and project future distributions for a range of species. Several contributions discuss the implications for conservation and fisheries and show that resolving ecosystem management challenges and conflicts in the face of climate change is possible, but will require attention by decision-makers to issues that are broader than their traditional mandate. In the coming years, an increased focus on the development of management options to reduce the impacts of climate change on top predators and their dependent industries is needed.
Tropical amphibians in shifting thermal landscapes under land-use and climate change.
Nowakowski, A Justin; Watling, James I; Whitfield, Steven M; Todd, Brian D; Kurz, David J; Donnelly, Maureen A
2017-02-01
Land-cover and climate change are both expected to alter species distributions and contribute to future biodiversity loss. However, the combined effects of land-cover and climate change on assemblages, especially at the landscape scale, remain understudied. Lowland tropical amphibians may be particularly susceptible to changes in land cover and climate warming because many species have narrow thermal safety margins resulting from air and body temperatures that are close to their critical thermal maxima (CT max ). We examined how changing thermal landscapes may alter the area of thermally suitable habitat (TSH) for tropical amphibians. We measured microclimates in 6 land-cover types and CT max of 16 frog species in lowland northeastern Costa Rica. We used a biophysical model to estimate core body temperatures of frogs exposed to habitat-specific microclimates while accounting for evaporative cooling and behavior. Thermally suitable habitat area was estimated as the portion of the landscape where species CT max exceeded their habitat-specific maximum body temperatures. We projected changes in TSH area 80 years into the future as a function of land-cover change only, climate change only, and combinations of land-cover and climate-change scenarios representing low and moderate rates of change. Projected decreases in TSH area ranged from 16% under low emissions and reduced forest loss to 30% under moderate emissions and business-as-usual land-cover change. Under a moderate emissions scenario (A1B), climate change alone contributed to 1.7- to 4.5-fold greater losses in TSH area than land-cover change only, suggesting that future decreases in TSH from climate change may outpace structural habitat loss. Forest-restricted species had lower mean CT max than species that occurred in altered habitats, indicating that thermal tolerances will likely shape assemblages in changing thermal landscapes. In the face of ongoing land-cover and climate change, it will be critical to consider changing thermal landscapes in strategies to conserve ectotherm species. © 2016 Society for Conservation Biology.
Kristina J. Anderson-Teixeira; John P. Delong; Andrew M. Fox; Daniel A. Brese; Marcy E. Litvak
2011-01-01
Southwestern North America faces an imminent transition to a warmer, more arid climate, and it is critical to understand how these changes will affect the carbon balance of southwest ecosystems. In order to test our hypothesis that differential responses of production and respiration to temperature and moisture shape the carbon balance across a range of spatio-temporal...
Developing an In-depth Understanding of Elderly Adult's Vulnerability to Climate Change.
Rhoades, Jason L; Gruber, James S; Horton, Bill
2018-05-08
Recent reports highlight the vulnerability of elderly adults to climate change, yet limited research has focused on this topic. To address this, the purpose of this study was to develop an in-depth understanding of elderly adult's vulnerability to climate change within the context of a specific community. A case study methodology utilizing a community-based action research approach was employed to engage elderly participants living in Bridgeport, CT, in exploring their vulnerability to current and predicted climate stressors with a focus on extreme heat, flooding and storms, and air pollution. This research identifies personal characteristics that interact with contextual factors to influence elderly adult's vulnerability to climate change. Personal characteristics include health, economic, and social considerations. Contextual factors include the adequacy of emergency preparedness measures, transportation resources, and coping and recovery resources. As a result of the interplay of these characteristics and factors, predicted climate changes could have serious consequences for Bridgeport's elderly adults. This research provides a contextualized and detailed illustration of how climate change could overwhelm elderly adult's adaptive capacity and highlights the need for support services to provide safeguards. The issues and concerns raised may bear similarities to other locations, especially urban settings facing similar climate stressors with similar socioeconomic conditions. The findings suggest a need for further research to improve our understanding and serve as the basis for collaborative adaptation planning that engages elderly communities with local governments and a broad coalition of partners to keep elders safe.
NASA Astrophysics Data System (ADS)
Walker, D.; Ayyub, B. M.
2017-12-01
According to U.S. Census, new construction spending in the U.S. for 2014 was $993 Billion (roughly 6 percent of U.S. GDP). Informing the development of standards of engineering practice related to design and maintenance thus represents a significant opportunity to promote climate adaptation and mitigation, as well as community resilience. The climate science community informs us that extremes of climate and weather are changing from historical values and that the changes are driven substantially by emissions of greenhouse gases caused by human activities. Civil infrastructure systems traditionally have been designed, constructed, operated and maintained for appropriate probabilities of functionality, durability and safety while exposed to climate and weather extremes during their full service lives. Because of uncertainties in future greenhouse gas emissions and in the models for future climate and weather extremes, neither the climate science community nor the engineering community presently can define the statistics of future climate and weather extremes. The American Society for Civil Engineering's (ASCE) Committee on Adapting to a Changing Climate is actively involved in efforts internal and external to ASCE to promote understanding of the challenges climate change represents in engineering practice and to promote a re-examination of those practices that may need to change in light of changing climate. In addition to producing an ASCE e-book, as well as number of ASCE webinars, the Committee is currently developing a Manual of Practice intended to provide guidance for the development or enhancement of standards for infrastructure analysis and design in a world in which risk profiles are changing (non-stationarity) and climate change is a reality, but cannot be projected with a high degree of certainty. This presentation will explore both the need for such guidance as well as some of the challenges and opportunities facing its implementation.
Tian, Hanqin; Chen, Guangsheng; Lu, Chaoqun; ...
2015-03-16
Greenhouse gas (GHG)-induced climate change is among the most pressing sustainability challenges facing humanity today, posing serious risks for ecosystem health. Methane (CH 4) and nitrous oxide (N 2O) are the two most important GHGs after carbon dioxide (CO 2), but their regional and global budgets are not well known. In this paper, we applied a process-based coupled biogeochemical model to concurrently estimate the magnitude and spatial and temporal patterns of CH 4 and N 2O fluxes as driven by multiple environmental changes, including climate variability, rising atmospheric CO 2, increasing nitrogen deposition, tropospheric ozone pollution, land use change, andmore » nitrogen fertilizer use.« less
Public perceptions of climate change and extreme weather events
NASA Astrophysics Data System (ADS)
Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.
2013-12-01
Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such as flooding and heavy rainfall than in ';hot' events such as heatwaves, (b) perceptions of these ';wet' weather events are more strongly associated with climate-change beliefs than were extremely ';hot' weather events, and (c) personal experiences with the negative consequences of specific extreme weather events are associated with stronger climate-change beliefs. Hence, which specific weather events people interpret as evidence of climate change may depend on their personal perceptions and experiences - which may not involve the temperature increases that are commonly the focus of climate-change communications. Overall, these findings suggest that climate experts should consider focusing their public communications on extreme weather events that are relevant to their intended audience. We will discuss strategies for designing and evaluating communications about climate change and adaptation.
