Sample records for factor 3b subunit

  1. Expression of accessory colonization factor subunit A (ACFA) of Vibrio cholerae and ACFA fused to cholera toxin B subunit in transgenic tomato (Solanum lycopersicum).

    PubMed

    Sharma, Manoj Kumar; Jani, Dewal; Thungapathra, M; Gautam, J K; Meena, L S; Singh, Yogendra; Ghosh, Amit; Tyagi, Akhilesh Kumar; Sharma, Arun Kumar

    2008-05-20

    In earlier study from our group, cholera toxin B subunit had been expressed in tomato for developing a plant-based vaccine against cholera. In the present investigation, gene for accessory colonization factor (acf) subunit A, earlier reported to be essential for efficient colonization in the intestine, has been expressed in Escherichia coli as well as tomato plants. Gene encoding for a chimeric protein having a fusion of cholera toxin B subunit and accessory colonization factor A was also expressed in tomato to generate more potent combinatorial antigen. CaMV35S promoter with a duplicated enhancer sequence was used for expression of these genes in tomato. Integration of transgenes into tomato genome was confirmed by PCR and Southern hybridization. Expression of the genes was confirmed at transcript and protein levels. Accessory colonization factor A and cholera toxin B subunit fused to this protein accumulated up to 0.25% and 0.08% of total soluble protein, respectively, in the fruits of transgenic plants. Whereas protein purified from E. coli, in combination with cholera toxin B subunit can be used for development of conventional subunit vaccine, tomato fruits expressing these proteins can be used together with tomato plants expressing cholera toxin B subunit for development of oral vaccine against cholera.

  2. The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rong-Guang; Westbrook, M.L.; Maulik, P.R.

    1996-02-01

    Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{submore » 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.« less

  3. Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B alpha-beta-delta subunit families

    NASA Technical Reports Server (NTRS)

    Kyrpides, N. C.; Woese, C. R.

    1998-01-01

    As the amount of available sequence data increases, it becomes apparent that our understanding of translation initiation is far from comprehensive and that prior conclusions concerning the origin of the process are wrong. Contrary to earlier conclusions, key elements of translation initiation originated at the Universal Ancestor stage, for homologous counterparts exist in all three primary taxa. Herein, we explore the evolutionary relationships among the components of bacterial initiation factor 2 (IF-2) and eukaryotic IF-2 (eIF-2)/eIF-2B, i.e., the initiation factors involved in introducing the initiator tRNA into the translation mechanism and performing the first step in the peptide chain elongation cycle. All Archaea appear to posses a fully functional eIF-2 molecule, but they lack the associated GTP recycling function, eIF-2B (a five-subunit molecule). Yet, the Archaea do posses members of the gene family defined by the (related) eIF-2B subunits alpha, beta, and delta, although these are not specifically related to any of the three eukaryotic subunits. Additional members of this family also occur in some (but by no means all) Bacteria and even in some eukaryotes. The functional significance of the other members of this family is unclear and requires experimental resolution. Similarly, the occurrence of bacterial IF-2-like molecules in all Archaea and in some eukaryotes further complicates the picture of translation initiation. Overall, these data lend further support to the suggestion that the rudiments of translation initiation were present at the Universal Ancestor stage.

  4. The delta-subunit of murine guanine nucleotide exchange factor eIF-2B. Characterization of cDNAs predicts isoforms differing at the amino-terminal end.

    PubMed

    Henderson, R A; Krissansen, G W; Yong, R Y; Leung, E; Watson, J D; Dholakia, J N

    1994-12-02

    Protein synthesis in mammalian cells is regulated at the level of the guanine nucleotide exchange factor, eIF-2B, which catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP. We have isolated and sequenced cDNA clones encoding the delta-subunit of murine eIF-2B. The cDNA sequence encodes a polypeptide of 544 amino acids with molecular mass of 60 kDa. Antibodies against a synthetic polypeptide of 30 amino acids deduced from the cDNA sequence specifically react with the delta-subunit of mammalian eIF-2B. The cDNA-derived amino acid sequence shows significant homology with the yeast translational regulator Gcd2, supporting the hypothesis that Gcd2 may be the yeast homolog of the delta-subunit of mammalian eIF-2B. Primer extension studies and anchor polymerase chain reaction analysis were performed to determine the 5'-end of the transcript for the delta-subunit of eIF-2B. Results of these experiments demonstrate two different mRNAs for the delta-subunit of eIF-2B in murine cells. The isolation and characterization of two different full-length cDNAs also predicts the presence of two alternate forms of the delta-subunit of eIF-2B in murine cells. These differ at their amino-terminal end but have identical nucleotide sequences coding for amino acids 31-544.

  5. Identification of a Kinase in Wheat Germ that Phosphorylates the Large Subunit of Initiation Factor 4F 1

    PubMed Central

    Humphreys, Jean; Browning, Karen S.; Ravel, Joanne M.

    1988-01-01

    A kinase has been isolated from wheat (Triticum aestivum) germ that phosphorylates the 220 kilodaltons (kD) subunit of wheat germ initiation factor (eIF) 4F, the 80 kD subunit of eIF-4B (an isozyme form of eIF-4F) and eIF-4G (the functional equivalent to mammalian eIF-4B). The kinase elutes from Sephacryl S-200 slightly in front of ovalbumin. The kinase phosphorylates casein and histone IIA to a small extent, but does not phosphorylate phosvitin. Of the wheat germ initiation factors, elongation factors, and small and large ribosomal subunits, only eIF-4F, eIF-4B, and eIF-4G are phosphorylated to a significant extent. The kinase phosphorylates eIF-4F to the extent of two phosphates per mole of the 220 kD subunit and phosphorylates eIF-4B to the extent of one phosphate per mole of the 80 kD subunit. The 26 kD subunit of eIF-4F and the 28 kD subunit of eIF-4B are not phosphorylated by the kinase. The kinase phosphorylates the 59 kD component of eIF-4G to the extent of 0.25 phosphate per mole of eIF-4G. Phosphorylation of eIF-4F and eIF-4B does not affect their ability to support the binding of mRNA to small ribosomal subunits in vitro. Images Fig. 2 Fig. 3 PMID:16666331

  6. The cyanobacterial cytochrome b6f subunit PetP adopts an SH3 fold in solution.

    PubMed

    Veit, Sebastian; Nagadoi, Aritaka; Rögner, Matthias; Rexroth, Sascha; Stoll, Raphael; Ikegami, Takahisa

    2016-06-01

    PetP is a peripheral subunit of the cytochrome b(6)f complex (b(6)f) present in both, cyanobacteria and red algae. It is bound to the cytoplasmic surface of this membrane protein complex where it greatly affects the efficiency of the linear photosynthetic electron flow although it is not directly involved in the electron transfer reactions. Despite the crystal structures of the b(6)f core complex, structural information for the transient regulatory b(6)f subunits is still missing. Here we present the first structure of PetP at atomic resolution as determined by solution NMR. The protein adopts an SH3 fold, which is a common protein motif in eukaryotes but comparatively rare in prokaryotes. The structure of PetP enabled the identification of the potential interaction site for b(6)f binding by conservation mapping. The interaction surface is mainly formed by two large loop regions and one short 310 helix which also exhibit an increased flexibility as indicated by heteronuclear steady-state {(1)H}-(15)N NOE and random coil index parameters. The properties of this potential b(6)f binding site greatly differ from the canonical peptide binding site which is highly conserved in eukaryotic SH3 domains. Interestingly, three other proteins of the photosynthetic electron transport chain share this SH3 fold with PetP: NdhS of the photosynthetic NADH dehydrogenase-like complex (NDH-1), PsaE of the photosystem 1 and subunit α of the ferredoxin-thioredoxin reductase have, similar to PetP, a great impact on the photosynthetic electron transport. Finally, a model is presented to illustrate how SH3 domains modulate the photosynthetic electron transport processes in cyanobacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Localization and function of the Kv3.1b subunit in the rat medulla oblongata: focus on the nucleus tractus solitarii

    PubMed Central

    Dallas, Mark L; Atkinson, Lucy; Milligan, Carol J; Morris, Neil P; Lewis, David I; Deuchars, Susan A; Deuchars, Jim

    2005-01-01

    The voltage-gated potassium channel subunit Kv3.1 confers fast firing characteristics to neurones. Kv3.1b subunit immunoreactivity (Kv3.1b-IR) was widespread throughout the medulla oblongata, with labelled neurones in the gracile, cuneate and spinal trigeminal nuclei. In the nucleus of the solitary tract (NTS), Kv3.1b-IR neurones were predominantly located close to the tractus solitarius (TS) and could be GABAergic or glutamatergic. Ultrastructurally, Kv3.1b-IR was detected in NTS terminals, some of which were vagal afferents. Whole-cell current-clamp recordings from neurones near the TS revealed electrophysiological characteristics consistent with the presence of Kv3.1b subunits: short duration action potentials (4.2 ± 1.4 ms) and high firing frequencies (68.9 ± 5.3 Hz), both sensitive to application of TEA (0.5 mm) and 4-aminopyridine (4-AP; 30 μm). Intracellular dialysis of an anti-Kv3.1b antibody mimicked and occluded the effects of TEA and 4-AP in NTS and dorsal column nuclei neurones, but not in dorsal vagal nucleus or cerebellar Purkinje cells (which express other Kv3 subunits, but not Kv3.1b). Voltage-clamp recordings from outside-out patches from NTS neurones revealed an outward K+ current with the basic characteristics of that carried by Kv3 channels. In NTS neurones, electrical stimulation of the TS evoked EPSPs and IPSPs, and TEA and 4-AP increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. Synaptic inputs evoked by stimulation of a region lacking Kv3.1b-IR neurones were not affected, correlating the presence of Kv3.1b in the TS with the pharmacological effects. PMID:15528247

  8. Genetic Factors Influencing Coagulation Factor XIII B-Subunit Contribute to Risk of Ischemic Stroke.

    PubMed

    Hanscombe, Ken B; Traylor, Matthew; Hysi, Pirro G; Bevan, Stephen; Dichgans, Martin; Rothwell, Peter M; Worrall, Bradford B; Seshadri, Sudha; Sudlow, Cathie; Williams, Frances M K; Markus, Hugh S; Lewis, Cathryn M

    2015-08-01

    Abnormal coagulation has been implicated in the pathogenesis of ischemic stroke, but how this association is mediated and whether it differs between ischemic stroke subtypes is unknown. We determined the shared genetic risk between 14 coagulation factors and ischemic stroke and its subtypes. Using genome-wide association study results for 14 coagulation factors from the population-based TwinsUK sample (N≈2000 for each factor), meta-analysis results from the METASTROKE consortium ischemic stroke genome-wide association study (12 389 cases, 62 004 controls), and genotype data for 9520 individuals from the WTCCC2 ischemic stroke study (3548 cases, 5972 controls-the largest METASTROKE subsample), we explored shared genetic risk for coagulation and stroke. We performed three analyses: (1) a test for excess concordance (or discordance) in single nucleotide polymorphism effect direction across coagulation and stroke, (2) an estimation of the joint effect of multiple coagulation-associated single nucleotide polymorphisms in stroke, and (3) an evaluation of common genetic risk between coagulation and stroke. One coagulation factor, factor XIII subunit B (FXIIIB), showed consistent effects in the concordance analysis, the estimation of polygenic risk, and the validation with genotype data, with associations specific to the cardioembolic stroke subtype. Effect directions for FXIIIB-associated single nucleotide polymorphisms were significantly discordant with cardioembolic disease (smallest P=5.7×10(-04)); the joint effect of FXIIIB-associated single nucleotide polymorphisms was significantly predictive of ischemic stroke (smallest P=1.8×10(-04)) and the cardioembolic subtype (smallest P=1.7×10(-04)). We found substantial negative genetic covariation between FXIIIB and ischemic stroke (rG=-0.71, P=0.01) and the cardioembolic subtype (rG=-0.80, P=0.03). Genetic markers associated with low FXIIIB levels increase risk of ischemic stroke cardioembolic subtype. © 2015 The

  9. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3.

    PubMed Central

    Méthot, N; Song, M S; Sonenberg, N

    1996-01-01

    The binding of mRNA to the ribosome is mediated by eukaryotic initiation factors eukaryotic initiation factor 4F (eIF4F), eIF4B, eIF4A, and eIF3, eIF4F binds to the mRNA cap structure and, in combination with eIF4B, is believed to unwind the secondary structure in the 5' untranslated region to facilitate ribosome binding. eIF3 associates with the 40S ribosomal subunit prior to mRNA binding. eIF4B copurifies with eIF3 and eIF4F through several purification steps, suggesting the involvement of a multisubunit complex during translation initiation. To understand the mechanism by which eIF4B promotes 40S ribosome binding to the mRNA, we studied its interactions with partner proteins by using a filter overlay (protein-protein [far Western]) assay and the two-hybrid system. In this report, we show that eIF4B self-associates and also interacts directly with the p170 subunit of eIF3. A region rich in aspartic acid, arginine, tyrosine, and glycine, termed the DRYG domain, is sufficient for self-association of eIF4B, both in vitro and in vivo, and for interaction with the p170 subunit of eIF3. These experiments suggest that eIF4B participates in mRNA-ribosome binding by acting as an intermediary between the mRNA and eIF3, via a direct interaction with the p170 subunit of eIF3. PMID:8816444

  10. Factors Affecting Nuclear Export of the 60S Ribosomal Subunit In Vivo

    PubMed Central

    Stage-Zimmermann, Tracy; Schmidt, Ute; Silver, Pamela A.

    2000-01-01

    In Saccharomyces cerevisiae, the 60S ribosomal subunit assembles in the nucleolus and then is exported to the cytoplasm, where it joins the 40S subunit for translation. Export of the 60S subunit from the nucleus is known to be an energy-dependent and factor-mediated process, but very little is known about the specifics of its transport. To begin to address this problem, an assay was developed to follow the localization of the 60S ribosomal subunit in S. cerevisiae. Ribosomal protein L11b (Rpl11b), one of the ∼45 ribosomal proteins of the 60S subunit, was tagged at its carboxyl terminus with the green fluorescent protein (GFP) to enable visualization of the 60S subunit in living cells. A panel of mutant yeast strains was screened for their accumulation of Rpl11b–GFP in the nucleus as an indicator of their involvement in ribosome synthesis and/or transport. This panel included conditional alleles of several rRNA-processing factors, nucleoporins, general transport factors, and karyopherins. As predicted, conditional alleles of rRNA-processing factors that affect 60S ribosomal subunit assembly accumulated Rpl11b–GFP in the nucleus. In addition, several of the nucleoporin mutants as well as a few of the karyopherin and transport factor mutants also mislocalized Rpl11b–GFP. In particular, deletion of the previously uncharacterized karyopherin KAP120 caused accumulation of Rpl11b–GFP in the nucleus, whereas ribosomal protein import was not impaired. Together, these data further define the requirements for ribosomal subunit export and suggest a biological function for KAP120. PMID:11071906

  11. Cell cycle-dependent regulation of Greatwall kinase by protein phosphatase 1 and regulatory subunit 3B.

    PubMed

    Ren, Dapeng; Fisher, Laura A; Zhao, Jing; Wang, Ling; Williams, Byron C; Goldberg, Michael L; Peng, Aimin

    2017-06-16

    Greatwall (Gwl) kinase plays an essential role in the regulation of mitotic entry and progression. Mitotic activation of Gwl requires both cyclin-dependent kinase 1 (CDK1)-dependent phosphorylation and its autophosphorylation at an evolutionarily conserved serine residue near the carboxyl terminus (Ser-883 in Xenopus ). In this study we show that Gwl associates with protein phosphatase 1 (PP1), particularly PP1γ, which mediates the dephosphorylation of Gwl Ser-883. Consistent with the mitotic activation of Gwl, its association with PP1 is disrupted in mitotic cells and egg extracts. During mitotic exit, PP1-dependent dephosphorylation of Gwl Ser-883 occurs prior to dephosphorylation of other mitotic substrates; replacing endogenous Gwl with a phosphomimetic S883E mutant blocks mitotic exit. Moreover, we identified PP1 regulatory subunit 3B (PPP1R3B) as a targeting subunit that can direct PP1 activity toward Gwl. PPP1R3B bridges PP1 and Gwl association and promotes Gwl Ser-883 dephosphorylation. Consistent with the cell cycle-dependent association of Gwl and PP1, Gwl and PPP1R3B dissociate in M phase. Interestingly, up-regulation of PPP1R3B facilitates mitotic exit and blocks mitotic entry. Thus, our study suggests PPP1R3B as a new cell cycle regulator that functions by governing Gwl dephosphorylation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Characterisation of Translation Elongation Factor eEF1B Subunit Expression in Mammalian Cells and Tissues and Co-Localisation with eEF1A2

    PubMed Central

    Janikiewicz, Justyna; Doig, Jennifer; Abbott, Catherine M.

    2014-01-01

    Translation elongation is the stage of protein synthesis in which the translation factor eEF1A plays a pivotal role that is dependent on GTP exchange. In vertebrates, eEF1A can exist as two separately encoded tissue-specific isoforms, eEF1A1, which is almost ubiquitously expressed, and eEF1A2, which is confined to neurons and muscle. The GTP exchange factor for eEF1A1 is a complex called eEF1B made up of subunits eEF1Bα, eEF1Bδ and eEF1Bγ. Previous studies have cast doubt on the ability of eEF1B to interact with eEF1A2, suggesting that this isoform might use a different GTP exchange factor. We show that eEF1B subunits are all widely expressed to varying degrees in different cell lines and tissues, and at different stages of development. We show that ablation of any of the subunits in human cell lines has a small but significant impact on cell viability and cycling. Finally, we show that both eEF1A1 and eEF1A2 colocalise with all eEF1B subunits, in such close proximity that they are highly likely to be in a complex. PMID:25436608

  13. Fission yeast translation initiation factor 3 subunit eIF3h is not essential for global translation initiation, but deletion of eif3h+ affects spore formation.

    PubMed

    Ray, Anirban; Bandyopadhyay, Amitabha; Matsumoto, Tomohiro; Deng, Haiteng; Maitra, Umadas

    2008-11-01

    The fission yeast Schizosaccharomyces pombe homologue of the p40/eIF3h subunit of mammalian translation initiation factor eIF3 has been characterized in this study. We show that this protein physically associates with the 40S ribosomal particles as a constituent of the multimeric eIF3 protein complex, which consists of all five known eIF3 core subunits (eIF3a, eIF3b, eIF3c, eIF3g and eIF3i) as well as the five non-core subunits (eIF3d, eIF3e, eIF3f, eIF3h and eIF3m) that constitute an eIF3 holocomplex in fission yeast. However, affinity purification of eIF3 from fission yeast cells expressing TAP-tagged eIF3h suggests the presence of distinct forms of eIF3 that differ in their composition of the non-core subunits. Further characterization of eIF3h shows that strains lacking eif3h(+) (eif3hDelta) are viable and show no gross defects, either in vegetative growth or in the rate of in vivo protein synthesis. Polysome profile analysis shows no apparent defects in translation initiation. Furthermore, deletion of eif3h(+) does not affect the ability of the other eIF3 subunits to remain associated with one another in a tight protein complex similar to the situation in wild-type cells. Additionally, we show that human eIF3h can functionally substitute fission yeast eIF3h in complementing in vivo a genetic deletion of eif3h(+). Interestingly, mutant eif3hDelta cells show several prominent phenotypic properties. They are hypersensitive to caffeine and highly defective in meiosis, producing either no spores or incomplete tetrads with a very high frequency. The implications of these results in relation to the functions of eIF3h in Sz. pombe are discussed. (c) 2008 John Wiley & Sons, Ltd.

  14. The Non-catalytic B Subunit of Coagulation Factor XIII Accelerates Fibrin Cross-linking*

    PubMed Central

    Souri, Masayoshi; Osaki, Tsukasa; Ichinose, Akitada

    2015-01-01

    Covalent cross-linking of fibrin chains is required for stable blood clot formation, which is catalyzed by coagulation factor XIII (FXIII), a proenzyme of plasma transglutaminase consisting of catalytic A (FXIII-A) and non-catalytic B subunits (FXIII-B). Herein, we demonstrate that FXIII-B accelerates fibrin cross-linking. Depletion of FXIII-B from normal plasma supplemented with a physiological level of recombinant FXIII-A resulted in delayed fibrin cross-linking, reduced incorporation of FXIII-A into fibrin clots, and impaired activation peptide cleavage by thrombin; the addition of recombinant FXIII-B restored normal fibrin cross-linking, FXIII-A incorporation into fibrin clots, and activation peptide cleavage by thrombin. Immunoprecipitation with an anti-fibrinogen antibody revealed an interaction between the FXIII heterotetramer and fibrinogen mediated by FXIII-B and not FXIII-A. FXIII-B probably binds the γ-chain of fibrinogen with its D-domain, which is near the fibrin polymerization pockets, and dissociates from fibrin during or after cross-linking between γ-chains. Thus, FXIII-B plays important roles in the formation of a ternary complex between proenzyme FXIII, prosubstrate fibrinogen, and activator thrombin. Accordingly, congenital or acquired FXIII-B deficiency may result in increased bleeding tendency through impaired fibrin stabilization due to decreased FXIII-A activation by thrombin and secondary FXIII-A deficiency arising from enhanced circulatory clearance. PMID:25809477

  15. DNA sequences, recombinant DNA molecules and processes for producing the A and B subunits of cholera toxin and preparations containing so-obtained subunit or subunits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harford, N.; De Wilde, M.

    1987-05-19

    A recombinant DNA molecule is described comprising at least a portion coding for subunits A and B of cholera toxin, or a fragment or derivative of the portion wherein the fragment or derivative codes for a polypeptide have an activity which can induce an immune response to subunit A; can induce an immune response to subunit A and cause epithelial cell penetration and the enzymatic effect leading to net loss of fluid into the gut lumen; can bind to the membrane receptor for the B subunit of cholera toxin; can induce an immune response to subunit B; can induce anmore » immune response to subunit B and bind to the membrane receptor; or has a combination of the activities.« less

  16. β Subunits Functionally Differentiate Human Kv4.3 Potassium Channel Splice Variants

    PubMed Central

    Abbott, Geoffrey W.

    2017-01-01

    The human ventricular cardiomyocyte transient outward K+ current (Ito) mediates the initial phase of myocyte repolarization and its disruption is implicated in Brugada Syndrome and heart failure (HF). Human cardiac Ito is generated primarily by two Kv4.3 splice variants (Kv4.3L and Kv4.3S, diverging only by a C-terminal, S6-proximal, 19-residue stretch unique to Kv4.3L), which are differentially remodeled in HF, but considered functionally alike at baseline. Kv4.3 is regulated in human heart by β subunits including KChIP2b and KCNEs, but their effects were previously assumed to be Kv4.3 isoform-independent. Here, this assumption was tested experimentally using two-electrode voltage-clamp analysis of human subunits co-expressed in Xenopus laevis oocytes. Unexpectedly, Kv4.3L-KChIP2b channels exhibited up to 8-fold lower current augmentation, 40% slower inactivation, and 5 mV-shifted steady-state inactivation compared to Kv4.3S-KChIP2b. A synthetic peptide mimicking the 19-residue stretch diminished these differences, reinforcing the importance of this segment in mediating Kv4.3 regulation by KChIP2b. KCNE subunits induced further functional divergence, including a 7-fold increase in Kv4.3S-KCNE4-KChIP2b current compared to Kv4.3L-KCNE4-KChIP2b. The discovery of β-subunit-dependent functional divergence in human Kv4.3 splice variants suggests a C-terminal signaling hub is crucial to governing β-subunit effects upon Kv4.3, and demonstrates the potential significance of differential Kv4.3 gene-splicing and β subunit expression in myocyte physiology and pathobiology. PMID:28228734

  17. β Subunits Functionally Differentiate Human Kv4.3 Potassium Channel Splice Variants.

    PubMed

    Abbott, Geoffrey W

    2017-01-01

    The human ventricular cardiomyocyte transient outward K + current ( I to ) mediates the initial phase of myocyte repolarization and its disruption is implicated in Brugada Syndrome and heart failure (HF). Human cardiac I to is generated primarily by two Kv4.3 splice variants (Kv4.3L and Kv4.3S, diverging only by a C-terminal, S6-proximal, 19-residue stretch unique to Kv4.3L), which are differentially remodeled in HF, but considered functionally alike at baseline. Kv4.3 is regulated in human heart by β subunits including KChIP2b and KCNEs, but their effects were previously assumed to be Kv4.3 isoform-independent. Here, this assumption was tested experimentally using two-electrode voltage-clamp analysis of human subunits co-expressed in Xenopus laevis oocytes. Unexpectedly, Kv4.3L-KChIP2b channels exhibited up to 8-fold lower current augmentation, 40% slower inactivation, and 5 mV-shifted steady-state inactivation compared to Kv4.3S-KChIP2b. A synthetic peptide mimicking the 19-residue stretch diminished these differences, reinforcing the importance of this segment in mediating Kv4.3 regulation by KChIP2b. KCNE subunits induced further functional divergence, including a 7-fold increase in Kv4.3S-KCNE4-KChIP2b current compared to Kv4.3L-KCNE4-KChIP2b. The discovery of β-subunit-dependent functional divergence in human Kv4.3 splice variants suggests a C-terminal signaling hub is crucial to governing β-subunit effects upon Kv4.3, and demonstrates the potential significance of differential Kv4.3 gene-splicing and β subunit expression in myocyte physiology and pathobiology.

  18. Cholera Toxin B: One Subunit with Many Pharmaceutical Applications

    PubMed Central

    Baldauf, Keegan J.; Royal, Joshua M.; Hamorsky, Krystal Teasley; Matoba, Nobuyuki

    2015-01-01

    Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT), which consists of two subunits: the A subunit (CTA) and the B subunit (CTB). CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction. PMID:25802972

  19. Toll-Like Receptor 2 Mediates Cellular Activation by the B Subunits of Type II Heat-Labile Enterotoxins

    PubMed Central

    Hajishengallis, George; Tapping, Richard I.; Martin, Michael H.; Nawar, Hesham; Lyle, Elizabeth A.; Russell, Michael W.; Connell, Terry D.

    2005-01-01

    The type II heat-labile enterotoxins (LT-IIa and LT-IIb) of Escherichia coli have an AB5 subunit structure similar to that of cholera toxin (CT) and other type I enterotoxins, despite significant differences in the amino acid sequences of their B subunits and different ganglioside receptor specificities. LT-II holotoxins and their nontoxic B subunits display unique properties as immunological adjuvants distinct from those of CT and its B subunits. In contrast to type II holotoxins, the corresponding pentameric B subunits, LT-IIaB and LT-IIbB, stimulated cytokine release in both human and mouse cells dependent upon Toll-like receptor 2 (TLR2). Induction of interleukin-1β (IL-1β), IL-6, IL-8, or tumor necrosis factor alpha in human THP-1 cells by LT-IIaB or LT-IIbB was inhibited by anti-TLR2 but not by anti-TLR4 antibody. Furthermore, transient expression of TLR1 and TLR2 in human embryonic kidney 293 cells resulted in activation of a nuclear factor-κB-dependent luciferase gene in response to LT-IIaB or LT-IIbB. Moreover, peritoneal macrophages from TLR2-deficient mice failed to respond to LT-IIaB or LT-IIbB, in contrast to wild-type or TLR4-deficient cells. These results demonstrate that besides their established binding to gangliosides, the B subunits of type II enterotoxins also interact with TLR2. Although a ganglioside-nonbinding mutant (T34I) of LT-IIaB effectively induced cytokine release, a phenotypically similar point mutation (T13I) in LT-IIbB abrogated cytokine induction, suggesting a variable requirement for gangliosides as coreceptors in TLR2 agonist activity. TLR2-dependent activation of mononuclear cells by type II enterotoxin B subunits appears to be a novel mechanism whereby these molecules may exert their immunomodulatory and adjuvant activities. PMID:15731031

  20. The B55α Regulatory Subunit of Protein Phosphatase 2A Mediates Fibroblast Growth Factor-Induced p107 Dephosphorylation and Growth Arrest in Chondrocytes

    PubMed Central

    Daempfling, Lea

    2013-01-01

    Fibroblast growth factor (FGF)-induced growth arrest of chondrocytes is a unique cell type-specific response which contrasts with the proliferative response of most cell types and underlies several genetic skeletal disorders caused by activating FGF receptor (FGFR) mutations. We have shown that one of the earliest key events in FGF-induced growth arrest is dephosphorylation of the retinoblastoma protein (Rb) family member p107 by protein phosphatase 2A (PP2A), a ubiquitously expressed multisubunit phosphatase. In this report, we show that the PP2A-B55α holoenzyme (PP2A containing the B55α subunit) is responsible for this phenomenon. Only the B55α (55-kDa regulatory subunit, alpha isoform) regulatory subunit of PP2A was able to bind p107, and this interaction was induced by FGF in chondrocytes but not in other cell types. Small interfering RNA (siRNA)-mediated knockdown of B55α prevented p107 dephosphorylation and FGF-induced growth arrest of RCS (rat chondrosarcoma) chondrocytes. Importantly, the B55α subunit bound with higher affinity to dephosphorylated p107. Since the p107 region interacting with B55α is also the site of cyclin-dependent kinase (CDK) binding, B55α association may also prevent p107 phosphorylation by CDKs. FGF treatment induces dephosphorylation of the B55α subunit itself on several serine residues that drastically increases the affinity of B55α for the PP2A A/C dimer and p107. Together these observations suggest a novel mechanism of p107 dephosphorylation mediated by activation of PP2A through B55α dephosphorylation. This mechanism might be a general signal transduction pathway used by PP2A to initiate cell cycle arrest when required by external signals. PMID:23716589

  1. Arabidopsis thaliana GYRB3 Does Not Encode a DNA Gyrase Subunit

    PubMed Central

    Evans-Roberts, Katherine M.; Breuer, Christian; Wall, Melisa K.; Sugimoto-Shirasu, Keiko; Maxwell, Anthony

    2010-01-01

    Background DNA topoisomerases are enzymes that control the topology of DNA in all cells. DNA gyrase is unique among the topoisomerases in that it is the only enzyme that can actively supercoil DNA using the free energy of ATP hydrolysis. Until recently gyrase was thought to be unique to bacteria, but has now been discovered in plants. The genome of the model plant, Arabidopsis thaliana, is predicted to encode four gyrase subunits: AtGyrA, AtGyrB1, AtGyrB2 and AtGyrB3. Methodology/Principal Findings We found, contrary to previous data, that AtGyrB3 is not essential to the survival of A. thaliana. Bioinformatic analysis suggests AtGyrB3 is considerably shorter than other gyrase B subunits, lacking part of the ATPase domain and other key motifs found in all type II topoisomerases; but it does contain a putative DNA-binding domain. Partially purified AtGyrB3 cannot bind E. coli GyrA or support supercoiling. AtGyrB3 cannot complement an E. coli gyrB temperature-sensitive strain, whereas AtGyrB2 can. Yeast two-hybrid analysis suggests that AtGyrB3 cannot bind to AtGyrA or form a dimer. Conclusions/Significance These data strongly suggest that AtGyrB3 is not a gyrase subunit but has another unknown function. One possibility is that it is a nuclear protein with a role in meiosis in pollen. PMID:20360860

  2. Arabidopsis thaliana GYRB3 does not encode a DNA gyrase subunit.

    PubMed

    Evans-Roberts, Katherine M; Breuer, Christian; Wall, Melisa K; Sugimoto-Shirasu, Keiko; Maxwell, Anthony

    2010-03-26

    DNA topoisomerases are enzymes that control the topology of DNA in all cells. DNA gyrase is unique among the topoisomerases in that it is the only enzyme that can actively supercoil DNA using the free energy of ATP hydrolysis. Until recently gyrase was thought to be unique to bacteria, but has now been discovered in plants. The genome of the model plant, Arabidopsis thaliana, is predicted to encode four gyrase subunits: AtGyrA, AtGyrB1, AtGyrB2 and AtGyrB3. We found, contrary to previous data, that AtGyrB3 is not essential to the survival of A. thaliana. Bioinformatic analysis suggests AtGyrB3 is considerably shorter than other gyrase B subunits, lacking part of the ATPase domain and other key motifs found in all type II topoisomerases; but it does contain a putative DNA-binding domain. Partially purified AtGyrB3 cannot bind E. coli GyrA or support supercoiling. AtGyrB3 cannot complement an E. coli gyrB temperature-sensitive strain, whereas AtGyrB2 can. Yeast two-hybrid analysis suggests that AtGyrB3 cannot bind to AtGyrA or form a dimer. These data strongly suggest that AtGyrB3 is not a gyrase subunit but has another unknown function. One possibility is that it is a nuclear protein with a role in meiosis in pollen.

  3. HNF-1B specifically regulates the transcription of the {gamma}a-subunit of the Na{sup +}/K{sup +}-ATPase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferre, Silvia; Veenstra, Gert Jan C.; Bouwmeester, Rianne

    2011-01-07

    Research highlights: {yields} Defects in HNF-1B transcription factor affect Mg{sup 2+} handling in the distal kidney. {yields} {gamma}a- and {gamma}b- subunits of the Na{sup +}/K{sup +}-ATPase colocalize in the distal convoluted tubule of the nephron. {yields} HNF-1B specifically activates {gamma}a expression. {yields} HNF-1B mutants have a dominant negative effect on wild type HNF-1B activity. {yields} Defective transcription of {gamma}a may promote renal Mg{sup 2+} wasting. -- Abstract: Hepatocyte nuclear factor-1B (HNF-1B) is a transcription factor involved in embryonic development and tissue-specific gene expression in several organs, including the kidney. Recently heterozygous mutations in the HNF1B gene have been identified inmore » patients with hypomagnesemia due to renal Mg{sup 2+} wasting. Interestingly, ChIP-chip data revealed HNF-1B binding sites in the FXYD2 gene, encoding the {gamma}-subunit of the Na{sup +}/K{sup +}-ATPase. The {gamma}-subunit has been described as one of the molecular players in the renal Mg{sup 2+} reabsorption in the distal convoluted tubule (DCT). Of note, the FXYD2 gene can be alternatively transcribed into two main variants, namely {gamma}a and {gamma}b. In the present study, we demonstrated via two different reporter gene assays that HNF-1B specifically acts as an activator of the {gamma}a-subunit, whereas the {gamma}b-subunit expression was not affected. Moreover, the HNF-1B mutations H69fsdelAC, H324S325fsdelCA, Y352finsA and K156E, previously identified in patients with hypomagnesemia, prevented transcription activation of {gamma}a-subunit via a dominant negative effect on wild type HNF1-B. By immunohistochemistry, it was shown that the {gamma}a- and {gamma}b-subunits colocalize at the basolateral membrane of the DCT segment of mouse kidney. On the basis of these data, we suggest that abnormalities involving the HNF-1B gene may impair the relative abundance of {gamma}a and {gamma}b, thus affecting the transcellular Mg

  4. Low molecular weight glutenin subunit gene Glu-B3h confers superior dough strength and breadmaking quality in wheat (Triticum aestivum L.)

    PubMed Central

    Wang, Yaping; Zhen, Shoumin; Luo, Nana; Han, Caixia; Lu, Xiaobing; Li, Xiaohui; Xia, Xianchun; He, Zhonghu; Yan, Yueming

    2016-01-01

    Low molecular weight glutenin subunit is one of the important quality elements in wheat (Triticum aestivum L.). Although considerable allelic variation has been identified, the functional properties of individual alleles at Glu-3 loci are less studied. In this work, we performed the first comprehensive study on the molecular characteristics and functional properties of the Glu-B3h gene using the wheat cultivar CB037B and its Glu-B3 deletion line CB037C. The results showed that the Glu-B3h deletion had no significant effects on plant morphological or yield traits, but resulted in a clear reduction in protein body number and size and main quality parameters, including inferior mixing property, dough strength, loaf volume, and score. Molecular characterization showed that the Glu-B3h gene consists of 1179 bp, and its encoded B-subunit has a longer repetitive domain and an increased number of α-helices, as well as higher expression, which could contribute to superior flour quality. The SNP-based allele-specific PCR markers designed for the Glu-B3h gene were developed and validated with bread wheat holding various alleles at Glu-B3 locus, which could effectively distinguish the Glu-B3h gene from others at the Glu-B3 locus, and have potential applications for wheat quality improvement through marker-assisted selection. PMID:27273251

  5. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lind, Genevieve E.; Mou, Tung-Chung; Tamborini, Lucia

    NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with boundmore » ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity.« less

  6. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits

    PubMed Central

    Lind, Genevieve E.; Mou, Tung-Chung; Tamborini, Lucia; Pomper, Martin G.; De Micheli, Carlo; Conti, Paola; Pinto, Andrea

    2017-01-01

    NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with bound ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity. PMID:28760974

  7. SB-205384 Is a Positive Allosteric Modulator of Recombinant GABAA Receptors Containing Rat α3, α5, or α6 Subunit Subtypes Coexpressed with β3 and γ2 Subunits

    PubMed Central

    Heidelberg, Laura S.; Warren, James W.

    2013-01-01

    Many drugs used to treat anxiety are positive modulators of GABAA receptors, which mediate fast inhibitory neurotransmission. The GABAA receptors can be assembled from a combination of at least 16 different subunits. The receptor’s subunit composition determines its pharmacologic and functional properties, and subunit expression varies throughout the brain. A primary goal for new treatments targeting GABAA receptors is the production of subunit-selective modulators acting upon a discrete population of receptors. The anxiolytic 4-amino-7-hydroxy-2-methyl-5,6,7,8,-tetrahydrobenzo[b]thieno[2,3-b]pyridine-3-carboxylic acid, but-2-ynyl ester (SB-205384) is widely considered to be selective for α3-containing GABAA receptors. However, it has been tested only on α1-, α2-, and α3-containing receptors. We examined the activity of SB-205384 at recombinant receptors containing the six different α subunits and found that receptors containing the α3, α5, and α6 subunits were potentiated by SB-205384, with the α6 subunit conferring the greatest responsiveness. Properties associated with chimeric α1/α6 subunits suggested that multiple structural domains influence sensitivity to SB-205384. Point mutations of residues within the extracellular N-terminal domain identified a leucine residue located in loop E of the agonist binding site as an important determinant of high sensitivity to modulation. In the α6 subunit the identity of this residue is species-dependent, with the leucine found in rat subunits but not in human. Our results indicate that SB-205384 is not an α3-selective modulator, and instead acts at several GABAA receptor isoforms. These findings have implications for the side-effect profile of this anxiolytic as well as for its use in neuronal and animal studies as a marker for contribution from α3-containing receptors. PMID:23902941

  8. Deciphering the function of the CNGB1b subunit in olfactory CNG channels.

    PubMed

    Nache, Vasilica; Wongsamitkul, Nisa; Kusch, Jana; Zimmer, Thomas; Schwede, Frank; Benndorf, Klaus

    2016-07-11

    Olfactory cyclic nucleotide-gated (CNG) ion channels are key players in the signal transduction cascade of olfactory sensory neurons. The second messengers cAMP and cGMP directly activate these channels, generating a depolarizing receptor potential. Olfactory CNG channels are composed of two CNGA2 subunits and two modulatory subunits, CNGA4, and CNGB1b. So far the exact role of the modulatory subunits for channel activation is not fully understood. By measuring ligand binding and channel activation simultaneously, we show that in functional heterotetrameric channels not only the CNGA2 subunits and the CNGA4 subunit but also the CNGB1b subunit binds cyclic nucleotides and, moreover, also alone translates this signal to open the pore. In addition, we show that the CNGB1b subunit is the most sensitive subunit in a heterotetrameric channel to cyclic nucleotides and that it accelerates deactivation to a similar extent as does the CNGA4 subunit. In conclusion, the CNGB1b subunit participates in ligand-gated activation of olfactory CNG channels and, particularly, contributes to rapid termination of odorant signal in an olfactory sensory neuron.

  9. Hepatic protein phosphatase 1 regulatory subunit 3B (Ppp1r3b) promotes hepatic glycogen synthesis and thereby regulates fasting energy homeostasis.

    PubMed

    Mehta, Minal B; Shewale, Swapnil V; Sequeira, Raymond N; Millar, John S; Hand, Nicholas J; Rader, Daniel J

    2017-06-23

    Maintenance of whole-body glucose homeostasis is critical to glycemic function. Genetic variants mapping to chromosome 8p23.1 in genome-wide association studies have been linked to glycemic traits in humans. The gene of known function closest to the mapped region, PPP1R3B (protein phosphatase 1 regulatory subunit 3B), encodes a protein (G L ) that regulates glycogen metabolism in the liver. We therefore sought to test the hypothesis that hepatic PPP1R3B is associated with glycemic traits. We generated mice with either liver-specific deletion ( Ppp1r3b Δ hep ) or liver-specific overexpression of Ppp1r3b The Ppp1r3b deletion significantly reduced glycogen synthase protein abundance, and the remaining protein was predominantly phosphorylated and inactive. As a consequence, glucose incorporation into hepatic glycogen was significantly impaired, total hepatic glycogen content was substantially decreased, and mice lacking hepatic Ppp1r3b had lower fasting plasma glucose than controls. The concomitant loss of liver glycogen impaired whole-body glucose homeostasis and increased hepatic expression of glycolytic enzymes in Ppp1r3b Δ hep mice relative to controls in the postprandial state. Eight hours of fasting significantly increased the expression of two critical gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, above the levels in control livers. Conversely, the liver-specific overexpression of Ppp1r3b enhanced hepatic glycogen storage above that of controls and, as a result, delayed the onset of fasting-induced hypoglycemia. Moreover, mice overexpressing hepatic Ppp1r3b upon long-term fasting (12-36 h) were protected from blood ketone-body accumulation, unlike control and Ppp1r3b Δ hep mice. These findings indicate a major role for Ppp1r3b in regulating hepatic glycogen stores and whole-body glucose/energy homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Crystallization and preliminary X-ray crystallographic analysis of the small subunit of the heterodimeric laccase POXA3b from Pleurotus ostreatus

    PubMed Central

    Ferraroni, Marta; Scozzafava, Andrea; Ullah, Sana; Tron, Thierry; Piscitelli, Alessandra; Sannia, Giovanni

    2014-01-01

    Laccases are multicopper oxidases of great biotechnological potential. While laccases are generally monomeric glycoproteins, the white-rot fungus Pleurotus ostreatus produces two closely related heterodimeric isoenzymes composed of a large subunit, homologous to the other fungal laccases, and a small subunit. The sequence of the small subunit does not show significant homology to any other protein or domain of known function and consequently its function is unknown. The highest similarity to proteins of known structure is to a putative enoyl-CoA hydratase/isomerase from Acinetobacter baumannii, which shows an identity of 27.8%. Diffraction-quality crystals of the small subunit of the heterodimeric laccase POXA3b (sPOXA3b) from P. ostreatus were obtained using the sitting-drop vapour-diffusion method at 294 K from a solution consisting of 1.8 M sodium formate, 0.1 M Tris–HCl pH 8.5. The crystals belonged to the tetragonal space group P41212 or P43212, with unit-cell parameters a = 126.6, c = 53.9 Å. The asymmetric unit contains two molecules related by a noncrystallographic twofold axis. A complete data set extending to a maximum resolution of 2.5 Å was collected at 100 K using a wavelength of 1.140 Å. PMID:24419623

  11. β Subunits Control the Effects of Human Kv4.3 Potassium Channel Phosphorylation.

    PubMed

    Abbott, Geoffrey W

    2017-01-01

    The transient outward K + current, I to , activates early in the cardiac myocyte action potential, to begin repolarization. Human I to is generated primarily by two Kv4.3 potassium channel α subunit splice variants (Kv4.3L and Kv4.3S) that diverge only by a C-terminal, membrane-proximal, 19-residue stretch unique to Kv4.3L. Protein kinase C (PKC) phosphorylation of threonine 504 within the Kv4.3L-specific 19-residues mediates α-adrenergic inhibition of I to in human heart. Kv4.3 is regulated in human heart by various β subunits, including cytosolic KChIP2b and transmembrane KCNEs, yet their impact on the functional effects of human Kv4.3 phosphorylation has not been reported. Here, this gap in knowledge was addressed using human Kv4.3 splice variants, T504 mutants, and human β subunits. Subunits were co-expressed in Xenopus laevis oocytes and analyzed by two-electrode voltage-clamp, using phorbol 12-myristate 13-acetate (PMA) to stimulate PKC. Unexpectedly, KChIP2b removed the inhibitory effect of PKC on Kv4.3L (but not Kv4.3L threonine phosphorylation by PKC per-se ), while co-expression with KCNE2, but not KCNE4, restored PKC-dependent inhibition of Kv4.3L-KChIP2b to quantitatively resemble previously reported effects of α-adrenergic modulation of human ventricular I to . In addition, PKC accelerated recovery from inactivation of Kv4.3L-KChIP2b channels and, interestingly, of both Kv4.3L and Kv4.3S alone. Thus, β subunits regulate the response of human Kv4.3 to PKC phosphorylation and provide a potential mechanism for modifying the response of I to to α-adrenergic regulation in vivo .

  12. β Subunits Control the Effects of Human Kv4.3 Potassium Channel Phosphorylation

    PubMed Central

    Abbott, Geoffrey W.

    2017-01-01

    The transient outward K+ current, Ito, activates early in the cardiac myocyte action potential, to begin repolarization. Human Ito is generated primarily by two Kv4.3 potassium channel α subunit splice variants (Kv4.3L and Kv4.3S) that diverge only by a C-terminal, membrane-proximal, 19-residue stretch unique to Kv4.3L. Protein kinase C (PKC) phosphorylation of threonine 504 within the Kv4.3L-specific 19-residues mediates α-adrenergic inhibition of Ito in human heart. Kv4.3 is regulated in human heart by various β subunits, including cytosolic KChIP2b and transmembrane KCNEs, yet their impact on the functional effects of human Kv4.3 phosphorylation has not been reported. Here, this gap in knowledge was addressed using human Kv4.3 splice variants, T504 mutants, and human β subunits. Subunits were co-expressed in Xenopus laevis oocytes and analyzed by two-electrode voltage-clamp, using phorbol 12-myristate 13-acetate (PMA) to stimulate PKC. Unexpectedly, KChIP2b removed the inhibitory effect of PKC on Kv4.3L (but not Kv4.3L threonine phosphorylation by PKC per-se), while co-expression with KCNE2, but not KCNE4, restored PKC-dependent inhibition of Kv4.3L-KChIP2b to quantitatively resemble previously reported effects of α-adrenergic modulation of human ventricular Ito. In addition, PKC accelerated recovery from inactivation of Kv4.3L-KChIP2b channels and, interestingly, of both Kv4.3L and Kv4.3S alone. Thus, β subunits regulate the response of human Kv4.3 to PKC phosphorylation and provide a potential mechanism for modifying the response of Ito to α-adrenergic regulation in vivo. PMID:28919864

  13. Short communication: molecular characterization of dog and cat p65 subunits of NF-kappaB.

    PubMed

    Ishikawa, Shingo; Takemitsu, Hiroshi; Li, Gebin; Mori, Nobuko; Yamamoto, Ichiro; Arai, Toshiro

    2015-04-01

    Nuclear factor kappa B (NF-κB) plays an important role in the immune system. The p65 subunit is an important part of NF-κB unit, and studies of dog and cat p65 subunits of NF-κB (dp65 and cp65) are important in understanding their immune function. In this study, we described the molecular characterization of dp65 and cp65. The dp65 and cp65 complementary DNA encoded 542 and 555 amino acids, respectively, showing a high sequence homology with the mammalian p65 subunit (>87.5%). Quantitative polymerase chain reaction revealed that the p65 messenger RNA is highly expressed in the dog stomach and cat heart and adipose tissue. Functional NF-κB promoter-luciferase reporter vectors revealed that our isolated dp65 and cp65 cDNA encodes a functionally active protein. Transiently expressed dp65 and cp65 up-regulated pro-inflammatory cytokine expression levels in dog and cat, respectively. These findings suggest that dp65 and cp65 play important roles in regulating immune function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Escherichia coli F1Fo-ATP synthase with a b/δ fusion protein allows analysis of the function of the individual b subunits.

    PubMed

    Gajadeera, Chathurada S; Weber, Joachim

    2013-09-13

    The "stator stalk" of F1Fo-ATP synthase is essential for rotational catalysis as it connects the nonrotating portions of the enzyme. In Escherichia coli, the stator stalk consists of two (identical) b subunits and the δ subunit. In mycobacteria, one of the b subunits and the δ subunit are replaced by a b/δ fusion protein; the remaining b subunit is of the shorter b' type. In the present study, it is shown that it is possible to generate a functional E. coli ATP synthase containing a b/δ fusion protein. This construct allowed the analysis of the roles of the individual b subunits. The full-length b subunit (which in this case is covalently linked to δ in the fusion protein) is responsible for connecting the stalk to the catalytic F1 subcomplex. It is not required for interaction with the membrane-embedded Fo subcomplex, as its transmembrane helix can be removed. Attachment to Fo is the function of the other b subunit which in turn has only a minor (if any at all) role in binding to δ. Also in E. coli the second b subunit can be shortened to a b' type.

  15. Regulation of plasma factor XIII levels in healthy individuals; a major impact by subunit B intron K c.1952+144 C>G polymorphism.

    PubMed

    Mezei, Zoltán A; Katona, Éva; Kállai, Judit; Bereczky, Zsuzsanna; Molnár, Éva; Kovács, Bettina; Ajzner, Éva; Bagoly, Zsuzsa; Miklós, Tünde; Muszbek, László

    2016-12-01

    The regulation of plasma factor XIII (FXIII) levels in healthy individuals has been only partially explored. The identification of major non-genetic and genetic regulatory factors might provide important information on the contribution of FXIII to the risk of cardio/cerebrovascular diseases. To determine the effect of age, smoking, BMI, fibrinogen concentration on plasma FXIII activity, complex FXIII antigen (FXIII-A 2 B 2 ) and total FXIII-B subunit (tFXIII-B) level, to correlate FXIII-B level with the other two FXIII parameters and to assess the variation of FXIII levels in carriers of major FXIII subunit polymorphisms. 268 healthy individuals were enrolled in the study. FXIII activity was measured by the ammonia release assay; FXIII-A 2 B 2 and tFXIII-B were determined by ELISAs. FXIII-A p.Val34Leu, FXIII-B p.His95Arg and FXIII-B intron K c.1952+144 C>G polymorphisms were identified by RT-PCR using melting point analysis with fluorescence resonance energy transfer detection. All investigated FXIII parameters showed significant positive correlation with age and fibrinogen level; gender and BMI influenced only tFXIII-B. A highly significant positive correlation was demonstrated between tFXIII-B and the other FXIII parameters. FXIII-A p.Val34Leu polymorphism had only slight, if any effect on FXIII levels. The FXIII-B Arg95 allele moderately increased all three FXIII parameters, but the effect became statistically significant only after adjustment. The FXIII-B intron K G allele drastically decreased FXIII levels, and it seemed to be in synergism with the FXIII-A Leu34 allele. Plasma FXIII levels are subjected to multifactorial regulation, in which age, fibrinogen level and FXIII-B intron K polymorphism are major determinants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Expression of cholera toxin B subunit in transgenic tomato plants.

    PubMed

    Jani, Dewal; Meena, Laxman Singh; Rizwan-ul-Haq, Quazi Mohammad; Singh, Yogendra; Sharma, Arun K; Tyagi, Akhilesh K

    2002-10-01

    Cholera toxin, secreted by Vibrio cholerae, consists of A and B subunits. The latter binds to G(M1)-ganglioside receptors as a pentamer (approximately 55 kDa). Tomato plants were transformed with the gene encoding cholera toxin B subunit (ctxB) along with an endoplasmic reticulum retention signal (SEKDEL) under the control of the CaMV 35S promoter via Agrobacterium-mediated transformation. PCR and Southern analysis confirmed the presence of the ctxB gene in transformed tomato plants. Northern analysis showed the presence of the ctxB-specific transcript. Immunoblot assays of the plant-derived protein extract showed the presence of cholera toxin subunit B (CTB) with mobility similar to purified CTB from V. cholerae. Both tomato leaves and fruits expressed CTB at levels up to 0.02 and 0.04% of total soluble protein, respectively. The G(M1)-ELISA showed that the plant-derived CTB bound specifically to G(M1)-ganglioside receptor, suggesting that it retained its native pentameric form. This study forms a basis for exploring the utility of CTB to develop tomato-based edible vaccines against cholera.

  17. Linkage of genes for laminin B1 and B2 subunits on chromosome 1 in mouse.

    PubMed

    Elliott, R W; Barlow, D; Hogan, B L

    1985-08-01

    We have used cDNA clones for the B1 and B2 subunits of laminin to find restriction fragment length DNA polymorphisms for the genes encoding these polypeptides in the mouse. Three alleles were found for LamB2 and two for LamB1 among the inbred mouse strains. The segregation of these polymorphisms among recombinant inbred strains showed that these genes are tightly linked in the central region of mouse Chromosome 1 between Sas-1 and Ly-m22, 7.4 +/- 3.2 cM distal to the Pep-3 locus. There is no evidence in the mouse for pseudogenes for these proteins.

  18. Ultraviolet B Radiation Stimulates the Interaction between Nuclear Factor of Activated T Cells 5 (NFAT5) and Nuclear Factor-Kappa B (NF-κB) in Human Lens Epithelial Cells.

    PubMed

    Chung, Inyoung; Hah, Young-Sool; Ju, SunMi; Kim, Ji-Hye; Yoo, Woong-Sun; Cho, Hee-Young; Yoo, Ji-Myong; Seo, Seong-Wook; Choi, Wan-Sung; Kim, Seong-Jae

    2017-07-01

    Nuclear factor-kappa B (NF-κB) has been proposed as a therapeutic target for the treatment of cataracts. The authors investigated the relationship between nuclear factor of activated T cells 5 (NFAT5) and NF-κB in ultraviolet B (UVB)-irradiated human lens epithelial (HLE) cells. Human lens epithelial B-3 (HLE-B3) cells were exposed to UVB light at a dose of 10 mJ/cm 2 and then incubated for 24 h. Cell viability was assessed by using the Cell Counting Kit-8 (CCK-8) assay. Gene expression level of NFAT5 was determined using real-time quantitative polymerase chain reaction (qPCR). Protein expression levels of NFAT5, NF-κB p65, and α-smooth muscle actin (α-SMA) and the association of NFAT5 with the NF-κB p65 subunit were measured by Western blot analysis and a co-immunoprecipitation assay, respectively. The cellular distribution of NFAT5 and NF-κB p65 was examined by triple immunofluorescence staining. At 24 h after UVB exposure, cell viability significantly decreased in a dose-dependent manner, and UVB light (15 and 20 mJ/cm 2 ) significantly increased the ROS generation. UVB irradiation increased NFAT5 mRNA and protein levels and increased phosphorylation of NF-κB in HLE-B3 cells. α-SMA protein levels were increased in the irradiated cells. In addition, NFAT5 and NF-κB translocated from the cytoplasm to the nucleus, and binding between the p65 subunit and NFAT5 was increased. Exposure to UVB radiation induces nuclear translocation and stimulates binding between NFAT5 and NF-κB proteins in HLE-B3 cells. These interactions may form part of the biochemical mechanism of cataractogenesis in UVB-irradiated HLECs.

  19. Virulence factor NSs of rift valley fever virus recruits the F-box protein FBXO3 to degrade subunit p62 of general transcription factor TFIIH.

    PubMed

    Kainulainen, Markus; Habjan, Matthias; Hubel, Philipp; Busch, Laura; Lau, Simone; Colinge, Jacques; Superti-Furga, Giulio; Pichlmair, Andreas; Weber, Friedemann

    2014-03-01

    The nonstructural protein NSs is the main virulence factor of Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), a serious pathogen of livestock and humans in Africa. RVFV NSs blocks transcriptional upregulation of antiviral type I interferons (IFN) and destroys the general transcription factor TFIIH subunit p62 via the ubiquitin/proteasome pathway. Here, we identified a subunit of E3 ubiquitin ligases, F-box protein FBXO3, as a host cell interactor of NSs. Small interfering RNA (siRNA)-mediated depletion of FBXO3 rescued p62 protein levels in RVFV-infected cells and elevated IFN transcription by 1 order of magnitude. NSs interacts with the full-length FBXO3 protein as well as with a truncated isoform that lacks the C-terminal acidic and poly(R)-rich domains. These isoforms are present in both the nucleus and the cytoplasm. NSs exclusively removes the nuclear pool of full-length FBXO3, likely due to consumption during the degradation process. F-box proteins form the variable substrate recognition subunit of the so-called SCF ubiquitin ligases, which also contain the constant components Skp1, cullin 1 (or cullin 7), and Rbx1. siRNA knockdown of Skp1 also protected p62 from degradation, suggesting involvement in NSs action. However, knockdown of cullin 1, cullin 7, or Rbx1 could not rescue p62 degradation by NSs. Our data show that the enzymatic removal of p62 via the host cell factor FBXO3 is a major mechanism of IFN suppression by RVFV. Rift Valley fever virus is a serious emerging pathogen of animals and humans. Its main virulence factor, NSs, enables unhindered virus replication by suppressing the antiviral innate immune system. We identified the E3 ubiquitin ligase FBXO3 as a novel host cell interactor of NSs. NSs recruits FBXO3 to destroy the general host cell transcription factor TFIIH-p62, resulting in suppression of the transcriptional upregulation of innate immunity.

  20. Virulence Factor NSs of Rift Valley Fever Virus Recruits the F-Box Protein FBXO3 To Degrade Subunit p62 of General Transcription Factor TFIIH

    PubMed Central

    Kainulainen, Markus; Habjan, Matthias; Hubel, Philipp; Busch, Laura; Lau, Simone; Colinge, Jacques; Superti-Furga, Giulio; Pichlmair, Andreas

    2014-01-01

    ABSTRACT The nonstructural protein NSs is the main virulence factor of Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), a serious pathogen of livestock and humans in Africa. RVFV NSs blocks transcriptional upregulation of antiviral type I interferons (IFN) and destroys the general transcription factor TFIIH subunit p62 via the ubiquitin/proteasome pathway. Here, we identified a subunit of E3 ubiquitin ligases, F-box protein FBXO3, as a host cell interactor of NSs. Small interfering RNA (siRNA)-mediated depletion of FBXO3 rescued p62 protein levels in RVFV-infected cells and elevated IFN transcription by 1 order of magnitude. NSs interacts with the full-length FBXO3 protein as well as with a truncated isoform that lacks the C-terminal acidic and poly(R)-rich domains. These isoforms are present in both the nucleus and the cytoplasm. NSs exclusively removes the nuclear pool of full-length FBXO3, likely due to consumption during the degradation process. F-box proteins form the variable substrate recognition subunit of the so-called SCF ubiquitin ligases, which also contain the constant components Skp1, cullin 1 (or cullin 7), and Rbx1. siRNA knockdown of Skp1 also protected p62 from degradation, suggesting involvement in NSs action. However, knockdown of cullin 1, cullin 7, or Rbx1 could not rescue p62 degradation by NSs. Our data show that the enzymatic removal of p62 via the host cell factor FBXO3 is a major mechanism of IFN suppression by RVFV. IMPORTANCE Rift Valley fever virus is a serious emerging pathogen of animals and humans. Its main virulence factor, NSs, enables unhindered virus replication by suppressing the antiviral innate immune system. We identified the E3 ubiquitin ligase FBXO3 as a novel host cell interactor of NSs. NSs recruits FBXO3 to destroy the general host cell transcription factor TFIIH-p62, resulting in suppression of the transcriptional upregulation of innate immunity. PMID:24403578

  1. Immunodiagnostic Value of Echinococcus Granulosus Recombinant B8/1 Subunit of Antigen B.

    PubMed

    Savardashtaki, Amir; Sarkari, Bahador; Arianfar, Farzane; Mostafavi-Pour, Zohreh

    2017-06-01

    Cystic echinococcosis (CE), as a chronic parasitic disease, is a major health problem in many countries. The performance of the currently available serodiagnostic tests for the diagnosis of CE is unsatisfactory. The current study aimed at sub-cloning a gene, encoding the B8/1 subunit of antigen B (AgB) from Echinococcus granulosus, using gene optimization for the immunodiagnosis of human CE. The coding sequence for AgB8/1 subunit of Echinococcus granulosus was selected from GenBank and was gene-optimized. The sequence was synthesized and inserted into pGEX-4T-1 vector. Purification was performed with GST tag affinity column. Diagnostic performance of the produced recombinant antigen, native antigen B and a commercial ELISA kit were further evaluated in an ELISA system, using a panel of sera from CE patients and controls. SDS-PAGE demonstrated that the protein of interest had a high expression level and purity after GST tag affinity purification. Western blotting verified the immunoreactivity of the produced recombinant antigen with the sera of CE patients. In an ELISA system, the sensitivity and specificity (for human CE diagnosis) of the recombinant antigen, native antigen B and commercial kit were respectively 93% and 92%, 87% and 90% and 97% and 95%. The produced recombinant antigen showed a high diagnostic value which can be recommended for serodiagnosis of CE in Iran and other CE-endemic areas. Utilizing the combination of other subunits of AgB8 would improve the performance value of the introduced ELISA system.

  2. Quantitative RT-PCR for inhibin/activin subunits: measurements of rat hypothalamic and ovarian inhibin/activin subunit mRNAs during the estrous cycle.

    PubMed

    Murata, T; Takizawa, T; Funaba, M; Fujimura, H; Murata, E; Takahashi, M; Torii, K

    1997-02-01

    Inhibins (alpha-beta(A) and alpha-beta(B)) and activins (beta(A)-beta(A), beta(A)-beta(B) and beta(B)-beta(B)) were originally isolated from ovarian follicular fluids as FSH secretion modifiers. Inhibin/activin subunits, alpha, beta(A) and beta(B), are widely distributed in several tissues, including gonads and brain, and inhibins and activins have been reported to be involved in ovarian or hypothalamic functions. In this study, we established and employed a competitive RT-PCR assay system for rat inhibin/activin subunits by capillary electrophoresis to determine rat hypothalamic and ovarian inhibin/activin subunit mRNA levels during the estrous cycle. Linearity of standards for alpha, beta(A), and beta(B) subunit assays were between 0.01-0.3 amol, 0.003-0.09 amol and 0.002-0.02 amol of each fragment DNA as a standard, respectively. Hypothalamic beta(A) subunit mRNA during the estrous morning (1000 h) tended to be increased compared with that of the proestrous evening (1700 h), although they were not significantly different. Ovarian alpha subunit mRNA levels tended to be increased during the proestrous morning (1000 h) and were significantly increased in the proestrous evening (1700 h), compared with diestrus and estrus (P < 0.05). Ovarian beta(A) subunit mRNA was also significantly higher in the proestrous evening, compared with diestrus and estrus (P < 0.05), but in the case of beta(B) subunit mRNA there was no difference among diestrus, proestrus and estrus. We thus established a sensitive competitive RT-PCR system for the measurement of inhibin/activin alpha, beta(A) and beta(B) subunits, and this assay system would be helpful for the study of inhibin/activin action in brain and other tissues where these factors are expressed at low levels.

  3. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    PubMed Central

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  4. Mutations in POLR3A and POLR3B Encoding RNA Polymerase III Subunits Cause an Autosomal-Recessive Hypomyelinating Leukoencephalopathy

    PubMed Central

    Saitsu, Hirotomo; Osaka, Hitoshi; Sasaki, Masayuki; Takanashi, Jun-ichi; Hamada, Keisuke; Yamashita, Akio; Shibayama, Hidehiro; Shiina, Masaaki; Kondo, Yukiko; Nishiyama, Kiyomi; Tsurusaki, Yoshinori; Miyake, Noriko; Doi, Hiroshi; Ogata, Kazuhiro; Inoue, Ken; Matsumoto, Naomichi

    2011-01-01

    Congenital hypomyelinating disorders are a heterogeneous group of inherited leukoencephalopathies characterized by abnormal myelin formation. We have recently reported a hypomyelinating syndrome characterized by diffuse cerebral hypomyelination with cerebellar atrophy and hypoplasia of the corpus callosum (HCAHC). We performed whole-exome sequencing of three unrelated individuals with HCAHC and identified compound heterozygous mutations in POLR3B in two individuals. The mutations include a nonsense mutation, a splice-site mutation, and two missense mutations at evolutionally conserved amino acids. Using reverse transcription-PCR and sequencing, we demonstrated that the splice-site mutation caused deletion of exon 18 from POLR3B mRNA and that the transcript harboring the nonsense mutation underwent nonsense-mediated mRNA decay. We also identified compound heterozygous missense mutations in POLR3A in the remaining individual. POLR3A and POLR3B encode the largest and second largest subunits of RNA Polymerase III (Pol III), RPC1 and RPC2, respectively. RPC1 and RPC2 together form the active center of the polymerase and contribute to the catalytic activity of the polymerase. Pol III is involved in the transcription of small noncoding RNAs, such as 5S ribosomal RNA and all transfer RNAs (tRNA). We hypothesize that perturbation of Pol III target transcription, especially of tRNAs, could be a common pathological mechanism underlying POLR3A and POLR3B mutations. PMID:22036171

  5. The translation initiation factor 3 subunit eIF3K interacts with PML and associates with PML nuclear bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salsman, Jayme; Pinder, Jordan; Tse, Brenda

    2013-10-15

    The promyelocytic leukemia protein (PML) is a tumor suppressor protein that regulates a variety of important cellular processes, including gene expression, DNA repair and cell fate decisions. Integral to its function is the ability of PML to form nuclear bodies (NBs) that serve as hubs for the interaction and modification of over 90 cellular proteins. There are seven canonical isoforms of PML, which encode diverse C-termini generated by alternative pre-mRNA splicing. Recruitment of specific cellular proteins to PML NBs is mediated by protein–protein interactions with individual PML isoforms. Using a yeast two-hybrid screen employing peptide sequences unique to PML isoformmore » I (PML-I), we identified an interaction with the eukaryotic initiation factor 3 subunit K (eIF3K), and in the process identified a novel eIF3K isoform, which we term eIF3K-2. We further demonstrate that eIF3K and PML interact both in vitro via pull-down assays, as well as in vivo within human cells by co-immunoprecipitation and co-immunofluorescence. In addition, eIF3K isoform 2 (eIF3K-2) colocalizes to PML bodies, particularly those enriched in PML-I, while eIF3K isoform 1 associates poorly with PML NBs. Thus, we report eIF3K as the first known subunit of the eIF3 translation pre-initiation complex to interact directly with the PML protein, and provide data implicating alternative splicing of both PML and eIF3K as a possible regulatory mechanism for eIF3K localization at PML NBs. - Highlights: • The PML-I C-terminus, encoded by exon 9, interacts with translation factor eIF3K. • We identify a novel eIF3K isoform that excludes exon 2 (eIF3K-2). • eIF3K-2 preferentially associates with PML bodies enriched in PML-I vs. PML-IV. • Alternative splicing of eIF3K regulates association with PML bodies.« less

  6. FBI-1 enhances transcription of the nuclear factor-kappaB (NF-kappaB)-responsive E-selectin gene by nuclear localization of the p65 subunit of NF-kappaB.

    PubMed

    Lee, Dong-Kee; Kang, Jae-Eun; Park, Hye-Jin; Kim, Myung-Hwa; Yim, Tae-Hee; Kim, Jung-Min; Heo, Min-Kyu; Kim, Kyu-Yeun; Kwon, Ho Jeong; Hur, Man-Wook

    2005-07-29

    The POZ domain is a highly conserved protein-protein interaction motif found in many regulatory proteins. Nuclear factor-kappaB (NF-kappaB) plays a key role in the expression of a variety of genes in response to infection, inflammation, and stressful conditions. We found that the POZ domain of FBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) interacted with the Rel homology domain of the p65 subunit of NF-kappaB in both in vivo and in vitro protein-protein interaction assays. FBI-1 enhanced NF-kappaB-mediated transcription of E-selectin genes in HeLa cells upon phorbol 12-myristate 13-acetate stimulation and overcame gene repression by IkappaB alpha or IkappaB beta. In contrast, the POZ domain of FBI-1, which is a dominant-negative form of FBI-1, repressed NF-kappaB-mediated transcription, and the repression was cooperative with IkappaB alpha or IkappaB beta. In contrast, the POZ domain tagged with a nuclear localization sequence polypeptide of FBI-1 enhanced NF-kappaB-responsive gene transcription, suggesting that the molecular interaction between the POZ domain and the Rel homology domain of p65 and the nuclear localization by the nuclear localization sequence are important in the transcription enhancement mediated by FBI-1. Confocal microscopy showed that FBI-1 increased NF-kappaB movement into the nucleus and increased the stability of NF-kappaB in the nucleus, which enhanced NF-kappaB-mediated transcription of the E-selectin gene. FBI-1 also interacted with IkappaB alpha and IkappaB beta.

  7. The role of TcdB and TccC subunits in secretion of the Photorhabdus Tcd toxin complex.

    PubMed

    Yang, Guowei; Waterfield, Nicholas R

    2013-01-01

    The Toxin Complex (TC) is a large multi-subunit toxin encoded by a range of bacterial pathogens. The best-characterized examples are from the insect pathogens Photorhabdus, Xenorhabdus and Yersinia. They consist of three large protein subunits, designated A, B and C that assemble in a 5∶1∶1 stoichiometry. Oral toxicity to a range of insects means that some have the potential to be developed as pest control technology. The three subunit proteins do not encode any recognisable export sequences and as such little progress has been made in understanding their secretion. We have developed heterologous TC production and secretion models in E. coli and used them to ascribe functions to different domains of the crucial B+C sub-complex. We have determined that the B and C subunits use a secretion mechanism that is either encoded by the proteins themselves or employ an as yet undefined system common to laboratory strains of E. coli. We demonstrate that both the N-terminal domains of the B and C subunits are required for secretion of the whole complex. We propose a model whereby the N-terminus of the C-subunit toxin exports the B+C sub-complex across the inner membrane while that of the B-subunit allows passage across the outer membrane. We also demonstrate that even in the absence of the B-subunit, that the C-subunit can also facilitate secretion of the larger A-subunit. The recognition of this novel export system is likely to be of importance to future protein secretion studies. Finally, the identification of homologues of B and C subunits in diverse bacterial pathogens, including Burkholderia and Pseudomonas, suggests that these toxins are likely to be important in a range of different hosts, including man.

  8. Characterization of a wheat mutant missing low-molecular-weight glutenin subunits encoded by the B-genome

    USDA-ARS?s Scientific Manuscript database

    DH20, a new wheat mutant missing low-molecular weight glutenin subunits encoded by the Glu-B3 locus, was discovered among double haploid lines obtained from a cross between the Korean wheat cultivars Keumkang and Olgeuru. Absence of the Glu-B3 LMW-GS proteins was determined by one-dimensional gel e...

  9. Architecture of human translation initiation factor 3

    PubMed Central

    Querol-Audi, Jordi; Sun, Chaomin; Vogan, Jacob M.; Smith, Duane; Gu, Yu; Cate, Jamie; Nogales, Eva

    2013-01-01

    SUMMARY Eukaryotic translation initiation factor 3 (eIF3) plays a central role in protein synthesis by organizing the formation of the 43S preinitiation complex. Using genetic tag visualization by electron microscopy, we reveal the molecular organization of ten human eIF3 subunits, including an octameric core. The structure of eIF3 bears a close resemblance to that of the proteasome lid, with a conserved spatial organization of eight core subunits containing PCI and MPN domains that coordinate functional interactions in both complexes. We further show that eIF3 subunits a and c interact with initiation factors eIF1 and eIF1A, which control the stringency of start codon selection. Finally, we find that subunit j, which modulates messenger RNA interactions with the small ribosomal subunit, makes multiple independent interactions with the eIF3 octameric core. These results highlight the conserved architecture of eIF3 and how it scaffolds key factors that control translation initiation in higher eukaryotes, including humans. PMID:23623729

  10. Distinctive interactions of the Arabidopsis homolog of the 30 kD subunit of the cleavage and polyadenylation specificity factor (AtCPSF30) with other polyadenylation factor subunits

    USDA-ARS?s Scientific Manuscript database

    Background: The Arabidopsis ortholog of the 30 kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor (AtCPSF30) is an RNA-binding endonuclease that is associated with other Arabidopsis CPSF subunits (orthologs of the 160, 100, and 73 kD subunits of CPSF). In order to better u...

  11. Nuclear respiratory factor 2 regulates the expression of the same NMDA receptor subunit genes as NRF-1: both factors act by a concurrent and parallel mechanism to couple energy metabolism and synaptic transmission.

    PubMed

    Priya, Anusha; Johar, Kaid; Wong-Riley, Margaret T T

    2013-01-01

    Neuronal activity and energy metabolism are tightly coupled processes. Previously, we found that nuclear respiratory factor 1 (NRF-1) transcriptionally co-regulates energy metabolism and neuronal activity by regulating all 13 subunits of the critical energy generating enzyme, cytochrome c oxidase (COX), as well as N-methyl-d-aspartate (NMDA) receptor subunits 1 and 2B, GluN1 (Grin1) and GluN2B (Grin2b). We also found that another transcription factor, nuclear respiratory factor 2 (NRF-2 or GA-binding protein) regulates all subunits of COX as well. The goal of the present study was to test our hypothesis that NRF-2 also regulates specific subunits of NMDA receptors, and that it functions with NRF-1 via one of three mechanisms: complementary, concurrent and parallel, or a combination of complementary and concurrent/parallel. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation of mouse neuroblastoma cells and rat visual cortical tissue, promoter mutations, real-time quantitative PCR, and western blot analysis, NRF-2 was found to functionally regulate Grin1 and Grin2b genes, but not any other NMDA subunit genes. Grin1 and Grin2b transcripts were up-regulated by depolarizing KCl, but silencing of NRF-2 prevented this up-regulation. On the other hand, over-expression of NRF-2 rescued the down-regulation of these subunits by the impulse blocker TTX. NRF-2 binding sites on Grin1 and Grin2b are conserved among species. Our data indicate that NRF-2 and NRF-1 operate in a concurrent and parallel manner in mediating the tight coupling between energy metabolism and neuronal activity at the molecular level. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The TFIIH subunit Tfb3 regulates cullin neddylation

    PubMed Central

    Rabut, Gwenaël; Le Dez, Gaëlle; Verma, Rati; Makhnevych, Taras; Knebel, Axel; Kurz, Thimo; Boone, Charles; Deshaies, Raymond J.; Peter, Matthias

    2011-01-01

    Summary Cullin proteins are scaffolds for the assembly of multi-subunit ubiquitin ligases, which ubiquitylate a large number of proteins involved in widely-varying cellular functions. Multiple mechanisms cooperate to regulate cullin activity, including neddylation of their C-terminal domain. Interestingly, we found that the yeast Cul4-type cullin Rtt101 is not only neddylated but also ubiquitylated, and both modifications promote Rtt101 function in vivo. Surprisingly, proper modification of Rtt101 neither correlated with catalytic activity of the RING-domain of Hrt1 nor did it require the Nedd8 ligase Dcn1. Instead, ubiquitylation of Rtt101 was dependent on the ubiquitin-conjugating enzyme Ubc4, while efficient neddylation involves the RING-domain protein Tfb3, a subunit of the transcription factor TFIIH. Tfb3 also controls Cul3 neddylation and activity in vivo, and physically interacts with Ubc4 and the Nedd8-conjugating enzyme Ubc12 as well as the Hrt1/Rtt101 complex. Together, these results suggest that the conserved RING-domain protein Tfb3 controls activation of a subset of cullins. PMID:21816351

  13. PsB multiprotein complex of Dictyostelium discoideum. Demonstration of cellulose binding activity and order of protein subunit assembly.

    PubMed

    McGuire, V; Alexander, S

    1996-06-14

    The differentiated spores of Dictyostelium are surrounded by an extracellular matrix, the spore coat, which protects them from environmental factors allowing them to remain viable for extended periods of time. This presumably is a major evolutionary advantage. This unique extracellular matrix is composed of cellulose and glycoproteins. Previous work has shown that some of these spore coat glycoproteins exist as a preassembled multiprotein complex (the PsB multiprotein complex) which is stored in the prespore vesicles (Watson, N., McGuire, V., and Alexander, S (1994) J. Cell Sci. 107, 2567-2579). Later in development, the complex is synchronously secreted from the prespore vesicles and incorporated into the spore coat. We now have shown that the PsB complex has a specific in vitro cellulose binding activity. The analysis of mutants lacking individual subunits of the PsB complex revealed the relative order of assembly of the subunit proteins and demonstrated that the protein subunits must be assembled for cellulose binding activity. These results provide a biochemical explanation for the localization of this multiprotein complex in the spore coat.

  14. A novel form of the RelA nuclear factor kappaB subunit is induced by and forms a complex with the proto-oncogene c-Myc.

    PubMed Central

    Chapman, Neil R; Webster, Gill A; Gillespie, Peter J; Wilson, Brian J; Crouch, Dorothy H; Perkins, Neil D

    2002-01-01

    Members of both Myc and nuclear factor kappaB (NF-kappaB) families of transcription factors are found overexpressed or inappropriately activated in many forms of human cancer. Furthermore, NF-kappaB can induce c-Myc gene expression, suggesting that the activities of these factors are functionally linked. We have discovered that both c-Myc and v-Myc can induce a previously undescribed, truncated form of the RelA(p65) NF-kappaB subunit, RelA(p37). RelA(p37) encodes the N-terminal DNA binding and dimerization domain of RelA(p65) and would be expected to function as a trans-dominant negative inhibitor of NF-kappaB. Surprisingly, we found that RelA(p37) no longer binds to kappaB elements. This result is explained, however, by the observation that RelA(p37), but not RelA(p65), forms a high-molecular-mass complex with c-Myc. These results demonstrate a previously unknown functional and physical interaction between RelA and c-Myc with many significant implications for our understanding of the role that both proteins play in the molecular events underlying tumourigenesis. PMID:12027803

  15. 1, 25(OH){sub 2}D{sub 3}-induced interaction of vitamin D receptor with p50 subunit of NF-κB suppresses the interaction between KLF5 and p50, contributing to inhibition of LPS-induced macrophage proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Dong; School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063000; Zhang, Ruo-nan

    KLF5 and nuclear factor κB (NF-κB) regulate cell proliferation and inflammation. Vitamin D signaling through vitamin D receptor (VDR) exerts anti-proliferative and anti-inflammatory actions. However, an actual relationship between KLF5, NF-κB and VDR in the inflammation and proliferation of macrophages is still unclear. Here, we showed that LPS and proinflammatory cytokines stimulate KLF5 gene expression in macrophages, and that 1, 25(OH){sub 2}D{sub 3} suppresses LPS-induced KLF5 expression and cell proliferation via upregulation of VDR expression. Mechanistic studies suggested that KLF5 interacts with p50 subunit of NF-κB to cooperatively induce the expressions of positive cell cycle regulators cyclin B1 and Cdk1/Cdc2more » in LPS-treated macrophages. Further studies revealed that 1, 25(OH){sub 2}D{sub 3}-induced interaction of VDR with p50 decreases LPS-induced interaction of KLF5 with p50. Collectively, we identify a novel regulatory pathway in which 1, 25(OH){sub 2}D{sub 3} induces VDR expression and promotes VDR interaction with p50 subunit of NF-κB, which in turn attenuates the association of KLF5 with p50 subunit of NF-κB and thus exerts anti-inflammatory and anti-proliferative effects on macrophages. - Highlights: • 1, 25(OH){sub 2}D{sub 3} suppresses LPS-induced KLF5 expression via upregulation of VDR expression. • KLF5 interacts with NF-κB-p50 to cooperatively induce the expressions of positive cell cycle regulators cyclin B1 and Cdk1/Cdc2 in LPS-treated macrophages. • 1,25(OH){sub 2}D{sub 3} induces interaction of VDR with p50.« less

  16. Similarities in transcription factor IIIC subunits that bind to the posterior regions of internal promoters for RNA polymerase III.

    PubMed

    Matsutani, Sachiko

    2004-08-09

    In eukaryotes, RNA polymerase III (RNAP III) transcribes the genes for small RNAs like tRNAs, 5S rRNA, and several viral RNAs, and short interspersed repetitive elements (SINEs). The genes for these RNAs and SINEs have internal promoters that consist of two regions. These two regions are called the A and B blocks. The multisubunit transcription factor TFIIIC is required for transcription initiation of RNAP III; in transcription of tRNAs, the B-block binding subunit of TFIIIC recognizes a promoter. Although internal promoter sequences are conserved in eukaryotes, no evidence of homology between the B-block binding subunits of vertebrates and yeasts has been reported previously. Here, I reported the results of PSI-BLAST searches using the B-block binding subunits of human and Shizosacchromyces pombe as queries, showing that the same Arabidopsis proteins were hit with low E-values in both searches. Comparison of the convergent iterative alignments obtained by these PSI-BLAST searches revealed that the vertebrate, yeast, and Arabidopsis proteins have similarities in their N-terminal one-third regions. In these regions, there were three domains with conserved sequence similarities, one located in the N-terminal end region. The N-terminal end region of the B-block binding subunit of Saccharomyces cerevisiae is tentatively identified as a HMG box, which is the DNA binding motif. Although I compared the alignment of the N-terminal end regions of the B-block binding subunits, and their homologs, with that of the HMG boxes, it is not clear whether they are related. Molecular phylogenetic analyses using the small subunit rRNA and ubiquitous proteins like actin and alpha-tubulin, show that fungi are more closely related to animals than either is to plants. Interestingly, the results obtained in this study show that, with respect to the B-block binding subunits of TFIIICs, animals appear to be evolutionarily closer to plants than to fungi.

  17. Two hydrophobic subunits are essential for the heme b ligation and functional assembly of complex II (succinate-ubiquinone oxidoreductase) from Escherichia coli.

    PubMed

    Nakamura, K; Yamaki, M; Sarada, M; Nakayama, S; Vibat, C R; Gennis, R B; Nakayashiki, T; Inokuchi, H; Kojima, S; Kita, K

    1996-01-05

    Complex II (succinate-ubiquinone oxidoreductase) from Escherichia coli is composed of four nonidentical subunits encoded by the sdhCDAB operon. Gene products of sdhC and sdhD are small hydrophobic subunits that anchor the hydrophilic catalytic subunits (flavoprotein and iron-sulfur protein) to the cytoplasmic membrane and are believed to be the components of cytochrome b556 in E. coli complex II. In the present study, to elucidate the role of two hydrophobic subunits in the heme b ligation and functional assembly of complex II, plasmids carrying portions of the sdh gene were constructed and introduced into E. coli MK3, which lacks succinate dehydrogenase and fumarate reductase activities. The expression of polypeptides with molecular masses of about 19 and 17 kDa was observed when sdhC and sdhD were introduced into MK3, respectively, indicating that sdhC encodes the large subunit (cybL) and sdhD the small subunit (cybS) of cytochrome b556. An increase in cytochrome b content was found in the membrane when sdhD was introduced, while the cytochrome b content did not change when sdhC was introduced. However, the cytochrome b expressed by the plasmid carrying sdhD differed from cytochrome b556 in its CO reactivity and red shift of the alpha absorption peak to 557.5 nm at 77 K. Neither hydrophobic subunit was able to bind the catalytic portion to the membrane, and only succinate dehydrogenase activity, not succinate-ubiquinone oxidoreductase activity, was found in the cytoplasmic fractions of the cells. In contrast, significantly higher amounts of cytochrome b556 were expressed in the membrane when sdhC and sdhD genes were both present, and the catalytic portion was found to be localized in the membrane with succinate-ubiquitnone oxidoreductase and succinate oxidase activities. These results strongly suggest that both hydrophobic subunits are required for heme insertion into cytochrome b556 and are essential for the functional assembly of E. coli complex II in the

  18. Specific Roles of NMDA Receptor Subunits in Mental Disorders.

    PubMed

    Yamamoto, H; Hagino, Y; Kasai, S; Ikeda, K

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed.

  19. Glutamate receptor antibodies directed against AMPA receptors subunit 3 peptide B (GluR3B) can be produced in DBA/2J mice, lower seizure threshold and induce abnormal behavior.

    PubMed

    Ganor, Yonatan; Goldberg-Stern, Hadassa; Cohen, Ran; Teichberg, Vivian; Levite, Mia

    2014-04-01

    Anti-GluR3B antibodies (GluR3B Ab's), directed against peptide B/aa372-395 of GluR3 subunit of glutamate/AMPA receptors, are found in ∼35% of epilepsy patients, activate glutamate/AMPA receptors, evoke ion currents, kill neurons and damage the brain. We recently found that GluR3B Ab's also associate with neurological/psychiatric/behavioral abnormalities in epilepsy patients. Here we asked if GluR3B Ab's could be produced in DBA/2J mice, and also modulate seizure threshold and/or cause behavioral/motor impairments in these mice. DBA/2J mice were immunized with the GluR3B peptide in Complete Freund's Adjuvant (CFA), or with controls: ovalbumin (OVA), CFA, or phosphate-buffer saline (PBS). GluR3B Ab's and OVA Ab's were tested. Seizures were induced in all mice by the chemoconvulsant pentylenetetrazole (PTZ) at three time points, each time with less PTZ to avoid non-specific death. Behavior was examined in Open-Field, RotaRod and Grip tests. GluR3B Ab's were produced only in GluR3B-immunized mice, while OVA Ab's were produced only in OVA-immunized mice, showing high Ab's specificity. In GluR3B Ab's negative mice, seizure severity scores and percentages of animals developing generalized seizures declined in response to decreasing PTZ doses. In contrast, both parameters remained unchanged/high in the GluR3B Ab's positive mice, showing that these mice were more susceptible to seizures. The seizure scores associated significantly with the GluR3B Ab's levels. GluR3B Ab's positive mice were also more anxious in Open-Field test, fell faster in RotaRod test, and fell more in Grip test, compared to all the control mice. GluR3B Ab's are produced in DBA/2J mice, facilitate seizures and induce behavioral/motor impairments. This animal model can therefore serve for studying autoimmune epilepsy and abnormal behavior mediated by pathogenic anti-GluR3B Ab's. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The vacuolar ATPase from Entamoeba histolytica: molecular cloning of the gene encoding for the B subunit and subcellular localization of the protein.

    PubMed

    Meléndez-Hernández, Mayra Gisela; Barrios, María Luisa Labra; Orozco, Esther; Luna-Arias, Juan Pedro

    2008-12-23

    Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes. We report the isolation and characterization of the Ehvma2 gene, which encodes for the subunit B of the vacuolar ATPase. This polypeptide is a 55.3 kDa highly conserved protein with 34 to 80% identity to orthologous proteins from other species. Particularly, in silico studies showed that EhV-ATPase subunit B displays 78% identity and 90% similarity to its Dictyostelium ortholog. A 462 bp DNA fragment of the Ehvma2 gene was expressed in bacteria and recombinant polypeptide was used to raise mouse polyclonal antibodies. EhV-ATPase subunit B antibodies detected a 55 kDa band in whole cell extracts and in an enriched fraction of DNA-containing organelles named EhkOs. The V-ATPase subunit B was located by immunofluorescence and confocal microscopy in many vesicles, in phagosomes, plasma membrane and in EhkOs. We also identified the genes encoding for the majority of the V-ATPase subunits in the E. histolytica genome, and proposed a putative model for this proton pump. We have isolated the Ehvma2 gene which encodes for the V-ATPase subunit B from the E. histolytica clone A. This gene has a 154 bp intron and encodes for a highly conserved polypeptide. Specific antibodies localized EhV-ATPase subunit B in many vesicles, phagosomes, plasma membrane and in EhkOs. Most of the orthologous genes encoding for the EhV-ATPase subunits were found in the E. histolytica genome, indicating the

  1. Targeting Activation of Specific NF-κB Subunits Prevents Stress-Dependent Atherothrombotic Gene Expression

    PubMed Central

    Djuric, Zdenka; Kashif, Muhammed; Fleming, Thomas; Muhammad, Sajjad; Piel, David; von Bauer, Rüdiger; Bea, Florian; Herzig, Stephan; Zeier, Martin; Pizzi, Marina; Isermann, Berend; Hecker, Markus; Schwaninger, Markus; Bierhaus, Angelika; Nawroth, Peter P

    2012-01-01

    Psychosocial stress has been shown to be a contributing factor in the development of atherosclerosis. Although the underlying mechanisms have not been elucidated entirely, it has been shown previously that the transcription factor nuclear factor-κB (NF-κB) is an important component of stress-activated signaling pathway. In this study, we aimed to decipher the mechanisms of stress-induced NF-κB-mediated gene expression, using an in vitro and in vivo model of psychosocial stress. Induction of stress led to NF-κB-dependent expression of proinflammatory (tissue factor, intracellular adhesive molecule 1 [ICAM-1]) and protective genes (manganese superoxide dismutase [MnSOD]) via p50, p65 or cRel. Selective inhibition of the different subunits and the respective kinases showed that inhibition of cRel leads to the reduction of atherosclerotic lesions in apolipoprotein−/− (ApoE−/−) mice via suppression of proinflammatory gene expression. This observation may therefore provide a possible explanation for ineffectiveness of antioxidant therapies and suggests that selective targeting of cRel activation may provide a novel approach for the treatment of stress-related inflammatory vascular disease. PMID:23114885

  2. SETDB1 HISTONE METHYLTRANSFERASE REGULATES MOOD-RELATED BEHAVIORS AND EXPRESSION OF THE NMDA RECEPTOR SUBUNIT NR2B

    PubMed Central

    Jiang, Yan; Jakovcevski, Mira; Bharadwaj, Rahul; Connor, Caroline; Schroeder, Frederick A.; Lin, Cong L.; Straubhaar, Juerg; Martin, Gilles; Akbarian, Schahram

    2010-01-01

    Histone methyltransferases specific for the histone H3-lysine 9 (H3K9) residue, including Setdb1 (Set domain, bifurcated 1)/Eset/Kmt1e are associated with repressive chromatin remodeling and expressed in adult brain, but potential effects on neuronal function and behavior remain unexplored. Here, we report that transgenic mice with increased Setdb1 expression in adult forebrain neurons show antidepressant-like phenotypes in behavioral paradigms for anhedonia, despair and learned helplessness. Chromatin immunoprecipitation in conjunction with DNA tiling arrays (ChIP-chip) revealed that genomic occupancies of neuronal Setdb1 are limited to less than 1% of annotated genes, which include the NMDA receptor subunit NR2B/Grin2B and other ionotropic glutamate receptor genes. Chromatin conformation capture (“3C”) and Setdb1-ChIP revealed a loop formation tethering the NR2B/Grin2b promoter to the Setdb1 target site positioned 30Kb downstream of the transcription start site. In hippocampus and ventral striatum, two key structures in the neuronal circuitry regulating mood-related behaviors, Setdb1-mediated repressive histone methylation at NR2B/Grin2b was associated with decreased NR2B expression and EPSP insensitivity to pharmacological blockade of NR2B, and accelerated NMDA receptor desensitization consistent with a shift in NR2A/B subunit ratios. In wildtype mice, systemic treatment with the NR2B antagonist, Ro-256981, and hippocampal siRNA-mediated NR2B/Grin2b knockdown, resulted in behavioral changes similar to those elicited by the Setdb1 transgene. Together, these findings point to a role for neuronal Setdb1 in the regulation of affective and motivational behaviors through repressive chromatin remodeling at a select set of target genes, resulting in altered NMDA receptor subunit composition and other molecular adaptations. PMID:20505083

  3. Ferulic Acid Attenuates the Injury-Induced Decrease of Protein Phosphatase 2A Subunit B in Ischemic Brain Injury

    PubMed Central

    Koh, Phil-Ok

    2013-01-01

    Background Ferulic acid provides a neuroprotective effect during cerebral ischemia through its anti-oxidant function. Protein phosphatase 2A (PP2A) is a serine and threonine phosphatase that contributes broadly to normal brain function. This study investigated whether ferulic acid regulates PP2A subunit B in a middle cerebral artery occlusion (MCAO) animal model and glutamate toxicity-induced neuronal cell death. Methodology/Principal Findings MCAO was surgically induced to yield permanent cerebral ischemic injury in rats. The rats were treated with either vehicle or ferulic acid (100 mg/kg, i.v.) immediately after MCAO, and cerebral cortex tissues were collected 24 h after MCAO. A proteomics approach, RT-PCR, and Western blot analyses performed to identification of PP2A subunit B expression levels. Ferulic acid significantly reduced the MCAO-induced infarct volume of the cerebral cortex. A proteomics approach elucidated the reduction of PP2A subunit B in MCAO-induced animals, and ferulic acid treatment prevented the injury-induced reduction in PP2A subunit B levels. RT-PCR and Western blot analyses also showed that ferulic acid treatment attenuates the injury-induced decrease in PP2A subunit B levels. Moreover, the number of PP2A subunit B-positive cells was reduced in MCAO-induced animals, and ferulic acid prevented these decreases. In cultured neuronal cells, ferulic acid treatment protected cells against glutamate toxicity and prevented the glutamate-induced decrease in PP2A subunit B. Conclusions/Significance These results suggest that the maintenance of PP2A subunit B by ferulic acid in ischemic brain injury plays an important role for the neuroprotective function of ferulic acid. PMID:23349830

  4. Histochemical detection of GM1 ganglioside using cholera toxin-B subunit. Evaluation of critical factors optimal for in situ detection with special emphasis to acetone pre-extraction

    PubMed Central

    Petr, T.; Šmíd, V.; Šmídová, J.; Hůlková, H.; Jirkovská, M.; Elleder, M.; Muchová, L.; Vítek, L.; Šmíd, F.

    2010-01-01

    A comparison of histochemical detection of GM1 ganglioside in cryostat sections using cholera toxin B-subunit after fixation with 4% formaldehyde and dry acetone gave tissue-dependent results. In the liver no pre-treatment showed detectable differences related to GM1 reaction products, while studies in the brain showed the superiority of acetone pre-extraction (followed by formaldehyde), which yielded sharper images compared with the diffuse, blurred staining pattern associated with formaldehyde. Therefore, the aim of our study was to define the optimal conditions for the GM1 detection using cholera toxin B-subunit. Ganglioside extractability with acetone, the ever neglected topic, was tested comparing anhydrous acetone with acetone containing admixture of water. TLC analysis of acetone extractable GM1 ganglioside from liver sections did not exceed 2% of the total GM1 ganglioside content using anhydrous acetone at −20°C, and 4% at room temperature. The loss increased to 30.5% using 9:1 acetone/water. Similarly, photometric analysis of lipid sialic acid, extracted from dried liver homogenates with anhydrous acetone, showed the loss of gangliosides into acetone 3.0±0.3% only. The loss from dried brain homogenate was 9.5±1.1%. Thus, anhydrous conditions (dry tissue samples and anhydrous acetone) are crucial factors for optimal in situ ganglioside detection using acetone pre-treatment. This ensures effective physical fixation, especially in tissues rich in polar lipids (precipitation, prevention of in situ diffusion), and removal of cholesterol, which can act as a hydrophobic blocking barrier. PMID:20558344

  5. Nmd3p Is a Crm1p-Dependent Adapter Protein for Nuclear Export of the Large Ribosomal Subunit

    PubMed Central

    Ho, Jennifer Hei-Ngam; Kallstrom, George; Johnson, Arlen W.

    2000-01-01

    In eukaryotic cells, nuclear export of nascent ribosomal subunits through the nuclear pore complex depends on the small GTPase Ran. However, neither the nuclear export signals (NESs) for the ribosomal subunits nor the receptor proteins, which recognize the NESs and mediate export of the subunits, have been identified. We showed previously that Nmd3p is an essential protein from yeast that is required for a late step in biogenesis of the large (60S) ribosomal subunit. Here, we show that Nmd3p shuttles and that deletion of the NES from Nmd3p leads to nuclear accumulation of the mutant protein, inhibition of the 60S subunit biogenesis, and inhibition of the nuclear export of 60S subunits. Moreover, the 60S subunits that accumulate in the nucleus can be coimmunoprecipitated with the NES-deficient Nmd3p. 60S subunit biogenesis and export of truncated Nmd3p were restored by the addition of an exogenous NES. To identify the export receptor for Nmd3p we show that Nmd3p shuttling and 60S export is blocked by the Crm1p-specific inhibitor leptomycin B. These results identify Crm1p as the receptor for Nmd3p export. Thus, export of the 60S subunit is mediated by the adapter protein Nmd3p in a Crm1p-dependent pathway. PMID:11086007

  6. Ocular myasthenia gravis induced by human acetylcholine receptor ϵ subunit immunization in HLA DR3 transgenic mice.

    PubMed

    Wu, Xiaorong; Tuzun, Erdem; Saini, Shamsher S; Wang, Jun; Li, Jing; Aguilera-Aguirre, Leopoldo; Huda, Ruksana; Christadoss, Premkumar

    2015-12-01

    Extraocular muscles (EOM) are preferentially involved in myasthenia gravis (MG) and acetylcholine receptor (AChR) antibody positive MG patients may occasionally present with isolated ocular symptoms. Although experimental autoimmune myasthenia gravis (EAMG) induced by whole AChR immunization closely mimics clinical and immunopathological aspects of MG, EOM are usually not affected. We have previously developed an EAMG model, which imitates EOM symptoms of MG by immunization of human leukocyte antigen (HLA) transgenic mice with α or γ-subunits of human AChR (H-AChR). To investigate the significance of the ϵ-subunit in ocular MG, we immunized HLA-DR3 and HLA-DQ8 transgenic mice with recombinant H-AChR ϵ-subunit expressed in Escherichia coli. HLA-DR3 transgenic mice showed significantly higher clinical ocular and generalized MG severity scores and lower grip strength values than HLA-DQ8 mice. H-AChR ϵ-subunit-immunized HLA-DR3 transgenic mice had higher serum anti-AChR antibody (IgG, IgG1, IgG2b, IgG2c and IgM) levels, neuromuscular junction IgG and complement deposit percentages than ϵ-subunit-immunized HLA-DQ8 transgenic mice. Control mice immunized with E. coli extract or complete Freund adjuvant (CFA) did not show clinical and immunopathological features of ocular and generalized EAMG. Lymph node cells of ϵ-subunit-immunized HLA-DR3 mice showed significantly higher proliferative responses than those of ϵ-subunit-immunized HLA-DQ8 mice, crude E. coli extract-immunized and CFA-immunized transgenic mice. Our results indicate that the human AChR ϵ-subunit is capable of inducing myasthenic muscle weakness. Diversity of the autoimmune responses displayed by mice expressing different HLA class II molecules suggests that the interplay between HLA class II alleles and AChR subunits might have a profound impact on the clinical course of MG. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  7. Gastric Adenocarcinomas Express the Glycosphingolipid Gb3/CD77: Targeting of Gastric Cancer Cells with Shiga Toxin B-Subunit.

    PubMed

    Geyer, Philipp Emanuel; Maak, Matthias; Nitsche, Ulrich; Perl, Markus; Novotny, Alexander; Slotta-Huspenina, Julia; Dransart, Estelle; Holtorf, Anne; Johannes, Ludger; Janssen, Klaus-Peter

    2016-05-01

    The B-subunit of the bacterial Shiga toxin (STxB), which is nontoxic and has low immunogenicity, can be used for tumor targeting of breast, colon, and pancreatic cancer. Here, we tested whether human gastric cancers, which are among the most aggressive tumor entities, express the cellular receptor of Shiga toxin, the glycosphingolipid globotriaosylceramide (Gb3/CD77). The majority of cases showed an extensive staining for Gb3 (36/50 cases, 72%), as evidenced on tissue sections of surgically resected specimen. Gb3 expression was detected independent of type (diffuse/intestinal), and was negatively correlated to increasing tumor-node-metastasis stages (P = 0.0385), as well as with markers for senescence. Gb3 expression in nondiseased gastric mucosa was restricted to chief and parietal cells at the bottom of the gastric glands, and was not elevated in endoscopic samples of gastritis (n = 10). Gb3 expression in established cell lines of gastric carcinoma was heterogeneous, with 6 of 10 lines being positive, evidenced by flow cytometry. STxB was taken up rapidly by live Gb3-positive gastric cancer cells, following the intracellular retrograde transport route, avoiding lysosomes and rapidly reaching the Golgi apparatus and the endoplasmic reticulum. Treatment of the Gb3-expressing gastric carcinoma cell line St3051 with STxB coupled to SN38, the active metabolite of the topoisomerase type I inhibitor irinotecan, resulted in >100-fold increased cytotoxicity, as compared with irinotecan alone. No cytotoxicity was observed on gastric cancer cell lines lacking Gb3 expression, demonstrating receptor specificity of the STxB-SN38 compound. Thus, STxB is a highly specific transport vehicle for cytotoxic agents in gastric carcinoma. Mol Cancer Ther; 15(5); 1008-17. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. Ephrin-B3 regulates glutamate receptor signaling at hippocampal synapses

    PubMed Central

    Antion, Marcia D.; Christie, Louisa A.; Bond, Allison M.; Dalva, Matthew B.; Contractor, Anis

    2010-01-01

    B-ephrin - EphB receptor signaling modulates NMDA receptors by inducing tyrosine phosphorylation of NR2 subunits. Ephrins and EphB RTKs are localized to postsynaptic compartments in the CA1, and therefore potentially interact in a non-canonical cis-configuration. However, it is not known whether cis- configured receptor-ligand signaling is utilized by this class of RTKs, and whether this might influence excitatory synapses. We found that ablation of ephrin-B3 results in an enhancement of the NMDA receptor component of synaptic transmission relative to the AMPA receptor component in CA1 synapses. Synaptic AMPA receptor expression is reduced in ephrin-B3 knockout mice, and there is a marked enhancement of tyrosine phosphorylation of the NR2B receptor subunit. In a reduced system co-expression of ephrin-B3 attenuated EphB2-mediated NR2B tyrosine phosphorylation. Moreover, phosphorylation of EphB2 was elevated in the hippocampus of ephrin-B3 knockout mice, suggesting that regulation of EphB2 activity is lost in these mice. Direct activation of EphB RTKs resulted in phosphorylation of NR2B and a potential signaling partner, the non-receptor tyrosine kinase Pyk2. Our data suggests that ephrin-B3 limits EphB RTK-mediated phosphorylation of the NR2B subunit through an inhibitory cis- interaction which is required for the correct function of glutamatergic CA1 synapses. PMID:20678574

  9. Identification of verotoxin type 2 variant B subunit genes in Escherichia coli by the polymerase chain reaction and restriction fragment length polymorphism analysis.

    PubMed Central

    Tyler, S D; Johnson, W M; Lior, H; Wang, G; Rozee, K R

    1991-01-01

    A set of synthetic oligonucleotide primers was designed for use in a polymerase chain reaction protocol to specifically detect the B subunit genes in vtx2ha and vtx2hb, which code for the production of the VT2 (Shiga-like toxin II) variant cytotoxins VT2v-a and VT2v-b, respectively. An additional set of primers amplified a fragment common to the B subunits of the VT2 and the VT2 variant genes. Subsequent restriction endonuclease digestion of this amplicon permitted prediction of specific VT2 and variant genotypes on the basis of predetermined restriction fragment length polymorphisms. Genotypes of 21 VT2-producing strains of Escherichia coli were determined using this polymerase chain reaction-restriction fragment length polymorphism procedure. Four strains contained B subunit target sequences only for VT2 genes, 9 strains contained sequences only for VT2v-a genes, and 3 strains contained sequences only for VT2v-b. For genes in combination, one strain contained B subunit genes for both VT2 and VT2v-a and two strains contained B subunit genes for VT2 and VT2v-b. Two strains of E. coli O91:H21 contained both VT2v-a and VT2v-b B subunit genes. The VT2 reference strain of E. coli, E32511, was found to contain the targeted sequences from both VT2 and VT2v-a genes, whereas the recombinant E. coli, pEB1, possessed only that of the VT2 gene. The specific activities of extracellular VT2 determined in HeLa cells ranged from 0.3 to 41.7 TCD50 per microgram of protein in strains carrying the VT2 gene target and from 0 to 50.0 TCD50 per microgram of protein in strains carrying only the VT2 variant target (TCD50 is the tissue culture dose by which 50% of the cells were affected), suggesting that phenotypic expression does not correlate with genotype. Images PMID:1679436

  10. Diversity in genomic organisation, developmental regulation and distribution of the murine PR72/B" subunits of protein phosphatase 2A

    PubMed Central

    Zwaenepoel, Karen; Louis, Justin V; Goris, Jozef; Janssens, Veerle

    2008-01-01

    Background Protein phosphatase 2A (PP2A) is a serine/threonine-specific phosphatase displaying vital functions in growth and development through its role in various signalling pathways. PP2A holoenzymes comprise a core dimer composed of a catalytic C and a structural A subunit, which can associate with a variable B-type subunit. The importance of the B-type subunits for PP2A regulation cannot be overestimated as they determine holoenzyme localisation, activity and substrate specificity. Three B-type subunit families have been identified: PR55/B, PR61/B' and PR72/B", of which the latter is currently the least characterised. Results We deduced the sequences and genomic organisation of the different murine PR72/B" isoforms: three genes encode nine isoforms, five of which are abundantly expressed and give rise to genuine PP2A subunits. Thereby, one novel subunit was identified. Using Northern blotting, we examined the tissue-specific and developmental expression of these subunits. All subunits are highly expressed in heart, suggesting an important cardiac function. Immunohistochemical analysis revealed a striated expression pattern of PR72 and PR130 in heart and skeletal muscle, but not in bladder smooth muscle. The subcellular localisation and cell cycle regulatory ability of several PR72/B" isoforms were determined, demonstrating differences as well as similarities. Conclusion In contrast to PR55/B and PR61/B', the PR72/B" family seems evolutionary more divergent, as only two of the murine genes have a human orthologue. We have integrated these results in a more consistent nomenclature of both human and murine PR72/B" genes and their transcripts/proteins. Our results provide a platform for the future generation of PR72/B" knockout mice. PMID:18715506

  11. Evidence for an unusual transmembrane configuration of AGG3, a class C Gγ subunit of Arabidopsis

    DOE PAGES

    Wolfenstetter, Susanne; Chakravorty, David; Kula, Ryan; ...

    2014-12-22

    Heterotrimeric G proteins are crucial for the perception of external signals and subsequent signal transduction in animal and plant cells. In both model systems, the complex is comprised of one Gα, one Gβ and one Gγ subunit. However, in addition to the canonical Gγ subunits (Class A), plants also possess two unusual, plant-specific classes of Gγ subunits (Classes B and C) not yet found in animals. These include Gγ subunits lacking the C-terminal CaaX motif (Class B) which is important for membrane anchoring of the protein, and thus give rise to a flexible subpopulation of Gβ/γ heterodimers that is notmore » necessarily restricted to the plasma membrane. Even more interesting, plants also contain Class C Gγ subunits which are twice the size of canonical Gγs, with a predicted transmembrane domain, and a large cysteine-rich, extracellular C-terminus. However, neither the presence of the transmembrane domain nor the membrane topology has been unequivocally demonstrated. Finally, we provide compelling evidence that AGG3, a Class C Ggamma subunit of Arabidopsis, contains a functional transmembrane domain, which is sufficient but not essential for plasma membrane localization, and that the cysteine-rich C-terminus is extracellular.« less

  12. Memory in aged mice is rescued by enhanced expression of the GluN2B subunit of the NMDA receptor

    PubMed Central

    Brim, B. L.; Haskell, R.; Awedikian, R.; Ellinwood, N.M.; Jin, L.; Kumar, A.; Foster, T.C.; Magnusson, K.

    2012-01-01

    The GluN2B subunit of the N-methyl-D-aspartate (NMDA) receptor shows age-related declines in expression across the frontal cortex and hippocampus. This decline is strongly correlated to age-related memory declines. This study was designed to determine if increasing GluN2B subunit expression in the frontal lobe or hippocampus would improve memory in aged mice. Mice were injected bilaterally with either the GluN2B vector, containing cDNA specific for the GluN2B subunit and enhanced Green Fluorescent Protein (eGFP); a control vector or vehicle. Spatial memory, cognitive flexibility, and associative memory were assessed using the Morris water maze. Aged mice, with increased GluN2B subunit expression, exhibited improved long-term spatial memory, comparable to young mice. However, memory was rescued on different days in the Morris water maze; early for hippocampal GluN2B subunit enrichment and later for the frontal lobe. A higher concentration of the GluN2B antagonist, Ro 25-6981, was required to impair long-term spatial memory in aged mice with enhanced GluN2B expression, as compared to aged controls, suggesting there was an increase in the number of GluN2B-containing NMDA receptors. In addition, hippocampal slices from aged mice with increased GluN2B subunit expression exhibited enhanced NMDA receptor-mediated excitatory post-synaptic potentials (EPSP). Treatment with Ro 25-6981 showed that a greater proportion of the NMDA receptor-mediated EPSP was due to the GluN2B subunit in these animals, as compared to aged controls. These results suggest that increasing the production of the GluN2B subunit in aged animals enhances memory and synaptic transmission. Therapies that enhance GluN2B subunit expression within the aged brain may be useful for ameliorating age-related memory declines. PMID:23103326

  13. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistancemore » in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.« less

  14. The NF-κB Subunit c-Rel Stimulates Cardiac Hypertrophy and Fibrosis

    PubMed Central

    Gaspar-Pereira, Silvia; Fullard, Nicola; Townsend, Paul A.; Banks, Paul S.; Ellis, Elizabeth L.; Fox, Christopher; Maxwell, Aidan G.; Murphy, Lindsay B.; Kirk, Adam; Bauer, Ralf; Caamaño, Jorge H.; Figg, Nichola; Foo, Roger S.; Mann, Jelena; Mann, Derek A.; Oakley, Fiona

    2012-01-01

    Cardiac remodeling and hypertrophy are the pathological consequences of cardiovascular disease and are correlated with its associated mortality. Activity of the transcription factor NF-κB is increased in the diseased heart; however, our present understanding of how the individual subunits contribute to cardiovascular disease is limited. We assign a new role for the c-Rel subunit as a stimulator of cardiac hypertrophy and fibrosis. We discovered that c-Rel-deficient mice have smaller hearts at birth, as well as during adulthood, and are protected from developing cardiac hypertrophy and fibrosis after chronic angiotensin infusion. Results of both gene expression and cross-linked chromatin immunoprecipitation assay analyses identified transcriptional activators of hypertrophy, myocyte enhancer family, Gata4, and Tbx proteins as Rel gene targets. We suggest that the p50 subunit could limit the prohypertrophic actions of c-Rel in the normal heart, because p50 overexpression in H9c2 cells repressed c-Rel levels and the absence of cardiac p50 was associated with increases in both c-Rel levels and cardiac hypertrophy. We report for the first time that c-Rel is highly expressed and confined to the nuclei of diseased adult human hearts but is restricted to the cytoplasm of normal cardiac tissues. We conclude that c-Rel-dependent signaling is critical for both cardiac remodeling and hypertrophy. Targeting its activities could offer a novel therapeutic strategy to limit the effects of cardiac disease. PMID:22210479

  15. Serological reactivity of patients with Echinococcus infections (E. granulosus, E. vogeli, and E. multilocularis) against three antigen B subunits.

    PubMed

    de la Rue, Mário L; Yamano, Kimiaki; Almeida, Cybele E; Iesbich, Margarete P; Fernandes, Cloé D; Goto, Akiko; Kouguchi, Hirokazu; Takahashi, Kenichi

    2010-02-01

    In serodiagnosis of cystic echinococcosis (CE) by Echinococcus granulosus infection, antigen B (AgB) has been utilized worldwide. However, it is known that about 40% of sera with alveolar echinococcosis (AE) by Echinococcus multilocularis infection recognize AgB. Furthermore, cross-reaction against AgB was also reported in sera from polycystic echinococcosis (PE) patients with Echinococcus vogeli infection. These findings indicate that AgB is widely common to the genus Echinococcus. On the other hand, AgB has several subunits, which are composed of the smallest 8-kDa subunit. In this study, reactivities of patient sera with three kinds of Echinococcus infections (CE, PE, and AE) were compared simultaneously under the same condition against three subunits of AgB (8, 16, and 24 kDa). Many articles have referred the fundamental 8- kDa subunit as a diagnostic antigen for CE. However, the reactivity for the 8-kDa subunit of the CE patient was not so high (47.7%) in this study. Furthermore, there are many cases in which serum of patients with PE or AE also recognizes this subunit (66.7% in PE; 45.9% in AE). AgB is effective for the detection of the genus Echinococcus infections, but it does not have high species specificity. Therefore, we need to pay attention to cross-reaction in serodiagnosis of CE in areas where plural species coexist.

  16. Ciliary targeting of olfactory CNG channels requires the CNGB1b subunit and the kinesin-2 motor protein, KIF17.

    PubMed

    Jenkins, Paul M; Hurd, Toby W; Zhang, Lian; McEwen, Dyke P; Brown, R Lane; Margolis, Ben; Verhey, Kristen J; Martens, Jeffrey R

    2006-06-20

    Nonmotile cilia on olfactory sensory neurons (OSNs) compartmentalize signaling molecules, including odorant receptors and cyclic nucleotide-gated (CNG) channels, allowing for efficient, spatially confined responses to sensory stimuli . Little is known about the mechanisms of the ciliary targeting of olfactory CNG channels, composed of three subunits: CNGA2, CNGA4, and CNGB1b . Recent reports suggest that subunit composition of the retinal CNG channel influences localization, leading to disease . However, the mechanistic role of subunits in properly targeting native olfactory CNG channels remains unclear. Here, we show that heteromeric assembly with CNGB1b, containing a critical carboxy-terminal motif (RVxP), is required for ciliary trafficking of olfactory CNG channels. Movement of proteins within the cilia is governed by intraflagellar transport (IFT), a process that facilitates bidirectional movement of cargo along microtubules. Work in C. elegans has established that heterotrimeric and homodimeric kinesin-2 family members play a critical role in anterograde transport . In mammalian systems, the heterotrimeric KIF3a/KIF3b/KAP-3 complex plays a clear role in IFT; however, no role has been established for KIF17, the mammalian homolog of OSM-3 . Here, we demonstrate that KIF17 is required for olfactory CNG channel targeting, providing novel insights into mechanisms of mammalian ciliary transport.

  17. The 11S Proteasome Subunit PSME3 Is a Positive Feedforward Regulator of NF-κB and Important for Host Defense against Bacterial Pathogens.

    PubMed

    Sun, Jinxia; Luan, Yi; Xiang, Dong; Tan, Xiao; Chen, Hui; Deng, Qi; Zhang, Jiaojiao; Chen, Minghui; Huang, Hongjun; Wang, Weichao; Niu, Tingting; Li, Wenjie; Peng, Hu; Li, Shuangxi; Li, Lei; Tang, Wenwen; Li, Xiaotao; Wu, Dianqing; Wang, Ping

    2016-02-02

    The NF-κB pathway plays important roles in immune responses. Although its regulation has been extensively studied, here, we report an unknown feedforward mechanism for the regulation of this pathway by Toll-like receptor (TLR) ligands in macrophages. During bacterial infections, TLR ligands upregulate the expression of the 11S proteasome subunit PSME3 via NF-κB-mediated transcription in macrophages. PSME3, in turn, enhances the transcriptional activity of NF-κB by directly binding to and destabilizing KLF2, a negative regulator of NF-κB transcriptional activity. Consistent with this positive role of PSME3 in NF-κB regulation and importance of the NF-κB pathway in host defense against bacterial infections, the lack of PSME3 in hematopoietic cells renders the hosts more susceptible to bacterial infections, accompanied by increased bacterial burdens in host tissues. Thus, this study identifies a substrate for PSME3 and elucidates a proteolysis-dependent, but ubiquitin-independent, mechanism for NF-κB regulation that is important for host defense and innate immunity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Purification and properties of the heterogeneous subunits of elongation factor EF-1 from Guerin epithelioma cells.

    PubMed

    Marcinkiewicz, C; Gajko, A; Gałasiński, W

    1991-01-01

    Elongation factor EF-1 from Guerin epithelioma was separated into two subunit forms EF-1A and EF-1B by chromatography in the presence of 25% glycerol, successively on CM-Sephadex and DEAE-Sephadex. It was shown that EF-1A is a thermolabile, single polypeptide which catalyses the binding of aminoacyl-tRNA to ribosomes, similarly as eukaryotic EF-1 alpha or prokaryotic EF-Tu. EF-1B was characterized as a complex composed of at least two polypeptides. One of them is EF-1A, the other EF-1C, which stimulates EF-1A activity and protects this elongation factor from thermal inactivation.

  19. Crystal structure of the 25 kDa subunit of human cleavage factor Im

    PubMed Central

    Coseno, Molly; Martin, Georges; Berger, Christopher; Gilmartin, Gregory; Keller, Walter; Doublié, Sylvie

    2008-01-01

    Cleavage factor Im is an essential component of the pre-messenger RNA 3′-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein–protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic α/β/α fold and a conserved catalytic sequence or Nudix box. We present here the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Å, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3′-end processing. PMID:18445629

  20. Zinc-induced Self-association of Complement C3b and Factor H

    PubMed Central

    Nan, Ruodan; Tetchner, Stuart; Rodriguez, Elizabeth; Pao, Po-Jung; Gor, Jayesh; Lengyel, Imre; Perkins, Stephen J.

    2013-01-01

    The sub-retinal pigment epithelial deposits that are a hallmark of age-related macular degeneration contain both C3b and millimolar levels of zinc. C3 is the central protein of complement, whereas C3u is formed by the spontaneous hydrolysis of the thioester bridge in C3. During activation, C3 is cleaved to form active C3b, then C3b is inactivated by Factor I and Factor H to form the C3c and C3d fragments. The interaction of zinc with C3 was quantified using analytical ultracentrifugation and x-ray scattering. C3, C3u, and C3b associated strongly in >100 μm zinc, whereas C3c and C3d showed weak association. With zinc, C3 forms soluble oligomers, whereas C3u and C3b precipitate. We conclude that the C3, C3u, and C3b association with zinc depended on the relative positions of C3d and C3c in each protein. Computational predictions showed that putative weak zinc binding sites with different capacities exist in all five proteins, in agreement with experiments. Factor H forms large oligomers in >10 μm zinc. In contrast to C3b or Factor H alone, the solubility of the central C3b-Factor H complex was much reduced at 60 μm zinc and even more so at >100 μm zinc. The removal of the C3b-Factor H complex by zinc explains the reduced C3u/C3b inactivation rates by zinc. Zinc-induced precipitation may contribute to the initial development of sub-retinal pigment epithelial deposits in the retina as well as reducing the progression to advanced age-related macular degeneration in higher risk patients. PMID:23661701

  1. Cardiolipin deficiency causes a dissociation of the b 6 c:caa 3 megacomplex in B. subtilis membranes.

    PubMed

    García Montes de Oca, Led Yered Jafet; Cabellos Avelar, Tecilli; Picón Garrido, Gerardo Ignacio; Chagoya-López, Alicia; González de la Vara, Luis; Delgado Buenrostro, Norma Laura; Chirino-López, Yolanda Irasema; Gómez-Lojero, Carlos; Gutiérrez-Cirlos, Emma Berta

    2016-08-01

    The associations among respiratory complexes in energy-transducing membranes have been established. In fact, it is known that the Gram-negative bacteria Paracoccus denitrificans and Escherichia coli have respiratory supercomplexes in their membranes. These supercomplexes are important for channeling substrates between enzymes in a metabolic pathway, and the assembly of these supercomplexes depends on the protein subunits and membrane lipids, mainly cardiolipin, which is present in both the mitochondrial inner membrane and bacterial membranes. The Gram-positive bacterium Bacillus subtilis has a branched respiratory chain, in which some complexes generate proton motive force whereas others constitute an escape valve of excess reducing power. Some peculiarities of this respiratory chain are the following: a type II NADH dehydrogenase, a unique b 6 c complex that has a b 6 type cytochrome with a covalently bound heme, and a c-type heme attached to the third subunit, which is similar to subunit IV of the photosynthetic b 6 f complex. Cytochrome c oxygen reductase (caa 3 ) contains a c-type cytochrome on subunit I. We previously showed that the b 6 c and the caa 3 complexes form a supercomplex. Both the b 6 c and the caa 3 together with the quinol oxygen reductase aa 3 generate the proton motive force in B. subtilis. In order to seek proof that this supercomplex is important for bacterial growth in aerobic conditions we compared the b 6 c: caa 3 supercomplex from wild type membranes with membranes from two mutants lacking cardiolipin. Both mutant complexes were found to have similar activity and heme content as the wild type. Clear native electrophoresis showed that mutants lacking cardiolipin had b 6 c:caa 3 supercomplexes of lower mass or even individual complexes after membrane solubilization with digitonin. The use of dodecyl maltoside revealed a more evident difference between wild-type and mutant supercomplexes. Here we provide evidence showing that cardiolipin

  2. Chalepin: A Compound from Ruta angustifolia L. Pers Exhibits Cell Cycle Arrest at S phase, Suppresses Nuclear Factor-Kappa B (NF-κB) Pathway, Signal Transducer and Activation of Transcription 3 (STAT3) Phosphorylation and Extrinsic Apoptotic Pathway in Non-small Cell Lung Cancer Carcinoma (A549).

    PubMed

    Richardson, Jaime Stella Moses; Aminudin, Norhaniza; Abd Malek, Sri Nurestri

    2017-10-01

    transducer and activation of transcription 3, and extrinsic apoptotic pathway and also its ability to arrest cell cycle in S phase. This compound was from the leaves of Ruta angustifolia L. Pers. It provides new insight on the ability of this plant in suppressing certain cancers, especially the nonsmall cell lung carcinoma according to this study. Abbreviations used: °C: Degree Celsius, ANOVA: Analysis of variance, ATCC: American Type Culture Collection, BCL-2: B-Cell CLL/Lymphoma 2, Bcl-xL: B-cell lymphoma extra-large, BH3: Bcl-2 homology 3, BID: BH3-interacting domain death agonist, BIR: Baculovirus inhibitor of apoptosis protein repeat, Caspases: Cysteinyl aspartate-specific proteases, CDK: Cyclin-dependent kinase, CO 2 : Carbon dioxide, CST: Cell signaling technologies, DISC: Death-inducing signaling complex, DMSO: Dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DR4: Death receptor 4, DR5: Death receptor 5, E1a: Adenovirus early region 1A, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, etc.: Etcetera, FADD: Fas-associated protein with death domain, FBS: Fetal bovine serum, FITC: Fluorescein isothiocyanate, G1: Gap 1, G2: Gap 2, HPLC: High-performance liquid chromatography, HRP: Horseradish peroxidase, IAPs: Inhibitor of apoptosis proteins, IC50: Inhibitory concentration at half maximal inhibitory, IKK-α: Inhibitor of nuclear factor kappa-B kinase subunit alpha, IKK-β: Inhibitor of nuclear factor kappa-B kinase subunit beta, IKK-γ: Inhibitor of nuclear factor kappa-B kinase subunit gamma, IKK: IκB kinase, IkBα: Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, m: Meter, M: Mitotic, mm: Millimeter, mRNA: Messenger ribonucleic acid, NaCl: Sodium chloride, NaVO4: Sodium orthovanadate, NEMO: NF-Kappa-B essential modulator, NF-κB: Nuclear factor kappa-light chain-enhancer of activated B cells, NSCLC: Nonsmall cell lung carcinoma, PBS: Phosphate buffered saline, PGE2

  3. Development and preclinical evaluation of safety and immunogenicity of an oral ETEC vaccine containing inactivated E. coli bacteria overexpressing colonization factors CFA/I, CS3, CS5 and CS6 combined with a hybrid LT/CT B subunit antigen, administered alone and together with dmLT adjuvant.

    PubMed

    Holmgren, J; Bourgeois, L; Carlin, N; Clements, J; Gustafsson, B; Lundgren, A; Nygren, E; Tobias, J; Walker, R; Svennerholm, A-M

    2013-05-07

    A first-generation oral inactivated whole-cell enterotoxigenic Escherichia coli (ETEC) vaccine, comprising formalin-killed ETEC bacteria expressing different colonization factor (CF) antigens combined with cholera toxin B subunit (CTB), when tested in phase III studies did not significantly reduce overall (generally mild) ETEC diarrhea in travelers or children although it reduced more severe ETEC diarrhea in travelers by almost 80%. We have now developed a novel more immunogenic ETEC vaccine based on recombinant non-toxigenic E. coli strains engineered to express increased amounts of CF antigens, including CS6 as well as an ETEC-based B subunit protein (LCTBA), and the optional combination with a nontoxic double-mutant heat-labile toxin (LT) molecule (dmLT) as an adjuvant. Two test vaccines were prepared under GMP: (1) A prototype E. coli CFA/I-only formalin-killed whole-cell+LCTBA vaccine, and (2) A "complete" inactivated multivalent ETEC-CF (CFA/I, CS3, CS5 and CS6 antigens) whole-cell+LCTBA vaccine. These vaccines, when given intragastrically alone or together with dmLT in mice, were well tolerated and induced strong intestinal-mucosal IgA antibody responses as well as serum IgG and IgA responses to each of the vaccine CF antigens as well as to LT B subunit (LTB). Both mucosal and serum responses were further enhanced (adjuvanted) when the vaccines were co-administered with dmLT. We conclude that the new multivalent oral ETEC vaccine, both alone and especially in combination with the dmLT adjuvant, shows great promise for further testing in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Neutralizing activity and protective immunity to ricin toxin conferred by B subunit (RTB)-specific Fab fragments.

    PubMed

    Yermakova, Anastasiya; Mantis, Nicholas J

    2013-09-01

    SylH3 and 24B11 are murine monoclonal antibodies directed against different epitopes on ricin toxin's binding (RTB) subunit that have been shown to passively protect mice against ricin challenge. Here we report that Fab fragments of SylH3 and 24B11 neutralize ricin in a cell based assay, and in a mouse challenge model as effectively as their respective full length parental IgGs. These data demonstrate that immunity to ricin can occur independent of Fc-mediated clearance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Assembly of the stator in Escherichia coli ATP synthase. Complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha

    PubMed Central

    Senior, Alan E.; Muharemagi, Alma; Wilke-Mounts, Susan

    2008-01-01

    Alpha subunit of Escherichia coli ATP synthase was expressed with a C-terminal 6-His tag and purified. Pure alpha was monomeric, competent in nucleotide binding, and had normal N-terminal sequence. In F1-subunit dissociation/reassociation experiments it supported full reconstitution of ATPase, and reassociated complexes were able to bind to F1-depleted membranes with restoration of ATP-driven proton pumping. Therefore interaction between the stator delta subunit and the N-terminal residue 1-22 region of alpha occurred normally when pure alpha was complexed with other F1 subunits. On the other hand, three different types of experiment showed that no interaction occurred between pure delta and isolated alpha subunit. Unlike in F1, the N-terminal region of isolated alpha was not susceptible to trypsin cleavage. Therefore, during assembly of ATP synthase, complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. We suggest that the N-terminal 1-22 residues of alpha are sequestered in isolated alpha until released by binding of beta to alpha subunit. This prevents 1/1 delta/alpha complexes from forming, and provides a satisfactory explanation of the stoichiometry of one delta per three alpha seen in the F1 sector of ATP synthase, assuming that steric hindrance prevents binding of more than one delta to the alpha3/beta3 hexagon. The cytoplasmic fragment of the b subunit (bsol) did not bind to isolated alpha. It might also be that complexation of alpha with beta subunits is prerequisite for direct binding of stator b subunit to the F1-sector. PMID:17176112

  6. Anti-Factor B and Anti-C3b Autoantibodies in C3 Glomerulopathy and Ig-Associated Membranoproliferative GN

    PubMed Central

    Marinozzi, Maria Chiara; Roumenina, Lubka T.; Chauvet, Sophie; Hertig, Alexandre; Bertrand, Dominique; Olagne, Jérome; Frimat, Marie; Ulinski, Tim; Deschênes, Georges; Burtey, Stephane; Delahousse, Michel; Moulin, Bruno; Legendre, Christophe

    2017-01-01

    In C3 glomerulopathy (C3G), the alternative pathway of complement is frequently overactivated by autoantibodies that stabilize the C3 convertase C3bBb. Anti-C3b and anti-factor B (anti-FB) IgG have been reported in three patients with C3G. We screened a cohort of 141 patients with C3G and Ig-associated membranoproliferative GN (Ig-MPGN) for anti-FB and anti-C3b autoantibodies using ELISA. We identified seven patients with anti-FB IgG, three patients with anti-C3b IgG, and five patients with anti-FB and anti-C3b IgG. Of these 15 patients, ten were diagnosed with Ig-MPGN. Among those patients with available data, 92% had a nephrotic syndrome, 64% had AKI, and 67% had a documented infection. Patients negative for anti-C3b and anti-FB IgG had much lower rates of infection (17 [25%] patients with C3G and one [10%] patient with Ig-MPGN). After 48 months, four of 15 (26%) positive patients had developed ESRD or died. All 15 patients had high plasma Bb levels, six (40%) patients had low levels of C3, and nine (60%) patients had high levels of soluble C5b9. In vitro, IgG purified from patients with anti-FB Abs selectively enhanced C3 convertase activity; IgG from patients with anti-C3b/anti-FB Abs enhanced C3 and C5 cleavage. IgG from patients with anti-C3b Abs stabilized C3bBb and perturbed C3b binding to complement receptor 1 but did not perturb binding to factor H. In conclusion, the prevalence of anti-C3b/anti-FB Abs and alternative pathway activation is similar in Ig-MPGN and C3G, suggesting similar pathogenic mechanisms. Identification of the underlying defect in Ig-MPGN could lead to improved treatment. PMID:28096309

  7. Designing B- and T-cell multi-epitope based subunit vaccine using immunoinformatics approach to control Zika virus infection.

    PubMed

    Kumar Pandey, Rajan; Ojha, Rupal; Mishra, Amit; Kumar Prajapati, Vijay

    2018-06-14

    The Zika virus is a rapidly spreading Aedes mosquito-borne sickness, which creates an unanticipated linkage birth deformity and neurological turmoil. This study represents the use of the combinatorial immunoinformatics approach to develop a multiepitope subunit vaccine using the structural and nonstructural proteins of the Zika virus. The designed subunit vaccine consists of cytotoxic T-lymphocyte and helper T-lymphocyte epitopes accompanied by suitable adjuvant and linkers. The presence of humoral immune response specific B-cell epitopes was also confirmed by B-cell epitope mapping among vaccine protein. Further, the vaccine protein was characterized for its allergenicity, antigenicity, and physiochemical parameters and found to be safe and immunogenic. Molecular docking and molecular dynamics studies of the vaccine protein with the toll-like receptor-3 were performed to ensure the binding affinity and stability of their complex. Finally, in silico cloning was performed for the effective expression of vaccine construct in the microbial system (Escherichia coli K12 strain). Aforementioned approaches result in the multiepitope subunit vaccine which may have the ability to induce cellular as well as humoral immune response. Moreover, this study needs the experimental validation to prove the immunogenic and protective behavior of the developed subunit vaccine. © 2018 Wiley Periodicals, Inc., A Wiley Company.

  8. Measuring Positive Cooperativity Using the Direct ESI-MS Assay. Cholera Toxin B Subunit Homopentamer Binding to GM1 Pentasaccharide

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Kitova, Elena N.; Klassen, John S.

    2014-01-01

    Direct electrospray ionization mass spectrometry (ESI-MS) assay was used to investigate the stepwise binding of the GM1 pentasaccharide β- D-Gal p-(1→3)-β-D-Gal pNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β- D-Gal p-(1→4)-β-D-Glc p (GM1os) to the cholera toxin B subunit homopentamer (CTB5) and to establish conclusively whether GM1os binding is cooperative. Apparent association constants were measured for the stepwise addition of one to five GM1os to CTB5 at pH 6.9 and 22 °C. The intrinsic association constant, which was established from the apparent association constant for the addition of a single GM1os to CTB5, was found to be (3.2 ± 0.2) × 106 M-1. This is in reasonable agreement with the reported value of (6.4 ± 0.3) × 106 M-1, which was measured at pH 7.4 and 25 °C using isothermal titration calorimetry (ITC). Analysis of the apparent association constants provides direct and unambiguous evidence that GM1os binding exhibits small positive cooperativity. Binding was found to be sensitive to the number of ligand-bound nearest neighbor subunits, with the affinities enhanced by a factor of 1.7 and 2.9 when binding occurs next to one or two ligand-bound subunits, respectively. These findings, which provide quantitative support for the binding model proposed by Homans and coworkers [14], highlight the unique strengths of the direct ESI-MS assay for measuring cooperative ligand binding.

  9. Activity-dependent control of NMDA receptor subunit composition at hippocampal mossy fibre synapses.

    PubMed

    Carta, Mario; Srikumar, Bettadapura N; Gorlewicz, Adam; Rebola, Nelson; Mulle, Christophe

    2018-02-15

    CA3 pyramidal cells display input-specific differences in the subunit composition of synaptic NMDA receptors (NMDARs). Although at low density, GluN2B contributes significantly to NMDAR-mediated EPSCs at mossy fibre synapses. Long-term potentiation (LTP) of NMDARs triggers a modification in the subunit composition of synaptic NMDARs by insertion of GluN2B. GluN2B subunits are essential for the expression of LTP of NMDARs at mossy fibre synapses. Single neurons express NMDA receptors (NMDARs) with distinct subunit composition and biophysical properties that can be segregated in an input-specific manner. The dynamic control of the heterogeneous distribution of synaptic NMDARs is crucial to control input-dependent synaptic integration and plasticity. In hippocampal CA3 pyramidal cells from mice of both sexes, we found that mossy fibre (MF) synapses display a markedly lower proportion of GluN2B-containing NMDARs than associative/commissural synapses. The mechanism involved in such heterogeneous distribution of GluN2B subunits is not known. Here we show that long-term potentiation (LTP) of NMDARs, which is selectively expressed at MF-CA3 pyramidal cell synapses, triggers a modification in the subunit composition of synaptic NMDARs by insertion of GluN2B. This activity-dependent recruitment of GluN2B at mature MF-CA3 pyramidal cell synapses contrasts with the removal of GluN2B subunits at other glutamatergic synapses during development and in response to activity. Furthermore, although expressed at low levels, GluN2B is necessary for the expression of LTP of NMDARs at MF-CA3 pyramidal cell synapses. Altogether, we reveal a previously unknown activity-dependent regulation and function of GluN2B subunits that may contribute to the heterogeneous plasticity induction rules in CA3 pyramidal cells. © 2017 Centre Nationnal de la Recherche Scientifique. The Journal of Physiology © 2017 The Physiological Society.

  10. Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth.

    PubMed

    Loveday, Chey; Tatton-Brown, Katrina; Clarke, Matthew; Westwood, Isaac; Renwick, Anthony; Ramsay, Emma; Nemeth, Andrea; Campbell, Jennifer; Joss, Shelagh; Gardner, McKinlay; Zachariou, Anna; Elliott, Anna; Ruark, Elise; van Montfort, Rob; Rahman, Nazneen

    2015-09-01

    Overgrowth syndromes comprise a group of heterogeneous disorders characterised by excessive growth parameters, often in association with intellectual disability. To identify new causes of human overgrowth, we have been undertaking trio-based exome sequencing studies in overgrowth patients and their unaffected parents. Prioritisation of functionally relevant genes with multiple unique de novo mutations revealed four mutations in protein phosphatase 2A (PP2A) regulatory subunit B family genes protein phosphatase 2, regulatory Subunit B', beta (PPP2R5B); protein phosphatase 2, regulatory Subunit B', gamma (PPP2R5C); and protein phosphatase 2, regulatory Subunit B', delta (PPP2R5D). This observation in 3 related genes in 111 individuals with a similar phenotype is greatly in excess of the expected number, as determined from gene-specific de novo mutation rates (P = 1.43 × 10(-10)). Analysis of exome-sequencing data from a follow-up series of overgrowth probands identified a further pathogenic mutation, bringing the total number of affected individuals to 5. Heterozygotes shared similar phenotypic features including increased height, increased head circumference and intellectual disability. The mutations clustered within a region of nine amino acid residues in the aligned protein sequences (P = 1.6 × 10(-5)). We mapped the mutations onto the crystal structure of the PP2A holoenzyme complex to predict their molecular and functional consequences. These studies suggest that the mutations may affect substrate binding, thus perturbing the ability of PP2A to dephosphorylate particular protein substrates. PP2A is a major negative regulator of v-akt murine thymoma viral oncogene homolog 1 (AKT). Thus, our data further expand the list of genes encoding components of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signalling cascade that are disrupted in human overgrowth conditions. © The Author 2015. Published by Oxford University Press.

  11. Functional Role of N- and C-Terminal Amino Acids in the Structural Subunits of Colonization Factor CS6 Expressed by Enterotoxigenic Escherichia coli

    PubMed Central

    Debnath, Anusuya; Sabui, Subrata; Wajima, Takeaki; Hamabata, Takashi; Banerjee, Rajat

    2016-01-01

    ABSTRACT CS6 is a common colonization factor expressed by enterotoxigenic Escherichia coli. It is a two-subunit protein consisting of CssA and CssB in an equal stoichiometry, assembled via the chaperone-usher pathway into an afimbrial, oligomeric assembly on the bacterial cell surface. A recent structural study has predicted the involvement of the N- and C-terminal regions of the CS6 subunits in its assembly. Here, we identified the functionally important residues in the N- and C-terminal regions of the CssA and CssB subunits during CS6 assembly by alanine scanning mutagenesis. Bacteria expressing mutant proteins were tested for binding with Caco-2 cells, and the results were analyzed with respect to the surface expression of mutant CS6. In this assay, many mutant proteins were not expressed on the surface while some showed reduced expression. It appeared that some, but not all, of the residues in both the N and C termini of CssA and CssB played an important role in the intermolecular interactions between these two structural subunits, as well as chaperone protein CssC. Our results demonstrated that T20, K25, F27, S36, Y143, and V147 were important for the stability of CssA, probably through interaction of CssC. We also found that I22, V29, and I33 of CssA and G154, Y156, L160, V162, F164, and Y165 of CssB were responsible for CssA-CssB intermolecular interactions. In addition, some of the hydrophobic residues in the C terminus of CssA and the N terminus of CssB were involved in the stabilization of higher-order complex formation. Overall, the results presented here might help in understanding the pathway used to assemble CS6 and predict its structure. IMPORTANCE Unlike most other colonization factors, CS6 is nonfimbrial, and in a sense, its subunit composition and assembly are also unique. Here we report that both the N- and C-terminal amino acid residues of CssA and CssB play a critical role in the intermolecular interactions between them and assembly proteins

  12. Identification of a new adapter protein that may link the common beta subunit of the receptor for granulocyte/macrophage colony-stimulating factor, interleukin (IL)-3, and IL-5 to phosphatidylinositol 3-kinase.

    PubMed

    Jücker, M; Feldman, R A

    1995-11-17

    Binding of human granulocyte/macrophage colony-stimulating factor (hGM-CSF) to its receptor induces the rapid activation of phosphatidylinositol-3 kinase (PI 3-kinase). As hGM-CSF receptor (hGMR) does not contain a consensus sequence for binding of PI 3-kinase, hGMR must use a distinct mechanism for its association with and activation of PI 3-kinase. Here, we describe the identification of a tyrosine-phosphorylated protein of 76-85 kDa (p80) that associates with the common beta subunit of hGMR and with the SH2 domains of the p85 subunit of PI 3-kinase in hGM-CSF-stimulated cells. Src/Yes and Lyn were tightly associated with the p80.PI 3-kinase complex, suggesting that p80 and other phosphotyrosyl proteins present in the complex were phosphorylated by Src family kinases. Tyrosine phosphorylation of p80 was only detected in hGM-CSF or human interleukin-3-stimulated cells, suggesting that activation of p80 might be specific for signaling via the common beta subunit. We postulate that p80 functions as an adapter protein that may participate in linking the hGM-CSF receptor to the PI 3-kinase signaling pathway.

  13. Molecular weights and subunit structure of LamB proteins.

    PubMed

    Nakae, T; Ishii, J N

    1982-01-01

    Phage lambda-receptor proteins of Escherichia coli, LamB proteins, form oligomeric aggregates to build transmembrane diffusion pores selective for maltose and maltodextrins. The molecular weights (MW) of functional oligomers as well as dissociated monomers were determined by sedimentation equilibrium analysis in homogeneous non-ionic surfactant and deuterium oxide and in 6 M guanidine-HCl, respectively. The MW of oligomers and monomers appeared as 135 600 and 45 900, respectively. Thus, functional Lamb proteins consisted of three identical subunits.

  14. Crystal Structure of the 25 kDa Subunit of Human Cleavage Factor I{m}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coseno,M.; Martin, G.; Berger, C.

    Cleavage factor Im is an essential component of the pre-messenger RNA 3'-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein-protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic {alpha}/{beta}/{alpha} fold and a conserved catalytic sequence or Nudix box. We present heremore » the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Angstroms, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3'-end processing.« less

  15. Functional Characterization of the Role of the N-terminal Domain of the c/Nip1 Subunit of Eukaryotic Initiation Factor 3 (eIF3) in AUG Recognition*

    PubMed Central

    Karásková, Martina; Gunišová, Stanislava; Herrmannová, Anna; Wagner, Susan; Munzarová, Vanda; Valášek, Leoš Shivaya

    2012-01-01

    In eukaryotes, for a protein to be synthesized, the 40 S subunit has to first scan the 5′-UTR of the mRNA until it has encountered the AUG start codon. Several initiation factors that ensure high fidelity of AUG recognition were identified previously, including eIF1A, eIF1, eIF2, and eIF5. In addition, eIF3 was proposed to coordinate their functions in this process as well as to promote their initial binding to 40 S subunits. Here we subjected several previously identified segments of the N-terminal domain (NTD) of the eIF3c/Nip1 subunit, which mediates eIF3 binding to eIF1 and eIF5, to semirandom mutagenesis to investigate the molecular mechanism of eIF3 involvement in these reactions. Three major classes of mutant substitutions or internal deletions were isolated that affect either the assembly of preinitiation complexes (PICs), scanning for AUG, or both. We show that eIF5 binds to the extreme c/Nip1-NTD (residues 1–45) and that impairing this interaction predominantly affects the PIC formation. eIF1 interacts with the region (60–137) that immediately follows, and altering this contact deregulates AUG recognition. Together, our data indicate that binding of eIF1 to the c/Nip1-NTD is equally important for its initial recruitment to PICs and for its proper functioning in selecting the translational start site. PMID:22718758

  16. Protein Kinase B Activation and Lamellipodium Formation Are Independent Phosphoinositide 3-Kinase-Mediated Events Differentially Regulated by Endogenous Ras

    PubMed Central

    van Weering, David H. J.; de Rooij, Johan; Marte, Barbara; Downward, Julian; Bos, Johannes L.; Burgering, Boudewijn M. T.

    1998-01-01

    Regulation of phosphoinositide 3-kinase (PI 3-kinase) can occur by binding of the regulatory p85 subunit to tyrosine-phosphorylated proteins and by binding of the p110 catalytic subunit to activated Ras. However, the way in which these regulatory mechanisms act to regulate PI 3-kinase in vivo is unclear. Here we show that several growth factors (basic fibroblast growth factor [bFGF], platelet-derived growth factor [PDGF], and epidermal growth factor [EGF; to activate an EGF receptor-Ret chimeric receptor]) all activate PI 3-kinase in vivo in the neuroectoderm-derived cell line SKF5. However, these growth factors differ in their ability to activate PI 3-kinase-dependent signaling. PDGF and EGF(Ret) treatment induced PI 3-kinase-dependent lamellipodium formation and protein kinase B (PKB) activation. In contrast, bFGF did not induce lamellipodium formation but activated PKB, albeit to a small extent. PDGF and EGF(Ret) stimulation resulted in binding of p85 to tyrosine-phosphorylated proteins and strong Ras activation. bFGF, however, induced only strong activation of Ras. In addition, while RasAsn17 abolished bFGF activation of PKB, PDGF- and EGF(Ret)-induced PKB activation was only partially inhibited and lamellipodium formation was unaffected. Interestingly, in contrast to activation of only endogenous Ras (bFGF), ectopic expression of activated Ras did result in lamellipodium formation. From this we conclude that, in vivo, p85 and Ras synergize to activate PI 3-kinase and that strong activation of only endogenous Ras exerts a small effect on PI 3-kinase activity, sufficient for PKB activation but not lamellipodium formation. This differential sensitivity to PI 3-kinase activation could be explained by our finding that PKB activation and lamellipodium formation are independent PI 3-kinase-induced events. PMID:9528752

  17. Mutation of RNA polymerase beta subunit (rpoB) promotes hVISA-to-VISA phenotypic conversion of strain Mu3.

    PubMed

    Matsuo, Miki; Hishinuma, Tomomi; Katayama, Yuki; Cui, Longzhu; Kapi, Maria; Hiramatsu, Keiichi

    2011-09-01

    The clinical vancomycin-intermediate Staphylococcus aureus (VISA) strain Mu50 carries two mutations in the vraSR and graRS two-component regulatory systems (TCRSs), namely, vraS(I5N) and graR(N197S) (hereinafter designated graR). The clinical heterogeneously vancomycin-intermediate S. aureus (hVISA) strain Mu3 shares with Mu50 the mutation in vraS that encodes the VraS two-component histidine kinase. Previously, we showed that introduction of the plasmid pgraR, carrying the mutated two-component response regulator graR, converted the hVISA strain Mu3 into VISA (vancomycin MIC = 4 mg/liter). Subsequently, however, we found that the introduction of a single copy of graR into the Mu3 chromosome by a gene replacement method did not confer on Mu3 the VISA phenotype. The gene-replaced strain Mu3graR thus obtained remained hVISA (MIC ≤ 2 mg/liter), although a small increase in vancomycin MIC was observed compared to that of the parent strain Mu3. Reevaluation of the Mu3 and Mu50 genomes revealed the presence of another mutation responsible for the expression of the VISA phenotype in Mu50. Here, we demonstrate that in addition to the two regulator mutations, a third mutation found in the Mu50 rpoB gene, encoding the RNA polymerase β subunit, was required for Mu3 to achieve the level of vancomycin resistance of Mu50. The selection of strain Mu3graR with rifampin gave rise to rpoB mutants with various levels of increased vancomycin resistance. Furthermore, 3 (33%) of 10 independently isolated VISA strains established from the heterogeneous subpopulations of Mu3graR were found to possess rpoB mutations with or without an accompanying rifampin-resistance phenotype. The data indicate that a sizable proportion of the resistant hVISA cell subpopulations is composed of spontaneous rpoB mutants with various degrees of increased vancomycin resistance.

  18. Ada protein-RNA polymerase sigma subunit interaction and alpha subunit-promoter DNA interaction are necessary at different steps in transcription initiation at the Escherichia coli Ada and aidB promoters.

    PubMed

    Landini, P; Bown, J A; Volkert, M R; Busby, S J

    1998-05-22

    The methylated form of the Ada protein (meAda) binds the ada and aidB promoters between 60 and 40 base pairs upstream from the transcription start and activates transcription of the Escherichia coli ada and aidB genes. This region is also a binding site for the alpha subunit of RNA polymerase and resembles the rrnB P1 UP element in A/T content and location relative to the core promoter. In this report, we show that deletion of the C-terminal domain of the alpha subunit severely decreases meAda-independent binding of RNA polymerase to ada and aidB, affecting transcription initiation at these promoters. We provide evidence that meAda activates transcription by direct interaction with the C-terminal domain of RNA polymerase sigma70 subunit (amino acids 574-613). Several negatively charged residues in the sigma70 C-terminal domain are important for transcription activation by meAda; in particular, a glutamic acid to valine substitution at position 575 has a dramatic effect on meAda-dependent transcription. Based on these observations, we propose that the role of the alpha subunit at ada and aidB is to allow initial binding of RNA polymerase to the promoters. However, transcription initiation is dependent on meAda-sigma70 interaction.

  19. The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor.

    PubMed

    Weeda, G; Rossignol, M; Fraser, R A; Winkler, G S; Vermeulen, W; van 't Veer, L J; Ma, L; Hoeijmakers, J H; Egly, J M

    1997-06-15

    Mutations in the basal transcription initiation/DNA repair factor TFIIH are responsible for three human disorders: xeroderma pigmentosum (XP), cockayne syndrome (CS) and trichothiodystrophy (TTD). The non-repair features of CS and TTD are thought to be due to a partial inactivation of the transcription function of the complex. To search for proteins whose interaction with TFIIH subunits is disturbed by mutations in patients we used the yeast two-hybrid system and report the isolation of a novel XPB interacting protein, SUG1. The interaction was validated in vivo and in vitro in the following manner. (i) SUG1 interacts with XPB but not with the other core TFIIH subunits in the two-hybrid assay. (ii) Physical interaction is observed in a baculovirus co-expression system. (iii) In fibroblasts under non-overexpression conditions a portion of SUG1 is bound to the TFIIH holocomplex as deduced from co-purification, immunopurification and nickel-chelate affinity chromatography using functional tagged TFIIH. Furthermore, overexpression of SUG1 in normal fibroblasts induced arrest of transcription and a chromatin collapse in vivo. Interestingly, the interaction was diminished with a mutant form of XPB, thus providing a potential link with the clinical features of XP-B patients. Since SUG1 is an integral component of the 26S proteasome and may be part of the mediator, our findings disclose a SUG1-dependent link between TFIIH and the cellular machinery involved in protein modelling/degradation.

  20. The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor.

    PubMed Central

    Weeda, G; Rossignol, M; Fraser, R A; Winkler, G S; Vermeulen, W; van 't Veer, L J; Ma, L; Hoeijmakers, J H; Egly, J M

    1997-01-01

    Mutations in the basal transcription initiation/DNA repair factor TFIIH are responsible for three human disorders: xeroderma pigmentosum (XP), cockayne syndrome (CS) and trichothiodystrophy (TTD). The non-repair features of CS and TTD are thought to be due to a partial inactivation of the transcription function of the complex. To search for proteins whose interaction with TFIIH subunits is disturbed by mutations in patients we used the yeast two-hybrid system and report the isolation of a novel XPB interacting protein, SUG1. The interaction was validated in vivo and in vitro in the following manner. (i) SUG1 interacts with XPB but not with the other core TFIIH subunits in the two-hybrid assay. (ii) Physical interaction is observed in a baculovirus co-expression system. (iii) In fibroblasts under non-overexpression conditions a portion of SUG1 is bound to the TFIIH holocomplex as deduced from co-purification, immunopurification and nickel-chelate affinity chromatography using functional tagged TFIIH. Furthermore, overexpression of SUG1 in normal fibroblasts induced arrest of transcription and a chromatin collapse in vivo. Interestingly, the interaction was diminished with a mutant form of XPB, thus providing a potential link with the clinical features of XP-B patients. Since SUG1 is an integral component of the 26S proteasome and may be part of the mediator, our findings disclose a SUG1-dependent link between TFIIH and the cellular machinery involved in protein modelling/degradation. PMID:9173976

  1. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed Central

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-01-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  2. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-12-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta.

  3. Cross-linking of initiation factor IF3 to Escherichia coli 30S ribosomal subunit by trans-diamminedichloroplatinum(II): characterization of two cross-linking sites in 16S rRNA; a possible way of functioning for IF3.

    PubMed Central

    Ehresmann, C; Moine, H; Mougel, M; Dondon, J; Grunberg-Manago, M; Ebel, J P; Ehresmann, B

    1986-01-01

    The initiation factor IF3 is platinated with trans-diamminedichloroplatinum(II) and cross-linked to Escherichia coli 30S ribosomal subunit. Two cross-linking sites are unambiguously identified on the 16S rRNA: a major one, in the region 819-859 in the central domain, and a minor one, in the region 1506-1529 in the 3'-terminal domain. Specific features of these sequences together with their particular location within the 30S subunit lead us to postulate a role for IF3, that conciliates topographical and functional observations made so far. Images PMID:2425339

  4. Omega-3 polyunsaturated fatty acids alleviate hepatic steatosis-induced inflammation through Sirt1-mediated nuclear translocation of NF-κB p65 subunit in hepatocytes of large yellow croaker (Larmichthys crocea).

    PubMed

    Wang, Tianjiao; Yang, Bo; Ji, Renlei; Xu, Wei; Mai, Kangsen; Ai, Qinghui

    2017-12-01

    Hepatic steatosis induced inflammation is becoming increasingly prevalent in farmed fish. This study was conducted to investigate the protective effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) against hepatic steatosis-induced inflammation and its potential molecular mechanisms in hepatocyte of large yellow croaker (Larmichthys crocea). We found that the hepatic steatosis-induced inflammation was relieved by ω-3 PUFAs, meanwhile, the Sirt1 activity and transcript expression was increased by ω-3 PUFAs. The increased Sirt1 activity can decrease the hepatic steatosis-induced inflammation. The protective effects of ω-3 PUFAs against hepatic steatosis-induced inflammation was reversed by the treatment with Sirt1 inhibitor EX-527. The nuclear translocation of nuclear transcription factor kappa-B (NF-κB) p65 was significantly decreased after ω-3 PUFAs treatments compared to the palmitic acid stimulation group. The ω-3 PUFAs induced cytoplasm translocation of NF-κB p65 was reversed by EX-527. Together, ω-3 PUFAs alleviate hepatic steatosis-induced inflammation through Sirt1-mediated nuclear translocation of NF-κB p65 subunit in hepatocytes of large yellow croaker. The present study provides important insight into the mechanisms of the protective effects of ω-3 PUFAs, providing theory bases for alleviating the hepatic steatosis induced inflammation of farmed fish, thereby offering great benefits to the aquaculture industry and fish consumers. Copyright © 2017. Published by Elsevier Ltd.

  5. GABAA receptors: Various stoichiometrics of subunit arrangement in α1β3 and α1β3ε receptors.

    PubMed

    Has, Ahmad Tarmizi Che; Chebib, Mary

    2018-05-15

    GABAA receptors (GABAARs) are members of the Cys-loop ligand-gated ion channel (LGIC) superfamily, which includes nicotinic acetylcholine, glycine, and serotonin (5HT3) receptors [1,2,3,4]. LGICs typically mediate fast synaptic transmission via the movement of ions through channels gated by neurotransmitters, such as acetylcholine for nicotinic receptors and GABA for GABAARs [5]. The term Cys-loop receptors originates from the presence of a conserved disulphide bond (or bridge) which holds together two cysteine amino acids of the loop that forms from the structure of polypeptides in the extracellular domain of the receptor's subunit [6]. GABAARs are pentameric transmembrane protein complexes consisting of five subunits from a variety of polypeptide subunits [7,8]. All of these subunits are pseudo-symmetrically organized in the plane of the membrane, with a Cl--selective channel in the middle of the complex. To date, nineteen GABAAR subunits have been identified and categorized into eight classes, α1-6, β1-3, γ1-3, δ, ε, θ, π and ρ1-3, but their variety is further broadened by the existence of several splice forms for certain subunits (e.g., α6, β2 and γ2) [9,10,11,12]. The subunits within each class have an amino acid sequence homology of 70% or more, whereas those with a sequence homology of 30% or less are grouped into different classes [13,14]. A subunit consists of four transmembrane domains (TM1-TM4), each forming an α-helix; a large extracellular N-terminal domain that incorporates part of the orthosteric agonist/antagonist binding site; a large intracellular loop between the TM3 and TM4; a small intracellular loop between TM1 and TM2; a small extracellular loop between TM2 and TM3; and a C-terminal extracellular domain [15,16]. Each subunit is arranged in such a way as to create principal and complementary interfaces with the other subunits, and in a position such that the TM2 of each subunit forms the wall of the channel pore [17,18,19]. The

  6. Protective Effect of Immunization of Rats with Holotoxin or B Subunit of Escherichia coli Heat-Labile Enterotoxin

    PubMed Central

    Klipstein, Frederick A.; Engert, Richard F.

    1981-01-01

    The relative immunogenicities of three forms of the Escherichia coli heatlabile enterotoxin (LT), the holotoxin, its B subunit, and the polymyxin-release form (PM LT) were compared by immunizing rats with various dosages of each given exclusively by the parenteral (IP/IP) or peroral (PO/PO) routes or by a combination of the two (IP/PO). The degree of protection was evaluated by challenge in ligated ileal loops, and the serum antitoxin response was determined by an enzyme-linked immunosorbent assay with homologous antigens. When given by the PO/PO route, each LT antigen provided only weak protection against the toxin and virtually none against viable LT-producing strains; serum antitoxin titers were not significantly increased. When the toxins were given after a parental primary immunization by either the IP/IP or the IP/PO routes, each LT antigen provided a dose-related increase in serum antitoxin titers and in the degree of protection against the toxin as well as against viable strains which produce LT alone (LT+/ST−) or in combination with the heat-stable toxin (LT+/ST+). The degree of protection against viable bacteria, particularly the LT+/ST+ strain, was stronger in animals which received booster immunizations by the PO route. When expressed on the basis of molar equivalents, holotoxin provided significant protection (a protection index of >5 against toxin challenge and >50% reduced secretion with bacterial challenge) with 4 to 15 times fewer moles than PM LT and up to 50 times fewer moles than the B subunit. These observations indicate that, on the basis of molar equivalents, the holotoxin (which contains one A plus five or six B subunits) is a more potent immunogen than either PM LT (which contains one A and probably one B subunit) or the B subunit. PMID:7011990

  7. NF-κB p65 Subunit Mediates Lipopolysaccharide-Induced Na+/I− Symporter Gene Expression by Involving Functional Interaction with the Paired Domain Transcription Factor Pax8

    PubMed Central

    Nicola, Juan Pablo; Nazar, Magalí; Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela; Masini-Repiso, Ana María

    2010-01-01

    The Gram-negative bacterial endotoxin lipopolysaccharide (LPS) elicits a variety of biological responses. Na+/I− symporter (NIS)-mediated iodide uptake is the main rate-limiting step in thyroid hormonogenesis. We have recently reported that LPS stimulates TSH-induced iodide uptake. Here, we further analyzed the molecular mechanism involved in the LPS-induced NIS expression in Fisher rat thyroid cell line 5 (FRTL-5) thyroid cells. We observed an increase in TSH-induced NIS mRNA expression in a dose-dependent manner upon LPS treatment. LPS enhanced the TSH-stimulated NIS promoter activity denoting the NIS-upstream enhancer region (NUE) as responsible for the stimulatory effects. We characterized a novel putative conserved κB site for the transcription factor nuclear factor-κB (NF-κB) within the NUE region. NUE contains two binding sites for the transcription factor paired box 8 (Pax8), main regulator of NIS transcription. A physical interaction was observed between the NF-κB p65 subunit and paired box 8 (Pax8), which appears to be responsible for the synergic effect displayed by these transcription factors on NIS gene transcription. Moreover, functional blockage of NF-κB signaling and site-directed mutagenesis of the κB cis-acting element abrogated LPS stimulation. Silencing expression of p65 confirmed its participation as an effector of LPS-induced NIS stimulation. Furthermore, chromatin immunoprecipitation corroborated that NIS is a novel target gene for p65 transactivation in response to LPS. Moreover, we were able to corroborate the LPS-stimulatory effect on thyroid cells in vivo in LPS-treated rats, supporting that thyrocytes are capable of responding to systemic infections. In conclusion, our results reveal a new mechanism involving p65 in the LPS-induced NIS expression, denoting a novel aspect in thyroid cell differentiation. PMID:20667985

  8. Coexpression of the KCNA3B gene product with Kv1.5 leads to a novel A-type potassium channel.

    PubMed

    Leicher, T; Bähring, R; Isbrandt, D; Pongs, O

    1998-12-25

    Shaker-related voltage-gated potassium (Kv) channels may be heterooligomers consisting of membrane-integral alpha-subunits associated with auxiliary cytoplasmic beta-subunits. In this study we have cloned the human Kvbeta3.1 subunit and the corresponding KCNA3B gene. Identification of sequence-tagged sites in the gene mapped KCNA3B to band p13.1 of human chromosome 17. Comparison of the KCNA1B, KCNA2B, and KCNA3B gene structures showed that the three Kvbeta genes have very disparate lengths varying from >/=350 kb (KCNA1B) to approximately 7 kb (KCNA3B). Yet, the exon patterns of the three genes, which code for the seven known mammalian Kvbeta subunits, are very similar. The Kvbeta1 and Kvbeta2 splice variants are generated by alternative use of 5'-exons. Mouse Kvbeta4, a potential splice variant of Kvbeta3, is a read-through product where the open reading frame starts within the sequence intervening between Kvbeta3 exons 7 and 8. The human KCNA3B sequence does not contain a mouse Kvbeta4-like open reading frame. Human Kvbeta3 mRNA is specifically expressed in the brain, where it is predominantly detected in the cerebellum. The heterologous coexpression of human Kv1.5 and Kvbeta3.1 subunits in Chinese hamster ovary cells yielded a novel Kv channel mediating very fast inactivating (A-type) outward currents upon depolarization. Thus, the expression of Kvbeta3.1 subunits potentially extends the possibilities to express diverse A-type Kv channels in the human brain.

  9. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of CofB, the minor pilin subunit of CFA/III from human enterotoxigenic Escherichia coli.

    PubMed

    Kawahara, Kazuki; Oki, Hiroya; Fukakusa, Shunsuke; Maruno, Takahiro; Kobayashi, Yuji; Motooka, Daisuke; Taniguchi, Tooru; Honda, Takeshi; Iida, Tetsuya; Nakamura, Shota; Ohkubo, Tadayasu

    2015-06-01

    Colonization factor antigen III (CFA/III) is one of the virulence factors of human enterotoxigenic Escherichia coli (ETEC) that forms the long, thin, proteinaceous fibres of type IV pili through assembly of its major and minor subunits CofA and CofB, respectively. The crystal structure of CofA has recently been reported; however, the lack of structural information for CofB, the largest among the known type IV pilin subunits, hampers a comprehensive understanding of CFA/III pili. In this study, constructs of wild-type CofB with an N-terminal truncation and the corresponding SeMet derivative were cloned, expressed, purified and crystallized. The crystals belonged to the rhombohedral space group R32, with unit-cell parameters a = b = 103.97, c = 364.57 Å for the wild-type construct and a = b = 103.47, c = 362.08 Å for the SeMet-derivatized form. Although the diffraction quality of these crystals was initially very poor, dehydration of the crystals substantially improved the resolution limit from ∼ 4.0 to ∼ 2.0 Å. The initial phase was solved by the single-wavelength anomalous dispersion (SAD) method using a dehydrated SeMet CofB crystal, which resulted in an interpretable electron-density map.

  10. Open Reading Frame 3 of Genotype 1 Hepatitis E Virus Inhibits Nuclear Factor-κappa B Signaling Induced by Tumor Necrosis Factor-α in Human A549 Lung Epithelial Cells

    PubMed Central

    Tian, Deying; Wang, Jingjing; Zheng, Zizheng; Xia, Ningshao

    2014-01-01

    Hepatitis E virus (HEV) is one of the primary causative agents of acute hepatitis, and represents a major cause of severe public health problems in developing countries. The pathogenesis of HEV is not well characterized, however, primarily due to the lack of well-defined cell and animal models. Here, we investigated the effects of genotype 1 HEV open reading frame 3 (ORF3) on TNF-α-induced nucleus factor-κappa B (NF-κB) signaling. Human lung epithelial cells (A549) were transiently transfected with ORF3 containing plasmids. These cells were then stimulated with TNF-α and the nucleus translocation of the p65 NF-κB subunit was assessed using western blot and laser confocal microscopy. DNA-binding activity of p65 was also examined using electrophoretic mobility shift assay (EMSA), and the suppression of NF-κB target genes were detected using real-time RT-PCR and ELISA. These results enabled us to identify the decreased phosphorylation levels of IKBα. We focused on the gene of negative regulation of NF-κB, represented by TNF-α-induced protein 3 (TNFAIP3, also known as A20). Reducing the levels of A20 with siRNAs significantly enhances luciferase activation of NF-κB. Furthermore, HEV ORF3 regulated A20 primarily via activating transcription factor 6 (ATF6), involved in unfolded protein response (UPR), resulting in the degradation or inactivation of the receptor interacting protein 1 (RIP1), a major upstream activator of IKB kinase compounds (IKKs). Consequently, the phosphorylation of IKBα and the nucleus translocation of p65 are blocked, which contributes to diminished NF-κB DNA-binding activation and NF-κB-dependent gene expression. The findings suggest that genotype 1 HEV, through ORF3, may transiently activate NF-κB through UPR in early stage, and subsequently inhibit TNF-α-induced NF-κB signaling in late phase so as to create a favorable virus replication environment. PMID:24959724

  11. NIa-Pro of Papaya ringspot virus interacts with Carica papaya eukaryotic translation initiation factor 3 subunit G (CpeIF3G).

    PubMed

    Gao, Le; Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-02-01

    The interaction of papaya eukaryotic translation initiation factor 3 subunit G (CpeIF3G) with Papaya ringspot virus (PRSV) NIa-Pro was validated using a bimolecular fluorescence complementation assay in papaya protoplasts based on the previous yeast two-hybrid assay results. The C-terminal (residues 133-239) fragment of PRSV NIa-Pro and the central domain (residues 59-167) of CpeIF3G were required for effective interaction between NIa-Pro and CpeIF3G as shown by a Sos recruitment yeast two-hybrid system with several deletion mutants of NIa-Pro and CpeIF3G. The central domain of CpeIF3G, which contains a C2HC-type zinc finger motif, is required to bind to other eIFs of the translational machinery. In addition, quantitative real-time reverse transcription PCR assay confirmed that PRSV infection leads to a 2- to 4.5-fold up-regulation of CpeIF3G mRNA in papaya. Plant eIF3G is involved in various stress response by enhancing the translation of resistance-related proteins. It is proposed that the NIa-Pro-CpeIF3G interaction may impair translation preinitiation complex assembly of defense proteins and interfere with host defense.