NASA Technical Reports Server (NTRS)
Tilmes, Curt
2014-01-01
The Global Change Information System (GCIS) provides a framework for the formal representation of structured metadata about data and information about global change. The pilot deployment of the system supports the National Climate Assessment (NCA), a major report of the U.S. Global Change Research Program (USGCRP). A consumer of that report can use the system to browse and explore that supporting information. Additionally, capturing that information into a structured data model and presenting it in standard formats through well defined open inter- faces, including query interfaces suitable for data mining and linking with other databases, the information becomes valuable for other analytic uses as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Hanqin; Chen, Guangsheng; Lu, Chaoqun
Greenhouse gas (GHG)-induced climate change is among the most pressing sustainability challenges facing humanity today, posing serious risks for ecosystem health. Methane (CH 4) and nitrous oxide (N 2O) are the two most important GHGs after carbon dioxide (CO 2), but their regional and global budgets are not well known. In this paper, we applied a process-based coupled biogeochemical model to concurrently estimate the magnitude and spatial and temporal patterns of CH 4 and N 2O fluxes as driven by multiple environmental changes, including climate variability, rising atmospheric CO 2, increasing nitrogen deposition, tropospheric ozone pollution, land use change, andmore » nitrogen fertilizer use.« less
2018-01-01
Climate change has been identified as the primary threat to the integrity and functioning of ecosystems in this century, although there is still much uncertainty about its effects and the degree of vulnerability for different ecosystems to this threat. Here we propose a new methodological approach capable of measuring and mapping the resilience of terrestrial ecosystems at large scales based on their climatic niche. To do this, we used high spatial resolution remote sensing data and ecological niche modeling techniques to calculate and spatialize the resilience of three stable states of ecosystems in South America: forest, savanna, and grassland. Also, we evaluated the sensitivity of ecosystems to climate stress, the likelihood of exposure to non-analogous climatic conditions, and their respective adaptive capacities in the face of climate change. Our results indicate that forests, the most productive and biodiverse terrestrial ecosystems on the earth, are more vulnerable to climate change than savannas or grasslands. Forests showed less resistance to climate stress and a higher chance of exposure to non-analogous climatic conditions. If this scenario occurs, the forest ecosystems would have less chance of adaptation compared to savannas or grasslands because of their narrow climate niche. Therefore, we can conclude that a possible consolidation of non-analogous climatic conditions would lead to a loss of resilience in the forest ecosystem, significantly increasing the chance of a critical transition event to another stable state with a lower density of vegetation cover (e.g., savanna or grassland). PMID:29554132
Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar
Harvey, Celia A.; Rakotobe, Zo Lalaina; Rao, Nalini S.; Dave, Radhika; Razafimahatratra, Hery; Rabarijohn, Rivo Hasinandrianina; Rajaofara, Haingo; MacKinnon, James L.
2014-01-01
Across the tropics, smallholder farmers already face numerous risks to agricultural production. Climate change is expected to disproportionately affect smallholder farmers and make their livelihoods even more precarious; however, there is limited information on their overall vulnerability and adaptation needs. We conducted surveys of 600 households in Madagascar to characterize the vulnerability of smallholder farmers, identify how farmers cope with risks and explore what strategies are needed to help them adapt to climate change. Malagasy farmers are particularly vulnerable to any shocks to their agricultural system owing to their high dependence on agriculture for their livelihoods, chronic food insecurity, physical isolation and lack of access to formal safety nets. Farmers are frequently exposed to pest and disease outbreaks and extreme weather events (particularly cyclones), which cause significant crop and income losses and exacerbate food insecurity. Although farmers use a variety of risk-coping strategies, these are insufficient to prevent them from remaining food insecure. Few farmers have adjusted their farming strategies in response to climate change, owing to limited resources and capacity. Urgent technical, financial and institutional support is needed to improve the agricultural production and food security of Malagasy farmers and make their livelihoods resilient to climate change. PMID:24535397
Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar.
Harvey, Celia A; Rakotobe, Zo Lalaina; Rao, Nalini S; Dave, Radhika; Razafimahatratra, Hery; Rabarijohn, Rivo Hasinandrianina; Rajaofara, Haingo; Mackinnon, James L
2014-04-05
Across the tropics, smallholder farmers already face numerous risks to agricultural production. Climate change is expected to disproportionately affect smallholder farmers and make their livelihoods even more precarious; however, there is limited information on their overall vulnerability and adaptation needs. We conducted surveys of 600 households in Madagascar to characterize the vulnerability of smallholder farmers, identify how farmers cope with risks and explore what strategies are needed to help them adapt to climate change. Malagasy farmers are particularly vulnerable to any shocks to their agricultural system owing to their high dependence on agriculture for their livelihoods, chronic food insecurity, physical isolation and lack of access to formal safety nets. Farmers are frequently exposed to pest and disease outbreaks and extreme weather events (particularly cyclones), which cause significant crop and income losses and exacerbate food insecurity. Although farmers use a variety of risk-coping strategies, these are insufficient to prevent them from remaining food insecure. Few farmers have adjusted their farming strategies in response to climate change, owing to limited resources and capacity. Urgent technical, financial and institutional support is needed to improve the agricultural production and food security of Malagasy farmers and make their livelihoods resilient to climate change.
NASA Astrophysics Data System (ADS)
Zorita, E.
2009-12-01
One of the objectives when comparing simulations of past climates to proxy-based climate reconstructions is to asses the skill of climate models to simulate climate change. This comparison may accomplished at large spatial scales, for instance the evolution of simulated and reconstructed Northern Hemisphere annual temperature, or at regional or point scales. In both approaches a 'fair' comparison has to take into account different aspects that affect the inevitable uncertainties and biases in the simulations and in the reconstructions. These efforts face a trade-off: climate models are believed to be more skillful at large hemispheric scales, but climate reconstructions are these scales are burdened by the spatial distribution of available proxies and by methodological issues surrounding the statistical method used to translate the proxy information into large-spatial averages. Furthermore, the internal climatic noise at large hemispheric scales is low, so that the sampling uncertainty tends to be also low. On the other hand, the skill of climate models at regional scales is limited by the coarse spatial resolution, which hinders a faithful representation of aspects important for the regional climate. At small spatial scales, the reconstruction of past climate probably faces less methodological problems if information from different proxies is available. The internal climatic variability at regional scales is, however, high. In this contribution some examples of the different issues faced when comparing simulation and reconstructions at small spatial scales in the past millennium are discussed. These examples comprise reconstructions from dendrochronological data and from historical documentary data in Europe and climate simulations with global and regional models. These examples indicate that the centennial climate variations can offer a reasonable target to assess the skill of global climate models and of proxy-based reconstructions, even at small spatial scales. However, as the focus shifts towards higher frequency variability, decadal or multidecadal, the need for larger simulation ensembles becomes more evident. Nevertheless,the comparison at these time scales may expose some lines of research on the origin of multidecadal regional climate variability.
NASA Astrophysics Data System (ADS)
Sangpenchan, R.
2011-12-01
This research explores the vulnerability of Thai rice production to simultaneous exposure by climate and socioeconomic change -- so-called "double exposure." Both processes influence Thailand's rice production system, but the vulnerabilities associated with their interactions are unknown. To understand this double exposure, I adopts a mixed-method, qualitative-quantitative analytical approach consisting of three phases of analysis involving a Vulnerability Scoping Diagram, a Principal Component Analysis, and the EPIC crop model using proxy datasets collected from secondary data sources at provincial scales.The first and second phases identify key variables representing each of the three dimensions of vulnerability -- exposure, sensitivity, and adaptive capacity indicating that the greatest vulnerability in the rice production system occurs in households and areas with high exposure to climate change, high sensitivity to climate and socioeconomic stress, and low adaptive capacity. In the third phase, the EPIC crop model simulates rice yields associated with future climate change projected by CSIRO and MIROC climate models. Climate change-only scenarios project the decrease in yields by 10% from the current productivity during 2016-2025 and 30% during 2045-2054. Scenarios applying both climate change and improved technology and management practices show that a 50% increase in rice production is possible, but requires strong collaboration between sectors to advance agricultural research and technology and requires strong adaptive capacity in the rice production system characterized by well-developed social capital, social networks, financial capacity, and infrastructure and household mobility at the local scale. The vulnerability assessment and climate and crop adaptation simulations used here provide useful information to decision makers developing vulnerability reduction plans in the face of concurrent climate and socioeconomic change.
Data management to enhance long-term watershed research capacity
USDA-ARS?s Scientific Manuscript database
Water resources are under growing pressure globally, and in the face of projected climate change, uncertainty about precipitation frequency and intensity; evapotranspiration, runoff, and snowmelt poses severe societal challenges. Interdisciplinary environmental research across natural and social sc...
Planning, climate change, and transportation : thoughts on policy analysis
DOT National Transportation Integrated Search
2010-10-01
Ideally, policy should be informed by social welfare analyses that carefully assess costs and benefits. In the context of : GHG policies, such analyses face particular challenges. The decades-long span of GHG policy-making will require introduction :...
2016-2020 Strategic Plan - At-a-Glance
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-12-01
Today, the United States is faced with a national imperative to address the enormous challenge presented by climate change and to seize upon the multi-trillion dollar economic opportunity that a transition to a global clean energy economy will provide.