  12. Retrograde and transganglionic transport of horseradish peroxidase-conjugated cholera toxin B subunit, wheatgerm agglutinin and isolectin B4 from Griffonia simplicifolia I in primary afferent neurons innervating the rat urinary bladder.

    PubMed

    Wang, H F; Shortland, P; Park, M J; Grant, G

    1998-11-01

    In the present study, we investigated and compared the ability of the cholera toxin B subunit, wheat germ agglutinin and isolectin B4 from Griffonia simplicifolia I conjugated to horseradish peroxidase, to retrogradely and transganglionically label visceral primary afferents after unilateral injections into the rat urinary bladder wall. Horseradish peroxidase histochemical or lectin-immunofluorescence histochemical labelling of bladder afferents was seen in the L6-S1 spinal cord segments and in the T13-L2 and L6-S1 dorsal root ganglia. In the lumbosacral spinal cord, the most intense and extensive labelling of bladder afferents was seen when cholera toxin B subunit-horseradish peroxidase was injected. Cholera toxin B subunit-horseradish peroxidase-labelled fibres were found in Lissauer's tract, its lateral and medial collateral projections, and laminae I and IV-VI of the spinal gray matter. Labelled fibres were numerous in the lateral collateral projection and extended into the spinal parasympathetic nucleus. Labelling from both the lateral and medial projections extended into the dorsal grey commissural region. Wheat germ agglutinin-horseradish peroxidase labelling produced a similar pattern but was not as dense and extensive as that of cholera toxin B subunit-horseradish peroxidase. The isolectin B4 from Griffonia simplicifolia I-horseradish peroxidase-labelled fibres, on the other hand, were fewer and only observed in the lateral collateral projection and occasionally in lamina I. Cell profile counts showed that a larger number of dorsal root ganglion cells were labelled with cholera toxin B subunit-horseradish peroxidase than with wheat germ agglutinin- or isolectin B4-horseradish peroxidase. In the L6-S1 dorsal root ganglia, the majority (81%) of the cholera toxin B subunit-, and almost all of the wheat germ agglutinin- and isolectin B4-immunoreactive cells were RT97-negative (an anti-neurofilament antibody that labels dorsal root ganglion neurons with

  13. Modulation of Gain-of-function α6*-Nicotinic Acetylcholine Receptor by β3 Subunits*

    PubMed Central

    Dash, Bhagirathi; Lukas, Ronald J.

    2012-01-01

    We previously have shown that β3 subunits either eliminate (e.g. for all-human (h) or all-mouse (m) α6β4β3-nAChR) or potentiate (e.g. for hybrid mα6hβ4hβ3- or mα6mβ4hβ3-nAChR containing subunits from different species) function of α6*-nAChR expressed in Xenopus oocytes, and that nAChR hα6 subunit residues Asn-143 and Met-145 in N-terminal domain loop E are important for dominant-negative effects of nAChR hβ3 subunits on hα6*-nAChR function. Here, we tested the hypothesis that these effects of β3 subunits would be preserved even if nAChR α6 subunits harbored gain-of-function, leucine- or valine-to-serine mutations at 9′ or 13′ positions (L9′S or V13′S) in their second transmembrane domains, yielding receptors with heightened functional activity and more amenable to assessment of effects of β3 subunit incorporation. However, coexpression with β3 subunits potentiates rather than suppresses function of all-human, all-mouse, or hybrid α6(L9′S or V13′S)β4*- or α6(N143D+M145V)L9′Sβ2*-nAChR. This contrasts with the lack of consistent function when α6(L9′S or V13′S) and β2 subunits are expressed alone or in the presence of wild-type β3 subunits. These results provide evidence that gain-of-function hα6hβ2*-nAChR (i.e. hα6(N143D+M145V)L9′Shβ2hβ3 nAChR) could be produced in vitro. These studies also indicate that nAChR β3 subunits can be assembly partners in functional α6*-nAChR and that 9′ or 13′ mutations in the nAChR α6 subunit second transmembrane domain can act as gain-of-function and/or reporter mutations. Moreover, our findings suggest that β3 subunit coexpression promotes function of α6*-nAChR. PMID:22315221

  14. Therapeutic potential of Mediator complex subunits in metabolic diseases.

    PubMed

    Ranjan, Amol; Ansari, Suraiya A

    2018-01-01

    The multisubunit Mediator is an evolutionary conserved transcriptional coregulatory complex in eukaryotes. It is needed for the transcriptional regulation of gene expression in general as well as in a gene specific manner. Mediator complex subunits interact with different transcription factors as well as components of RNA Pol II transcription initiation complex and in doing so act as a bridge between gene specific transcription factors and general Pol II transcription machinery. Specific interaction of various Mediator subunits with nuclear receptors (NRs) and other transcription factors involved in metabolism has been reported in different studies. Evidences indicate that ligand-activated NRs recruit Mediator complex for RNA Pol II-dependent gene transcription. These NRs have been explored as therapeutic targets in different metabolic diseases; however, they show side-effects as targets due to their overlapping involvement in different signaling pathways. Here we discuss the interaction of various Mediator subunits with transcription factors involved in metabolism and whether specific interaction of these transcription factors with Mediator subunits could be potentially utilized as therapeutic strategy in a variety of metabolic diseases. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. Triclosan-Evoked Neurotoxicity Involves NMDAR Subunits with the Specific Role of GluN2A in Caspase-3-Dependent Apoptosis.

    PubMed

    Szychowski, Konrad A; Wnuk, Agnieszka; Rzemieniec, Joanna; Kajta, Małgorzata; Leszczyńska, Teresa; Wójtowicz, Anna K

    2018-04-19

    Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitising products. A number of studies have shown the presence of TCS in different human tissues such as blood, adipose tissue, the liver, brain as well as in breast milk and urine. N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that are widely expressed in the central nervous system and which play key roles in excitatory synaptic transmission. There is, however, no data on the involvement of NMDAR subunits in the apoptotic and neurotoxic effects of TCS. Our experiments are the first to show that TCS used at environmentally relevant concentrations evoked NMDA-dependent effects in neocortical neurons in primary cultures, as MK-801, an uncompetitive NMDA receptor antagonist, reduced the levels of TCS-induced ROS production as well as caspase-3 activity and LDH release. TCS caused a decrease in protein expression of all the studied NMDA receptor subunits (GluN1, GluN2A, GluN2B) that were measured at 3, 6 and 24 h post-treatment. However, at 48 h of the experiment, the level of the GluN1 subunit returned to the control level, and the levels of the other subunits showed a tendency to increase. In TCS-treated neocortical cells, protein profiles of NMDAR subunits measured up to 24 h were similar to mRNA expression of GluN1 and GluN2A, but not to GluN2B mRNA. In this study, cells transiently transfected with GluN1, GluN2A or GluN2B siRNA exhibited reduced levels of LDH release, which suggests the involvement of all of the studied NMDAR subunits in the neurotoxic action of TCS. According to our data, GluN1 and GluN2A were mainly responsible for neuronal cell death as evidenced by neutral red uptake, whereas GluN2A was involved in TCS-induced caspase-3-dependent apoptosis. We suggest that TCS-evoked apoptosis and neurotoxicity could be related to transient degradation of NMDAR subunits in mouse neurons. Furthermore, recycling of NMDAR subunits in response

  16. Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3.

    PubMed

    Yoneda-Kato, Noriko; Tomoda, Kiichiro; Umehara, Mari; Arata, Yukinobu; Kato, Jun-ya

    2005-05-04

    Myeloid leukemia factor 1 (MLF1) was first identified as the leukemic fusion protein NPM-MLF1 generated by the t(3;5)(q25.1;q34) chromosomal translocation. Although MLF1 expresses normally in a variety of tissues including hematopoietic stem cells and the overexpression of MLF1 correlates with malignant transformation in human cancer, little is known about how MLF1 is involved in the regulation of cell growth. Here we show that MLF1 is a negative regulator of cell cycle progression functioning upstream of the tumor suppressor p53. MLF1 induces p53-dependent cell cycle arrest in murine embryonic fibroblasts. This action requires a novel binding partner, subunit 3 of the COP9 signalosome (CSN3). A reduction in the level of CSN3 protein with small interfering RNA abrogated MLF1-induced G1 arrest and impaired the activation of p53 by genotoxic stress. Furthermore, ectopic MLF1 expression and CSN3 knockdown inversely affect the endogenous level of COP1, a ubiquitin ligase for p53. Exogenous expression of COP1 overcomes MLF1-induced growth arrest. These results indicate that MLF1 is a critical regulator of p53 and suggest its involvement in leukemogenesis through a novel CSN3-COP1 pathway.

  17. The Kv7.2/Kv7.3 heterotetramer assembles with a random subunit arrangement.

    PubMed

    Stewart, Andrew P; Gómez-Posada, Juan Camilo; McGeorge, Jessica; Rouhani, Maral J; Villarroel, Alvaro; Murrell-Lagnado, Ruth D; Edwardson, J Michael

    2012-04-06

    Voltage-gated K(+) channels composed of Kv7.2 and Kv7.3 are the predominant contributors to the M-current, which plays a key role in controlling neuronal activity. Various lines of evidence have indicated that Kv7.2 and Kv7.3 form a heteromeric channel. However, the subunit stoichiometry and arrangement within this putative heteromer are so far unknown. Here, we have addressed this question using atomic force microscopy imaging of complexes between isolated Kv7.2/Kv7.3 channels and antibodies to epitope tags on the two subunits, Myc on Kv7.2 and HA on Kv7.3. Initially, tsA 201 cells were transiently transfected with equal amounts of cDNA for the two subunits. The heteromer was isolated through binding of either tag to immunoaffinity beads and then decorated with antibodies to the other tag. In both cases, the distribution of angles between pairs of bound antibodies had two peaks, at around 90° and around 180°, and in both cases the 90° peak was about double the size of the 180° peak. These results indicate that the Kv7.2/Kv7.3 heteromer generated by cells expressing approximately equal amounts of the two subunits assembles as a tetramer with a predominantly 2:2 subunit stoichiometry and with a random subunit arrangement. When the DNA ratio for the two subunits was varied, copurification experiments indicated that the subunit stoichiometry was variable and not fixed at 2:2. Hence, there are no constraints on either the subunit stoichiometry or the subunit arrangement.

  18. Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons.

    PubMed

    Albers, Kathryn M; Zhang, Xiu Lin; Diges, Charlotte M; Schwartz, Erica S; Yang, Charles I; Davis, Brian M; Gold, Michael S

    2014-05-22

    Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) subunits, suggesting these ion channels contribute to Artn-induced sensitivity. Here we have used gene expression, immunolabeling, patch clamp electrophysiology and behavioral testing assays to investigate the link between Artn, nicotinic subunit expression and thermal hypersensitivity. Reverse transcriptase-PCR validation showed increased levels of mRNAs encoding the nAChR subunits α3 (13.3-fold), β3 (4-fold) and β4 (7.7-fold) in trigeminal ganglia and α3 (4-fold) and β4 (2.8-fold) in dorsal root ganglia (DRG) of ART-OE mice. Sensory ganglia of ART-OE mice had increased immunoreactivity for nAChRα3 and exhibited increased overlap in labeling with GFRα3-positive neurons. Patch clamp analysis of back-labeled cutaneous afferents showed that while the majority of nicotine-evoked currents in DRG neurons had biophysical and pharmacological properties of α7-subunit containing nAChRs, the Artn-induced increase in α3 and β4 subunits resulted in functional channels. Behavioral analysis of ART-OE and wildtype mice showed that Artn-induced thermal hyperalgesia can be blocked by mecamylamine or hexamethonium. Complete Freund's adjuvant (CFA) inflammation of paw skin, which causes an increase in Artn in the skin, also increased the level of nAChR mRNAs in DRG. Finally, the increase in nAChRs transcription was not dependent on the Artn-induced increase in TRPV1 or TRPA1 in ART-OE mice since nAChRs were elevated in ganglia of TRPV1/TRPA1 double knockout mice. These findings suggest that Artn

  19. Expression of human inducible nitric oxide synthase in a tetrahydrobiopterin (H4B)-deficient cell line: H4B promotes assembly of enzyme subunits into an active dimer.

    PubMed Central

    Tzeng, E; Billiar, T R; Robbins, P D; Loftus, M; Stuehr, D J

    1995-01-01

    Murine inducible nitric oxide (NO) synthase (iNOS) is catalytically active only in dimeric form. Assembly of its purified subunits into a dimer requires H4B. To understand the structure-activity relationships of human iNOS, we constitutively expressed recombinant human iNOS in NIH 3T3 cells by using a retroviral vector. These cells are deficient in de novo H4B biosynthesis and the role of H4B in the expression and assembly of active iNOS in an intact cell system could be studied. In the absence of added H4B, NO synthesis by the cells was minimal, whereas cells grown with supplemental H4B or the H4B precursor sepiapterin generated NO (74.1 and 63.3 nmol of nitrite per 10(6) cells per 24 h, respectively). NO synthesis correlated with an increase in intracellular H4B but no increase in iNOS protein. Instead, an increased percentage of dimeric iNOS was observed, rising from 20% in cytosols from unsupplemented cells to 66% in H4B-supplemented cell cytosols. In all cases, only dimeric iNOS displayed catalytic activity. Cytosols prepared from H4B-deficient cells exhibited little iNOS activity but acquired activity during a 60- to 120-min incubation with H4B, reaching final activities of 60-72 pmol of citrulline per mg of protein per min. Reconstitution of cytosolic NO synthesis activity was associated with conversion of monomers into dimeric iNOS during the incubation. Thus, human iNOS subunits dimerize to form an active enzyme, and H4B plays a critical role in promoting dimerization in intact cells. This reveals a post-translational mechanism by which intracellular H4B can regulate iNOS expression. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:8524846

  20. Neto Auxiliary Protein Interactions Regulate Kainate and NMDA Receptor Subunit Localization at Mossy Fiber–CA3 Pyramidal Cell Synapses

    PubMed Central

    Wyeth, Megan S.; Pelkey, Kenneth A.; Petralia, Ronald S.; Salter, Michael W.; McInnes, Roderick R.

    2014-01-01

    Neto1 and Neto2 auxiliary subunits coassemble with NMDA receptors (NMDARs) and kainate receptors (KARs) to modulate their function. In the hippocampus, Neto1 enhances the amplitude and prolongs the kinetics of KAR-mediated currents at mossy fiber (MF)–CA3 pyramidal cell synapses. However, whether Neto1 trafficks KARs to synapses or simply alters channel properties is unresolved. Therefore, postembedding electron microscopy was performed to investigate the localization of GluK2/3 subunits at MF–CA3 synapses in Neto-null mice. Postsynaptic GluK2/3 Immunogold labeling was substantially reduced in Neto-null mice compared with wild types. Moreover, spontaneous KAR-mediated synaptic currents and metabotropic KAR signaling were absent in CA3 pyramidal cells of Neto-null mice. A similar loss of ionotropic and metabotropic KAR function was observed in Neto1, but not Neto2, single knock-out mice, specifically implicating Neto1 in regulating CA3 pyramidal cell KAR localization and function. Additional controversy pertains to the role of Neto proteins in modulating synaptic NMDARs. While Immunogold labeling for GluN2A at MF–CA3 synapses was comparable between wild-type and Neto-null mice, labeling for postsynaptic GluN2B was robustly increased in Neto-null mice. Accordingly, NMDAR-mediated currents at MF–CA3 synapses exhibited increased sensitivity to a GluN2B-selective antagonist in Neto1 knockouts relative to wild types. Thus, despite preservation of the overall MF–CA3 synaptic NMDAR-mediated current, loss of Neto1 alters NMDAR subunit composition. These results confirm that Neto protein interactions regulate synaptic localization of KAR and NMDAR subunits at MF–CA3 synapses, with implications for both ionotropic and metabotropic glutamatergic recruitment of the CA3 network. PMID:24403160

  1. Selective Proteasomal Degradation of the B′β Subunit of Protein Phosphatase 2A by the E3 Ubiquitin Ligase Adaptor Kelch-like 15*

    PubMed Central

    Oberg, Elizabeth A.; Nifoussi, Shanna K.; Gingras, Anne-Claude; Strack, Stefan

    2012-01-01

    Protein phosphatase 2A (PP2A), a ubiquitous and pleiotropic regulator of intracellular signaling, is composed of a core dimer (AC) bound to a variable (B) regulatory subunit. PP2A is an enzyme family of dozens of heterotrimers with different subcellular locations and cellular substrates dictated by the B subunit. B′β is a brain-specific PP2A regulatory subunit that mediates dephosphorylation of Ca2+/calmodulin-dependent protein kinase II and tyrosine hydroxylase. Unbiased proteomic screens for B′β interactors identified Cullin3 (Cul3), a scaffolding component of E3 ubiquitin ligase complexes, and the previously uncharacterized Kelch-like 15 (KLHL15). KLHL15 is one of ∼40 Kelch-like proteins, many of which have been identified as adaptors for the recruitment of substrates to Cul3-based E3 ubiquitin ligases. Here, we report that KLHL15-Cul3 specifically targets B′β to promote turnover of the PP2A subunit by ubiquitylation and proteasomal degradation. Comparison of KLHL15 and B′β tissue expression profiles suggests that the E3 ligase adaptor contributes to selective expression of the PP2A/B′β holoenzyme in the brain. We mapped KLHL15 residues critical for homodimerization as well as interaction with Cul3 and B′β. Explaining PP2A subunit selectivity, the divergent N terminus of B′β was found necessary and sufficient for KLHL15-mediated degradation, with Tyr-52 having an obligatory role. Although KLHL15 can interact with the PP2A/B′β heterotrimer, it only degrades B′β, thus promoting exchange with other regulatory subunits. E3 ligase adaptor-mediated control of PP2A holoenzyme composition thereby adds another layer of regulation to cellular dephosphorylation events. PMID:23135275

  2. TRIB3 mediates the expression of Wnt5a and activation of nuclear factor-κB in Porphyromonas endodontalis lipopolysaccharide-treated osteoblasts.

    PubMed

    Yu, Y; Qiu, L; Guo, J; Yang, D; Qu, L; Yu, J; Zhan, F; Xue, M; Zhong, M

    2015-08-01

    Porphyromonas endodontalis lipopolysaccharide (LPS) is considered to be correlated with the progression of bone resorption in periodontal and periapical diseases. Wnt5a has recently been implicated in inflammatory processes, but its role is unclear as a P. endodontalis LPS-induced mediator in osteoblasts. Tribbles homolog 3 (TRIB3) encodes a pseudokinase and has been linked to inflammation in certain situations. Here, we found that P. endodontalis LPS induced Wnt5a expression in a dose- and time-dependent manner and it also upregulated translocation, phosphorylation and transcriptional activity of nuclear factor-κB (NF-κB) in MC3T3-E1 cells. Bay 11-7082 blocked the translocation of NF-κB and Wnt5a expression induced by P. endodontalis LPS. Chromatin immunoprecipitation assay further established that induction of Wnt5a by P. endodontalis LPS was mediated through the NF-κB p65 subunit. Additionally, P. endodontalis LPS increased expression of TRIB3 in osteoblasts after 10 h simulated time. Overexpression of TRIB3 enhanced NF-κB phosphorylation and Wnt5a induction, whereas knockdown of TRIB3 inhibited NF-κB phosphorylation and Wnt5a expression in P. endodontalis LPS-stimulated osteoblasts. These results suggest that P. endodontalis LPS has the ability to promote the expression of Wnt5a in mouse osteoblasts, and this induction is mainly mediated by NF-κB pathway. TRIB3 seems to modulate the sustained expression of Wnt5a in osteoblasts stimulated by P. endodontalis LPS, as well as regulating NF-κB phosphorylation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Direct covalent modification as a strategy to inhibit nuclear factor-kappa B.

    PubMed

    Pande, Vineet; Sousa, Sérgio F; Ramos, Maria João

    2009-01-01

    Nuclear Factor-KkappaB (NF-kappaB) is a transcription factor whose inappropriate activation may result in the development of a number of diseases including cancer, inflammation, neurodegeneration and AIDS. Recent studies on NF-kappaB mediated pathologies, made therapeutic interventions leading to its inhibition an emerging theme in pharmaceutical research. NF-kappaB resides in the cytoplasm and is activated by several time-dependent factors, leading to proteasome-dependent degradation of its inhibitory protein (IkappaB), resulting in free NF-kappaB (p50 and p65 subunits, involved in disease states), which binds to target DNA sites, further resulting in enhanced transcription of several disease associated proteins. The complex pathway of NF-kappaB, finally leading to its DNA binding, has attracted several approaches interfering with this pathway. One such approach is that of a direct covalent modification of NF-kappaB. In this article, we present a critical review on the pharmacological agents that have been studied as inhibitors of NF-kappaB by covalently modifying redox-regulated cysteine residues in its subunits, ultimately resulting in the inhibition of kappaB DNA recognition and binding. Beginning with a general overview of NF-kappaB pathway and several possibilities of chemical interventions, the significance of redox-regulation in NF-kappaB activation and DNA binding is presented. Further, protein S-thiolation, S-nitrosylation and irreversible covalent modification are described as regular biochemical events in the cell, having provided a guideline for the development of NF-kappaB inhibitors discussed further. Although just a handful of inhibitors, with most of them being alkylating agents have been studied in the present context, this approach presents potential for the development of a new class of NF-kappaB-inhibitors.

  4. The Effects of Protein-Ligand Associations on the Subunit Interactions of Phosphofructokinase from B. stearothermophilus†

    PubMed Central

    Quinlan, R. Jason; Reinhart, Gregory D.

    2008-01-01

    Differences between the crystal structures of inhibitor-bound and uninihibited forms of phosphofructokinase (PFK) from B. stearothermophilus have led to a structural model for allosteric inhibition by phosphenolpyruvate (PEP) wherein a dimer-dimer interface within the tetrameric enzyme undergoes a quaternary shift. We have developed a labeling and hybridization technique to generate a tetramer with subunits containing two different extrinsic fluorophores simultaneously in known subunit orientations. This construct has been utilized in the examination of the effects of allosteric ligand and substrate binding on the subunit affinities of tetrameric PFK using several biophysical and spectroscopic techniques including 2-photon, dual-channel Fluorescence Correlation Spectroscopy (FCS). We demonstrate that PEP-binding at the allosteric site is sufficient to reduce the affinity of the active site interface from beyond the limits of experimental detection to nanomolar affinity, while conversely strengthening the interface at which it is bound. The reduced interface affinity is specific to inhibitor-binding, as binding the activator ADP at the same allosteric site causes no reduction in subunit affinity. With inhibitor bound, the weakened subunit affinity has allowed the kinetics of dimer association to be elucidated. PMID:16981693

  5. Mechanisms Underlying the Confined Diffusion of Cholera Toxin B-Subunit in Intact Cell Membranes

    PubMed Central

    Day, Charles A.; Kenworthy, Anne K.

    2012-01-01

    Multivalent glycolipid binding toxins such as cholera toxin have the capacity to cluster glycolipids, a process thought to be important for their functional uptake into cells. In contrast to the highly dynamic properties of lipid probes and many lipid-anchored proteins, the B-subunit of cholera toxin (CTxB) diffuses extremely slowly when bound to its glycolipid receptor GM1 in the plasma membrane of living cells. In the current study, we used confocal FRAP to examine the origins of this slow diffusion of the CTxB/GM1 complex at the cell surface, relative to the behavior of a representative GPI-anchored protein, transmembrane protein, and fluorescent lipid analog. We show that the diffusion of CTxB is impeded by actin- and ATP-dependent processes, but is unaffected by caveolae. At physiological temperature, the diffusion of several cell surface markers is unchanged in the presence of CTxB, suggesting that binding of CTxB to membranes does not alter the organization of the plasma membrane in a way that influences the diffusion of other molecules. Furthermore, diffusion of the B-subunit of another glycolipid-binding toxin, Shiga toxin, is significantly faster than that of CTxB, indicating that the confined diffusion of CTxB is not a simple function of its ability to cluster glycolipids. By identifying underlying mechanisms that control CTxB dynamics at the cell surface, these findings help to delineate the fundamental properties of toxin-receptor complexes in intact cell membranes. PMID:22511973

  6. Cholera Toxin Subunit B Enabled Multifunctional Glioma-Targeted Drug Delivery.

    PubMed

    Guan, Juan; Zhang, Zui; Hu, Xuefeng; Yang, Yang; Chai, Zhilan; Liu, Xiaoqin; Liu, Jican; Gao, Bo; Lu, Weiyue; Qian, Jun; Zhan, Changyou

    2017-12-01

    Glioma is among the most formidable brain cancers due to location in the brain. Cholera toxin subunit B (CTB) is investigated to facilitate multifunctional glioma-targeted drug delivery by targeting the glycosphingolipid GM1 expressed in the blood-brain barrier (BBB), neovasulature, and glioma cells. When modified on the surface of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (CTB-NPs), CTB fully retains its bioactivity after 24 h incubation in the fresh mouse plasma. The formed protein corona (PC) of CTB-NP and plain PLGA nanoparticles (NP) after incubation in plasma is analyzed using liquid chromatography tandem massspectrometry (nano-LC-MS/MS). CTB modification does not alter the protein components of the formed PC, macrophage phagocytosis, or pharmacokinetic profiles. CTB-NP can efficiently penetrate the in vitro BBB model and target glioma cells and human umbilical vascular endothelial cells. Paclitaxel is loaded in NP (NP/PTX) and CTB-NP (CTB-NP/PTX), and their antiglioma effects are assessed in nude mice bearing intracranial glioma. CTB-NP/PTX can efficiently induce apoptosis of intracranial glioma cells and ablate neovasulature in vivo, resulting in significant prolongation of survival of nude mice bearing intracranial glioma (34 d) in comparison to those treated with NP/PTX (29 d), Taxol (24 d), and saline (21 d). The present study suggests a potential multifunctional glioma-targeted drug delivery system enabled by cholera toxin subunit B. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Eukaryotic Initiation Factor 4H Is under Transcriptional Control of p65/NF-κB

    PubMed Central

    Fiume, Giuseppe; Rossi, Annalisa; de Laurentiis, Annamaria; Falcone, Cristina; Pisano, Antonio; Vecchio, Eleonora; Pontoriero, Marilena; Scala, Iris; Scialdone, Annarita; Masci, Francesca Fasanella; Mimmi, Selena; Palmieri, Camillo; Scala, Giuseppe; Quinto, Ileana

    2013-01-01

    Protein synthesis is mainly regulated at the initiation step, allowing the fast, reversible and spatial control of gene expression. Initiation of protein synthesis requires at least 13 translation initiation factors to assemble the 80S ribosomal initiation complex. Loss of translation control may result in cell malignant transformation. Here, we asked whether translational initiation factors could be regulated by NF-κB transcription factor, a major regulator of genes involved in cell proliferation, survival, and inflammatory response. We show that the p65 subunit of NF-κB activates the transcription of eIF4H gene, which is the regulatory subunit of eIF4A, the most relevant RNA helicase in translation initiation. The p65-dependent transcriptional activation of eIF4H increased the eIF4H protein content augmenting the rate of global protein synthesis. In this context, our results provide novel insights into protein synthesis regulation in response to NF-κB activation signalling, suggesting a transcription-translation coupled mechanism of control. PMID:23776612

  8. Pre-S2 Start Codon Mutation of Hepatitis B Virus Subgenotype B3 Effects on NF-κB Expression and Activation in Huh7 Cell Lines.

    PubMed

    Siburian, Marlinang Diarta; Suriapranata, Ivet Marita; Wanandi, Septelia Inawati

    2018-03-19

    A cross-sectional study on hepatitis B patients in Indonesia showed association of pre-S2 start codon mutation (M120 V) with cirrhosis and hepatocellular carcinoma (HCC), which was dissimilar from studies from other populations where pre-S2 deletion mutation was more prevalent. Different mutation patterns were attributed to different hepatitis B virus (HBV) subgenotypes in each population study. HBV surface proteins are reported to induce the activation of NF-κB, a transcriptional factor known to play an important role in the development of liver disease. This study aimed to see the effects of HBs variants in HBV subgenotype B3 on the expression and activation of NF-κB as one of the mechanisms in inducing advanced liver disease. HBV subgenotypes B3, each carrying wild-type (wt) HBs, M120 V, and pre-S2 deletion mutation were isolated from three HCC patients. HBs genes were amplified and cloned into pcDNA3.1 and were transfected using Lipofectamine into a Huh7 cell line. NF-κB activation was measured through IκB-α expression, which is regulated by NF-κB. RNA expressions for HBs, IκB-α, and NF-κB subunit (p50) were evaluated using real-time PCR. M120 V mutant had a significantly higher mRNA level compared with wt and pre-S2 deletion mutant; however, there were no significant differences in HBs protein expressions. The transcription level of p50 was higher in M120 V mutation compared with HBs wild-type and pre-S2 deletion mutant. NF-κB activation was higher in HBs wild-type compared with the two mutant variants. Pre-S2 mutations had no effect on the increment of NF-κB activation. However, M120 V mutation may utilize a different pathway in liver disease progression that involves high expression of NF-κB subunit, p50.

  9. The Neuron-specific Chromatin Regulatory Subunit BAF53b is Necessary for Synaptic Plasticity and Memory

    PubMed Central

    Vogel-Ciernia, Annie; Matheos, Dina P.; Barrett, Ruth M.; Kramár, Enikö; Azzawi, Soraya; Chen, Yuncai; Magnan, Christophe N.; Zeller, Michael; Sylvain, Angelina; Haettig, Jakob; Jia, Yousheng; Tran, Anthony; Dang, Richard; Post, Rebecca J.; Chabrier, Meredith; Babayan, Alex; Wu, Jiang I.; Crabtree, Gerald R.; Baldi, Pierre; Baram, Tallie Z.; Lynch, Gary; Wood, Marcelo A.

    2013-01-01

    Recent exome sequencing studies have implicated polymorphic BAF complexes (mammalian SWI/SNF chromatin remodeling complexes) in several human intellectual disabilities and cognitive disorders. However, it is currently unknown how mutations in BAF complexes result in impaired cognitive function. Post mitotic neurons express a neuron specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Mice harboring selective genetic manipulations of BAF53b have severe defects in longterm memory and long-lasting forms of hippocampal synaptic plasticity. We rescued memory impairments in BAF53b mutant mice by reintroducing BAF53b in the adult hippocampus, indicating a role for BAF53b beyond neuronal development. The defects in BAF53b mutant mice appear to derive from alterations in gene expression that produce abnormal postsynaptic components, such as spine structure and function, and ultimately lead to deficits in synaptic plasticity. Our studies provide new insight into the role of dominant mutations in subunits of BAF complexes in human intellectual and cognitive disorders. PMID:23525042

  10. Characterisation of 5-HT3C, 5-HT3D and 5-HT3E receptor subunits: evolution, distribution and function.

    PubMed

    Holbrook, Joanna D; Gill, Catherine H; Zebda, Noureddine; Spencer, Jon P; Leyland, Rebecca; Rance, Kim H; Trinh, Han; Balmer, Gemma; Kelly, Fiona M; Yusaf, Shahnaz P; Courtenay, Nicola; Luck, Jane; Rhodes, Andrew; Modha, Sundip; Moore, Stephen E; Sanger, Gareth J; Gunthorpe, Martin J

    2009-01-01

    The 5-HT(3) receptor is a member of the 'Cys-loop' family of ligand-gated ion channels that mediate fast excitatory and inhibitory transmission in the nervous system. Current evidence points towards native 5-HT(3) receptors originating from homomeric assemblies of 5-HT(3A) or heteromeric assembly of 5-HT(3A) and 5-HT(3B). Novel genes encoding 5-HT(3C), 5-HT(3D), and 5-HT(3E) have recently been described but the functional importance of these proteins is unknown. In the present study, in silico analysis (confirmed by partial cloning) indicated that 5-HT(3C), 5-HT(3D), and 5-HT(3E) are not human-specific as previously reported: they are conserved in multiple mammalian species but are absent in rodents. Expression profiles of the novel human genes indicated high levels in the gastrointestinal tract but also in the brain, Dorsal Root Ganglion (DRG) and other tissues. Following the demonstration that these subunits are expressed at the cell membrane, the functional properties of the recombinant human subunits were investigated using patch clamp electrophysiology. 5-HT(3C), 5-HT(3D), and 5-HT(3E) were all non-functional when expressed alone. Co-transfection studies to determine potential novel heteromeric receptor interactions with 5-HT(3A) demonstrated that the expression or function of the receptor was modified by 5-HT(3C) and 5-HT(3E), but not 5-HT(3D). The lack of distinct effects on current rectification, kinetics or pharmacology of 5-HT(3A) receptors does not however provide unequivocal evidence to support a direct contribution of 5-HT(3C) or 5-HT(3E) to the lining of the ion channel pore of novel heteromeric receptors. The functional and pharmacological contributions of these novel subunits to human biology and diseases such as irritable bowel syndrome for which 5-HT(3) receptor antagonists have major clinical usage, therefore remains to be fully determined.

  11. Mapping the Complement Factor H-Related Protein 1 (CFHR1):C3b/C3d Interactions

    PubMed Central

    Laskowski, Jennifer; Thurman, Joshua M.; Hageman, Gregory S.; Holers, V. Michael

    2016-01-01

    Complement factor H-related protein 1 (CFHR1) is a complement regulator which has been reported to regulate complement by blocking C5 convertase activity and interfering with C5b surface association. CFHR1 also competes with complement factor H (CFH) for binding to C3b, and may act as an antagonist of CFH-directed regulation on cell surfaces. We have employed site-directed mutagenesis in conjunction with ELISA-based and functional assays to isolate the binding interaction that CFHR1 undertakes with complement components C3b and C3d to a single shared interface. The C3b/C3d:CFHR1 interface is identical to that which occurs between the two C-terminal domains (SCR19-20) of CFH and C3b. Moreover, we have been able to corroborate that dimerization of CFHR1 is necessary for this molecule to bind effectively to C3b and C3d, or compete with CFH. Finally, we have established that CFHR1 competes with complement factor H-like protein 1 (CFHL-1) for binding to C3b. CFHL-1 is a CFH gene splice variant, which is almost identical to the N-terminal 7 domains of CFH (SCR1-7). CFHR1, therefore, not only competes with the C-terminus of CFH for binding to C3b, but also sterically blocks the interaction that the N-terminus of CFH undertakes with C3b, and which is required for CFH-regulation. PMID:27814381

  12. Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3

    PubMed Central

    Yoneda-Kato, Noriko; Tomoda, Kiichiro; Umehara, Mari; Arata, Yukinobu; Kato, Jun-ya

    2005-01-01

    Myeloid leukemia factor 1 (MLF1) was first identified as the leukemic fusion protein NPM-MLF1 generated by the t(3;5)(q25.1;q34) chromosomal translocation. Although MLF1 expresses normally in a variety of tissues including hematopoietic stem cells and the overexpression of MLF1 correlates with malignant transformation in human cancer, little is known about how MLF1 is involved in the regulation of cell growth. Here we show that MLF1 is a negative regulator of cell cycle progression functioning upstream of the tumor suppressor p53. MLF1 induces p53-dependent cell cycle arrest in murine embryonic fibroblasts. This action requires a novel binding partner, subunit 3 of the COP9 signalosome (CSN3). A reduction in the level of CSN3 protein with small interfering RNA abrogated MLF1-induced G1 arrest and impaired the activation of p53 by genotoxic stress. Furthermore, ectopic MLF1 expression and CSN3 knockdown inversely affect the endogenous level of COP1, a ubiquitin ligase for p53. Exogenous expression of COP1 overcomes MLF1-induced growth arrest. These results indicate that MLF1 is a critical regulator of p53 and suggest its involvement in leukemogenesis through a novel CSN3–COP1 pathway. PMID:15861129

  13. An RNA decay factor wears a new coat: UPF3B modulates translation termination

    PubMed Central

    Gao, Zhaofeng; Wilkinson, Miles

    2017-01-01

    Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that has been subject to intense scrutiny. NMD identifies and degrades subsets of normal RNAs, as well as abnormal mRNAs containing premature termination codons. A core factor in this pathway—UPF3B—is an adaptor protein that serves as an NMD amplifier and an NMD branch-specific factor. UPF3B is encoded by an X-linked gene that when mutated causes intellectual disability and is associated with neurodevelopmental disorders, including schizophrenia and autism. Neu-Yilik et al. now report a new function for UPF3B: it modulates translation termination. Using a fully reconstituted in vitro translation system, they find that UPF3B has two roles in translation termination. First, UPF3B delays translation termination under conditions that mimic premature translation termination. This could drive more efficient RNA decay by allowing more time for the formation of RNA decay-stimulating complexes. Second, UPF3B promotes the dissociation of post-termination ribosomal complexes that lack nascent peptide. This implies that UPF3B could promote ribosome recycling. Importantly, the authors found that UPF3B directly interacts with both RNA and the factors that recognize stop codons—eukaryotic release factors (eRFs)—suggesting that UPF3B serves as a direct regulator of translation termination. In contrast, a NMD factor previously thought to have a central regulatory role in translation termination—the RNA helicase UPF1—was found to indirectly interact with eRFs and appears to act exclusively in post-translation termination events, such as RNA decay, at least in vitro. The finding that an RNA decay-promoting factor, UFP3B, modulates translation termination has many implications. For example, the ability of UPF3B to influence the development and function of the central nervous system may be not only through its ability to degrade specific RNAs but also through its impact on translation

  14. The p65 Subunit of NF-κB Inhibits COL1A1 Gene Transcription in Human Dermal and Scleroderma Fibroblasts through Its Recruitment on Promoter by Protein Interaction with Transcriptional Activators (c-Krox, Sp1, and Sp3)*

    PubMed Central

    Beauchef, Gallic; Bigot, Nicolas; Kypriotou, Magdalini; Renard, Emmanuelle; Porée, Benoît; Widom, Russell; Dompmartin-Blanchere, Anne; Oddos, Thierry; Maquart, François-Xavier; Demoor, Magali; Boumediene, Karim; Galera, Philippe

    2012-01-01

    Transcriptional mechanisms regulating type I collagen genes expression in physiopathological situations are not completely known. In this study, we have investigated the role of nuclear factor-κB (NF-κB) transcription factor on type I collagen expression in adult normal human (ANF) and scleroderma (SF) fibroblasts. We demonstrated that NF-κB, a master transcription factor playing a major role in immune response/apoptosis, down-regulates COL1A1 expression by a transcriptional control involving the −112/−61 bp sequence. This 51-bp region mediates the action of two zinc fingers, Sp1 (specific protein-1) and Sp3, acting as trans-activators of type I collagen expression in ANF and SF. Knockdown of each one of these trans factors by siRNA confirmed the trans-activating effect of Sp1/Sp3 and the p65 subunit of NF-κB trans-inhibiting effect on COL1A1 expression. Despite no existing κB consensus sequence in the COL1A1 promoter, we found that Sp1/Sp3/c-Krox and NF-κB bind and/or are recruited on the proximal promoter in chromatin immunoprecipitation (ChIP) assays. Attempts to elucidate whether interactions between Sp1/Sp3/c-Krox and p65 are necessary to mediate the NF-κB inhibitory effect on COL1A1 in ANF and SF were carried out; in this regard, immunoprecipitation assays revealed that they interact, and this was validated by re-ChIP. Finally, the knockdown of Sp1/Sp3/c-Krox prevents the p65 inhibitory effect on COL1A1 transcription in ANF, whereas only the siRNAs targeting Sp3 and c-Krox provoked the same effect in SF, suggesting that particular interactions are characteristic of the scleroderma phenotype. In conclusion, our findings highlight a new mechanism for COL1A1 transcriptional regulation by NF-κB, and these data could allow the development of new antifibrotic strategies. PMID:22139845

  15. The eukaryotic translation initiation factor 3 subunit E binds to classical swine fever virus NS5A and facilitates viral replication.

    PubMed

    Liu, Xiaofeng; Wang, Xiaoyu; Wang, Qian; Luo, Mingyang; Guo, Huancheng; Gong, Wenjie; Tu, Changchun; Sun, Jinfu

    2018-02-01

    Classical swine fever virus (CSFV) NS5A protein is a multifunctional protein, playing critical roles in viral RNA replication, translation and assembly. To further explore its functions in viral replication, interaction of NS5A with host factors was assayed using a his-tag "pull down" assay coupled with shotgun LC-MS/MS. Host protein translation initiation factor 3 subunit E was identified as a binding partner of NS5A, and confirmed by co-immunoprecipitation and co-localization analysis. Overexpression of eIF3E markedly enhanced CSFV genomic replication, viral protein expression and production of progeny virus, and downregulation of eIF3E by siRNA significantly decreased viral proliferation in PK-15 cells. Luciferase reporter assay showed an enhancement of translational activity of the internal ribosome entry site of CSFV by eIF3E and a decrease in cellular translation by NS5A. These data indicate that eIF3E plays an important role in CSFV replication, thereby identifying it as a potential target for inhibition of the virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Pituitary transcription factor Prop-1 stimulates porcine pituitary glycoprotein hormone alpha subunit gene expression.

    PubMed

    Sato, Takanobu; Kitahara, Kousuke; Susa, Takao; Kato, Takako; Kato, Yukio

    2006-10-01

    Recently, we have reported that a Prophet of Pit-1 homeodomain factor, Prop-1, is a novel transcription factor for the porcine follicle-stimulating hormone beta subunit (FSHbeta) gene. This study subsequently aimed to examine the role of Prop-1 in the gene expression of two other porcine gonadotropin subunits, pituitary glycoprotein hormone alpha subunit (alphaGSU), and luteinizing hormone beta subunit (LHbeta). A series of deletion mutants of the porcine alphaGSU (up to -1059 bp) and LHbeta (up to -1277 bp) promoters were constructed in the reporter vector, fused with the secreted alkaline phosphatase gene (pSEAP2-Basic). Transient transfection studies using GH3 cells were carried out to estimate the activation of the porcine alphaGSU and LHbeta promoters by Prop-1, which was found to activate the alphaGSU promoter of -1059/+12 bp up to 11.7-fold but not the LHbeta promoter. Electrophoretic mobility shift assay and DNase I footprinting analysis revealed that Prop-1 binds to six positions, -1038/-1026, -942/-928, -495/-479, -338/-326, -153/-146, and -131/-124 bp, that comprise the A/T cluster. Oligonucleotides of six Prop-1 binding sites were directly connected to the minimum promoter of alphaGSU, fused in the pSEAP2-Basic vector, followed by transfecting GH3 cells to determine the cis-acting activity. Finally, we concluded that at least five Prop-1 binding sites are the cis-acting elements for alphaGSU gene expression. The present results revealed a notable feature of the proximal region, where three Prop-1-binding sites are close to and/or overlap the pituitary glycoprotein hormone basal element, GATA-binding element, and junctional regulatory element. To our knowledge, this is the first demonstration of the role of Prop-1 in the regulation of alphaGSU gene expression. These results, taken together with our previous finding that Prop-1 is a transcription factor for FSHbeta gene, confirm that Prop-1 modulates the synthesis of FSH at the transcriptional level. On

  17. Monoclonal antibodies to molluskan hemocyanin from Concholepas concholepas demonstrate common and specific epitopes among subunits.

    PubMed

    Oliva, Harold; Moltedo, Bruno; De Ioannes, Pablo; Faunes, Fernando; De Ioannes, Alfredo E; Becker, María Inés

    2002-10-01

    We studied the reactivity of mouse monoclonal antibodies (MAbs) against the hemocyanin from the Chilean marine gastropod Concholepas concholepas (CCH). This protein has been successfully used as a carrier to produce antibodies to haptens and peptides. All MAbs (13) belonging to IgG subclass exhibit dissociation constants (K(d)) from 1 x 10(-7) M to 1 x 10(-9) M. MAbs were characterized by enzyme-linked immunosorbant assay (ELISA) using CCH treated with different procedures, including dissociation into CCH-A and CCH-B subunits, Western blot, enzymatic digestion, chemical deglycosylation, and thermal denaturation. MAbs were classified into three categories, according to subunit specificity by ELISA. The epitope distribution shows that CCH subunits display common epitopes (group I, 5 MAbs, 1H5, 2A8, 3A5, 3B3, and 3E3), as well as specific epitopes for CCH-A subunits (group II, 3 MAbs, 1B8, 4D8, and 8E5) and for CCH-B subunits (group III, 5 MAbs, 1A4, 1E4, 2H10, 3B7, and 7B4). The results can be summarized as follows: (1). six antibodies react with thermal denatured CCH, suggesting that they recognize linear epitopes, whereas seven recognize conformational epitopes; (2). oxidation of carbohydrate moieties does not affect the binding of the MAbs; (3). enzymatic digestion of CCH decreases the reactivity of all antibodies irrespective of the protease used (elastase or trypsin); (4). bringing together the above data, in addition to epitopic complementarity analysis, we identified 12 different epitopes on the CCH molecule recognized by these MAbs. The anti-CCH MAbs presented here can be useful tools to understand the subunit organization of the CCH and its complex structure, which can explain its immunogenic and immunostimulating properties in mammals.

  18. Dynamic expression of transcription factor Brn3b during mouse cranial nerve development

    PubMed Central

    Sajgo, Szilard; Ali, Seid; Popescu, Octavian; Badea, Tudor Constantin

    2015-01-01

    During development transcription factor combinatorial codes define a large variety of morphologically and physiologically distinct neurons. Such a combinatorial code has been proposed for the differentiation of projection neurons of the somatic and visceral components of cranial nerves. It is possible that individual neuronal cell types are not specified by unique transcription factors, but rather emerge through the intersection of their expression domains. Brn3a, Brn3b and Brn3c, in combination with each other and/or transcription factors of other families, can define subgroups of Retinal Ganglion Cells (RGC), Spiral and Vestibular Ganglia, inner ear and vestibular hair cell neurons in the vestibuloacoustic system, and groups of somatosensory neurons in the Dorsal Root Ganglia (DRG). In the present study we investigated the expression and potential role of the Brn3b transcription factor in cranial nerves and associated nuclei of the brainstem. We report the dynamic expression of Brn3b in the somatosensory component of cranial nerves II, V, VII and VIII and visceromotor nuclei of nerves VII, IX, X, as well as other brainstem nuclei during different stages of development into adult stage. We find that genetically identified Brn3bKO RGC axons show correct but delayed pathfinding during the early stages of embryonic development. However loss of Brn3b does not affect the anatomy of the other cranial nerves normally expressing this transcription factor. PMID:26356988

  19. NMDA receptor subunits and associated signaling molecules mediating antidepressant-related effects of NMDA-GluN2B antagonism

    PubMed Central

    Kiselycznyk, Carly; Jury, Nicholas; Halladay, Lindsay; Nakazawa, Kazu; Mishina, Masayoshi; Sprengel, Rolf; Grant, Seth G.N.; Svenningsson, Per; Holmes, Andrew

    2015-01-01

    Drugs targeting the glutamate N-methyl-D-aspartate receptor (NMDAR) may be efficacious for treating mood disorders, as exemplified by the rapid antidepressant effects produced by single administration of the NMDAR antagonist ketamine. Though the precise mechanisms underlying the antidepressant-related effects of NMDAR antagonism remain unclear, recent studies implicate specific NMDAR subunits, including GluN2A and GluN2B, as well as the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) subunit glutamate receptor interacting molecule, PSD-95. Here, integrating mutant and pharmacological in mice, we investigated the contribution of these subunits and molecules to antidepressant-related behaviors and the antidepressant-related effects of the GluN2B blocker, Ro 25-6981. We found that global deletion of GluA1 or PSD-95 reduced forced swim test (FST) immobility, mimicking the antidepressant-related effect produced by systemically administered Ro 25-6981 in C57BL/6J mice. Moreover, the FST antidepressant-like effects of systemic Ro 25-6981 were intact in mutants with global GluA1 deletion or GluN1 deletion in forebrain interneurons, but were absent in mutants constitutively lacking GluN2A or PSD-95. Next, we found that microinfusing Ro 25-6981 into the medial prefrontal cortex (mPFC), but not basolateral amygdala, of C57BL/6J mice was sufficient to produce an antidepressant-like effect. Together, these findings extend and refine current understanding of the mechanisms mediating antidepressant-like effects produced by NMDAR-GluN2B antagonists, and may inform the development of a novel class of medications for treating depression that target the GluN2B subtype of NMDAR. PMID:25800971

  20. Dual effects of ouabain on the regulation of proliferation and apoptosis in human umbilical vein endothelial cells: involvement of Na(+)-K(+)-ATPase α-subunits and NF-κB.

    PubMed

    Ren, Yan-Ping; Zhang, Ming-Juan; Zhang, Ting; Huang, Ruo-Wen

    2014-01-01

    To elucidate the effect of ouabain on the regulation of proliferation and apoptosis of HUVECs and involvement of different Na(+)-K(+)-ATPase α-subunits and NF-κB. HUVECs were isolated by collagenase perfusion, and MTT assays and cell cycle analysis were performed to study proliferation. NF-κB expression and function were examined by immunohistochemical staining and western blotting. Na(+)-K(+)-ATPase activity was determined by measuring released ouabain inhibitable inorganic phosphate (Pi). The expression of different α-subunits was investigated by real RT-PCR, western blotting and cell immunofluorescence. 0.3 nM ouabain treatment for 0.5 h triggered the proliferation of HUVECs, peaking at 1-2 h. At 1.8 nM for 0.5 h, ouabain induced an increase of cell proliferation for a short time, and then triggered a decrease after 1 h. Cell cycle analysis show that 37% of HUVECs were in G2/M phase of the cell cycle following incubation with 1.8 nM ouabain, compared with 18% with 0.3 nM ouabain. NF-κB activity was assessed by western blot analysis of IκB expression, which was significantly reduced with 0.3 nM ouabain treatment; there was no different between 1.8 nM ouabain treatment and untreated cells. Na(+)-K(+)-ATPase activity in HUVECs was markedly reduced after treatment with 0.3 nM and 1.8 nM ouabain. Real RT-PCR and western blotting indicated that Na(+)-K(+)-ATPase α1-subunit mRNA expression levels increased after 0.3 nM ouabain treatment and decreased after 1.8 nM ouabain treatment. However, α2- and α3-subunit mRNA decreased after 0.3 nM ouabain treatment and increased after 1.8 nM ouabain treatment. Ouabain at different concentrations caused dual effects on proliferation and apoptosis in HUVECs.

  1. The POLD3 subunit of DNA polymerase δ can promote translesion synthesis independently of DNA polymerase ζ

    PubMed Central

    Hirota, Kouji; Yoshikiyo, Kazunori; Guilbaud, Guillaume; Tsurimoto, Toshiki; Murai, Junko; Tsuda, Masataka; Phillips, Lara G.; Narita, Takeo; Nishihara, Kana; Kobayashi, Kaori; Yamada, Kouich; Nakamura, Jun; Pommier, Yves; Lehmann, Alan; Sale, Julian E.; Takeda, Shunichi

    2015-01-01

    The replicative DNA polymerase Polδ consists of a catalytic subunit POLD1/p125 and three regulatory subunits POLD2/p50, POLD3/p66 and POLD4/p12. The ortholog of POLD3 in Saccharomyces cerevisiae, Pol32, is required for a significant proportion of spontaneous and UV-induced mutagenesis through its additional role in translesion synthesis (TLS) as a subunit of DNA polymerase ζ. Remarkably, chicken DT40 B lymphocytes deficient in POLD3 are viable and able to replicate undamaged genomic DNA with normal kinetics. Like its counterpart in yeast, POLD3 is required for fully effective TLS, its loss resulting in hypersensitivity to a variety of DNA damaging agents, a diminished ability to maintain replication fork progression after UV irradiation and a significant decrease in abasic site-induced mutagenesis in the immunoglobulin loci. However, these defects appear to be largely independent of Polζ, suggesting that POLD3 makes a significant contribution to TLS independently of Polζ in DT40 cells. Indeed, combining polη, polζ and pold3 mutations results in synthetic lethality. Additionally, we show in vitro that POLD3 promotes extension beyond an abasic by the Polδ holoenzyme suggesting that while POLD3 is not required for normal replication, it may help Polδ to complete abasic site bypass independently of canonical TLS polymerases. PMID:25628356

  2. Subunit rotation of ATP synthase embedded in membranes: a or β subunit rotation relative to the c subunit ring

    PubMed Central

    Nishio, Kazuaki; Iwamoto-Kihara, Atsuko; Yamamoto, Akitsugu; Wada, Yoh; Futai, Masamitsu

    2002-01-01

    ATP synthase FoF1 (α3β3γδɛab2c10–14) couples an electrochemical proton gradient and a chemical reaction through the rotation of its subunit assembly. In this study, we engineered FoF1 to examine the rotation of the catalytic F1 β or membrane sector Fo a subunit when the Fo c subunit ring was immobilized; a biotin-tag was introduced onto the β or a subunit, and a His-tag onto the c subunit ring. Membrane fragments were obtained from Escherichia coli cells carrying the recombinant plasmid for the engineered FoF1 and were immobilized on a glass surface. An actin filament connected to the β or a subunit rotated counterclockwise on the addition of ATP, and generated essentially the same torque as one connected to the c ring of FoF1 immobilized through a His-tag linked to the α or β subunit. These results established that the γɛc10–14 and α3β3δab2 complexes are mechanical units of the membrane-embedded enzyme involved in rotational catalysis. PMID:12357031

  3. The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Kanako; Department of Anesthesiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501; Kanno, Takeshi

    2008-03-07

    The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-D-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression ofmore » the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G{sub 1} phase of cell cycling and decreased the proportion in the S/G{sub 2} phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G{sub 1} phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.« less

  4. Deletion of the low-molecular-weight glutenin subunit allele Glu-A3a of wheat (Triticum aestivum L.) significantly reduces dough strength and breadmaking quality.

    PubMed

    Zhen, Shoumin; Han, Caixia; Ma, Chaoying; Gu, Aiqin; Zhang, Ming; Shen, Xixi; Li, Xiaohui; Yan, Yueming

    2014-12-19

    Low-molecular-weight glutenin subunits (LMW-GS), encoded by Glu-3 complex loci in hexaploid wheat, play important roles in the processing quality of wheat flour. To date, the molecular characteristics and effects on dough quality of individual Glu-3 alleles and their encoding proteins have been poorly studied. We used a Glu-A3 deletion line of the Chinese Spring (CS-n) wheat variety to conduct the first comprehensive study on the molecular characteristics and functional properties of the LMW-GS allele Glu-A3a. The Glu-A3a allele at the Glu-A3 locus in CS and its deletion in CS-n were identified and characterized by proteome and molecular marker methods. The deletion of Glu-A3a had no significant influence on plant morphological and yield traits, but significantly reduced the dough strength and breadmaking quality compared to CS. The complete sequence of the Glu-A3a allele was cloned and characterized, which was found to encode a B-subunit with longer repetitive domains and an increased number of α-helices. The Glu-A3a-encoded B-subunit showed a higher expression level and accumulation rate during grain development. These characteristics of the Glu-A3a allele could contribute to achieving superior gluten quality and demonstrate its potential application to wheat quality improvement. Furthermore, an allele-specific polymerase chain reaction (AS-PCR) marker for the Glu-A3a allele was developed and validated using different bread wheat cultivars, including near-isogenic lines (NILs) and recombinant inbred lines (RILs), which could be used as an effective molecular marker for gluten quality improvement through marker-assisted selection. This work demonstrated that the LMW-GS allele Glu-A3a encodes a specific LMW-i type B-subunit that significantly affects wheat dough strength and breadmaking quality. The Glu-A3a-encoded B-subunit has a long repetitive domain and more α-helix structures as well as a higher expression level and accumulation rate during grain development

  5. Analysis of the Antigenic and Prophylactic Properties of the Leishmania Translation Initiation Factors eIF2 and eIF2B in Natural and Experimental Leishmaniasis

    PubMed Central

    Garde, Esther; Ramírez, Laura; Corvo, Laura; Solana, José C.; Martín, M. Elena; González, Víctor M.; Gómez-Nieto, Carlos; Barral, Aldina; Barral-Netto, Manoel; Requena, José M.; Iborra, Salvador; Soto, Manuel

    2018-01-01

    Different members of intracellular protein families are recognized by the immune system of the vertebrate host infected by parasites of the genus Leishmania. Here, we have analyzed the antigenic and immunogenic properties of the Leishmania eIF2 and eIF2B translation initiation factors. An in silico search in Leishmania infantum sequence databases allowed the identification of the genes encoding the α, β, and γ subunits and the α, β, and δ subunits of the putative Leishmania orthologs of the eukaryotic initiation factors F2 (LieIF2) or F2B (LieIF2B), respectively. The antigenicity of these factors was analyzed by ELISA using recombinant versions of the different subunits. Antibodies against the different LieIF2 and LieIF2B subunits were found in the sera from human and canine visceral leishmaniasis patients, and also in the sera from hamsters experimentally infected with L. infantum. In L. infantum (BALB/c) and Leishmania major (BALB/c or C57BL/6) challenged mice, a moderate humoral response against these protein factors was detected. Remarkably, these proteins elicited an IL-10 production by splenocytes derived from infected mice independently of the Leishmania species employed for experimental challenge. When DNA vaccines based on the expression of the LieIF2 or LieIF2B subunit encoding genes were administered in mice, an antigen-specific secretion of IFN-γ and IL-10 cytokines was observed. Furthermore, a partial protection against murine CL development due to L. major infection was generated in the vaccinated mice. Also, in this work we show that the LieIF2α subunit and the LieIF2Bβ and δ subunits have the capacity to stimulate IL-10 secretion by spleen cells from naïve mice. B-lymphocytes were identified as the major producers of this anti-inflammatory cytokine. Taking into account the data found in this study, it may be hypothesized that these proteins act as virulence factors implicated in the induction of humoral responses as well as in the

  6. The epithelial cell cytoskeleton and intracellular trafficking. I. Shiga toxin B-subunit system: retrograde transport, intracellular vectorization, and more.

    PubMed

    Johannes, Ludger

    2002-07-01

    Many intracellular transport routes are still little explored. This is particularly true for retrograde transport between the plasma membrane and the endoplasmic reticulum. Shiga toxin B subunit has become a powerful tool to study this pathway, and recent advances on the molecular mechanisms of transport in the retrograde route and on its physiological function(s) are summarized. Furthermore, it is discussed how the study of retrograde transport of Shiga toxin B subunit allows one to design new methods for the intracellular delivery of therapeutic compounds.

  7. In vivo reconstitution of a homodimeric cytochrome b559 like structure: The role of the N-terminus α-subunit from Synechocystis sp. PCC 6803.

    PubMed

    Luján, María A; Martínez, Jesús I; Alonso, Pablo J; Torrado, Alejandro; Roncel, Mercedes; Ortega, José M; Sancho, Javier; Picorel, Rafael

    2015-11-01

    The cytochrome b559 is a heme-bridged heterodimeric protein with two subunits, α and β. Both subunits from Synechocystis sp. PCC 6803 have previously been cloned and overexpressed in Escherichia coli and in vivo reconstitution experiments have been carried out. The formation of homodimers in the bacterial membrane with endogenous heme was only observed in the case of the β-subunit (β/β) but not with the full length α-subunit. In the present work, reconstitution of a homodimer (α/α) cytochrome b559 like structure was possible using a chimeric N-terminus α-subunit truncated before the amino acid isoleucine 17, eliminating completely a short amphipathic α-helix that lays on the surface of the membrane. Overexpression and in vivo reconstitution in the bacteria was clearly demonstrated by the brownish color of the culture pellet and the use of a commercial monoclonal antibody against the fusion protein carrier, the maltoside binding protein, and polyclonal antibodies against a synthetic peptide of the α-subunit from Thermosynechococcus elongatus. Moreover, a simple partial purification after membrane solubilization with Triton X-100 confirmed that the overexpressed protein complex corresponded with the maltoside binding protein-chimeric α-subunit cytochrome b559 like structure. The features of the new structure were determined by UV-Vis, electron paramagnetic resonance and redox potentiometric techniques. Ribbon representations of all possible structures are also shown to better understand the mechanism of the cytochrome b559 maturation in the bacterial cytoplasmic membrane. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Estrogen responsiveness of the TFIID subunit TAF4B in the normal mouse ovary and in ovarian tumors.

    PubMed

    Wardell, Jennifer R; Hodgkinson, Kendra M; Binder, April K; Seymour, Kimberly A; Korach, Kenneth S; Vanderhyden, Barbara C; Freiman, Richard N

    2013-11-01

    Estrogen signaling in the ovary is a fundamental component of normal ovarian function, and evidence also indicates that excessive estrogen is a risk factor for ovarian cancer. We have previously demonstrated that the gonadally enriched TFIID subunit TAF4B, a paralog of the general transcription factor TAF4A, is required for fertility in mice and for the proliferation of ovarian granulosa cells following hormonal stimulation. However, the relationship between TAF4B and estrogen signaling in the normal ovary or during ovarian tumor initiation and progression has yet to be defined. Herein, we show that Taf4b mRNA and TAF4B protein, but not Taf4a mRNA or TAF4A protein, are increased in whole ovaries and granulosa cells of the ovary after exposure to 17beta-estradiol or the synthetic estrogen diethylstilbestrol and that this response occurs within hours after stimulation. Furthermore, this increase occurs via nuclear estrogen receptors both in vivo and in a mouse granulosa cancer cell line, NT-1. We observe a significant increase in Taf4b mRNA in estrogen-supplemented mouse ovarian tumors, which correlates with diminished survival of these mice. These data highlight the novel response of the general transcription factor TAF4B to estrogen in the normal ovary and during ovarian tumor progression in the mouse, suggesting its potential role in regulating actions downstream of estrogen stimulation.

  9. The N-methyl-D-aspartate receptor subunits NR2A and NR2B bind to the SH2 domains of phospholipase C-gamma.

    PubMed

    Gurd, J W; Bissoon, N

    1997-08-01

    The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-gamma (PLC-gamma). A glutathione S-transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-gamma was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-gamma and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.

  10. Propofol effectively inhibits lithium-pilocarpine- induced status epilepticus in rats via downregulation of N-methyl-D-aspartate receptor 2B subunit expression

    PubMed Central

    Wang, Henglin; Wang, Zhuoqiang; Mi, Weidong; Zhao, Cong; Liu, Yanqin; Wang, Yongan; Sun, Haipeng

    2012-01-01

    Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine. The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior, electroencephalography and 24-hour survival rate. Propofol (12.5–100 mg/kg) improved status epilepticus in a dose-dependent manner, and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection. Western blot results showed that, 24 hours after induction of status epilepticus, the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus. Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels, but not the increase in N-methyl-D-aspartate receptor 2A subunit levels. The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine. This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures. PMID:25737709

  11. Adaptor protein 1 B mu subunit does not contribute to the recycling of kAE1 protein in polarized renal epithelial cells.

    PubMed

    Almomani, Ensaf Y; Touret, Nicolas; Cordat, Emmanuelle

    2018-04-13

    Mutations in the gene encoding the kidney anion exchanger 1 (kAE1) can lead to distal renal tubular acidosis (dRTA). dRTA mutations reported within the carboxyl (C)-terminal tail of kAE1 result in apical mis-targeting of the exchanger in polarized renal epithelial cells. As kAE1 physically interacts with the μ subunit of epithelial adaptor protein 1 B (AP-1B), we investigated the role of heterologously expressed μ1B subunit of the AP-1B complex for kAE1 retention to the basolateral membrane in polarized porcine LLC-PK1 renal epithelial cells that are devoid of endogenous AP-1B. We confirmed the interaction and close proximity between kAE1 and μ1B using immunoprecipitation and proximity ligation assay, respectively. Expressing the human μ1B subunit in these cells decreased significantly the amount of cell surface kAE1 at the steady state, but had no significant effect on kAE1 recycling and endocytosis. We show that (i) heterologous expression of μ1B displaces the physical interaction of endogenous GAPDH with kAE1 WT supporting that both AP-1B and GAPDH proteins bind to an overlapping site on kAE1 and (ii) phosphorylation of tyrosine 904 within the potential YDEV interaction motif does not alter the kAE1/AP-1B interaction. We conclude that μ1B subunit is not involved in recycling of kAE1.

  12. Inherent conformational flexibility of F1-ATPase α-subunit.

    PubMed

    Hahn-Herrera, Otto; Salcedo, Guillermo; Barril, Xavier; García-Hernández, Enrique

    2016-09-01

    The core of F1-ATPase consists of three catalytic (β) and three noncatalytic (α) subunits, forming a hexameric ring in alternating positions. A wealth of experimental and theoretical data has provided a detailed picture of the complex role played by catalytic subunits. Although major conformational changes have only been seen in β-subunits, it is clear that α-subunits have to respond to these changes in order to be able to transmit information during the rotary mechanism. However, the conformational behavior of α-subunits has not been explored in detail. Here, we have combined unbiased molecular dynamics (MD) simulations and calorimetrically measured thermodynamic signatures to investigate the conformational flexibility of isolated α-subunits, as a step toward deepening our understanding of its function inside the α3β3 ring. The simulations indicate that the open-to-closed conformational transition of the α-subunit is essentially barrierless, which is ideal to accompany and transmit the movement of the catalytic subunits. Calorimetric measurements of the recombinant α-subunit from Geobacillus kaustophilus indicate that the isolated subunit undergoes no significant conformational changes upon nucleotide binding. Simulations confirm that the nucleotide-free and nucleotide-bound subunits show average conformations similar to that observed in the F1 crystal structure, but they reveal an increased conformational flexibility of the isolated α-subunit upon MgATP binding, which might explain the evolutionary conserved capacity of α-subunits to recognize nucleotides with considerable strength. Furthermore, we elucidate the different dependencies that α- and β-subunits show on Mg(II) for recognizing ATP. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Glycine Receptors Containing α2 or α3 Subunits Regulate Specific Ethanol-Mediated Behaviors

    PubMed Central

    Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Leiter, Courtney R.; Osterndorff-Kahanek, Elizabeth

    2015-01-01

    Glycine receptors (GlyRs) are broadly expressed in the central nervous system. Ethanol enhances the function of brain GlyRs, and the GlyRα1 subunit is associated with some of the behavioral actions of ethanol, such as loss of righting reflex. The in vivo role of GlyRα2 and α3 subunits in alcohol responses has not been characterized despite high expression levels in the nucleus accumbens and amygdala, areas that are important for the rewarding properties of drugs of abuse. We used an extensive panel of behavioral tests to examine ethanol actions in mice lacking Glra2 (the gene encoding the glycine receptor alpha 2 subunit) or Glra3 (the gene encoding the glycine receptor alpha 3 subunit). Deletion of Glra2 or Glra3 alters specific ethanol-induced behaviors. Glra2 knockout mice demonstrate reduced ethanol intake and preference in the 24-hour two-bottle choice test and increased initial aversive responses to ethanol and lithium chloride. In contrast, Glra3 knockout mice show increased ethanol intake and preference in the 24-hour intermittent access test and increased development of conditioned taste aversion to ethanol. Mutants and wild-type mice consumed similar amounts of ethanol in the limited access drinking in the dark test. Other ethanol effects, such as anxiolysis, motor incoordination, loss of righting reflex, and acoustic startle response, were not altered in the mutants. The behavioral changes in mice lacking GlyRα2 or α3 subunits were distinct from effects previously observed in mice with knock-in mutations in the α1 subunit. We provide evidence that GlyRα2 and α3 subunits may regulate ethanol consumption and the aversive response to ethanol. PMID:25678534

  14. An active Mitochondrial Complex II Present in Mature Seeds Contains an Embryo-Specific Iron-Sulfur Subunit Regulated by ABA and bZIP53 and Is Involved in Germination and Seedling Establishment.

    PubMed

    Restovic, Franko; Espinoza-Corral, Roberto; Gómez, Isabel; Vicente-Carbajosa, Jesús; Jordana, Xavier

    2017-01-01

    Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana , its iron-sulfur subunit (SDH2) is encoded by three genes, one of them ( SDH2.3 ) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis -elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5' untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron-sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy.

  15. TrkB activation by 7, 8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer's disease.

    PubMed

    Gao, Lei; Tian, Mi; Zhao, Hong-Yun; Xu, Qian-Qian; Huang, Yu-Ming; Si, Qun-Cao; Tian, Qing; Wu, Qing-Ming; Hu, Xia-Min; Sun, Li-Bo; McClintock, Shawn M; Zeng, Yan

    2016-02-01

    We recently demonstrated that activation of tyrosine receptor kinase B (TrkB) by 7, 8-dihydroxyflavone (7, 8-DHF), the selective TrkB agonist, increased surface alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors (AMPARs) AMPA receptor subunit GluR1 (GluA1) subunit expression at the synapses of Fragile X Syndrome mutant mice. This present study investigated the effects of 7, 8-DHF on both memory function and synapse structure in relation to the synapse protein level of AMPARs in the Tg2576 Alzheimer's disease (AD) mouse model. The study found that chronic oral administration of 7, 8-DHF significantly improved spatial memory and minimized dendrite loss in the hippocampus of Tg2576 mice. A key feature of 7, 8-DHF action was the increased expression of both GluA1 and GluA2 at synapses. Interestingly, 7, 8-DHF had no effect on the attenuation of amyloid precursor protein or Aβ exhibiting in the Tg2576 AD brains, yet it activated the phosphorylation of TrkB receptors and its downstream signals including CaMKII, Akt, Erk1/2, and cAMP-response element-binding protein. Importantly, cyclotraxin B (a TrkB inhibitor), U0126 (a Ras-ERK pathway inhibitor), Wortmannin (an Akt phosphorylation inhibitor), and KN-93 (a CaMKII inhibitor) counteracted the enhanced expression and phosphorylation of AMPAR subunits induced by 7, 8-DHF. Collectively, our results demonstrated that 7, 8-DHF acted on TrkB and resolved learning and memory impairments in the absence of reduced amyloid in amyloid precursor protein transgenic mice partially through improved synaptic structure and enhanced synaptic AMPARs. The findings suggest that the application of 7, 8-DHF may be a promising new approach to improve cognitive abilities in AD. We provided extensive data demonstrating that 7, 8-dihydroflavone, the TrkB agonist, improved Tg2576 mice spatial memory. This improvement is correlated with a reversion to normal values of GluA1 and GluA2 AMPA receptor subunits and dendritic

  16. Crystal structures of RIalpha subunit of cyclic adenosine 5'-monophosphate (cAMP)-dependent protein kinase complexed with (Rp)-adenosine 3',5'-cyclic monophosphothioate and (Sp)-adenosine 3',5'-cyclic monophosphothioate, the phosphothioate analogues of cAMP.

    PubMed

    Wu, Jian; Jones, John M; Nguyen-Huu, Xuong; Ten Eyck, Lynn F; Taylor, Susan S

    2004-06-01

    Cyclic adenosine 5'-monophosphate (cAMP) is an ancient signaling molecule, and in vertebrates, a primary target for cAMP is cAMP-dependent protein kinase (PKA). (R(p))-adenosine 3',5'-cyclic monophosphothioate ((R(p))-cAMPS) and its analogues are the only known competitive inhibitors and antagonists for cAMP activation of PKA, while (S(p))-adenosine 3',5'-cyclic monophosphothioate ((S(p))-cAMPS) functions as an agonist. The crystal structures of a Delta(1-91) deletion mutant of the RIalpha regulatory subunit of PKA bound to (R(p))-cAMPS and (S(p))-cAMPS were determined at 2.4 and 2.3 A resolution, respectively. While the structures are similar to each other and to the crystal structure of RIalpha bound to cAMP, differences in the dynamical properties of the protein when (R(p))-cAMPS is bound are apparent. The structures highlight the critical importance of the exocyclic oxygen's interaction with the invariant arginine in the phosphate binding cassette (PBC) and the importance of this interaction for the dynamical properties of the interactions that radiate out from the PBC. The conformations of the phosphate binding cassettes containing two invariant arginine residues (Arg209 on domain A, and Arg333 on domain B) are somewhat different due to the sulfur interacting with this arginine. Furthermore, the B-site ligand together with the entire domain B show significant differences in their overall dynamic properties in the crystal structure of Delta(1-91) RIalpha complexed with (R(p))-cAMPS phosphothioate analogue ((R(p))-RIalpha) compared to the cAMP- and (S(p))-cAMPS-bound type I and II regulatory subunits, based on the temperature factors. In all structures, two structural solvent molecules exist within the A-site ligand binding pocket; both mediate water-bridged interactions between the ligand and the protein. No structured waters are in the B-site pocket. Owing to the higher resolution data, the N-terminal segment (109-117) of the RIalpha subunit can also be traced

  17. Mutational analysis of human RNA polymerase II subunit 5 (RPB5): the residues critical for interactions with TFIIF subunit RAP30 and hepatitis B virus X protein.

    PubMed

    Le, Thi Thu Thuy; Zhang, Shijun; Hayashi, Naoyuki; Yasukawa, Mami; Delgermaa, Luvsanjav; Murakami, Seishi

    2005-09-01

    RNA polymerase II (RNAPII) subunit 5 (RPB5) is positioned close to DNA downstream of the initiation site and is the site of interaction with several regulators. Hepatitis B virus X protein (HBx) binds the central part of RPB5 to modulate activated transcription, and TFIIF subunit RAP30 interacts with the same part of RPB5 that is critical for the association between TFIIF and RNAPII. However the residues necessary for these interactions remain unknown. Here we report systematic mutagenesis of the central part of RPB5 using two-step alanine scanning libraries to pinpoint critical residues for its binding to RAP30 in the TFIIF complex and/or to HBx, and identified these residues in both mammalian cells and in an in vitro binding assay. Four residues, F76, I104, T111 and S113, are critical for both TFIIF- and HBx-binding, indicating the overlapping nature of the sites of interaction. In addition, V74 and N98 are required for HBx-binding, and T56 and L58 are needed for RAP30-binding. Interestingly the residues exposed to solvent, T111 and S113, are very close to the DNA, implying that two factors may modulate the interaction between DNA and RPB5.

  18. Light induces translocation of NF-κB p65 to the mitochondria and suppresses expression of cytochrome c oxidase subunit III (COX III) in the rat retina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomita, Hiroshi, E-mail: htomita@iwate-u.ac.jp; Soft-Path Engineering Research Center; Clinical Research, Innovation and Education Center, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi 980-8574

    2016-05-13

    The transcription factor nuclear factor kappaB (NF-κB) plays various roles in cell survival, apoptosis, and inflammation. In the rat retina, NF-κB activity increases after exposure to damaging light, resulting in degeneration of photoreceptors. Here, we report that in dark-adapted rats exposed for 6 h to bright white light, the p65 subunit of retinal NF-κB translocates to the mitochondria, an event associated with a decrease in expression of cytochrome c oxidase subunit III (COX III). However, sustained exposure for 12 h depleted p65 from the mitochondria, and enhanced COX III expression. Treatment with the protective antioxidant PBN prior to light exposure prevents p65more » depletion in the mitochondria and COX III upregulation during prolonged exposure, and apoptosis in photoreceptor cells. These results indicate that COX III expression is sensitive to the abundance of NF-κB p65 in the mitochondria, which, in turn, is affected by exposure to damaging light. - Highlights: • Damaging light exposure of the retina induces NF-κB p65 mitochondrial translocation. • NF-κB p65 mitochondrial translocation is associated with the decrease of COX III expression. • Prolonged light exposure depletes mitochondrial p65 resulting in the increase in COX III expression. • NF-κB p65 and COX III expression play an important role in the light-induced photoreceptor degeneration.« less

  19. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duangtum, Natapol; Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700; Junking, Mutita

    Highlights: {yields} Impaired trafficking of kAE1 causes distal renal tubular acidosis (dRTA). {yields} The interaction between kAE1 and kinesin family member 3B (KIF3B) is reported. {yields} The co-localization between kAE and KIF3B was detected in human kidney tissues. {yields} A marked reduction of kAE1 on the cell membrane was observed when KIF3B was knockdown. {yields} KFI3B plays an important role in trafficking of kAE1 to the plasma membrane. -- Abstract: Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of {alpha}-intercalated cells of the kidney collecting duct leads to the defect of the Cl{sup -}/HCO{sub 3}{supmore » -} exchange and the failure of proton (H{sup +}) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney {alpha}-intercalated cells.« less

  20. Crystal structure of heterodimeric hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 reveals that the small subunit is directly involved in the product chain length regulation.

    PubMed

    Sasaki, Daisuke; Fujihashi, Masahiro; Okuyama, Naomi; Kobayashi, Yukiko; Noike, Motoyoshi; Koyama, Tanetoshi; Miki, Kunio

    2011-02-04

    Hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 (Ml-HexPPs) is a heterooligomeric type trans-prenyltransferase catalyzing consecutive head-to-tail condensations of three molecules of isopentenyl diphosphates (C(5)) on a farnesyl diphosphate (FPP; C(15)) to form an (all-E) hexaprenyl diphosphate (HexPP; C(30)). Ml-HexPPs is known to function as a heterodimer of two different subunits, small and large subunits called HexA and HexB, respectively. Compared with homooligomeric trans-prenyltransferases, the molecular mechanism of heterooligomeric trans-prenyltransferases is not yet clearly understood, particularly with respect to the role of the small subunits lacking the catalytic motifs conserved in most known trans-prenyltransferases. We have determined the crystal structure of Ml-HexPPs both in the substrate-free form and in complex with 7,11-dimethyl-2,6,10-dodecatrien-1-yl diphosphate ammonium salt (3-DesMe-FPP), an analog of FPP. The structure of HexB is composed of mostly antiparallel α-helices joined by connecting loops. Two aspartate-rich motifs (designated the first and second aspartate-rich motifs) and the other characteristic motifs in HexB are located around the diphosphate part of 3-DesMe-FPP. Despite the very low amino acid sequence identity and the distinct polypeptide chain lengths between HexA and HexB, the structure of HexA is quite similar to that of HexB. The aliphatic tail of 3-DesMe-FPP is accommodated in a large hydrophobic cleft starting from HexB and penetrating to the inside of HexA. These structural features suggest that HexB catalyzes the condensation reactions and that HexA is directly involved in the product chain length control in cooperation with HexB.

  1. Subunit stoichiometry of the CNG channel of rod photoreceptors.

    PubMed

    Weitz, Dietmar; Ficek, Nicole; Kremmer, Elisabeth; Bauer, Paul J; Kaupp, U Benjamin

    2002-12-05

    Cyclic nucleotide-gated (CNG) channels play a central role in the conversion of sensory stimuli into electrical signals. CNG channels form heterooligomeric complexes built of A and B subunits. Here, we study the subunit stoichiometry of the native rod CNG channel by chemical crosslinking. The apparent molecular weight (M(w)) of each crosslink product was determined by SDS-PAGE, and its composition was analyzed by Western blotting using antibodies specific for the A1 or B1 subunit. The number of crosslink products and their M(w) as well as the immunological identification of A1 and B1 subunits in the crosslink products led us to conclude that the native rod CNG channel is a tetramer composed of three A1 and one B1 subunit. This is an example of violation of symmetry in tetrameric channels.

  2. Immunohistochemical analyses of alpha1 and alpha3 Na+/K+-ATPase subunit expression in medulloblastomas.

    PubMed

    Suñol, Mariona; Cusi, Victoria; Cruz, Ofelia; Kiss, Robert; Lefranc, Florence

    2011-03-01

    The levels of expression of the α1 and α3 subunits of the Na(+)/K(+)-ATPase (the NaK sodium pump) in medulloblastomas are unclear. This study investigated the expression of the NaK subunits using immunohistochemical methods in 29 medulloblastomas including 23 classic, three large-cell/anaplastic and three nodular/desmoplastic medulloblastomas, as well as in three atypical teratoid/rhabdoid tumors (AT/RTs). There was overexpression of the α1 or α3 NaK subunits in more than half of the medulloblastomas and atypical AT/RTs, with about one-third of these tumours displaying overexpression of both subunits. These preliminary data suggest that targeting these subunits in AT/RTs and medulloblastomas that overexpress these proteins may lead to therapeutic benefit. These findings warrant confirmation in larger numbers of patients than those used in this study. Moreover, it should be determined whether inhibition of the α1/α3 NaK subunits can be integrated into the risk stratification schemes already in use for medulloblastoma patients.

  3. Highly conserved small subunit residues influence rubisco large subunit catalysis.

    PubMed

    Genkov, Todor; Spreitzer, Robert J

    2009-10-30

    The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.

  4. A Pro-Inflammatory Role for Nuclear Factor Kappa B in Childhood Obstructive Sleep Apnea Syndrome

    PubMed Central

    Israel, Lee P.; Benharoch, Daniel; Gopas, Jacob; Goldbart, Aviv D.

    2013-01-01

    Study Objectives: Childhood obstructive sleep apnea syndrome (OSAS) is associated with an elevation of inflammatory markers such as C-reactive protein (CRP) that correlates with specific morbidities and subsides following intervention. In adults, OSAS is associated with activation of the transcription factor nuclear factor kappa B (NF-kB). We explored the mechanisms underlying NF-kB activation, based on the hypothesis that specific NF-kB signaling is activated in children with OSAS. Design: Adenoid and tonsillar tissues from children with OSAS and matched controls were immunostained against NF-kB classical (p65 and p50) and alternative (RelB and p52) pathway subunits, and NF-kB-dependent cytokines: interleukin (IL)- 1α, IL-1β, tumor necrosis factor-α, and IL-8). Serum CRP levels were measured in all subjects. NF-kB induction was evaluated by a luciferase-NF-kB reporter assay in L428 cells constitutively expressing NF-kB and in Jurkat cells with inducible NF-kB expression. p65 translocation to the nucleus, reflecting NF-kB activation, was measured in cells expressing fluorescent NF-kB-p65-GFP (green fluorescent protein). Setting: Sleep research laboratory. Patients or Participants: Twenty-five children with OSAS and 24 without OSAS. Interventions: N/A. Measurements and Results: Higher expression of IL-1α and classical NF-kB subunits p65 and p50 was observed in adenoids and tonsils of children with OSAS. Patient serum induced NF-kB activity, as measured by a luciferase-NF-kB reporter assay and by induction of p65 nuclear translocation in cells permanently transfected with GFP-p65 plasmid. IL-1β showed increased epithelial expression in OSAS tissues. Conclusions: Nuclear factor kappa B is locally and systemically activated in children with obstructive sleep apnea syndrome. This observation may motivate the search for new anti-inflammatory strategies for controlling nuclear factor kappa B activation in obstructive sleep apnea syndrome. Citation: Israel LP

  5. Reductions in the Cardiac Transient Outward K+ Current Ito Caused by Chronic β-Adrenergic Receptor Stimulation Are Partly Rescued by Inhibition of Nuclear Factor κB.