Bunyan, Sabrina; Collins, Alan; Duffy, David
2016-09-01
Survey data from a representative sample of 1005 households in the UK coastal city of Portsmouth are examined to discern commonalities and contrasts in their assessment of actions to address the related environmental threats of climate change and flooding. The city of Portsmouth is at risk of inundation from rising sea levels and the city has recent experience of flooding. A simple local and global public good framework is used to organize the understanding of reported attitudes and their determinants. The findings show that it is not always the same individuals who express concern about both climate change and flooding. Investigation into perceptions of helplessness in tackling climate change indicates that individuals more often perceived themselves to be helpless in tackling climate but perceived local collective action to be more effective. Individuals considered local collective action to be more effective in tackling climate change. Perceptions of individual helplessness are in turn related to reported concern. Several socioeconomic characteristics of individuals are shown to be useful in explaining the determinants of concern and perceptions of helplessness among respondents. As other cities face climate change-related challenges, the empirical findings, based upon attitudes from an alert urban population, are informative to policy design.
NASA Astrophysics Data System (ADS)
Bunyan, Sabrina; Collins, Alan; Duffy, David
2016-09-01
Survey data from a representative sample of 1005 households in the UK coastal city of Portsmouth are examined to discern commonalities and contrasts in their assessment of actions to address the related environmental threats of climate change and flooding. The city of Portsmouth is at risk of inundation from rising sea levels and the city has recent experience of flooding. A simple local and global public good framework is used to organize the understanding of reported attitudes and their determinants. The findings show that it is not always the same individuals who express concern about both climate change and flooding. Investigation into perceptions of helplessness in tackling climate change indicates that individuals more often perceived themselves to be helpless in tackling climate but perceived local collective action to be more effective. Individuals considered local collective action to be more effective in tackling climate change. Perceptions of individual helplessness are in turn related to reported concern. Several socioeconomic characteristics of individuals are shown to be useful in explaining the determinants of concern and perceptions of helplessness among respondents. As other cities face climate change-related challenges, the empirical findings, based upon attitudes from an alert urban population, are informative to policy design.
Climate Change and Health as Massive Open Online Courses.
Barteit, Sandra; Sié, Ali; Yé, Maurice; Depoux, Anneliese; Sauerborn, Reiner
2018-01-01
To teach the basics of climate change and health - such as the nature of health impacts, best practices in adoption strategies and promotion in health co-benefits, mitigation and adaptation strategies - we have developed three massive open online courses (MOOCs). We analysed the three MOOCs with regards to different factors such as course content, student motivation, instructor behaviour, co-learner effects, design and implementation effects. We conducted online surveys for all three MOOCs based on the research model of Hone et al., extended with regards to student's motivation and course outcomes. In total, we evaluated 6898 students, of which 101 students took part in the online survey. We found differences in completion rates and country of origin for the three MOOCs. The francophone MOOC was found to have a high number of participants from lower-income- and low-and-middle-income countries. The majority of participants were aged between 22 and 40 years of age and had mainly a graduate educational background. The primary motivation to join the MOOC was the knowledge and skills gained as a result of taking the course. The three MOOCs on climate change and health had a reach of almost 7000 students worldwide, as compared to the scope of a face-to-face course on the same topic of 30 students, including students from resource-low environments that are already vulnerable to current changes in climate. The evaluation of the MOOCs outlined the current impact. However, further research has to be conducted to be able to get insights into the impact over time.
Influence of Microclimate on Semi-Arid Montane Conifer Forest Sapflux Velocity in Complex Terrain
NASA Astrophysics Data System (ADS)
Thirouin, K. R.; Barnard, D. M.; Barnard, H. R.
2016-12-01
Microclimate variation in complex terrain is key to our understanding of large-scale climate change effects on montane ecosystems. Modern climate models forecast that semi-arid montane ecosystems in the western United States are to experience increases in temperature, number of extreme drought events, and decreases in annual snowpack, all of which will potentially influence ecosystem water, carbon, and energy balances. In this study, we developed response curves that describe the relationships between stem sapflux velocity, air temperature (Tair), incoming solar radiation (SWin), soil temperature (Tsoil), and soil moisture content (VWC) in sites of Pinus contorta and Pinus ponderosa distributed along an elevation and aspect gradient in the montane zone of the Central Rocky Mountains, Colorado, USA. Among sites we found sapflux velocity to be significantly correlated with all four environmental factors (p < 0.05), but most strongly with SWin and Tair. The response of sapflux velocity to SWin was logarithmic, whereas the response to Tair indicated a peak sapflux velocity at a site-specific temperature that declined with increasing Tair. Sapflux velocity also increased with increasing VWC, but decreased with increasing Tsoil. At south-facing sites, the initial increase in the logarithmic response curve for SWin leveled off at 150-250 W m-2, whereas for north-facing sites it leveled off at 50-125 W m-2. While the differences in the SWin response between aspects could be due to species physiological differences, the highest elevation south-facing P. contorta site behaved similarly to the south-facing P. ponderosa, suggesting that environmental drivers may dominate the response. In response to Tair, peak sapflux velocity occurred at 12-13 degrees C at all sites except the mid-slope north-facing P. contorta site, which also had the lowest Tsoil. The responses of stem sapflux velocity to climate drivers indicate that forest transpiration is regulated by microclimate gradients across small spatial scales in complex terrain, which need to be characterized in order to understand broader ecosystem dynamics and the role that large-scale climate change will play in these systems.
[Confronting the Health-Related Challenges of Climate Change: Nursing Education for the Future].
Wu, Pei-Chih; Lee, Chi-Chen
2016-08-01
Climate change is the greatest threat to public health in the 21st century. The increasing health impact of heat waves, the increasing magnitudes and spatial expansions of vector and water-borne diseases epidemics, and the increasing medical burdens of biological allergic illnesses, worsening local air pollution, and other related issues are expected to continue to increase in severity in the near future. All of these issues are global problems that must be faced. Adaptation strategies and action plans related to climate change are needed and emerging. Moreover, integrating the basic concepts, scientific evidences, and new technology into public and professional education systems is already recognized as a priority in the national adaptation program. Nurses stand on the frontlines of medical care and health communication. The integration of climate change and adaptation to climate change into nursing education and training is become increasingly important. This article reviews both the expected health impacts of climate change and the mitigation and adaptation strategies that have been proposed / adopted by medical care facilities around the world. Further, we outline the current, priority needs for action in medical care facilities in Taiwan in order to mitigate and adapt to climate-change-related healthcare issues. Additionally, we present an integrated strategic plan for educating healthcare professionals, including nurse, in the future. We hope that the ideas that are presented in this paper encourage multidisciplinary cooperation and help bridge the gap between technology development and practical application in Taiwan's medical care system.
The sociological imagination in a time of climate change
NASA Astrophysics Data System (ADS)
Norgaard, Kari Marie
2018-04-01
Despite rising calls for social science knowledge in the face of climate change, too few sociologists have been engaged in the conversations about how we have arrived at such perilous climatic circumstances, or how society can change course. With its attention to the interactive dimensions of social order between individuals, social norms, cultural systems and political economy, the discipline of sociology is uniquely positioned to be an important leader in this conversation. In this paper I suggest that in order to understand and respond to climate change we need two kinds of imagination: 1) to see the relationships between human actions and their impacts on earth's biophysical system (ecological imagination) and 2) to see the relationships within society that make up this environmentally damaging social structure (sociological imagination). The scientific community has made good progress in developing our ecological imagination but still need to develop a sociological imagination. The application of a sociological imagination allows for a powerfully reframing of four key problems in the current interdisciplinary conversation on climate change: why climate change is happening, how we are being impacted, why we have failed to successfully respond so far, and how we might be able to effectively do so. I visit each of these four questions describing the current understanding and show the importance of the sociological imagination and other insights from the field of sociology. I close with reflections on current limitations in sociology's potential to engage climate change and the Anthropocene.
A Sustainable Early Warning System for Climate Change Impacts on Water Quality Management
NASA Astrophysics Data System (ADS)
Lee, T.; Tung, C.; Chung, N.