    PubMed

    Panama, Brian K; Korogyi, Adam S; Aschar-Sobbi, Roozbeh; Oh, Yena; Gray, Charles B B; Gang, Hongying; Brown, Joan Heller; Kirshenbaum, Lorrie A; Backx, Peter H

    2016-02-19

    The fast transient outward potassium current (Ito,f) plays a critical role in the electrical and contractile properties of the myocardium. Ito,f channels are formed by the co-assembly of the pore-forming α-subunits, Kv4.2 and Kv4.3, together with the accessory β-subunit KChIP2. Reductions of Ito,f are common in the diseased heart, which is also associated with enhanced stimulation of β-adrenergic receptors (β-ARs). We used cultured neonatal rat ventricular myocytes to examine how chronic β-AR stimulation decreases Ito,f. To determine which downstream pathways mediate these Ito,f changes, adenoviral infections were used to inhibit CaMKIIδc, CaMKIIδb, calcineurin, or nuclear factor κB (NF-κB). We observed that chronic β-AR stimulation with isoproterenol (ISO) for 48 h reduced Ito,f along with mRNA expression of all three of its subunits (Kv4.2, Kv4.3, and KChIP2). Inhibiting either CaMKIIδc nor CaMKIIδb did not prevent the ISO-mediated Ito,f reductions, even though CaMKIIδc and CaMKIIδb clearly regulated Ito,f and the mRNA expression of its subunits. Likewise, calcineurin inhibition did not prevent the Ito,f reductions induced by β-AR stimulation despite strongly modulating Ito,f and subunit mRNA expression. In contrast, NF-κB inhibition partly rescued the ISO-mediated Ito,f reductions in association with restoration of KChIP2 mRNA expression. Consistent with these observations, KChIP2 promoter activity was reduced by p65 as well as β-AR stimulation. In conclusion, NF-κB, and not CaMKIIδ or calcineurin, partly mediates the Ito,f reductions induced by chronic β-AR stimulation. Both mRNA and KChIP2 promoter data suggest that the ISO-induced Ito,f reductions are, in part, mediated through reduced KChIP2 transcription caused by NF-κB activation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor κB (NF-κB) activation.

    PubMed

    Kelleher, Zachary T; Sha, Yonggang; Foster, Matthew W; Foster, W Michael; Forrester, Michael T; Marshall, Harvey E

    2014-01-31

    S-nitrosylation of nuclear factor κB (NF-κB) on the p65 subunit of the p50/p65 heterodimer inhibits NF-κB DNA binding activity. We have recently shown that p65 is constitutively S-nitrosylated in the lung and that LPS-induced injury elicits a decrease in SNO-p65 levels concomitant with NF-κB activation in the respiratory epithelium and initiation of the inflammatory response. Here, we demonstrate that TNFα-mediated activation of NF-κB in the respiratory epithelium similarly induces p65 denitrosylation. This process is mediated by the denitrosylase thioredoxin (Trx), which becomes activated upon cytokine-induced degradation of thioredoxin-interacting protein (Txnip). Similarly, inhibition of Trx activity in the lung attenuates LPS-induced SNO-p65 denitrosylation, NF-κB activation, and airway inflammation, supporting a pathophysiological role for this mechanism in lung injury. These data thus link stimulus-coupled activation of NF-κB to a specific, protein-targeted denitrosylation mechanism and further highlight the importance of S-nitrosylation in the regulation of the immune response.

  7. Conopeptide Vt3.1 preferentially inhibits BK potassium channels containing β4 subunits via electrostatic interactions.

    PubMed

    Li, Min; Chang, Shan; Yang, Longjin; Shi, Jingyi; McFarland, Kelli; Yang, Xiao; Moller, Alyssa; Wang, Chunguang; Zou, Xiaoqin; Chi, Chengwu; Cui, Jianmin

    2014-02-21

    BK channel β subunits (β1-β4) modulate the function of channels formed by slo1 subunits to produce tissue-specific phenotypes. The molecular mechanism of how the homologous β subunits differentially alter BK channel functions and the role of different BK channel functions in various physiologic processes remain unclear. By studying channels expressed in Xenopus laevis oocytes, we show a novel disulfide-cross-linked dimer conopeptide, Vt3.1 that preferentially inhibits BK channels containing the β4 subunit, which is most abundantly expressed in brain and important for neuronal functions. Vt3.1 inhibits the currents by a maximum of 71%, shifts the G-V relation by 45 mV approximately half-saturation concentrations, and alters both open and closed time of single channel activities, indicating that the toxin alters voltage dependence of the channel. Vt3.1 contains basic residues and inhibits voltage-dependent activation by electrostatic interactions with acidic residues in the extracellular loops of the slo1 and β4 subunits. These results suggest a large interaction surface between the slo1 subunit of BK channels and the β4 subunit, providing structural insight into the molecular interactions between slo1 and β4 subunits. The results also suggest that Vt3.1 is an excellent tool for studying β subunit modulation of BK channels and for understanding the physiological roles of BK channels in neurophysiology.

  8. Estrogen Responsiveness of the TFIID Subunit TAF4B in the Normal Mouse Ovary and in Ovarian Tumors1

    PubMed Central

    Wardell, Jennifer R.; Hodgkinson, Kendra M.; Binder, April K.; Seymour, Kimberly A.; Korach, Kenneth S.; Vanderhyden, Barbara C.; Freiman, Richard N.

    2013-01-01

    ABSTRACT Estrogen signaling in the ovary is a fundamental component of normal ovarian function, and evidence also indicates that excessive estrogen is a risk factor for ovarian cancer. We have previously demonstrated that the gonadally enriched TFIID subunit TAF4B, a paralog of the general transcription factor TAF4A, is required for fertility in mice and for the proliferation of ovarian granulosa cells following hormonal stimulation. However, the relationship between TAF4B and estrogen signaling in the normal ovary or during ovarian tumor initiation and progression has yet to be defined. Herein, we show that Taf4b mRNA and TAF4B protein, but not Taf4a mRNA or TAF4A protein, are increased in whole ovaries and granulosa cells of the ovary after exposure to 17beta-estradiol or the synthetic estrogen diethylstilbestrol and that this response occurs within hours after stimulation. Furthermore, this increase occurs via nuclear estrogen receptors both in vivo and in a mouse granulosa cancer cell line, NT-1. We observe a significant increase in Taf4b mRNA in estrogen-supplemented mouse ovarian tumors, which correlates with diminished survival of these mice. These data highlight the novel response of the general transcription factor TAF4B to estrogen in the normal ovary and during ovarian tumor progression in the mouse, suggesting its potential role in regulating actions downstream of estrogen stimulation. PMID:24068106

  9. Structural analysis of nested neutralizing and non-neutralizing B cell epitopes on ricin toxin's enzymatic subunit.

    PubMed

    Rudolph, Michael J; Vance, David J; Cassidy, Michael S; Rong, Yinghui; Shoemaker, Charles B; Mantis, Nicholas J

    2016-08-01

    In this report, we describe the X-ray crystal structures of two single domain camelid antibodies (VH H), F5 and F8, each in complex with ricin toxin's enzymatic subunit (RTA). F5 has potent toxin-neutralizing activity, while F8 has weak neutralizing activity. F5 buried a total of 1760 Å(2) in complex with RTA and made contact with three prominent secondary structural elements: α-helix B (Residues 98-106), β-strand h (Residues 113-117), and the C-terminus of α-helix D (Residues 154-156). F8 buried 1103 Å(2) in complex with RTA that was centered primarily on β-strand h. As such, the structural epitope of F8 is essentially nested within that of F5. All three of the F5 complementarity determining regions CDRs were involved in RTA contact, whereas F8 interactions were almost entirely mediated by CDR3, which essentially formed a seventh β-strand within RTA's centrally located β-sheet. A comparison of the two structures reported here to several previously reported (RTA-VH H) structures identifies putative contact sites on RTA, particularly α-helix B, associated with potent toxin-neutralizing activity. This information has implications for rational design of RTA-based subunit vaccines for biodefense. Proteins 2016; 84:1162-1172. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. HCV-like IRESs displace eIF3 to gain access to the 40S subunit

    PubMed Central

    Hashem, Yaser; des Georges, Amedee; Dhote, Vidya; Langlois, Robert; Liao, Hstau Y.; Grassucci, Robert A.; Pestova, Tatyana V.; Hellen, Christopher U.T.; Frank, Joachim

    2014-01-01

    Hepatitis C virus (HCV) and Classical swine fever virus (CSFV) mRNAs contain related (HCV-like) internal ribosome entry sites (IRESs) that promote 5’-end independent initiation of translation, requiring only a subset of the eukaryotic initiation factors (eIFs) needed for canonical initiation on cellular mRNAs1. Initiation on HCV-like IRESs relies on their specific interaction with the 40S subunit2–8, which places the initiation codon into the P site, where it directly base-pairs with eIF2-bound Met-tRNAiMet to form a 48S initiation complex. However, all HCV-like IRESs also specifically interact with eIF32,5–7,9–12, but the role of this interaction in IRES-mediated initiation has remained unknown. During canonical initiation, eIF3 binds to the 40S subunit as a component of the 43S pre-initiation complex, and comparison of the ribosomal positions of eIF313 and the HCV IRES8 revealed that they overlap, so that their rearrangement would be required for formation of ribosomal complexes containing both components13. Here, we present a cryo-electron microscopy reconstruction of a 40S ribosomal complex containing eIF3 and the CSFV IRES. Strikingly, although the position and interactions of the CSFV IRES with the 40S subunit in this complex are similar to those of the HCV IRES in the 40S/IRES binary complex8, eIF3 is completely displaced from its ribosomal position in the 43S complex, and instead interacts through its ribosome-binding surface exclusively with the apical region of domain III of the IRES. Our results suggest a role for the specific interaction of HCV-like IRESs with eIF3 in preventing ribosomal association of eIF3, which could serve two purposes: relieving the competition between the IRES and eIF3 for a common binding site on the 40S subunit, and reducing formation of 43S complexes, thereby favoring translation of viral mRNAs. PMID:24185006

  11. Impaired B cell development in the absence of Krüppel-like factor 3.

    PubMed

    Vu, Thi Thanh; Gatto, Dominique; Turner, Vivian; Funnell, Alister P W; Mak, Ka Sin; Norton, Laura J; Kaplan, Warren; Cowley, Mark J; Agenès, Fabien; Kirberg, Jörg; Brink, Robert; Pearson, Richard C M; Crossley, Merlin

    2011-11-15

    Krüppel-like factor 3 (Klf3) is a member of the Klf family of transcription factors. Klfs are widely expressed and have diverse roles in development and differentiation. In this study, we examine the function of Klf3 in B cell development by studying B lymphopoiesis in a Klf3 knockout mouse model. We show that B cell differentiation is significantly impaired in the bone marrow, spleen, and peritoneal cavity of Klf3 null mice and confirm that the defects are cell autonomous. In the bone marrow, there is a reduction in immature B cells, whereas recirculating mature cells are noticeably increased. Immunohistology of the spleen reveals a poorly structured marginal zone (MZ) that may in part be caused by deregulation of adhesion molecules on MZ B cells. In the peritoneal cavity, there are significant defects in B1 B cell development. We also report that the loss of Klf3 in MZ B cells is associated with reduced BCR signaling strength and an impaired ability to respond to LPS stimulation. Finally, we show increased expression of a number of Klf genes in Klf3 null B cells, suggesting that a Klf regulatory network may exist in B cells.

  12. Phosphorylation of Wheat Germ Initiation Factors and Ribosomal Proteins 1

    PubMed Central

    Browning, Karen S.; Yan, Tyan Fuh J.; Lauer, Stephen J.; Aquino, Lu Ann; Tao, Mariano; Ravel, Joanne M.

    1985-01-01

    The ability of the wheat germ initiation factors and ribosomes to serve as substrates for a wheat germ protein kinase (Yan and Tao 1982 J Biol Chem 257: 7037-7043) has been investigated. The wheat germ kinase catalyzes the phosphorylation of the 42,000 dalton subunit of eukaryotic initiation factor (eIF)-2 and the 107,000 dalton subunit of eIF-3. Other initiation factors, eIF-4B and eIF-4A, and elongation factors, EF-1 and EF-2, are not phosphorylated by the kinase. Quantitative analysis indicates that the kinase catalyzes the incorporation of about 0.5 to 0.6 mole of phosphate per mole of the 42,000 dalton subunit of eIF-2 and about 6 moles of phosphate per mole of the 107,000 dalton subunit of eIF-3. Three proteins (Mr = 38,000, 14,800, and 12,600) of the 60S ribosomal subunit are phosphorylated by the kinase, but none of the 40S ribosomal proteins are substrates of the kinase. No effects of phosphorylation on the activities of eIF-2, eIF-3, or 60S ribosomal subunits could be demonstrated in vitro. Images Fig. 1 Fig. 3 Fig. 4 PMID:16664060

  13. Binding of ATP by pertussis toxin and isolated toxin subunits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L.

    1990-07-03

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of ({sup 3}H)ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of ({sup 3}H)ATP to pertussis toxin in a competitive manner;more » however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of ({sup 3}H)ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.« less

  14. Insights into the Effects of Complement Factor H on the Assembly and Decay of the Alternative Pathway C3 Proconvertase and C3 Convertase*

    PubMed Central

    Bettoni, Serena; Bresin, Elena; Remuzzi, Giuseppe; Noris, Marina; Donadelli, Roberta

    2016-01-01

    The activated fragment of C3 (C3b) and factor B form the C3 proconvertase (C3bB), which is cleaved by factor D to C3 convertase (C3bBb). Older studies (Conrad, D. H., Carlo, J. R., and Ruddy, S. (1978) J. Exp. Med. 147, 1792–1805; Pangburn, M. K., and Müller-Eberhard, H. J. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 2416–2420; Kazatchkine, M. D., Fearon, D. T., and Austen, K. F. (1979) J. Immunol. 122, 75–81) indicated that the complement alternative pathway regulator factor H (FH) competes with factor B for C3b binding; however, the capability of FH to prevent C3bB assembly has not been formally investigated. Moreover, in the few published studies FH did not favor C3bB dissociation. Whether FH may affect C3bBb formation from C3bB is unknown. We set up user-friendly assays based on combined microplate/Western blotting techniques that specifically detect either C3bB or C3bBb, with the aim of investigating the effect of FH on C3bB assembly and decay and C3bBb formation and decay. We document that FH does not affect C3bB assembly, indicating that FH does not efficiently compete with factor B for C3b binding. We also found that FH does not dissociate C3bB. FH showed a strong C3bBb decay-accelerating activity, as reported previously, and also exerted an apparent inhibitory effect on C3bBb formation. The latter effect was not fully attributable to a rapid FH-mediated dissociation of C3bBb complexes, because blocking decay with properdin and C3 nephritic factor did not restore C3bBb formation. FH almost completely prevented release of the smaller cleavage subunit of FB (Ba), without modifying the amount of C3bB complexes, suggesting that FH inhibits the conversion of C3bB to C3bBb. Thus, the inhibitory effect of FH on C3bBb formation is likely the sum of inhibition of C3bB conversion to C3bBb and of C3bBb decay acceleration. Further studies are required to confirm these findings in physiological cell-based settings. PMID:26903516

  15. Expression of toxin co-regulated pilus subunit A (TCPA) of Vibrio cholerae and its immunogenic epitopes fused to cholera toxin B subunit in transgenic tomato (Solanum lycopersicum).

    PubMed

    Sharma, Manoj Kumar; Singh, Nirmal Kumar; Jani, Dewal; Sisodia, Rama; Thungapathra, M; Gautam, J K; Meena, L S; Singh, Yogendra; Ghosh, Amit; Tyagi, Akhilesh Kumar; Sharma, Arun Kumar

    2008-02-01

    For protection against cholera, it is important to develop efficient vaccine capable of inducing anti-toxin as well as anti-colonizing immunity against Vibrio cholerae infections. Earlier, expression of cholera toxin B subunit (CTB) in tomato was reported by us. In the present investigation, toxin co-regulated pilus subunit A (TCPA), earlier reported to be an antigen capable of providing anti-colonization immunity, has been expressed in tomato. Further, to generate more potent combinatorial antigens, nucleotides encoding P4 or P6 epitope of TCPA were fused to cholera toxin B subunit gene (ctxB) and expressed in tomato. Presence of transgenes in the tomato genome was confirmed by PCR and expression of genes was confirmed at transcript and protein level. TCPA, chimeric CTB-P4 and CTB-P6 proteins were also expressed in E. coli. TCPA protein expressed in E. coli was purified to generate anti-TCPA antibodies in rabbit. Immunoblot and G(M1)-ELISA verified the synthesis and assembly of pentameric chimeric proteins in fruit tissue of transgenic tomato plants. The chimeric protein CTB-P4 and CTB-P6 accumulated up to 0.17 and 0.096% of total soluble protein (TSP), respectively, in tomato fruits. Whereas expression of TCPA, CTB-P4 and CTB-P6 in E. coli can be utilized for development of conventional vaccine, expression of these antigens which can provide both anti-toxin as well as anti-colonization immunity, has been demonstrated in plants, in a form which is potentially capable of inducing immune response against cholera infection.

  16. Alpha B- and βA3-crystallins containing d-aspartic acids exist in a monomeric state.

    PubMed

    Sakaue, Hiroaki; Takata, Takumi; Fujii, Norihiko; Sasaki, Hiroshi; Fujii, Noriko

    2015-01-01

    Crystallin stability and subunit-subunit interaction are essential for eye lens transparency. There are three types of crystallins in lens, designated as α-, β-, and γ-crystallins. Alpha-crystallin is a hetero-polymer of about 800kDa, consisting of 35-40 subunits of two different αA- and αB-subunits, each of 20kDa. The β/γ-crystallin superfamily comprises oligomeric β-crystallin (2-6 subunits) and monomeric γ-crystallin. Since lens proteins have very long half-lives, they undergo numerous post-translational modifications including racemization, isomerization, deamidation, oxidation, glycation, and truncation, which may decrease crystallin solubility and ultimately cause cataract formation. Racemization and isomerization of aspartyl (Asp) residues have been detected only in polymeric α- and oligomeric β-crystallin, while the situation in monomeric γ-crystallin has not been studied. Here, we investigated the racemization and isomerization of Asp in the γ-crystallin fraction of elderly donors. The results show that Asp residues of γS-, γD- and γC-crystallins were not racemized and isomerized. However, strikingly, we found that a portion of αB-crystallin and βA3-crystallin moved to the lower molecular weight fraction which is the same size of γ-crystallin. In those fractions, Asp-96 of αB-crystallin and Asp-37 of βA3-crystallin were highly inverted, which do not occur in the native lens higher molecular weight fraction. Our results indicate the possibility that the inversion of Asp residues may induce dissociation of αB- and βA3-crystallins from the polymeric and oligomeric states. This is the first report that stereoinversion of amino acids disturbs lens protein assembly in aged human lens. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Ionotropic glutamate receptor GluA4 and T-type calcium channel Cav 3.1 subunits control key aspects of synaptic transmission at the mouse L5B-POm giant synapse.

    PubMed

    Seol, Min; Kuner, Thomas

    2015-12-01

    The properties and molecular determinants of synaptic transmission at giant synapses connecting layer 5B (L5B) neurons of the somatosensory cortex (S1) with relay neurons of the posteriomedial nucleus (POm) of the thalamus have not been investigated in mice. We addressed this by using direct electrical stimulation of fluorescently labelled single corticothalamic terminals combined with molecular perturbations and whole-cell recordings from POm relay neurons. Consistent with their function as drivers, we found large-amplitude excitatory postsynaptic currents (EPSCs) and multiple postsynaptic action potentials triggered by a single presynaptic action potential. To study the molecular basis of these two features, ionotropic glutamate receptors and low voltage-gated T-type calcium channels were probed by virus-mediated genetic perturbation. Loss of GluA4 almost abolished the EPSC amplitude, strongly delaying the onset of action potential generation, but maintaining the number of action potentials generated per presynaptic action potential. In contrast, knockdown of the Cav 3.1 subunit abrogated the driver function of the synapse at a typical resting membrane potential of -70 mV. However, when depolarizing the membrane potential to -60 mV, the synapse relayed single action potentials. Hence, GluA4 subunits are required to produce an EPSC sufficiently large to trigger postsynaptic action potentials within a defined time window after the presynaptic action potential, while Cav 3.1 expression is essential to establish the driver function of L5B-POm synapses at hyperpolarized membrane potentials. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Small subunits of RNA polymerase: localization, levels and implications for core enzyme composition.

    PubMed

    Doherty, Geoff P; Fogg, Mark J; Wilkinson, Anthony J; Lewis, Peter J

    2010-12-01

    Bacterial RNA polymerases (RNAPs) contain several small auxiliary subunits known to co-purify with the core α, β and β' subunits. The ω subunit is conserved between Gram-positive and Gram-negative bacteria, while the δ subunit is conserved within, but restricted to, Gram-positive bacteria. Although various functions have been assigned to these subunits via in vitro assays, very little is known about their in vivo roles. In this work we constructed a pair of vectors to investigate the subcellular localization of the δ and ω subunits in Bacillus subtilis with respect to the core RNAP. We found these subunits to be closely associated with RNAP involved in transcribing both mRNA and rRNA operons. Quantification of these subunits revealed δ to be present at equimolar levels with RNAP and ω to be present at around half the level of core RNAP. For comparison, the localization and quantification of RNAP β' and ω subunits in Escherichia coli was also investigated. Similar to B. subtilis, β' and ω closely associated with the nucleoid and formed subnucleoid regions of high green fluorescent protein intensity, but, unlike ω in B. subtilis, ω levels in E. coli were close to parity with those of β'. These results indicate that δ is likely to be an integral RNAP subunit in Gram-positives, whereas ω levels differ substantially between Gram-positives and -negatives. The ω subunit may be required for RNAP assembly and subsequently be turned over at different rates or it may play roles in Gram-negative bacteria that are performed by other factors in Gram-positives.

  19. Hypoxia-inducible factor regulates alphavbeta3 integrin cell surface expression.

    PubMed

    Cowden Dahl, Karen D; Robertson, Sarah E; Weaver, Valerie M; Simon, M Celeste

    2005-04-01

    Hypoxia-inducible factor (HIF)-deficient placentas exhibit a number of defects, including changes in cell fate adoption, lack of fetal angiogenesis, hypocellularity, and poor invasion into maternal tissue. HIF is a heterodimeric transcription factor consisting of alpha and beta aryl hydrocarbon receptor nuclear translocator or ARNT) subunits. We used undifferentiated trophoblast stem (TS) cells to characterize HIF-dependent adhesion, migration, and invasion. Arnt(-/-) and Hifalpha(-/-) TS cells exhibit reduced adhesion and migration toward vitronectin compared with wild-type cells. Furthermore, this defect is associated with decreased cell surface expression of integrin alphavbeta3 and significantly decreased expression of this integrin in focal adhesions. Because of the importance of adhesion and migration in tumor progression (in addition to placental development), we examined the affect of culturing B16F0 melanoma cells in 1.5% oxygen (O(2)). Culturing B16F0 melanoma cells at 1.5% O(2) resulted in increased alphavbeta3 integrin surface expression and increased adhesion to and migration toward vitronectin. Together, these data suggest that HIF and O(2) tension influence placental invasion and tumor migration by increasing cell surface expression of alphavbeta3 integrin.

  20. Monoclonal antibodies against Stx1B subunit of Escherichia coli O157:H7 distinguish the bacterium from other bacteria.

    PubMed

    Li, G; Hong, J; Huo, G; Ren, X

    2010-11-01

    The Shiga-like toxins (Stx) are critical virulence factors of enterohaemorrhagic Escherichia coli (EHEC). Stx1B subunit plays important roles in EHEC infection. This work aims to generate and characterize monoclonal antibodies (mAbs) against the Stx1B and to investigate their utility in discrimination ELISA. Two newly identified mAbs (designated 2H8 and 1B10, respectively) against the Stx1B protein were prepared via hybridoma techniques. The immunoreactivity of both mAbs to the Stx1B protein was confirmed in ELISA and Western blot. Moreover, they differentiate EHEC from Salmonella enteritis, non-Stx1-producing E. coli, Mycobacterium tuberculosis, Listeria monocytogenes, Streptococcus agalactiae and Staphylococcus aureus. The anti-STx1B mAbs are valuable diagnostic reagents for distinguishing EHEC from other bacteria. This is the first report regarding the usage of anti-STx1B mAbs in discrimination ELISA. The established ELISA may have potential in clinical surveillance of EHEC infection. © 2010 The Authors. © 2010 The Society for Applied Microbiology.

  1. Loss-of-function nuclear factor κB subunit 1 (NFKB1) variants are the most common monogenic cause of common variable immunodeficiency in Europeans.

    PubMed

    Tuijnenburg, Paul; Lango Allen, Hana; Burns, Siobhan O; Greene, Daniel; Jansen, Machiel H; Staples, Emily; Stephens, Jonathan; Carss, Keren J; Biasci, Daniele; Baxendale, Helen; Thomas, Moira; Chandra, Anita; Kiani-Alikhan, Sorena; Longhurst, Hilary J; Seneviratne, Suranjith L; Oksenhendler, Eric; Simeoni, Ilenia; de Bree, Godelieve J; Tool, Anton T J; van Leeuwen, Ester M M; Ebberink, Eduard H T M; Meijer, Alexander B; Tuna, Salih; Whitehorn, Deborah; Brown, Matthew; Turro, Ernest; Thrasher, Adrian J; Smith, Kenneth G C; Thaventhiran, James E; Kuijpers, Taco W

    2018-03-02

    The genetic cause of primary immunodeficiency disease (PID) carries prognostic information. We conducted a whole-genome sequencing study assessing a large proportion of the NIHR BioResource-Rare Diseases cohort. In the predominantly European study population of principally sporadic unrelated PID cases (n = 846), a novel Bayesian method identified nuclear factor κB subunit 1 (NFKB1) as one of the genes most strongly associated with PID, and the association was explained by 16 novel heterozygous truncating, missense, and gene deletion variants. This accounted for 4% of common variable immunodeficiency (CVID) cases (n = 390) in the cohort. Amino acid substitutions predicted to be pathogenic were assessed by means of analysis of structural protein data. Immunophenotyping, immunoblotting, and ex vivo stimulation of lymphocytes determined the functional effects of these variants. Detailed clinical and pedigree information was collected for genotype-phenotype cosegregation analyses. Both sporadic and familial cases demonstrated evidence of the noninfective complications of CVID, including massive lymphadenopathy (24%), unexplained splenomegaly (48%), and autoimmune disease (48%), features prior studies correlated with worse clinical prognosis. Although partial penetrance of clinical symptoms was noted in certain pedigrees, all carriers have a deficiency in B-lymphocyte differentiation. Detailed assessment of B-lymphocyte numbers, phenotype, and function identifies the presence of an increased CD21 low B-cell population. Combined with identification of the disease-causing variant, this distinguishes between healthy subjects, asymptomatic carriers, and clinically affected cases. We show that heterozygous loss-of-function variants in NFKB1 are the most common known monogenic cause of CVID, which results in a temporally progressive defect in the formation of immunoglobulin-producing B cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Identification and cloning of a gamma 3 subunit splice variant of the human GABA(A) receptor.

    PubMed

    Poulsen, C F; Christjansen, K N; Hastrup, S; Hartvig, L

    2000-05-31

    cDNA sequences encoding two forms of the GABA(A) gamma 3 receptor subunit were cloned from human hippocampus. The nucleotide sequences differ by the absence (gamma 3S) or presence (gamma 3L) of 18 bp located in the presumed intracellular loop between transmembrane region (TM) III and IV. The extra 18 bp in the gamma 3L subunit generates a consensus site for phosphorylation by protein kinase C (PKC). Analysis of human genomic DNA encoding the gamma 3 subunit reveals that the 18 bp insert is contiguous with the upstream proximal exon.

  3. A Quantitative Analysis of Neurons with Kv3 Potassium Channel Subunits–Kv3.1b and Kv3.2–in Macaque Primary Visual Cortex

    PubMed Central

    Constantinople, Christine M.; Disney, Anita A; Maffie, Jonathan; Rudy, Bernardo; Hawken, Michael J

    2010-01-01

    Voltage-gated potassium channels that are composed of Kv3 subunits exhibit distinct electrophysiological properties: activation at more depolarized potentials than other voltage-gated K+ channels and fast kinetics. These channels have been shown to contribute to the high-frequency firing of fast-spiking (FS) GABAergic interneurons in the rat and mouse brain. In the rodent neocortex, there are distinct patterns of expression for the Kv3.1b and Kv3.2 channel subunits and of co-expression of these subunits with neurochemical markers, such as the calcium-binding proteins parvalbumin (PV) and calbindin D-28K (CB). The distribution of Kv3 channels and interrelationship with calcium-binding protein expression has not been investigated in primate cortex. We used immunoperoxidase and immunofluorescent labeling and stereological counting techniques to characterize the laminar and cell-type distributions of Kv3-ir neurons in macaque V1. We found that across the cortical layers ~25% of both Kv3.1b- and Kv3.2-ir neurons are non-GABAergic. In contrast all Kv3-ir neurons in rodent cortex are GABAergic (Chow et al., 1999). The putatively excitatory Kv3-ir neurons were mostly located in layers 2, 3 and 4b. Further, the proportion of Kv3-ir neurons that express PV or CB also differs between macaque V1 and rodent cortex. These data indicate that, within the population of cortical neurons, a broader population of neurons, encompassing cells of a wider range of morphological classes may be capable of sustaining high-frequency firing in macaque V1. PMID:19634181

  4. Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC.

    PubMed

    Butow, B J; Gale, K R; Ikea, J; Juhász, A; Bedö, Z; Tamás, L; Gianibelli, M C

    2004-11-01

    Increased expression of the high molecular weight glutenin subunit (HMW-GS) Bx7 is associated with improved dough strength of wheat (Triticum aestivum L.) flour. Several cultivars and landraces of widely different genetic backgrounds from around the world have now been found to contain this so-called 'over-expressing' allelic form of the Bx7 subunit encoded by Glu-B1al. Using three methods of identification, SDS-PAGE, RP-HPLC and PCR marker analysis, as well as pedigree information, we have traced the distribution and source of this allele from a Uruguayan landrace, Americano 44D, in the mid-nineteenth century. Results are supported by knowledge of the movement of wheat lines with migrants. All cultivars possessing the Glu-B1al allele can be identified by the following attributes: (1) the elution of the By sub-unit peak before the Dx sub-unit peak by RP-HPLC, (2) high expression levels of Bx7 (>39% Mol% Bx), (3) a 43 bp insertion in the matrix-attachment region (MAR) upstream of the gene promoter relative to Bx7 and an 18 bp nucleotide duplication in the coding region of the gene. Evidence is presented indicating that these 18 and 43 bp sequence insertions are not causal for the high expression levels of Bx7 as they were also found to be present in a small number of hexaploid species, including Chinese Spring, and species expressing Glu-B1ak and Glu-B1a alleles. In addition, these sequence inserts were found in different isolates of the tetraploid wheat, T. turgidum, indicating that these insertion/deletion events occurred prior to hexaploidization.

  5. A new zinc-1,3,5-benzenetricarboxylate framework integrated three distinct subunits (SBUs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yi-Ming, E-mail: ymxie@fjirsm.ac.cn

    2013-06-01

    A new metal-organic framework (MOF) [Zn₅(btc)₃(H₂O)₀.₅(O)₀.₅(DMA)₃]·1.75(DMA) (1; btc=1,3,5-benzenetricarboxylate; DMA=N,N´-dimethyl acetamide) has been solvothermally synthesized. Unusually, three distinct subunits (SBUs), [Zn₂(CO₂)₄(DMA)₂], [(μ₃-H₂O)Zn₃(CO₂)₆(DMA)] and [(µ₄-O)Zn₄(CO₂)₆(DMA)₂] are observed in 1 simultaneously. The integration of three distinct SBUs leads to an interesting Zn-btc framework materials with unusual structural topology. - Graphical abstract: Presented here is a new zinc-1,3,5-benzenetricarboxylate framework integrated three distinct subunits (SBUs). - Highlights: • A new zinc-1,3,5-benzenetricarboxylate framework has been synthesized. • Three distinct subunits (SBUs) are observed in 1 simultaneously. • The integration of three distinct SBUs leads to an unusual structural topology.

  6. Stimulatory and inhibitory effects of PKC isozymes are mediated by serine/threonine PKC sites of the Cav2.3α1 subunits.

    PubMed

    Rajagopal, Senthilkumar; Burton, Brittney K; Fields, Blanche L; El, India O; Kamatchi, Ganesan L

    2017-05-01

    Protein kinase C (PKC) isozymes modulate voltage-gated calcium (Ca v ) currents through Ca v 2.2 and Ca v 2.3 channels by targeting serine/threonine (Ser/Thr) phosphorylation sites of Ca v α 1 subunits. Stimulatory (Thr-422, Ser-2108 and Ser-2132) and inhibitory (Ser-425) sites were identified in the Ca v 2.2α 1 subunits to PKCs βII and ε. In the current study, we investigated if the homologous sites of Ca v 2.3α 1 subunits (stimulatory: Thr-365, Ser-1995 and Ser-2011; inhibitory: Ser-369) behaved in similar manner. Several Ala and Asp mutants were constructed in Ca v 2.3α 1 subunits in such a way that the Ser/Thr sites can be examined in isolation. These mutants or WT Ca v 2.3α 1 along with auxiliary β 1b and α 2 /δ subunits were expressed in Xenopus oocytes and the effects of PKCs βII and ε studied on the barium current (I Ba ). Among these sites, stimulatory Thr-365 and Ser-1995 and inhibitory Ser-369 behaved similar to their homologs in Ca v 2.2α 1 subunits. Furthermore PKCs produced neither stimulation nor inhibition when stimulatory Thr-365 or Ser-1995 and inhibitory Ser-369 were present together. However, the PKCs potentiated the I Ba when two stimulatory sites, Thr-365 and Ser-1995 were present together, thus overcoming the inhibitory effect of Ser-369. Taken together net PKC effect may be the difference between the responses of the stimulatory and inhibitory sites. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A Translation System Reconstituted with Human Factors Proves That Processing of Encephalomyocarditis Virus Proteins 2A and 2B Occurs in the Elongation Phase of Translation without Eukaryotic Release Factors*

    PubMed Central

    Machida, Kodai; Mikami, Satoshi; Masutani, Mamiko; Mishima, Kurumi; Kobayashi, Tominari; Imataka, Hiroaki

    2014-01-01

    The genomic RNA of encephalomyocarditis virus (EMCV) encodes a single polyprotein, and the primary scission of the polyprotein occurs between nonstructural proteins 2A and 2B by an unknown mechanism. To gain insight into the mechanism of 2A-2B processing, we first translated the 2A-2B region in vitro with eukaryotic and prokaryotic translation systems. The 2A-2B processing occurred only in the eukaryotic systems, not in the prokaryotic systems, and the unprocessed 2A-2B protein synthesized by a prokaryotic system remained uncleaved when incubated with a eukaryotic cell extract. These results suggest that 2A-2B processing is a eukaryote-specific, co-translational event. To define the translation factors required for 2A-2B processing, we constituted a protein synthesis system with eukaryotic elongation factors 1 and 2, eukaryotic release factors 1 and 3 (eRF1 and eRF3), aminoacyl-tRNA synthetases, tRNAs, ribosome subunits, and a plasmid template that included the hepatitis C virus internal ribosome entry site. We successfully reproduced 2A-2B processing in the reconstituted system even without eRFs. Our results indicate that this unusual event occurs in the elongation phase of translation. PMID:25258322

  8. Characterization of the human SDHD gene encoding the small subunit of cytochrome b (cybS) in mitochondrial succinate-ubiquinone oxidoreductase.

    PubMed

    Hirawake, H; Taniwaki, M; Tamura, A; Amino, H; Tomitsuka, E; Kita, K

    1999-08-04

    We have mapped large (cybL) and small (cybS) subunits of cytochrome b in the succinate-ubiquinone oxidoreductase (complex II) of human mitochondria to chromosome 1q21 and 11q23, respectively (H. Hirawake et al., Cytogenet. Cell Genet. 79 (1997) 132-138). In the present study, the human SDHD gene encoding cybS was cloned and characterized. The gene comprises four exons and three introns extending over 19 kb. Sequence analysis of the 5' promoter region showed several motifs for the binding of transcription factors including nuclear respiratory factors NRF-1 and NRF-2 at positions -137 and -104, respectively. In addition to this gene, six pseudogenes of cybS were isolated and mapped on the chromosome.

  9. E2F mediates induction of the Sp1-controlled promoter of the human DNA polymerase ɛ B-subunit gene POLE2

    PubMed Central

    Huang, Deqi; Jokela, Maarit; Tuusa, Jussi; Skog, Sven; Poikonen, Kari; Syväoja, Juhani E.

    2001-01-01

    The B-subunits of replicative DNA polymerases from Archaea to humans belong to the same protein family, suggesting that they share a common fundamental function. We report here the gene structure for the B-subunit of human DNA polymerase ɛ (POLE2), whose expression and transcriptional regulation is typical for replication proteins with some unique features. The 75 bp core promoter region, located within exon 1, contains an Sp1 element that is a critical determinant of promoter activity as shown by the luciferase reporter, electrophoretic mobility shift and DNase I footprinting assays. Two overlapping E2F elements adjacent to the Sp1 element are essential for full promoter activity and serum response. Binding sites for E2F1 and NF-1 reside immediately downstream from the core promoter region. Our results suggest that human POLE2 is regulated by two E2F–pocket protein complexes, one associated with Sp1 and the other with NF-1. So far, only one replicative DNA polymerase B-subunit gene promoter, POLA2 encoding the B-subunit of DNA polymerase α, has been characterized. Mitogenic activation of the POLE2 promoter by an E2F-mediated mechanism resembles that of POLA2, but the regulation of basal promoter activity is different between these two genes. PMID:11433027

  10. 3D structure of the influenza virus polymerase complex: Localization of subunit domains

    PubMed Central

    Area, Estela; Martín-Benito, Jaime; Gastaminza, Pablo; Torreira, Eva; Valpuesta, José M.; Carrascosa, José L.; Ortín, Juan

    2004-01-01

    The 3D structure of the influenza virus polymerase complex was determined by electron microscopy and image processing of recombinant ribonucleoproteins (RNPs). The RNPs were generated by in vivo amplification using cDNAs of the three polymerase subunits, the nucleoprotein, and a model virus-associated RNA containing 248 nt. The polymerase structure obtained is very compact, with no apparent boundaries among subunits. The position of specific regions of the PB1, PB2, and PA subunits was determined by 3D reconstruction of either RNP–mAb complexes or tagged RNPs. This structural model is available for the polymerase of a negative-stranded RNA virus and provides a general delineation of the complex and its interaction with the template-associated nucleoprotein monomers in the RNP. PMID:14691253

  11. Analysis and Quantitation of NF-[kappa]B Nuclear Translocation in Tumor Necrosis Factor Alpha (TNF-[alpha]) Activated Vascular Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Fuseler, John W.; Merrill, Dana M.; Rogers, Jennifer A.; Grisham, Matthew B.; Wolf, Robert E.

    2006-07-01

    Nuclear factor kappa B (NF-[kappa]B) is a heterodimeric transcription factor typically composed of p50 and p65 subunits and is a pleiotropic regulator of various inflammatory and immune responses. In quiescent cells, p50/p65 dimers are sequestered in the cytoplasm bound to its inhibitors, the I-[kappa]Bs, which prevent entry into the nucleus. Following cellular stimulation, the I-[kappa]Bs are rapidly degraded, activating NF-[kappa]B. The active form of NF-[kappa]B rapidly translocates into the nucleus, binding to consensus sequences in the promoter/enhancer region of various genes, promoting their transcription. In human vascular endothelial cells activated with tumor necrosis factor-alpha, the activation and translocation of NF-[kappa]B is rapid, reaching maximal nuclear localization by 30 min. In this study, the appearance of NF-[kappa]B (p65 subunit, p65-NF-[kappa]B) in the nucleus visualized by immunofluorescence and quantified by morphometric image analysis (integrated optical density, IOD) is compared to the appearance of activated p65-NF-[kappa]B protein in the nucleus determined biochemically. The appearance of p65-NF-[kappa]B in the nucleus measured by fluorescence image analysis and biochemically express a linear correlation (R2 = 0.9477). These data suggest that localization and relative protein concentrations of NF-[kappa]B can be reliably determined from IOD measurements of the immunofluorescent labeled protein.

  12. Metallic Borides, La 2 Re 3 B 7 and La 3 Re 2 B 5 , Featuring Extensive Boron–Boron Bonding

    DOE PAGES

    Bugaris, Daniel E.; Malliakas, Christos D.; Chung, Duck Young; ...

    2016-01-26

    We synthesized La 2Re 3B 7 and La 3Re 2B 5 in single-crystalline form from a molten La/Ni eutectic at 1000°C, in the first example of the flux crystal growth of ternary rare-earth rhenium borides. Both compounds crystallize in their own orthorhombic structure types, with La 2Re 3B 7 (space group Pcca) having lattice parameters a = 7.657(2) Å, b = 6.755(1) Å, and c = 11.617(2) Å, and La 3Re 2B 5 (space group Pmma) having lattice parameters a = 10.809(2) Å, b = 5.287(1) Å, and c = 5.747(1) Å. Furthermore, the compounds possess three-dimensional framework structures thatmore » are built up from rhenium boride polyhedra and boron-boron bonding. La 3Re 2B 5 features fairly common B 2 dumbbells, whereas La 2Re 3B 7 has unique one-dimensional subunits composed of alternating triangular B3 and trans-B4 zigzag chain fragments. Also observed in La 3Re 2B 5 is an unusual coordination of B by an octahedron of La atoms. Electronic band structure calculations predict that La 2Re 3B 7 is a semimetal, which is observed in the electrical resistivity data as measured on single crystals, with behavior obeying the Bloch-Grüneisen model and a room-temperature resistivity ρ300K of ~ 375 μΩ cm. The electronic band structure calculations also suggest that La 3Re 2B 5 is a regular metal.« less

  13. Metallic Borides, La 2 Re 3 B 7 and La 3 Re 2 B 5 , Featuring Extensive Boron–Boron Bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bugaris, Daniel E.; Malliakas, Christos D.; Chung, Duck Young

    We synthesized La 2Re 3B 7 and La 3Re 2B 5 in single-crystalline form from a molten La/Ni eutectic at 1000°C, in the first example of the flux crystal growth of ternary rare-earth rhenium borides. Both compounds crystallize in their own orthorhombic structure types, with La 2Re 3B 7 (space group Pcca) having lattice parameters a = 7.657(2) Å, b = 6.755(1) Å, and c = 11.617(2) Å, and La 3Re 2B 5 (space group Pmma) having lattice parameters a = 10.809(2) Å, b = 5.287(1) Å, and c = 5.747(1) Å. Furthermore, the compounds possess three-dimensional framework structures thatmore » are built up from rhenium boride polyhedra and boron-boron bonding. La 3Re 2B 5 features fairly common B 2 dumbbells, whereas La 2Re 3B 7 has unique one-dimensional subunits composed of alternating triangular B3 and trans-B4 zigzag chain fragments. Also observed in La 3Re 2B 5 is an unusual coordination of B by an octahedron of La atoms. Electronic band structure calculations predict that La 2Re 3B 7 is a semimetal, which is observed in the electrical resistivity data as measured on single crystals, with behavior obeying the Bloch-Grüneisen model and a room-temperature resistivity ρ300K of ~ 375 μΩ cm. The electronic band structure calculations also suggest that La 3Re 2B 5 is a regular metal.« less

  14. Neuroprotection by stem cell factor in rat cortical neurons involves AKT and NFkappaB.

    PubMed

    Dhandapani, Krishnan M; Wade, F Marlene; Wakade, Chandramohan; Mahesh, Virendra B; Brann, Darrell W

    2005-10-01

    Stem cell factor (SCF) is a highly expressed cytokine in the central nervous system. In the present study, we demonstrate a neuroprotective role for SCF and its tyrosine kinase receptor, c-kit, against camptothecin-induced apoptosis and glutamate excitotoxicity in rat cortical neurons. This protection was blocked by pharmacological or molecular inhibition of either the MEK/ERK or PI3K/Akt signaling pathways. The importance of these pathways was further confirmed by the activation of both ERK, in a MEK-dependent manner, and Akt, via PI3K. Activation of Akt increased the binding of the p50 and p65 subunits of NFkappaB, which was also important for neuroprotection. Akt inhibition prevented NFkappaB binding, suggesting a role for Akt in SCF-induced NFkappaB. Pharmacological inhibition of NFkappaB or dominant negative IkappaB also prevented neuroprotection by SCF. SCF up-regulated the anti-apoptotic genes, bcl-2 and bcl-xL in an NFkappaB-dependent manner. Together, these findings demonstrate a neuroprotective role for SCF in cortical neurons, an effect that was mediated by Akt and ERK, as well as NFkappaB-mediated gene transcription. SCF represents a novel therapeutic target in the treatment of neurodegenerative disease.

  15. Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1

    PubMed Central

    Smykowski, Anja; Fischer, Stefan M.; Zentgraf, Ulrike

    2015-01-01

    Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers the onset of leaf senescence, suggesting posttranscriptional mechanisms for senescence-specific GBF1 activation. Here we show that GBF1 is phosphorylated by the threonine/serine CASEIN KINASE II (CKII) in vitro and that CKII phosphorylation had a negative effect on GBF1 DNA-binding to G-boxes of two direct target genes, CATALASE2 and RBSCS1a. Phosphorylation mimicry at three serine positions in the basic region of GBF1 also had a negative effect on DNA-binding. Kinase assays revealed that CKII phosphorylates at least one serine in the basic domain but has additional phosphorylation sites outside this domain. Two different ckII α subunit1 and one α subunit2 T-DNA insertion lines showed no visible senescence phenotype, but in all lines the expression of the senescence marker gene SAG12 was remarkably diminished. A model is presented suggesting that senescence-specific GBF1 activation might be achieved by lowering the phosphorylation of GBF1 by CKII. PMID:27135347

  16. The protein phosphatase 2A catalytic subunit StPP2Ac2b acts as a positive regulator of tuberization induction in Solanum tuberosum L.

    PubMed

    Muñiz García, María Noelia; Muro, María Catalina; Mazzocchi, Luciana Carla; País, Silvia Marina; Stritzler, Margarita; Schlesinger, Mariana; Capiati, Daniela Andrea

    2017-02-01

    This study provides the first genetic evidence for the role of PP2A in tuberization, demonstrating that the catalytic subunit StPP2Ac2b positively modulates tuber induction, and that its function is related to the regulation of gibberellic acid metabolism. The results contribute to a better understanding of the molecular mechanism controlling tuberization induction, which remains largely unknown. The serine/threonine protein phosphatases type 2A (PP2A) are implicated in several physiological processes in plants, playing important roles in hormone responses. In cultivated potato (Solanum tuberosum), six PP2A catalytic subunits (StPP2Ac) were identified. The PP2Ac of the subfamily I (StPP2Ac1, 2a and 2b) were suggested to be involved in the tuberization signaling in leaves, where the environmental and hormonal signals are perceived and integrated. The aim of this study was to investigate the role of PP2A in the tuberization induction in stolons. We selected one of the catalytic subunits of the subfamily I, StPP2Ac2b, to develop transgenic plants overexpressing this gene (StPP2Ac2b-OE). Stolons from StPP2Ac2b-OE plants show higher tuber induction rates in vitro, as compared to wild type stolons, with no differences in the number of tubers obtained at the end of the process. This effect is accompanied by higher expression levels of the gibberellic acid (GA) catabolic enzyme StGA2ox1. GA up-regulates StPP2Ac2b expression in stolons, possibly as part of the feedback system by which the hormone regulates its own level. Sucrose, a tuber-promoting factor in vitro, increases StPP2Ac2b expression. We conclude that StPP2Ac2b acts in stolons as a positive regulator tuber induction, integrating different tuberization-related signals mainly though the modulation of GA metabolism.

  17. The bHLH Transcription Factor bHLH104 Interacts with IAA-LEUCINE RESISTANT3 and Modulates Iron Homeostasis in Arabidopsis

    PubMed Central

    Zhang, Jie; Liu, Bing; Li, Mengshu; Feng, Dongru; Jin, Honglei; Wang, Peng; Liu, Jun; Xiong, Feng; Wang, Jinfa; Wang, Hong-Bin

    2015-01-01

    Iron (Fe) is an indispensable micronutrient for plant growth and development. The regulation of Fe homeostasis in plants is complex and involves a number of transcription factors. Here, we demonstrate that a basic helix-loop-helix (bHLH) transcription factor, bHLH104, belonging to the IVc subgroup of bHLH family, acts as a key component positively regulating Fe deficiency responses. Knockout of bHLH104 in Arabidopsis thaliana greatly reduced tolerance to Fe deficiency, whereas overexpression of bHLH104 had the opposite effect and led to accumulation of excess Fe in soil-grown conditions. The activation of Fe deficiency-inducible genes was substantially suppressed by loss of bHLH104. Further investigation showed that bHLH104 interacted with another IVc subgroup bHLH protein, IAA-LEUCINE RESISTANT3 (ILR3), which also plays an important role in Fe homeostasis. Moreover, bHLH104 and ILR3 could bind directly to the promoters of Ib subgroup bHLH genes and POPEYE (PYE) functioning in the regulation of Fe deficiency responses. Interestingly, genetic analysis showed that loss of bHLH104 could decrease the tolerance to Fe deficiency conferred by the lesion of BRUTUS, which encodes an E3 ligase and interacts with bHLH104. Collectively, our data support that bHLH104 and ILR3 play pivotal roles in the regulation of Fe deficiency responses via targeting Ib subgroup bHLH genes and PYE expression. PMID:25794933

  18. The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation.

    PubMed Central

    Brown, Sharron A N; Richards, Christine M; Hanscom, Heather N; Feng, Sheau-Line Y; Winkles, Jeffrey A

    2003-01-01

    Fn14 is a growth-factor-inducible immediate-early-response gene encoding a 102-amino-acid type I transmembrane protein. The human Fn14 protein was recently identified as a cell-surface receptor for the tumour necrosis factor (TNF) superfamily member named TWEAK (TNF-like weak inducer of apoptosis). In the present paper, we report that the human TWEAK extracellular domain can also bind the murine Fn14 protein. Furthermore, site-specific mutagenesis and directed yeast two-hybrid interaction assays revealed that the TNFR-associated factor (TRAF) 1, 2, 3 and 5 adaptor molecules bind the murine Fn14 cytoplasmic tail at an overlapping, but non-identical, amino acid sequence motif. We also found that TWEAK treatment of quiescent NIH 3T3 cells stimulates inhibitory kappaBalpha phosphorylation and transcriptional activation of a nuclear factor-kappaB (NF-kappaB) enhancer/luciferase reporter construct. Fn14 overexpression in transiently transfected NIH 3T3 cells also promotes NF-kappaB activation, and this cellular response requires an intact TRAF binding site. These results indicate that Fn14 is a functional TWEAK receptor that can associate with four distinct TRAF family members and stimulate the NF-kappaB transcription factor signalling pathway. PMID:12529173

  19. Anthranilate synthase subunit organization in Chromobacterium violaceum.

    PubMed

    Carminatti, C A; Oliveira, I L; Recouvreux, D O S; Antônio, R V; Porto, L M

    2008-09-16

    Tryptophan is an aromatic amino acid used for protein synthesis and cellular growth. Chromobacterium violaceum ATCC 12472 uses two tryptophan molecules to synthesize violacein, a secondary metabolite of pharmacological interest. The genome analysis of this bacterium revealed that the genes trpA-F and pabA-B encode the enzymes of the tryptophan pathway in which the first reaction is the conversion of chorismate to anthranilate by anthranilate synthase (AS), an enzyme complex. In the present study, the organization and structure of AS protein subunits from C. violaceum were analyzed using bioinformatics tools available on the Web. We showed by calculating molecular masses that AS in C. violaceum is composed of alpha (TrpE) and beta (PabA) subunits. This is in agreement with values determined experimentally. Catalytic and regulatory sites of the AS subunits were identified. The TrpE and PabA subunits contribute to the catalytic site while the TrpE subunit is involved in the allosteric site. Protein models for the TrpE and PabA subunits were built by restraint-based homology modeling using AS enzyme, chains A and B, from Salmonella typhimurium (PDB ID 1I1Q).

  20. Effect of Cavβ Subunits on Structural Organization of Cav1.2 Calcium Channels

    PubMed Central

    Duong, Son Q.; Thomas, Sam; Harry, Jo Beth; Patel, Chirag; Lao, Qi Zong; Soldatov, Nikolai M.

    2009-01-01

    Background Voltage-gated Cav1.2 calcium channels play a crucial role in Ca2+ signaling. The pore-forming α1C subunit is regulated by accessory Cavβ subunits, cytoplasmic proteins of various size encoded by four different genes (Cavβ1 - β4) and expressed in a tissue-specific manner. Methods and Results Here we investigated the effect of three major Cavβ types, β1b, β2d and β3, on the structure of Cav1.2 in the plasma membrane of live cells. Total internal reflection fluorescence microscopy showed that the tendency of Cav1.2 to form clusters depends on the type of the Cavβ subunit present. The highest density of Cav1.2 clusters in the plasma membrane and the smallest cluster size were observed with neuronal/cardiac β1b present. Cav1.2 channels containing β3, the predominant Cavβ subunit of vascular smooth muscle cells, were organized in a significantly smaller number of larger clusters. The inter- and intramolecular distances between α1C and Cavβ in the plasma membrane of live cells were measured by three-color FRET microscopy. The results confirm that the proximity of Cav1.2 channels in the plasma membrane depends on the Cavβ type. The presence of different Cavβ subunits does not result in significant differences in the intramolecular distance between the termini of α1C, but significantly affects the distance between the termini of neighbor α1C subunits, which varies from 67 Å with β1b to 79 Å with β3. Conclusions Thus, our results show that the structural organization of Cav1.2 channels in the plasma membrane depends on the type of Cavβ subunits present. PMID:19492014

  1. Matrix proteins of Nipah and Hendra viruses interact with beta subunits of AP-3 complexes.

    PubMed

    Sun, Weina; McCrory, Thomas S; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell; Schmitt, Anthony P

    2014-11-01

    Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998, killing 109 people

  2. Matrix Proteins of Nipah and Hendra Viruses Interact with Beta Subunits of AP-3 Complexes

    PubMed Central

    Sun, Weina; McCrory, Thomas S.; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell

    2014-01-01

    ABSTRACT Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. IMPORTANCE Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998

  3. The atypical two-subunit σ factor from Bacillus subtilis is regulated by an integral membrane protein and acid stress.

    PubMed

    Davis, Maria C; Smith, Logan K; MacLellan, Shawn R

    2016-02-01

    Extracytoplasmic function (ECF) σ factors constitute a major component of the physicochemical sensory apparatus in bacteria. Most ECF σ factors are co-expressed with a negative regulator called an anti-σ factor that binds to its cognate σ factor and sequesters it from productive association with core RNA polymerase (RNAP). Anti-σ factors constitute an important element of signal transduction pathways that mediate an appropriate transcriptional response to changing environmental conditions. The Bacillus subtilis genome encodes seven canonical ECF σ factors and six of these are co-expressed with experimentally verified anti-σ factors. B. subtilis also expresses an ECF-like atypical two-subunit σ factor composed of subunits SigO and RsoA that becomes active after exposure to certain cell-wall-acting antibiotics and to growth under acidic conditions. This work describes the identification and preliminary characterization of a protein (RsiO, formerly YvrL) that constitutes the anti-σ factor cognate to SigO-RsoA. Synthesis of RsiO represses SigO-RsoA-dependent transcription initiation by binding the N-terminus of SigO under neutral (pH 7) conditions. Reconstitution of the SigO-RsoA-RsiO regulatory system into a heterologous host reveals that the imposition of acid stress (pH 5.4) abolishes the ability of RsiO to repress SigO-RsoA-dependent transcription and this correlates with loss of RsiO binding affinity for SigO. A current model for RsiO function indicates that RsiO responds, either directly or indirectly, to increased extracytoplasmic hydrogen ion concentration and becomes inactivated. This results in the release of SigO into the cytoplasm, where it productively associates with RsoA and core RNAP to initiate transcription from target promoters in the cell.

  4. Inhibition of Nuclear Factor-Kappa B Activation Decreases Survival of Mycobacterium tuberculosis in Human Macrophages

    PubMed Central

    Chmura, Kathryn; Ovrutsky, Alida R.; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T.; Strand, Matthew J.; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R.; Kinney, William H.; Oberley-Deegan, Rebecca E.; Voelker, Dennis R.; Ordway, Diane J.; Chan, Edward D.

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  5. Translation Initiation Factor eIF4B Interacts with a Picornavirus Internal Ribosome Entry Site in both 48S and 80S Initiation Complexes Independently of Initiator AUG Location

    PubMed Central

    Ochs, Kerstin; Rust, René C.; Niepmann, Michael

    1999-01-01

    Most eukaryotic initiation factors (eIFs) are required for internal translation initiation at the internal ribosome entry site (IRES) of picornaviruses. eIF4B is incorporated into ribosomal 48S initiation complexes with the IRES RNA of foot-and-mouth disease virus (FMDV). In contrast to the weak interaction of eIF4B with capped cellular mRNAs and its release upon entry of the ribosomal 60S subunit, eIF4B remains tightly associated with the FMDV IRES during formation of complete 80S ribosomes. Binding of eIF4B to the IRES is energy dependent, and binding of the small ribosomal subunit to the IRES requires the previous energy-dependent association of initiation factors with the IRES. The interaction of eIF4B with the IRES in 48S and 80S complexes is independent of the location of the initiator AUG and thus independent of the mechanism by which the small ribosomal subunit is placed at the actual start codon, either by direct internal ribosomal entry or by scanning. eIF4B does not greatly rearrange its binding to the IRES upon entry of the ribosomal subunits, and the interaction of eIF4B with the IRES is independent of the polypyrimidine tract-binding protein, which enhances FMDV translation. PMID:10438840

  6. A novel function of twins, B subunit of protein phosphatase 2A, in regulating actin polymerization.

    PubMed

    Yeh, Po-An; Chang, Ching-Jin

    2017-01-01

    Actin is an important component of the cytoskeleton and its polymerization is delicately regulated by several kinases and phosphatases. Heterotrimeric protein phosphatase 2A (PP2A) is a potent phosphatase that is crucial for cell proliferation, apoptosis, tumorigenesis, signal transduction, cytoskeleton arrangement, and neurodegeneration. To facilitate these varied functions, different regulators determine the different targets of PP2A. Among these regulators of PP2A, the B subunits in particular may be involved in cytoskeleton arrangement. However, little is known about the role of PP2A in actin polymerization in vivo. Using sophisticated fly genetics, we demonstrated a novel function for the fly B subunit, twins, to promote actin polymerization in varied tissue types, suggesting a broad and conserved effect. Furthermore, our genetic data suggest that twins may act upstream of the actin-polymerized-proteins, Moesin and Myosin-light-chain, and downstream of Rho to promote actin polymerization. This work opens a new avenue for exploring the biological functions of a PP2A regulator, twins, in cytoskeleton regulation.

  7. A novel function of twins, B subunit of protein phosphatase 2A, in regulating actin polymerization

    PubMed Central

    Chang, Ching-Jin

    2017-01-01

    Actin is an important component of the cytoskeleton and its polymerization is delicately regulated by several kinases and phosphatases. Heterotrimeric protein phosphatase 2A (PP2A) is a potent phosphatase that is crucial for cell proliferation, apoptosis, tumorigenesis, signal transduction, cytoskeleton arrangement, and neurodegeneration. To facilitate these varied functions, different regulators determine the different targets of PP2A. Among these regulators of PP2A, the B subunits in particular may be involved in cytoskeleton arrangement. However, little is known about the role of PP2A in actin polymerization in vivo. Using sophisticated fly genetics, we demonstrated a novel function for the fly B subunit, twins, to promote actin polymerization in varied tissue types, suggesting a broad and conserved effect. Furthermore, our genetic data suggest that twins may act upstream of the actin-polymerized-proteins, Moesin and Myosin-light-chain, and downstream of Rho to promote actin polymerization. This work opens a new avenue for exploring the biological functions of a PP2A regulator, twins, in cytoskeleton regulation. PMID:28977036

  8. Regulator-dependent mechanisms of C3b processing by factor I allow differentiation of immune responses.

    PubMed

    Xue, Xiaoguang; Wu, Jin; Ricklin, Daniel; Forneris, Federico; Di Crescenzio, Patrizia; Schmidt, Christoph Q; Granneman, Joke; Sharp, Thomas H; Lambris, John D; Gros, Piet

    2017-08-01

    The complement system labels microbes and host debris for clearance. Degradation of surface-bound C3b is pivotal to direct immune responses and protect host cells. How the serine protease factor I (FI), assisted by regulators, cleaves either two or three distant peptide bonds in the CUB domain of C3b remains unclear. We present a crystal structure of C3b in complex with FI and regulator factor H (FH; domains 1-4 with 19-20). FI binds C3b-FH between FH domains 2 and 3 and a reoriented C3b C-terminal domain and docks onto the first scissile bond, while stabilizing its catalytic domain for proteolytic activity. One cleavage in C3b does not affect its overall structure, whereas two cleavages unfold CUB and dislodge the thioester-containing domain (TED), affecting binding of regulators and thereby determining the number of cleavages. These data explain how FI generates late-stage opsonins iC3b or C3dg in a context-dependent manner, to react to foreign, danger or healthy self signals.

  9. T Cell Receptor Engagement Triggers Its CD3ε and CD3ζ Subunits to Adopt a Compact, Locked Conformation

    PubMed Central

    Risueño, Ruth M.; Schamel, Wolfgang W. A.; Alarcón, Balbino

    2008-01-01

    How the T cell antigen receptor (TCR) discriminates between molecularly related peptide/Major Histocompatibility Complex (pMHC) ligands and converts this information into different possible signaling outcomes is still not understood. One current model proposes that strong pMHC ligands, but not weak ones, induce a conformational change in the TCR. Evidence supporting this comes from a pull-down assay that detects ligand-induced binding of the TCR to the N-terminal SH3 domain of the adapter protein Nck, and also from studies with a neoepitope-specific antibody. Both methods rely on the exposure of a polyproline sequence in the CD3ε subunit of the TCR, and neither indicates whether the conformational change is transmitted to other CD3 subunits. Using a protease-sensitivity assay, we now show that the cytoplasmic tails of CD3ε and CD3ζ subunits become fully protected from degradation upon TCR triggering. These results suggest that the TCR conformational change is transmitted to the tails of CD3ε and CD3ζ, and perhaps all CD3 subunits. Furthermore, the resistance to protease digestion suggests that CD3 cytoplasmic tails adopt a compact structure in the triggered TCR. These results are consistent with a model in which transduction of the conformational change induced upon TCR triggering promotes condensation and shielding of the CD3 cytoplasmic tails. PMID:18320063

  10. Purification of subunits of Escherichia coli DNA gyrase and reconstitution of enzymatic activity.

    PubMed

    Higgins, N P; Peebles, C L; Sugino, A; Cozzarelli, N R

    1978-04-01

    Extensively purified DNA gyrase from Escherichia coli is inhibited by nalidixic acid and by novobiocin. The enzyme is composed of two subunits, A and B, which were purified as separate components. Subunit A is the product of the gene controlling sensitivity to nalidixic acid (nalA) because: (i) the electrophoretic mobility of subunit A in the presence of sodium dodecyl sulfate is identical to that of the 105,000-dalton nalA gene product; (ii) mutants that are resistant to nalidixic acid (nalA(r)) produce a drug-resistant subunit A; and (iii) wild-type subunit A confers drug sensitivity to in vitro synthesis of varphiX174 DNA directed by nalA(r) mutants. Subunit B contains a 95,000-dalton polypeptide and is controlled by the gene specifying sensitivity to novobiocin (cou) because cou(r) mutants produce a novobiocin-resistant subunit B and novobiocin-resitant gyrase is made drug sensitive by wild-type subunit B. Subunits A and B associate, so that gyrase was also purified as a complex containing 105,000- and 95,000-dalton polypeptides. This enzyme and gyrase reconstructed from subunits have the same drug sensitivity, K(m) for ATP, and catalytic properties. The same ratio of subunits gives efficient reconstitution of the reactions intrinsic to DNA gyrase, including catalysis of supercoiling of closed duplex DNA, relaxation of supercoiled DNA in the absence of ATP, and site-specific cleavage of DNA induced by sodium dodecyl sulfate.

  11. RNA editing of the GABAA receptor α3 subunit alters the functional properties of recombinant receptors

    PubMed Central

    Nimmich, Mitchell L.; Heidelberg, Laura S.; Fisher, Janet L.

    2009-01-01

    RNA editing provides a post-transcriptional mechanism to increase structural heterogeneity of gene products. Recently, the α3 subunit of the GABAA receptors has been shown to undergo RNA editing. As a result, a highly conserved isoleucine residue in the third transmembrane domain is replaced with a methionine. To determine the effect of this structural change on receptor function, we compared the GABA sensitivity, pharmacological properties and macroscopic kinetics of recombinant receptors containing either the edited or unedited forms of the α3 subunit along with β3 and γ2L. Editing substantially altered the GABA sensitivity and deactivation rate of the receptors, with the unedited form showing a lower GABA EC50 and slower decay. Comparable effects were observed with a mutation at the homologous location in the α1 subunit, suggesting a common role for this site in regulation of channel gating. Except for the response to GABA, the pharmacological properties of the receptor were unaffected by editing, with similar enhancement by a variety of modulators. Since RNA editing of the α3 subunit increases through development, our findings suggest that GABAergic neurotransmission may be more effective early in development, with greater GABA sensitivity and slower decay rates conferred by the unedited α3 subunit. PMID:19367790

  12. The putative RNA helicase Dbp6p functionally interacts with Rpl3p, Nop8p and the novel trans-acting Factor Rsa3p during biogenesis of 60S ribosomal subunits in Saccharomyces cerevisiae.

    PubMed Central

    de la Cruz, Jesús; Lacombe, Thierry; Deloche, Olivier; Linder, Patrick; Kressler, Dieter

    2004-01-01

    Ribosome biogenesis requires at least 18 putative ATP-dependent RNA helicases in Saccharomyces cerevisiae. To explore the functional environment of one of these putative RNA helicases, Dbp6p, we have performed a synthetic lethal screen with dbp6 alleles. We have previously characterized the nonessential Rsa1p, whose null allele is synthetically lethal with dbp6 alleles. Here, we report on the characterization of the four remaining synthetic lethal mutants, which reveals that Dbp6p also functionally interacts with Rpl3p, Nop8p, and the so-far-uncharacterized Rsa3p (ribosome assembly 3). The nonessential Rsa3p is a predominantly nucleolar protein required for optimal biogenesis of 60S ribosomal subunits. Both Dbp6p and Rsa3p are associated with complexes that most likely correspond to early pre-60S ribosomal particles. Moreover, Rsa3p is co-immunoprecipitated with protA-tagged Dbp6p under low salt conditions. In addition, we have established a synthetic interaction network among factors involved in different aspects of 60S-ribosomal-subunit biogenesis. This extensive genetic analysis reveals that the rsa3 null mutant displays some specificity by being synthetically lethal with dbp6 alleles and by showing some synthetic enhancement with the nop8-101 and the rsa1 null allele. PMID:15126390

  13. Integrin alphaIIb-subunit cytoplasmic domain mutations demonstrate a requirement for tyrosine phosphorylation of beta3-subunits in actin cytoskeletal organization.

    PubMed

    Yamodo, Innocent H; Blystone, Scott D

    2004-01-01

    Using truncated or mutated alphaIIb integrin cytoplasmic domains fused to the alphaV extracellular domain and expressed with the beta3 integrin subunit, we demonstrate that the double mutation of proline residues 998 and 999 to alanine (PP998/999AA), previously shown to disturb the C-terminal conformation of the alphaIIb integrin cytoplasmic domain, prevents tyrosine phosphorylation of beta3 integrin induced by Arg-Gly-Asp peptide ligation. This mutation also inhibits integrin mediated actin assembly and cell adhesion to vitronectin. In contrast, progressive truncation of the alphaIIb-subunit cytoplasmic domain did not reproduce these effects. Interestingly, the PP998/999AA mutations of alphaIIb did not affect beta3 tyrosine phosphorylation, cell adhesion, or actin polymerization induced by manganese. Exogenous addition of manganese was sufficient to rescue beta3 phosphorylation, cell adhesion, and actin assembly in cells expressing the PP998/999AA mutation when presented with a vitronectin substrate. Further, induction of the high affinity conformation of this mutant beta3 integrin by incubation with either Arg-Gly-Asp peptide or exogenous manganese was equivalent. These results suggest that the extracellular structure of beta3 integrins in the high affinity conformation is not directly related to the structure of the cytoplasmic face of the integrin. Moreover, the requirement for beta3 phosphorylation is demonstrated without mutation of the beta3 subunit. In support of our previous hypothesis of a role for beta3 phosphorylation in adhesion, these studies demonstrate a strong correlation between beta3 tyrosine phosphorylation and assembly of a cytoskeleton competent to support firm cell adhesion.

  14. Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit

    PubMed Central

    Bian, Xiaochun; Ren, Jianhua; De Vries, Matthew; Schnegelsberg, Birthe; Cockayne, Debra A; Ford, Anthony P D W; Galligan, James J

    2003-01-01

    P2X receptors are ATP-gated cation channels composed of one or more of seven different subunits. P2X receptors participate in intestinal neurotransmission but the subunit composition of enteric P2X receptors is unknown. In this study, we used tissues from P2X3 wild-type (P2X3+/+) mice and mice in which the P2X3 subunit gene had been deleted (P2X3−/−) to investigate the role of this subunit in neurotransmission in the intestine. RT-PCR analysis of mRNA from intestinal tissues verified P2X3 gene deletion. Intracellular electrophysiological methods were used to record synaptic and drug-induced responses from myenteric neurons in vitro. Drug-induced longitudinal muscle contractions were studied in vitro. Intraluminal pressure-induced reflex contractions (peristalsis) of ileal segments were studied in vitro using a modified Trendelenburg preparation. Gastrointestinal transit was measured as the progression in 30 min of a liquid radioactive marker administered by gavage to fasted mice. Fast excitatory postsynaptic potentials recorded from S neurons (motoneurons and interneurons) were similar in tissues from P2X3+/+ and P2X3−/− mice. S neurons from P2X3+/+ and P2X3−/− mice were depolarized by application of ATP but not α,β-methylene ATP, an agonist of P2X3 subunit-containing receptors. ATP and α,β-methylene ATP induced depolarization of AH (sensory) neurons from P2X3+/+ mice. ATP, but not α,β-methylene ATP, caused depolarization of AH neurons from P2X3−/− mice. Peristalsis was inhibited in ileal segments from P2X3−/− mice but longitudinal muscle contractions caused by nicotine and bethanechol were similar in segments from P2X3+/+ and P2X3−/− mice. Gastrointestinal transit was similar in P2X3+/+ and P2X3−/− mice. It is concluded that P2X3 subunit-containing receptors participate in neural pathways underlying peristalsis in the mouse intestine in vitro. P2X3 subunits are localized to AH (sensory) but not S neurons. P2X3 receptors may

  15. Transcriptional regulators of Na,K-ATPase subunits

    PubMed Central

    Li, Zhiqin; Langhans, Sigrid A.

    2015-01-01

    The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease. PMID:26579519

  16. Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas.

    PubMed

    Gu, Keyu; Chiam, Huihui; Tian, Dongsheng; Yin, Zhongchao

    2011-04-01

    Acetyl-CoA carboxylase (ACCase) catalyzes the biotin-dependent carboxylation of acetyl-CoA to produce malonyl-CoA, which is the essential first step in the biosynthesis of long-chain fatty acids. ACCase exists as a multi-subunit enzyme in most prokaryotes and the chloroplasts of most plants and algae, while it is present as a multi-domain enzyme in the endoplasmic reticulum of most eukaryotes. The heteromeric ACCase of higher plants consists of four subunits: an α-subunit of carboxyltransferase (α-CT, encoded by accA gene), a biotin carboxyl carrier protein (BCCP, encoded by accB gene), a biotin carboxylase (BC, encoded by accC gene) and a β-subunit of carboxyltransferase (β-CT, encoded by accD gene). In this study, we cloned and characterized the genes accA, accB1, accC and accD that encode the subunits of heteromeric ACCase in Jatropha (Jatropha curcas), a potential biofuel plant. The full-length cDNAs of the four subunit genes were isolated from a Jatropha cDNA library and by using 5' RACE, whereas the genomic clones were obtained from a Jatropha BAC library. They encode a 771 amino acid (aa) α-CT, a 286-aa BCCP1, a 537-aa BC and a 494-aa β-CT, respectively. The single-copy accA, accB1 and accC genes are nuclear genes, while the accD gene is located in chloroplast genome. Jatropha α-CT, BCCP1, BC and β-CT show high identity to their homologues in other higher plants at amino acid level and contain all conserved domains for ACCase activity. The accA, accB1, accC and accD genes are temporally and spatially expressed in the leaves and endosperm of Jatropha plants, which are regulated by plant development and environmental factors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Cholera toxin B subunit-five-stranded α-helical coiled-coil fusion protein: "five-to-five" molecular chimera displays robust physicochemical stability.

    PubMed

    Arakawa, Takeshi; Harakuni, Tetsuya

    2014-09-03

    To create a physicochemically stable cholera toxin (CT) B subunit (CTB), it was fused to the five-stranded α-helical coiled-coil domain of cartilage oligomeric matrix protein (COMP). The chimeric fusion protein (CTB-COMP) was expressed in Pichia pastoris, predominantly as a pentamer, and retained its affinity for the monosialoganglioside GM1, a natural receptor of CT. The fusion protein displayed thermostability, tolerating the boiling temperature of water for 10min, whereas unfused CTB readily dissociated to its monomers and lost its affinity for GM1. The fusion protein also displayed resistance to strong acid at pHs as low as 0.1, and to the protein denaturant sodium dodecyl sulfate at concentrations up to 10%. Intranasal administration of the fusion protein to mice induced anti-B subunit serum IgG, even after the protein was boiled, whereas unfused CTB showed no thermostable mucosal immunogenicity. This study demonstrates that CTB fused to a pentameric α-helical coiled coil has a novel physicochemical phenotype, which may provide important insight into the molecular design of enterotoxin-B-subunit-based vaccines and vaccine delivery molecules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor.

    PubMed

    Tarpey, Patrick S; Raymond, F Lucy; O'Meara, Sarah; Edkins, Sarah; Teague, Jon; Butler, Adam; Dicks, Ed; Stevens, Claire; Tofts, Calli; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Cole, Jennifer; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Jenkinson, Andrew; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Varian, Jennifer; West, Sofie; Widaa, Sara; Mallya, Uma; Moon, Jenny; Luo, Ying; Holder, Susan; Smithson, Sarah F; Hurst, Jane A; Clayton-Smith, Jill; Kerr, Bronwyn; Boyle, Jackie; Shaw, Marie; Vandeleur, Lucianne; Rodriguez, Jayson; Slaugh, Rachel; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Srivastava, Anand K; Stevenson, Roger E; Schwartz, Charles E; Turner, Gillian; Gecz, Jozef; Futreal, P Andrew; Stratton, Michael R; Partington, Michael

    2007-02-01

    We have identified three truncating, two splice-site, and three missense variants at conserved amino acids in the CUL4B gene on Xq24 in 8 of 250 families with X-linked mental retardation (XLMR). During affected subjects' adolescence, a syndrome emerged with delayed puberty, hypogonadism, relative macrocephaly, moderate short stature, central obesity, unprovoked aggressive outbursts, fine intention tremor, pes cavus, and abnormalities of the toes. This syndrome was first described by Cazebas et al., in a family that was included in our study and that carried a CUL4B missense variant. CUL4B is a ubiquitin E3 ligase subunit implicated in the regulation of several biological processes, and CUL4B is the first XLMR gene that encodes an E3 ubiquitin ligase. The relatively high frequency of CUL4B mutations in this series indicates that it is one of the most commonly mutated genes underlying XLMR and suggests that its introduction into clinical diagnostics should be a high priority.

  19. Effect of 3-(3'-tert-butyl-4'-hydroxyphenyl)propyl thiosulfonate sodium on expression of GSTP1 and NQO1 genes and protein transcription factors in BALB/c mouse liver.

    PubMed

    Shintyapina, A B; Safronova, O G; Vavilin, V A; Kandalintseva, N V; Prosenko, A E; Lyakhovich, V V

    2014-08-01

    The study examined dynamics of the effect of novel phenol antioxidant preparation 3-(3'-tertbutyl- 4'-hydroxyphenyl)propyl thiosulfonate sodium (TS-13) on expression of antioxidant protection enzymes genes GSTP1 and NQO1 and on the content of protein transcription factors NF-κB and ATF-2 in mouse liver. Expression of GSTP1 gene decreased significantly on days 4 and 7 after per os administration of TS-13 (100 mg/kg), but increased on post-administration day 14. On days 7 and 14 post-administration, expression of NQO1 gene was significantly increased. On day 7, the hepatic content of the phosphorylated form of ATF-2 and two subunits of nuclear factor NF-κB (p50, p65) decreased significantly.

  20. Homologous kappa-neurotoxins exhibit residue-specific interactions with the alpha 3 subunit of the nicotinic acetylcholine receptor: a comparison of the structural requirements for kappa-bungarotoxin and kappa-flavitoxin binding.

    PubMed

    McLane, K E; Weaver, W R; Lei, S; Chiappinelli, V A; Conti-Tronconi, B M

    1993-07-13

    kappa-Flavotoxin (kappa-FTX), a snake neurotoxin that is a selective antagonist of certain neuronal nicotinic acetylcholine receptors (AChRs), has recently been isolated and characterized [Grant, G. A., Frazier, M. W., & Chiappinelli, V. A. (1988) Biochemistry 27, 1532-1537]. Like the related snake toxin kappa-bungarotoxin (kappa-BTX), kappa-FTX binds with high affinity to alpha 3 subtypes of neuronal AChRs, even though there are distinct sequence differences between the two toxins. To further characterize the sequence regions of the neuronal AChR alpha 3 subunit involved in formation of the binding site for this family of kappa-neurotoxins, we investigated kappa-FTX binding to overlapping synthetic peptides screening the alpha 3 subunit sequence. A sequence region forming a "prototope" for kappa-FTX was identified within residues alpha 3 (51-70), confirming the suggestions of previous studies on the binding of kappa-BTX to the alpha 3 subunit [McLane, K. E., Tang, F., & Conti-Tronconi, B. M. (1990) J. Biol. Chem. 265, 1537-1544] and alpha-bungarotoxin to the Torpedo AChR alpha subunit [Conti-Tronconi, B. M., Tang, F., Diethelm, B. M., Spencer, S. R., Reinhardt-Maelicke, S., & Maelicke, A. (1990) Biochemistry 29, 6221-6230] that this sequence region is involved in formation of a cholinergic site. Single residue substituted analogues, where each residue of the sequence alpha 3 (51-70) was sequentially replaced by a glycine, were used to identify the amino acid side chains involved in the interaction of this prototope with kappa-FTX.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. The Val192Leu mutation in the alpha-subunit of beta-hexosaminidase A is not associated with the B1-variant form of Tay-Sachs disease.

    PubMed Central

    Hou, Y.; Vavougios, G.; Hinek, A.; Wu, K. K.; Hechtman, P.; Kaplan, F.; Mahuran, D. J.

    1996-01-01

    Substitution mutations adversely affecting the alpha-subunit of beta-hexosaminidase A (alphabeta) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-alpha chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an "active-site" residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all alpha-specific activity. This biochemical phenotype is referred to as the "B1-variant form" of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, alpha-Val192Leu. Chinese hamster ovary cells were permanently cotransfected with an alpha-cDNA-construct encoding the substitution and a mutant beta-cDNA (beta-Arg211Lys), encoding a beta-subunit that is inactive but normal in all other respects. We were surprised to find that the Val192Leu substitution, produced a pro-alpha chain that did not form alpha-beta dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val192Leu substitution does not specifically affect the alpha-active site. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8659543

  2. DIRECT MODULATION OF THE PROTEIN KINASE A CATALYTIC SUBUNIT α BY GROWTH FACTOR RECEPTOR TYROSINE KINASES

    PubMed Central

    Caldwell, George B.; Howe, Alan K.; Nickl, Christian K.; Dostmann, Wolfgang R.; Ballif, Bryan A.; Deming, Paula B.

    2011-01-01

    The cyclic-AMP-dependent protein kinase A (PKA) regulates processes such as cell proliferation and migration following activation of growth factor receptor tyrosine kinases (RTKs), yet the signaling mechanisms that link PKA with growth factor receptors remain largely undefined. Here we report that RTKs can directly modulate the function of the catalytic subunit of PKA (PKA-C) through post-translational modification. In vitro kinase assays revealed that both the epidermal growth factor and platelet derived growth factor receptors (EGFR and PDGFR, respectively) tyrosine phosphorylate PKA-C. Mass spectrometry identified tyrosine 330 (Y330) as a receptor-mediated phosphorylation site and mutation of Y330 to phenylalanine (Y330F) all but abolished the RTK-mediated phosphorylation of PKA-C in vitro. Y330 resides within a conserved region at the C-terminal tail of PKA-C that allosterically regulates enzymatic activity. Therefore, the effect of phosphorylation at Y330 on the activity of PKA-C was investigated. The Km for a peptide substrate was markedly decreased when PKA-C subunits were tyrosine phosphorylated by the receptors as compared to un-phosphorylated controls. Importantly, tyrosine-phosphorylated PKA-C subunits were detected in cells stimulated with EGF, PDGF and FGF2 and in fibroblasts undergoing PDGF-mediated chemotaxis. These results demonstrate a direct, functional interaction between RTKs and PKA-C and identify tyrosine phosphorylation as a novel mechansim for regulating PKA activity. PMID:21866565

  3. Hypoxia-inducible Factor Regulates αvβ3 Integrin Cell Surface Expression

    PubMed Central

    Cowden Dahl, Karen D.; Robertson, Sarah E.; Weaver, Valerie M.; Simon, M. Celeste

    2005-01-01

    Hypoxia-inducible factor (HIF)-deficient placentas exhibit a number of defects, including changes in cell fate adoption, lack of fetal angiogenesis, hypocellularity, and poor invasion into maternal tissue. HIF is a heterodimeric transcription factor consisting of α and β aryl hydrocarbon receptor nuclear translocator or ARNT) subunits. We used undifferentiated trophoblast stem (TS) cells to characterize HIF-dependent adhesion, migration, and invasion. Arnt-/- and Hifα-/- TS cells exhibit reduced adhesion and migration toward vitronectin compared with wild-type cells. Furthermore, this defect is associated with decreased cell surface expression of integrin αvβ3 and significantly decreased expression of this integrin in focal adhesions. Because of the importance of adhesion and migration in tumor progression (in addition to placental development), we examined the affect of culturing B16F0 melanoma cells in 1.5% oxygen (O2). Culturing B16F0 melanoma cells at 1.5% O2 resulted in increased αvβ3 integrin surface expression and increased adhesion to and migration toward vitronectin. Together, these data suggest that HIF and O2 tension influence placental invasion and tumor migration by increasing cell surface expression of αvβ3 integrin. PMID:15689487

  4. Effects of light and the regulatory B-subunit composition of protein phosphatase 2A on the susceptibility of Arabidopsis thaliana to aphid (Myzus persicae) infestation

    PubMed Central

    Rasool, Brwa; Karpinska, Barbara; Konert, Grzegorz; Durian, Guido; Denessiouk, Konstantin; Kangasjärvi, Saijaliisa; Foyer, Christine H.