2007-12-01
In this era of rapid social and technological change leading to interesting life complexity and environmental displacement, both positive and negative effects among ecosystems call for a balance in which there are impacts by climate changes. Early warning systems for climate change impacts are necessary in order to allow society as a whole to properly and usefully assimilate the masses of new information and knowledge. Therefore, our research addresses to build up a sustainable early warning mechanism. The main goal is to mitigate the cumulative impacts on the environment of climate change and enhance adaptive capacities. An effective early warning system has been proven for protection. However, there is a problem that estimate future climate changes would be faced with high uncertainty. In general, take estimations for climate change impacts would use the data from General Circulation Models and take the analysis as the Intergovernmental Panel on Climate Change declared. We follow the course of the method for analyzing climate change impacts and attempt to accomplish the sustainable early warning system for water quality management. Climate changes impact not only on individual situation but on short-term variation and long-term gradually changes. This kind characteristic should adopt the suitable warning system for long-term formulation and short- term operation. To continue the on-going research of the long-term early warning system for climate change impacts on water quality management, the short-term early warning system is established by using local observation data for reappraising the warning issue. The combination of long-term and short-term system can provide more circumstantial details. In Taiwan, a number of studies have revealed that climate change impacts on water quality, especially in arid period, the concentration of biological oxygen demand may turn into worse. Rapid population growth would also inflict injury on its assimilative capacity to degenerate. To concern about those items, the sustainable early warning system is established and the initiative fall into the following categories: considering the implications for policies, applying adaptive strategies and informing the new climate changes. By setting up the framework of early warning system expectantly can defend stream area from impacts damaging and in sure the sustainable development.
NASA Astrophysics Data System (ADS)
Papadavid, G.; Neocleous, D.; Stylianou, A.; Markou, M.; Kountios, G.; Hadjimitsis, D.
2016-08-01
Water allocation to crops, and especially to the most water intensive ones, has always been of great importance in agricultural process. Deficit or excess water irrigation quantities could create either crop health related problems or water over-consumption situation which lead to stored water reduction and toxic material depletion to deeper ground layers, respectively. In this context, and under the current conditions, where Cyprus is facing effects of climate changes, purpose of this study is basically to estimate the needed crop water requirements of the past (1995-2004) and the corresponding ones of the present (2005-2015) in order to test if there were any significant changes regarding the crop water requirements of the most water intensive trees in Cyprus. Mediterranean region has been identified as the region that will suffer the most from climate change. Thus the paper refers to effects of climate changes on crop evapotranspiration (ETc) using remotely sensed data from Landsat TM/ ETM+ / OLI employing a sound methodology used worldwide, the Surface Energy Balance Algorithm for Land (SEBAL). Though the general feeling is that of changes on climate will consequently affect ETc, the results have indicated that there is no significant effect of climate change on crop evapotranspiration, despite the fact that some climatic factors have changed. Applying Student's T-test, the mean values for the most water intensive trees in Cyprus of the 1994-2004 decade have shown no statistical difference from the mean values of 2005-2015 decade's for all the cases, concluding that the climate change taking place the last decades in Cyprus have either not affected the crop evapotranspiration or the crops have manage to adapt into the new environmental conditions through time.
NASA Astrophysics Data System (ADS)
Sayre, N. F.; Bestelmeyer, B.
2015-12-01
Global livestock production is heterogeneous, and its benefits and costs vary widely across global contexts. Extensive grazing lands (or rangelands) constitute the vast majority of the land dedicated to livestock production globally, but they are relatively minor contributors to livestock-related environmental impacts. Indeed, the greatest potential for environmental damage in these lands lies in their potential for conversion to other uses, including agriculture, mining, energy production and urban development. Managing such conversion requires improving the sustainability of livestock production in the face of fragmentation, ecological and economic marginality and climate change. We present research from Mongolia and the United States demonstrating methods of improving outcomes on rangelands by improving the fit between the scales of social and biophysical processes. Especially in arid and semi-arid settings, rangelands exhibit highly variable productivity over space and time and non-linear or threshold dynamics in vegetation; climate change is projected to exacerbate these challenges and, in some cases, diminish overall productivity. Policy and governance frameworks that enable landscape-scale management and administration enable range livestock producers to adapt to these conditions. Similarly, livestock breeds that have evolved to withstand climate and vegetation change improve producers' prospects in the face of increasing variability and declining productivity. A focus on the relationships among primary production, animal production, spatial connectivity, and scale must underpin adaptation strategies in rangelands.
Impact of climate changes on population vital activities in Russia in the early 21st century
NASA Astrophysics Data System (ADS)
Zolotokrylin, A. N.; Vinogradova, V. V.; Titkova, T. B.; Cherenkova, E. A.; Bokuchava, D. D.; Sokolov, I. A.; Vinogradov, A. V.; Babina, E. D.
2018-01-01
The study substantiates the approach to the assessment of impact of climate change on vital activities of population in Russia in the face of increasing climate extremes. The obtained results reveal the occurrence of the essential climate extreme events over the period 1991-2013 in Russia that are vital for population activities. Annual amounts of interdiurnal temperature differences and pressure were calculated. Propagation of heat and cold waves, trends and frequencies of daily precipitation extremes were evaluated. The map “Zoning the territory of the Russian Federation by natural living conditions of the population” adapted for modern climate (2001-2010), illustrates the climate changes in the early 21st century. The modern warming of climate has led to a significant easing of discomfort in the territory of Russia. The steady decline of the absolutely unfavorable zone resulted from the expansion of less unfavorable areas is observed, especially in the Northern and Arctic regions. In the south the boundary of unfavorable territories shifts toward the north. It results in the expansion of the conditionally unfavorable area in West Siberia and in the south of East Siberia. In European Russia the favorable area expands and shifts far to the northern regions.
Global-change vulnerability of a key plant resource, the African palms.
Blach-Overgaard, Anne; Balslev, Henrik; Dransfield, John; Normand, Signe; Svenning, Jens-Christian
2015-07-27
Palms are keystone species in tropical ecosystems and provide essential ecosystem services to rural people worldwide. However, many palm species are threatened by habitat loss and over-exploitation. Furthermore, palms are sensitive to climate and thus vulnerable to future climate changes. Here, we provide a first quantitative assessment of the future risks to the African palm flora, finding that African palm species on average may experience a decline in climatic suitability in >70% of their current ranges by 2080. This suitability loss may, however, be almost halved if migration to nearby climatically suitable sites succeeds. Worryingly, 42% of the areas with 80-100% of species losing climate suitability are also characterized by high human population density (HPD). By 2080, >90% of all African palm species' ranges will likely occur at HPDs leading to increased risks of habitat loss and overexploitation. Additionally, up to 87% of all species are predicted to lose climatic suitability within current protected areas (PAs) by 2080. In summary, a major plant component of tropical ecosystems and provider of ecosystem services to rural populations will face strongly increased pressures from climate change and human populations in the near future.
Populations of concern: Chapter 9
Gamble, Janet; Balbus, John; Berger, Martha; Bouye, Karen; Campbell, Vince; Chief, Karletta; Conlon, K.; Crimmins, Allison; Flanagan, Barry; Gonzalez-Maddux, C.; Hallisey, E.; Hutchins, S.; Jantarasami, L.; Khoury, S.; Kiefer, M.; Kolling, J.; Lynn, K.; Manangan, A.; McDonald, M.; Morello-Frosch, R.; Hiza, Margaret; Sheffield, P.; Thigpen Tart, K.; Watson, J.; Whyte, K.P.; Wolkin, A.F.
2016-01-01
Climate change is already causing, and is expected to continue to cause, a range of health impacts that vary across different population groups in the United States. The vulnerability of any given group is a function of its sensitivity to climate change related health risks, its exposure to those risks, and its capacity for responding to or coping with climate variability and change. Vulnerable groups of people, described here as populations of concern, include those with low income, some communities of color, immigrant groups (including those with limited English proficiency), Indigenous peoples, children and pregnant women, older adults, vulnerable occupational groups, persons with disabilities, and persons with preexisting or chronic medical conditions. Planners and public health officials, politicians and physicians, scientists and social service providers are tasked with understanding and responding to the health impacts of climate change. Collectively, their characterization of vulnerability should consider how populations of concern experience disproportionate, multiple, and complex risks to their health and well-being in response to climate change. Some groups face a number of stressors related to both climate and non-climate factors. For example, people living in impoverished urban or isolated rural areas, floodplains, coastlines, and other at-risk locations are more vulnerable not only to extreme weather and persistent climate change but also to social and economic stressors. Many of these stressors can occur simultaneously or consecutively. Over time, this “accumulation” of multiple, complex stressors is expected to become more evident1 as climate impacts interact with stressors associated with existing mental and physical health conditions and with other socioeconomic and demographic factors.