    2014-01-01

    The interactions between biotic and abiotic stress signaling pathways are complex and poorly understood but protein kinase/phosphatase cascades are potentially important components. Aphid fecundity and susceptibility to Pseudomonas syringae infection were determined in the low light-grown Arabidopsis thaliana wild type and in mutant lines defective in either the protein phosphatase (PP)2A regulatory subunit B'γ (gamma; pp2a-b'γ) or B'ζ (zeta; pp2a-b'ζ1-1 and pp2a-b'ζ 1-2) and in gamma zeta double mutants (pp2a-b'γζ) lacking both subunits. All the mutants except for pp2a-b'ζ 1-1 had significantly lower leaf areas than the wild type. Susceptibility to P. syringae was similar in all genotypes. In contrast, aphid fecundity was significantly decreased in the pp2a-b'γ mutant relative to the wild type but not in the pp2a-b'γζ double mutant. A high light pre-treatment, which led to a significant increase in rosette growth in all mutant lines but not in the wild type, led to a significant decrease in aphid fecundity in all genotypes. The high light pre-treatment abolished the differences in aphid resistance observed in the pp2a-b'γ mutant relative to the wild type. The light and CO2 response curves for photosynthesis were changed in response to the high light pre-treatment, but the high light effects were similar in all genotypes. These data demonstrate that a pre-exposure to high light and the composition of B-subunits on the trimeric PP2A holoenzymes are important in regulating plant resistance to aphids. The functional specificity for the individual regulatory B-subunits may therefore limit aphid colonization, depending on the prevailing abiotic stress environment. PMID:25191331

  5. Heterotrimeric G-Protein γ Subunit CsGG3.2 Positively Regulates the Expression of CBF Genes and Chilling Tolerance in Cucumber

    PubMed Central

    Bai, Longqiang; Liu, Yumei; Mu, Ying; Anwar, Ali; He, Chaoxing; Yan, Yan; Li, Yansu; Yu, Xianchang

    2018-01-01

    Heterotrimeric guanine nucleotide-binding proteins (G proteins) composed of alpha (Gα), beta (Gβ), and gamma (Gγ) subunits are central signal transducers mediating the cellular response to multiple stimuli, such as cold, in eukaryotes. Plant Gγ subunits, divided into A, B, and C three structurally distinct types, provide proper cellular localization and functional specificity to the heterotrimer complex. Here, we demonstrate that a type C Gγ subunit CsGG3.2 is involved in the regulation of the CBF regulon and plant tolerance to cold stresses in cucumber (Cucumis sativus L.). We showed that CsGG3.2 transcript abundance was positively induced by cold treatments. Transgenic cucumber plants (T1) constitutively over-expressing CsGG3.2 exhibits tolerance to chilling conditions and increased expression of CBF genes and their regulon. Antioxidative enzymes, i.e., superoxide dismutase, catalase, peroxidase, and glutathione reductase activities increased in cold-stressed transgenic plants. The reactive oxygen species, oxygen free radical and H2O2, production, as well as membrane lipid peroxidation (MDA) production decreased in transgenic plants, suggesting a better antioxidant system to cope the oxidative-damages caused by cold stress. These findings provide evidence for a critical role of CsGG3.2 in mediating cold signal transduction in plant cells. PMID:29719547

  6. Mass production of somatic embryos expressing Escherichia coli heat-labile enterotoxin B subunit in Siberian ginseng.

    PubMed

    Kang, Tae-Jin; Lee, Won-Seok; Choi, Eun-Gyung; Kim, Jae-Whune; Kim, Bang-Geul; Yang, Moon-Sik

    2006-01-24

    The B subunit of Escherichia coli heat-labile toxin (LTB) is a potent mucosal immunogen and immunoadjuvant for co-administered antigens. In order to produce large scale of LTB for the development of edible vaccine, we used transgenic somatic embryos of Siberian ginseng, which is known as medicinal plant. When transgenic somatic embryos were cultured in 130L air-lift type bioreactor, they were developed to mature somatic embryos through somatic embryogenesis and contained approximately 0.36% LTB of the total soluble protein. Enzyme-linked immunosorbent assay indicated that the somatic embryo-synthesized LTB protein bound specifically to GM1-ganglioside, suggesting the LTB subunits formed active pentamers. Therefore, the use of the bioreactor system for expression of LTB proteins in somatic embryos allows for continuous mass production in a short-term period.

  7. Genetic modification of human B-cell development: B-cell development is inhibited by the dominant negative helix loop helix factor Id3.

    PubMed

    Jaleco, A C; Stegmann, A P; Heemskerk, M H; Couwenberg, F; Bakker, A Q; Weijer, K; Spits, H

    1999-10-15

    Transgenic and gene targeted mice have contributed greatly to our understanding of the mechanisms underlying B-cell development. We describe here a model system that allows us to apply molecular genetic techniques to the analysis of human B-cell development. We constructed a retroviral vector with a multiple cloning site connected to a gene encoding green fluorescent protein by an internal ribosomal entry site. Human CD34(+)CD38(-) fetal liver cells, cultured overnight in a combination of stem cell factor and interleukin-7 (IL-7), could be transduced with 30% efficiency. We ligated the gene encoding the dominant negative helix loop helix (HLH) factor Id3 that inhibits many enhancing basic HLH transcription factors into this vector. CD34(+)CD38(-) FL cells were transduced with Id3-IRES-GFP and cultured with the murine stromal cell line S17. In addition, we cultured the transduced cells in a reaggregate culture system with an SV-transformed human fibroblast cell line (SV19). It was observed that overexpression of Id3 inhibited development of B cells in both culture systems. B-cell development was arrested at a stage before expression of the IL-7Ralpha. The development of CD34(+)CD38(-) cells into CD14(+) myeloid cells in the S17 system was not inhibited by overexpression of Id3. Moreover, Id3(+) cells, although inhibited in their B-cell development, were still able to develop into natural killer (NK) cells when cultured in a combination of Flt-3L, IL-7, and IL-15. These findings confirm the essential role of bHLH factors in B-cell development and demonstrate the feasibility of retrovirus-mediated gene transfer as a tool to genetically modify human B-cell development.

  8. Pilot study of whole-blood gamma interferon response to the Vibrio cholerae toxin B subunit and resistance to enterotoxigenic Escherichia coli-associated diarrhea.

    PubMed

    Flores, Jose; DuPont, Herbert L; Paredes-Paredes, Mercedes; Aguirre-Garcia, M Magdalena; Rojas, Araceli; Gonzalez, Alexei; Okhuysen, Pablo C

    2010-05-01

    Enterotoxigenic Escherichia coli (ETEC), which produces heat-labile toxin (LT), is a common cause of travelers' diarrhea (TD). The B subunit of ETEC LT is immunologically related to the B subunit of Vibrio cholerae toxin (CT). In this pilot study we evaluated the whole-blood gamma interferon response to CT B in 17 U.S. adults traveling to Mexico. Only one of nine subjects who demonstrated a cellular immune response as determined by whole-blood gamma interferon production to CT B on arrival to Mexico developed diarrhea, whereas five of eight without a cellular response developed diarrhea. Markers of the cellular immune response to ETEC LT could help in identifying individuals immune to ETEC LT, and these markers deserve additional study.

  9. H3K27 methylation and H3S28 phosphorylation-dependent transcriptional regulation by INHAT subunit SET/TAF-Iβ.

    PubMed

    Kim, Ji-Young; Kim, Kee-Beom; Son, Hye-Ju; Chae, Yun-Cheol; Oh, Si-Taek; Kim, Dong-Wook; Pak, Jhang Ho; Seo, Sang-Beom

    2012-09-21

    Significant progress has been made in understanding the relationship between histone modifications and 'reader' molecules and their effects on transcriptional regulation. A previously identified INHAT complex subunit, SET/TAF-Iβ, binds to histones and inhibits histone acetylation. To investigate the binding specificities of SET/TAF-Iβ to various histone modifications, we employed modified histone tail peptide array analyses. SET/TAF-Iβ strongly recognized PRC2-mediated H3K27me1/2/3; however, the bindings were completely disrupted by H3S28 phosphorylation. We have demonstrated that SET/TAF-Iβ is sequentially recruited to the target gene promoter ATF3 after the PRC2 complex via H3K27me recognition and may offer additive effects in the repression of the target gene. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Expression of NMDA receptor subunits in human blood lymphocytes: A peripheral biomarker in online computer game addiction.

    PubMed

    Sadat-Shirazi, Mitra-Sadat; Vousooghi, Nasim; Alizadeh, Bentolhoda; Makki, Seyed Mohammad; Zarei, Seyed Zeinolabedin; Nazari, Shahrzad; Zarrindast, Mohammad Reza

    2018-05-23

    Background and aims Repeated performance of some behaviors such as playing computer games could result in addiction. The NMDA receptor is critically involved in the development of behavioral and drug addictions. It has been claimed that the expression level of neurotransmitter receptors in the brain may be reflected in peripheral blood lymphocytes (PBLs). Methods Here, using a real-time PCR method, we have investigated the mRNA expression of GluN2A, GluN2D, GluN3A, and GluN3B subunits of the NMDA receptor in PBLs of male online computer game addicts (n = 25) in comparison with normal subjects (n = 26). Results Expression levels of GluN2A, GluN2D, and GluN3B subunits were not statistically different between game addicts and the control group. However, the mRNA expression of the GluN3A subunit was downregulated in PBLs of game addicts. Discussion and conclusions Transcriptional levels of GluN2A and GluN2D subunits in online computer game addicts are similar to our previously reported data of opioid addiction and are not different from the control group. However, unlike our earlier finding of drug addiction, the mRNA expression levels of GluN3A and GluN3B subunits in PBLs of game addicts are reduced and unchanged, respectively, compared with control subjects. It seems that the downregulated state of the GluN3A subunit of NMDA receptor in online computer game addicts is a finding that deserves more studies in the future to see whether it can serve as a peripheral biomarker in addiction studies, where the researcher wants to rule out the confusing effects of abused drugs.

  11. Immunogenicity and protective efficacy of DMT liposome-adjuvanted tuberculosis subunit CTT3H vaccine

    PubMed Central

    Teng, Xindong; Tian, Maopeng; Li, Jianrong; Tan, Songwei; Yuan, Xuefeng; Yu, Qi; Jing, Yukai; Zhang, Zhiping; Yue, Tingting; Zhou, Lei; Fan, Xionglin

    2015-01-01

    Different strategies have been proposed for the development of protein subunit vaccine candidates for tuberculosis (TB), which shows better safety than other types of candidates and the currently used Bacillus Calmette-Guérin (BCG) vaccine. In order to develop more effective protein subunits depending on the mechanism of cell-mediated immunity against TB, a polyprotein CTT3H, based on 5 immunodominant antigens (CFP10, TB10.4, TB8.4, Rv3615c, and HBHA) with CD8+ epitopes of Mycobacterium tuberculosis, was constructed in this study. We vaccinated C57BL/6 mice with a TB subunit CTT3H protein in an adjuvant of dimethyldioctadecylammonium/monophosphoryl lipid A/trehalose 6,6′-dibehenate (DDA/MPL/TDB, DMT) liposome to investigate the immunogenicity and protective efficacy of this novel vaccine. Our results demonstrated that DMT liposome-adjuvanted CTT3H vaccine not only induced an antigen-specific CD4+ Th1 response, but also raised the number of PPD- and CTT3H-specific IFN-γ+ CD8+ T cells and elicited strong CTL responses against TB10.4, which provided more effective protection against a 60 CFU M. tuberculosis aerosol challenge than PBS control and DMT adjuvant alone. Our findings indicate that DMT-liposome is an effective adjuvant to stimulate CD8+ T cell responses and the DMT-adjuvanted subunit CTT3H vaccine is a promising candidate for the next generation of TB vaccine. PMID:25905680

  12. Immunogenicity and protective efficacy of DMT liposome-adjuvanted tuberculosis subunit CTT3H vaccine.

    PubMed

    Teng, Xindong; Tian, Maopeng; Li, Jianrong; Tan, Songwei; Yuan, Xuefeng; Yu, Qi; Jing, Yukai; Zhang, Zhiping; Yue, Tingting; Zhou, Lei; Fan, Xionglin

    2015-01-01

    Different strategies have been proposed for the development of protein subunit vaccine candidates for tuberculosis (TB), which shows better safety than other types of candidates and the currently used Bacillus Calmette-Guérin (BCG) vaccine. In order to develop more effective protein subunits depending on the mechanism of cell-mediated immunity against TB, a polyprotein CTT3H, based on 5 immunodominant antigens (CFP10, TB10.4, TB8.4, Rv3615c, and HBHA) with CD8(+) epitopes of Mycobacterium tuberculosis, was constructed in this study. We vaccinated C57BL/6 mice with a TB subunit CTT3H protein in an adjuvant of dimethyldioctadecylammonium/monophosphoryl lipid A/trehalose 6,6'-dibehenate (DDA/MPL/TDB, DMT) liposome to investigate the immunogenicity and protective efficacy of this novel vaccine. Our results demonstrated that DMT liposome-adjuvanted CTT3H vaccine not only induced an antigen-specific CD4(+) Th1 response, but also raised the number of PPD- and CTT3H-specific IFN-γ(+) CD8(+) T cells and elicited strong CTL responses against TB10.4, which provided more effective protection against a 60 CFU M. tuberculosis aerosol challenge than PBS control and DMT adjuvant alone. Our findings indicate that DMT-liposome is an effective adjuvant to stimulate CD8(+) T cell responses and the DMT-adjuvanted subunit CTT3H vaccine is a promising candidate for the next generation of TB vaccine.

  13. Regulation of PSMB5 Protein and β Subunits of Mammalian Proteasome by Constitutively Activated Signal Transducer and Activator of Transcription 3 (STAT3)

    PubMed Central

    Vangala, Janakiram Reddy; Dudem, Srikanth; Jain, Nishant; Kalivendi, Shasi V.

    2014-01-01

    The ubiquitin-proteasome system facilitates the degradation of ubiquitin-tagged proteins and performs a regulatory role in cells. Elevated proteasome activity and subunit expression are found in several cancers. However, the inherent molecular mechanisms responsible for increased proteasome function in cancers remain unclear despite the well investigated and defined role of the mammalian proteasome. This study was initiated to elucidate the mechanisms involved in the regulation of β subunits of the mammalian proteasome. Suppression of STAT3 tyrosine phosphorylation coordinately decreased the mRNA and protein levels of the β subunits of the 20 S core complex in DU145 cells. Notably, PSMB5, a molecular target of bortezomib, was shown to be a target of STAT3. Knockdown of STAT3 decreased PSMB5 protein. Inhibition of phospho-STAT3 substantially reduced PSMB5 protein levels in cells expressing constitutively active-STAT3. Accumulation of activated STAT3 resulted in the induction of PSMB5 promoter and protein levels. In addition, a direct correlation was observed between the endogenous levels of PSMB5 and constitutively active STAT3. PSMB5 and STAT3 protein levels remained unaltered following the inhibition of proteasome activity. The EGF-induced concerted increase of β subunits was blocked by inhibition of the EGF receptor or STAT3 but not by the PI3K/AKT or MEK/ERK pathways. Decreased proteasome activities were due to reduced protein levels of catalytic subunits of the proteasome in STAT3-inhibited cells. Combined treatments with bortezomib and inhibitor of STAT3 abrogated proteasome activity and enhanced cellular apoptosis. Overall, we demonstrate that aberrant activation of STAT3 regulates the expression of β subunits, in particular PSMB5, and the catalytic activity of the proteasome. PMID:24627483

  14. Permethrin Induces Overexpression of Cytochrome c Oxidase Subunit 3 in Aedes aegypti

    USDA-ARS?s Scientific Manuscript database

    Using quantitative PCR (QPCR), the relative transcriptional levels of cytochrome c oxidase subunit 3 (CO3) were studied in Aedes aegypti (L.) in response to treatments with acetone, permethrin, or fipronil. The transcriptional levels of CO3 were significantly (p <0.05) higher in acetone-treated Ae. ...

  15. mRNA bound to the 30S subunit is a HigB toxin substrate

    PubMed Central

    Schureck, Marc A.; Maehigashi, Tatsuya; Miles, Stacey J.; Marquez, Jhomar; Dunham, Christine M.

    2016-01-01

    Activation of bacterial toxins during stress results in cleavage of mRNAs in the context of the ribosome. These toxins are thought to function as global translational inhibitors yet recent studies suggest each may have distinct mRNA specificities that result in selective translation for bacterial survival. Here we demonstrate that mRNA in the context of a bacterial 30S subunit is sufficient for ribosome-dependent toxin HigB endonucleolytic activity, suggesting that HigB interferes with the initiation step of translation. We determined the X-ray crystal structure of HigB bound to the 30S, revealing that two solvent-exposed clusters of HigB basic residues directly interact with 30S 16S rRNA helices 18, 30, and 31. We further show that these HigB residues are essential for ribosome recognition and function. Comparison with other ribosome-dependent toxins RelE and YoeB reveals that each interacts with similar features of the 30S aminoacyl (A) site yet does so through presentation of diverse structural motifs. PMID:27307497

  16. Generation of transgenic corn-derived Actinobacillus pleuropneumoniae ApxIIA fused with the cholera toxin B subunit as a vaccine candidate

    PubMed Central

    Shin, Min-Kyoung; Jung, Myung Hwan; Lee, Won-Jung; Choi, Pil Son; Jang, Yong-Suk

    2011-01-01

    Corn, one of the most important forage crops worldwide, has proven to be a useful expression vehicle due to the availability of established transformation procedures for this well-studied plant. The exotoxin Apx, a major virulence factor, is recognized as a common antigen of Actinobacillus (A.) pleuropneumoniae, the causative agent of porcine pleuropneumonia. In this study, a cholera toxin B (CTB)-ApxIIA#5 fusion protein and full-size ApxIIA expressed in corn seed, as a subunit vaccine candidate, were observed to induce Apx-specific immune responses in mice. These results suggest that transgenic corn-derived ApxIIA and CTB-ApxIIA#5 proteins are potential vaccine candidates against A. pleuropneumoniae infection. PMID:22122907

  17. Chronic stress targets posttranscriptional mechanisms to rapidly upregulate α1C-subunit of Cav1.2b calcium channels in colonic smooth muscle cells.

    PubMed

    Li, Qingjie; Sarna, Sushil K

    2011-01-01

    Chronic stress elevates plasma norepinephrine, which enhances expression of the α(1C)-subunit of Ca(v)1.2b channels in colonic smooth muscle cells within 1 h. Transcriptional upregulation usually does not explain such rapid protein synthesis. We investigated whether chronic stress-induced release of norepinephrine utilizes posttranscriptional mechanisms to enhance the α(1C)-subunit. We performed experiments on colonic circular smooth muscle strips and in conscious rats, using a 9-day chronic intermittent stress protocol. Incubation of rat colonic muscularis externa with norepinephrine enhanced α(1C)-protein expression within 45 min, without a concomitant increase in α(1C) mRNA, indicating posttranscriptional regulation of α(1C)-protein by norepinephrine. We found that norepinephrine activates the PI3K/Akt/GSK-3β pathway to concurrently enhance α(1C)-protein translation and block its polyubiquitination and proteasomal degradation. Incubation of colonic muscularis externa with norepinephrine or LiCl, which inhibits GSK-3β, enhanced p-GSK-3β and α(1C)-protein time dependently. Using enrichment of phosphoproteins and ubiquitinated proteins, we found that both norepinephrine and LiCl decrease α(1C) phosphorylation and polyubiquitination. Concurrently, they suppress eIF2α (Ser51) phosphorylation and 4E-BP1 expression, which stimulates gene-specific translation. The antagonism of two upstream kinases, PI3K and Akt, inhibits the induction of α(1C)-protein by norepinephrine. Cyanopindolol (β(3)-AR-antagonist) almost completely suppresses and propranolol (β(1/2)-AR antagonist) partially suppresses norepinephrine-induced α(1C)-protein expression, whereas phentolamine and prazosin (α-AR and α(1)-AR antagonist, respectively) have no significant effect. Experiments in conscious animals showed that chronic stress activates the PI3K/Akt/GSK-3β signaling. We conclude that norepinephrine released by chronic stress rapidly enhances the protein expression of α(1C)-subunit

  18. Melatonin reverses H2 O2 -induced senescence in SH-SY5Y cells by enhancing autophagy via sirtuin 1 deacetylation of the RelA/p65 subunit of NF-κB.

    PubMed

    Nopparat, Chutikorn; Sinjanakhom, Puritat; Govitrapong, Piyarat

    2017-08-01

    Autophagy, a degradation mechanism that plays a major role in maintaining cellular homeostasis and diminishes in aging, is considered an aging characteristic. Melatonin is an important hormone that plays a wide range of physiological functions, including the anti-aging effect, potentially via the regulation of the Sirtuin1 (SIRT1) pathway. The deacetylation ability of SIRT1 is important for controlling the function of several transcription factors, including nuclear factor kappa B (NF-ĸB). Apart from inflammation, NF-ĸB can regulate autophagy by inhibiting Beclin1, an initiator of autophagy. Although numerous studies have revealed the role of melatonin in regulating autophagy, very limited experiments have shown that melatonin can increase autophagic activity via SIRT1 in a senescent model. This study focuses on the effect of melatonin on autophagy via the deacetylation activity of SIRT1 on RelA/p65, a subunit of NF-ĸB, to determine whether melatonin can attenuate the aging condition. SH-SY5Y cells were treated with H 2 O 2 to induce the senescent state. These results demonstrated that melatonin reduced a number of beta-galactosidase (SA-βgal)-positive cells, a senescent marker. In addition, melatonin increased the protein levels of SIRT1, Beclin1, and LC3-II, a hallmark protein of autophagy, and reduced the levels of acetylated-Lys310 in the p65 subunit of NF-ĸB in SH-SY5Y cells treated with H 2 O 2 . Furthermore, in the presence of SIRT1 inhibitor, melatonin failed to increase autophagic markers. The present data indicate that melatonin enhances autophagic activity via the SIRT1 signaling pathway. Taken together, we propose that in modulating autophagy, melatonin may provide a therapeutically beneficial role in the anti-aging processes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt.

    PubMed

    Bai, Dong; Ueno, Lynn; Vogt, Peter K

    2009-12-15

    The serine/threonine kinase Akt (cellular homolog of murine thymoma virus akt8 oncogene), also known as PKB (protein kinase B), is activated by lipid products of phosphatidylinositol 3-kinase (PI3K). Akt phosphorylates numerous protein targets that control cell survival, proliferation and motility. Previous studies suggest that Akt regulates transcriptional activity of the nuclear factor-kappaB (NFkappaB) by inducing phosphorylation and subsequent degradation of inhibitor of kappaB (IkappaB). We show here that NFkappaB-driven transcription increases in chicken embryonic fibroblasts (CEF) transformed by myristylated Akt (myrAkt). Accordingly, both a dominant negative mutant of Akt and Akt inhibitors repress NFkappaB-dependent transcription. The degradation of the IkappaB protein is strongly enhanced in Akt-transformed cells, and the loss of NFkappaB activity by introduction of a super-repressor of NFkappaB, IkappaBSR, interferes with PI3K- and Akt-induced oncogenic transformation of CEF. The phosphorylation of the p65 subunit of NFkappaB at serine 534 is also upregulated in Akt-transformed cells. Our data suggest that the stimulation of NFkappaB by Akt is dependent on the phosphorylation of p65 at S534, mediated by IKK (IkappaB kinase) alpha and beta. Akt phosphorylates IKKalpha on T23, and this phosphorylation event is a prerequisite for the phosphorylation of p65 at S534 by IKKalpha and beta. Our results demonstrate two separate functions of the IKK complex in NFkappaB activation in cells with constitutive Akt activity: the phosphorylation and consequent degradation of IkappaB and the phosphorylation of p65. The data further support the conclusion that NFkappaB activity is essential for PI3K- and Akt-induced oncogenic transformation. Copyright (c) 2009 UICC.

  20. Molecular requirements for the insecticidal activity of the plant peptide pea albumin 1 subunit b (PA1b).

    PubMed

    Da Silva, Pedro; Rahioui, Isabelle; Laugier, Christian; Jouvensal, Laurence; Meudal, Hervé; Chouabe, Christophe; Delmas, Agnès F; Gressent, Frédéric

    2010-10-22

    PA1b (pea albumin 1, subunit b) is a small and compact 37-amino acid protein, isolated from pea seeds (Pisum sativum), that adopts a cystine knot fold. It acts as a potent insecticidal agent against major pests in stored crops and vegetables, making it a promising bioinsecticide. Here, we investigate the influence of individual residues on the structure and bioactivity of PA1b. A collection of 13 PA1b mutants was successfully chemically synthesized in which the residues involved in the definition of PA1b amphiphilic and electrostatic characteristics were individually replaced with an alanine. The three-dimensional structure of PA1b was outstandingly tolerant of modifications. Remarkably, receptor binding and insecticidal activities were both dependent on common well defined clusters of residues located on one single face of the toxin, with Phe-10, Arg-21, Ile-23, and Leu-27 being key residues of the binding interaction. The inactivity of the mutants is clearly due to a change in the nature of the side chain rather than to a side effect, such as misfolding or degradation of the peptide, in the insect digestive tract. We have shown that a hydrophobic patch is the putative site of the interaction of PA1b with its binding site. Overall, the mutagenesis data provide major insights into the functional elements responsible for PA1b entomotoxic properties and give some clues toward a better understanding of the PA1b mode of action.

  1. A separable domain of the p150 subunit of human chromatin assembly factor-1 promotes protein and chromosome associations with nucleoli.

    PubMed

    Smith, Corey L; Matheson, Timothy D; Trombly, Daniel J; Sun, Xiaoming; Campeau, Eric; Han, Xuemei; Yates, John R; Kaufman, Paul D

    2014-09-15

    Chromatin assembly factor-1 (CAF-1) is a three-subunit protein complex conserved throughout eukaryotes that deposits histones during DNA synthesis. Here we present a novel role for the human p150 subunit in regulating nucleolar macromolecular interactions. Acute depletion of p150 causes redistribution of multiple nucleolar proteins and reduces nucleolar association with several repetitive element-containing loci. Of note, a point mutation in a SUMO-interacting motif (SIM) within p150 abolishes nucleolar associations, whereas PCNA or HP1 interaction sites within p150 are not required for these interactions. In addition, acute depletion of SUMO-2 or the SUMO E2 ligase Ubc9 reduces α-satellite DNA association with nucleoli. The nucleolar functions of p150 are separable from its interactions with the other subunits of the CAF-1 complex because an N-terminal fragment of p150 (p150N) that cannot interact with other CAF-1 subunits is sufficient for maintaining nucleolar chromosome and protein associations. Therefore these data define novel functions for a separable domain of the p150 protein, regulating protein and DNA interactions at the nucleolus. © 2014 Smith et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Overexpression of human NR2B receptor subunit in LMAN causes stuttering and song sequence changes in adult zebra finches.

    PubMed

    Chakraborty, Mukta; Chen, Liang-Fu; Fridel, Emma E; Klein, Marguerita E; Senft, Rebecca A; Sarkar, Abhra; Jarvis, Erich D

    2017-04-21

    Zebra finches (Taeniopygia guttata) learn to produce songs in a manner reminiscent of spoken language development in humans. One candidate gene implicated in influencing learning is the N-methyl-D-aspartate (NMDA) subtype 2B glutamate receptor (NR2B). Consistent with this idea, NR2B levels are high in the song learning nucleus LMAN (lateral magnocellular nucleus of the anterior nidopallium) during juvenile vocal learning, and decreases to low levels in adults after learning is complete and the song becomes more stereotyped. To test for the role of NR2B in generating song plasticity, we manipulated NR2B expression in LMAN of adult male zebra finches by increasing its protein levels to those found in juvenile birds, using a lentivirus containing the full-length coding sequence of the human NR2B subunit. We found that increased NR2B expression in adult LMAN induced increases in song sequence diversity and slower song tempo more similar to juvenile songs, but also increased syllable repetitions similar to stuttering. We did not observe these effects in control birds with overexpression of NR2B outside of LMAN or with the green fluorescent protein (GFP) in LMAN. Our results suggest that low NR2B subunit expression in adult LMAN is important in conserving features of stereotyped adult courtship song.

  3. Subunit arrangement in P2X receptors.

    PubMed

    Jiang, Lin-Hua; Kim, Miran; Spelta, Valeria; Bo, Xuenong; Surprenant, Annmarie; North, R Alan

    2003-10-01

    ATP-gated ionotropic receptors (P2X receptors) are distributed widely in the nervous system. For example, a hetero-oligomeric receptor containing both P2X2 and P2X3 subunits is involved in primary afferent sensation. Each subunit has two membrane-spanning domains. We have used disulfide bond formation between engineered cysteines to demonstrate close proximity between the outer ends of the first transmembrane domain of one subunit and the second transmembrane domain of another. After expression in HEK 293 cells of such modified P2X2 or P2X4 subunits, the disulfide bond formation is evident because an ATP-evoked channel opening requires previous reduction with dithiothreitol. In the hetero-oligomeric P2X2/3 receptor the coexpression of doubly substituted subunits with wild-type partners allows us to deduce that the hetero-oligomeric channel contains adjacent P2X3 subunits but does not contain adjacent P2X2 subunits. The results suggest a "head-to-tail" subunit arrangement in the quaternary structure of P2X receptors and show that a trimeric P2X2/3 receptor would have the composition P2X2(P2X3)2.

  4. genetic overexpression of NR2B subunit enhances social recognition memory for different strains and species.

    PubMed

    Jacobs, Stephanie A; Tsien, Joe Z

    2012-01-01

    The ability to learn and remember conspecifics is essential for the establishment and maintenance of social groups. Many animals, including humans, primates and rodents, depend on stable social relationships for survival. Social learning and social recognition have become emerging areas of interest for neuroscientists but are still not well understood. It has been established that several hormones play a role in the modulation of social recognition including estrogen, oxytocin and arginine vasopression. Relatively few studies have investigated how social recognition might be improved or enhanced. In this study, we investigate the role of the NMDA receptor in social recognition memory, specifically the consequences of altering the ratio of the NR2B:NR2A subunits in the forebrain regions in social behavior. We produced transgenic mice in which the NR2B subunit of the NMDA receptor was overexpressed postnatally in the excitatory neurons of the forebrain areas including the cortex, amygdala and hippocampus. We investigated the ability of both our transgenic animals and their wild-type littermate to learn and remember juvenile conspecifics using both 1-hr and 24-hr memory tests. Our experiments show that the wild-type animals and NR2B transgenic mice preformed similarly in the 1-hr test. However, transgenic mice showed better performances in 24-hr tests of recognizing animals of a different strain or animals of a different species. We conclude that NR2B overexpression in the forebrain enhances social recognition memory for different strains and animal species.

  5. The Val192Leu mutation in the alpha-subunit of beta-hexosaminidase A is not associated with the B1-variant form of Tay-Sachs disease.

    PubMed

    Hou, Y; Vavougios, G; Hinek, A; Wu, K K; Hechtman, P; Kaplan, F; Mahuran, D J

    1996-07-01

    Substitution mutations adversely affecting the alpha-subunit of beta-hexosaminidase A (alphabeta) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-alpha chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an "active-site" residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all alpha-specific activity. This biochemical phenotype is referred to as the "B1-variant form" of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, alpha-Val192Leu. Chinese hamster ovary cells were permanently cotransfected with an alpha-cDNA-construct encoding the substitution and a mutant beta-cDNA (beta-Arg211Lys), encoding a beta-subunit that is inactive but normal in all other respects. We were surprised to find that the Val192Leu substitution, produced a pro-alpha chain that did not form alpha-beta dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val192Leu substitution does not specifically affect the alpha-active site.

  6. Fisetin Ameliorated Photodamage by Suppressing the Mitogen-Activated Protein Kinase/Matrix Metalloproteinase Pathway and Nuclear Factor-κB Pathways.

    PubMed

    Chiang, Hsiu-Mei; Chan, Shih-Yun; Chu, Yin; Wen, Kuo-Ching

    2015-05-13

    Ultraviolet (UV) irradiation is one of the most important extrinsic factors contributing to skin photodamage. After UV irradiation, a series of signal transductions in the skin will be activated, leading to inflammatory response and photoaged skin. In this study, fisetin, a flavonol that exists in fruits and vegetables, was investigated for its photoprotective effects. The results revealed that 5-25 μM fisetin inhibits cyclooxygenase-2 (COX-2) and matrix metalloproteinase (MMP)-1, MMP-3, MMP-9 expression induced by ultraviolet B (UVB) irradiation in human skin fibroblasts. In addition, fisetin suppressed UVB-induced collagen degradation. With regard to its effect on upper-stream signal transduction, we found that fisetin reduced the expression of ultraviolet (UV)-induced ERK, JNK, and p38 phosphorylation in the mitogen-activated protein kinase (MAP kinase) pathway. Furthermore, fisetin reduced inhibitor κB (IκB) degradation and increased the amount of p65, which is a major subunit of nuclear factor-κB (NF-κB), in cytoplasm. It also suppressed NF-κB translocated to the nucleus and inhibited cAMP response element-binding protein (CREB) Ser-133 phosphorylation level in the phosphoinositide 3-kinase/protein kinase B/CREB (PI3K/AKT/CREB) pathway. Finally, fisetin inhibited UV-induced intracellular reactive oxygen species (ROS), prostaglandin E2 (PGE2), and nitric oxide (NO) generation. The mentioned effects and mechanisms suggest that fisetin can be used in the development of photoprotective agents.

  7. Binding efficiency of recombinant collagen-binding basic fibroblast growth factors (CBD-bFGFs) and their promotion for NIH-3T3 cell proliferation.

    PubMed

    Wu, Zhenxu; Zhou, Yulai; Chen, Li; Hu, Mingxin; Wang, Yu; Li, Linlong; Wang, Zongliang; Zhang, Peibiao

    2018-03-01

    The recombinant basic fibroblast growth factor (bFGF) containing collagen-binding domain (CBD) has been found to be a potential therapeutic factor in tissue regeneration. However, its binding efficiency and quantification remain uncertain. In this research, massive recombinant bFGFs with good bioactivity for enhancing the proliferation of NIH-3T3 cells were achieved. An ELISA-based quantitative method was set up to investigate the binding efficiency of CBD-bFGFs on collagen films. It indicated that the CBDs significantly increased the collagen-binding ability of bFGF (P < .05), with the optimum binding condition first determined to be in the pH range of 7.5-9.5 (P < .05). Then, the relevant equations to calculate the binding density of bFGF, C-bFGF, and V-bFGF were acquired. Analysis confirmed that the bioactivity of immobilized bFGFs was well correlated with the density of growth factor on collagen films. Based on this research, the density of growth factor is a logical and applicable dosage unit for quantification of binding efficiency of growth factors, rather than traditional concentration of soluble growth factors in tissue engineering applications. © 2018 Wiley Periodicals, Inc.

  8. Ternary nylon-3 copolymers as host-defense peptide mimics: beyond hydrophobic and cationic subunits.

    PubMed

    Chakraborty, Saswata; Liu, Runhui; Hayouka, Zvi; Chen, Xinyu; Ehrhardt, Jeffrey; Lu, Qin; Burke, Eileen; Yang, Yiqing; Weisblum, Bernard; Wong, Gerard C L; Masters, Kristyn S; Gellman, Samuel H

    2014-10-15

    Host-defense peptides (HDPs) are produced by eukaryotes to defend against bacterial infection, and diverse synthetic polymers have recently been explored as mimics of these natural peptides. HDPs are rich in both hydrophobic and cationic amino acid residues, and most HDP-mimetic polymers have therefore contained binary combinations of hydrophobic and cationic subunits. However, HDP-mimetic polymers rarely duplicate the hydrophobic surface and cationic charge density found among HDPs ( Hu , K. ; et al. Macromolecules 2013 , 46 , 1908 ); the charge and hydrophobicity are generally higher among the polymers. Statistical analysis of HDP sequences ( Wang , G. ; et al. Nucleic Acids Res. 2009 , 37 , D933 ) has revealed that serine (polar but uncharged) is a very common HDP constituent and that glycine is more prevalent among HDPs than among proteins in general. These observations prompted us to prepare and evaluate ternary nylon-3 copolymers that contain a modestly polar but uncharged subunit, either serine-like or glycine-like, along with a hydrophobic subunit and a cationic subunit. Starting from binary hydrophobic-cationic copolymers that were previously shown to be highly active against bacteria but also highly hemolytic, we found that replacing a small proportion of the hydrophobic subunit with either of the polar, uncharged subunits can diminish the hemolytic activity with minimal impact on the antibacterial activity. These results indicate that the incorporation of polar, uncharged subunits may be generally useful for optimizing the biological activity profiles of antimicrobial polymers. In the context of HDP evolution, our findings suggest that there is a selective advantage to retaining polar, uncharged residues in natural antimicrobial peptides.

  9. The NMDA Receptor Subunit NR2b: Effects on LH Release and GnRH Gene Expression in Young and Middle-aged Female Rats, with Modulation by Estradiol

    PubMed Central

    Maffucci, Jacqueline A.; Walker, Deena M.; Ikegami, Aiko; Woller, Michael J.; Gore, Andrea C.

    2008-01-01

    The loss of reproductive capacity during aging involves changes in the neural regulation of the hypothalamic gonadotropin-releasing hormone (GnRH) neurons controlling reproduction. This neuronal circuitry includes glutamate receptors on GnRH neurons. Previously, we reported an increase in the expression of the NR2b subunit protein of the NMDA receptor on GnRH neurons in middle-aged compared to young female rats. Here, we examined the functional implications of the NR2b subunit on the onset of reproductive aging, using an NR2b-specific antagonist ifenprodil. Young (3–5 mos.) and middle-aged (10–13 mos.) female rats were ovariectomized (OVX), 17β-estradiol (E2) or vehicle (cholesterol) treated, and implanted with a jugular catheter. Serial blood sampling was undertaken every 10 minutes for 4 hours, with ifenprodil (10mg/kg) or vehicle injected (i.p.) after one hour of baseline sampling. The pulsatile release of pituitary LH and levels of GnRH mRNA in hypothalamus were quantified as indices of the reproductive axis. Our results showed effects of ifenprodil on both endpoints. In OVX rats given cholesterol, neither age nor ifenprodil had any effects on LH release. In E2-treated rats, aging was associated with significant decreases in pulsatile LH release. Additionally, ifenprodil stimulated parameters of pulsatile LH release in both young and middle-aged animals. Ifenprodil had few effects on GnRH mRNA; the only significant effect of ifenprodil was found in the middle-aged, cholesterol group. Together, these findings support a role for the NR2b subunit of the NMDAR in GnRH/LH regulation. Because most of these effects were exhibited on pituitary LH release in the absence of a concomitant change in GnRH gene expression, it is likely that NMDA receptors containing the NR2b subunit plays a role in GnRH-induced LH release, independent of de novo GnRH gene expression. PMID:18025808

  10. Isolation and characterization of the stage-specific cytochrome b small subunit (CybS) of Ascaris suum complex II from the aerobic respiratory chain of larval mitochondria.

    PubMed

    Amino, Hisako; Osanai, Arihiro; Miyadera, Hiroko; Shinjyo, Noriko; Tomitsuka, Eriko; Taka, Hikari; Mineki, Reiko; Murayama, Kimie; Takamiya, Shinzaburo; Aoki, Takashi; Miyoshi, Hideto; Sakamoto, Kimitoshi; Kojima, Somei; Kita, Kiyoshi

    2003-05-01

    We recently reported that Ascaris suum mitochondria express stage-specific isoforms of complex II: the flavoprotein subunit and the small subunit of cytochrome b (CybS) of the larval complex II differ from those of adult enzyme, while two complex IIs share a common iron-sulfur cluster subunit (Ip). In the present study, A. suum larval complex II was highly purified to characterize the larval cytochrome b subunits in more detail. Peptide mass fingerprinting and N-terminal amino acid sequencing showed that the larval and adult cytochrome b (CybL) proteins are identical. In contrast, cDNA sequences revealed that the small subunit of larval cytochrome b (CybS(L)) is distinct from the adult CybS (CybS(A)). Furthermore, Northern analysis and immunoblotting showed stage-specific expression of CybS(L) and CybS(A) in larval and adult mitochondria, respectively. Enzymatic assays revealed that the ratio of rhodoquinol-fumarate reductase (RQFR) to succinate-ubiquinone reductase (SQR) activities and the K(m) values for quinones are almost identical for the adult and larval complex IIs, but that the fumarate reductase (FRD) activity is higher for the adult form than for the larval form. These results indicate that the adult and larval A. suum complex IIs have different properties than the complex II of the mammalian host and that the larval complex II is able to function as a RQFR. Such RQFR activity of the larval complex II would be essential for rapid adaptation to the dramatic change of oxygen availability during infection of the host.

  11. Protein Cofactors Are Essential for High-Affinity DNA Binding by the Nuclear Factor κB RelA Subunit.

    PubMed

    Mulero, Maria Carmen; Shahabi, Shandy; Ko, Myung Soo; Schiffer, Jamie M; Huang, De-Bin; Wang, Vivien Ya-Fan; Amaro, Rommie E; Huxford, Tom; Ghosh, Gourisankar

    2018-05-22

    Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.

  12. A potential link between insulin signaling and GLUT4 translocation: Association of Rab10-GTP with the exocyst subunit Exoc6/6b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sano, Hiroyuki; Peck, Grantley R.; Blachon, Stephanie

    Insulin increases glucose transport in fat and muscle cells by stimulating the exocytosis of specialized vesicles containing the glucose transporter GLUT4. This process, which is referred to as GLUT4 translocation, increases the amount of GLUT4 at the cell surface. Previous studies have provided evidence that insulin signaling increases the amount of Rab10-GTP in the GLUT4 vesicles and that GLUT4 translocation requires the exocyst, a complex that functions in the tethering of vesicles to the plasma membrane, leading to exocytosis. In the present study we show that Rab10 in its GTP form binds to Exoc6 and Exoc6b, which are the twomore » highly homologous isotypes of an exocyst subunit, that both isotypes are found in 3T3-L1 adipocytes, and that knockdown of Exoc6, Exoc6b, or both inhibits GLUT4 translocation in 3T3-L1 adipocytes. These results suggest that the association of Rab10-GTP with Exoc6/6b is a molecular link between insulin signaling and the exocytic machinery in GLUT4 translocation. - Highlights: • Insulin stimulates the fusion of vesicles containing GLUT4 with the plasma membrane. • This requires vesicular Rab10-GTP and the exocyst plasma membrane tethering complex. • We find that Rab10-GTP associates with the Exoc6 subunit of the exocyst. • We find that knockdown of Exoc6 inhibits fusion of GLUT4 vesicles with the membrane. • The interaction of Rab10-GTP with Exoc6 potentially links signaling to exocytosis.« less

  13. Isolation and properties of the subunit form EF-1C of elongation factor 1 from Guerin epithelioma cells.

    PubMed

    Marcinkiewicz, C; Gałasiński, W

    1993-01-01

    EF-1C is a component of the aggregate EF-1B, consisting of the subunit forms EF-1A.EF-1C; it was isolated by dissociation of this aggregate in the presence of GTP. The subunit form EF-1C stimulates binding of aminoacyl-tRNA to ribosomes, catalysed by EF-1A, similarly as EF-1 beta gamma which stimulates the activity of EF-1 in other eukaryotic cells. EF-1C in the presence of 6 M urea was separated into two polypeptides. Polypeptide of molecular mass 32,000 Da is responsible for regeneration of the EF-1A.GTP active complex. Thermal sensitivity of EF-1A was much higher than that of EF-1B, thus a protective role of EF-1C in the EF-1A.EF-1C complex is suggested.

  14. Structure–function analysis and genetic interactions of the SmG, SmE, and SmF subunits of the yeast Sm protein ring

    PubMed Central

    Schwer, Beate; Kruchten, Joshua; Shuman, Stewart

    2016-01-01

    A seven-subunit Sm protein ring forms a core scaffold of the U1, U2, U4, and U5 snRNPs that direct pre-mRNA splicing. Using human snRNP structures to guide mutagenesis in Saccharomyces cerevisiae, we gained new insights into structure–function relationships of the SmG, SmE, and SmF subunits. An alanine scan of 19 conserved amino acids of these three proteins, comprising the Sm RNA binding sites or inter-subunit interfaces, revealed that, with the exception of Arg74 in SmF, none are essential for yeast growth. Yet, for SmG, SmE, and SmF, as for many components of the yeast spliceosome, the effects of perturbing protein–RNA and protein–protein interactions are masked by built-in functional redundancies of the splicing machine. For example, tests for genetic interactions with non-Sm splicing factors showed that many benign mutations of SmG, SmE, and SmF (and of SmB and SmD3) were synthetically lethal with null alleles of U2 snRNP subunits Lea1 and Msl1. Tests of pairwise combinations of SmG, SmE, SmF, SmB, and SmD3 alleles highlighted the inherent redundancies within the Sm ring, whereby simultaneous mutations of the RNA binding sites of any two of the Sm subunits are lethal. Our results suggest that six intact RNA binding sites in the Sm ring suffice for function but five sites may not. PMID:27417296

  15. Ghrelin upregulates the phosphorylation of the GluN2B subunit of the NMDA receptor by activating GHSR1a and Fyn in the rat hippocampus.

    PubMed

    Berrout, Liza; Isokawa, Masako

    2018-01-01

    Ghrelin and its receptor GHSR1a have been shown to exert numerous physiological functions in the brain, in addition to the well-established orexigenic role in the hypothalamus. Earlier work indicated that ghrelin stimulated the phosphorylation of the GluN1 subunit of the NMDA receptor (NMDAR) and enhanced synaptic transmission in the hippocampus. In the present study, we report that the exogenous application of ghrelin increased GluN2B phosphorylation. This increase was independent of GluN2B subunit activity or NMDAR channel activity. However, it depended on the activation of GHSR1a and Fyn as it was blocked by D-Lys3-GHRP-6 and PP2, respectively. Inhibitors for G-protein-regulated second messengers, such as Rp-cAMP, H89, TBB, ryanodine, and thapsigargin, unexpectedly enhanced GluN2B phosphorylation, suggesting that cAMP, PKA, casein kinase II, and cytosolic calcium signaling may oppose to the effect of ghrelin on the phosphorylation of GluN2B. Our findings suggest that 1) GluN2B is likely a molecular target of ghrelin and GHSR1a-driven signaling cascades, and 2) the ghrelin-mediated phosphorylation of GluN2B depends on Fyn activation under complex negative regulation by other second messengers. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Mangiferin inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 expression and cellular invasion by suppressing nuclear factor-κB activity.

    PubMed

    Dilshara, Matharage Gayani; Kang, Chang-Hee; Choi, Yung Hyun; Kim, Gi-Young

    2015-10-01

    We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-α-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-α-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-α significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-α-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-α-induced invasion of LNCaP cells. Compared to untreated controls, TNF-α-stimulated LNCaP cells showed a significant increase in nuclear factor-κB (NF-κB) luciferase activity. However, mangiferin treatment markedly decreased TNF-α-induced NF-κB luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-κB subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-κB-mediated MMP-9 expression.

  17. Overexpression of α3/α5/β4 nicotinic receptor subunits modifies impulsive-like behavior.

    PubMed

    Viñals, Xavier; Molas, Susanna; Gallego, Xavier; Fernández-Montes, Rubén D; Robledo, Patricia; Dierssen, Mara; Maldonado, Rafael

    2012-05-01

    Recent studies have revealed that sequence variants in genes encoding the α3/α5/β4 nicotinic acetylcholine receptor subunits are associated with nicotine dependence. In this study, we evaluated two specific aspects of executive functioning related to drug addiction (impulsivity and working memory) in transgenic mice over expressing α3/α5/β4 nicotinic receptor subunits. Impulsivity and working memory were evaluated in an operant delayed alternation task, where mice must inhibit responding between 2 and 8s in order to receive food reinforcement. Working memory was also evaluated in a spontaneous alternation task in an open field. Transgenic mice showed less impulsive-like behavior than wild-type controls, and this behavioral phenotype was related to the number of copies of the transgene. Thus, transgenic Line 22 (16-28 copies) showed a more pronounced phenotype than Line 30 (4-5 copies). Overexpression of these subunits in Line 22 reduced spontaneous alternation behavior suggesting deficits in working memory processing in this particular paradigm. These results reveal the involvement of α3/α5/β4 nicotinic receptor subunits in working memory and impulsivity, two behavioral traits directly related to the vulnerability to develop nicotine dependence. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6) causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto.

    PubMed

    Sasado, Takao; Kondoh, Hisato; Furutani-Seiki, Makoto; Naruse, Kiyoshi

    2017-01-01

    Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3'UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3'UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3'UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo.

  19. Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6) causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto

    PubMed Central

    Kondoh, Hisato; Furutani-Seiki, Makoto; Naruse, Kiyoshi

    2017-01-01

    Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3’UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3’UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3’UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo. PMID:28253363

  20. Alteration of GABAergic synapses and gephyrin clusters in the thalamic reticular nucleus of GABAA receptor alpha3 subunit-null mice.

    PubMed

    Studer, Remo; von Boehmer, Lotta; Haenggi, Tatjana; Schweizer, Claude; Benke, Dietmar; Rudolph, Uwe; Fritschy, Jean-Marc

    2006-09-01

    Multiple GABAA-receptor subtypes are assembled from alpha, beta and gamma subunit variants. GABAA receptors containing the alpha3 subunit represent a minor population with a restricted distribution in the CNS. In addition, they predominate in monoaminergic neurons and in the nucleus reticularis thalami (nRT), suggesting a role in the regulation of cortical function and sleep. Mice with a targeted deletion of the alpha3 subunit gene (alpha3(0/0)) are viable and exhibit a subtle behavioural phenotype possibly related to dopaminergic hyperfunction. Here, we investigated immunohistochemically the consequences of the loss of alpha3 subunit for maturation of GABAA receptors and formation of GABAergic synapses in the nRT. Throughout postnatal development, the regional distribution of the alpha1, alpha2, or alpha5 subunit was unaltered in alpha3(0/0) mice and the prominent alpha3 subunit staining of nRT neurons in wildtype mice was not replaced. Subcellularly, as seen by double immunofluorescence, the alpha3 and gamma2 subunit were clustered at postsynaptic sites in the nRT of adult wildtype mice along with the scaffolding protein gephyrin. In alpha3(0/0) mice, gamma2 subunit clustering was disrupted and gephyrin formed large aggregates localized at the cell surface, but unrelated to postsynaptic sites, indicating that nRT neurons lack postsynaptic GABAA receptors in mutant mice. Furthermore, GABAergic terminals were enlarged and reduced in number, suggesting a partial deficit of GABAergic synapses. Therefore, GABAA receptors are required for gephyrin clustering and long-term synapse maintenance. The absence of GABAA-mediated transmission in the nRT may have a significant impact on the function of the thalamo-cortical loop of alpha3(0/0) mice.

  1. Genetic expansion of chaperonin-containing TCP-1 (CCT/TRiC) complex subunits yields testis-specific isoforms required for spermatogenesis in planarian flatworms.

    PubMed

    Counts, Jenna T; Hester, Tasha M; Rouhana, Labib

    2017-12-01

    Chaperonin-containing Tail-less complex polypeptide 1 (CCT) is a highly conserved, hetero-oligomeric complex that ensures proper folding of actin, tubulin, and regulators of mitosis. Eight subunits (CCT1-8) make up this complex, and every subunit has a homolog expressed in the testes and somatic tissue of the planarian flatworm Schmidtea mediterranea. Gene duplications of four subunits in the genomes of S. mediterranea and other planarian flatworms created paralogs to CCT1, CCT3, CCT4, and CCT8 that are expressed exclusively in the testes. Functional analyses revealed that each CCT subunit expressed in the S. mediterranea soma is essential for homeostatic integrity and survival, whereas sperm elongation defects were observed upon knockdown of each individual testis-specific paralog (Smed-cct1B; Smed-cct3B; Smed-cct4A; and Smed-cct8B), regardless of potential redundancy with paralogs expressed in both testes and soma (Smed-cct1A; Smed-cct3A; Smed-cct4B; and Smed-cct8A). Yet, no detriment was observed in the number of adult somatic stem cells (neoblasts) that maintain differentiated tissue in planarians. Thus, expression of all eight CCT subunits is required to execute the essential functions of the CCT complex. Furthermore, expression of the somatic paralogs in planarian testes is not sufficient to complete spermatogenesis when testis-specific paralogs are knocked down, suggesting that the evolution of chaperonin subunits may drive changes in the development of sperm structure and that correct CCT subunit stoichiometry is crucial for spermiogenesis. © 2017 Wiley Periodicals, Inc.

  2. On the Mg(2+) binding site of the ε subunit from bacterial F-type ATP synthases.

    PubMed

    Krah, Alexander; Takada, Shoji

    2015-10-01

    F-type ATP synthases, central energy conversion machines of the cell synthesize adenosine triphosphate (ATP) using an electrochemical gradient across the membrane and, reversely, can also hydrolyze ATP to pump ions across the membrane, depending on cellular conditions such as ATP concentration. To prevent wasteful ATP hydrolysis, mammalian and bacterial ATP synthases possess different regulatory mechanisms. In bacteria, a low ATP concentration induces a conformational change in the ε subunit from the down- to up-states, which inhibits ATP hydrolysis. Moreover, the conformational change of the ε subunit depends on Mg(2+) concentration in some bacteria such as Bacillus subtilis, but not in others. This diversity makes the ε subunit a potential target for antibiotics. Here, performing molecular dynamics simulations, we identify the Mg(2+) binding site in the ε subunit from B. subtilis as E59 and E86. The free energy analysis shows that the first-sphere bi-dentate coordination of the Mg(2+) ion by the two glutamates is the most stable state. In comparison, we also clarify the reason for the absence of Mg(2+) dependency in the ε subunit from thermophilic Bacillus PS3, despite the high homology to that from B. subtilis. Sequence alignment suggests that this Mg(2+) binding motif is present in the ε subunits of some pathogenic bacteria. In addition we discuss strategies to stabilize an isolated ε subunit carrying the Mg(2+) binding motif by site directed mutagenesis, which also can be used to crystallize Mg(2+) dependent ε subunits in future. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome.

    PubMed

    Bénit, P; Slama, A; Cartault, F; Giurgea, I; Chretien, D; Lebon, S; Marsac, C; Munnich, A; Rötig, A; Rustin, P

    2004-01-01

    Respiratory chain complex I deficiency represents a genetically heterogeneous group of diseases resulting from mutations in mitochondrial or nuclear genes. Mutations have been reported in 13 of the 14 subunits encoding the core of complex I (seven mitochondrial and six nuclear genes) and these result in Leigh or Leigh-like syndromes or cardiomyopathy. In this study, a combination of denaturing high performance liquid chromatography and sequence analysis was used to study the NDUFS3 gene in a series of complex I deficient patients. Mutations found in this gene (NADH dehydrogenase iron-sulphur protein 3), coding for the seventh and last subunit of complex I core, were shown to cause late onset Leigh syndrome, optic atrophy, and complex I deficiency. A biochemical diagnosis of complex I deficiency on cultured amniocytes from a later pregnancy was confirmed through the identification of disease causing NDUFS3 mutations in these cells. While mutations in the NDUFS3 gene thus result in Leigh syndrome, a dissimilar clinical phenotype is observed in mutations in the NDUFV2 and NDUFS2 genes, resulting in encephalomyopathy and cardiomyopathy. The reasons for these differences are uncertain.

  4. Modulation of NMDA Receptor Properties and Synaptic Transmission by the NR3A Subunit in Mouse Hippocampal and Cerebrocortical Neurons

    PubMed Central

    Tong, Gary; Takahashi, Hiroto; Tu, Shichun; Shin, Yeonsook; Talantova, Maria; Zago, Wagner; Xia, Peng; Nie, Zhiguo; Goetz, Thomas; Zhang, Dongxian; Lipton, Stuart A.; Nakanishi, Nobuki

    2015-01-01

    Expression of the NR3A subunit with NR1/NR2 in Xenopus oocytes or mammalian cell lines leads to a reduction in N-methyl-D-aspartate (NMDA)-induced currents and decreased Mg2+ sensitivity and Ca2+ permeability compared with NR1/NR2 receptors. Consistent with these findings, neurons from NR3A knockout (KO) mice exhibit enhanced NMDA-induced currents. Recombinant NR3A can also form excitatory glycine receptors with NR1 in the absence of NR2. However, the effects of NR3A on channel properties in neurons and synaptic transmission have not been fully elucidated. To study physiological roles of NR3A subunits, we generated NR3A transgenic (Tg) mice. Cultured NR3A Tg neurons exhibited two populations of NMDA receptor (NMDAR) channels, reduced Mg2+ sensitivity, and decreased Ca2+ permeability in response to NMDA/glycine, but glycine alone did not elicit excitatory currents. In addition, NMDAR-mediated excitatory postsynaptic currents (EPSCs) in NR3A Tg hippocampal slices showed reduced Mg2+ sensitivity, consistent with the notion that NR3A subunits incorporated into synaptic NMDARs. To study the function of endogenous NR3A subunits, we compared NMDAR-mediated EPSCs in NR3A KO and WT control mice. In NR3A KO mice, the ratio of the amplitudes of the NMDAR-mediated component to α-amino-3-hydroxy-5-methyl-4-isox-azolepropionic acid receptor-mediated component of the EPSC was significantly larger than that seen in WT littermates. This result suggests that NR3A subunits contributed to the NMDAR-mediated component of the EPSC in WT mice. Taken together, these results show that NR3A subunits contribute to NMDAR responses from both synaptic and extra-synaptic receptors, likely composed of NR1, NR2, and NR3 subunits. PMID:18003876

  5. Oral Application of Magnesium-L-Threonate Attenuates Vincristine-induced Allodynia and Hyperalgesia by Normalization of Tumor Necrosis Factor-α/Nuclear Factor-κB Signaling.

    PubMed

    Xu, Ting; Li, Dai; Zhou, Xin; Ouyang, Han-Dong; Zhou, Li-Jun; Zhou, Hang; Zhang, Hong-Mei; Wei, Xu-Hong; Liu, Guosong; Liu, Xian-Guo

    2017-06-01

    Antineoplastic agents, including vincristine, often induce neuropathic pain and magnesium deficiency clinically, but the causal link between them has not been determined. No drug is available for treating this form of neuropathic pain. Injection of vincristine (0.1 mg · kg · day, intraperitoneally, for 10 days) was used to induce nociceptive sensitization, which was accessed with von Frey hairs and the plantar tester in adult male Sprague-Dawley rats. Magnesium-L- threonate was administered through drinking water (604 mg · kg · day). Extracellular and intracellular free Mg were measured by Calmagite chromometry and flow cytometry. Molecular biologic and electrophysiologic experiments were performed to expose the underlying mechanisms. Vincristine injection induced allodynia and hyperalgesia (n = 12), activated tumor necrosis factor-α/nuclear factor-κB signaling, and reduced free Mg in cerebrospinal fluid by 21.7 ± 6.3% (mean ± SD; n = 13) and in dorsal root ganglion neurons by 27 ± 6% (n = 11). Reducing Mg activated tumor necrosis factor-α/nuclear factor-κB signaling in cultured dorsal root ganglion neurons. Oral application of magnesium-L-threonate prevented magnesium deficiency and attenuated both activation of tumor necrosis factor-α/nuclear factor-κB signaling and nociceptive sensitization (n = 12). Mechanistically, vincristine induced long-term potentiation at C-fiber synapses, up-regulated N-methyl-D-aspartate receptor type 2B subunit of N-methyl-D-aspartate receptor, and led to peptidergic C-fiber sprouting in spinal dorsal horn (n = 6 each). The vincristine-induced pathologic plasticity was blocked by intrathecal injection of nuclear factor-κB inhibitor (n = 6), mimicked by tumor necrosis factor-α, and substantially prevented by oral magnesium-L-threonate (n = 5). Vincristine may activate tumor necrosis factor-α/nuclear factor-κB pathway by reduction of intracellular magnesium, leading to spinal pathologic plasticity and

  6. A peptide that blocks the interaction of NF-κB p65 subunit with Smad4 enhances BMP2-induced osteogenesis.

    PubMed

    Urata, Mariko; Kokabu, Shoichiro; Matsubara, Takuma; Sugiyama, Goro; Nakatomi, Chihiro; Takeuchi, Hiroshi; Hirata-Tsuchiya, Shizu; Aoki, Kazuhiro; Tamura, Yukihiko; Moriyama, Yasuko; Ayukawa, Yasunori; Matsuda, Miho; Zhang, Min; Koyano, Kiyoshi; Kitamura, Chiaki; Jimi, Eijiro

    2018-09-01

    Bone morphogenetic protein (BMP) potentiates bone formation through the Smad signaling pathway in vitro and in vivo. The transcription factor nuclear factor κB (NF-κB) suppresses BMP-induced osteoblast differentiation. Recently, we identified that the transactivation (TA) 2 domain of p65, a main subunit of NF-κB, interacts with the mad homology (MH) 1 domain of Smad4 to inhibit BMP signaling. Therefore, we further attempted to identify the interacting regions of these two molecules at the amino acid level. We identified a region that we term the Smad4-binding domain (SBD), an amino-terminal region of TA2 that associates with the MH1 domain of Smad4. Cell-permeable SBD peptide blocked the association of p65 with Smad4 and enhanced BMP2-induced osteoblast differentiation and mineralization without affecting the phosphorylation of Smad1/5 or the activation of NF-κB signaling. SBD peptide enhanced the binding of the BMP2-inudced phosphorylated Smad1/5 on the promoter region of inhibitor of DNA binding 1 (Id-1) compared with control peptide. Although SBD peptide did not affect BMP2-induced chondrogenesis during ectopic bone formation, the peptide enhanced BMP2-induced ectopic bone formation in subcortical bone. Thus, the SBD peptide is useful for enabling BMP2-induced bone regeneration without inhibiting NF-κB activity. © 2018 Wiley Periodicals, Inc.

  7. Molecular and functional characterization of seven Na+/K+-ATPase β subunit paralogs in Senegalese sole (Solea senegalensis Kaup, 1858).

    PubMed

    Armesto, Paula; Infante, Carlos; Cousin, Xavier; Ponce, Marian; Manchado, Manuel

    2015-04-01

    In the present work, seven genes encoding Na(+),K(+)-ATPase (NKA) β-subunits in the teleost Solea senegalensis are described for the first time. Sequence analysis of the predicted polypeptides revealed a high degree of conservation with those of other vertebrate species and maintenance of important motifs involved in structure and function. Phylogenetic analysis clustered the seven genes into four main clades: β1 (atp1b1a and atp1b1b), β2 (atp1b2a and atp1b2b), β3 (atp1b3a and atp1b3b) and β4 (atp1b4). In juveniles, all paralogous transcripts were detected in the nine tissues examined albeit with different expression patterns. The most ubiquitous expressed gene was atp1b1a whereas atp1b1b was mainly detected in osmoregulatory organs (gill, kidney and intestine), and atp1b2a, atp1b2b, atp1b3a, atp1b3b and atp1b4 in brain. An expression analysis in three brain regions and pituitary revealed that β1-type transcripts were more abundant in pituitary than the other β paralogs with slight differences between brain regions. Quantification of mRNA abundance in gills after a salinity challenge showed an activation of atp1b1a and atp1b1b at high salinity water (60 ppt) and atp1b3a and atp1b3b in response to low salinity (5 ppt). Transcriptional analysis during larval development showed specific expression patterns for each paralog. Moreover, no differences in the expression profiles between larvae cultivated at 10 and 35 ppt were observed except for atp1b4 with higher mRNA levels at 10 than 35 ppt at 18 days post hatch. Whole-mount in situ hybridization analysis revealed that atp1b1b was mainly localized in gut, pronephric tubule, gill, otic vesicle, and chordacentrum of newly hatched larvae. All these data suggest distinct roles of NKA β subunits in tissues, during development and osmoregulation with β1 subunits involved in the adaptation to hyperosmotic conditions and β3 subunits to hypoosmotic environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. THE PRESENCE OF A B SUBUNIT INCREASES SENSITIVITY OF SODIUM CHANNEL NAV1.3, BUT NOT NAV1.2, TO TYPE II PYRETHROIDS.

    EPA Science Inventory

    Voltage-sensitive sodium channels (VSSCs) are a primary target of pyrethroid insecticides. VSSCs are comprised of a pore-forming ¿ and auxillary ß subunits, and multiple isoforms of both subunit types exist. The sensitivity of different isoform combinations to pyrethroids has not...

  9. Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties.

    PubMed

    Fedele, Laura; Newcombe, Joseph; Topf, Maya; Gibb, Alasdair; Harvey, Robert J; Smart, Trevor G

    2018-03-06

    Genetic and bioinformatic analyses have identified missense mutations in GRIN2B encoding the NMDA receptor GluN2B subunit in autism, intellectual disability, Lennox Gastaut and West Syndromes. Here, we investigated several such mutations using a near-complete, hybrid 3D model of the human NMDAR and studied their consequences with kinetic modelling and electrophysiology. The mutants revealed reductions in glutamate potency; increased receptor desensitisation; and ablation of voltage-dependent Mg 2+ block. In addition, we provide new views on Mg 2+ and NMDA channel blocker binding sites. We demonstrate that these mutants have significant impact on excitatory transmission in developing neurons, revealing profound changes that could underlie their associated neurological disorders. Of note, the NMDAR channel mutant GluN2B V618G unusually allowed Mg 2+ permeation, whereas nearby N615I reduced Ca 2+ permeability. By identifying the binding site for an NMDAR antagonist that is used in the clinic to rescue gain-of-function phenotypes, we show that drug binding may be modified by some GluN2B disease-causing mutations.

  10. 1-Cinnamoyl-3,11-dihydroxymeliacarpin is a natural bioactive compound with antiviral and nuclear factor-{kappa}B modulating properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barquero, Andrea A.; Michelini, Flavia M.; Alche, Laura E.

    2006-06-09

    We have reported the isolation of the tetranortriterpenoid 1-cinnamoyl-3,11-dihydroxymeliacarpin (CDM) from partially purified leaf extracts of Melia azedarach L. (MA) that reduced both, vesicular stomatitis virus (VSV) and Herpes simplex virus type 1 (HSV-1) multiplication. CDM blocks VSV entry and the intracellular transport of VSV-G protein, confining it to the Golgi apparatus, by pre- or post-treatment, respectively. Here, we report that HSV-1 glycoproteins were also confined to the Golgi apparatus independently of the nature of the host cell. Considering that MA could be acting as an immunomodulator preventing the development of herpetic stromal keratitis in mice, we also examined anmore » eventual effect of CDM on NF-{kappa}B signaling pathway. CDM is able to impede NF-{kappa}B activation in HSV-1-infected conjunctival cells and leads to the accumulation of p65 NF-{kappa}B subunit in the cytoplasm of uninfected treated Vero cells. In conclusion, CDM is a pleiotropic agent that not only inhibits the multiplication of DNA and RNA viruses by the same mechanism of action but also modulates the NF-{kappa}B signaling pathway.« less

  11. Crystal Structure of the Human Pol α B Subunit in Complex with the C-terminal Domain of the Catalytic Subunit*

    PubMed Central

    Suwa, Yoshiaki; Gu, Jianyou; Baranovskiy, Andrey G.; Babayeva, Nigar D.; Pavlov, Youri I.; Tahirov, Tahir H.

    2015-01-01

    In eukaryotic DNA replication, short RNA-DNA hybrid primers synthesized by primase-DNA polymerase α (Prim-Pol α) are needed to start DNA replication by the replicative DNA polymerases, Pol δ and Pol ϵ. The C terminus of the Pol α catalytic subunit (p180C) in complex with the B subunit (p70) regulates the RNA priming and DNA polymerizing activities of Prim-Pol α. It tethers Pol α and primase, facilitating RNA primer handover from primase to Pol α. To understand these regulatory mechanisms and to reveal the details of human Pol α organization, we determined the crystal structure of p70 in complex with p180C. The structured portion of p70 includes a phosphodiesterase (PDE) domain and an oligonucleotide/oligosaccharide binding (OB) domain. The N-terminal domain and the linker connecting it to the PDE domain are disordered in the reported crystal structure. The p180C adopts an elongated asymmetric saddle shape, with a three-helix bundle in the middle and zinc-binding modules (Zn1 and Zn2) on each side. The extensive p180C-p70 interactions involve 20 hydrogen bonds and a number of hydrophobic interactions resulting in an extended buried surface of 4080 Å2. Importantly, in the structure of the p180C-p70 complex with full-length p70, the residues from the N-terminal to the OB domain contribute to interactions with p180C. The comparative structural analysis revealed both the conserved features and the differences between the human and yeast Pol α complexes. PMID:25847248

  12. [Allelic variation at high-molecular-weight glutenin subunit loci in Aegilops biuncialis Vis].

    PubMed

    Kozub, N A; Sozinov, I A; Ksinias, I N; Sozinov, A A

    2011-09-01

    Alleles at the high-molecular-weight glutenin subunit loci Glu-U1 and Glu-M(b)1 were analyzed in the tetraploid species Aegilops biuncialis (UUM(b)M(b)). The material for the investigation included the collection of 39 accessions of Ae. biuncialis from Ukraine (the Crimea), one Hellenic accession, one accession of unknown origin, F2 seeds from different crosses, as well as samples from natural populations from the Crimea. Ae. umbellulata and Ae. comosa accessions were used to allocate components of the HMW glutenin subunit patterns of Ae. biuncialis to U or M(b) genomes. Eight alleles were identified at the Glu-U1 locus and ten alleles were revealed at the Glu-M(b) 1 locus. Among alleles at the Glu-M(b) 1 locus ofAe. biuncialis there were two alleles controlling the y-type subunit only and one allele encoding the x-subunit only.

  13. JunB is required for endothelial cell morphogenesis by regulating core-binding factor β

    PubMed Central

    Licht, Alexander H.; Pein, Oliver T.; Florin, Lore; Hartenstein, Bettina; Reuter, Hendrik; Arnold, Bernd; Lichter, Peter; Angel, Peter; Schorpp-Kistner, Marina

    2006-01-01

    The molecular mechanism triggering the organization of endothelial cells (ECs) in multicellular tubules is mechanistically still poorly understood. We demonstrate that cell-autonomous endothelial functions of the AP-1 subunit JunB are required for proper endothelial morphogenesis both in vivo in mouse embryos with endothelial-specific ablation of JunB and in in vitro angiogenesis models. By cDNA microarray analysis, we identified core-binding factor β (CBFβ), which together with the Runx proteins forms the heterodimeric core-binding transcription complex CBF, as a novel JunB target gene. In line with our findings, expression of the CBF target MMP-13 was impaired in JunB-deficient ECs. Reintroduction of CBFβ into JunB-deficient ECs rescued the tube formation defect and MMP-13 expression, indicating an important role for CBFβ in EC morphogenesis. PMID:17158955

  14. Contribution of the cyclic nucleotide gated channel subunit, CNG-3, to olfactory plasticity in Caenorhabditis elegans.

    PubMed

    O'Halloran, Damien M; Altshuler-Keylin, Svetlana; Zhang, Xiao-Dong; He, Chao; Morales-Phan, Christopher; Yu, Yawei; Kaye, Julia A; Brueggemann, Chantal; Chen, Tsung-Yu; L'Etoile, Noelle D

    2017-03-13

    In Caenorhabditis elegans, the AWC neurons are thought to deploy a cGMP signaling cascade in the detection of and response to AWC sensed odors. Prolonged exposure to an AWC sensed odor in the absence of food leads to reversible decreases in the animal's attraction to that odor. This adaptation exhibits two stages referred to as short-term and long-term adaptation. Previously, the protein kinase G (PKG), EGL-4/PKG-1, was shown necessary for both stages of adaptation and phosphorylation of its target, the beta-type cyclic nucleotide gated (CNG) channel subunit, TAX-2, was implicated in the short term stage. Here we uncover a novel role for the CNG channel subunit, CNG-3, in short term adaptation. We demonstrate that CNG-3 is required in the AWC for adaptation to short (thirty minute) exposures of odor, and contains a candidate PKG phosphorylation site required to tune odor sensitivity. We also provide in vivo data suggesting that CNG-3 forms a complex with both TAX-2 and TAX-4 CNG channel subunits in AWC. Finally, we examine the physiology of different CNG channel subunit combinations.

  15. Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit

    NASA Astrophysics Data System (ADS)

    Hashem, Yaser; Des Georges, Amedee; Dhote, Vidya; Langlois, Robert; Liao, Hstau Y.; Grassucci, Robert A.; Pestova, Tatyana V.; Hellen, Christopher U. T.; Frank, Joachim

    2013-11-01

    Hepatitis C virus (HCV) and classical swine fever virus (CSFV) messenger RNAs contain related (HCV-like) internal ribosome entry sites (IRESs) that promote 5'-end independent initiation of translation, requiring only a subset of the eukaryotic initiation factors (eIFs) needed for canonical initiation on cellular mRNAs. Initiation on HCV-like IRESs relies on their specific interaction with the 40S subunit, which places the initiation codon into the P site, where it directly base-pairs with eIF2-bound initiator methionyl transfer RNA to form a 48S initiation complex. However, all HCV-like IRESs also specifically interact with eIF3 (refs 2, 5, 6, 7, 9, 10, 11, 12), but the role of this interaction in IRES-mediated initiation has remained unknown. During canonical initiation, eIF3 binds to the 40S subunit as a component of the 43S pre-initiation complex, and comparison of the ribosomal positions of eIF3 and the HCV IRES revealed that they overlap, so that their rearrangement would be required for formation of ribosomal complexes containing both components. Here we present a cryo-electron microscopy reconstruction of a 40S ribosomal complex containing eIF3 and the CSFV IRES. Remarkably, although the position and interactions of the CSFV IRES with the 40S subunit in this complex are similar to those of the HCV IRES in the 40S-IRES binary complex, eIF3 is completely displaced from its ribosomal position in the 43S complex, and instead interacts through its ribosome-binding surface exclusively with the apical region of domain III of the IRES. Our results suggest a role for the specific interaction of HCV-like IRESs with eIF3 in preventing ribosomal association of eIF3, which could serve two purposes: relieving the competition between the IRES and eIF3 for a common binding site on the 40S subunit, and reducing formation of 43S complexes, thereby favouring translation of viral mRNAs.

  16. Off-pathway assembly of fimbria subunits is prevented by chaperone CfaA of CFA/I fimbriae from enterotoxigenic E. coli.

    PubMed

    Bao, Rui; Liu, Yang; Savarino, Stephen J; Xia, Di

    2016-12-01

    The assembly of the class 5 colonization factor antigen I (CFA/I) fimbriae of enterotoxigenic E. coli was proposed to proceed via the alternate chaperone-usher pathway. Here, we show that in the absence of the chaperone CfaA, CfaB, the major pilin subunit of CFA/I fimbriae, is able to spontaneously refold and polymerize into cyclic trimers. CfaA kinetically traps CfaB to form a metastable complex that can be stabilized by mutations. Crystal structure of the stabilized complex reveals distinctive interactions provided by CfaA to trap CfaB in an assembly competent state through donor-strand complementation (DSC) and cleft-mediated anchorage. Mutagenesis indicated that DSC controls the stability of the chaperone-subunit complex and the cleft-mediated anchorage of the subunit C-terminus additionally assist in subunit refolding. Surprisingly, over-stabilization of the chaperone-subunit complex led to delayed fimbria assembly, whereas destabilizing the complex resulted in no fimbriation. Thus, CfaA acts predominantly as a kinetic trap by stabilizing subunit to avoid its off-pathway self-polymerization that results in energetically favorable trimers and could serve as a driving force for CFA/I pilus assembly, representing an energetic landscape unique to class 5 fimbria assembly. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Molecular Microbiology published by John Wiley & Sons Ltd.

  17. Early-onset, slow progression of cone photoreceptor dysfunction and degeneration in CNG channel subunit CNGB3 deficiency.

    PubMed

    Xu, Jianhua; Morris, Lynsie; Fliesler, Steven J; Sherry, David M; Ding, Xi-Qin

    2011-06-01

    To investigate the progression of cone dysfunction and degeneration in CNG channel subunit CNGB3 deficiency. Retinal structure and function in CNGB3(-/-) and wild-type (WT) mice were evaluated by electroretinography (ERG), lectin cytochemistry, and correlative Western blot analysis of cone-specific proteins. Cone and rod terminal integrity was assessed by electron microscopy and synaptic protein immunohistochemical distribution. Cone ERG amplitudes (photopic b-wave) in CNGB3(-/-) mice were reduced to approximately 50% of WT levels by postnatal day 15, decreasing further to approximately 30% of WT levels by 1 month and to approximately 20% by 12 months of age. Rod ERG responses (scotopic a-wave) were not affected in CNGB3(-/-) mice. Average CNGB3(-/-) cone densities were approximately 80% of WT levels at 1 month and declined slowly thereafter to only approximately 50% of WT levels by 12 months. Expression levels of M-opsin, cone transducin α-subunit, and cone arrestin in CNGB3(-/-) mice were reduced by 50% to 60% by 1 month and declined to 35% to 45% of WT levels by 9 months. In addition, cone opsin mislocalized to the outer nuclear layer and the outer plexiform layer in the CNGB3(-/-) retina. Cone and rod synaptic marker expression and terminal ultrastructure were normal in the CNGB3(-/-) retina. These findings are consistent with an early-onset, slow progression of cone functional defects and cone loss in CNGB3(-/-) mice, with the cone signaling deficits arising from disrupted phototransduction and cone loss rather than from synaptic defects.

  18. Scaffold Functions of 14-3-3 Adaptors in B Cell Immunoglobulin Class Switch DNA Recombination

    PubMed Central

    White, Clayton A.; Li, Guideng; Pone, Egest J.; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5′-AGCT-3′ repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S–S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180–198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR. PMID:24282540

  19. Vernolide-A, a sesquiterpene lactone from Vernonia cinerea, induces apoptosis in B16F-10 melanoma cells by modulating p53 and caspase-3 gene expressions and regulating NF-κB-mediated bcl-2 activation.

    PubMed

    Pratheeshkumar, Poyil; Kuttan, Girija

    2011-07-01

    In this study, we investigated the effect of vernolide-A on the induction of apoptosis as well as its regulatory effect on the activation of transcription factors in B16F-10 melanoma cells. Treatment of B16F-10 cells with nontoxic concentrations of vernolide-A showed the presence of apoptotic bodies and induced DNA fragmentation in a dose-dependent manner. Cell-cycle analysis and TUNEL assays also confirmed the observation. The proapoptotic genes, p53, Bax, caspase-9, and caspase-3, were upregulated in vernolide-A-treated cells, whereas the antiapoptotic gene, Bcl-2, was downregulated. vernolide-A treatment also showed a downregulation of cyclin D1 expression and upregulated p21 and p27 gene expression in B16F-10 melanoma cells. The study also reveals that vernolide-A treatment could alter the production and expression of proinflammatory cytokines and could inhibit the activation and nuclear translocation of p65, p50, and c-Rel subunits of nuclear factor-κB and other transcription factors, such as c-fos, activated transcription factor-2, and cyclic adenosine monophosphate response-element-binding protein in B16F-10 melanoma cells. These results suggest that vernolide-A induces apoptosis via activation of p53-induced, caspase-3-mediated proapoptotic signaling and suppression of NF-κB-induced, bcl-2-mediated survival signaling.

  20. Comparisons of Native Shiga Toxins (Stxs) Type 1 and 2 with Chimeric Toxins Indicate that the Source of the Binding Subunit Dictates Degree of Toxicity

    PubMed Central

    Russo, Lisa M.; Melton-Celsa, Angela R.; Smith, Michael J.; O'Brien, Alison D.

    2014-01-01

    Shiga toxin (Stx)-producing E. coli (STEC) cause food-borne outbreaks of hemorrhagic colitis. The main virulence factor expressed by STEC, Stx, is an AB5 toxin that has two antigenically distinct forms, Stx1a and Stx2a. Although Stx1a and Stx2a bind to the same receptor, globotriaosylceramide (Gb3), Stx2a is more potent than Stx1a in mice, whereas Stx1a is more cytotoxic than Stx2a in cell culture. In this study, we used chimeric toxins to ask what the relative contribution of individual Stx subunits is to the differential toxicity of Stx1a and Stx2a in vitro and in vivo. Chimeric stx1/stx2 operons were generated by PCR such that the coding regions for the A2 and B subunits of one toxin were combined with the coding region for the A1 subunit of the heterologous toxin. The toxicities of purified Stx1a, Stx2a, and the chimeric Stxs were determined on Vero and HCT-8 cell lines, while polarized HCT-8 cell monolayers grown on permeable supports were used to follow toxin translocation. In all in vitro assays, the activity of the chimeric toxin correlated with that of the parental toxin from which the B subunit originated. The origin of the native B subunit also dictated the 50% lethal dose of toxin after intraperitoneal intoxication of mice; however, the chimeric Stxs exhibited reduced oral toxicity and pH stability compared to Stx1a and Stx2a. Taken together, these data support the hypothesis that the differential toxicity of the chimeric toxins for cells and mice is determined by the origin of the B subunit. PMID:24671194

  1. Coordination of NF-kappaB and NFAT antagonism by the forkhead transcription factor Foxd1.

    PubMed

    Lin, Ling; Peng, Stanford L

    2006-04-15

    Forkhead transcription factors play critical roles in the maintenance of immune homeostasis. In this study, we demonstrate that this regulation most likely involves intricate interactions between the forkhead family members and inflammatory transcription factors: the forkhead member Foxd1 coordinates the regulation of the activity of two key inflammatory transcription factors, NF-AT and NF-kappaB, with Foxd1 deficiency resulting in multiorgan, systemic inflammation, exaggerated Th cell-derived cytokine production, and T cell proliferation in autologous MLRs. Foxd1-deficient T cells possess increased activity of both NF-AT and NF-kappaB: the former correlates with the ability of Foxd1 to regulate casein kinase 1, an NF-AT inhibitory kinase; the latter with the ability of Foxd1 to regulate Foxj1, which regulates the NF-kappaB inhibitory subunit IkappaB beta. Thus, Foxd1 modulates inflammatory reactions and prevents autoimmunity by directly regulating anti-inflammatory regulators of the NF-AT pathway, and by coordinating the suppression of the NF-kappaB pathway via Foxj1. These findings indicate the presence of a general network of forkhead proteins that enforce T cell quiescence.