Heat Exposure and Maternal Health in the Face of Climate Change
Kuehn, Leeann; McCormick, Sabrina
2017-01-01
Climate change will increasingly affect the health of vulnerable populations, including maternal and fetal health. This systematic review aims to identify recent literature that investigates increasing heat and extreme temperatures on pregnancy outcomes globally. We identify common research findings in order to create a comprehensive understanding of how immediate effects will be sustained in the next generation. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide, we systematically reviewed articles from PubMed and Cochrane Reviews. We included articles that identify climate change-related exposures and adverse health effects for pregnant women. There is evidence that temperature extremes adversely impact birth outcomes, including, but not limited to: changes in length of gestation, birth weight, stillbirth, and neonatal stress in unusually hot temperature exposures. The studies included in this review indicate that not only is there a need for further research on the ways that climate change, and heat in particular, may affect maternal health and neonatal outcomes, but that uniform standards for assessing the effects of heat on maternal fetal health also need to be established. PMID:28758917
Heat Exposure and Maternal Health in the Face of Climate Change.
Kuehn, Leeann; McCormick, Sabrina
2017-07-29
Climate change will increasingly affect the health of vulnerable populations, including maternal and fetal health. This systematic review aims to identify recent literature that investigates increasing heat and extreme temperatures on pregnancy outcomes globally. We identify common research findings in order to create a comprehensive understanding of how immediate effects will be sustained in the next generation. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide, we systematically reviewed articles from PubMed and Cochrane Reviews. We included articles that identify climate change-related exposures and adverse health effects for pregnant women. There is evidence that temperature extremes adversely impact birth outcomes, including, but not limited to: changes in length of gestation, birth weight, stillbirth, and neonatal stress in unusually hot temperature exposures. The studies included in this review indicate that not only is there a need for further research on the ways that climate change, and heat in particular, may affect maternal health and neonatal outcomes, but that uniform standards for assessing the effects of heat on maternal fetal health also need to be established.
Petkova, Elisaveta P; Ebi, Kristie L; Culp, Derrin; Redlener, Irwin
2015-08-11
The impacts of climate change on human health have been documented globally and in the United States. Numerous studies project greater morbidity and mortality as a result of extreme weather events and other climate-sensitive hazards. Public health impacts on the U.S. Gulf Coast may be severe as the region is expected to experience increases in extreme temperatures, sea level rise, and possibly fewer but more intense hurricanes. Through myriad pathways, climate change is likely to make the Gulf Coast less hospitable and more dangerous for its residents, and may prompt substantial migration from and into the region. Public health impacts may be further exacerbated by the concentration of people and infrastructure, as well as the region's coastal geography. Vulnerable populations, including the very young, elderly, and socioeconomically disadvantaged may face particularly high threats to their health and well-being. This paper provides an overview of potential public health impacts of climate variability and change on the Gulf Coast, with a focus on the region's unique vulnerabilities, and outlines recommendations for improving the region's ability to minimize the impacts of climate-sensitive hazards. Public health adaptation aimed at improving individual, public health system, and infrastructure resilience is urgently needed to meet the challenges climate change may pose to the Gulf Coast in the coming decades.
Predicting impacts of climate change on habitat connectivity of Kalopanax septemlobus in South Korea
NASA Astrophysics Data System (ADS)
Kang, Wanmo; Minor, Emily S.; Lee, Dowon; Park, Chan-Ryul
2016-02-01
Understanding the drivers of habitat distribution patterns and assessing habitat connectivity are crucial for conservation in the face of climate change. In this study, we examined a sparsely distributed tree species, Kalopanax septemlobus (Araliaceae), which has been heavily disturbed by human use in temperate forests of South Korea. We used maximum entropy distribution modeling (MaxEnt) to identify the climatic and topographic factors driving the distribution of the species. Then, we constructed habitat models under current and projected climate conditions for the year 2050 and evaluated changes in the extent and connectivity of the K. septemlobus habitat. Annual mean temperature and terrain slope were the two most important predictors of species distribution. Our models predicted the range shift of K. septemlobus toward higher elevations under medium-low and high emissions scenarios for 2050, with dramatic reductions in suitable habitat (51% and 85%, respectively). In addition, connectivity analysis indicated that climate change is expected to reduce future levels of habitat connectivity. Even under the Representative Construction Pathway (RCP) 4.5 medium-low warming scenario, the projected climate conditions will decrease habitat connectivity by 78%. Overall, suitable habitats for K. septemlobus populations will likely become more isolated depending on the severity of global warming. The approach presented here can be used to efficiently assess species and habitat vulnerability to climate change.
NASA Astrophysics Data System (ADS)
Zizinga, A.
2017-12-01
Watershed Adaptation Measures to Climate Change Impacts: A case of Kiha Watershed in Albertine GrabenAlex Zizinga1, Moses Tenywa2, Majaliwa Jackson Gilbert1, 1Makerere University, Department of Environmental Sciences, O Box 7062, Kampala, Uganda 1Makerere University, Department of Agricultural Production, P.O Box 7062, Kampala, Uganda Corresponding author: azizinga@caes.mak.ac.ug AbstractThe most pressing issues local communities in Uganda are facing result from land-use and land cover changes exacerbated by climate change impacts. A key issue is the documentation of land-cover changes visible with the ongoing clearance of remaining forests, bush-lands and wetlands for expanding farmland for sugarcane production, producing charcoal and collecting firewood for local distilleries using imported molasses. Decision-makers, resource managers, farmers and practitioners must build their capacity for adaptive measures. Here we present the potential impacts of climate change on watershed hydrological processes in the River Kiha Watershed, located in Western Uganda, Lake Albert Water Management Zone, by using social learning techniques incorporating water users, local stakeholders and researchers. The research team examined different farming and economic activities within the watershed to assess their impacts on catchment water resources, namely on water quality and discharge of river Kiha. We present the impacts of locally induced climate change, which are already manifested in increasing seasonal variability of rainfall. The study aims at answering questions posed by local communities and stakeholders about climate change and its effects on livelihood and key resources, specifically water and soils within the Kiha watershed. Key words: Climate change impacts, Social Learning and Watershed Management
Characterizing the Sensitivity of Groundwater Storage to Climate variation in the Indus Basin
NASA Astrophysics Data System (ADS)
Huang, L.; Sabo, J. L.
2017-12-01
Indus Basin represents an extensive groundwater aquifer facing the challenge of effective management of limited water resources. Groundwater storage is one of the most important variables of water balance, yet its sensitivity to climate change has rarely been explored. To better estimate present and future groundwater storage and its sensitivity to climate change in the Indus Basin, we analyzed groundwater recharge/discharge and their historical evolution in this basin. Several methods are applied to specify the aquifer system including: water level change and storativity estimates, gravity estimates (GRACE), flow model (MODFLOW), water budget analysis and extrapolation. In addition, all of the socioeconomic and engineering aspects are represented in the hydrological system through the change of temporal and spatial distributions of recharge and discharge (e.g., land use, crop structure, water allocation, etc.). Our results demonstrate that the direct impacts of climate change will result in unevenly distributed but increasing groundwater storage in the short term through groundwater recharge. In contrast, long term groundwater storage will decrease as a result of combined indirect and direct impacts of climate change (e.g. recharge/discharge and human activities). The sensitivity of groundwater storage to climate variation is characterized by topography, aquifer specifics and land use. Furthermore, by comparing possible outcomes of different human interventions scenarios, our study reveals human activities play an important role in affecting the sensitivity of groundwater storage to climate variation. Over all, this study presents the feasibility and value of using integrated hydrological methods to support sustainable water resource management under climate change.
TECA: Petascale pattern recognition for climate science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhat, .; Byna, Surendra; Vishwanath, Venkatram
Climate Change is one of the most pressing challenges facing humanity in the 21st century. Climate simulations provide us with a unique opportunity to examine effects of anthropogenic emissions. Highresolution climate simulations produce “Big Data”: contemporary climate archives are ≈ 5PB in size and we expect future archives to measure on the order of Exa-Bytes. In this work, we present the successful application of TECA (Toolkit for Extreme Climate Analysis) framework, for extracting extreme weather patterns such as Tropical Cyclones, Atmospheric Rivers and Extra-Tropical Cyclones from TB-sized simulation datasets. TECA has been run at full-scale on Cray XE6 and IBMmore » BG/Q systems, and has reduced the runtime for pattern detection tasks from years to hours. TECA has been utilized to evaluate the performance of various computational models in reproducing the statistics of extreme weather events, and for characterizing the change in frequency of storm systems in the future.« less
Camels and Climate Resilience: Adaptation in Northern Kenya.
Watson, Elizabeth E; Kochore, Hassan H; Dabasso, Bulle Hallo
2016-01-01
In the drylands of Africa, pastoralists have been facing new challenges, including those related to environmental shocks and stresses. In northern Kenya, under conditions of reduced rainfall and more frequent droughts, one response has been for pastoralists to focus increasingly on camel herding. Camels have started to be kept at higher altitudes and by people who rarely kept camels before. The development has been understood as a climate change adaptation strategy and as a means to improve climate resilience. Since 2003, development organizations have started to further the trend by distributing camels in the region. Up to now, little has been known about the nature of, reasons for, or ramifications of the increased reliance on camels. The paper addresses these questions and concludes that camels improve resilience in this dryland region, but only under certain climate change scenarios, and only for some groups.
Stratagems of popular homes in the desertic climate…now, in the process of perdition
NASA Astrophysics Data System (ADS)
Benslimane, Nawal; Biara, Ratiba Wided
2017-02-01
The built environment of man has never been and is still not controlled by specialists (architect, planner, etc.). This environment was the result of a popular architecture, which is the product of mass culture nourished by everydayness, the environment and local engineering. This habitat expresses the relationship between environmental constraints and local values, because it reasons in terms of ecosystems and environmental constraints. But, these days in a climate that is increasingly changing, the genius of the physical environment (from city to home) fades. The city, the home succumb simultaneously to an environmental crisis, man at the center of concerns is undermined, subject to climatic discomfort. This paper aims to show the ingenuity of the ancestral production in the most difficult environments to live, facing the passivity of contemporary production in relation to climate and climatic change..
NASA Astrophysics Data System (ADS)
Bonfante, Antonello; Impagliazzo, Adriana; Fiorentino, Nunzio; Langella, Giuliano; Mori, Mauro; Fagnano, Massimo
2017-04-01
In literature on climate change, the bioenergy crops are well known for their ability to reduce greenhouse gases emission and increase the soil carbon stock. Nevertheless, in several countries they are considered in competition with food crops, representing a problem for facing the current and future "Food Security" issue related to climate change and population increase. At same time, in order to sustain local farming communities and crop production, mitigation actions at farm scale are identified to face climate change. However, in some cases the specific actions required by the pedo-climatic conditions, are not always economically sustainable by farmers. In this contest, the energy crops with high environmental adaptability and high productive performances, as the giant reed (Arundo donax spp.), cultivated in the areas not suitable for food crop (marginal areas) may represent an opportunity to increase the farmers' incomes, through the direct sale of above ground biomass (AGB) (as raw material for energy or green chemistry) or by means of the obtained biofuel or biogas. Moreover, the bioenergy crops, with low-input cropping systems (i.e. without irrigation and fertilized with compost from organic residues) are considered the most efficient crops for Greenhouse Gases reduction. In fact, they have a direct effect on processes affecting the CC at global scale: i) preserving and improving the soil carbon stock, ii) reducing the soil tillage and preserving the soil erosion, iii) allowing the conservation of fossil fuel resources with a reduction of CO2 emission in the atmosphere. Finally, their high environmental adaptability allows a riparian vegetation use (in the soils near water drains or rivers) with an important effect on the interception of nutrients as nitrogen and phosphorus that, if leached, have a high environmental impact on watercourses (e.g. eutrophication). Thus the correct use of this crops allows to respond to 3 of 17 Sustainable Development Goals (SDG) of United Nations: (i) SDG 2 on food security and sustainable agriculture, (ii) SDG 7 on reliable, sustainable and modern energy and (iii) SDG 13 on action to combat climate change and its impacts. Therefore, in order to support the resilience of local farming communities and food production, a mitigation action to face climate change can be bases on the assessment of the possible increase of farmers' incomes derived by the cultivation of bioenergy crops in their marginal areas. On these premises, we have evaluated the giant reed responses in the marginal areas of an agricultural district of southern Italy (Destra Sele) and evaluated the expected farmers' income in a near future (2021-2050) through a simulation model application. In order to realize this applicative and pro-active approach to farmer support, the normalized water productivity index of giant reed has been determined, through the use of agro-hydrological model SWAP, calibrated and validated on two years of long term field experiment on giant reed, realized within of study area. Keywords: Climate Change; SWAP; giant reed;water productivity (WP); Sustainable Development Goals (SDG)
Molecular proxies for climate maladaptation in a long-lived tree (Pinus pinaster Aiton, Pinaceae).
Jaramillo-Correa, Juan-Pablo; Rodríguez-Quilón, Isabel; Grivet, Delphine; Lepoittevin, Camille; Sebastiani, Federico; Heuertz, Myriam; Garnier-Géré, Pauline H; Alía, Ricardo; Plomion, Christophe; Vendramin, Giovanni G; González-Martínez, Santiago C
2015-03-01
Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity. Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP-climate correlations. These relationships identified temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geographically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change. Copyright © 2015 by the Genetics Society of America.
NASA Astrophysics Data System (ADS)
Rangwala, I.; Rondeau, R.; Wyborn, C.; Clifford, K. R.; Travis, W.
2015-12-01
Locally relevant projections of climate change provide critical insights for natural resource managers seeking to adapt their management activities to climate change in the context of uncertainty. To provide such information, we developed climate scenarios, in form of narratives and quantitative information, of future climate change and its impacts in southwestern Colorado. This information was intended to provide detailed insights into the range of changes that natural resource managers may face in the future. The scenarios were developed in an iterative process through interactions among the ecologists, social and climate scientists. In our scenario development process, climate uncertainty is acknowledged by having multiple scenarios, where each scenario is regarded as a storyline with equal likelihood as another scenario. We quantified changes in several decision relevant climate and ecological responses based on our best available understanding and provided a tight storyline for each scenario to facilitate (a) a more augmented use of scientific information in a decision-making process, (b) differential responses from stakeholders across the different scenarios, and (c) identification of strategies that could work across these multiple scenarios. Here, we discuss the process of selecting the scenarios, quantifying climate and ecological responses, and the criteria for building the narrative for each scenario. We also discuss the process by which these scenarios get used, and provide an assessment of their effectiveness and users' feedbacks that could inform the future development of these tools and processes. This research involvement and collaboration occurred, in part, as a result of the PACE Fellowship Program that is associated with NOAA Climate Program Office and the U.S. CLIVAR community.
Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (Pinus pinaster Aiton, Pinaceae)
Jaramillo-Correa, Juan-Pablo; Rodríguez-Quilón, Isabel; Grivet, Delphine; Lepoittevin, Camille; Sebastiani, Federico; Heuertz, Myriam; Garnier-Géré, Pauline H.; Alía, Ricardo; Plomion, Christophe; Vendramin, Giovanni G.; González-Martínez, Santiago C.