  2. Genetic analysis of neuronal ionotropic glutamate receptor subunits

    PubMed Central

    Granger, Adam J; Gray, John A; Lu, Wei; Nicoll, Roger A

    2011-01-01

    Abstract In the brain, fast, excitatory synaptic transmission occurs primarily through AMPA- and NMDA-type ionotropic glutamate receptors. These receptors are composed of subunit proteins that determine their biophysical properties and trafficking behaviour. Therefore, determining the function of these subunits and receptor subunit composition is essential for understanding the physiological properties of synaptic transmission. Here, we discuss and evaluate various genetic approaches that have been used to study AMPA and NMDA receptor subunits. These approaches have demonstrated that the GluA1 AMPA receptor subunit is required for activity-dependent trafficking and contributes to basal synaptic transmission, while the GluA2 subunit regulates Ca2+ permeability, homeostasis and trafficking to the synapse under basal conditions. In contrast, the GluN2A and GluN2B NMDA receptor subunits regulate synaptic AMPA receptor content, both during synaptic development and plasticity. Ongoing research in this field is focusing on the molecular interactions and mechanisms that control these functions. To accomplish this, molecular replacement techniques are being used, where native subunits are replaced with receptors containing targeted mutations. In this review, we discuss a single-cell molecular replacement approach which should arguably advance our physiological understanding of ionotropic glutamate receptor subunits, but is generally applicable to study of any neuronal protein. PMID:21768264

  3. Genetic analysis of neuronal ionotropic glutamate receptor subunits.

    PubMed

    Granger, Adam J; Gray, John A; Lu, Wei; Nicoll, Roger A

    2011-09-01

    In the brain, fast, excitatory synaptic transmission occurs primarily through AMPA- and NMDA-type ionotropic glutamate receptors. These receptors are composed of subunit proteins that determine their biophysical properties and trafficking behaviour. Therefore, determining the function of these subunits and receptor subunit composition is essential for understanding the physiological properties of synaptic transmission. Here, we discuss and evaluate various genetic approaches that have been used to study AMPA and NMDA receptor subunits. These approaches have demonstrated that the GluA1 AMPA receptor subunit is required for activity-dependent trafficking and contributes to basal synaptic transmission, while the GluA2 subunit regulates Ca(2+) permeability, homeostasis and trafficking to the synapse under basal conditions. In contrast, the GluN2A and GluN2B NMDA receptor subunits regulate synaptic AMPA receptor content, both during synaptic development and plasticity. Ongoing research in this field is focusing on the molecular interactions and mechanisms that control these functions. To accomplish this, molecular replacement techniques are being used, where native subunits are replaced with receptors containing targeted mutations. In this review, we discuss a single-cell molecular replacement approach which should arguably advance our physiological understanding of ionotropic glutamate receptor subunits, but is generally applicable to study of any neuronal protein.

  4. Expression of Functional Human α6β2β3* Acetylcholine Receptors in Xenopus laevis Oocytes Achieved through Subunit Chimeras and Concatamers

    PubMed Central

    Kuryatov, Alexandre

    2011-01-01

    α6β2β3* acetylcholine receptors (AChRs) on dopaminergic neurons are important targets for drugs to treat nicotine addiction and Parkinson's disease. However, it has not been possible to efficiently express functional α6β2β3* AChRs in oocytes or transfected cells. α6/α3 subunit chimeras permit expression of functional AChRs and reveal that parts of the α6 M1 transmembrane domain and large cytoplasmic domain impair assembly. Concatameric subunits permit assembly of functional α6β2β3* AChRs with defined subunit compositions and subunit orders. Assembly of accessory subunits is limiting in formation of mature AChRs. A single linker between the β3 accessory subunit and an α4 or α6 subunit is sufficient to permit assembly of complex β3-(α4β2)(α6β2) or β3-(α6β2)(α4β2) AChRs. Concatameric pentamers such as β3-α6-β2-α4-β2 have been functionally characterized. α6β2β3* AChRs are sensitive to activation by drugs used for smoking cessation therapy (nicotine, varenicline, and cytisine) and by sazetidine. All these are partial agonists. (α6β2)(α4β2)β3 AChRs are most sensitive to agonists. (α6β2)2β3 AChRs have the greatest Ca2+ permeability. (α4β2)(α6β2)β3 AChRs are most efficiently transported to the cell surface, whereas (α6β2)2β3 AChRs are the least efficiently transported. Dopaminergic neurons may have special chaperones for assembling accessory subunits with α6 subunits and for transporting (α6β2)2β3 AChRs to the cell surface. Concatameric pentamers and pentamers formed from combinations of trimers, dimers, and monomers exhibit similar properties, indicating that the linkers between subunits do not alter their functional properties. For the first time, these concatamers allow analysis of functional properties of α6β2β3* AChRs. These concatamers should enable selection of drugs specific for α6β2β3* AChRs. PMID:20923852

  5. Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways.

    PubMed

    Wang, Lixin; Ma, Hao; Xue, Yan; Shi, Haiyan; Ma, Teng; Cui, Xiaozheng

    2018-02-01

    Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-reperfusion injury in a mouse model. Inflammatory markers were measured in the serum and levels of inflammatory proteins in myocardial cells were investigated after treatment with berberine. In addition, the apoptosis of myocardial cells was investigated after berberine treatment. Apoptosis-associated gene expression levels and apoptotic signaling pathways were analyzed in myocardial cells after treatment with berberine. The phosphoinositide 3-kinase (PI3K)/RAC-α serine/threonine-protein kinase (AKT) and nuclear factor (NF)-κB signaling pathways were also analyzed in myocardial cells after treatment with berberine. Histological analysis was used to analyze the potential benefits of berberine in ischemia-reperfusion injury. The present study identified that inflammatory responses and inflammatory factors were decreased in the myocardial cells of the mouse model of ischemia-reperfusion injury. Mechanism analysis demonstrated that berberine inhibited apoptotic protease-activating factor 1, caspase-3 and caspase-9 expression in myocardial cells. The expression of Bcl2-associated agonist of cell death, Bcl-2-like protein 1 and cellular tumor antigen p53 was upregulated. Expression of NF-κB p65, inhibitor of NF-κB kinase subunit β (IKK-β), NF-κB inhibitor α (IκBα), and NF-κB activity, were inhibited in myocardial cells in the mouse model of ischemia-reperfusion injury. In conclusion, the results of the present study indicate that berberine inhibits inflammatory responses through the NF-κB signaling pathway and suppresses the apoptosis of myocardial cells via the PI3K

  6. Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways

    PubMed Central

    Wang, Lixin; Ma, Hao; Xue, Yan; Shi, Haiyan; Ma, Teng; Cui, Xiaozheng

    2018-01-01

    Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-reperfusion injury in a mouse model. Inflammatory markers were measured in the serum and levels of inflammatory proteins in myocardial cells were investigated after treatment with berberine. In addition, the apoptosis of myocardial cells was investigated after berberine treatment. Apoptosis-associated gene expression levels and apoptotic signaling pathways were analyzed in myocardial cells after treatment with berberine. The phosphoinositide 3-kinase (PI3K)/RAC-α serine/threonine-protein kinase (AKT) and nuclear factor (NF)-κB signaling pathways were also analyzed in myocardial cells after treatment with berberine. Histological analysis was used to analyze the potential benefits of berberine in ischemia-reperfusion injury. The present study identified that inflammatory responses and inflammatory factors were decreased in the myocardial cells of the mouse model of ischemia-reperfusion injury. Mechanism analysis demonstrated that berberine inhibited apoptotic protease-activating factor 1, caspase-3 and caspase-9 expression in myocardial cells. The expression of Bcl2-associated agonist of cell death, Bcl-2-like protein 1 and cellular tumor antigen p53 was upregulated. Expression of NF-κB p65, inhibitor of NF-κB kinase subunit β (IKK-β), NF-κB inhibitor α (IκBα), and NF-κB activity, were inhibited in myocardial cells in the mouse model of ischemia-reperfusion injury. In conclusion, the results of the present study indicate that berberine inhibits inflammatory responses through the NF-κB signaling pathway and suppresses the apoptosis of myocardial cells via the PI3K

  7. Genetic Overexpression of NR2B Subunit Enhances Social Recognition Memory for Different Strains and Species

    PubMed Central

    Jacobs, Stephanie A.; Tsien, Joe Z.

    2012-01-01

    The ability to learn and remember conspecifics is essential for the establishment and maintenance of social groups. Many animals, including humans, primates and rodents, depend on stable social relationships for survival. Social learning and social recognition have become emerging areas of interest for neuroscientists but are still not well understood. It has been established that several hormones play a role in the modulation of social recognition including estrogen, oxytocin and arginine vasopression. Relatively few studies have investigated how social recognition might be improved or enhanced. In this study, we investigate the role of the NMDA receptor in social recognition memory, specifically the consequences of altering the ratio of the NR2B∶NR2A subunits in the forebrain regions in social behavior. We produced transgenic mice in which the NR2B subunit of the NMDA receptor was overexpressed postnatally in the excitatory neurons of the forebrain areas including the cortex, amygdala and hippocampus. We investigated the ability of both our transgenic animals and their wild-type littermate to learn and remember juvenile conspecifics using both 1-hr and 24-hr memory tests. Our experiments show that the wild-type animals and NR2B transgenic mice preformed similarly in the 1-hr test. However, transgenic mice showed better performances in 24-hr tests of recognizing animals of a different strain or animals of a different species. We conclude that NR2B overexpression in the forebrain enhances social recognition memory for different strains and animal species. PMID:22558458

  8. Reduced Chrna7 expression in C3H mice is associated with increases in hippocampal parvalbumin and glutamate decarboxylase-67 (GAD67) as well as altered levels of GABAA receptor subunits

    PubMed Central

    Bates, Ryan C.; Stith, Bradley J.; Stevens, Karen E.; Adams, Catherine E.

    2014-01-01

    Decreased expression of CHRNA7, the gene encoding the α7* subtype of nicotinic receptor, may contribute to the cognitive dysfunction observed in schizophrenia by disrupting the inhibitory/excitatory balance in the hippocampus. C3H mice with reduced Chrna7 expression have significant reductions in hippocampal α7* receptor density, deficits in hippocampal auditory gating, increased hippocampal activity as well as significant decreases in hippocampal glutamate decarboxylase-65 (GAD65) and γ-aminobutyric acid-A (GABAA) receptor levels. The current study investigated whether altered Chrna7 expression is associated with changes in the levels of parvalbumin, GAD67 and/or GABAA receptor subunits in hippocampus from male and female C3H Chrna7 wildtype, C3H Chrna7 heterozygous and C3H Chrna7 knockout mice using quantitative western immunoblotting. Reduced Chrna7 expression was associated with significant increases in hippocampal parvalbumin and GAD67 and with complex alterations in GABAA receptor subunits. A decrease in α3 subunit protein was seen in both female C3H Chrna7 Het and KO mice while a decrease in α4 subunit protein was also detected in C3H Chrna7 KO mice with no sex difference. In contrast, an increase in δ subunit protein was observed in C3H Chrna7 Het mice while a decrease in this subunit was observed in C3H Chrna7 KO mice, with δ subunit protein levels being greater in males than in females. Finally, an increase in γ2 subunit protein was found in C3H Chrna7 KO mice with the levels of this subunit again being greater in males than in females. The increases in hippocampal parvalbumin and GAD67 observed in C3H Chrna7 mice are contrary to reports of reductions in these proteins in postmortem hippocampus from schizophrenic individuals. We hypothesize that the disparate results may occur because of the influence of factors other than CHRNA7 that have been found to be abnormal in schizophrenia. PMID:24836856

  9. Elastic rotation of Escherichia coli F(O)F(1) having ε subunit fused with cytochrome b(562) or flavodoxin reductase.

    PubMed

    Oka, Hideyuki; Hosokawa, Hiroyuki; Nakanishi-Matsui, Mayumi; Dunn, Stanley D; Futai, Masamitsu; Iwamoto-Kihara, Atsuko

    2014-04-18

    Intra-molecular rotation of FOF1 ATP synthase enables cooperative synthesis and hydrolysis of ATP. In this study, using a small gold bead probe, we observed fast rotation close to the real rate that would be exhibited without probes. Using this experimental system, we tested the rotation of FOF1 with the ε subunit connected to a globular protein [cytochrome b562 (ε-Cyt) or flavodoxin reductase (ε-FlavR)], which is apparently larger than the space between the central and the peripheral stalks. The enzymes containing ε-Cyt and ε-FlavR showed continual rotations with average rates of 185 and 148 rps, respectively, similar to the wild type (172 rps). However, the enzymes with ε-Cyt or ε-FlavR showed a reduced proton transport. These results indicate that the intra-molecular rotation is elastic but proton transport requires more strict subunit/subunit interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Development of Derivatives of 3, 3′-Diindolylmethane as Potent Leishmania donovani Bi-Subunit Topoisomerase IB Poisons

    PubMed Central

    Sengupta, Souvik; Mandal, Madhumita; Jaisankar, Parasuraman; D'Annessa, Ilda; Desideri, Alessandro; Majumder, Hemanta K.

    2011-01-01

    Background The development of 3, 3′-diindolyl methane (DIM) resistant parasite Leishmania donovani (LdDR50) by adaptation with increasing concentrations of the drug generates random mutations in the large and small subunits of heterodimeric DNA topoisomerase I of Leishmania (LdTOP1LS). Mutation of large subunit of LdTOP1LS at F270L is responsible for resistance to DIM up to 50 µM concentration. Methodology/Principal Findings In search of compounds that inhibit the growth of the DIM resistant parasite and inhibit the catalytic activity of mutated topoisomerase I (F270L), we have prepared three derivatives of DIM namely DPDIM (2,2′-diphenyl 3,3′-diindolyl methane), DMDIM (2,2′-dimethyl 3,3′-diindolyl methane) and DMODIM (5,5′-dimethoxy 3,3′-diindolyl methane) from parent compound DIM. All the compounds inhibit the growth of DIM resistant parasites, induce DNA fragmentation and stabilize topo1-DNA cleavable complex with the wild type and mutant enzyme. Conclusion The results suggest that the three derivatives of DIM can act as promising lead molecules for the generation of new anti-leishmanial agents. PMID:22174820

  11. The subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3: dynamics and interdependence

    PubMed Central

    2014-01-01

    Background The S-phase checkpoint aims to prevent cells from generation of extensive single-stranded DNA that predisposes to genome instability. The S. cerevisiae complex Tof1/Csm3/Mrc1 acts to restrain the replicative MCM helicase when DNA synthesis is prohibited. Keeping the replication machinery intact allows restart of the replication fork when the block is relieved. Although the subunits of the Tof1/Csm3/Mrc1 complex are well studied, the impact of every single subunit on the triple complex formation and function needs to be established. Findings This work studies the cellular localization and the chromatin binding of GFP-tagged subunits when the complex is intact and when a subunit is missing. We demonstrate that the complex is formed in cell nucleus, not the cytoplasm, as Tof1, Csm3 and Mrc1 enter the nucleus independently from one another. Via in situ chromatin binding assay we show that a Tof1-Csm3 dimer formation and chromatin binding is required to ensure the attachment of Mrc1 to chromatin. Our study indicates that the translocation into the nucleus is not the process to regulate the timing of chromatin association of Mrc1. We also studied the nuclear behavior of Mrc1 subunit in the process of adaptation to the presence hydroxyurea. Our results indicate that after prolonged HU incubation, cells bypass the S-phase checkpoint and proceed throughout the cell cycle. This process is accompanied by Mrc1 chromatin detachment and Rad53 dephosphorylation. Conclusions In S. cerevisiae the subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3 independently enter the cell nucleus, where a Tof1-Csm3 dimer is formed to ensure the chromatin binding of Mrc1 and favor DNA replication and S-phase checkpoint fork arrest. In the process of adaptation to the presence of hydroxyurea Mrc1 is detached from chromatin and Rad53 checkpoint activity is diminished in order to allow S-phase checkpoint escape and completion of the cell cycle. PMID:25379053

  12. The subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3: dynamics and interdependence.

    PubMed

    Uzunova, Sonya Dimitrova; Zarkov, Alexander Stefanov; Ivanova, Anna Marianova; Stoynov, Stoyno Stefanov; Nedelcheva-Veleva, Marina Nedelcheva

    2014-01-01

    The S-phase checkpoint aims to prevent cells from generation of extensive single-stranded DNA that predisposes to genome instability. The S. cerevisiae complex Tof1/Csm3/Mrc1 acts to restrain the replicative MCM helicase when DNA synthesis is prohibited. Keeping the replication machinery intact allows restart of the replication fork when the block is relieved. Although the subunits of the Tof1/Csm3/Mrc1 complex are well studied, the impact of every single subunit on the triple complex formation and function needs to be established. This work studies the cellular localization and the chromatin binding of GFP-tagged subunits when the complex is intact and when a subunit is missing. We demonstrate that the complex is formed in cell nucleus, not the cytoplasm, as Tof1, Csm3 and Mrc1 enter the nucleus independently from one another. Via in situ chromatin binding assay we show that a Tof1-Csm3 dimer formation and chromatin binding is required to ensure the attachment of Mrc1 to chromatin. Our study indicates that the translocation into the nucleus is not the process to regulate the timing of chromatin association of Mrc1. We also studied the nuclear behavior of Mrc1 subunit in the process of adaptation to the presence hydroxyurea. Our results indicate that after prolonged HU incubation, cells bypass the S-phase checkpoint and proceed throughout the cell cycle. This process is accompanied by Mrc1 chromatin detachment and Rad53 dephosphorylation. In S. cerevisiae the subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3 independently enter the cell nucleus, where a Tof1-Csm3 dimer is formed to ensure the chromatin binding of Mrc1 and favor DNA replication and S-phase checkpoint fork arrest. In the process of adaptation to the presence of hydroxyurea Mrc1 is detached from chromatin and Rad53 checkpoint activity is diminished in order to allow S-phase checkpoint escape and completion of the cell cycle.

  13. Structure-function analysis and genetic interactions of the SmG, SmE, and SmF subunits of the yeast Sm protein ring.

    PubMed

    Schwer, Beate; Kruchten, Joshua; Shuman, Stewart

    2016-09-01

    A seven-subunit Sm protein ring forms a core scaffold of the U1, U2, U4, and U5 snRNPs that direct pre-mRNA splicing. Using human snRNP structures to guide mutagenesis in Saccharomyces cerevisiae, we gained new insights into structure-function relationships of the SmG, SmE, and SmF subunits. An alanine scan of 19 conserved amino acids of these three proteins, comprising the Sm RNA binding sites or inter-subunit interfaces, revealed that, with the exception of Arg74 in SmF, none are essential for yeast growth. Yet, for SmG, SmE, and SmF, as for many components of the yeast spliceosome, the effects of perturbing protein-RNA and protein-protein interactions are masked by built-in functional redundancies of the splicing machine. For example, tests for genetic interactions with non-Sm splicing factors showed that many benign mutations of SmG, SmE, and SmF (and of SmB and SmD3) were synthetically lethal with null alleles of U2 snRNP subunits Lea1 and Msl1. Tests of pairwise combinations of SmG, SmE, SmF, SmB, and SmD3 alleles highlighted the inherent redundancies within the Sm ring, whereby simultaneous mutations of the RNA binding sites of any two of the Sm subunits are lethal. Our results suggest that six intact RNA binding sites in the Sm ring suffice for function but five sites may not. © 2016 Schwer et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. Thermostable Cross-Protective Subunit Vaccine against Brucella Species

    PubMed Central

    Barabé, Nicole D.; Grigat, Michelle L.; Lee, William E.; Poirier, Robert T.; Jager, Scott J.; Berger, Bradley J.

    2014-01-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 105 CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. PMID:25320267

  15. Thermostable cross-protective subunit vaccine against Brucella species.

    PubMed

    Cherwonogrodzky, John W; Barabé, Nicole D; Grigat, Michelle L; Lee, William E; Poirier, Robert T; Jager, Scott J; Berger, Bradley J

    2014-12-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 10(5) CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Chimeric Vaccine Stimulation of Human Dendritic Cell Indoleamine 2, 3-Dioxygenase Occurs via the Non-Canonical NF-κB Pathway

    PubMed Central

    Kim, Nan-Sun; Mbongue, Jacques C.; Nicholas, Dequina A.; Esebanmen, Grace E.; Unternaehrer, Juli J.; Firek, Anthony F.; Langridge, William H. R.

    2016-01-01

    A chimeric protein vaccine composed of the cholera toxin B subunit fused to proinsulin (CTB-INS) was shown to suppress type 1 diabetes onset in NOD mice and upregulate biosynthesis of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1) in human dendritic cells (DCs). Here we demonstrate siRNA inhibition of the NF-κB-inducing kinase (NIK) suppresses vaccine-induced IDO1 biosynthesis as well as IKKα phosphorylation. Chromatin immunoprecipitation (ChIP) analysis of CTB-INS inoculated DCs showed that RelB bound to NF-κB consensus sequences in the IDO1 promoter, suggesting vaccine stimulation of the non-canonical NF-κB pathway activates IDO1 expression in vivo. The addition of Tumor Necrosis Factor Associated Factors (TRAF) TRAF 2, 3 and TRAF6 blocking peptides to vaccine inoculated DCs was shown to inhibit IDO1 biosynthesis. This experimental outcome suggests vaccine activation of the TNFR super-family receptor pathway leads to upregulation of IDO1 biosynthesis in CTB-INS inoculated dendritic cells. Together, our experimental data suggest the CTB-INS vaccine uses a TNFR-dependent signaling pathway of the non-canonical NF-κB signaling pathway resulting in suppression of dendritic cell mediated type 1 diabetes autoimmunity. PMID:26881431

  17. The Neurospora crassa PP2A Regulatory Subunits RGB1 and B56 Are Required for Proper Growth and Development and Interact with the NDR Kinase COT1

    PubMed Central

    Shomin-Levi, Hila; Yarden, Oded

    2017-01-01

    COT1 is the founding member of the highly conserved nuclear Dbf2-related (NDR) Ser/Thr kinase family and plays a role in the regulation of polar growth and development in Neurospora crassa and other fungi. Changes in COT1 phosphorylation state have been shown to affect hyphal elongation, branching, and conidiation. The function of NDR protein kinases has been shown to be regulated by type 2A protein phosphatases (PP2As). PP2As are heterotrimers comprised of a catalytic and scaffolding protein along with an interchangeable regulatory subunit involved in determining substrate specificity. Inactivation of the N. crassa PP2A regulatory subunits rgb-1 and b56 conferred severe hyphal growth defects. Partial suppression of defects observed in the rgb-1RIP strain (but not in the Δb56 mutant) was observed in cot-1 phosphomimetic mutants, demonstrating that altering COT1 phosphorylation state can bypass, at least in part, the requirement of a functional RGB1 subunit. The functional fusion proteins RGB1::GFP and B56::GFP predominantly localized to hyphal tips and septa, respectively, indicating that their primary activity is in different cellular locations. COT1 protein forms exhibited a hyperphosphorylated gel migration pattern in an rgb-1RIP mutant background, similar to that observed when the fungus was cultured in the presence of the PP2A inhibitor cantharidin. COT1 was hypophosphorylated in a Δb56 mutant background, suggesting that this regulatory subunit may be involved in determining COT1 phosphorylation state, yet in an indirect manner. Reciprocal co-immunoprecipitation analyses, using tagged COT1, PPH1, RGB1, and B56 subunits established that these proteins physically interact. Taken together, our data determine the presence of a functional and physical link between PP2A and COT1 and show that two of the PP2A regulatory subunits interact with the kinase and determine COT1 phosphorylation state. PMID:28928725

  18. Modular structure of the full-length DNA gyrase B subunit revealed by small-angle X-ray scattering.

    PubMed

    Costenaro, Lionel; Grossmann, J Günter; Ebel, Christine; Maxwell, Anthony

    2007-03-01

    DNA gyrase, the only topoisomerase able to introduce negative supercoils into DNA, is essential for bacterial transcription and replication; absent from humans, it is a successful target for antibacterials. From biophysical experiments in solution, we report a structural model at approximately 12-15 A resolution of the full-length B subunit (GyrB). Analytical ultracentrifugation shows that GyrB is mainly a nonglobular monomer. Ab initio modeling of small-angle X-ray scattering data for GyrB consistently yields a "tadpole"-like envelope. It allows us to propose an organization of GyrB into three domains-ATPase, Toprim, and Tail-based on their crystallographic and modeled structures. Our study reveals the modular organization of GyrB and points out its potential flexibility, needed during the gyrase catalytic cycle. It provides important insights into the supercoiling mechanism by gyrase and suggests new lines of research.

  19. Ribosomal proteins L7 and L8 function in concert with six A3 assembly factors to propagate assembly of domains I and II of 25S rRNA in yeast 60S ribosomal subunits

    PubMed Central

    Jakovljevic, Jelena; Ohmayer, Uli; Gamalinda, Michael; Talkish, Jason; Alexander, Lisa; Linnemann, Jan; Milkereit, Philipp; Woolford, John L.

    2012-01-01

    Ribosome biogenesis is a complex multistep process that involves alternating steps of folding and processing of pre-rRNAs in concert with assembly of ribosomal proteins. Recently, there has been increased interest in the roles of ribosomal proteins in eukaryotic ribosome biogenesis in vivo, focusing primarily on their function in pre-rRNA processing. However, much less is known about participation of ribosomal proteins in the formation and rearrangement of preribosomal particles as they mature to functional subunits. We have studied ribosomal proteins L7 and L8, which are required for the same early steps in pre-rRNA processing during assembly of 60S subunits but are located in different domains within ribosomes. Depletion of either leads to defects in processing of 27SA3 to 27SB pre-rRNA and turnover of pre-rRNAs destined for large ribosomal subunits. A specific subset of proteins is diminished from these residual assembly intermediates: six assembly factors required for processing of 27SA3 pre-rRNA and four ribosomal proteins bound to domain I of 25S and 5.8S rRNAs surrounding the polypeptide exit tunnel. In addition, specific sets of ribosomal proteins are affected in each mutant: In the absence of L7, proteins bound to domain II, L6, L14, L20, and L33 are greatly diminished, while proteins L13, L15, and L36 that bind to domain I are affected in the absence of L8. Thus, L7 and L8 might establish RNP structures within assembling ribosomes necessary for the stable association and function of the A3 assembly factors and for proper assembly of the neighborhoods containing domains I and II. PMID:22893726

  20. Functional equivalence of translation factor eIF5B from Candida albicans and Saccharomyces cerevisiae.

    PubMed

    Jun, Kyung Ok; Yang, Eun Ji; Lee, Byeong Jeong; Park, Jeong Ro; Lee, Joon H; Choi, Sang Ki

    2008-04-30

    Eukaryotic translation initiation factor 5B (eIF5B) plays a role in recognition of the AUG codon in conjunction with translation factor eIF2, and promotes joining of the 60S ribosomal subunit. To see whether the eIF5B proteins of other organisms function in Saccharomyces cerevisiae, we cloned the corresponding genes from Oryza sativa, Arabidopsis thaliana, Aspergillus nidulans and Candida albican and expressed them under the control of the galactose-inducible GAL promoter in the fun12Delta strain of Saccharomyces cerevisiae. Expression of Candida albicans eIF5B complemented the slow-growth phenotype of the fun12Delta strain, but that of Aspergillus nidulance did not, despite the fact that its protein was expressed better than that of Candida albicans. The Arabidopsis thaliana protein was also not functional in Saccharomyces. These results reveal that the eIF5B in Candida albicans has a close functional relationship with that of Sacharomyces cerevisiae, as also shown by a phylogenetic analysis based on the amino acid sequences of the eIF5Bs.

  1. RRP1B Targets PP1 to Mammalian Cell Nucleoli and Is Associated with Pre-60S Ribosomal Subunits

    PubMed Central

    Chamousset, Delphine; De Wever, Veerle; Moorhead, Greg B.; Chen, Yan; Boisvert, Francois-Michel; Lamond, Angus I.

    2010-01-01

    A pool of protein phosphatase 1 (PP1) accumulates within nucleoli and accounts for a large fraction of the serine/threonine protein phosphatase activity in this subnuclear structure. Using a combination of fluorescence imaging with quantitative proteomics, we mapped the subnuclear localization of the three mammalian PP1 isoforms stably expressed as GFP-fusions in live cells and identified RRP1B as a novel nucleolar targeting subunit that shows a specificity for PP1β and PP1γ. RRP1B, one of two mammalian orthologues of the yeast Rrp1p protein, shows an RNAse-dependent localization to the granular component of the nucleolus and distributes in a similar manner throughout the cell cycle to proteins involved in later steps of rRNA processing. Quantitative proteomic analysis of complexes containing both RRP1B and PP1γ revealed enrichment of an overlapping subset of large (60S) ribosomal subunit proteins and pre-60S nonribosomal proteins involved in mid-late processing. Targeting of PP1 to this complex by RRP1B in mammalian cells is likely to contribute to modulation of ribosome biogenesis by mechanisms involving reversible phosphorylation events, thus playing a role in the rapid transduction of cellular signals that call for regulation of ribosome production in response to cellular stress and/or changes in growth conditions. PMID:20926688

  2. Subunit composition and structure of subcomponent C1q of the first component of human complement.

    PubMed

    Reid, K B; Porter, R R

    1976-04-01

    1. Unreduced human subcomponent C1q was shown by electrophoresis on polyacrylamide gels run in the presence of sodium dodecyl sulphate to be composed of two types of non-covalently linked subunits of apparent mol.wts. 69 000 and 54 000. The ratio of the two subunits was markedly affected by the ionic strength of the applied sample. At a low ionic strength of applied sample, which gave the optimum value for the 54 000-apparent mol.wt. subunit, a ratio of 1.99:1.00 was obtained for the ratio of the 69 000-apparent mol.wt. subunit to the 5400-apparent-mol.wt. subunit. The amount of the 54 000-apparent-mol.wt. subunit detected in the expected position on the gel was found to be inversely proportional to increases in the ionic strength of the applled sample. 2. Human subcomponent C1q on reduction and alkylation, or oxidation, yields equimolar amounts of three chains designated A, B and C [Reid et al. (1972) Biochem. J. 130, 749-763]. The results obtained by Yonemasu & Stroud [(1972) Immunochemistry 9, 545-554], which showed that the 69 000-apparent-mol.wt. subunit was a disulphide-linked dimer of the A and B chains and that the 54 000-apparent-mol.wt. subunit was a disulphide-linked dimer of the C chain, were confirmed. 3. Gel filtration on Sephadex G-200 in 6.0M-guanidinium chloride showed that both types of unreduced subunit were eluted together as a single symmetrical peak of apparent mol.wt. 49 000-50 000 when globular proteins were used as markers. The molecular weights of the oxidized or reduced A, B and C chains have been shown previously to be very similar all being in the range 23 000-24 000 [Reid et al. (1972) Biochem. J. 130, 749-763; Reid (1974) Biochem. J. 141, 189-203]. 4. It is proposed that subcomponent C1q (mol.wt. 410000) is composed of nine non-covalently linked subunits, i.e. six A-B dimers and three C-C dimers. 5. A structure for subcomponent C1q is proposed and is based on the assumption that the collagen-like regions of 78 residues in each of the

  3. Development of haplotype-specific molecular markers for the low-molecular-weight glutenin subunits

    USDA-ARS?s Scientific Manuscript database

    Low-molecular-weight glutenin subunits (LMW-GSs) are one of the major components of gluten and their allelic variation has been widely associated with numerous wheat end-use quality parameters. These proteins are encoded by multigene families located at the orthologous Glu-3 loci (Glu-A3, Glu-B3 and...

  4. Identification of nucleotides in E. coli 16S rRNA essential for ribosome subunit association.

    PubMed

    Pulk, Arto; Maiväli, Ulo; Remme, Jaanus

    2006-05-01

    The ribosome consists of two unequal subunits, which associate via numerous intersubunit contacts. Medium-resolution structural studies have led to grouping of the intersubunit contacts into 12 directly visualizable intersubunit bridges. Most of the intersubunit interactions involve RNA. We have used an RNA modification interference approach to determine Escherichia coli 16S rRNA positions that are essential for the association of functionally active 70S ribosomes. Modification of the N1 position of A702, A1418, and A1483 with DMS, and of the N3 position of U793, U1414, and U1495 with CMCT in 30S subunits strongly interferes with 70S ribosome formation. Five of these positions localize into previously recognized intersubunit bridges, namely, B2a (U1495), B2b (U793), B3 (A1483), B5 (A1418), and B7a (A702). The remaining position displaying interference, U1414, forms a base pair with G1486, which is a part of bridge B3. We contend that these five intersubunit bridges are essential for reassociation of the 70S ribosome, thus forming the functional core of the intersubunit contacts.

  5. Identification of nucleotides in E. coli 16S rRNA essential for ribosome subunit association

    PubMed Central

    Pulk, Arto; Maiväli, Ülo; Remme, Jaanus

    2006-01-01

    The ribosome consists of two unequal subunits, which associate via numerous intersubunit contacts. Medium-resolution structural studies have led to grouping of the intersubunit contacts into 12 directly visualizable intersubunit bridges. Most of the intersubunit interactions involve RNA. We have used an RNA modification interference approach to determine Escherichia coli 16S rRNA positions that are essential for the association of functionally active 70S ribosomes. Modification of the N1 position of A702, A1418, and A1483 with DMS, and of the N3 position of U793, U1414, and U1495 with CMCT in 30S subunits strongly interferes with 70S ribosome formation. Five of these positions localize into previously recognized intersubunit bridges, namely, B2a (U1495), B2b (U793), B3 (A1483), B5 (A1418), and B7a (A702). The remaining position displaying interference, U1414, forms a base pair with G1486, which is a part of bridge B3. We contend that these five intersubunit bridges are essential for reassociation of the 70S ribosome, thus forming the functional core of the intersubunit contacts. PMID:16556933

  6. Mangiferin inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 expression and cellular invasion by suppressing nuclear factor-κB activity

    PubMed Central

    Dilshara, Matharage Gayani; Kang, Chang-Hee; Choi, Yung Hyun; Kim, Gi-Young

    2015-01-01

    We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-α-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-α-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-α significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-α-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-α-induced invasion of LNCaP cells. Compared to untreated controls, TNF-α-stimulated LNCaP cells showed a significant increase in nuclear factor-κB (NF-κB) luciferase activity. However, mangiferin treatment markedly decreased TNF-α-induced NF-κB luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-κB subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-κB-mediated MMP-9 expression. [BMB Reports 2015; 48(10): 559-564] PMID:25739392

  7. Functional Analysis of a Wheat AGPase Plastidial Small Subunit with a Truncated Transit Peptide.

    PubMed

    Yang, Yang; Gao, Tian; Xu, Mengjun; Dong, Jie; Li, Hanxiao; Wang, Pengfei; Li, Gezi; Guo, Tiancai; Kang, Guozhang; Wang, Yonghua

    2017-03-01

    ADP-glucose pyrophosphorylase (AGPase), the key enzyme in starch synthesis, consists of two small subunits and two large subunits with cytosolic and plastidial isoforms. In our previous study, a cDNA sequence encoding the plastidial small subunit (TaAGPS1b) of AGPase in grains of bread wheat ( Triticum aestivum L.) was isolated and the protein subunit encoded by this gene was characterized as a truncated transit peptide (about 50% shorter than those of other plant AGPS1bs). In the present study, TaAGPS1b was fused with green fluorescent protein (GFP) in rice protoplast cells, and confocal fluorescence microscopy observations revealed that like other AGPS1b containing the normal transit peptide, TaAGPS1b-GFP was localized in chloroplasts. TaAGPS1b was further overexpressed in a Chinese bread wheat cultivar, and the transgenic wheat lines exhibited a significant increase in endosperm AGPase activities, starch contents, and grain weights. These suggested that TaAGPS1b subunit was targeted into plastids by its truncated transit peptide and it could play an important role in starch synthesis in bread wheat grains.

  8. Cyanidin-3-o-β-Glucoside Induces Megakaryocyte Apoptosis via PI3K/Akt- and MAPKs-Mediated Inhibition of NF-κB Signalling.

    PubMed

    Ya, Fuli; Li, Qing; Wang, Dongliang; Xie, Shuangfeng; Song, Fenglin; Gallant, Reid C; Tian, Zezhong; Wan, Jianbo; Ling, Wenhua; Yang, Yan

    2018-06-04

    Apoptotic-like phase is an essential step in thrombopoiesis from megakaryocytes. Anthocyanins are natural flavonoid pigments that possess a wide range of biological activities, including protection against cardiovascular diseases and induction of tumour cell apoptosis. We investigated the effects and underlying mechanisms of cyanidin-3-o-β-glucoside (Cy-3-g, the major bioactive compound in anthocyanins) on the apoptosis of human primary megakaryocytes and Meg-01 cell line in vitro . We found that Cy-3-g dose-dependently increased the dissipation of the mitochondrial membrane potential, caspase-9 and caspase-3 activity in megakaryocytes from patients with newly diagnosed acute myeloid leukaemia but not in those from healthy volunteers. In Meg-01 cells, Cy-3-g regulated the distribution of Bak, Bax and Bcl-xL proteins in the mitochondria and cytosol, subsequently increasing cytochrome c release and stimulating caspase-9 and caspase-3 activation and phosphatidylserine exposure. However, Cy-3-g did not exert significant effects on factor-associated suicide (Fas), Fas ligand, caspase-8 or Bid expression. Cy-3-g inhibited nuclear factor kappa B (NF-κB) p65 activation by down-regulating inhibitor of NF-κB kinase (IKK)α and IKKβ expression, followed by the inhibition of inhibitor of NF-κB (IκB)α phosphorylation and degradation and subsequent inhibition of the translocation of the p65 sub-unit into the nucleus, and finally stimulating caspase-3 activation and phosphatidylserine exposure. The inhibitory effect of Cy-3-g on NF-κB activation was mediated by the activation of extracellular signal-regulated kinases (Erk1/2) and p38 mitogen-activated protein kinase (MAPK) and the inhibition of phosphoinositide 3-kinase (PI3K)/Akt signalling. U0126 (Erk1/2 inhibitor), SB203580 (p38 MAPK inhibitor) and 740 Y-P (PI3K agonist) significantly reversed Cy-3-g-reduced phosphorylation of p65. Taken together, our data indicate that Cy-3-g induces megakaryocyte apoptosis via the

  9. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wen-Zhu; Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853; Miao, Yu-Liang

    Highlights: • Leptin promotes the proliferation of neural stem cells isolated from embryonic mouse hippocampus. • Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation. • The effects of leptin are partially mediated by upregulating NR2B subunits. - Abstract: Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation ofmore » hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment with non-specific NMDA antagonist MK-801, specific NR2B antagonist Ro 25-6981, or small interfering RNA (siRNA) targeting NR2B, significantly blocked the effect of leptin on corticosterone-induced inhibition of NSCs proliferation. Furthermore, corticosterone significantly reduced the protein expression of NR2B, whereas pre-treatment with leptin greatly reversed the attenuation of NR2B expression caused by corticosterone in cultured hippocampal NSCs. Our findings demonstrate that leptin reverses the corticosterone-induced inhibition of NSCs proliferation. This process is, at least partially mediated by increased expression of NR2B subunits of NMDA receptors.« less

  10. Early-Onset, Slow Progression of Cone Photoreceptor Dysfunction and Degeneration in CNG Channel Subunit CNGB3 Deficiency

    PubMed Central

    Xu, Jianhua; Morris, Lynsie; Fliesler, Steven J.; Sherry, David M.

    2011-01-01

    Purpose. To investigate the progression of cone dysfunction and degeneration in CNG channel subunit CNGB3 deficiency. Methods. Retinal structure and function in CNGB3−/− and wild-type (WT) mice were evaluated by electroretinography (ERG), lectin cytochemistry, and correlative Western blot analysis of cone-specific proteins. Cone and rod terminal integrity was assessed by electron microscopy and synaptic protein immunohistochemical distribution. Results. Cone ERG amplitudes (photopic b-wave) in CNGB3−/− mice were reduced to approximately 50% of WT levels by postnatal day 15, decreasing further to approximately 30% of WT levels by 1 month and to approximately 20% by 12 months of age. Rod ERG responses (scotopic a-wave) were not affected in CNGB3−/− mice. Average CNGB3−/− cone densities were approximately 80% of WT levels at 1 month and declined slowly thereafter to only approximately 50% of WT levels by 12 months. Expression levels of M-opsin, cone transducin α-subunit, and cone arrestin in CNGB3−/− mice were reduced by 50% to 60% by 1 month and declined to 35% to 45% of WT levels by 9 months. In addition, cone opsin mislocalized to the outer nuclear layer and the outer plexiform layer in the CNGB3−/− retina. Cone and rod synaptic marker expression and terminal ultrastructure were normal in the CNGB3−/− retina. Conclusions. These findings are consistent with an early-onset, slow progression of cone functional defects and cone loss in CNGB3−/− mice, with the cone signaling deficits arising from disrupted phototransduction and cone loss rather than from synaptic defects. PMID:21273547

  11. The selectivity of conantokin-G for ion channel inhibition of NR2B subunit-containing NMDA receptors is regulated by amino acid residues in the S2 region of NR2B

    PubMed Central

    Sheng, Zhenyu; Liang, Zhong; Geiger, James H.; Prorok, Mary; Castellino, Francis J.

    2009-01-01

    The conantokins are short, naturally-occurring peptides that inhibit ion flow through N-methyl-D-aspartate receptor (NMDAR) channels. One member of this peptide family, conantokin-G (con-G), specifically antagonizes NR2B-containing NMDAR channels, whereas other known conantokins are less selective inhibitors with regard to the nature of the NR2 subunit of the NMDAR complex. In order to define the molecular determinants of NR2B that govern con-G selectivity, we evaluated the ability of con-G to inhibit NMDAR ion channels expressed in human embryonic kidney (HEK)293 cells transfected with NR1, in combination with various NR2A/2B chimeras and point mutants, by electrophysiology using cells voltage-clamped in the whole cell configuration. We found that a variant of the con-G-insensitive subunit, NR2A, in which the 158 residues comprising the S2 peptide segment (E657-I814) were replaced by the corresponding S2 region of NR2B (E658-I815), results in receptors that are highly sensitive to inhibition by con-G. Of the 22 amino acids that are different between the NR2A-S2 and the NR2B-S2 regions, exchange of one of these, M739 of NR2B for the equivalent K738 of NR2A, was sufficient to completely import the inhibitory activity of con-G into NR1b/NR2A-containing NMDARs. Some reinforcement of this effect was found by substitution of a second amino acid, K755 of NR2B for Y754 of NR2A. The discovery of the molecular determinants of NR2B selectivity with con-G has implications for the design of subunit-selective neurobiological probes and drug therapies, in addition to advancing our understanding of NR2B- versus NR2A-mediated neurological processes. PMID:19427876

  12. Guggulsterone (GS) inhibits smokeless tobacco and nicotine-induced NF-κB and STAT3 pathways in head and neck cancer cells.

    PubMed

    Macha, Muzafar A; Matta, Ajay; Chauhan, S S; Siu, K W Michael; Ralhan, Ranju

    2011-03-01

    Understanding the molecular pathways perturbed in smokeless tobacco- (ST) associated head and neck squamous cell carcinoma (HNSCC) is critical for identifying novel complementary agents for effective disease management. Activation of nuclear factor-kappaB (NF-κB) and cyclooxygenase-2 (COX-2) was reported in ST-associated HNSCC by us [Sawhney,M. et al. (2007) Expression of NF-kappaB parallels COX-2 expression in oral precancer and cancer: association with smokeless tobacco. Int. J. Cancer, 120, 2545-2556]. In search of novel agents for treatment of HNSCC, we investigated the potential of guggulsterone (GS), (4,17(20)-pregnadiene-3,16-dione), a biosafe nutraceutical, in inhibiting ST- and nicotine-induced activation of NF-κB and signal transducer and activator of transcription (STAT) 3 pathways in HNSCC cells. GS inhibited the activation of NF-κB and STAT3 proteins in head and neck cancer cells. This inhibition of NF-κB by GS resulted from decreased phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha the inhibitory subunit of NF-κB. Importantly, treatment of HNSCC cells with GS abrogated both ST- and nicotine-induced nuclear activation of NF-κB and pSTAT3 proteins and their downstream targets COX-2 and vascular endothelial growth factor. Furthermore, GS treatment decreased the levels of ST- and nicotine-induced secreted interleukin-6 in culture media of HNSCC cells. In conclusion, our findings demonstrated that GS treatment abrogates the effects of ST and nicotine on activation of NF-κB and STAT3 pathways in HNSCC cells that contribute to inflammatory and angiogenic responses as well as its progression and metastasis. These findings provide a biologic rationale for further clinical investigation of GS as an effective complementary agent for inhibiting ST-induced head and neck cancer.

  13. Downregulation of the spinal NMDA receptor NR2B subunit during electro-acupuncture relief of chronic visceral hyperalgesia.

    PubMed

    Liu, Hongping; Zhang, Yuhua; Qi, Debo; Li, Weimin

    2017-01-01

    The involvement of spinal NR2B, a N-methyl-D-aspartate (NMDA) receptor subunit, in the therapeutic effect of electro-acupuncture (EA) on chronic visceral hyperalgesia was investigated. Chronic visceral hyperalgesia was induced using an irritable bowel syndrome (IBS) model in rats. Graded colorectal distention (CRD) stimuli at strengths of 20, 40, 60 and 80 mmHg were applied, and behavioral tests were performed to measure the abdominal withdrawal reflex (AWR) in response to the CRD stimuli and assess the severity of the visceral hyperalgesia. Rats were randomly divided into four groups: normal intact (control) group, IBS model (model) group, EA-treated IBS rats (EA) group and sham EA-treated IBS rats (sham EA) group. For the EA treatment, electric stimuli were applied through needles inserted into two acupoints [Zu-san-li (ST-36) and Shang-ju-xu (ST-37)] in both hind limbs, while the sham EA treatment consisted of only the insertion of needles into these same acupoints without an application of electric stimuli. Our results showed that AWR scores of the model group responding to CRD stimuli of 20, 40, 60 and 80 mmHg were significantly increased. These increased scores subsequently decreased following EA treatment (P < 0.05) compared with those for the other groups. The expression of NR2B in the superficial laminae (SDH, laminae I and II), nucleus proprius (NP, laminae III and IV), neck of the dorsal horn (NECK, laminae V and VI) and central canal region (lamina X) at thoracolumbar (T13-L2) and lumbosacral (L6-S2) segmental level significantly increased in the model group versus the control group (P < 0.05) and significantly decreased after EA treatment (P < 0.05). There were no significant changes in neither AWR scores nor expression of the NR2B subunit in these spinal regions after the sham EA treatment. These results confirm that EA can relieve chronic visceral hyperalgesia in IBS model rats and suggest that such an effect is possibly mediated through the

  14. Structural Basis for the Recognition of Tyrosine-based Sorting Signals by the μ3A Subunit of the AP-3 Adaptor Complex*

    PubMed Central

    Mardones, Gonzalo A.; Burgos, Patricia V.; Lin, Yimo; Kloer, Daniel P.; Magadán, Javier G.; Hurley, James H.; Bonifacino, Juan S.

    2013-01-01

    Tyrosine-based signals fitting the YXXØ motif mediate sorting of transmembrane proteins to endosomes, lysosomes, the basolateral plasma membrane of polarized epithelial cells, and the somatodendritic domain of neurons through interactions with the homologous μ1, μ2, μ3, and μ4 subunits of the corresponding AP-1, AP-2, AP-3, and AP-4 complexes. Previous x-ray crystallographic analyses identified distinct binding sites for YXXØ signals on μ2 and μ4, which were located on opposite faces of the proteins. To elucidate the mode of recognition of YXXØ signals by other members of the μ family, we solved the crystal structure at 1.85 Å resolution of the C-terminal domain of the μ3 subunit of AP-3 (isoform A) in complex with a peptide encoding a YXXØ signal (SDYQRL) from the trans-Golgi network protein TGN38. The μ3A C-terminal domain consists of an immunoglobulin-like β-sandwich organized into two subdomains, A and B. The YXXØ signal binds in an extended conformation to a site on μ3A subdomain A, at a location similar to the YXXØ-binding site on μ2 but not μ4. The binding sites on μ3A and μ2 exhibit similarities and differences that account for the ability of both proteins to bind distinct sets of YXXØ signals. Biochemical analyses confirm the identification of the μ3A site and show that this protein binds YXXØ signals with 14–19 μm affinity. The surface electrostatic potential of μ3A is less basic than that of μ2, in part explaining the association of AP-3 with intracellular membranes having less acidic phosphoinositides. PMID:23404500

  15. Structural basis for the recognition of tyrosine-based sorting signals by the μ3A subunit of the AP-3 adaptor complex.

    PubMed

    Mardones, Gonzalo A; Burgos, Patricia V; Lin, Yimo; Kloer, Daniel P; Magadán, Javier G; Hurley, James H; Bonifacino, Juan S

    2013-03-29

    Tyrosine-based signals fitting the YXXØ motif mediate sorting of transmembrane proteins to endosomes, lysosomes, the basolateral plasma membrane of polarized epithelial cells, and the somatodendritic domain of neurons through interactions with the homologous μ1, μ2, μ3, and μ4 subunits of the corresponding AP-1, AP-2, AP-3, and AP-4 complexes. Previous x-ray crystallographic analyses identified distinct binding sites for YXXØ signals on μ2 and μ4, which were located on opposite faces of the proteins. To elucidate the mode of recognition of YXXØ signals by other members of the μ family, we solved the crystal structure at 1.85 Å resolution of the C-terminal domain of the μ3 subunit of AP-3 (isoform A) in complex with a peptide encoding a YXXØ signal (SDYQRL) from the trans-Golgi network protein TGN38. The μ3A C-terminal domain consists of an immunoglobulin-like β-sandwich organized into two subdomains, A and B. The YXXØ signal binds in an extended conformation to a site on μ3A subdomain A, at a location similar to the YXXØ-binding site on μ2 but not μ4. The binding sites on μ3A and μ2 exhibit similarities and differences that account for the ability of both proteins to bind distinct sets of YXXØ signals. Biochemical analyses confirm the identification of the μ3A site and show that this protein binds YXXØ signals with 14-19 μm affinity. The surface electrostatic potential of μ3A is less basic than that of μ2, in part explaining the association of AP-3 with intracellular membranes having less acidic phosphoinositides.

  16. Cholera toxin subunit B-mediated intracellular trafficking of mesoporous silica nanoparticles toward the endoplasmic reticulum

    NASA Astrophysics Data System (ADS)

    Walker, William Andrew

    In recent decades, pharmaceutical research has led to the development of numerous treatments for human disease. Nanoscale delivery systems have the potential to maximize therapeutic outcomes by enabling target specific delivery of these therapeutics. The intracellular localization of many of these materials however, is poorly controlled, leading to sequestration in degradative cellular pathways and limiting the efficacy of their payloads. Numerous proteins, particularly bacterial toxins, have evolved mechanisms to subvert the degradative mechanisms of the cell. Here, we have investigated a possible strategy for shunting intracellular delivery of encapsulated cargoes from these pathways by modifying mesoporous silica nanoparticles (MSNs) with the well-characterized bacterial toxin Cholera toxin subunit B (CTxB). Using established optical imaging methods we investigated the internalization, trafficking, and subcellular localization of our modified MSNs in an in vitro animal cell model. We then attempted to demonstrate the practical utility of this approach by using CTxB-modified mesoporous silica nanoparticles to deliver propidium iodide, a membrane-impermeant fluorophore.

  17. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  18. Roles for N-terminal Extracellular Domains of Nicotinic Acetylcholine Receptor (nAChR) β3 Subunits in Enhanced Functional Expression of Mouse α6β2β3- and α6β4β3-nAChRs*

    PubMed Central

    Dash, Bhagirathi; Li, Ming D.; Lukas, Ronald J.

    2014-01-01

    Functional heterologous expression of naturally expressed mouse α6*-nicotinic acetylcholine receptors (mα6*-nAChRs; where “*” indicates the presence of additional subunits) has been difficult. Here we expressed and characterized wild-type (WT), gain-of-function, chimeric, or gain-of-function chimeric nAChR subunits, sometimes as hybrid nAChRs containing both human (h) and mouse (m) subunits, in Xenopus oocytes. Hybrid mα6mβ4hβ3- (∼5–8-fold) or WT mα6mβ4mβ3-nAChRs (∼2-fold) yielded higher function than mα6mβ4-nAChRs. Function was not detected when mα6 and mβ2 subunits were expressed together or in the additional presence of hβ3 or mβ3 subunits. However, function emerged upon expression of mα6mβ2mβ3V9′S-nAChRs containing β3 subunits having gain-of-function V9′S (valine to serine at the 9′-position) mutations in transmembrane domain II and was further elevated 9-fold when hβ3V9′S subunits were substituted for mβ3V9′S subunits. Studies involving WT or gain-of-function chimeric mouse/human β3 subunits narrowed the search for domains that influence functional expression of mα6*-nAChRs. Using hβ3 subunits as templates for site-directed mutagenesis studies, substitution with mβ3 subunit residues in extracellular N-terminal domain loops “C” (Glu221 and Phe223), “E” (Ser144 and Ser148), and “β2-β3” (Gln94 and Glu101) increased function of mα6mβ2*- (∼2–3-fold) or mα6mβ4* (∼2–4-fold)-nAChRs. EC50 values for nicotine acting at mα6mβ4*-nAChR were unaffected by β3 subunit residue substitutions in loop C or E. Thus, amino acid residues located in primary (loop C) or complementary (loops β2-β3 and E) interfaces of β3 subunits are some of the molecular impediments for functional expression of mα6mβ2β3- or mα6mβ4β3-nAChRs. PMID:25028511

  19. 18β-Glycyrrhetinic acid suppresses TNF-α induced matrix metalloproteinase-9 and vascular endothelial growth factor by suppressing the Akt-dependent NF-κB pathway.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Dilshara, Matharage Gayani; Park, Sang Rul; Choi, Yung Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kim, Gi-Young

    2014-08-01

    Little is known about the molecular mechanism through which 18β-glycyrrhetinic acid (GA) inhibits metastasis and invasion of cancer cells. Therefore, this study aimed to investigate the effects of GA on the expression of matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) in various types of cancer cells. We found that treatment with GA reduces tumor necrosis factor-α (TNF-α)-induced Matrigel invasion with few cytotoxic effects. Our findings also showed that MMP-9 and VEGF expression increases in response to TNF-α; however, GA reverses their expression. In addition, GA inhibited inhibitory factor kappa B degradation, sustained nuclear factor-kappa B (NF-κB) subunits, p65 and p50, in the cytosol compartments, and consequently suppressed the TNF-α-induced DNA-binding activity and luciferase activity of NF-κB. Specific NF-κB inhibitors, pyrrolidine dithiocarbamate, MG132, and PS-1145, also attenuated TNF-α-mediated MMP-9 and VEGF expression as well as activity by suppressing their regulatory genes. Furthermore, phosphorylation of TNF-α-induced phosphatidyl-inositol 3 kinase (PI3K)/Akt was significantly downregulated in the presence of GA accompanying with the inhibition of NF-κB activity, and as presumed, the specific PI3K/Akt inhibitor LY294002 significantly decreased MMP-9 and VEGF expression as well as activity. These results suggest that GA operates as a potential anti-invasive agent by downregulating MMP-9 and VEGF via inhibition of PI3K/Akt-dependent NF-κB activity. Taken together, GA might be an effective anti-invasive agent by suppressing PI3K/Akt-mediated NF-κB activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Mutations in the Atp1p and Atp3p subunits of yeast ATP synthase differentially affect respiration and fermentation in Saccharomyces cerevisiae.

    PubMed

    Francis, Brian R; White, Karen H; Thorsness, Peter E

    2007-04-01

    ATP1-111, a suppressor of the slow-growth phenotype of yme1Delta lacking mitochondrial DNA is due to the substitution of phenylalanine for valine at position 111 of the alpha-subunit of mitochondrial ATP synthase (Atp1p in yeast). The suppressing activity of ATP1-111 requires intact beta (Atp2p) and gamma (Atp3p) subunits of mitochondrial ATP synthase, but not the stator stalk subunits b (Atp4p) and OSCP (Atp5p). ATP1-111 and other similarly suppressing mutations in ATP1 and ATP3 increase the growth rate of wild-type strains lacking mitochondrial DNA. These suppressing mutations decrease the growth rate of yeast containing an intact mitochondrial chromosome on media requiring oxidative phosphorylation, but not when grown on fermentable media. Measurement of chronological aging of yeast in culture reveals that ATP1 and ATP3 suppressor alleles in strains that contain mitochondrial DNA are longer lived than the isogenic wild-type strain. In contrast, the chronological life span of yeast cells lacking mitochondrial DNA and containing these mutations is shorter than that of the isogenic wild-type strain. Spore viability of strains bearing ATP1-111 is reduced compared to wild type, although ATP1-111 enhances the survival of spores that lacked mitochondrial DNA.

  1. A stromal region of cytochrome b6f subunit IV is involved in the activation of the Stt7 kinase in Chlamydomonas

    PubMed Central

    Zito, Francesca; Blangy, Stéphanie; Auroy, Pascaline; Johnson, Xenie; Peltier, Gilles

    2017-01-01

    The cytochrome (cyt) b6f complex and Stt7 kinase regulate the antenna sizes of photosystems I and II through state transitions, which are mediated by a reversible phosphorylation of light harvesting complexes II, depending on the redox state of the plastoquinone pool. When the pool is reduced, the cyt b6f activates the Stt7 kinase through a mechanism that is still poorly understood. After random mutagenesis of the chloroplast petD gene, coding for subunit IV of the cyt b6f complex, and complementation of a ΔpetD host strain by chloroplast transformation, we screened for impaired state transitions in vivo by chlorophyll fluorescence imaging. We show that residues Asn122, Tyr124, and Arg125 in the stromal loop linking helices F and G of cyt b6f subunit IV are crucial for state transitions. In vitro reconstitution experiments with purified cyt b6f and recombinant Stt7 kinase domain show that cyt b6f enhances Stt7 autophosphorylation and that the Arg125 residue is directly involved in this process. The peripheral stromal structure of the cyt b6f complex had, until now, no reported function. Evidence is now provided of a direct interaction with Stt7 on the stromal side of the membrane. PMID:29078388

  2. Artificial ligand binding within the HIF2[alpha] PAS-B domain of the HIF2 transcription factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheuermann, Thomas H.; Tomchick, Diana R.; Machius, Mischa

    2009-05-12

    The hypoxia-inducible factor (HIF) basic helix-loop-helix Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim (bHLH-PAS) transcription factors are master regulators of the conserved molecular mechanism by which metazoans sense and respond to reductions in local oxygen concentrations. In humans, HIF is critically important for the sustained growth and metastasis of solid tumors. Here, we describe crystal structures of the heterodimer formed by the C-terminal PAS domains from the HIF2{alpha} and ARNT subunits of the HIF2 transcription factor, both in the absence and presence of an artificial ligand. Unexpectedly, the HIF2{alpha} PAS-B domain contains a large internal cavity that accommodates ligands identified frommore » a small-molecule screen. Binding one of these ligands to HIF2{alpha} PAS-B modulates the affinity of the HIF2{alpha}:ARNT PAS-B heterodimer in vitro. Given the essential role of PAS domains in forming active HIF heterodimers, these results suggest a presently uncharacterized ligand-mediated mechanism for regulating HIF2 activity in endogenous and clinical settings.« less

  3. A double mutation in exon 6 of the [beta]-hexosaminidase [alpha] subunit in a patient with the B1 variant of Tay-Sachs disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainsworth, P.J.; Coulter-Mackie, M.B.

    1992-10-01

    The B1 variant form of Tay-Sachs disease is enzymologically unique in that the causative mutation(s) appear to affect the active site in the [alpha] subunit of [beta]-hexosaminidase A without altering its ability to associate with the [beta] subunit. Most previously reported B1 variant mutations were found in exon 5 within codon 178. The coding sequence of the [alpha] subunit gene of a patient with the B1 variant form was examined with a combination of reverse transcription of mRNA to cDNA, PCR, and dideoxy sequencing. A double mutation in exon 6 has been identified: a G[sub 574][yields]C transversion causing a val[submore » 192][yields]leu change and a G[sub 598][yields] A transition resulting in a val[sub 200][yields]met alteration. The amplified cDNAs were otherwise normal throughout their sequence. The 574 and 598 alterations have been confirmed by amplification directly from genomic DNA from the patient and her mother. Transient-expression studies of the two exon 6 mutations (singly or together) in COS-1 cells show that the G[sub 574][yields]C change is sufficient to cause the loss of enzyme activity. The biochemical phenotype of the 574 alteration in transfection studies is consistent with that expected for a B1 variant mutation. As such, this mutation differs from previously reported B1 variant mutations, all of which occur in exon 5. 31 refs., 2 figs., 2 tabs.« less

  4. XAS Characterization of the Zn Site of Non-structural Protein 3 (NS3) from Hepatitis C Virus

    NASA Astrophysics Data System (ADS)

    Ascone, I.; Nobili, G.; Benfatto, M.; Congiu-Castellano, A.

    2007-02-01

    XANES spectra of non structural protein 3 (NS3) have been calculated using 4 Zn coordination models from three crystallographic structures in the Protein Data Base (PDB): 1DY9, subunit B, 1CU1 subunit A and B, and 1JXP subunit B. Results indicate that XANES is an appropriate tool to distinguish among them. Experimental XANES spectra have been simulated refining crystallographic data. The model obtained by XAS is compared with the PDB models.

  5. Initial bridges between two ribosomal subunits are formed within 9.4 milliseconds, as studied by time-resolved cryo-EM.

    PubMed

    Shaikh, Tanvir R; Yassin, Aymen S; Lu, Zonghuan; Barnard, David; Meng, Xing; Lu, Toh-Ming; Wagenknecht, Terence; Agrawal, Rajendra K

    2014-07-08

    Association of the two ribosomal subunits during the process of translation initiation is a crucial step of protein synthesis. The two subunits (30S and 50S) of the bacterial 70S ribosome are held together by 12 dynamic bridges involving RNA-RNA, RNA-protein, and protein-protein interactions. The process of bridge formation, such as whether all these bridges are formed simultaneously or in a sequential order, is poorly understood. To understand such processes, we have developed and implemented a class of microfluidic devices that mix two components to completion within 0.4 ms and spray the mixture in the form of microdroplets onto an electron microscopy grid, yielding a minimum reaction time of 9.4 ms before cryofixation. Using these devices, we have obtained cryo-EM data corresponding to reaction times of 9.4 and 43 ms and have determined 3D structures of ribosomal subunit association intermediates. Molecular analyses of the cryo-EM maps reveal that eight intersubunit bridges (bridges B1a, B1b, B2a, B2b, B3, B7a, B7b, and B8) form within 9.4 ms, whereas the remaining four bridges (bridges B2c, B4, B5, and B6) take longer than 43 ms to form, suggesting that bridges are formed in a stepwise fashion. Our approach can be used to characterize sequences of various dynamic functional events on complex macromolecular assemblies such as ribosomes.

  6. The Val{sup 192}Leu mutation in the {alpha}-subunit of {beta}-hexosaminidase A is not associated with the B1-variant form of Tay-Sachs disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Y.; Vavougios, G.; Hinek, A.

    1996-07-01

    Substitution mutations adversely affecting the {alpha}-subunit of {beta}-hexosaminidase A ({alpha}{beta}) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-{alpha} chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an {open_quotes}active-site{close_quotes} residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all {alpha}-specific activity. This biochemical phenotype is referred to as the {open_quotes}B1-variant form{close_quotes} of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and bothmore » subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, {alpha}-Val{sup 192}Leu. Chinese hamster ovary cells were permanently cotransfected with an {alpha}-cDNA-construct encoding the substitution and a mutant {beta}-cDNA ({beta}-Arg{sup 211}Lys), encoding a {beta}-subunit that is inactive but normal in all other respects. We were surprised to find that the Val{sup 192}Leu substitution produced a pro-{alpha} chain that did not form {alpha}-{beta} dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val{sup 192}Leu substitution does not specifically affect the {alpha}-active site. 23 refs., 4 figs., 2 tabs.« less

  7. The eukaryotic translation initiation factor 3 subunit L protein interacts with Flavivirus NS5 and may modulate yellow fever virus replication

    PubMed Central

    2013-01-01

    Background Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. Methods To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. Results In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L

  8. The eukaryotic translation initiation factor 3 subunit L protein interacts with Flavivirus NS5 and may modulate yellow fever virus replication.

    PubMed

    Morais, Ana Ts; Terzian, Ana Cb; Duarte, Danilo Vb; Bronzoni, Roberta Vm; Madrid, Maria Cfs; Gavioli, Arieli F; Gil, Laura Hvg; Oliveira, Amanda G; Zanelli, Cleslei F; Valentini, Sandro R; Rahal, Paula; Nogueira, Mauricio L

    2013-06-22

    Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role

  9. Mutations in STT3A and STT3B cause two congenital disorders of glycosylation

    PubMed Central

    Shrimal, Shiteshu; Ng, Bobby G.; Losfeld, Marie-Estelle; Gilmore, Reid; Freeze, Hudson H.

    2013-01-01

    We describe two unreported types of congenital disorders of glycosylation (CDG) which are caused by mutations in different isoforms of the catalytic subunit of the oligosaccharyltransferase (OST). Each isoform is encoded by a different gene (STT3A or STT3B), resides in a different OST complex and has distinct donor and acceptor substrate specificities with partially overlapping functions in N-glycosylation. The two cases from unrelated consanguineous families both show neurologic abnormalities, hypotonia, intellectual disability, failure to thrive and feeding problems. A homozygous mutation (c.1877T > C) in STT3A causes a p.Val626Ala change and a homozygous intronic mutation (c.1539 + 20G > T) in STT3B causes the other disorder. Both mutations impair glycosylation of a GFP biomarker and are rescued with the corresponding cDNA. Glycosylation of STT3A- and STT3B-specific acceptors is decreased in fibroblasts carrying the corresponding mutated gene and expression of the STT3A (p.Val626Ala) allele in STT3A-deficient HeLa cells does not rescue glycosylation. No additional cases were found in our collection or in reviewing various databases. The STT3A mutation significantly impairs glycosylation of the biomarker transferrin, but the STT3B mutation only slightly affects its glycosylation. Additional cases of STT3B-CDG may be missed by transferrin analysis and will require exome or genome sequencing. PMID:23842455

  10. 2-Methyltetrahydro-3-benzazepin-1-ols - The missing link in SAR of GluN2B selective NMDA receptor antagonists.

    PubMed

    Dey, Sougata; Schepmann, Dirk; Wünsch, Bernhard

    2018-01-15

    The NMDA receptor containing GluN2B subunits represents a promising target for the development of drugs for the treatment of various neurological disorders including neurodegenerative diseases. In order to study the role of CH 3 and OH moieties trisubstituted tetrahydro-3-benzazepines 4 were designed as missing link between tetra- and disubstituted 3-benzazepines 2 and 5. The synthesis of 4 comprises eight reaction steps starting from alanine. The intramolecular Friedel-Crafts acylation to obtain the ketone 12 and the base-catalyzed elimination of trifluoromethanesulfinate (CF 3 SO 2 - ) followed by NaBH 4 reduction represent the key steps. The GluN2B affinity of the cis-configured 3-benzazepin-1-ol cis-4a with a 4-phenylbutyl side chain (K i  = 252 nM) is considerably lower than the GluN2B affinity of (R,R)-2 (K i  = 17 nM) indicating the importance of the phenolic OH moiety for the interaction with the receptor protein. Introduction of an additional CH 3 moiety in 2-position led to a slight decrease of GluN2B affinity as can be seen by comparing the affinity data of cis-4a and 5. The homologous phenylpentyl derivative cis-4b shows the highest GluN2B affinity (K i  = 56 nM) of this series of compounds. According to docking studies cis-4a adopts the same binding mode as the cocrystallized ligand ifenprodil-keto 1A and 5 at the interface of the GluN2B and GluN1a subunits. The same crucial H-bonds are formed between the C(O)NH 2 moiety of Gln110 within the GluN2B subunit and the protonated amino moiety and the OH moiety of (R,R)-cis-4a. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Functional Characterization of the Small Regulatory Subunit PetP from the Cytochrome b6f Complex in Thermosynechococcus elongatus[C][W

    PubMed Central

    Rexroth, Sascha; Rexroth, Dorothea; Veit, Sebastian; Plohnke, Nicole; Cormann, Kai U.; Nowaczyk, Marc M.; Rögner, Matthias

    2014-01-01

    The cyanobacterial cytochrome b6f complex is central for the coordination of photosynthetic and respiratory electron transport and also for the balance between linear and cyclic electron transport. The development of a purification strategy for a highly active dimeric b6f complex from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 enabled characterization of the structural and functional role of the small subunit PetP in this complex. Moreover, the efficient transformability of this strain allowed the generation of a ΔpetP mutant. Analysis on the whole-cell level by growth curves, photosystem II light saturation curves, and P700+ reduction kinetics indicate a strong decrease in the linear electron transport in the mutant strain versus the wild type, while the cyclic electron transport via photosystem I and cytochrome b6f is largely unaffected. This reduction in linear electron transport is accompanied by a strongly decreased stability and activity of the isolated ΔpetP complex in comparison with the dimeric wild-type complex, which binds two PetP subunits. The distinct behavior of linear and cyclic electron transport may suggest the presence of two distinguishable pools of cytochrome b6f complexes with different functions that might be correlated with supercomplex formation. PMID:25139006

  12. The p40 Subunit of Interleukin (IL)-12 Promotes Stabilization and Export of the p35 Subunit

    PubMed Central

    Jalah, Rashmi; Rosati, Margherita; Ganneru, Brunda; Pilkington, Guy R.; Valentin, Antonio; Kulkarni, Viraj; Bergamaschi, Cristina; Chowdhury, Bhabadeb; Zhang, Gen-Mu; Beach, Rachel Kelly; Alicea, Candido; Broderick, Kate E.; Sardesai, Niranjan Y.; Pavlakis, George N.; Felber, Barbara K.

    2013-01-01

    IL-12 is a 70-kDa heterodimeric cytokine composed of the p35 and p40 subunits. To maximize cytokine production from plasmid DNA, molecular steps controlling IL-12p70 biosynthesis at the posttranscriptional and posttranslational levels were investigated. We show that the combination of RNA/codon-optimized gene sequences and fine-tuning of the relative expression levels of the two subunits within a cell resulted in increased production of the IL-12p70 heterodimer. We found that the p40 subunit plays a critical role in enhancing the stability, intracellular trafficking, and export of the p35 subunit. This posttranslational regulation mediated by the p40 subunit is conserved in mammals. Based on these findings, dual gene expression vectors were generated, producing an optimal ratio of the two subunits, resulting in a ∼1 log increase in human, rhesus, and murine IL-12p70 production compared with vectors expressing the wild type sequences. Such optimized DNA plasmids also produced significantly higher levels of systemic bioactive IL-12 upon in vivo DNA delivery in mice compared with plasmids expressing the wild type sequences. A single therapeutic injection of an optimized murine IL-12 DNA plasmid showed significantly more potent control of tumor development in the B16 melanoma cancer model in mice. Therefore, the improved IL-12p70 DNA vectors have promising potential for in vivo use as molecular vaccine adjuvants and in cancer immunotherapy. PMID:23297419

  13. Spatial location of neutralizing and non-neutralizing B cell epitopes on domain 1 of ricin toxin's binding subunit.

    PubMed

    Rong, Yinghui; Van Slyke, Greta; Vance, David J; Westfall, Jennifer; Ehrbar, Dylan; Mantis, Nicholas J

    2017-01-01

    Ricin toxin's binding subunit (RTB) is a galactose-/N-acetylgalactosamine (Gal/GalNac)-specific lectin that mediates uptake and intracellular trafficking of ricin within mammalian cells. Structurally, RTB consists of two globular domains, each divided into three homologous sub-domains (α, β, γ). In this report, we describe five new murine IgG monoclonal antibodies (mAbs) against RTB: MH3, 8A1, 8B3, LF1, and LC5. The mAbs have similar binding affinities (KD) for ricin holotoxin, but displayed a wide range of in vitro toxin-neutralizing activities. Competition ELISAs indicate that the two most potent toxin-neutralizing mAbs (MH3, 8A1), as well as one of the moderate toxin-neutralizing mAbs (LF1), recognize distinct epitopes near the low affinity Gal recognition domain in RTB subdomain 1α. Evaluated in a mouse model of systemic ricin challenge, all five mAbs afforded some benefit against intoxication, but only MH3 was protective. However, neither MH3 nor 24B11, another well-characterized mAb against RTB subdomain 1α, could passively protect mice against a mucosal (intranasal) ricin challenge. This is in contrast to SylH3, a previously characterized mAb directed against an epitope near RTB's high affinity Gal/GalNac recognition element in sub-domain 2γ, which protected animals against systemic and mucosal ricin exposure. SylH3 was significantly more effective than MH3 and 24B11 at blocking ricin attachment to host cell receptors, suggesting that mucosal immunity to ricin is best imparted by antibodies that target RTB's high affinity Gal/GalNac recognition element in subdomain 2γ, not the low affinity Gal recognition domain in subdomain 1α.

  14. Modulation of BK channel voltage gating by different auxiliary β subunits

    PubMed Central

    Contreras, Gustavo F.; Neely, Alan; Alvarez, Osvaldo; Gonzalez, Carlos; Latorre, Ramon

    2012-01-01

    Calcium- and voltage-activated potassium channels (BK) are regulated by a multiplicity of signals. The prevailing view is that different BK gating mechanisms converge to determine channel opening and that these gating mechanisms are allosterically coupled. In most instances the pore forming α subunit of BK is associated with one of four alternative β subunits that appear to target specific gating mechanisms to regulate the channel activity. In particular, β1 stabilizes the active configuration of the BK voltage sensor having a large effect on BK Ca2+ sensitivity. To determine the extent to which β subunits regulate the BK voltage sensor, we measured gating currents induced by the pore-forming BK α subunit alone and with the different β subunits expressed in Xenopus oocytes (β1, β2IR, β3b, and β4). We found that β1, β2, and β4 stabilize the BK voltage sensor in the active conformation. β3 has no effect on voltage sensor equilibrium. In addition, β4 decreases the apparent number of charges per voltage sensor. The decrease in the charge associated with the voltage sensor in α β4 channels explains most of their biophysical properties. For channels composed of the α subunit alone, gating charge increases slowly with pulse duration as expected if a significant fraction of this charge develops with a time course comparable to that of K+ current activation. In the presence of β1, β2, and β4 this slow component develops in advance of and much more rapidly than ion current activation, suggesting that BK channel opening proceeds in two steps. PMID:23112204

  15. Alteration of the SETBP1 gene and splicing pathway genes SF3B1, U2AF1, and SRSF2 in childhood acute myeloid leukemia.

    PubMed

    Choi, Hyun-Woo; Kim, Hye-Ran; Baek, Hee-Jo; Kook, Hoon; Cho, Duck; Shin, Jong-Hee; Suh, Soon-Pal; Ryang, Dong-Wook; Shin, Myung-Geun

    2015-01-01

    Recurrent somatic SET-binding protein 1 (SETBP1) and splicing pathway gene mutations have recently been found in atypical chronic myeloid leukemia and other hematologic malignancies. These mutations have been comprehensively analyzed in adult AML, but not in childhood AML. We investigated possible alteration of the SETBP1, splicing factor 3B subunit 1 (SF3B1), U2 small nuclear RNA auxiliary factor 1 (U2AF1), and serine/arginine-rich splicing factor 2 (SRSF2) genes in childhood AML. Cytogenetic and molecular analyses were performed to reveal chromosomal and genetic alterations. Sequence alterations in the SETBP1, SF3B1, U2AF1, and SRSF2 genes were examined by using direct sequencing in a cohort of 53 childhood AML patients. Childhood AML patients did not harbor any recurrent SETBP1 gene mutations, although our study did identify a synonymous mutation in one patient. None of the previously reported aberrations in the mutational hotspot of SF3B1, U2AF1, and SRSF2 were identified in any of the 53 patients. Alterations of the SETBP1 gene or SF3B1, U2AF1, and SRSF2 genes are not common genetic events in childhood AML, implying that the mutations are unlikely to exert a driver effect in myeloid leukemogenesis during childhood.

  16. Fusion of Escherichia coli heat-stable enterotoxin and heat-labile enterotoxin B subunit.

    PubMed

    Guzman-Verduzco, L M; Kupersztoch, Y M

    1987-11-01

    The 3' terminus of the DNA coding for the extracellular Escherichia coli heat-stable enterotoxin (ST) devoid of transcription and translation stop signals was fused to the 5' terminus of the DNA coding for the periplasmic B subunit of the heat-labile enterotoxin (LTB) deleted of ribosomal binding sites and leader peptide. By RNA-DNA hybridization analysis, it was shown that the fused DNA was transcribed in vivo into an RNA species in close agreement with the expected molecular weight inferred from the nucleotide sequence. The translation products of the fused DNA resulted in a hybrid molecule recognized in Western blots (immunoblots) with antibodies directed against the heat-labile moiety. Anti-LTB antibodies coupled to a solid support bound ST and LTB simultaneously when incubated with ST-LTB cellular extracts. By [35S]cysteine pulse-chase experiments, it was shown that the fused ST-LTB polypeptide was converted from a precursor with an equivalent electrophoretic mobility of 20,800 daltons to an approximately 18,500-dalton species, which accumulated within the cell. The data suggest that wild-type ST undergoes at least two processing steps during its export to the culture supernatant. Blocking the natural carboxy terminus of ST inhibited the second proteolytic step and extracellular delivery of the hybrid molecule.

  17. The challenges of classical swine fever control: modified live and E2 subunit vaccines.

    PubMed

    Huang, Yu-Liang; Deng, Ming-Chung; Wang, Fun-In; Huang, Chin-Cheng; Chang, Chia-Yi

    2014-01-22

    Classical swine fever (CSF) is an economically important, highly contagious disease of swine worldwide. CSF is caused by classical swine fever virus (CSFV), and domestic pigs and wild boars are its only natural hosts. The two main strategies used to control CSF epidemic are systematic prophylactic vaccination and a non-vaccination stamping-out policy. This review compares the protective efficacy of the routinely used modified live vaccine (MLV) and E2 subunit vaccines and summarizes the factors that influence the efficacy of the vaccines and the challenges that both vaccines face to CSF control. Although MLV provide earlier and more complete protection than E2 subunit vaccines, it has the drawback of not allowing differentiation between infected and vaccinated animals (DIVA). The marker vaccine of E2 protein with companion discriminatory test to detect antibodies against E(rns) allows DIVA and is a promising strategy for future control and eradication of CSF. Maternal derived antibody (MDA) is the critical factor in impairing the efficacy of both MLV and E2 subunit vaccines, so the well-designed vaccination programs of sows and piglets should be considered together. Because of the antigen variation among various genotypes of CSFV, antibodies raised by either MLV or subunit vaccine neutralize genotypically homologous strains better than heterologous ones. However, although this is not a major concern for MLV as the induced immune responses can protect pigs against the challenge of various genotypes of CSFVs, it is critical for E2 subunit vaccines. It is thus necessary to evaluate whether the E2 subunit vaccine can completely protect against the current prevalent strains in the field. An ideal new generation of vaccine should be able to maintain the high protective efficiency of MLV and overcome the problem of antigenic variations while allowing for DIVA. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Phenotypic consequences of deletion of the {gamma}{sub 3}, {alpha}{sub 5}, or {beta}{sub 3} subunit of the type A {gamma}-aminobutyric acid receptor in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culia, C.T.; Stubbs, L.J.; Montgomery, C.S.

    1994-03-29

    Three genes (Gabrg3, Gabra5, and Gabrb3) encoding the {gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3} subunits of the type A {gamma}-aminobutyric acid receptor, respectively, are known to map near the pink-eyed dilution (p) locus in mouse chromosome 7. This region shares homology with a segment of human chromosome 15 that is implicated in Angelman syndrome, an inherited neurobehavioral disorder. By mapping Gabrg3-Gabra5-Gabrb3-telomere. Like Gabrb3, neither the Gabra5 nor Gabrg3 gene is functionally imprinted in adult mouse brain. Mice deleted for all three subunits die at birth with a cleft palate, although there are rare survivors ({approximately} 5%) that do notmore » have a cleft palate but do exhibit a neurological abnormality characterized by tremor, jerky gait, and runtiness. The authors have previously suggested that deficiency of the {beta}{sub 3} subunit may be responsible for the clefting defect. Most notably, however, in this report they describe mice carrying two overlapping, complementing p deletions that fail to express the {gamma}{sub 3} transcript, as well as mice from another line that express neither the {gamma}{sub 3} nor {alpha}{sub 5} transcripts. Surprisingly, mice from both of these lines are phenotypically normal and do not exhibit any of the neurological symptoms characteristic of the rare survivors that are deleted for all three ({gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3}) subunits. These mice therefore provide a whole-organism type A {gamma}-aminobutyric-acid receptor background that is devoid of any receptor subtypes that normally contain the {gamma}{sub 3} and/or {alpha}{sub 5} subunits. The absence of an overt neurological phenotype in mice lacking the {gamma}{sub 3} and/or {alpha}{sub 5} subunits also suggests that mutations in these genes are unlikely to provide useful animal models for Angelman syndrome in humans.« less

  19. Id-1 activation of PI3K/Akt/NFkappaB signaling pathway and its significance in promoting survival of esophageal cancer cells.

    PubMed

    Li, Bin; Cheung, Pak Yan; Wang, Xianghong; Tsao, Sai Wah; Ling, Ming Tat; Wong, Yong Chuan; Cheung, Annie L M

    2007-11-01

    Inhibitor of differentiation or DNA binding (Id-1) is a helix-loop-helix protein that is over-expressed in many types of cancer including esophageal cancer. This study aims to investigate its effects on the phosphatidylinositol-3-kinase (PI3K)/Akt/ nuclear factor kappa B (NFkappaB) signaling pathway and the significance in protecting esophageal cancer cells against apoptosis. We found elevated expression of phosphorylated forms of Akt, glycogen synthase kinase 3beta and inhibitor of kappa B, as well as increased nuclear translocation of NFkappaB subunit p65 and NFkappaB DNA-binding activity, in esophageal cancer cells with stable ectopic Id-1 expression. Transient transfection of Id-1 into HEK293 cells confirmed activation of PI3K/Akt/NFkappaB signaling and the effects were counteracted by the PI3K inhibitor LY294002. Treatment with tumor necrosis factor-alpha (TNF-alpha) elicited a significantly weaker apoptotic response, following a marked and sustained activation of Akt and NFkappaB in the Id-1-over-expressing cells, compared with the vector control. The effects of Id-1 on the PI3K/Akt/NFkappaB signaling pathway and apoptosis were reversed in esophageal cancer cells transfected with siRNA against Id-1. In addition, inhibition of PI3K or NFkappaB signaling using the PI3K inhibitor LY294002 or the NFkappaB inhibitor Bay11-7082 increased the sensitivity of Id-1-over-expressing esophageal cancer cells to TNF-alpha-induced apoptosis. Our results provide the first evidence that Id-1 induces the activation of PI3K/Akt/NFkappaB signaling pathway, and protects esophageal cancer cells from TNF-alpha-induced apoptosis in vitro. Inactivation of Id-1 may provide us with a novel strategy to improve the treatment and survival of patients with esophageal cancer.