2015-01-01
Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity. Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP–climate correlations. These relationships identified temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geographically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change. PMID:25549630
García Molinos, Jorge; Takao, Shintaro; Kumagai, Naoki H; Poloczanska, Elvira S; Burrows, Michael T; Fujii, Masahiko; Yamano, Hiroya
2017-10-01
Conservation efforts strive to protect significant swaths of terrestrial, freshwater and marine ecosystems from a range of threats. As climate change becomes an increasing concern, these efforts must take into account how resilient-protected spaces will be in the face of future drivers of change such as warming temperatures. Climate landscape metrics, which signal the spatial magnitude and direction of climate change, support a convenient initial assessment of potential threats to and opportunities within ecosystems to inform conservation and policy efforts where biological data are not available. However, inference of risk from purely physical climatic changes is difficult unless set in a meaningful ecological context. Here, we aim to establish this context using historical climatic variability, as a proxy for local adaptation by resident biota, to identify areas where current local climate conditions will remain extant and future regional climate analogues will emerge. This information is then related to the processes governing species' climate-driven range edge dynamics, differentiating changes in local climate conditions as promoters of species range contractions from those in neighbouring locations facilitating range expansions. We applied this approach to assess the future climatic stability and connectivity of Japanese waters and its network of marine protected areas (MPAs). We find 88% of Japanese waters transitioning to climates outside their historical variability bounds by 2035, resulting in large reductions in the amount of available climatic space potentially promoting widespread range contractions and expansions. Areas of high connectivity, where shifting climates converge, are present along sections of the coast facilitated by the strong latitudinal gradient of the Japanese archipelago and its ocean current system. While these areas overlap significantly with areas currently under significant anthropogenic pressures, they also include much of the MPA network that may provide stepping-stone protection for species that must shift their distribution because of climate change. © 2017 John Wiley & Sons Ltd.
School Leaders Facing Real Change: Shifting Geography, Uncertain Paths
ERIC Educational Resources Information Center
Louis, Karen Seashore
2003-01-01
A central problem for school leadership in the United States is to create settings in which success for students motivates teachers. Meeting this objective is becoming more difficult as teachers, except the most brilliant, struggle to cope with the diversity of students in a changing socio-economic climate and a context in which there is a…
Education in Austerity: Options for Planners. Fundamentals for Planning 36.
ERIC Educational Resources Information Center
Lewin, Keith M.
This book explores the issues raised by the changing climate within which educational planning will take place in the final years of the 20th century. The volume focuses on the problems faced by countries hardest hit by economic recession and the need for adjustment to a changing economic environment. Organized into six chapters, the book…
Hossack, Blake R.; Corn, P. Stephen; , Winsor H. Lowe; , Molly A. H. Webb; , Mariah J. Talbott; , Kevin M. Kappenman
2013-01-01
5. Our experiments with a cold-water species show that population-level performance varies across small geographic scales and is linked to local environmental heterogeneity. This variation could influence the rate and mode of species-level responses to climate change, both by facilitating local persistence in the face of change
ERIC Educational Resources Information Center
Williams, Ashley
2010-01-01
Our world is faced with a vast array of environmental catastrophes ranging everywhere from climate change, to air and water pollution, to mass extinction of species which all threaten the environment and human existence. As of now, students are not being informed on the sustainability issues, or engaged in the change process at school. Rote…
The centrality of social ties to climate migration and mental health.
Torres, Jacqueline M; Casey, Joan A
2017-07-06
Climate change-related hazards and disasters, known to adversely impact physical and mental health outcomes, are also expected to result in human migration above current levels. Environmentally-motivated migration and displacement may lead to the disruption of existing social ties, with potentially adverse consequences for mobile populations as well as their family members who remain in places of origin. We propose that the disruption of social ties is a key mechanism by which climate-related migration may negatively impact mental health, in particular. Existing social ties may provide social and material resources that buffer mental health stressors related to both prolonged and acute climate events. Preparation for such events may also strengthen these same ties and protect mental health. Communities may leverage social ties, first to mitigate climate change, and second, to adapt and rebuild post-disaster in communities of origin. Additionally, social ties can inform migration decisions and destinations. For example, scholars have found that the drought-motivated adaptive migration of West African Fulbe herders only occurred because of the long-term development of social networks between migrants and non-migrants through trade and seasonal grazing. On the other hand, social ties do not always benefit mental health. Some migrants, including those from poor regions or communities with no formal safety net, may face considerable burden to provide financial and emotional resources to family members who remain in countries of origin. In destination communities, migrants often face significant social marginalization. Therefore, policies and programs that aim to maintain ongoing social ties among migrants and their family and community members may be critically important in efforts to enhance population resilience and adaptation to climate change and to improve mental health outcomes. Several online platforms, like Refugee Start Force, serve to integrate refugees by connecting migrants directly to people and services in destination communities. These efforts may increasingly draw upon novel technologies to support and maintain social networks in the context of population mobility due to climatic and other factors.
NEW BIOGENIC VOC EMISSIONS MODEL
We intend to develop new prognostic models for the prediction of biogenic volatile organic compound emissions from forest ecosystems in the face of possible future changes in the climate and the concentration of carbon dioxide in the atmosphere. These models will b...
The Long Term Agroecosystem Research Network - Shared research strategy
USDA-ARS?s Scientific Manuscript database
Agriculture faces tremendous challenges in meeting multiple societal goals, including a safe and plentiful food supply; climate change adaptation and mitigation; supplying sources of bioenergy; improving water, air, and soil quality; and maintaining biodiversity. The Long Term Agroecosystem Research...
Transit and climate change adaptation : synthesis of FTA-funded pilot projects.
DOT National Transportation Integrated Search
2014-08-01
Public transit agencies play a critical role in providing safe, reliable, and cost-effective transportation to the communities they serve. In : the face of increased frequency and intensity of extreme weather events, several public transit and other ...
An Ecosystem Services Framework for Desert Landscapes
Governments, tribal leaders and citizens of the deserts in North America are facing unprecedented pressures from population growth and climate change. The dominant environmental and economic issue is to ensure that people have access to clean water and sanitation while vital ecos...
Climate change and adaptational impacts in coastal systems: the case of sea defences.
Firth, Louise B; Mieszkowska, Nova; Thompson, Richard C; Hawkins, Stephen J
2013-09-01
We briefly review how coastal ecosystems are responding to and being impacted by climate change, one of the greatest challenges facing society today. In adapting to rising and stormier seas associated with climate change, coastal defence structures are proliferating and becoming dominant coastal features, particularly in urbanised areas. Whilst the primary function of these structures is to protect coastal property and infrastructure, they inevitably have a significant secondary impact on the local environment and ecosystems. In this review we outline some of the negative and positive effects of these structures on physical processes, impacts on marine species, and the novel engineering approaches that have been employed to improve the ecological value of these structures in recent years. Finally we outline guidelines for an environmentally sensitive approach to design of such structures in the marine environment.
NASA Astrophysics Data System (ADS)
Magnin, Florence; Josnin, Jean-Yves; Ravanel, Ludovic; Pergaud, Julien; Pohl, Benjamin; Deline, Philip
2017-08-01
High alpine rock wall permafrost is extremely sensitive to climate change. Its degradation has a strong impact on landscape evolution and can trigger rockfalls constituting an increasing threat to socio-economical activities of highly frequented areas; quantitative understanding of permafrost evolution is crucial for such communities. This study investigates the long-term evolution of permafrost in three vertical cross sections of rock wall sites between 3160 and 4300 m above sea level in the Mont Blanc massif, from the Little Ice Age (LIA) steady-state conditions to 2100. Simulations are forced with air temperature time series, including two contrasted air temperature scenarios for the 21st century representing possible lower and upper boundaries of future climate change according to the most recent models and climate change scenarios. The 2-D finite element model accounts for heat conduction and latent heat transfers, and the outputs for the current period (2010-2015) are evaluated against borehole temperature measurements and an electrical resistivity transect: permafrost conditions are remarkably well represented. Over the past two decades, permafrost has disappeared on faces with a southerly aspect up to 3300 m a.s.l. and possibly higher. Warm permafrost (i.e. > - 2 °C) has extended up to 3300 and 3850 m a.s.l. in N and S-exposed faces respectively. During the 21st century, warm permafrost is likely to extend at least up to 4300 m a.s.l. on S-exposed rock walls and up to 3850 m a.s.l. depth on the N-exposed faces. In the most pessimistic case, permafrost will disappear on the S-exposed rock walls at a depth of up to 4300 m a.s.l., whereas warm permafrost will extend at a depth of the N faces up to 3850 m a.s.l., but possibly disappearing at such elevation under the influence of a close S face. The results are site specific and extrapolation to other sites is limited by the imbrication of local topographical and transient effects.