  20. The multifaceted subunit interfaces of ionotropic glutamate receptors.

    PubMed

    Green, Tim; Nayeem, Naushaba

    2015-01-01

    The past fifteen years has seen a revolution in our understanding of ionotropic glutamate receptor (iGluR) structure, starting with the first view of the ligand binding domain (LBD) published in 1998, and in many ways culminating in the publication of the full-length structure of GluA2 in 2009. These reports have revealed not only the central role played by subunit interfaces in iGluR function, but also myriad binding sites within interfaces for endogenous and exogenous factors. Changes in the conformation of inter-subunit interfaces are central to transmission of ligand gating into pore opening (itself a rearrangement of interfaces), and subsequent closure through desensitization. With the exception of the agonist binding site, which is located entirely within individual subunits, almost all modulatory factors affecting iGluRs appear to bind to sites in subunit interfaces. This review seeks to summarize what we currently understand about the diverse roles interfaces play in iGluR function, and to highlight questions for future research. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  1. Xanthomonas TAL effectors hijack host basal transcription factor IIA α and γ subunits for invasion.

    PubMed

    Ma, Ling; Wang, Qiang; Yuan, Meng; Zou, Tingting; Yin, Ping; Wang, Shiping

    2018-02-05

    The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria, which infect a broad range of crops and wild plant species, cause symptoms with leaf blights, streaks, spots, stripes, necrosis, wilt, cankers and gummosis on leaves, stems and fruits in a wide variety of plants via injecting their effector proteins into the host cell during infection. Among these virulent effectors, transcription activator-like effectors (TALEs) interact with the γ subunit of host transcription factor IIA (TFIIAγ) to activate the transcription of host disease susceptibility genes. Functional TFIIA is a ternary complex comprising α, β and γ subunits. However, whether TALEs recruit TFIIAα, TFIIAβ, or both remains unknown. The underlying molecular mechanisms by which TALEs mediate host susceptibility gene activation require full elucidation. Here, we show that TALEs interact with the α+γ binary subcomplex but not the α+β+γ ternary complex of rice TFIIA (holo-OsTFIIA). The transcription factor binding (TFB) regions of TALEs, which are highly conserved in Xanthomonas species, have a dominant role in these interactions. Furthermore, the interaction between TALEs and the α+γ complex exhibits robust DNA binding activity in vitro. These results collectively demonstrate that TALE-carrying pathogens hijack the host basal transcription factors TFIIAα and TFIIAγ, but not TFIIAβ, to enhance host susceptibility during pathogen infection. The uncovered mechanism widens new insights on host-microbe interaction and provide an applicable strategy to breed high-resistance crop varieties. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. The role of GluN2A and GluN2B NMDA receptor subunits in AgRP and POMC neurons on body weight and glucose homeostasis.

    PubMed

    Üner, Aykut; Gonçalves, Gabriel H M; Li, Wenjing; Porceban, Matheus; Caron, Nicole; Schönke, Milena; Delpire, Eric; Sakimura, Kenji; Bjørbæk, Christian

    2015-10-01

    Hypothalamic agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) expressing neurons play critical roles in control of energy balance. Glutamatergic input via n-methyl-d-aspartate receptors (NMDARs) is pivotal for regulation of neuronal activity and is required in AgRP neurons for normal body weight homeostasis. NMDARs typically consist of the obligatory GluN1 subunit and different GluN2 subunits, the latter exerting crucial differential effects on channel activity and neuronal function. Currently, the role of specific GluN2 subunits in AgRP and POMC neurons on whole body energy and glucose balance is unknown. We used the cre-lox system to genetically delete GluN2A or GluN2B only from AgRP or POMC neurons in mice. Mice were then subjected to metabolic analyses and assessment of AgRP and POMC neuronal function through morphological studies. We show that loss of GluN2B from AgRP neurons reduces body weight, fat mass, and food intake, whereas GluN2B in POMC neurons is not required for normal energy balance control. GluN2A subunits in either AgRP or POMC neurons are not required for regulation of body weight. Deletion of GluN2B reduces the number of AgRP neurons and decreases their dendritic length. In addition, loss of GluN2B in AgRP neurons of the morbidly obese and severely diabetic leptin-deficient Lep (ob/ob) mice does not affect body weight and food intake but, remarkably, leads to full correction of hyperglycemia. Lep (ob/ob) mice lacking GluN2B in AgRP neurons are also more sensitive to leptin's anti-obesity actions. GluN2B-containing NMDA receptors in AgRP neurons play a critical role in central control of body weight homeostasis and blood glucose balance via mechanisms that likely involve regulation of AgRP neuronal survival and structure, and modulation of hypothalamic leptin action.

  3. Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass.

    PubMed

    Lee, Young-Sam; Gregory, Mark T; Yang, Wei

    2014-02-25

    DNA polymerase ζ (Pol ζ) is a eukaryotic B-family DNA polymerase that specializes in translesion synthesis and is essential for normal embryogenesis. At a minimum, Pol ζ consists of a catalytic subunit Rev3 and an accessory subunit Rev7. Mammalian Rev3 contains >3,000 residues and is twice as large as the yeast homolog. To date, no vertebrate Pol ζ has been purified for biochemical characterization. Here we report purification of a series of human Rev3 deletion constructs expressed in HEK293 cells and identification of a minimally catalytically active human Pol ζ variant. With a tagged form of an active Pol ζ variant, we isolated two additional accessory subunits of human Pol ζ, PolD2 and PolD3. The purified four-subunit Pol ζ4 (Rev3-Rev7-PolD2-PolD3) is much more efficient and more processive at bypassing a 1,2-intrastrand d(GpG)-cisplatin cross-link than the two-subunit Pol ζ2 (Rev3-Rev7). We show that complete bypass of cisplatin lesions requires Pol η to insert dCTP opposite the 3' guanine and Pol ζ4 to extend the primers.

  4. Mutation of neuron-specific chromatin remodeling subunit BAF53b: rescue of plasticity and memory by manipulating actin remodeling.

    PubMed

    Vogel Ciernia, Annie; Kramár, Enikö A; Matheos, Dina P; Havekes, Robbert; Hemstedt, Thekla J; Magnan, Christophe N; Sakata, Keith; Tran, Ashley; Azzawi, Soraya; Lopez, Alberto; Dang, Richard; Wang, Weisheng; Trieu, Brian; Tong, Joyce; Barrett, Ruth M; Post, Rebecca J; Baldi, Pierre; Abel, Ted; Lynch, Gary; Wood, Marcelo A

    2017-05-01

    Recent human exome-sequencing studies have implicated polymorphic Brg1-associated factor (BAF) complexes (mammalian SWI/SNF chromatin remodeling complexes) in several intellectual disabilities and cognitive disorders, including autism. However, it remains unclear how mutations in BAF complexes result in impaired cognitive function. Post-mitotic neurons express a neuron-specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Subdomain 2 of BAF53b is essential for the differentiation of neuronal precursor cells into neurons. We generated transgenic mice lacking subdomain 2 of Baf53b (BAF53bΔSB2). Long-term synaptic potentiation (LTP) and long-term memory, both of which are associated with phosphorylation of the actin severing protein cofilin, were assessed in these animals. A phosphorylation mimic of cofilin was stereotaxically delivered into the hippocampus of BAF53bΔSB2 mice in an effort to rescue LTP and memory. BAF53bΔSB2 mutant mice show impairments in phosphorylation of synaptic cofilin, LTP, and memory. Both the synaptic plasticity and memory deficits are rescued by overexpression of a phosphorylation mimetic of cofilin. Baseline physiology and behavior were not affected by the mutation or the experimental treatment. This study suggests a potential link between nBAF function, actin cytoskeletal remodeling at the dendritic spine, and memory formation. This work shows that a targeted manipulation of synaptic function can rescue adult plasticity and memory deficits caused by manipulations of nBAF, and thereby provides potential novel avenues for therapeutic development for multiple intellectual disability disorders. © 2017 Vogel Ciernia et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Impaired degradation of inhibitory subunit of NF-κB (IκB) and β-catenin as a result of targeted disruption of the β-TrCP1 gene

    PubMed Central

    Nakayama, Keiko; Hatakeyama, Shigetsugu; Maruyama, Shun-ichiro; Kikuchi, Akira; Onoé, Kazunori; Good, Robert A.; Nakayama, Keiichi I.

    2003-01-01

    β-TrCP1 (also known as Fbw1a or FWD1) is the F-box protein component of an Skp1/Cul1/F-box (SCF)-type ubiquitin ligase complex. Although biochemical studies have suggested that β-TrCP1 targets inhibitory subunit of NF-κB(IκB) proteins and β-catenin for ubiquitylation, the physiological role of β-TrCP1 in mammals has remained unclear. We have now generated mice deficient in β-TrCP1 and shown that the degradation of IκBα and IκBβ is reproducibly, but not completely, impaired in the cells of these animals. The nuclear translocation and DNA-binding activity of NF-κB as well as the ability of this transcription factor to activate a luciferase reporter gene were also inhibited in β-TrCP1–/– cells compared with those apparent in wild-type cells. The subcellular localization of β-catenin was altered markedly in β-TrCP1–/– cells. Furthermore, the rate of proliferation was reduced and both cell size and the percentage of polyploid cells were increased in embryonic fibroblasts derived from β-TrCP1–/– mice pared with the corresponding wild-type cells. These results suggest that β-TrCP1 contributes to, but is not absolutely required for, the degradation of IκB and β-catenin and the consequent regulation of the NF-κB and Wnt signaling pathways, respectively. In addition, they implicate β-TrCP1 in the maintenance of ploidy during cell-cycle progression. PMID:12843402

  6. Tissue culture and expression of Escherichia coli heat-labile enterotoxin B subunit in transgenic Peperomia pellucida.

    PubMed

    Loc, Nguyen Hoang; Bach, Nguyen Hoang; Kim, Tae-Geum; Yang, Moon-Sik

    2010-07-01

    The B subunit of Escherichia coli heat-labile enterotoxin (LTB), a non-toxic molecule with potent biological properties, is a powerful mucosal and parenteral adjuvant that induces a strong immune response against co-administered or coupled antigens. We synthesized a gene encoding the LTB adapted to the optimized coding sequences in plants and fused to the endoplasmic reticulum retention signal SEKDEL to enhance its expression level and protein assembly in plants. The synthetic LTB gene was located into a plant expression vector under the control of CaMV 35S promoter and was introduced into Peperomia pellucida by biolistic transformation method. The integration of synthetic LTB gene into genomic DNA of transgenic plants was confirmed by genomic DNA PCR amplification method. The assembly of plant-produced LTB was detected by western blot analysis. The amount of LTB protein produced in transgenic P. pellucida leaves was approximately 0.75% of the total soluble plant protein. Enzyme-linked immunosorbent assay indicated that plant-synthesized LTB protein bound specifically to GM1-ganglioside, which is receptor for LTB on the cell surface, suggesting that the LTB subunits formed biological active pentamers. Copyright 2010 Elsevier Inc. All rights reserved.

  7. A Chimeric protein of CFA/I, CS6 subunits and LTB/STa toxoid protects immunized mice against enterotoxigenic Escherichia coli.

    PubMed

    Zeinalzadeh, Narges; Salmanian, Ali Hatef; Goujani, Goli; Amani, Jafar; Ahangari, Ghasem; Akhavian, Asal; Jafari, Mahyat

    2017-07-01

    Enterotoxigenic Escherichia Coli (ETEC) strains are the commonest bacteria causing diarrhea in children in developing countries and travelers to these areas. Colonization factors (CFs) and enterotoxins are the main virulence determinants in ETEC pathogenesis. Heterogeneity of CFs is commonly considered the bottleneck to developing an effective vaccine. It is believed that broad spectrum protection against ETEC would be achieved by induced anti-CF and anti-enterotoxin immunity simultaneously. Here, a fusion antigen strategy was used to construct a quadrivalent recombinant protein called 3CL and composed of CfaB, a structural subunit of CFA/I, and CS6 structural subunits, LTB and STa toxoid of ETEC. Its anti-CF and antitoxin immunogenicity was then assessed. To achieve high-level expression, the 3CL gene was synthesized using E. coli codon bias. Female BALB/C mice were immunized with purified recombinant 3CL. Immunized mice developed antibodies that were capable of detecting each recombinant subunit in addition to native CS6 protein and also protected the mice against ETEC challenge. Moreover, sera from immunized mice also neutralized STa toxin in a suckling mouse assay. These results indicate that 3CL can induce anti-CF and neutralizing antitoxin antibodies along with introducing CFA/I as a platform for epitope insertion. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  8. Crystal structure of a two-subunit TrkA octameric gating ring assembly

    DOE PAGES

    Deller, Marc C.; Johnson, Hope A.; Miller, Mitchell D.; ...

    2015-03-31

    The TM1088 locus of T. maritima codes for two proteins designated TM1088A and TM1088B, which combine to form the cytosolic portion of a putative Trk K⁺ transporter. We report the crystal structure of this assembly to a resolution of 3.45 Å. The high resolution crystal structures of the components of the assembly, TM1088A and TM1088B, were also determined independently to 1.50 Å and 1.55 Å, respectively. The TM1088 proteins are structurally homologous to each other and to other K⁺ transporter proteins, such as TrkA. These proteins form a cytosolic gating ring assembly that controls the flow of K⁺ ions acrossmore » the membrane. TM1088 represents the first structure of a two-subunit Trk assembly. Despite the atypical genetics and chain organization of the TM1088 assembly, it shares significant structural homology and an overall quaternary organization with other single-subunit K⁺ gating ring assemblies. This structure provides the first structural insights into what may be an evolutionary ancestor of more modern single-subunit K⁺ gating ring assemblies.« less

  9. Genome-wide identification and analysis of the B3 superfamily of transcription factors in Brassicaceae and major crop plants.

    PubMed

    Peng, Fred Y; Weselake, Randall J

    2013-05-01

    The plant-specific B3 superfamily of transcription factors has diverse functions in plant growth and development. Using a genome-wide domain analysis, we identified 92, 187, 58, 90, 81, 55, and 77 B3 transcription factor genes in the sequenced genome of Arabidopsis, Brassica rapa, castor bean (Ricinus communis), cocoa (Theobroma cacao), soybean (Glycine max), maize (Zea mays), and rice (Oryza sativa), respectively. The B3 superfamily has substantially expanded during the evolution in eudicots particularly in Brassicaceae, as compared to monocots in the analysis. We observed domain duplication in some of these B3 proteins, forming more complex domain architectures than currently understood. We found that the length of B3 domains exhibits a large variation, which may affect their exact number of α-helices and β-sheets in the core structure of B3 domains, and possibly have functional implications. Analysis of the public microarray data indicated that most of the B3 gene pairs encoding Arabidopsis-rice orthologs are preferentially expressed in different tissues, suggesting their different roles in these two species. Using ESTs in crops, we identified many B3 genes preferentially expressed in reproductive tissues. In a sequence-based quantitative trait loci analysis in rice and maize, we have found many B3 genes associated with traits such as grain yield, seed weight and number, and protein content. Our results provide a framework for future studies into the function of B3 genes in different phases of plant development, especially the ones related to traits in major crops.

  10. Unorthodox Acetylcholine Binding Sites Formed by α5 and β3 Accessory Subunits in α4β2* Nicotinic Acetylcholine Receptors.

    PubMed

    Jain, Akansha; Kuryatov, Alexander; Wang, Jingyi; Kamenecka, Theodore M; Lindstrom, Jon

    2016-11-04

    All nicotinic acetylcholine receptors (nAChRs) evolved from homomeric nAChRs in which all five subunits are involved in forming acetylcholine (ACh) binding sites at their interfaces. Heteromeric α4β2* nAChRs typically have two ACh binding sites at α4/β2 interfaces and a fifth accessory subunit surrounding the central cation channel. β2 accessory subunits do not form ACh binding sites, but α4 accessory subunits do at the α4/α4 interface in (α4β2) 2 α4 nAChRs. α5 and β3 are closely related subunits that had been thought to act only as accessory subunits and not take part in forming ACh binding sites. The effect of agonists at various subunit interfaces was determined by blocking homologous sites at these interfaces using the thioreactive agent 2-((trimethylammonium)ethyl) methanethiosulfonate (MTSET). We found that α5/α4 and β3/α4 interfaces formed ACh binding sites in (α4β2) 2 α5 and (α4β2) 2 β3 nAChRs. The α4/α5 interface in (β2α4) 2 α5 nAChRs also formed an ACh binding site. Blocking of these sites with MTSET reduced the maximal ACh evoked responses of these nAChRs by 30-50%. However, site-selective agonists NS9283 (for the α4/α4 site) and sazetidine-A (for the α4/β2 site) did not act on the ACh sites formed by the α5/α4 or β3/α4 interfaces. This suggests that unorthodox sites formed by α5 and β3 subunits have unique ligand selectivity. Agonists or antagonists for these unorthodox sites might be selective and effective drugs for modulating nAChR function to treat nicotine addiction and other disorders. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Prolyl Hydroxylase EGLN3 Regulates Skeletal Myoblast Differentiation through an NF-κB-dependent Pathway

    PubMed Central

    Fu, Jian; Taubman, Mark B.

    2010-01-01

    The egg-laying abnormal-9 (EGLN) prolyl hydroxylases have been shown to regulate the stability and thereby the activity of the α subunits of hypoxia-inducible factor (HIF) through its ability to catalyze their hydroxylation. We have previously shown that EGLN3 promotes differentiation of C2C12 skeletal myoblasts. However, the mechanism underlying this effect remains to be fully elucidated. Here, we report that exposure of C2C12 cells to dimethyl oxalylglycine (DMOG), desferrioxamine, and hypoxia, all inhibitors of prolyl hydroxylase activity, led to repression of C2C12 myogenic differentiation. Inactivation of HIF by expression of a HIF dominant-negative mutant or deletion of HIF-1α by RNA interference did not affect the inhibitory effect of DMOG, suggesting that the effect of DMOG is HIF-independent. Pharmacologic inactivation of EGLN3 hydroxylase resulted in activation of the canonical NF-κB pathway. The inhibitory effect of DMOG on myogenic differentiation was markedly impaired in C2C12 cells expressing a dominant-negative mutant of IκBα. Exogenous expression of wild-type EGLN3, but not its catalytically inactive mutant, significantly inhibited NF-κB activation induced by overexpressed TRAF2 or IκB kinase 2. In contrast, deletion of EGLN3 by small interfering RNAs led to activation of NF-κB. These data suggest that EGLN3 is a negative regulator of NF-κB, and its prolyl hydroxylase activity is required for this effect. Furthermore, wild-type EGLN3, but not its catalytically inactive mutant, potentiated myogenic differentiation. This study demonstrates a novel role for EGLN3 in the regulation of NF-κB and suggests that it is involved in mediating myogenic differentiation, which is HIF-independent. PMID:20089853

  12. Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast.

    PubMed

    Bailly, E; Reed, S I

    1999-10-01

    By selectively eliminating ubiquitin-conjugated proteins, the 26S proteasome plays a pivotal role in a large variety of cellular regulatory processes, particularly in the control of cell cycle transitions. Access of ubiquitinated substrates to the inner catalytic chamber within the 20S core particle is mediated by the 19S regulatory particle (RP), whose subunit composition in budding yeast has been recently elucidated. In this study, we have investigated the cell cycle defects resulting from conditional inactivation of one of these RP components, the essential non-ATPase Rpn3/Sun2 subunit. Using temperature-sensitive mutant alleles, we show that rpn3 mutations do not prevent the G(1)/S transition but cause a metaphase arrest, indicating that the essential Rpn3 function is limiting for mitosis. rpn3 mutants appear severely compromised in the ubiquitin-dependent proteolysis of several physiologically important proteasome substrates. Thus, RPN3 function is required for the degradation of the G(1)-phase cyclin Cln2 targeted by SCF; the S-phase cyclin Clb5, whose ubiquitination is likely to involve a combination of E3 (ubiquitin protein ligase) enzymes; and anaphase-promoting complex targets, such as the B-type cyclin Clb2 and the anaphase inhibitor Pds1. Our results indicate that the Pds1 degradation defect of the rpn3 mutants most likely accounts for the metaphase arrest phenotype observed. Surprisingly, but consistent with the lack of a G(1) arrest phenotype in thermosensitive rpn3 strains, the Cdk inhibitor Sic1 exhibits a short half-life regardless of the RPN3 genotype. In striking contrast, Sic1 turnover is severely impaired by a temperature-sensitive mutation in RPN12/NIN1, encoding another essential RP subunit. While other interpretations are possible, these data strongly argue for the requirement of distinct RP subunits for efficient proteolysis of specific cell cycle regulators. The potential implications of these data are discussed in the context of possible

  13. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts.

    PubMed

    Zhang, Xuemei; Li, Fangping; Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui

    2015-01-01

    Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells.

  14. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts

    PubMed Central

    Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui

    2015-01-01

    Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells. PMID:25902045

  15. Immunoglobulin subunits of murine B lymphocytes: structure and associations with other membrane proteins.

    PubMed Central

    Vogel, L; Haustein, D

    1989-01-01

    The Ig subunit structure of murine B lymphocytes was studied by employing different radiolabelling techniques in combination with chemical cross-linking. The main membrane structure of IgM was a half molecule that was disulphide-linked to proteins with MW 30,000, 45,000 and 55,000, respectively. Small amounts of mu 2L2, microL disulphide-linked to a protein with MW 50,000, and free microL were also detected. The main IgD structures were half molecules disulphide-linked to two proteins with MW 14,000 and two proteins with MW 16,000. Furthermore, IgD half molecules disulphide-linked to a protein with MW 16,000 and free half molecules could be demonstrated. Labelling with hydrophobic reagents showed that all Ig molecules and the protein with MW 50,000, linked to microL, penetrated the lipid bilayer, whereas the other IgM- and IgD-linked proteins probably did not. Additional proteins which were associated exclusively with IgM were detected by chemical cross-linking. These findings offer new possibilities for the investigation of the function(s) of antigen receptors on B cells. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:2787780

  16. PAF Complex Plays Novel Subunit-Specific Roles in Alternative Cleavage and Polyadenylation

    PubMed Central

    Yang, Yan; Li, Wencheng; Hoque, Mainul; Hou, Liming; Shen, Steven; Tian, Bin; Dynlacht, Brian D.

    2016-01-01

    The PAF complex (Paf1C) has been shown to regulate chromatin modifications, gene transcription, and RNA polymerase II (PolII) elongation. Here, we provide the first genome-wide profiles for the distribution of the entire complex in mammalian cells using chromatin immunoprecipitation and high throughput sequencing. We show that Paf1C is recruited not only to promoters and gene bodies, but also to regions downstream of cleavage/polyadenylation (pA) sites at 3’ ends, a profile that sharply contrasted with the yeast complex. Remarkably, we identified novel, subunit-specific links between Paf1C and regulation of alternative cleavage and polyadenylation (APA) and upstream antisense transcription using RNAi coupled with deep sequencing of the 3’ ends of transcripts. Moreover, we found that depletion of Paf1C subunits resulted in the accumulation of PolII over gene bodies, which coincided with APA. Depletion of specific Paf1C subunits led to global loss of histone H2B ubiquitylation, although there was little impact of Paf1C depletion on other histone modifications, including tri-methylation of histone H3 on lysines 4 and 36 (H3K4me3 and H3K36me3), previously associated with this complex. Our results provide surprising differences with yeast, while unifying observations that link Paf1C with PolII elongation and RNA processing, and indicate that Paf1C subunits could play roles in controlling transcript length through suppression of PolII accumulation at transcription start site (TSS)-proximal pA sites and regulating pA site choice in 3’UTRs. PMID:26765774

  17. Distribution of alpha3, alpha5 and alpha(v) integrin subunits in mature and immature human oocytes.

    PubMed

    Capmany, G; Mart, M; Santaló, J; Bolton, V N

    1998-10-01

    The distribution of three integrin subunits, alpha3, alpha5 and alpha(v), in immature and mature human oocytes has been examined using immunofluorescence and confocal microscopy. The results demonstrate that both alpha5 and alpha(v) are present at the germinal vesicle stage, while alpha3 was only detected in oocytes after germinal vesicle breakdown, in metaphase I and II stage oocytes. The cortical concentration of integrin subunits alpha3 and alpha5 is consistent with their localization in the oolemma. In contrast, the homogeneous distribution of alpha(v) throughout the oocyte suggests the existence of cytoplasmic reservoirs of this protein in the oocyte.

  18. Spatial location of neutralizing and non-neutralizing B cell epitopes on domain 1 of ricin toxin’s binding subunit

    PubMed Central

    Rong, Yinghui; Van Slyke, Greta; Vance, David J.; Westfall, Jennifer; Ehrbar, Dylan

    2017-01-01

    Ricin toxin’s binding subunit (RTB) is a galactose-/N-acetylgalactosamine (Gal/GalNac)-specific lectin that mediates uptake and intracellular trafficking of ricin within mammalian cells. Structurally, RTB consists of two globular domains, each divided into three homologous sub-domains (α, β, γ). In this report, we describe five new murine IgG monoclonal antibodies (mAbs) against RTB: MH3, 8A1, 8B3, LF1, and LC5. The mAbs have similar binding affinities (KD) for ricin holotoxin, but displayed a wide range of in vitro toxin-neutralizing activities. Competition ELISAs indicate that the two most potent toxin-neutralizing mAbs (MH3, 8A1), as well as one of the moderate toxin-neutralizing mAbs (LF1), recognize distinct epitopes near the low affinity Gal recognition domain in RTB subdomain 1α. Evaluated in a mouse model of systemic ricin challenge, all five mAbs afforded some benefit against intoxication, but only MH3 was protective. However, neither MH3 nor 24B11, another well-characterized mAb against RTB subdomain 1α, could passively protect mice against a mucosal (intranasal) ricin challenge. This is in contrast to SylH3, a previously characterized mAb directed against an epitope near RTB’s high affinity Gal/GalNac recognition element in sub-domain 2γ, which protected animals against systemic and mucosal ricin exposure. SylH3 was significantly more effective than MH3 and 24B11 at blocking ricin attachment to host cell receptors, suggesting that mucosal immunity to ricin is best imparted by antibodies that target RTB’s high affinity Gal/GalNac recognition element in subdomain 2γ, not the low affinity Gal recognition domain in subdomain 1α. PMID:28700745

  19. Effects and Mechanisms by Which Hypercapnic Acidosis Inhibits Sepsis-Induced Canonical Nuclear Factor-κB Signaling in the Lung.

    PubMed

    Masterson, Claire; O'Toole, Daniel; Leo, Annemarie; McHale, Patricia; Horie, Shahd; Devaney, James; Laffey, John G

    2016-04-01

    Diverse effects of hypercapnic acidosis are mediated via inhibition of nuclear factor-κB, a pivotal transcription factor, in the setting of injury, inflammation, and repair, but the underlying mechanisms of action of hypercapnic acidosis on this pathway is unclear. We aim to examine the effect of hypercapnic acidosis on the nuclear factor-κB pathway in the setting of Escherichia coli-induced lung injury and characterize the underlying mechanisms in subsequent in vitro studies. In vivo animal study and subsequent in vitro studies. University Research Laboratory. Adult male Sprague-Dawley rats and pulmonary epithelial cells. Following pulmonary IκBα-SuperRepressor transgene overexpression or sham and intratracheal E. coli inoculation, rats underwent 4 hours of mechanical ventilation under normocapnia or hypercapnic acidosis, and nuclear factor-κB activation, animal survival, lung injury, and cytokine profile were assessed. Subsequent in vitro studies examined the effect of hypercapnic acidosis on specific nuclear factor-κB canonical pathway kinases via overexpression of these components and in vitro kinase activity assays. The effect of hypercapnic acidosis on the p50/p65 nuclear factor-κB heterodimer was then assessed. Hypercapnic acidosis and IκBα-SuperRepressor transgene overexpression reduced E. coli-induced lung inflammation and injury, decreased nuclear factor-κB activity, and increased animal survival. Hypercapnic acidosis inhibited canonical nuclear factor-κB signaling via reduced phosphorylative activation, reducing IκB kinase-β activation and intrinsic activity, thereby decreasing IκBα degradation, and subsequent nuclear factor-κB translocation. Hypercapnic acidosis also directly reduced DNA binding of the nuclear factor-κB p65 subunit, although this effect was less marked. Hypercapnic acidosis reduced E. coli inflammation and lung injury in vivo and reduced nuclear factor-κB activation predominantly by inhibiting the activation and

  20. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus.

    PubMed

    Xie, Meilan; Yan, Jie; He, Chao; Yang, Li; Tan, Gang; Li, Chao; Hu, Zhian; Wang, Jiali

    2015-06-01

    Hippocampus-dependent learning memory is sensitive to sleep deprivation (SD). Although the ionotropic glutamate receptors play a vital role in synaptic plasticity and learning and memory, however, whether the expression of these receptor subunits is modulated by sleep loss remains unclear. In the present study, western blotting was performed by probing with specific antibodies against the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1, GluA2, GluA3, and against the N-methyl-d-aspartate (NMDA) glutamate receptor subunits GluN1, GluN2A, GluN2B. In hippocampus, down regulation of surface GluA1 and GluN2A surface expression were observed in both SD groups. However, surface expression level of GluA2, GluA3, GluN1 and GluN2B was significantly up-regulated in 8h-SD rats when compared to the 4h-SD rats. In parallel with the complex changes in AMPA and NMDA receptor subunit expressions, we found the 8h-SD impaired rat spatial working memory in 30-s-delay T-maze task, whereas no impairment of spatial learning was observed in 4h-SD rats. These results indicate that sleep loss alters the relative expression levels of the AMPA and NMDA receptors, thus affects the synaptic strength and capacity for plasticity and partially contributes to spatial memory impairment. Copyright © 2015. Published by Elsevier B.V.

  1. B kinaseα/β control biliary homeostasis and hepatocarcinogenesis in mice by phosphorylating the cell-death mediator receptor-interacting protein kinase 1.

    PubMed

    Koppe, Christiane; Verheugd, Patricia; Gautheron, Jérémie; Reisinger, Florian; Kreggenwinkel, Karina; Roderburg, Christoph; Quagliata, Luca; Terracciano, Luigi; Gassler, Nikolaus; Tolba, René H; Boege, Yannick; Weber, Achim; Karin, Michael; Luedde, Mark; Neumann, Ulf P; Weiskirchen, Ralf; Tacke, Frank; Vucur, Mihael; Trautwein, Christian; Lüscher, Bernhard; Preisinger, Christian; Heikenwalder, Mathias; Luedde, Tom

    2016-10-01

    The IκB-Kinase (IKK) complex-consisting of the catalytic subunits, IKKα and IKKβ, as well as the regulatory subunit, NEMO-mediates activation of the nuclear factor κB (NF-κB) pathway, but previous studies suggested the existence of NF-κB-independent functions of IKK subunits with potential impact on liver physiology and disease. Programmed cell death is a crucial factor in the progression of liver diseases, and receptor-interacting kinases (RIPKs) exerts strategic control over multiple pathways involved in regulating novel programmed cell-death pathways and inflammation. We hypothesized that RIPKs might be unrecognized targets of the catalytic IKK-complex subunits, thereby regulating hepatocarcinogenesis and cholestasis. In this present study, mice with specific genetic inhibition of catalytic IKK activity in liver parenchymal cells (LPCs; IKKα/β(LPC-KO) ) were intercrossed with RIPK1(LPC-KO) or RIPK3(-/-) mice to examine whether RIPK1 or RIPK3 might be downstream targets of IKKs. Moreover, we performed in vivo phospho-proteome analyses and in vitro kinase assays, mass spectrometry, and mutagenesis experiments. These analyses revealed that IKKα and IKKβ-in addition to their known function in NF-κB activation-directly phosphorylate RIPK1 at distinct regions of the protein, thereby regulating cell viability. Loss of this IKKα/β-dependent RIPK1 phosphorylation in LPCs inhibits compensatory proliferation of hepatocytes and intrahepatic biliary cells, thus impeding HCC development, but promoting biliary cell paucity and lethal cholestasis. IKK-complex subunits transmit a previously unrecognized signal through RIPK1, which is fundamental for the long-term consequences of chronic hepatic inflammation and might have potential implications for future pharmacological strategies against cholestatic liver disease and cancer. (Hepatology 2016;64:1217-1231). © 2016 by the American Association for the Study of Liver Diseases.

  2. Negative pressure wound therapy inhibits inflammation and upregulates activating transcription factor-3 and downregulates nuclear factor-κB in diabetic patients with foot ulcerations.

    PubMed

    Wang, T; He, R; Zhao, J; Mei, J C; Shao, M Z; Pan, Y; Zhang, J; Wu, H S; Yu, M; Yan, W C; Liu, L M; Liu, F; Jia, W P

    2017-05-01

    Negative pressure wound therapy (NPWT) is one of the most important treatments for diabetic foot, but the underlying mechanisms of its benefits still remain elusive. This study aims to evaluate the inflammatory signals involved in the effects of negative pressure therapy on diabetic foot ulcers. We enrolled 22 patients with diabetic foot ulceration, 11 treated with NPWT and the other 11 treated with traditional debridement. All patients were treated and observed for 1 week. Granulation tissues were harvested and analyzed in both groups, and then were histologically and immunohistochemically analyzed. Enzyme-linked immunosorbent assay, Western blot analysis, and real-time PCR were performed to evaluate the expression of interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), inducible nitric oxide synthase (iNOS), nuclear factor-κB (NF-κB) p65, I k B-α, and activating transcription factor-3 (ATF-3). After 7 days of treatment, NPWT could obviously promote diabetic wound healing because of the mild inflammation and the dense cell-deposited matrix. Meanwhile, NPWT significantly decreased the expression of TNF-α, IL-6, and iNOS (all P < .05). The result of Western blotting and real-time PCR indicated that NPWT obviously decreased the level of I k B-α and NF-κB p65, and increased the level of ATF-3 (all P < .05). NPWT exerts an anti-inflammatory effect, possibly through the suppression of proinflammatory enzymes and cytokines resulting from I k B-α inhibition and ATF-3 activation, which may prevent the activation of the NF-κB pathway in human diabetic foot wounds. Copyright © 2016 John Wiley & Sons, Ltd.

  3. The A-Current Modulates Learning via NMDA Receptors Containing the NR2B Subunit

    PubMed Central

    Fontán-Lozano, Ángela; Suárez-Pereira, Irene; González-Forero, David; Carrión, Ángel Manuel

    2011-01-01

    Synaptic plasticity involves short- and long-term events, although the molecular mechanisms that underlie these processes are not fully understood. The transient A-type K+ current (IA) controls the excitability of the dendrites from CA1 pyramidal neurons by regulating the back-propagation of action potentials and shaping synaptic input. Here, we have studied how decreases in IA affect cognitive processes and synaptic plasticity. Using wild-type mice treated with 4-AP, an IA inhibitor, and mice lacking the DREAM protein, a transcriptional repressor and modulator of the IA, we demonstrate that impairment of IA decreases the stimulation threshold for learning and the induction of early-LTP. Hippocampal electrical recordings in both models revealed alterations in basal electrical oscillatory properties toward low-theta frequencies. In addition, we demonstrated that the facilitated learning induced by decreased IA requires the activation of NMDA receptors containing the NR2B subunit. Together, these findings point to a balance between the IA and the activity of NR2B-containing NMDA receptors in the regulation of learning. PMID:21966384

  4. Regulation of nuclear factor κB (NF-κB) transcriptional activity via p65 acetylation by the chaperonin containing TCP1 (CCT).

    PubMed

    Pejanovic, Nadja; Hochrainer, Karin; Liu, Tao; Aerne, Birgit L; Soares, Miguel P; Anrather, Josef

    2012-01-01

    The NF-κB family member p65 is central to inflammation and immunity. The purpose of this study was to identify and characterize evolutionary conserved genes modulating p65 transcriptional activity. Using an RNAi screening approach, we identified chaperonin containing TCP1 subunit η (CCTη) as a regulator of Drosophila NF-κB proteins, Dorsal and Dorsal-related immunity factor (Dif). CCTη was also found to regulate NF-κB-driven transcription in mammalian cells, acting in a promoter-specific context, downstream of IκB kinase (IKK). CCTη knockdown repressed IκBα and CXCL2/MIP2 transcription during the early phase of NF-κB activation while impairing the termination of CCL5/RANTES and CXCL10/IP10 transcription. The latter effect was associated with increased DNA binding and reduced p65 acetylation, presumably by altering the activity of histone acetyltransferase CREB-binding protein (CBP). We identified p65 lysines (K) 122 and 123 as target residues mediating the CCTη-driven termination of NF-κB-dependent transcription. We propose that CCTη regulates NF-κB activity in a manner that resolves inflammation.

  5. Single channel properties of human α3 AChRs: impact of β2, β4 and α5 subunits

    PubMed Central

    Nelson, Mark E; Lindstrom, Jon

    1999-01-01

    We performed single channel analysis on human α3 acetylcholine receptors (AChRs) in Xenopus oocytes and native AChRs from the human neuroblastoma cell line IMR-32. α3 AChRs exhibit channel properties that reflect subunit composition.α3β2 AChR open times were 0.71 ± 0.14 and 3.5 ± 0.4 ms with a predominant conductance of 26 pS. α3β4 AChRs had open times of 1.4 ± 0.2 and 6.5 ± 0.8 ms and a predominant conductance of 31 pS. Burst times were 0.82 ± 0.12 and 5.3 ± 0.7 ms for α3β2 and 1.7 ± 0.1 and 16 ± 1 ms for α3β4. Desensitization was faster for AChRs with the β2 subunit than for those with the β4 subunit.One open time for α3α5β2 AChRs (5.5 ± 0.3 ms) was different from those of α3β2 AChRs. For α3α5β4 AChRs, an additional conductance, open time and burst time (36 pS, 22 ± 3 ms and 43 ± 4 ms, respectively) were different from those for α3β4 AChRs.α3 AChRs were inhibited by hexamethonium or mecamylamine. The rate constants for block of α3β4 by hexamethonium and of α3β2 by mecamylamine were 1.2 × 107 and 4.6 × 107 M−1 s−1, respectively.AChRs from IMR-32 cells had a predominant conductance of 32 pS and open times of 1.5 ± 0.3 and 9.6 ± 1.2 ms. These properties were most similar to those of α3β4 AChRs expressed in oocytes. Antibodies revealed that 5 ± 2% of IMR-32 α3 AChRs contained α5 subunits and 6 ± 2% contained β2 subunits. IMR-32 α3 AChRs are primarily α3β4 AChRs. PMID:10200416

  6. h5-HT(1B) receptor-mediated constitutive Galphai3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT.

    PubMed

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-03-01

    1. Serotonin 5-HT(1B) receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5'-0-(3-[(35)S]thio)-triphosphate ([(35)S]GTPgammaS) binding strategy, we characterised Galpha(i3) subunit activation by h5-HT(1B) receptors stably expressed in Chinese hamster ovary (CHO) cells. 2. The agonists, 5-HT, alniditan and BMS181,101, stimulated Galpha(i3), whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT(1B) receptor ligand, S18127, modestly stimulated Galpha(i3) and reversed the actions of both 5-HT and methiothepin. S18127 (1 micro M) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. 3. Isotopic dilution experiments ([(35)S]GTPgammaS versus GTPgammaS) revealed high-affinity [(35)S]GTPgammaS binding to Galpha(i3) subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [(35)S]GTPgammaS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPgammaS for Galpha(i3) subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. 4. h5-HT(1B) receptor-mediated Galpha(i3) subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [(35)S]GTPgammaS binding, basal Galpha(i3) activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Galpha(i3) activation. 5. In conclusion, at h5-HT(1B) receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Galpha(i3), and its reversal by S18127, reveals constitutive activation of this Galpha subunit; (ii) constitutive Galpha(i3) activation can be quantified by isotopic dilution [(35)S]GTPgammaS binding and (iii) decreasing NaCl concentrations enhances Galpha(i3

  7. The ESCRT-III Subunit hVps24 Is Required for Degradation but Not Silencing of the Epidermal Growth Factor Receptor

    PubMed Central

    Bache, Kristi G.; Stuffers, Susanne; Malerød, Lene; Slagsvold, Thomas; Raiborg, Camilla; Lechardeur, Delphine; Wälchli, Sébastien; Lukacs, Gergely L.; Brech, Andreas; Stenmark, Harald

    2006-01-01

    The endosomal sorting complexes required for transport, ESCRT-I, -II, and -III, are thought to mediate the biogenesis of multivesicular endosomes (MVEs) and endosomal sorting of ubiquitinated membrane proteins. Here, we have compared the importance of the ESCRT-I subunit tumor susceptibility gene 101 (Tsg101) and the ESCRT-III subunit hVps24/CHMP3 for endosomal functions and receptor signaling. Like Tsg101, endogenous hVps24 localized mainly to late endosomes. Depletion of hVps24 by siRNA showed that this ESCRT subunit, like Tsg101, is important for degradation of the epidermal growth factor (EGF) receptor (EGFR) and for transport of the receptor from early endosomes to lysosomes. Surprisingly, however, whereas depletion of Tsg101 caused sustained EGF activation of the mitogen-activated protein kinase pathway, depletion of hVps24 had no such effect. Moreover, depletion of Tsg101 but not of hVps24 caused a major fraction of internalized EGF to accumulate in nonacidified endosomes. Electron microscopy of hVps24-depleted cells showed an accumulation of EGFRs in MVEs that were significantly smaller than those in control cells, probably because of an impaired fusion with lyso-bisphosphatidic acid-positive late endosomes/lysosomes. Together, our results reveal functional differences between ESCRT-I and ESCRT-III in degradative protein trafficking and indicate that degradation of the EGFR is not required for termination of its signaling. PMID:16554368

  8. The ESCRT-III subunit hVps24 is required for degradation but not silencing of the epidermal growth factor receptor.

    PubMed

    Bache, Kristi G; Stuffers, Susanne; Malerød, Lene; Slagsvold, Thomas; Raiborg, Camilla; Lechardeur, Delphine; Wälchli, Sébastien; Lukacs, Gergely L; Brech, Andreas; Stenmark, Harald

    2006-06-01

    The endosomal sorting complexes required for transport, ESCRT-I, -II, and -III, are thought to mediate the biogenesis of multivesicular endosomes (MVEs) and endosomal sorting of ubiquitinated membrane proteins. Here, we have compared the importance of the ESCRT-I subunit tumor susceptibility gene 101 (Tsg101) and the ESCRT-III subunit hVps24/CHMP3 for endosomal functions and receptor signaling. Like Tsg101, endogenous hVps24 localized mainly to late endosomes. Depletion of hVps24 by siRNA showed that this ESCRT subunit, like Tsg101, is important for degradation of the epidermal growth factor (EGF) receptor (EGFR) and for transport of the receptor from early endosomes to lysosomes. Surprisingly, however, whereas depletion of Tsg101 caused sustained EGF activation of the mitogen-activated protein kinase pathway, depletion of hVps24 had no such effect. Moreover, depletion of Tsg101 but not of hVps24 caused a major fraction of internalized EGF to accumulate in nonacidified endosomes. Electron microscopy of hVps24-depleted cells showed an accumulation of EGFRs in MVEs that were significantly smaller than those in control cells, probably because of an impaired fusion with lyso-bisphosphatidic acid-positive late endosomes/lysosomes. Together, our results reveal functional differences between ESCRT-I and ESCRT-III in degradative protein trafficking and indicate that degradation of the EGFR is not required for termination of its signaling.

  9. Telomeric 3' overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST.

    PubMed

    Wu, Peng; Takai, Hiroyuki; de Lange, Titia

    2012-07-06

    A 3' overhang is critical for the protection and maintenance of mammalian telomeres, but its synthesis must be regulated to avoid excessive resection of the 5' end, which could cause telomere shortening. How this balance is achieved in mammals has not been resolved. Here, we determine the mechanism for 3' overhang synthesis in mouse cells by evaluating changes in telomeric overhangs throughout the cell cycle and at leading- and lagging-end telomeres. Apollo, a nuclease bound to the shelterin subunit TRF2, initiates formation of the 3' overhang at leading-, but not lagging-end telomeres. Hyperresection by Apollo is blocked at both ends by the shelterin protein POT1b. Exo1 extensively resects both telomere ends, generating transient long 3' overhangs in S/G2. CST/AAF, a DNA polα.primase accessory factor, binds POT1b and shortens the extended overhangs produced by Exo1, likely through fill-in synthesis. 3' overhang formation is thus a multistep, shelterin-controlled process, ensuring functional telomeric overhangs at chromosome ends. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Smallpox subunit vaccine produced in planta confers protection in mice

    PubMed Central

    Golovkin, Maxim; Spitsin, Sergei; Andrianov, Vyacheslav; Smirnov, Yuriy; Xiao, Yuhong; Pogrebnyak, Natalia; Markley, Karen; Brodzik, Robert; Gleba, Yuri; Isaacs, Stuart N.; Koprowski, Hilary

    2007-01-01

    We report here the in planta production of the recombinant vaccinia virus B5 antigenic domain (pB5), an attractive component of a subunit vaccine against smallpox. The antigenic domain was expressed by using efficient transient and constitutive plant expression systems and tested by various immunization routes in two animal models. Whereas oral administration in mice or the minipig with collard-derived insoluble pB5 did not generate an anti-B5 immune response, intranasal administration of soluble pB5 led to a rise of B5-specific immunoglobulins, and parenteral immunization led to a strong anti-B5 immune response in both mice and the minipig. Mice immunized i.m. with pB5 generated an antibody response that reduced virus spread in vitro and conferred protection from challenge with a lethal dose of vaccinia virus. These results indicate the feasibility of producing safe and inexpensive subunit vaccines by using plant production systems. PMID:17428917

  11. Mechanism of repression of the inhibin alpha-subunit gene by inducible 3',5'-cyclic adenosine monophosphate early repressor.

    PubMed

    Burkart, Anna D; Mukherjee, Abir; Mayo, Kelly E

    2006-03-01

    The rodent ovary is regulated throughout the reproductive cycle to maintain normal cyclicity. Ovarian follicular development is controlled by changes in gene expression in response to the gonadotropins FSH and LH. The inhibin alpha-subunit gene belongs to a group of genes that is positively regulated by FSH and negatively regulated by LH. Previous studies established an important role for inducible cAMP early repressor (ICER) in repression of alpha-inhibin. These current studies investigate the mechanisms of repression by ICER. It is not clear whether all four ICER isoforms expressed in the ovary can act as repressors of the inhibin alpha-subunit gene. EMSAs demonstrate binding of all isoforms to the inhibin alpha-subunit CRE (cAMP response element), and transfection studies demonstrate that all isoforms can repress the inhibin alpha-subunit gene. Repression by ICER is dependent on its binding to DNA as demonstrated by mutations to ICER's DNA-binding domain. These mutational studies also demonstrate that repression by ICER is not dependent on heterodimerization with CREB (CRE-binding protein). Competitive EMSAs show that ICER effectively competes with CREB for binding to the inhibin alpha CRE in vitro. Chromatin immunoprecipitation assays demonstrate a replacement of CREB dimers bound to the inhibin alpha CRE by ICER dimers in ovarian granulosa cells in response to LH signaling. Thus, there is a temporal association of transcription factors bound to the inhibin alpha-CRE controlling inhibin alpha-subunit gene expression.

  12. Probing the proton channels in subunit N of Complex I from Escherichia coli through intra-subunit cross-linking.

    PubMed

    Tursun, Ablat; Zhu, Shaotong; Vik, Steven B

    2016-12-01

    Respiratory Complex I appears to have 4 sites for proton translocation, which are coupled to the oxidation of NADH and reduction of coenzyme Q. The proton pathways are thought to be made of offset half-channels that connect to the membrane surfaces, and are connected by a horizontal path through the center of the membrane. In this study of the enzyme from Escherichia coli, subunit N, containing one of the sites, was targeted. Pairs of cysteine residues were introduced into neighboring α-helices along the proposed proton pathways. In an effort to constrain conformational changes that might occur during proton translocation, we attempted to form disulfide bonds or methanethiosulfonate bridges between two engineered cysteine residues. Cysteine modification was inferred by the inability of PEG-maleimide to shift the electrophoretic mobility of subunit N, which will occur upon reaction with free sulfhydryl groups. After the cross-linking treatment, NADH oxidase and NADH-driven proton translocation were measured. Ten different pairs of cysteine residues showed evidence of cross-linking. The most significant loss of enzyme activity was seen for residues near the essential Lys 395. This residue is positioned between the proposed proton half-channel to the periplasm and the horizontal connection through subunit N, and is also near the essential Glu 144 of subunit M. The results suggest important conformational changes in this region for the delivery of protons to the periplasm, or for coupling the actions of subunit N to subunit M. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Cloning of murine RNA polymerase I-specific TAF factors: conserved interactions between the subunits of the species-specific transcription initiation factor TIF-IB/SL1.

    PubMed

    Heix, J; Zomerdijk, J C; Ravanpay, A; Tjian, R; Grummt, I

    1997-03-04

    Promoter selectivity for all three classes of eukaryotic RNA polymerases is brought about by multimeric protein complexes containing TATA box binding protein (TBP) and specific TBP-associated factors (TAFs). Unlike class II- and III-specific TBP-TAF complexes, the corresponding murine and human class I-specific transcription initiation factor TIF-IB/SL1 exhibits a pronounced selectivity for its homologous promoter. As a first step toward understanding the molecular basis of species-specific promoter recognition, we cloned the cDNAs encoding the three mouse pol I-specific TBP-associated factors (TAFIs) and compared the amino acid sequences of the murine TAFIs with their human counterparts. The four subunits from either species can form stable chimeric complexes that contain stoichiometric amounts of TBP and TAFIs, demonstrating that differences in the primary structure of human and mouse TAFIs do not dramatically alter the network of protein-protein contacts responsible for assembly of the multimeric complex. Thus, primate vs. rodent promoter selectivity mediated by the TBP-TAFI complex is likely to be the result of cumulative subtle differences between individual subunits that lead to species-specific properties of RNA polymerase I transcription.

  14. SLO3 auxiliary subunit LRRC52 controls gating of sperm KSPER currents and is critical for normal fertility

    PubMed Central

    Zeng, Xu-Hui; Yang, Chengtao; Xia, Xiao-Ming; Liu, Min; Lingle, Christopher J.

    2015-01-01

    Following entry into the female reproductive tract, mammalian sperm undergo a maturation process termed capacitation that results in competence to fertilize ova. Associated with capacitation is an increase in membrane conductance to both Ca2+ and K+, leading to an elevation in cytosolic Ca2+ critical for activation of hyperactivated swimming motility. In mice, the Ca2+ conductance (alkalization-activated Ca2+-permeable sperm channel, CATSPER) arises from an ensemble of CATSPER subunits, whereas the K+ conductance (sperm pH-regulated K+ current, KSPER) arises from a pore-forming ion channel subunit encoded by the slo3 gene (SLO3) subunit. In the mouse, both CATSPER and KSPER are activated by cytosolic alkalization and a concerted activation of CATSPER and KSPER is likely a common facet of capacitation-associated increases in Ca2+ and K+ conductance among various mammalian species. The properties of heterologously expressed mouse SLO3 channels differ from native mouse KSPER current. Recently, a potential KSPER auxiliary subunit, leucine-rich-repeat-containing protein 52 (LRRC52), was identified in mouse sperm and shown to shift gating of SLO3 to be more equivalent to native KSPER. Here, we show that genetic KO of LRRC52 results in mice with severely impaired fertility. Activation of KSPER current in sperm lacking LRRC52 requires more positive voltages and higher pH than for WT KSPER. These results establish a critical role of LRRC52 in KSPER channels and demonstrate that loss of a non-pore-forming auxiliary subunit results in severe fertility impairment. Furthermore, through analysis of several genotypes that influence KSPER current properties we show that in vitro fertilization competence correlates with the net KSPER conductance available for activation under physiological conditions. PMID:25675513

  15. Suppression of lipopolysaccharide-induced nuclear factor-kappaB activity by theaflavin-3,3'-digallate from black tea and other polyphenols through down-regulation of IkappaB kinase activity in macrophages.

    PubMed

    Pan, M H; Lin-Shiau, S Y; Ho, C T; Lin, J H; Lin, J K

    2000-02-15

    We investigated the inhibition of IkappaB kinase (IKK) activity in lipopolysaccharide (LPS)-activated murine macrophages (RAW 264.7 cell line) by various polyphenols including (-)-epigallocatechin-3-gallate, theaflavin, a mixture of theaflavin-3 gallate and theaflavin-3'-gallate, theaflavin-3,3'-digallate (TF-3), pyrocyanidin B-3, casuarinin, geraniin, and penta-O-galloyl-beta-D-glucose (5GG). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other polyphenols. TF-3 strongly inhibited both IKK1 and IKK2 activity and prevented the degradation of IkappaBalpha and IkappaBbeta in activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. Furthermore, geraniin, 5GG, and TF-3 all blocked phosphorylation of IKB from the cytosolic fraction, inhibited nuclear factor-kappaB (NFkappaB) activity, and inhibited increases in inducible nitric oxide synthase levels in activated macrophages. These results suggest that TF-3 may exert its anti-inflammatory and cancer chemopreventive actions by suppressing the activation of NFkappaB through inhibition of IKK activity.

  16. BUBR1 recruits PP2A via the B56 family of targeting subunits to promote chromosome congression

    PubMed Central

    Xu, Peng; Raetz, Elizabeth A.; Kitagawa, Mayumi; Virshup, David M.; Lee, Sang Hyun

    2013-01-01

    Summary BUBR1 is a mitotic phosphoprotein essential for the maintenance of chromosome stability by promoting chromosome congression and proper kinetochore–microtubule (K-fiber) attachment, but the underlying mechanism(s) has remained elusive. Here we identify BUBR1 as a binding partner of the B56 family of Protein Phosphatase 2A regulatory subunits. The interaction between BUBR1 and the B56 family is required for chromosome congression, since point mutations in BUBR1 that block B56 binding abolish chromosome congression. The BUBR1:B56-PP2A complex opposes Aurora B kinase activity, since loss of the complex can be reverted by inhibiting Aurora B. Importantly, we show that the failure of BUBR1 to recruit B56-PP2A also contributes to the chromosome congression defects found in cells derived from patients with the Mosaic Variegated Aneuploidy (MVA) syndrome. Together, we propose that B56-PP2A is a key mediator of BUBR1's role in chromosome congression and functions by antagonizing Aurora B activity at the kinetochore for establishing stable kinetochore–microtubule attachment at the metaphase plate. PMID:23789096

  17. Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass

    PubMed Central

    Lee, Young-Sam; Gregory, Mark T.; Yang, Wei

    2014-01-01

    DNA polymerase ζ (Pol ζ) is a eukaryotic B-family DNA polymerase that specializes in translesion synthesis and is essential for normal embryogenesis. At a minimum, Pol ζ consists of a catalytic subunit Rev3 and an accessory subunit Rev7. Mammalian Rev3 contains >3,000 residues and is twice as large as the yeast homolog. To date, no vertebrate Pol ζ has been purified for biochemical characterization. Here we report purification of a series of human Rev3 deletion constructs expressed in HEK293 cells and identification of a minimally catalytically active human Pol ζ variant. With a tagged form of an active Pol ζ variant, we isolated two additional accessory subunits of human Pol ζ, PolD2 and PolD3. The purified four-subunit Pol ζ4 (Rev3–Rev7–PolD2–PolD3) is much more efficient and more processive at bypassing a 1,2-intrastrand d(GpG)-cisplatin cross-link than the two-subunit Pol ζ2 (Rev3–Rev7). We show that complete bypass of cisplatin lesions requires Pol η to insert dCTP opposite the 3′ guanine and Pol ζ4 to extend the primers. PMID:24449906

  18. ATP1B3 Protein Modulates the Restriction of HIV-1 Production and Nuclear Factor κ Light Chain Enhancer of Activated B Cells (NF-κB) Activation by BST-2*

    PubMed Central

    Nishitsuji, Hironori; Sugiyama, Ryuichi; Abe, Makoto; Takaku, Hiroshi

    2016-01-01

    Here, we identify ATP1B3 and fibrillin-1 as novel BST-2-binding proteins. ATP1B3 depletion in HeLa cells (BST-2-positive cells), but not 293T cells (BST-2-negative cells), induced the restriction of HIV-1 production in a BST-2-dependent manner. In contrast, fibrillin-1 knockdown reduced HIV-1 production in 293T and HeLa cells in a BST-2-independent manner. Moreover, NF-κB activation was enhanced by siATP1B3 treatment in HIV-1- and HIV-1ΔVpu-infected HeLa cells. In addition, ATP1B3 silencing induced high level BST-2 expression on the surface of HeLa cells. These results indicate that ATP1B3 is a co-factor that accelerates BST-2 degradation and reduces BST-2-mediated restriction of HIV-1 production and NF-κB activation. PMID:26694617

  19. Comparison of Polymerase Subunits from Double-Stranded RNA Bacteriophages

    PubMed Central

    Yang, Hongyan; Makeyev, Eugene V.; Bamford, Dennis H.

    2001-01-01

    The family Cystoviridae comprises several bacteriophages with double-stranded RNA (dsRNA) genomes. We have previously purified the catalytic polymerase subunit (Pol) of one of the Cystoviridae members, bacteriophage φ6, and shown that the protein can catalyze RNA synthesis in vitro. In this reaction, both bacteriophage-specific and heterologous RNAs can serve as templates, but those containing 3′ termini from the φ6 minus strands are favored. This provides a molecular basis for the observation that only plus strands, not minus strands, are transcribed from φ6 dsRNA segments in vivo. To test whether such a regulatory mechanism is also found in other dsRNA viruses, we purified recombinant Pol subunits from the φ6-related bacteriophages φ8 and φ13 and assayed their polymerase activities in vitro. The enzymes catalyze template-dependent RNA synthesis using both single-stranded-RNA (ssRNA) and dsRNA templates. However, they differ from each other as well as from φ6 Pol in certain biochemical properties. Notably, each polymerase demonstrates a distinct preference for ssRNAs bearing short 3′-terminal sequences from the virus-specific minus strands. This suggests that, in addition to other factors, RNA transcription in Cystoviridae is controlled by the template specificity of the polymerase subunit. PMID:11602748

  20. A nuclear factor kappa B-derived inhibitor tripeptide inhibits UVB-induced photoaging process.

    PubMed

    Oh, Jee Eun; Kim, Min Seo; Jeon, Woo-Kwang; Seo, Young Kwon; Kim, Byung-Chul; Hahn, Jang Hee; Park, Chang Seo

    2014-12-01

    Ultraviolet (UV) irradiation on the skin induces photoaging which is characterized by keratinocyte hyperproliferation, generation of coarse wrinkles, worse of laxity and roughness. Upon UV irradiation, nuclear factor kappa B (NF-κB) is activated which plays a key role in signaling pathway leading to inflammation cascade and this activation stimulates expression of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-1alpha (IL-1α) and a stress response gene cyclooxygenase-2 (COX-2). In addition, activation of NF-κB up-regulates the expression of matrix metalloprotease-1 (MMP-1) and consequently collagen in dermis is degraded. In this study, the effects of a NF-κB-derived inhibitor tripeptide on the UVB-induced photoaging and inflammation were investigated in vitro and in vivo. A NF-κB-derived inhibitor tripeptide (NF-κB-DVH) was synthesized based on the sequence of dimerization region of the subunit p65 of NF-κB. Its inhibitory activity was confirmed using chromatin immunoprecipitation assay and in situ proximate ligation assay. The effects of anti-photoaging and anti-inflammation were analyzed by Enzyme-linked immunosorbent assay (ELISA), immunoblotting and immunochemistry. NF-κB-DVH significantly decreased UV-induced expression of TNF-α, IL-1α, MMP-1 and COX-2 while increased production of type I procollagen. Results showed NF-κB-DVH had strong anti-inflammatory activity probably by inhibiting NF-κB activation pathway and suggested to be used as a novel agent for anti-photoaging. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Expression of the pituitary transcription factor Ptx-1, but not that of the trans-activating factor prop-1, is reduced in human corticotroph adenomas and is associated with decreased alpha-subunit secretion.

    PubMed

    Skelly, R H; Korbonits, M; Grossman, A; Besser, G M; Monson, J P; Geddes, J F; Burrin, J M

    2000-07-01

    We have studied the expression of the pituitary transcription factors Ptx-1 and Prop-1 in a series of 34 pituitary adenomas fully characterized for in vitro hormone secretion and histological staining. In studies involving mammalian cell lines, the pituitary transcription factor Ptx-1 has been shown to be a pituitary hormone panactivator, whereas more recent studies have shown that it plays an important role in alpha-subunit gene expression. Its expression has not been examined previously in human pituitary adenomas characterized by in vitro hormone secretory profiles. Of the 34 pituitary adenomas studied, Ptx-1 expression was reduced by more than 50% compared to that of the housekeeping gene human glyceraldehyde-3-phosphate dehydrogenase in the 6 corticotroph adenomas, which also had significantly reduced alpha-subunit production (all 6 tumors secreting < or =0.5 ng/24 h). Mutations of the pituitary transcription factor Prop-1, which is responsible for the syndrome of Ames dwarfism in mice, are being increasingly recognized as a cause of combined pituitary hormone deficiency in humans, although ACTH deficiency has been described only once. Prop-1 expression was detected in all 34 pituitary adenomas, including 6 corticotroph adenomas and 5 gonadotroph adenomas. The expression of Prop-1 has not been described previously in these cell phenotypes.

  2. Purification, crystallization and preliminary X-ray analysis of the regulatory subunit of aspartate kinase from Thermus thermophilus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Ayako; Tomita, Takeo; Kuzuyama, Tomohisa

    2007-02-01

    To elucidate the mechanism of regulation of aspartate kinase, the regulatory subunit (the β subunit of T. thermophilus aspartate kinase) was crystallized in the presence of the inhibitor threonine. Aspartate kinase (AK) from Thermus thermophilus, which catalyzes the first step of threonine and methionine biosynthesis, is regulated via feedback inhibition by the end product threonine. To elucidate the mechanism of regulation of AK, the regulatory subunit (the β subunit of T. thermophilus AK) was crystallized in the presence of the inhibitor threonine. Diffraction data were collected to 2.15 Å at a synchrotron source. The crystal belongs to the cubic spacemore » group P4{sub 3}32 or P4{sub 1}32, with unit-cell parameters a = b = c = 141.8 Å.« less

  3. Development of N-Methyl-D-Aspartate Receptor Subunits in Avian Auditory Brainstem

    PubMed Central

    TANG, YE-ZHONG; CARR, CATHERINE E.

    2012-01-01

    N-methyl-D-aspartate (NMDA) receptor subunit-specific probes were used to characterize developmental changes in the distribution of excitatory amino acid receptors in the chicken’s auditory brainstem nuclei. Although NR1 subunit expression does not change greatly during the development of the cochlear nuclei in the chicken (Tang and Carr [2004] Hear. Res 191:79 – 89), there are significant developmental changes in NR2 subunit expression. We used in situ hybridization against NR1, NR2A, NR2B, NR2C, and NR2D to compare NR1 and NR2 expression during development. All five NMDA subunits were expressed in the auditory brainstem before embryonic day (E) 10, when electrical activity and synaptic responses appear in the nucleus magnocellularis (NM) and the nucleus laminaris (NL). At this time, the dominant form of the receptor appeared to contain NR1 and NR2B. NR2A appeared to replace NR2B by E14, a time that coincides with synaptic refinement and evoked auditory responses. NR2C did not change greatly during auditory development, whereas NR2D increased from E10 and remained at fairly high levels into adulthood. Thus changes in NMDA NR2 receptor subunits may contribute to the development of auditory brainstem responses in the chick. PMID:17366608

  4. Production of Chicken Egg Yolk Antibody (IgY) Against Recombinant Cholera Toxin B Subunit and Evaluation of Its Prophylaxis Potency in Mice.

    PubMed

    Barati, Babak; Ebrahimi, Firouz; Nazarian, Shahram

    2018-03-01

    Cholera toxin (CT), responsible for the harmful effects of cholera infection, is made up of one A subunit (enzymatic), and five B subunits (cell binding). The release of cholera toxin is the main reason for the debilitating loss of intestinal fluid. Inhibition of the B subunit (CTB) may block CT activity. To determine the effect of anti CTB-IgY against oral challenge with V. cholera in suckling infant mice. The binding domain of cholera toxin was amplified and ligated into pET28a vector. The pET28a (+)/ctb expression vector was confirmed by endonuclease digestion and sequence analysis. The expression of recombinant CTB in E. coli was performed by induction with IPTG. After immunizing the chickens with recombinant CTB, IgY was purified by water dilution method and NaCl precipitation and analyzed by SDS-PAGE. Moreover, the activity and specificity of the IgY antibody were assessed by ELISA. The SDS-PAGE and western blot techniques showed that CTB protein was successfully expressed and specifically recognized by polyclonal antibodies against the cholera toxin. The oral administration of anti- (V. cholera+CTB) in infant mice in challenge with active V. cholera bacterium demonstrated high rate of survival. The increase in the number of antibiotic resistant bacteria implies the necessity of finding novel antibiotics. Our results suggest the possibility of passive protection from purified IgY, hence implying that anti CTB-IgY may be useful in the treatment of cholera infections.

  5. Stevia and stevioside protect against cisplatin nephrotoxicity through inhibition of ERK1/2, STAT3, and NF-κB activation.

    PubMed

    Potočnjak, Iva; Broznić, Dalibor; Kindl, Marija; Kropek, Matija; Vladimir-Knežević, Sanda; Domitrović, Robert

    2017-09-01

    We investigated the effect of natural sweetener Stevia rebaudiana and its constituent stevioside in cisplatin (CP)-induced kidney injury. Male BALB/cN mice were orally administered 10, 20, and 50 mg/kg body weight of Stevia rebaudiana ethanol extract (SE) or stevioside 50 mg/kg, 48 h after intraperitoneal administration of CP (13 mg/kg). Two days later, CP treatment resulted in histopathological changes showing kidney injury. Increased expression of 4-hydroxynonenal (4-HNE), 3-nitrotyrosine (3-NT), and heme oxygenase-1 (HO-1) in mice kidneys suggested oxidative stress. CP treatment also increased renal expression of nuclear factor-kappaB (NF-κB) p65 subunit and phosphorylated inhibitor of NF-κB (IκBα), as well as expression of pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α). Induction of apoptosis and inhibition of the cell cycle in kidneys was evidenced by increased expression of p53, Bax, caspase-9, and p21, proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), with concomitant suppression of Bcl-2 and cyclin D1 expression. The number of apoptotic cells in kidneys was also assessed. CP administration resulted in activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3). Both SE and stevioside attenuated CP nephrotoxicity by suppressing oxidative stress, inflammation, and apoptosis through mechanism involving ERK1/2, STAT3, and NF-κB suppression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Kv channel subunits that contribute to voltage-gated K+ current in renal vascular smooth muscle.

    PubMed

    Fergus, Daniel J; Martens, Jeffrey R; England, Sarah K

    2003-03-01

    The rat renal arterial vasculature displays differences in K(+) channel current phenotypes along its length. Small arcuate to cortical radial arteries express a delayed rectifier phenotype, while the predominant Kv current in larger arcuate and interlobar arteries is composed of both transient and sustained components. We sought to determine whether Kvalpha subunits in the rat renal interlobar and arcuate arteries form heterotetramers, which may account for the unique currents, and whether modulatory Kvbeta subunits are present in renal vascular smooth muscle cells. RT-PCR indicated the presence of several different Kvalpha subunit isoform transcripts. Co-immunoprecipitation with immunoblotting and immunohistochemical evidence suggests that a portion of the K(+) current phenotype is a heteromultimer containing delayed-rectifier Kv1.2 and A-type Kv1.4 channel subunits. RT-PCR and immunoblot analyses also demonstrated the presence of both Kvbeta1.2 and Kvbeta1.3 in renal arteries. These results suggest that heteromultimeric formation of Kvalpha subunits and the presence of modulatory Kvbeta subunits are important factors in mediating Kv currents in the renal microvasculature and suggest a potentially critical role for these channel subunits in blood pressure regulation.

  7. Correction of xeroderma pigmentosum repair defect by basal transcription factor BTF2 (TFIIH).

    PubMed Central

    van Vuuren, A J; Vermeulen, W; Ma, L; Weeda, G; Appeldoorn, E; Jaspers, N G; van der Eb, A J; Bootsma, D; Hoeijmakers, J H; Humbert, S

    1994-01-01

    ERCC3 was initially identified as a gene correcting the nucleotide excision repair (NER) defect of xeroderma pigmentosum complementation group B (XP-B). The recent finding that its gene product is identical to the p89 subunit of basal transcription factor BTF2(TFIIH), opened the possibility that it is not directly involved in NER but that it regulates the transcription of one or more NER genes. Using an in vivo microinjection repair assay and an in vitro NER system based on cell-free extracts we demonstrate that ERCC3 in BTF2 is directly implicated in excision repair. Antibody depletion experiments support the idea that the p62 BTF2 subunit and perhaps the entire transcription factor function in NER. Microinjection experiments suggest that exogenous ERCC3 can exchange with ERCC3 subunits in the complex. Expression of a dominant negative K436-->R ERCC3 mutant, expected to have lost all helicase activity, completely abrogates NER and transcription and concomitantly induces a dramatic chromatin collapse. These findings establish the role of ERCC3 and probably the entire BTF2 complex in transcription in vivo which was hitherto only demonstrated in vitro. The results strongly suggest that transcription itself is a critical component for maintenance of chromatin structure. The remarkable dual role of ERCC3 in NER and transcription provides a clue in understanding the complex clinical features of some inherited repair syndromes. Images PMID:8157004

  8. Neuroprotective Effects of Transcription Factor Brn3b in an Ocular Hypertension Rat Model of Glaucoma

    PubMed Central

    Stankowska, Dorota L.; Minton, Alena Z.; Rutledge, Margaret A.; Mueller, Brett H.; Phatak, Nitasha R.; He, Shaoqing; Ma, Hai-Ying; Forster, Michael J.; Yorio, Thomas; Krishnamoorthy, Raghu R.

    2015-01-01

    Purpose. Glaucoma is an optic neuropathy commonly associated with elevated intraocular pressure (IOP), leading to optic nerve head (ONH) cupping, axon loss, and apoptosis of retinal ganglion cells (RGCs), which could ultimately result in blindness. Brn3b is a class-4 POU domain transcription factor that plays a key role in RGC development, axon outgrowth, and pathfinding. Previous studies suggest that a decrease in Brn3b levels occurs in animal models of glaucoma. The goal of this study was to determine if adeno-associated virus (AAV)-directed overexpression of the Brn3b protein could have neuroprotective effects following elevated IOP-mediated neurodegeneration. Methods. Intraocular pressure was elevated in one eye of Brown Norway rats (Rattus norvegicus), following which the IOP-elevated eyes were intravitreally injected with AAV constructs encoding either the GFP (rAAV-CMV-GFP and rAAV-hsyn-GFP) or Brn3b (rAAV-CMV-Brn3b and rAAV-hsyn-Brn3b). Retina sections through the ONH were stained for synaptic plasticity markers and neuroprotection was assessed by RGC counts and visual acuity tests. Results. Adeno-associated virus–mediated expression of the Brn3b protein in IOP-elevated rat eyes promoted an upregulation of growth associated protein-43 (GAP-43), actin binding LIM protein (abLIM) and acetylated α-tubulin (ac-Tuba) both posterior to the ONH and in RGCs. The RGC survival as well as axon integrity score were significantly improved in IOP-elevated rAAV-hsyn-Brn3b–injected rats compared with those of the IOP-elevated rAAV-hsyn-GFP– injected rats. Additionally, intravitreal rAAV-hsyn-Brn3b administration significantly restored the visual optomotor response in IOP-elevated rat eyes. Conclusions. Adeno-associated virus–mediated Brn3b protein expression may be a suitable approach for promoting neuroprotection in animal models of glaucoma. PMID:25587060

  9. Role of the p50 subunit of NF-κB in vitamin E-induced changes in mice treated with the peroxisome proliferator, ciprofibrate

    PubMed Central

    Calfee-Mason, Karen G.; Lee, Eun Y.; Spear, Brett T.; Glauert, Howard P.

    2008-01-01

    Peroxisome proliferators (PPs) are a diverse class of chemicals, which cause a dramatic increase in the size and number of hepatic peroxisomes in rodents and eventually lead to the development of hepatic tumors. Nuclear factor-κB (NF-κB) is a transcription factor activated by reactive oxygen and is involved in cell proliferation and apoptosis. Previously we found that the peroxisome proliferator ciprofibrate (CIP) activates NF-κB and that dietary vitamin E decreases CIP-induced NF-κB DNA binding. We therefore hypothesized that inhibition of NF-κB by vitamin E is necessary for effects of vitamin E on CIP-induced cell proliferation and the inhibition of apoptosis by CIP. Sixteen B6129 female mice (p50+/+) and twenty mice deficient in the p50 subunit of NF-κB (p50−/−) were fed a purified diet containing 10 or 250 mg/kg vitamin E (α-tocopherol acetate) for 28 days. At that time, half of the mice were placed on the same diet with 0.01% CIP for 10 days. CIP treatment increased the DNA binding activity of NF-κB and cell proliferation, but had no significant effect on apoptosis. Compared to wild-type mice, the p50−/− mice had lower NF-κB activation, higher basal levels of cell proliferation and apoptosis, and a lower ratio of reduced glutathione to oxidized glutathione (GSH/GSSG). There was approximately a 60% reduction in cell proliferation in the CIP-treated p50−/− mice fed higher vitamin E in comparison to the p50−/− mice fed lower vitamin E. Dietary vitamin E also inhibited the DNA binding activity of NF-κB, increased apoptosis, and increased the GSH/GSSG ratio. This study shows the effects of vitamin E on cell growth parameters do not appear to be solely through decreased NF-κB activation, suggesting that vitamin E is acting by other molecular mechanisms. PMID:18336980

  10. Fractionating spatial memory with glutamate receptor subunit-knockout mice.

    PubMed

    Bannerman, David M

    2009-12-01

    In recent years, the contribution that different glutamate receptor subtypes and subunits make to spatial learning and memory has been studied extensively using genetically modified mice in which key proteins are knocked out. This has revealed dissociations between different aspects of spatial memory that were not previously apparent from lesion studies. For example, studies with GluA1 AMPAR [AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor] subunit-knockout mice have revealed the presence of a GluA1-dependent, non-associative short-term memory mechanism that is important for performance on spatial working memory tasks, and a GluA1-independent, long-term associative memory mechanism which underlies performance on spatial reference memory tasks. Within this framework we have also studied the contributions of different GluN2-containing NMDARs [NMDA (N-methyl-D-aspartate) receptors] to spatial memory. Studies with GluN2 NMDAR mutants have revealed different contributions from GluN2A- and GluN2B-containing NMDARs to spatial learning. Furthermore, comparison of forebrain- and hippocampus-specific GluN2B-knockout mice has demonstrated that both hippocampal and extra-hippocampal NMDARs make important contributions to spatial memory performance.

  11. Differential plasma membrane targeting of voltage-dependent calcium channel subunits expressed in a polarized epithelial cell line

    PubMed Central

    Brice, Nicola L; Dolphin, Annette C

    1999-01-01

    Voltage-dependent calcium channels (VDCCs) show a highly non-uniform distribution in many cell types, including neurons and other polarized secretory cells. We have examined whether this can be mimicked in a polarized epithelial cell line (Madin-Darby canine kidney), which has been used extensively to study the targeting of proteins. We expressed the VDCC α1A, α1B or α1C subunits either alone or in combination with accessory subunits α2-δ and the different β subunits, and examined their localization immunocytochemically. An α1 subunit was only targeted to the plasma membrane if co-expressed with the accessory subunits. The combination α1C/α2-δ and all β subunits was always localized predominantly to the basolateral membrane. It has been suggested that this is equivalent to somatodendritic targeting in neurons. In contrast, the α1B subunit was expressed at the apical membrane with all the accessory subunit combinations, by 24 h after microinjection. This membrane destination shows some parallels with axonal targeting in neurons. The α1A subunit was consistently observed at the apical membrane in the combinations α1A/α2-δ/β1b or β4. In contrast, when co-expressed with α2-δ/β2a, α1A was clearly targeted to the basolateral membrane. In conclusion, the VDCC α1 subunit appears to be the primary determinant for targeting the VDCC complex, but the β subunit can modify this destination, particularly for α1A. PMID:10066897

  12. The medaka mutation tintachina sheds light on the evolution of V-ATPase B subunits in vertebrates

    NASA Astrophysics Data System (ADS)

    Müller, Claudia; Maeso, Ignacio; Wittbrodt, Joachim; Martínez-Morales, Juan R.

    2013-11-01

    Vacuolar-type H+ ATPases (V-ATPases) are multimeric protein complexes that play a universal role in the acidification of intracellular compartments in eukaryotic cells. We have isolated the recessive medaka mutation tintachina (tch), which carries an inactivating modification of the conserved glycine residue (G75R) of the proton pump subunit atp6v1Ba/vatB1. Mutant embryos show penetrant pigmentation defects, massive brain apoptosis and lethality before hatching. Strikingly, an equivalent mutation in atp6v1B1 (G78R) has been reported in a family of patients suffering from distal renal tubular acidosis (dRTA), a hereditary disease that causes metabolic acidosis due to impaired kidney function. This poses the question as to how molecularly identical mutations result in markedly different phenotypes in two vertebrate species. Our work offers an explanation for this phenomenon. We propose that, after successive rounds of whole-genome duplication, the emergence of paralogous copies allowed the divergence of the atp6v1B cis-regulatory control in different vertebrate groups.

  13. h5-HT1B receptor-mediated constitutive Gαi3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT

    PubMed Central

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-01-01

    Serotonin 5-HT1B receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5′-0-(3-[35S]thio)-triphosphate ([35S]GTPγS) binding strategy, we characterised Gαi3 subunit activation by h5-HT1B receptors stably expressed in Chinese hamster ovary (CHO) cells. The agonists, 5-HT, alniditan and BMS181,101, stimulated Gαi3, whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT1B receptor ligand, S18127, modestly stimulated Gαi3 and reversed the actions of both 5-HT and methiothepin. S18127 (1 μM) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. Isotopic dilution experiments ([35S]GTPγS versus GTPγS) revealed high-affinity [35S]GTPγS binding to Gαi3 subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [35S]GTPγS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPγS for Gαi3 subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. h5-HT1B receptor-mediated Gαi3 subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [35S]GTPγS binding, basal Gαi3 activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Gαi3 activation. In conclusion, at h5-HT1B receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Gαi3, and its reversal by S18127, reveals constitutive activation of this Gα subunit; (ii) constitutive Gαi3 activation can be quantified by isotopic dilution [35S]GTPγS binding and (iii) decreasing NaCl concentrations enhances Gαi3 activation and leads to protean agonist properties of 5-HT: that is a switch to inhibition of Gαi3. PMID:12684263

  14. B56δ-related protein phosphatase 2A dysfunction identified in patients with intellectual disability

    PubMed Central

    Houge, Gunnar; Haesen, Dorien; Vissers, Lisenka E.L.M.; Mehta, Sarju; Parker, Michael J.; Wright, Michael; Vogt, Julie; McKee, Shane; Tolmie, John L.; Cordeiro, Nuno; Kleefstra, Tjitske; Willemsen, Marjolein H.; Reijnders, Margot R.F.; Berland, Siren; Hayman, Eli; Lahat, Eli; Brilstra, Eva H.; van Gassen, Koen L.I.; Zonneveld-Huijssoon, Evelien; de Bie, Charlotte I.; Hoischen, Alexander; Eichler, Evan E.; Holdhus, Rita; Steen, Vidar M.; Døskeland, Stein Ove; Hurles, Matthew E.; FitzPatrick, David R.; Janssens, Veerle

    2015-01-01

    Here we report inherited dysregulation of protein phosphatase activity as a cause of intellectual disability (ID). De novo missense mutations in 2 subunits of serine/threonine (Ser/Thr) protein phosphatase 2A (PP2A) were identified in 16 individuals with mild to severe ID, long-lasting hypotonia, epileptic susceptibility, frontal bossing, mild hypertelorism, and downslanting palpebral fissures. PP2A comprises catalytic (C), scaffolding (A), and regulatory (B) subunits that determine subcellular anchoring, substrate specificity, and physiological function. Ten patients had mutations within a highly conserved acidic loop of the PPP2R5D-encoded B56δ regulatory subunit, with the same E198K mutation present in 6 individuals. Five patients had mutations in the PPP2R1A-encoded scaffolding Aα subunit, with the same R182W mutation in 3 individuals. Some Aα cases presented with large ventricles, causing macrocephaly and hydrocephalus suspicion, and all cases exhibited partial or complete corpus callosum agenesis. Functional evaluation revealed that mutant A and B subunits were stable and uncoupled from phosphatase activity. Mutant B56δ was A and C binding–deficient, while mutant Aα subunits bound B56δ well but were unable to bind C or bound a catalytically impaired C, suggesting a dominant-negative effect where mutant subunits hinder dephosphorylation of B56δ-anchored substrates. Moreover, mutant subunit overexpression resulted in hyperphosphorylation of GSK3β, a B56δ-regulated substrate. This effect was in line with clinical observations, supporting a correlation between the ID degree and biochemical disturbance. PMID:26168268

  15. Chemically related 4,5-linked aminoglycoside antibiotics drive subunit rotation in opposite directions

    PubMed Central

    Wasserman, Michael R.; Pulk, Arto; Zhou, Zhou; Altman, Roger B.; Zinder, John C.; Green, Keith D.; Garneau-Tsodikova, Sylvie; Doudna Cate, Jamie H.; Blanchard, Scott C.

    2015-01-01

    Dynamic remodelling of intersubunit bridge B2, a conserved RNA domain of the bacterial ribosome connecting helices 44 (h44) and 69 (H69) of the small and large subunit, respectively, impacts translation by controlling intersubunit rotation. Here we show that aminoglycosides chemically related to neomycin—paromomycin, ribostamycin and neamine—each bind to sites within h44 and H69 to perturb bridge B2 and affect subunit rotation. Neomycin and paromomycin, which only differ by their ring-I 6′-polar group, drive subunit rotation in opposite directions. This suggests that their distinct actions hinge on the 6′-substituent and the drug's net positive charge. By solving the crystal structure of the paromomycin–ribosome complex, we observe specific contacts between the apical tip of H69 and the 6′-hydroxyl on paromomycin from within the drug's canonical h44-binding site. These results indicate that aminoglycoside actions must be framed in the context of bridge B2 and their regulation of subunit rotation. PMID:26224058

  16. Mediator Complex Subunits MED2, MED5, MED16, and MED23 Genetically Interact in the Regulation of Phenylpropanoid Biosynthesis.