NASA Astrophysics Data System (ADS)
Bedsworth, L. W.; Ekstrom, J.
2017-12-01
As the climate continues to shift, projections show amplified and more frequent extreme events, including coastal and inland flooding, wildfires, prolonged droughts, and heatwaves. Vital public goods, both air quality and water quality, can be critically affected by such extreme events. Climate change will make it increasingly difficult for managers to achieve public health targets for air and water quality. Successfully preparing governance structures developed to maintain and improve air and water quality may benefit from preventative strategies to avoid public health impacts and costs of climate change locally. Perceptions of climate change and its risks, actions taken so far, and perceived barriers to adaptation give insight into the needs of managers for preparing for climate change impacts. This paper compares results of two surveys that looked at local level management of air quality and water quality in California. Air quality managers consistently reported to recognize the risks of climate change on their sector, where water quality managers' perceptions varied between no concern to high concern. We explore the differences in governance, capacity influence the ill-defined responsibility and assumed roles of water and air districts in adaptation to extreme events increasing with climate change. The chain and network of managing air quality is compared with that of water quality - laying out similarities and differences. Then we compare how the survey respondents differed in terms of extreme weather-influenced threats to environmental quality. We end with a discussion of responsibility - where in the chain of managing these life-critical ecosystem services, is the need greatest for adapting to climate change and what does this mean for the other levels in the chain beyond the local management.
Socio-Economic Vulnerability to Climate Change in California
NASA Astrophysics Data System (ADS)
Heberger, M. G.; Cooley, H.; Moore, E.; Garzon, C.
2011-12-01
The western United States faces a range of impacts from global climate change, including increases in extreme heat, wildfires, and coastal flooding and erosion; changes are also likely to occur in air quality, water availability, and the spread of infectious diseases. To date, a great deal of research has been done to forecast the physical effects of climate change, while less attention has been given to the factors make different populations more or less vulnerable to harm from such changes. For example, mortality rates from Hurricane Audrey, which struck the coast of Louisiana in 1957, were more than eight times higher among blacks than among whites. While disaster events may not discriminate, impacts on human populations are shaped by "intervening conditions" that determine the human impact of the flood and the specific needs for preparedness, response, and recovery. In this study, we analyze the potential impacts of climate change by using recent downscaled climate model outputs, creating a variety of statistics and visualizations to communicate potential impacts to community groups and decision makers, after several meetings with these groups to ask, "What types of information are most useful to you for planning?" We relate climate impacts to social vulnerability - defined as the intersection of the exposure, sensitivity, and adaptive capacity of a person or group of people - with a focus on the U.S. state of California. Understanding vulnerability factors and the populations that exhibit these factors are critical for crafting effective climate change policies and response strategies. It is also important to the emerging study of climate justice, which is the concept that no group of people should disproportionately bear the burden of climate impacts or the costs of mitigation and adaptation.
Climate Change in Colorado: Findings and Scientific Challenges
NASA Astrophysics Data System (ADS)
Barsugli, J.; Ray, A.; Averyt, K.; Wolter, K.; Hoerling, M. P.
2008-12-01
In response to the risks associated with anthropogenic climate change, Governor Ritter issued the Colorado Climate Action Plan (CCAP) in 2007. In support of the adaptation component of the CCAP, the Colorado Water Conservation Board commissioned the Western Water Assessment at the University of Colorado to prepare the report "Climate Change in Colorado: A Synthesis to Support Water Resources Management and Adaptation." The objective of "Climate Change in Colorado" is to communicate the state of the science regarding the physical aspects of climate change that are important for evaluating impacts on Colorado's water resources. Accordingly, the document focuses on observed trends, modeling, attribution, and projections of hydroclimatic variables that are important for Colorado's water supply. Although many published datasets include information about Colorado, there are few climate studies that focus on the state. Consequently, many important analyses for Colorado are lacking. The report summarizes Colorado-specific findings from peer-reviewed regional studies, and presents new analyses derived from existing datasets. Here we will summarize the findings of the report, discuss the extent to which conclusions from West-wide studies hold in Colorado, and highlight the many scientific challenges that were faced in the preparation of the report. These challenges include interpreting observed and projected precipitation and temperature variability and trends, dealing with attribution and uncertainty at the state level, and justifying the relevance of climate model projections in a topographically complex state. A second presentation (Ray et al.) discusses the process of developing the report.
The Vulnerability of Forest Ecosystems of Armenia to the Global Climate Change
NASA Astrophysics Data System (ADS)
Khachatryan, S.
2009-05-01
Climate changes characterized as global warming can lead to irreversible effects on regional and global scales, such as drought, pest attacks, diseases, excessive forest fires, and climate driven extinction of numerous animal and plant species. We assess the issues that the development of forestry in Armenia faces, where the climate change is causing the landscape zone borders in the territory to shift. This will have a significant impact on the most vulnerable tree species in Armenia. An increase in climate aridity and intensification of desertification can be expected under the projected escalated temperatures and reduced precipitation. For example, we can consider average annual temperature of the Ijevan meteorological station (located in forestry region) for the period of 1936-2008. We analyze the vulnerability of forest ecosystems in Armenia to climatic and anthropogenic factors for the period of 1936-2008. Temperature and precipitation data from 25 meteorological stations in the territory of Armenia is studied for the period of 1936-2008. The dynamic of average temperature annual anomalies are revealed. The deviations of temperature and precipitation from the norms (average for 1961-1990) are evaluated for the period of study. We discuss the reasons for the abrupt increase in temperature and decrease in precipitation. Based on the dataset, the possible near future impact of global climate change on the Armenian forest ecosystems is discussed, and measures on the adaptation to the adverse consequences that climate change has on forests are offered.
El Zoghbi, Mona Betour; El Ansari, Walid
2014-06-01
This study aimed to enhance the in-depth understanding of the contextual dimensions that shape the relationships between climate change communication approach and youth well-being. The study focused on university students who constitute the key stakeholders and future decision-makers and leaders for managing the long-term climate risks. A total of 10 focus group interviews were conducted with 117 undergraduate and graduate South African university students from over 12 universities located in different provinces of South Africa. In addition, another 16 interviews were also undertaken with university students, 10 interviews with key experts, and 3 youth national events were attended as participant-observation. As recipients of information on climate change, students' well-being was negatively affected by the media's pessimism of communicating risks and the inadequate or restricted networking of communicating solutions and strategies. As contributors to information on climate change, students faced key barriers to their efficacy and agency that entailed socio-cultural inequalities (e.g. race and language) and a lack of formal forums for community recognition, policy consultation and collaboration. In addition, for some students (e.g. journalism students), the lack of sufficient knowledge and skills on climate change and sustainability issues limited their ability to effectively communicate these issues to their audience. Platforms for interactive and reflective discussions, access to innovative technologies and social media, and opportunities for multi-stakeholder partnerships are keys to the success of youth-targeted and youth-initiated communication on climate change.
Is This Global Warming? Communicating the Intangibles of Climate Change
NASA Astrophysics Data System (ADS)
Warner, L.; Henson, R.
2004-05-01
Unlike weather, which is immediate, tangible, and relevant on a daily basis, climate change is long-term, slow to evolve, and often difficult to relate to the public's daily concerns. By explaining global-change research to wide and diverse audiences through a variety of vehicles, including publications, exhibits, Web sites, and television B-roll, UCAR has gained experience and perspective on the challenges involved. This talk will explore some of the lessons learned and some of the key difficulties that face global-change communicators, including: --The lack of definitive findings on regional effects of global change -- The long time frame in which global change plays out, versus the short attention span of media, the public, and policy makers --The use of weather events as news pegs (they pique interest, but they may not be good exemplars of global change and are difficult to relate directly to changes in greenhouse-gas emissions) --The perils of the traditional journalistic technique of point-counterpoint in discussing climate change --The presence of strong personal/political convictions among various interest groups and how these affect the message(s) conveyed