    PubMed

    Dolan, Whitney L; Dilkes, Brian P; Stout, Jake M; Bonawitz, Nicholas D; Chapple, Clint

    2017-12-01

    The phenylpropanoid pathway is a major global carbon sink and is important for plant fitness and the engineering of bioenergy feedstocks. In Arabidopsis thaliana , disruption of two subunits of the transcriptional regulatory Mediator complex, MED5a and MED5b, results in an increase in phenylpropanoid accumulation. By contrast, the semidominant MED5b mutation reduced epidermal fluorescence4-3 ( ref4-3 ) results in dwarfism and constitutively repressed phenylpropanoid accumulation. Here, we report the results of a forward genetic screen for suppressors of ref4-3. We identified 13 independent lines that restore growth and/or phenylpropanoid accumulation in the ref4-3 background. Two of the suppressors restore growth without restoring soluble phenylpropanoid accumulation, indicating that the growth and metabolic phenotypes of the ref4-3 mutant can be genetically disentangled. Whole-genome sequencing revealed that all but one of the suppressors carry mutations in MED5b or other Mediator subunits. RNA-seq analysis showed that the ref4-3 mutation causes widespread changes in gene expression, including the upregulation of negative regulators of the phenylpropanoid pathway, and that the suppressors reverse many of these changes. Together, our data highlight the interdependence of individual Mediator subunits and provide greater insight into the transcriptional regulation of phenylpropanoid biosynthesis by the Mediator complex. © 2017 American Society of Plant Biologists. All rights reserved.

  17. The Cac2 subunit is essential for productive histone binding and nucleosome assembly in CAF-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattiroli, Francesca; Gu, Yajie; Balsbaugh, Jeremy L.

    Nucleosome assembly following DNA replication controls epigenome maintenance and genome integrity. Chromatin assembly factor 1 (CAF-1) is the histone chaperone responsible for histone (H3-H4)2 deposition following DNA synthesis. Structural and functional details for this chaperone complex and its interaction with histones are slowly emerging. Using hydrogen-deuterium exchange coupled to mass spectrometry, combined with in vitro and in vivo mutagenesis studies, we identified the regions involved in the direct interaction between the yeast CAF-1 subunits, and mapped the CAF-1 domains responsible for H3-H4 binding. The large subunit, Cac1 organizes the assembly of CAF-1. Strikingly, H3-H4 binding is mediated by a compositemore » interface, shaped by Cac1-bound Cac2 and the Cac1 acidic region. Cac2 is indispensable for productive histone binding, while deletion of Cac3 has only moderate effects on H3-H4 binding and nucleosome assembly. These results define direct structural roles for yeast CAF-1 subunits and uncover a previously unknown critical function of the middle subunit in CAF-1.« less

  18. Inhibition by antioxidants of nitric oxide synthase expression in murine macrophages: role of nuclear factor kappa B and interferon regulatory factor 1.

    PubMed Central

    Hecker, M.; Preiss, C.; Klemm, P.; Busse, R.

    1996-01-01

    1. In view of the potential deleterious effects of high amounts of nitric oxide (NO) produced by the inducible isoform of NO synthase (iNOS) in inflammation, the prevention of the expression of this enzyme represents an important therapeutic goal. In cytokine-stimulated cells, activation of nuclear factor kappa B (NF-kappa B) is crucial for the increase in iNOS gene expression. Since NF-kappa B activation appears to involve a redox-sensitive step, we have investigated whether three structurally unrelated antioxidants, 5,7-dihydroxyflavone (chrysin), 3,4-dichloroisocoumarin (DCI) and N-acetyl 5-hydroxytryptamine (N-acetylserotonin, NAS), affect iNOS expression in cultured RAW 264.7 monocyte/macrophages stimulated with bacterial lipopolysaccharide (LPS, 140 ng ml-1) and interferon-gamma (IFN gamma, 5 u ml-1). 2. During a 6 h incubation period neither LPS nor IFN gamma alone exerted a significant effect but when combined, caused a prominent increase in nitrite formation, iNOS mRNA and protein abundance. Co-incubation with chrysin (50 microM), DCI (50 microM) or NAS (1 mM) markedly attenuated this increase in iNOS gene expression. 3. DCI, but not chrysin or NAS, prevented the activation of NF-kappa B in cells exposed to LPS plus IFN gamma for 30 min. In contrast, all three antioxidants significantly blunted the DNA-binding activity of interferon regulatory factor 1 (IRF-1), which mediates the synergistic effect of IFN gamma on iNOS gene expression in cells treated for 2 h with LPS plus IFN gamma. 4. DCI thus appears to inhibit iNOS gene expression at the transcriptional level by preventing the activation of both NF-kappa B and IRF-1. The inhibitory effect of DCI on NF-kappa B activation, however, does not seem to be related to its antioxidative properties, since DCI, unlike chrysin or NAS, is a potent serine protease inhibitor which stabilizes the inactive NF-kappa B complex by protecting the inhibitory I kappa B-alpha subunit from proteolytic degradation. 5. The

  19. Fyn kinase-mediated phosphorylation of NMDA receptor NR2B subunit at Tyr1472 is essential for maintenance of neuropathic pain.

    PubMed

    Abe, Tetsuya; Matsumura, Shinji; Katano, Tayo; Mabuchi, Tamaki; Takagi, Kunio; Xu, Li; Yamamoto, Akitsugu; Hattori, Kotaro; Yagi, Takeshi; Watanabe, Masahiko; Nakazawa, Takanobu; Yamamoto, Tadashi; Mishina, Masayoshi; Nakai, Yoshihide; Ito, Seiji

    2005-09-01

    Despite abundant evidence implicating the importance of N-methyl-D-aspartate (NMDA) receptors in the spinal cord for pain transmission, the signal transduction coupled to NMDA receptor activation is largely unknown for the neuropathic pain state that lasts over periods of weeks. To address this, we prepared mice with neuropathic pain by transection of spinal nerve L5. Wild-type, NR2A-deficient, and NR2D-deficient mice developed neuropathic pain; in addition, phosphorylation of NR2B subunits of NMDA receptors at Tyr1472 was observed in the superficial dorsal horn of the spinal cord 1 week after nerve injury. Neuropathic pain and NR2B phosphorylation at Tyr1472 were attenuated by the NR2B-selective antagonist CP-101,606 and disappeared in mice lacking Fyn kinase, a Src-family tyrosine kinase. Concomitant with the NR2B phosphorylation, an increase in neuronal nitric oxide synthase activity was visualized in the superficial dorsal horn of neuropathic pain mice by NADPH diaphorase histochemistry. Electron microscopy showed that the phosphorylated NR2B was localized at the postsynaptic density in the spinal cord of mice with neuropathic pain. Indomethacin, an inhibitor of prostaglandin (PG) synthesis, and PGE receptor subtype EP1-selective antagonist reduced the NR2B phosphorylation in these mice. Conversely, EP1-selective agonist stimulated Fyn kinase-dependent nitric oxide formation in the spinal cord. The present study demonstrates that Tyr1472 phosphorylation of NR2B subunits by Fyn kinase may have dual roles in the retention of NMDA receptors in the postsynaptic density and in activation of nitric oxide synthase, and suggests that PGE2 is involved in the maintenance of neuropathic pain via the EP1 subtype.

  20. An orphan cbb3-type cytochrome oxidase subunit supports Pseudomonas aeruginosa biofilm growth and virulence

    PubMed Central

    Jo, Jeanyoung; Cortez, Krista L; Cornell, William Cole; Price-Whelan, Alexa

    2017-01-01

    Hypoxia is a common challenge faced by bacteria during associations with hosts due in part to the formation of densely packed communities (biofilms). cbb3-type cytochrome c oxidases, which catalyze the terminal step in respiration and have a high affinity for oxygen, have been linked to bacterial pathogenesis. The pseudomonads are unusual in that they often contain multiple full and partial (i.e. ‘orphan’) operons for cbb3-type oxidases and oxidase subunits. Here, we describe a unique role for the orphan catalytic subunit CcoN4 in colony biofilm development and respiration in the opportunistic pathogen Pseudomonas aeruginosa PA14. We also show that CcoN4 contributes to the reduction of phenazines, antibiotics that support redox balancing for cells in biofilms, and to virulence in a Caenorhabditis elegans model of infection. These results highlight the relevance of the colony biofilm model to pathogenicity and underscore the potential of cbb3-type oxidases as therapeutic targets. PMID:29160206

  1. Behavioural endophenotypes in mice lacking the auxiliary GABAB receptor subunit KCTD16.

    PubMed

    Cathomas, Flurin; Sigrist, Hannes; Schmid, Luca; Seifritz, Erich; Gassmann, Martin; Bettler, Bernhard; Pryce, Christopher R

    2017-01-15

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is implicated in the pathophysiology of a number of neuropsychiatric disorders. The GABA B receptors are G-protein coupled receptors consisting of principle subunits and auxiliary potassium channel tetramerization domain (KCTD) subunits. The KCTD subunits 8, 12, 12b and 16 are cytosolic proteins that determine the kinetics of the GABA B receptor response. Previously, we demonstrated that Kctd12 null mutant mice (Kctd12 -/- ) exhibit increased auditory fear learning and that Kctd12 +/- mice show altered circadian activity, as well as increased intrinsic excitability in hippocampal pyramidal neurons. KCTD16 has been demonstrated to influence neuronal excitability by regulating GABA B receptor-mediated gating of postsynaptic ion channels. In the present study we investigated for behavioural endophenotypes in Kctd16 -/- and Kctd16 +/- mice. Compared with wild-type (WT) littermates, auditory and contextual fear conditioning were normal in both Kctd16 -/- and Kctd16 +/- mice. When fear memory was tested on the following day, Kctd16 -/- mice exhibited less extinction of auditory fear memory relative to WT and Kctd16 +/- mice, as well as more contextual fear memory relative to WT and, in particular, Kctd16 +/- mice. Relative to WT, both Kctd16 +/- and Kctd16 -/- mice exhibited normal circadian activity. This study adds to the evidence that auxillary KCTD subunits of GABA B receptors contribute to the regulation of behaviours that could constitute endophenotypes for hyper-reactivity to aversive stimuli in neuropsychiatric disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. INTRINSIC REGULATION OF HEMOGLOBIN EXPRESSION BY VARIABLE SUBUNIT INTERFACE STRENGTHS

    PubMed Central

    Manning, James M.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, Lois R.

    2012-01-01

    SUMMARY The expression of the six types of human hemoglobin subunits over time is currently considered to be regulated mainly by transcription factors that bind to upstream control regions of the gene (the “extrinsic” component of regulation). Here we describe how subunit pairing and further assembly to tetramers in the liganded state is influenced by the affinity of subunits for one another (the “intrinsic” component of regulation). The adult hemoglobin dimers have the strongest subunit interfaces and the embryonic hemoglobins are the weakest with fetal hemoglobins of intermediate strength, corresponding to the temporal order of their expression. These variable subunit binding strengths and the attenuating effects of acetylation contribute to the differences with which these hemoglobin types form functional O2-binding tetramers consistent with gene switching. PMID:22129306

  3. Production of double repeated B subunit of Shiga toxin 2e at high levels in transgenic lettuce plants as vaccine material for porcine edema disease.

    PubMed

    Matsui, Takeshi; Takita, Eiji; Sato, Toshio; Aizawa, Michie; Ki, Misa; Kadoyama, Yumiko; Hirano, Kenji; Kinjo, Satoko; Asao, Hiroshi; Kawamoto, Keiko; Kariya, Haruko; Makino, Sou-Ichi; Hamabata, Takashi; Sawada, Kazutoshi; Kato, Ko

    2011-08-01

    Pig edema disease is a bacterial disease caused by enterohemorrhagic Escherichia coli. E. coli produces Shiga toxin 2e (Stx2e), which is composed of one A subunit (Stx2eA) and five B subunits (Stx2eB). We previously reported production of Stx2eB in lettuce plants as a potential edible vaccine (Matsui et al. in Biosci Biotechnol Biochem 73:1628-1634, 2009). However, the accumulation level was very low, and it was necessary to improve expression of Stx2eB for potential use of this plant-based vaccine. Therefore, in this study, we optimized the Stx2eB expression cassette and found that a double repeated Stx2eB (2× Stx2eB) accumulates to higher levels than a single Stx2eB in cultured tobacco cells. Furthermore, a linker peptide between the two Stx2eB moieties played an important role in maximizing the effects of the double repeat. Finally, we generated transgenic lettuce plants expressing 2× Stx2eB with a suitable linker peptide that accumulate as much as 80 mg per 100 g fresh weight, a level that will allow us to use these transgenic lettuce plants practically to generate vaccine material.

  4. Bisphenol-A rapidly promotes dynamic changes in hippocampal dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDA receptor subunit NR2B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Xiaohong, E-mail: xuxh63@zjnu.cn; Ye Yinping; Li Tao

    Bisphenol-A (BPA) is known to be a potent endocrine disrupter. Evidence is emerging that estrogen exerts a rapid influence on hippocampal synaptic plasticity and the dendritic spine density, which requires activation of NMDA receptors. In the present study, we investigated the effects of BPA (ranging from 1 to 1000 nM), focusing on the rapid dynamic changes in dendritic filopodia and the expressions of estrogen receptor (ER) {beta} and NMDA receptor, as well as the phosphorylation of NMDA receptor subunit NR2B in the cultured hippocampal neurons. A specific ER antagonist ICI 182,780 was used to examine the potential involvement of ERs.more » The results demonstrated that exposure to BPA (ranging from 10 to 1000 nM) for 30 min rapidly enhanced the motility and the density of dendritic filopodia in the cultured hippocampal neurons, as well as the phosphorylation of NR2B (pNR2B), though the expressions of NMDA receptor subunits NR1, NR2B, and ER{beta} were not changed. The antagonist of ERs completely inhibited the BPA-induced increases in the filopodial motility and the number of filopodia extending from dendrites. The increased pNR2B induced by BPA (100 nM) was also completely eliminated. Furthermore, BPA attenuated the effects of 17{beta}-estradiol (17{beta}-E{sub 2}) on the dendritic filopodia outgrowth and the expression of pNR2B when BPA was co-treated with 17{beta}-E{sub 2}. The present results suggest that BPA, like 17{beta}-E{sub 2}, rapidly results in the enhanced motility and density of dendritic filopodia in the cultured hippocampal neurons with the concomitant activation of NMDA receptor subunit NR2B via an ER-mediated signaling pathway. Meanwhile, BPA suppressed the enhancement effects of 17{beta}-E{sub 2} when it coexists with 17{beta}-E{sub 2}. These results provided important evidence suggesting the neurotoxicity of the low levels of BPA during the early postnatal development of the brain.« less

  5. Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy.

    PubMed

    Peckys, Diana B; Baudoin, Jean-Pierre; Eder, Magdalena; Werner, Ulf; de Jonge, Niels

    2013-01-01

    Imaging single epidermal growth factor receptors (EGFR) in intact cells is presently limited by the available microscopy methods. Environmental scanning electron microscopy (ESEM) of whole cells in hydrated state in combination with specific labeling with gold nanoparticles was used to localize activated EGFRs in the plasma membranes of COS7 and A549 cells. The use of a scanning transmission electron microscopy (STEM) detector yielded a spatial resolution of 3 nm, sufficient to identify the locations of individual EGFR dimer subunits. The sizes and distribution of dimers and higher order clusters of EGFRs were determined. The distance between labels bound to dimers amounted to 19 nm, consistent with a molecular model. A fraction of the EGFRs was found in higher order clusters with sizes ranging from 32-56 nm. ESEM can be used for quantitative whole cell screening studies of membrane receptors, and for the study of nanoparticle-cell interactions in general.

  6. Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy

    PubMed Central

    Peckys, Diana B.; Baudoin, Jean-Pierre; Eder, Magdalena; Werner, Ulf; de Jonge, Niels

    2013-01-01

    Imaging single epidermal growth factor receptors (EGFR) in intact cells is presently limited by the available microscopy methods. Environmental scanning electron microscopy (ESEM) of whole cells in hydrated state in combination with specific labeling with gold nanoparticles was used to localize activated EGFRs in the plasma membranes of COS7 and A549 cells. The use of a scanning transmission electron microscopy (STEM) detector yielded a spatial resolution of 3 nm, sufficient to identify the locations of individual EGFR dimer subunits. The sizes and distribution of dimers and higher order clusters of EGFRs were determined. The distance between labels bound to dimers amounted to 19 nm, consistent with a molecular model. A fraction of the EGFRs was found in higher order clusters with sizes ranging from 32–56 nm. ESEM can be used for quantitative whole cell screening studies of membrane receptors, and for the study of nanoparticle-cell interactions in general. PMID:24022088

  7. Finding molecular dioxygen tunnels in homoprotocatechuate 2,3-dioxygenase: implications for different reactivity of identical subunits.

    PubMed

    Xu, Liang; Zhao, Weijie; Wang, Xicheng

    2010-01-01

    Extradiol dioxygenases facilitate microbial aerobic degradation of catechol and its derivatives by activating molecular dioxygen and incorporating both oxygen atoms into their substrates. Experimental and theoretical studies have focused on the mechanism of the reaction at the active site. However, whether the catalytic rate is limited by O(2) access to the active site has not yet been explored. Here, we choose a recently solved X-ray structure of homoprotocatechuate 2,3-dioxygenase as a typical example to determine potential pathways for O(2) migration from the solvent into the enzyme center. On the basis of the trajectories of two 10-ns molecular dynamics simulations, implicit ligand sampling was used to calculate the 3D free energy map for O(2) inside the protein. The energetically optimal routes for O(2) diffusion were identified for each subunit of the homotetrameric protein structure. The O(2) tunnels formed because of thermal fluctuations were also characterized by connecting elongated cavities inside the protein. By superimposing the favorable O(2) tunnels on to the free energy map, both energetically and geometrically preferred O(2) pathways were determined, as also were the amino acids that may be critical for O(2) passage along these paths. Our results demonstrate that identical subunits possess quite distinct O(2) tunnels. The order of O(2) affinity of these tunnels is generally consistent with the order of the catalytic rate of each subunit. As a consequence, the probability of finding the reaction product is highest in the subunit containing the highest O(2) affinity pathway.

  8. Stiffness of γ subunit of F(1)-ATPase.

    PubMed

    Okuno, Daichi; Iino, Ryota; Noji, Hiroyuki

    2010-11-01

    F(1)-ATPase is a molecular motor in which the γ subunit rotates inside the α(3)β(3) ring upon adenosine triphosphate (ATP) hydrolysis. Recent works on single-molecule manipulation of F(1)-ATPase have shown that kinetic parameters such as the on-rate of ATP and the off-rate of adenosine diphosphate (ADP) strongly depend on the rotary angle of the γ subunit (Hirono-Hara et al. 2005; Iko et al. 2009). These findings provide important insight into how individual reaction steps release energy to power F(1) and also have implications regarding ATP synthesis and how reaction steps are reversed upon reverse rotation. An important issue regarding the angular dependence of kinetic parameters is that the angular position of a magnetic bead rotation probe could be larger than the actual position of the γ subunit due to the torsional elasticity of the system. In the present study, we assessed the stiffness of two different portions of F(1) from thermophilic Bacillus PS3: the internal part of the γ subunit embedded in the α(3)β(3) ring, and the complex of the external part of the γ subunit and the α(3)β(3) ring (and streptavidin and magnetic bead), by comparing rotational fluctuations before and after crosslinkage between the rotor and stator. The torsional stiffnesses of the internal and remaining parts were determined to be around 223 and 73 pNnm/radian, respectively. Based on these values, it was estimated that the actual angular position of the internal part of the γ subunit is one-fourth of the magnetic bead position upon stalling using an external magnetic field. The estimated elasticity also partially explains the accommodation of the intrinsic step size mismatch between F(o) and F(1)-ATPase.

  9. Src-family-tyrosine kinase Lyn is critical for TLR2-mediated NF-κB activation through the PI 3-kinase signaling pathway.

    PubMed

    Toubiana, Julie; Rossi, Anne-Lise; Belaidouni, Nadia; Grimaldi, David; Pene, Frederic; Chafey, Philippe; Comba, Béatrice; Camoin, Luc; Bismuth, Georges; Claessens, Yann-Erick; Mira, Jean-Paul; Chiche, Jean-Daniel

    2015-10-01

    TLR2 has a prominent role in host defense against a wide variety of pathogens. Stimulation of TLR2 triggers MyD88-dependent signaling to induce NF-κB translocation, and activates a Rac1-PI 3-kinase dependent pathway that leads to transactivation of NF-κB through phosphorylation of the P65 NF-κB subunit. This transactivation pathway involves tyrosine phosphorylations. The role of the tyrosine kinases in TLR signaling is controversial, with discrepancies between studies using only chemical inhibitors and knockout mice. Here, we show the involvement of the tyrosine-kinase Lyn in TLR2-dependent activation of NF-κB in human cellular models, by using complementary inhibition strategies. Stimulation of TLR2 induces the formation of an activation cluster involving TLR2, CD14, PI 3-kinase and Lyn, and leads to the activation of AKT. Lyn-dependent phosphorylation of the p110 catalytic subunit of PI 3-kinase is essential to the control of PI 3-kinase biological activity upstream of AKT and thereby to the transactivation of NF-κB. Thus, Lyn kinase activity is crucial in TLR2-mediated activation of the innate immune response in human mononuclear cells. © The Author(s) 2015.

  10. Tetraspanin-3 is an organizer of the multi-subunit Nogo-A signaling complex.

    PubMed

    Thiede-Stan, Nina K; Tews, Björn; Albrecht, David; Ristic, Zorica; Ewers, Helge; Schwab, Martin E

    2015-10-01

    To ensure precision and specificity of ligand-receptor-induced signaling, co-receptors and modulatory factors play important roles. The membrane-bound ligand Nogo-A (an isoform encoded by RTN4) induces inhibition of neurite outgrowth, cell spreading, adhesion and migration through multi-subunit receptor complexes. Here, we identified the four-transmembrane-spanning protein tetraspanin-3 (TSPAN3) as a new modulatory co-receptor for the Nogo-A inhibitory domain Nogo-A-Δ20. Single-molecule tracking showed that TSPAN3 molecules in the cell membrane reacted to binding of Nogo-A with elevated mobility, which was followed by association with the signal-transducing Nogo-A receptor sphingosine-1-phosphate receptor 2 (S1PR2). Subsequently, TSPAN3 was co-internalized as part of the Nogo-A-ligand-receptor complex into early endosomes, where it subsequently separated from Nogo-A and S1PR2 to be recycled to the cell surface. The functional importance of the Nogo-A-TSPAN3 interaction is shown by the fact that knockdown of TSPAN3 strongly reduced the Nogo-A-induced S1PR2 clustering, RhoA activation, cell spreading and neurite outgrowth inhibition. In addition to the modulatory functions of TSPAN3 on Nogo-A-S1PR2 signaling, these results illustrate the very dynamic spatiotemporal reorganizations of membrane proteins during ligand-induced receptor complex organization. © 2015. Published by The Company of Biologists Ltd.

  11. 5-HT1A receptor blockade reverses GABAA receptor α3 subunit-mediated anxiolytic effects on stress-induced hyperthermia

    PubMed Central

    van Oorschot, Ruud; Korte, S. Mechiel; Olivier, Berend; Groenink, Lucianne

    2010-01-01

    Rationale Stress-related disorders are associated with dysfunction of both serotonergic and GABAergic pathways, and clinically effective anxiolytics act via both neurotransmitter systems. As there is evidence that the GABAA and the serotonin receptor system interact, a serotonergic component in the anxiolytic actions of benzodiazepines could be present. Objectives The main aim of the present study was to investigate whether the anxiolytic effects of (non-)selective α subunit GABAA receptor agonists could be reversed with 5-HT1A receptor blockade using the stress-induced hyperthermia (SIH) paradigm. Results The 5-HT1A receptor antagonist WAY-100635 (0.1–1 mg/kg) reversed the SIH-reducing effects of the non-α-subunit selective GABAA receptor agonist diazepam (1–4 mg/kg) and the GABAA receptor α3-subunit selective agonist TP003 (1 mg/kg), whereas WAY-100635 alone was without effect on the SIH response or basal body temperature. At the same time, co-administration of WAY-100635 with diazepam or TP003 reduced basal body temperature. WAY-100635 did not affect the SIH response when combined with the preferential α1-subunit GABAA receptor agonist zolpidem (10 mg/kg), although zolpidem markedly reduced basal body temperature. Conclusions The present study suggests an interaction between GABAA receptor α-subunits and 5-HT1A receptor activation in the SIH response. Specifically, our data indicate that benzodiazepines affect serotonergic signaling via GABAA receptor α3-subunits. Further understanding of the interactions between the GABAA and serotonin system in reaction to stress may be valuable in the search for novel anxiolytic drugs. PMID:20535452

  12. Development and use of domain-specific antibodies in a characterization of the large subunits of soybean photosystem 1

    NASA Technical Reports Server (NTRS)

    Henry, R. L.; Takemoto, L. J.; Murphy, J.; Gallegos, G. L.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The molecular architecture of the soybean photosystem 1 reaction center complex was examined using a combination of surface labeling and immunological methodology on isolated thylakoid membranes. Synthetic peptides (12 to 14 amino acids in length) were prepared which correspond to the N-terminal regions of the 83 and 82.4 kDa subunits of photosystem 1 (the PsaA and PsaB proteins, respectively). Similarly, a synthetic peptide was prepared corresponding to the C-terminal region of the PsaB subunit. These peptides were conjugated to a carrier protein, and were used for the production of polyclonal antibodies in rabbits. The resulting sera could distinguish between the PsaA and PsaB photosystem 1 subunits by Western blot analysis, and could identify appropriate size classes of cyanogen bromide cleavage fragments as predicted from the primary sequences of these two subunits. When soybean thylakoid membranes were surface-labeled with N-hydroxysuccinimidobiotin, several subunits of the complete photosystem 1 lipid/protein complex incorporated label. These included the light harvesting chlorophyll proteins of photosystem 1, and peptides thought to aid in the docking of ferredoxin to the complex during photosynthetic electron transport. However, the PsaA and PsaB subunits showed very little biotinylation. When these subunits were examined for the domains to which biotin did attach, most of the observed label was associated with the N-terminal domain of the PsaA subunit, as identified using a domain-specific polyclonal antisera.

  13. Structure, Subunit Topology, and Actin-binding Activity of the Arp2/3 Complex from Acanthamoeba

    PubMed Central

    Mullins, R. Dyche; Stafford, Walter F.; Pollard, Thomas D.

    1997-01-01

    The Arp2/3 complex, first isolated from Acanthamoeba castellani by affinity chromatography on profilin, consists of seven polypeptides; two actinrelated proteins, Arp2 and Arp3; and five apparently novel proteins, p40, p35, p19, p18, and p14 (Machesky et al., 1994). The complex is homogeneous by hydrodynamic criteria with a Stokes' radius of 5.3 nm by gel filtration, sedimentation coefficient of 8.7 S, and molecular mass of 197 kD by analytical ultracentrifugation. The stoichiometry of the subunits is 1:1:1:1:1:1:1, indicating the purified complex contains one copy each of seven polypeptides. In electron micrographs, the complex has a bilobed or horseshoe shape with outer dimensions of ∼13 × 10 nm, and mathematical models of such a shape and size are consistent with the measured hydrodynamic properties. Chemical cross-linking with a battery of cross-linkers of different spacer arm lengths and chemical reactivities identify the following nearest neighbors within the complex: Arp2 and p40; Arp2 and p35; Arp3 and p35; Arp3 and either p18 or p19; and p19 and p14. By fluorescent antibody staining with anti-p40 and -p35, the complex is concentrated in the cortex of the ameba, especially in linear structures, possibly actin filament bundles, that lie perpendicular to the leading edge. Purified Arp2/3 complex binds actin filaments with a K d of 2.3 μM and a stoichiometry of approximately one complex molecule per actin monomer. In electron micrographs of negatively stained samples, Arp2/3 complex decorates the sides of actin filaments. EDC/NHS cross-links actin to Arp3, p35, and a low molecular weight subunit, p19, p18, or p14. We propose structural and topological models for the Arp2/3 complex and suggest that affinity for actin filaments accounts for the localization of complex subunits to actinrich regions of Acanthamoeba. PMID:9015304

  14. Sf3b4-depleted Xenopus embryos: a model to study the pathogenesis of craniofacial defects in Nager syndrome

    PubMed Central

    Devotta, Arun; Juraver-Geslin, Hugo; Gonzalez, Jose Antonio; Hong, Chang-Soo; Saint-Jeannet, Jean-Pierre

    2016-01-01

    Mandibulofacial dysostosis (MFD) is a human developmental disorder characterized by defects of the facial bones. It is the second most frequent craniofacial malformation after cleft lip and palate. Nager syndrome combines many features of MFD with a variety of limb defects. Mutations in SF3B4 (splicing factor 3b, subunit 4) gene, which encodes a component of the pre-mRNA spliceosomal complex, were recently identified as a cause for Nager syndrome, accounting for 60% of affected individuals. Nothing is known about the cellular pathogenesis underlying Nager type MFD. Here we describe the first animal model for Nager syndrome, generated by knocking down Sf3b4 function in Xenopus laevis embryos, using morpholino antisense oligonucleotides. Our results indicate that Sf3b4-depleted embryos show reduced expression of the neural crest genes sox10, snail2 and twist at the neural plate border, associated with a broadening of the neural plate. This phenotype can be rescued by injection of wild-type human SF3B4 mRNA but not by mRNAs carrying mutations that cause Nager syndrome. At the tailbud stage, morphant embryos had decreased sox10 and tfap2a expression in the pharyngeal arches, indicative of a reduced number of neural crest cells. Later in development, Sf3b4-depleted tadpoles exhibited hypoplasia of neural crest-derived craniofacial cartilages, phenocopying aspects of the craniofacial skeletal defects seen in Nager syndrome patients. With this animal model we are now poised to gain important insights into the etiology and pathogenesis of Nager type MFD, and to identify the molecular targets of Sf3b4. PMID:26874011

  15. Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST

    PubMed Central

    Wu, Peng; Takai, Hiroyuki; de Lange, Titia

    2012-01-01

    SUMMARY A 3′ overhang is critical for the protection and maintenance of mammalian telomeres. How these overhangs are generated and whether different processing steps modify telomeres synthesized by leading- and lagging-strand DNA replication was not known. Here we evaluate changes in the telomeric overhangs through the cell cycle and at leading- and lagging-end telomeres in mouse cells lacking relevant genes. Apollo, a nuclease bound to the shelterin subunit TRF2, initiated formation of the 3′ overhang at leading-, but not lagging-end telomeres. Hyper-resection by Apollo was blocked at both ends by the shelterin protein POT1b. Exo1 extensively resected both telomere ends, generating long 3′ overhangs that transiently occurred in S/G2. CST/AAF, a DNA polymeraseα. primase accessory factor related to yeast CST, bound POT1b and shortened the extended overhangs produced by Exo1, most likely through fill-in synthesis. The results establish 3′ overhang formation as a multi-step, shelterin-controlled process that ensures functional telomeric overhangs at all chromosome ends. PMID:22748632

  16. Change of subunit composition of mitochondrial complex II (succinate-ubiquinone reductase/quinol-fumarate reductase) in Ascaris suum during the migration in the experimental host.

    PubMed

    Iwata, Fumiko; Shinjyo, Noriko; Amino, Hisako; Sakamoto, Kimitoshi; Islam, M Khyrul; Tsuji, Naotoshi; Kita, Kiyoshi

    2008-03-01

    The mitochondrial metabolic pathway of the parasitic nematode Ascaris suum changes dramatically during its life cycle, to adapt to changes in the environmental oxygen concentration. We previously showed that A. suum mitochondria express stage-specific isoforms of complex II (succinate-ubiquinone reductase: SQR/quinol-fumarate reductase: QFR). The flavoprotein (Fp) and small subunit of cytochrome b (CybS) in adult complex II differ from those of infective third stage larval (L3) complex II. However, there is no difference in the iron-sulfur cluster (Ip) or the large subunit of cytochrome b (CybL) between adult and L3 isoforms of complex II. In the present study, to clarify the changes that occur in the respiratory chain of A. suum larvae during their migration in the host, we examined enzymatic activity, quinone content and complex II subunit composition in mitochondria of lung stage L3 (LL3) A. suum larvae. LL3 mitochondria showed higher QFR activity ( approximately 160 nmol/min/mg) than mitochondria of A. suum at other stages (L3: approximately 80 nmol/min/mg; adult: approximately 70 nmol/min/mg). Ubiquinone content in LL3 mitochondria was more abundant than rhodoquinone ( approximately 1.8 nmol/mg versus approximately 0.9 nmol/mg). Interestingly, the results of two-dimensional bule-native/sodium dodecyl sulfate polyacrylamide gel electrophoresis analyses showed that LL3 mitochondria contained larval Fp (Fp(L)) and adult Fp (Fp(A)) at a ratio of 1:0.56, and that most LL3 CybS subunits were of the adult form (CybS(A)). This clearly indicates that the rearrangement of complex II begins with a change in the isoform of the anchor CybS subunit, followed by a similar change in the Fp subunit.

  17. BAG3 protects against hyperthermic stress by modulating NF-κB and ERK activities in human retinoblastoma cells.

    PubMed

    Yunoki, Tatsuya; Tabuchi, Yoshiaki; Hayashi, Atsushi; Kondo, Takashi

    2015-03-01

    BCL2-associated athanogene 3 (BAG3), a co-chaperone of HSP70, is a cytoprotective and anti-apoptotic protein that acts against various stresses, including heat stress. Here, we examined the effect of BAG3 on the sensitivity of human retinoblastoma cells to hyperthermia (HT). We examined the effects of BAG3 knockdown on the sensitivity of Y79 and WERI-Rb-1cells to HT (44 °C, 1 h) by evaluating apoptosis and cell proliferation using western blotting, real-time quantitative PCR (qPCR), flow cytometry, and a WST-8 assay kit. Furthermore, we examined the effects of activating nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase (ERK) using western blotting and real time qPCR. HT induced considerable apoptosis along with the activation of caspase-3 and chromatin condensation. The sensitivity of Y79 and WERI-Rb-1 cells to HT was significantly enhanced by BAG3 knockdown. Compared to HT alone, the combination of BAG3 knockdown and HT reduced phosphorylation of the inhibitors of kappa B α (IκBα) and p65, a subunit of NF-κB, and degraded IκB kinase γ (IKKγ) during the recovery period after HT. Furthermore, BAG3 knockdown increased the HT-induced phosphorylation of ERK after HT treatment, and the ERK inhibitor U0126 significantly improved the viability of the cells treated with a combination of BAG3 knockdown and HT. The silencing of BAG3 seems to enhance the effects of HT, at least in part, by maintaining HT-induced inactivity of NF-κB and the phosphorylation of ERK. These findings indicate that BAG3 may be a potential molecular target for modifying the outcomes of HT in retinoblastoma.

  18. The Na, K-ATPase β-Subunit Isoforms Expression in Glioblastoma Multiforme: Moonlighting Roles

    PubMed Central

    Rotoli, Deborah; Cejas, Mariana-Mayela; Maeso, María-del-Carmen; Pérez-Rodríguez, Natalia-Dolores; Morales, Manuel; Ávila, Julio

    2017-01-01

    Glioblastoma multiforme (GBM) is the most common form of malignant glioma. Recent studies point out that gliomas exploit ion channels and transporters, including Na, K-ATPase, to sustain their singular growth and invasion as they invade the brain parenchyma. Moreover, the different isoforms of the β-subunit of Na, K-ATPase have been implicated in regulating cellular dynamics, particularly during cancer progression. The aim of this study was to determine the Na, K-ATPase β subunit isoform subcellular expression patterns in all cell types responsible for microenvironment heterogeneity of GBM using immunohistochemical analysis. All three isoforms, β1, β2/AMOG (Adhesion Molecule On Glia) and β3, were found to be expressed in GBM samples. Generally, β1 isoform was not expressed by astrocytes, in both primary and secondary GBM, although other cell types (endothelial cells, pericytes, telocytes, macrophages) did express this isoform. β2/AMOG and β3 positive expression was observed in the cytoplasm, membrane and nuclear envelope of astrocytes and GFAP (Glial Fibrillary Acidic Protein) negative cells. Interestingly, differences in isoforms expression have been observed between primary and secondary GBM: in secondary GBM, β2 isoform expression in astrocytes was lower than that observed in primary GBM, while the expression of the β3 subunit was more intense. These changes in β subunit isoforms expression in GBM could be related to a different ionic handling, to a different relationship between astrocyte and neuron (β2/AMOG) and to changes in the moonlighting roles of Na, K-ATPase β subunits as adaptor proteins and transcription factors. PMID:29117147

  19. A verotoxin 1 B subunit-lambda CRO chimeric protein specifically binds both DNA and globotriaosylceramide (Gb(3)) to effect nuclear targeting of exogenous DNA in Gb(3) positive cells.

    PubMed

    Facchini, L M; Lingwood, C A

    2001-09-10

    Inefficient nuclear incorporation of foreign DNA remains a critical roadblock in the development of effective nonviral gene delivery systems. DNA delivered by traditional protocols remains within endosomal/lysosomal vesicles, or is rapidly degraded in the cytoplasm. Verotoxin I (VT), an AB(5) subunit toxin produced by enterohaemorrhagic Escherichia coli, binds to the cell surface glycolipid, globotriaosylceramide (Gb(3)) and is internalized into preendosomes. VT is then retrograde transported to the Golgi, endoplasmic reticulum (ER), and nucleus of highly VT-sensitive cells. We have utilized this nuclear targeting of VT to design a unique delivery system which transports exogenous DNA via vesicular traffic to the nucleus. The nontoxic VT binding subunit (VTB) was fused to the lambda Cro DNA-binding repressor, generating a 14-kDa VTB-Cro chimera. VTB-Cro binds specifically via the Cro domain to a 25-bp DNA fragment containing the consensus Cro operator. VTB-Cro demonstrates simultaneous specific binding to Gb(3). Treatment of Vero cells with fluorescent-labeled Cro operator DNA in the presence of VTB-Cro, results in DNA internalization to the Golgi, ER, and nucleus, whereas fluorescent DNA alone is incorporated poorly and randomly within the cytoplasm. VTB-Cro mediated nuclear DNA transport is prevented by brefeldin A, consistent with Golgi/ER intracellular routing. Pretreatment with filipin had no effect, indicating that caveoli are not involved. This novel VTB-Cro shuttle protein may find practical applications in the fields of intracellular targeting, gene delivery, and gene therapy. Copyright 2001 Academic Press.

  20. Chromatin-Remodeling-Factor ARID1B Represses Wnt/β-Catenin Signaling

    PubMed Central

    Vasileiou, Georgia; Ekici, Arif B.; Uebe, Steffen; Zweier, Christiane; Hoyer, Juliane; Engels, Hartmut; Behrens, Jürgen; Reis, André; Hadjihannas, Michel V.

    2015-01-01

    The link of chromatin remodeling to both neurodevelopment and cancer has recently been highlighted by the identification of mutations affecting BAF chromatin-remodeling components, such as ARID1B, in individuals with intellectual disability and cancer. However, the underlying molecular mechanism(s) remains unknown. Here, we show that ARID1B is a repressor of Wnt/β-catenin signaling. Through whole-transcriptome analysis, we find that in individuals with intellectual disability and ARID1B loss-of-function mutations, Wnt/β-catenin target genes are upregulated. Using cellular models of low and high Wnt/β-catenin activity, we demonstrate that knockdown of ARID1B activates Wnt/β-catenin target genes and Wnt/β-catenin-dependent transcriptional reporters in a β-catenin-dependent manner. Reciprocally, forced expression of ARID1B inhibits Wnt/β-catenin signaling downstream of the β-catenin destruction complex. Both endogenous and exogenous ARID1B associate with β-catenin and repress Wnt/β-catenin-mediated transcription through the BAF core subunit BRG1. Accordingly, mutations in ARID1B leading to partial or complete deletion of its BRG1-binding domain, as is often observed in intellectual disability and cancers, compromise association with β-catenin, and the resultant ARID1B mutant proteins fail to suppress Wnt/β-catenin signaling. Finally, knockdown of ARID1B in mouse neuroblastoma cells leads to neurite outgrowth through β-catenin. The data suggest that aberrations in chromatin-remodeling factors, such as ARID1B, might contribute to neurodevelopmental abnormalities and cancer through deregulation of developmental and oncogenic pathways, such as the Wnt/β-catenin signaling pathway. PMID:26340334

  1. The reduction in small ribosomal subunit abundance in ethanol-stressed cells of Bacillus subtilis is mediated by a SigB-dependent antisense RNA.

    PubMed

    Mars, Ruben A T; Mendonça, Karoline; Denham, Emma L; van Dijl, Jan Maarten

    2015-10-01

    One of the best-characterized general stress responses in bacteria is the σB-mediated stress response of the Gram-positive soil bacterium Bacillus subtilis. The σB regulon contains approximately 200 protein-encoding genes and 136 putative regulatory RNAs. One of these σB-dependent RNAs, named S1136-S1134, was recently mapped as being transcribed from the S1136 promoter on the opposite strand of the essential rpsD gene, which encodes the ribosomal primary-binding protein S4. Accordingly, S1136-S1134 transcription results in an rpsD-overlapping antisense RNA (asRNA). Upon exposure of B. subtilis to ethanol, the S1136 promoter was found to be induced, while rpsD transcription was downregulated. By quantitative PCR, we show that the activation of transcription from the S1136 promoter is directly responsible for the downregulation of rpsD upon ethanol exposure. We also show that this downregulation of rpsD leads to a reduced level of the small (30S) ribosomal subunit upon ethanol stress. The activation of the S1136 promoter thus represents the first example of antisense transcription-mediated regulation in the general stress response of B. subtilis and implicates the reduction of ribosomal protein abundance as a new aspect in the σB-dependent stress response. We propose that the observed reduction in the level of the small ribosomal subunit, which contains the ribosome-decoding center, may protect B. subtilis cells against misreading and spurious translation of possibly toxic aberrant peptides under conditions of ethanol stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Modeling and molecular dynamics simulations of the V33 variant of the integrin subunit β3: Structural comparison with the L33 (HPA-1a) and P33 (HPA-1b) variants.

    PubMed

    Jallu, Vincent; Poulain, Pierre; Fuchs, Patrick F J; Kaplan, Cecile; de Brevern, Alexandre G

    2014-10-01

    The human platelet alloantigen (HPA)-1 system, the first cause of alloimmune thrombocytopenia in Caucasians, results from leucine-to-proline substitution (alleles 1a and 1b) of residue 33 in β3 subunit of the integrin αIIbβ3. A third variant with a valine (V33) has been described. Although leucine and valine share similar physicochemical properties, sera containing alloantibodies to the HPA-1a antigen variably reacted with V33-β3, suggesting structural alterations of β3. To analyze the effect of the L33V transition, molecular dynamics simulations were performed on a 3D structural model of the V33 form of the whole β3 extracellular domain (690 residues). Dynamics of the PSI (carrying residue 33), I-EGF-1, and I-EGF-2 domains of β3 were compared to previously obtained dynamics of HPA-1a structure and HPA-1b structural model using classical and innovative developments (a structural alphabet). Clustering approach and local structure analysis showed that L33-β3 and V33-β3 mostly share common structures co-existing in different dynamic equilibria. The L33V substitution mainly displaces the equilibrium between common structures. These observations can explain the variable reactivity of anti-HPA-1a alloantibodies suggesting that molecular dynamic plays a key role in the binding of these alloantibodies. Unlike the L33P substitution, the L33V transition would not affect the structure flexibility of the β3 knee, and consequently the functions of αIIbβ3. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilic, Zoran, E-mail: zxi01@health.state.ny.u; Crawford, Dana, E-mail: crawfod@mail.amc.ed; Egner, Patricia A., E-mail: pegner@jhsph.ed

    Aflatoxin B1 (AFB1) is a major risk factor for hepatocellular carcinoma (HCC) in humans. However, mice, a major animal model for the study of AFB1 carcinogenesis, are resistant, due to high constitutive expression, in the mouse liver, of glutathione S-transferase A3 subunit (mGSTA3) that is lacking in humans. Our objective was to establish that a mouse model for AFB1 toxicity could be used to study mechanisms of toxicity that are relevant for human disease, i.e., an mGSTA3 knockout (KO) mouse that responds to toxicants such as AFB1 in a manner similar to humans. Exons 3-6 of the mGSTA3 were replacedmore » with a neomycin cassette by homologous recombination. Southern blotting, RT-PCR, Western blotting, and measurement of AFB1-N{sup 7}-DNA adduct formation were used to evaluate the mGSTA3 KO mice. The KO mice have deletion of exons 3-6 of the mGSTA3 gene, as expected, as well as a lack of mGSTA3 expression at the mRNA and protein levels. Three hours after injection of 5 mg/kg AFB1, mGSTA3 KO mice have more than 100-fold more AFB1-N{sup 7}-DNA adducts in their livers than do similarly treated wild-type (WT) mice. In addition, the mGSTA3 KO mice die of massive hepatic necrosis, at AFB1 doses that have minimal toxic effects in WT mice. We conclude that mGSTA3 KO mice are sensitive to the acute cytotoxic and genotoxic effects of AFB1, confirming the crucial role of GSTA3 subunit in protection of normal mice against AFB1 toxicity. We propose the mGSTA3 KO mouse as a useful model with which to study the interplay of risk factors leading to HCC development in humans, as well as for testing of additional possible functions of mGSTA3.« less

  4. The E1 beta-subunit of pyruvate dehydrogenase is surface-expressed in Lactobacillus plantarum and binds fibronectin.

    PubMed

    Vastano, Valeria; Salzillo, Marzia; Siciliano, Rosa A; Muscariello, Lidia; Sacco, Margherita; Marasco, Rosangela

    2014-01-01

    Lactobacillus plantarum is among the species with a probiotic activity. Adhesion of probiotic bacteria to host tissues is an important principle for strain selection, because it represents a crucial step in the colonization process of either pathogens or commensals. Most bacterial adhesins are proteins, and a major target for them is fibronectin, an extracellular matrix glycoprotein. In this study we demonstrate that PDHB, a component of the pyruvate dehydrogenase complex, is a factor contributing to fibronectin-binding in L. plantarum LM3. By means of fibronectin overlay immunoblotting assay, we identified a L. plantarum LM3 surface protein with apparent molecular mass of 35 kDa. Mass spectrometric analysis shows that this protein is the pyruvate dehydrogenase E1 beta-subunit (PDHB). The corresponding pdhB gene is located in a 4-gene cluster encoding pyruvate dehydrogenase. In LM3-B1, carrying a null mutation in pdhB, the 35 kDa adhesin was not anymore detectable by immunoblotting assay. Nevertheless, the pdhB null mutation did not abolish pdhA, pdhC, and pdhD transcription in LM3-B1. By adhesion assays, we show that LM3-B1 cells bind to immobilized fibronectin less efficiently than wild type cells. Moreover, we show that pdhB expression is negatively regulated by the CcpA protein and is induced by bile. Copyright © 2013. Published by Elsevier GmbH.

  5. Rapid and Scalable Plant-based Production of a Cholera Toxin B Subunit Variant to Aid in Mass Vaccination against Cholera Outbreaks

    PubMed Central

    Bennett, Lauren J.; Baldauf, Keegan J.; Kajiura, Hiroyuki; Fujiyama, Kazuhito; Matoba, Nobuyuki

    2013-01-01

    Introduction Cholera toxin B subunit (CTB) is a component of an internationally licensed oral cholera vaccine. The protein induces neutralizing antibodies against the holotoxin, the virulence factor responsible for severe diarrhea. A field clinical trial has suggested that the addition of CTB to killed whole-cell bacteria provides superior short-term protection to whole-cell-only vaccines; however, challenges in CTB biomanufacturing (i.e., cost and scale) hamper its implementation to mass vaccination in developing countries. To provide a potential solution to this issue, we developed a rapid, robust, and scalable CTB production system in plants. Methodology/Principal Findings In a preliminary study of expressing original CTB in transgenic Nicotiana benthamiana, the protein was N-glycosylated with plant-specific glycans. Thus, an aglycosylated CTB variant (pCTB) was created and overexpressed via a plant virus vector. Upon additional transgene engineering for retention in the endoplasmic reticulum and optimization of a secretory signal, the yield of pCTB was dramatically improved, reaching >1 g per kg of fresh leaf material. The protein was efficiently purified by simple two-step chromatography. The GM1-ganglioside binding capacity and conformational stability of pCTB were virtually identical to the bacteria-derived original B subunit, as demonstrated in competitive enzyme-linked immunosorbent assay, surface plasmon resonance, and fluorescence-based thermal shift assay. Mammalian cell surface-binding was corroborated by immunofluorescence and flow cytometry. pCTB exhibited strong oral immunogenicity in mice, inducing significant levels of CTB-specific intestinal antibodies that persisted over 6 months. Moreover, these antibodies effectively neutralized the cholera holotoxin in vitro. Conclusions/Significance Taken together, these results demonstrated that pCTB has robust producibility in Nicotiana plants and retains most, if not all, of major biological activities of

  6. Plant extracts from stinging nettle (Urtica dioica), an antirheumatic remedy, inhibit the proinflammatory transcription factor NF-kappaB.

    PubMed

    Riehemann, K; Behnke, B; Schulze-Osthoff, K

    1999-01-08

    Activation of transcription factor NF-kappaB is elevated in several chronic inflammatory diseases and is responsible for the enhanced expression of many proinflammatory gene products. Extracts from leaves of stinging nettle (Urtica dioica) are used as antiinflammatory remedies in rheumatoid arthritis. Standardized preparations of these extracts (IDS23) suppress cytokine production, but their mode of action remains unclear. Here we demonstrate that treatment of different cells with IDS23 potently inhibits NF-kappaB activation. An inhibitory effect was observed in response to several stimuli, suggesting that IDS23 suppressed a common NF-kappaB pathway. Inhibition of NF-kappaB activation by IDS23 was not mediated by a direct modification of DNA binding, but rather by preventing degradation of its inhibitory subunit IkappaB-alpha. Our results suggests that part of the antiinflammatory effect of Urtica extract may be ascribed to its inhibitory effect on NF-kappaB activation.

  7. The δ Subunit of RNA Polymerase Guides Promoter Selectivity and Virulence in Staphylococcus aureus

    PubMed Central

    Weiss, Andy; Ibarra, J. Antonio; Paoletti, Jessica; Carroll, Ronan K.

    2014-01-01

    In Gram-positive bacteria, and particularly the Firmicutes, the DNA-dependent RNA polymerase (RNAP) complex contains an additional subunit, termed the δ factor, or RpoE. This enigmatic protein has been studied for more than 30 years for various organisms, but its function is still not well understood. In this study, we investigated its role in the major human pathogen Staphylococcus aureus. We showed conservation of important structural regions of RpoE in S. aureus and other species and demonstrated binding to core RNAP that is mediated by the β and/or β′ subunits. To identify the impact of the δ subunit on transcription, we performed transcriptome sequencing (RNA-seq) analysis and observed 191 differentially expressed genes in the rpoE mutant. Ontological analysis revealed, quite strikingly, that many of the downregulated genes were known virulence factors, while several mobile genetic elements (SaPI5 and prophage ϕSA3usa) were strongly upregulated. Phenotypically, the rpoE mutant had decreased accumulation and/or activity of a number of key virulence factors, including alpha toxin, secreted proteases, and Panton-Valentine leukocidin (PVL). We further observed significantly decreased survival of the mutant in whole human blood, increased phagocytosis by human leukocytes, and impaired virulence in a murine model of infection. Collectively, our results demonstrate that the δ subunit of RNAP is a critical component of the S. aureus transcription machinery and plays an important role during infection. PMID:24491578

  8. The δ subunit of RNA polymerase guides promoter selectivity and virulence in Staphylococcus aureus.

    PubMed

    Weiss, Andy; Ibarra, J Antonio; Paoletti, Jessica; Carroll, Ronan K; Shaw, Lindsey N

    2014-04-01

    In Gram-positive bacteria, and particularly the Firmicutes, the DNA-dependent RNA polymerase (RNAP) complex contains an additional subunit, termed the δ factor, or RpoE. This enigmatic protein has been studied for more than 30 years for various organisms, but its function is still not well understood. In this study, we investigated its role in the major human pathogen Staphylococcus aureus. We showed conservation of important structural regions of RpoE in S. aureus and other species and demonstrated binding to core RNAP that is mediated by the β and/or β' subunits. To identify the impact of the δ subunit on transcription, we performed transcriptome sequencing (RNA-seq) analysis and observed 191 differentially expressed genes in the rpoE mutant. Ontological analysis revealed, quite strikingly, that many of the downregulated genes were known virulence factors, while several mobile genetic elements (SaPI5 and prophage SA3usa) were strongly upregulated. Phenotypically, the rpoE mutant had decreased accumulation and/or activity of a number of key virulence factors, including alpha toxin, secreted proteases, and Panton-Valentine leukocidin (PVL). We further observed significantly decreased survival of the mutant in whole human blood, increased phagocytosis by human leukocytes, and impaired virulence in a murine model of infection. Collectively, our results demonstrate that the δ subunit of RNAP is a critical component of the S. aureus transcription machinery and plays an important role during infection.

  9. Production of a fusion protein consisting of the enterotoxigenic Escherichia coli heat-labile toxin B subunit and a tuberculosis antigen in Arabidopsis thaliana.

    PubMed

    Rigano, M M; Alvarez, M L; Pinkhasov, J; Jin, Y; Sala, F; Arntzen, C J; Walmsley, A M

    2004-02-01

    Transgenic plants are potentially safe and inexpensive vehicles to produce and mucosally deliver protective antigens. However, the application of this technology is limited by the poor response of the immune system to non-particulate, subunit vaccines. Co-delivery of therapeutic proteins with carrier proteins could increase the effectiveness of the antigen. This paper reports the ability of transgenic Arabidopsis thaliana plants to produce a fusion protein consisting of the B subunit of the Escherichia coli heat-labile enterotoxin and a 6 kDa tuberculosis antigen, the early secretory antigenic target ESAT-6. Both components of the fusion protein were detected using GM1-ganglioside-dependent enzyme-linked immunosorbant assay. This suggested the fusion protein retained both its native antigenicity and the ability to form pentamers.

  10. Protective Immunity to Ricin Toxin Conferred by Antibodies against the Toxin’s Binding Subunit (RTB)

    PubMed Central

    Yermakova, Anastasiya; Mantis, Nicholas J.

    2011-01-01

    The B subunit (RTB) of ricin toxin is a galactose-/N-acetyl galactosamine-specific lectin that promotes attachment and entry of ricin into host cells. RTB is also the archetype of the so-called R-type lectin family, whose members include haemagglutinins of botulinum neurotoxin (BoNT) progenitor toxins, as well as the binding subunits of cytolethal distending toxins. Although RTB is an appealing subunit vaccine candidate, as well as a potential target for immunotherapeutics, the degree to which RTB immunization elicits protective antibodies against ricin toxin remains unresolved. To address this issue, groups of mice were immunized with RTB and then challenged with 5xLD50s of ricin administered intraperitoneally. Despite high RTB-specific serum antibody titers, groups of RTB immunized mice were only partially immune to ricin challenge. Analysis of a collection of RTB-specific B cell hybridomas suggested that only a small fraction of antibodies against RTB have demonstrable neutralizing activity. Two RTB-specific neutralizing monoclonal IgG1 antibodies, 24B11 and SylH3, when passively administered to mice, were sufficient to protect the animals against a 5xLD50 dose of ricin. Both 24B11 and SylH3 blocked ricin attachment to terminal galactose residues and prevented toxin binding to the surfaces of bone marrow-derived macrophages (BMM), suggesting that they function by steric hindrance and recognize epitopes located on RTB’s carbohydrate recognition sub-domains (1α or 2γ). These data raise the possibility of using specific RTB sub-domains, rather than RTB itself, as antigens to more efficiently elicit neutralizing antibodies and protective immunity against ricin. PMID:21872634

  11. Immune Response in Calves Vaccinated with Type Three Secretion System Antigens and Shiga Toxin 2B Subunit of Escherichia coli O157:H7.

    PubMed

    Martorelli, Luisina; Garbaccio, Sergio; Vilte, Daniel A; Albanese, Adriana A; Mejías, María P; Palermo, Marina S; Mercado, Elsa C; Ibarra, Cristina E; Cataldi, Angel A

    2017-01-01

    Ruminants are the primary reservoir of Shiga-toxin producing Escherichia coli (STEC) O157:H7 and the main source of infection for humans. The aim of this study was to assess the immunogenic properties of a candidate vaccine consisting on the recombinant proteins of E. coli O157:H7 IntiminC280, the carboxy-terminal fraction of Intimin γ, EspB and the fusion protein between the B subunit of Stx2 and Brucella Lumazine Synthase (BLS)(BLS-Stx2B), in Holstein Fresian calves.To accomplish this goal we vaccinated calves with two doses of different vaccine formulations: 2 antigens (IntiminC280, EspB), 3 antigens (IntiminC280, EspB, BLS-Stx2B), BLS-Stx2B alone and a control non-vaccinated group. All antigens were expressed as recombinant proteins in E. coli. Specific IgG titres increased in vaccinated calves and the inclusion of BLS-Stx2B in the formulation seems to have a stimulatory effect on the humoral response to IntiminC280 and EspB after the booster. The neutralizing activity of antibodies against these two antigens was assessed in Red Blood Cell lysis assays and adherence to Hep-2 cells as a correlate of T3SS activity. Both sera from animals vaccinated with 2 or 3 antigens inhibited both virulence properties. Serological response to Stx2 was observed in animals vaccinated only with BLS-Stx2B and with 3 antigens and neutralization of Stx2 cytotoxicity was also observed in both groups. In conclusion, immunization of calves with BLS-Stx2B, IntiminC280 and EspB elicited a potent humoral response able to neutralize Shiga toxin 2 cytotoxity and the T3SS virulence properties in vitro. These results suggest that this formulation is a good candidate vaccine to reduce STEC shedding in cattle and needs to be further assessed in vivo.

  12. Immune Response in Calves Vaccinated with Type Three Secretion System Antigens and Shiga Toxin 2B Subunit of Escherichia coli O157:H7

    PubMed Central

    Martorelli, Luisina; Garbaccio, Sergio; Vilte, Daniel A.; Albanese, Adriana A.; Mejías, María P.; Palermo, Marina S.; Mercado, Elsa C.; Ibarra, Cristina E.; Cataldi, Angel A.

    2017-01-01

    Ruminants are the primary reservoir of Shiga-toxin producing Escherichia coli (STEC) O157:H7 and the main source of infection for humans. The aim of this study was to assess the immunogenic properties of a candidate vaccine consisting on the recombinant proteins of E. coli O157:H7 IntiminC280, the carboxy-terminal fraction of Intimin γ, EspB and the fusion protein between the B subunit of Stx2 and Brucella Lumazine Synthase (BLS)(BLS-Stx2B), in Holstein Fresian calves.To accomplish this goal we vaccinated calves with two doses of different vaccine formulations: 2 antigens (IntiminC280, EspB), 3 antigens (IntiminC280, EspB, BLS-Stx2B), BLS-Stx2B alone and a control non-vaccinated group. All antigens were expressed as recombinant proteins in E. coli. Specific IgG titres increased in vaccinated calves and the inclusion of BLS-Stx2B in the formulation seems to have a stimulatory effect on the humoral response to IntiminC280 and EspB after the booster. The neutralizing activity of antibodies against these two antigens was assessed in Red Blood Cell lysis assays and adherence to Hep-2 cells as a correlate of T3SS activity. Both sera from animals vaccinated with 2 or 3 antigens inhibited both virulence properties. Serological response to Stx2 was observed in animals vaccinated only with BLS-Stx2B and with 3 antigens and neutralization of Stx2 cytotoxicity was also observed in both groups. In conclusion, immunization of calves with BLS-Stx2B, IntiminC280 and EspB elicited a potent humoral response able to neutralize Shiga toxin 2 cytotoxity and the T3SS virulence properties in vitro. These results suggest that this formulation is a good candidate vaccine to reduce STEC shedding in cattle and needs to be further assessed in vivo. PMID:28046078

  13. Subunit architecture and functional modular rearrangements of the transcriptional mediator complex.

    PubMed

    Tsai, Kuang-Lei; Tomomori-Sato, Chieri; Sato, Shigeo; Conaway, Ronald C; Conaway, Joan W; Asturias, Francisco J

    2014-06-05

    The multisubunit Mediator, comprising ∼30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA-binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Subunit architecture and functional modular rearrangements of the transcriptional Mediator complex

    PubMed Central

    Tsai, Kuang-Lei; Tomomori-Sato, Chieri; Sato, Shigeo; Conaway, Ronald C.; Conaway, Joan W.; Asturias, Francisco J.

    2014-01-01

    SUMMARY The multisubunit Mediator comprising ~30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism. PMID:24882805

  15. Mitochondrial ATPase Subunit 6 and Cytochrome B Gene Variations in Obese Turkish Children

    PubMed Central

    Demir, Durkadın; Türkkahraman, Doğa; Samur, Anıl Aktaş; Lüleci, Güven; Akçurin, Sema; M. Alper, Özgül

    2014-01-01

    Objective: Due to the importance of energy metabolism in mitochondria, mitochondrial genome variations are evaluated in energy-related diseases such as obesity. To date, several nuclear genes were found to be related to obesity. Our aim in this study was to investigate the presence of polymorphisms in mitochondrial ATPase subunit 6 (mt-ATP6) and cytochrome b (mt-CytB) genes that may be associated with childhood obesity. Methods: The mt-ATP6 and mt-CytB genes were amplified and entirely sequenced in a series of 100 obese and in an equal number of healthy Turkish children aged between 6-14 years. Results: A total of 118 synonymous and nonsynonymous variations were detected in the obese and control groups. Only two previously reported synonymous substitutions (mt.8614T>C and mt.8994G>A) in the mt-ATP6 gene were found to be significantly higher in the obese group compared to the control group (p<0.05). In the mt-ATP6 gene, one novel nonsynonymous substitution (mt.8726C>T) and one novel synonymous substitution (mt.9108A>T) were found. In the mt-CytB gene, one nonsynonymous substitution (mt.14880T>C) and two synonymous substitutions (mt.14891C>T and mt.15091C>T) were novel substitutions. Conclusion: Two synonymous substitutions (mt.8614T>C and mt.8994G>A) in the mt-ATP6 gene may be associated with childhood obesity. Our study provides the first data about mitochondrial genome variations in a Turkish obese population and also the first in obese children. More cases should be screened in obese groups in order to understand the effects of mitochondrial polymorphisms in the development of obesity. PMID:25541891

  16. Up-regulation of Hyperpolarization-activated Cyclic Nucleotide-gated Channel 3 (HCN3) by Specific Interaction with K+ Channel Tetramerization Domain-containing Protein 3 (KCTD3)*

    PubMed Central

    Cao-Ehlker, Xiaochun; Zong, Xiangang; Hammelmann, Verena; Gruner, Christian; Fenske, Stefanie; Michalakis, Stylianos; Wahl-Schott, Christian; Biel, Martin

    2013-01-01

    Most ion channels consist of the principal ion-permeating core subunit(s) and accessory proteins that are assembled with the channel core. The biological functions of the latter proteins are diverse and include the regulation of the biophysical properties of the ion channel, its connection to signaling pathways and the control of its cell surface expression. There is recent evidence that native hyperpolarization-activated cyclic nucleotide-gated channel complexes (HCN1–4) also contain accessory subunits, among which TRIP8b (tetratricopeptide repeat-containing Rab8b-interacting protein) has been most extensively studied. Here, we identify KCTD3, a so far uncharacterized member of the potassium channel tetramerization-domain containing (KCTD) protein family as an HCN3-interacting protein. KCTD3 is widely expressed in brain and some non-neuronal tissues and colocalizes with HCN3 in specific regions of the brain including hypothalamus. Within the HCN channel family, KCTD3 specifically binds to HCN3 and leads to a profound up-regulation of cell surface expression and current density of this channel. HCN3 can also functionally interact with TRIP8b; however, we found no evidence for channel complexes containing both TRIP8b and KCTD3. The C terminus of HCN3 is crucially required for functional interaction with KCTD3. Replacement of the cytosolic C terminus of HCN2 by the corresponding domain of HCN3 renders HCN2 sensitive to regulation by KCTD3. The C-terminal-half of KCTD3 is sufficient for binding to HCN3. However, the complete protein including the N-terminal tetramerization domain is needed for HCN3 current up-regulation. Together, our experiments indicate that KCTD3 is an accessory subunit of native HCN3 complexes. PMID:23382386

  17. Marker Exchange Mutagenesis of mxaF, Encoding the Large Subunit of the Mxa Methanol Dehydrogenase, in Methylosinus trichosporium OB3b

    PubMed Central

    Farhan Ul Haque, Muhammad; Gu, Wenyu; DiSpirito, Alan A.

    2015-01-01

    Methanotrophs have remarkable redundancy in multiple steps of the central pathway of methane oxidation to carbon dioxide. For example, it has been known for over 30 years that two forms of methane monooxygenase, responsible for oxidizing methane to methanol, exist in methanotrophs, i.e., soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO), and that expression of these two forms is controlled by the availability of copper. Specifically, sMMO expression occurs in the absence of copper, while pMMO expression increases with increasing copper concentrations. More recently, it was discovered that multiple forms of methanol dehydrogenase (MeDH), Mxa MeDH and Xox MeDH, also exist in methanotrophs and that the expression of these alternative forms is regulated by the availability of cerium. That is, expression of Xox MeDH increases in the presence of cerium, while Mxa MeDH expression decreases in the presence of cerium. As it had been earlier concluded that pMMO and Mxa MeDH form a supercomplex in which electrons from Mxa MeDH are back donated to pMMO to drive the initial oxidation of methane, we speculated that Mxa MeDH could be rendered inactive through marker-exchange mutagenesis but growth on methane could still be possible if cerium was added to increase the expression of Xox MeDH under sMMO-expressing conditions. Here we report that mxaF, encoding the large subunit of Mxa MeDH, could indeed be knocked out in Methylosinus trichosporium OB3b, yet growth on methane was still possible, so long as cerium was added. Interestingly, growth of this mutant occurred in both the presence and the absence of copper, suggesting that Xox MeDH can replace Mxa MeDH regardless of the form of MMO expressed. PMID:26712545

  18. Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA.

    PubMed

    Hoshi, Toshinori; Tian, Yutao; Xu, Rong; Heinemann, Stefan H; Hou, Shangwei

    2013-03-19

    Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels are well known for their functional versatility, which is bestowed in part by their rich modulatory repertoire. We recently showed that long-chain omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) found in oily fish lower blood pressure by activating vascular BK channels made of Slo1+β1 subunits. Here we examined the action of DHA on BK channels with different auxiliary subunit compositions. Neuronal Slo1+β4 channels were just as well activated by DHA as vascular Slo1+β1 channels. In contrast, the stimulatory effect of DHA was much smaller in Slo1+β2, Slo1+LRRC26 (γ1), and Slo1 channels without auxiliary subunits. Mutagenesis of β1, β2, and β4 showed that the large effect of DHA in Slo1+β1 and Slo1+β4 is conferred by the presence of two residues, one in the N terminus and the other in the first transmembrane segment of the β1 and β4 subunits. Transfer of this amino acid pair from β1 or β4 to β2 introduces a large response to DHA in Slo1+β2. The presence of a pair of oppositely charged residues at the aforementioned positions in β subunits is associated with a large response to DHA. The Slo1 auxiliary subunits are expressed in a highly tissue-dependent fashion. Thus, the subunit composition-dependent stimulation by DHA demonstrates that BK channels are effectors of omega-3 fatty acids with marked tissue specificity.

  19. Suppressor mutations identify amino acids in PAA-1/PR65 that facilitate regulatory RSA-1/B″ subunit targeting of PP2A to centrosomes in C. elegans.

    PubMed

    Lange, Karen I; Heinrichs, Jeffrey; Cheung, Karen; Srayko, Martin

    2013-01-15

    Protein phosphorylation and dephosphorylation is a key mechanism for the spatial and temporal regulation of many essential developmental processes and is especially prominent during mitosis. The multi-subunit protein phosphatase 2A (PP2A) enzyme plays an important, yet poorly characterized role in dephosphorylating proteins during mitosis. PP2As are heterotrimeric complexes comprising a catalytic, structural, and regulatory subunit. Regulatory subunits are mutually exclusive and determine subcellular localization and substrate specificity of PP2A. At least 3 different classes of regulatory subunits exist (termed B, B', B″) but there is no obvious similarity in primary sequence between these classes. Therefore, it is not known how these diverse regulatory subunits interact with the same holoenzyme to facilitate specific PP2A functions in vivo. The B″ family of regulatory subunits is the least understood because these proteins lack conserved structural domains. RSA-1 (regulator of spindle assembly) is a regulatory B″ subunit required for mitotic spindle assembly in Caenorhabditis elegans. In order to address how B″ subunits interact with the PP2A core enzyme, we focused on a conditional allele, rsa-1(or598ts), and determined that this mutation specifically disrupts the protein interaction between RSA-1 and the PP2A structural subunit, PAA-1. Through genetic screening, we identified a putative interface on the PAA-1 structural subunit that interacts with a defined region of RSA-1/B″. In the context of previously published results, these data propose a mechanism of how different PP2A B-regulatory subunit families can bind the same holoenzyme in a mutually exclusive manner, to perform specific tasks in vivo.

  20. Rosmanol potently inhibits lipopolysaccharide-induced iNOS and COX-2 expression through downregulating MAPK, NF-kappaB, STAT3 and C/EBP signaling pathways.

    PubMed

    Lai, Ching-Shu; Lee, Jong Hun; Ho, Chi-Tang; Liu, Cheng Bin; Wang, Ju-Ming; Wang, Ying-Jan; Pan, Min-Hsiung

    2009-11-25

    Rosmanol is a natural polyphenol from the herb rosemary (Rosmarinus officinalis L.) with high antioxidant activity. In this study, we investigated the inhibitory effects of rosmanol on the induction of NO synthase (NOS) and COX-2 in RAW 264.7 cells induced by lipopolysaccharide (LPS). Rosmanol markedly inhibited LPS-stimulated iNOS and COX-2 protein and gene expression, as well as the downstream products, NO and PGE2. Treatment with rosmanol also reduced translocation of the nuclear factor-kappaB (NF-kappaB) subunits by prevention of the degradation and phosphorylation of inhibitor kappaB (IkappaB). Western blot analysis showed that rosmanol significantly inhibited translocation and phosphorylation of NF-kappaB, signal transducer and activator of transcription-3 (STAT3), and the protein expression of C/EBPbeta and C/EBPdelta. We also found that rosmanol suppressed LPS-induced phosphorylation of ERK1/2, p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Our results demonstrate that rosmanol downregulates inflammatory iNOS and COX-2 gene expression by inhibiting the activation of NF-kappaB and STAT3 through interfering with the activation of PI3K/Akt and MAPK signaling. Taken together, rosmanol might contribute to the potent anti-inflammatory effect of rosemary and may have potential to be developed into an effective anti-inflammatory agent.

  1. The PPE18 protein of Mycobacterium tuberculosis inhibits NF-κB/rel-mediated proinflammatory cytokine production by upregulating and phosphorylating suppressor of cytokine signaling 3 protein.

    PubMed

    Nair, Shiny; Pandey, Akhilesh Datt; Mukhopadhyay, Sangita

    2011-05-01

    Mycobacterium tuberculosis bacteria are known to suppress proinflammatory cytokines like IL-12 and TNF-α for a biased Th2 response that favors a successful infection and its subsequent intracellular survival. However, the signaling pathways targeted by the bacilli to inhibit production of these cytokines are not fully understood. In this study, we demonstrate that the PPE18 protein of M. tuberculosis inhibits LPS-induced IL-12 and TNF-α production by blocking nuclear translocation of p50, p65 NF-κB, and c-rel transcription factors. We found that PPE18 upregulates the expression as well as tyrosine phosphorylation of suppressor of cytokine signaling 3 (SOCS3), and the phosphorylated SOCS3 physically interacts with IκBα-NF-κB/rel complex, inhibiting phosphorylation of IκBα at the serine 32/36 residues by IκB kinase-β, and thereby prevents nuclear translocation of the NF-κB/rel subunits in LPS-activated macrophages. Specific knockdown of SOCS3 by small interfering RNA enhanced IκBα phosphorylation, leading to increased nuclear levels of NF-κB/rel transcription factors vis-a-vis IL-12 p40 and TNF-α production in macrophages cotreated with PPE18 and LPS. The PPE18 protein did not affect the IκB kinase-β activity. Our study describes a novel mechanism by which phosphorylated SOCS3 inhibits NF-κB activation by masking the phosphorylation site of IκBα. Also, this study highlights the possible mechanisms by which the M. tuberculosis suppresses production of proinflammatory cytokines using PPE18.

  2. The HOOK region of voltage-gated Ca2+ channel β subunits senses and transmits PIP2 signals to the gate.

    PubMed

    Park, Cheon-Gyu; Park, Yongsoo; Suh, Byung-Chang

    2017-02-01

    The β subunit of voltage-gated Ca 2+ (Ca V ) channels plays an important role in regulating gating of the α1 pore-forming subunit and its regulation by phosphatidylinositol 4,5-bisphosphate (PIP 2 ). Subcellular localization of the Ca V β subunit is critical for this effect; N-terminal-dependent membrane targeting of the β subunit slows inactivation and decreases PIP 2 sensitivity. Here, we provide evidence that the HOOK region of the β subunit plays an important role in the regulation of Ca V biophysics. Based on amino acid composition, we broadly divide the HOOK region into three domains: S (polyserine), A (polyacidic), and B (polybasic). We show that a β subunit containing only its A domain in the HOOK region increases inactivation kinetics and channel inhibition by PIP 2 depletion, whereas a β subunit with only a B domain decreases these responses. When both the A and B domains are deleted, or when the entire HOOK region is deleted, the responses are elevated. Using a peptide-to-liposome binding assay and confocal microscopy, we find that the B domain of the HOOK region directly interacts with anionic phospholipids via polybasic and two hydrophobic Phe residues. The β2c-short subunit, which lacks an A domain and contains fewer basic amino acids and no Phe residues in the B domain, neither associates with phospholipids nor affects channel gating dynamically. Together, our data suggest that the flexible HOOK region of the β subunit acts as an important regulator of Ca V channel gating via dynamic electrostatic and hydrophobic interaction with the plasma membrane. © 2017 Park et al.

  3. Effects of S(+)-efonidipine on the rabbit sinus node action potential and calcium channel subunits Ca(V)1.2, Ca(V)1.3 and Ca(V)3.1.

    PubMed

    Tanaka, Hikaru; Namekata, Iyuki; Ogawa, Toru; Tsuneoka, Yayoi; Komikado, Chisa; Takahara, Akira; Iida-Tanaka, Naoko; Izumi-Nakaseko, Hiroko; Tsuru, Hiromichi; Adachi-Akahane, Satomi

    2010-12-15

    The effect of S(+)-efonidipine on sinus node action potential and calcium channel α-subunits was examined. The slope of the phase 4 depolarization of isolated rabbit sinus node tissue was significantly reduced by S(+)-efonidipine (1 μM), slightly reduced by nifedipine (1 μM), but was not affected by R(-)-efonidipine. S(+)-efonidipine (1 μM), inhibited the expressed Ca(V)1.2, Ca(V)1.3 and Ca(V)3.1 channel currents by 75.7%, 75.3% and 94.0%, nifedipine 84.0%, 43.2% and 14.9%, and R(-)-efonidipine 30.0%, 19.6% and 92.8%, respectively. Thus, the prolongation of the phase 4 depolarization of the rabbit sinus node by S(+)-efonidipine may be explained by blockade of the Ca(V)1.3 channel current. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. 5-Hydroxy-3,6,7,8,3'4'-hexamethoxyflavone inhibits nitric oxide production in lipopolysaccharide-stimulated BV2 microglia via NF-κB suppression and Nrf-2-dependent heme oxygenase-1 induction.

    PubMed

    Kang, Chang-Hee; Kim, Min Jeong; Seo, Min Jeong; Choi, Yung Hyun; Jo, Wol Soon; Lee, Kyung-Tae; Jeong, Yong Kee; Kim, Gi-Young

    2013-07-01

    In this study, we found that 5-hydroxy-3,6,7,8,3'4'-hexamethoxyflavone (5HHMF) from Hizikia fusiforme considerably inhibits lipopolysaccharide (LPS)-stimulated NO production by suppressing the expression of inducible NO synthase (iNOS) in BV2 microglia. In addition, 5HHMF blocked LPS-induced phosphorylation of IκB, resulting in suppression of the nuclear translocation of nuclear factor-κB (NF-κB) subunits, namely p65 and p50, which are important molecules involved in the regulation of iNOS expression. Pyrrolidine dithiocarbamate (PDTC), a specific NF-κB inhibitor, along with 20S proteasome inhibitor (PSI) significantly inhibited LPS-induced iNOS expression, which indirectly suggested that 5HHMF downregulated iNOS expression by suppressing NF-κB activity. Thus, we found that 5HHMF enhances heme oxygenase-1 (HO-1) expression via nuclear factor-erythroid 2-related factor 2 (Nrf2) activation. In addition, cobalt protoporphyrin (CoPP), a specific HO-1 inducer, predominantly suppressed LPS-induced NO production. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, showed a partial suppressive effect of 5HHMF on LPS-induced NO production. Further, 5HHMF increased specific DNA-binding activity of Nrf2, and transient knockdown with Nrf2 siRNA subsequently reversed 5HHMF-induced NO inhibition, which was followed by suppression of HO-1 activity. Taken together, our findings indicate that 5HHMF suppresses NO production through modulation of iNOS, consequently suppressing NF-κB activity and induction of Nrf2-dependent HO-1 activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Interaction between the Rev1 C-terminal Domain and the PolD3 Subunit of Polζ Suggests a Mechanism of Polymerase Exchange upon Rev1/Polζ-Dependent Translesion Synthesis

    PubMed Central

    Pustovalova, Yulia; Magalhães, Mariana T. Q.; D’Souza, Sanjay; Rizzo, Alessandro A.; Korza, George; Walker, Graham C.; Korzhnev, Dmitry M.

    2016-01-01

    Translesion synthesis (TLS) is a mutagenic branch of cellular DNA damage tolerance that enables bypass replication over DNA lesions carried out by specialized low-fidelity DNA polymerases. The replicative bypass of most types of DNA damage is performed in a two-step process of Rev1/Polζ-dependent TLS. In the first step, a Y-family TLS enzyme, typically Polη, Polι or Polκ, inserts a nucleotide across DNA lesion. In the second step, a four-subunit B-family DNA polymerase Polζ (Rev3/Rev7/PolD2/PolD3 complex) extends the distorted DNA primer-template. The coordinated action of error-prone TLS enzymes is regulated through their interactions with the two scaffold proteins, the sliding clamp PCNA and the TLS polymerase Rev1. Rev1 interactions with all other TLS enzymes are mediated by its C-terminal domain (Rev1-CT), which can simultaneously bind the Rev7 subunit of Polζ and Rev1-interacting regions (RIRs) from Polη, Polι or Polκ. In this work, we identified a previously unknown RIR motif in the C-terminal part of PolD3 subunit of Polζ whose interaction with the Rev1-CT is among the tightest mediated by RIR motifs. Three-dimensional structure of the Rev1-CT/PolD3-RIR complex determined by NMR spectroscopy revealed a structural basis for the relatively high affinity of this interaction. The unexpected discovery of PolD3-RIR motif suggests a mechanism of 'inserter' to 'extender' DNA polymerase switch upon Rev1/Polζ-dependent TLS, in which the PolD3-RIR binding to the Rev1-CT (i) helps displace the 'inserter' Polη, Polι or Polκ from its complex with Rev1, and (ii) facilitates assembly of the four-subunit 'extender' Polζ through simultaneous interaction of Rev1-CT with Rev7 and PolD3 subunits. PMID:26982350

  6. Inverse expression of estrogen receptor-beta and nuclear factor-kappaB in urinary bladder carcinogenesis.

    PubMed

    Kontos, Stylianos; Kominea, Athina; Melachrinou, Maria; Balampani, Eleni; Sotiropoulou-Bonikou, Georgia

    2010-09-01

    To investigate the expression of nuclear factor-kappaB (NF-kappaB) and estrogen receptor-beta (ER-beta) signalling pathways in bladder urothelial carcinoma according to clinicopathological features, in order to elucidate their role during carcinogenesis. Immunohistochemical methodology was carried out on formalin-fixed, paraffin-embedded sections from urinary bladder carcinomas of 140 patients (94 males and 46 females) who underwent transurethral resection of bladder neoplasms. Correlations between ER-beta and NF-kappaB, and tumor grade and T-stage were evaluated, along with demographic data, sex and age. A significant decrease in ER-beta expression in the nucleus of bladder cells during loss of cell differentiation (r(s) = -0.61, P-value < 0.001, test of trend P-value = 0.003) and in muscle invasive carcinomas (T2-T4; test of trend P-value < 0.001) was found. p65 Subunit of NF-kappaB was expressed in the nucleus and in the cytoplasm of bladder epithelial cells. A strong positive association between tumor grade and nuclear expression of NF-kappaB was shown. No correlation between NF-kappaB, nuclear or cytoplasmic staining, with T-stage was observed. An inverse correlation between ER-beta and nuclear p65 immunoreactivity was observed (r(s) = -0.45, P-value < 0.001). There was no correlation with demographic data. Our immunohistochemical study suggests the possible inverse regulation of NF-kappaB and ER-beta transcription factor during bladder carcinogenesis. Selective ER-beta agonists and agents, inhibitors of NF-kappaB, might represent a possible new treatment strategy for bladder urothelial tumors.

  7. Subunit association of gamma-glutamyltranspeptidase of Escherichia coli K-12.

    PubMed

    Hashimoto, W; Suzuki, H; Nohara, S; Tachi, H; Yamamoto, K; Kumagai, H

    1995-12-01

    gamma-Glutamyltranspeptidase [EC 2.3.2.2] of Escherichia coli K-12 consists of one large subunit and one small subunit, which can be separated from each other by high-performance liquid chromatography. Using ion spray mass spectrometry, the masses of the large and the small subunit were determined to be 39,207 and 20,015, respectively. The large subunit exhibited no gamma-glutamyltranspeptidase activity and the small subunit had little enzymatic activity, but a mixture of the two subunits showed partial recovery of the enzymatic activity. The results of native-polyacrylamide gel electrophoresis suggested that they could partially recombine, and that the recombined dimer exhibited enzymatic activity. The gene of gamma-glutamyltranspeptidase encoded a signal peptide, and the large and small subunits in a single open reading frame in that order. Two kinds of plasmid were constructed encoding the signal peptide and either the large or the small subunit. A gamma-glutamyltranspeptidase-less mutant of E. coli K-12 was transformed with each plasmid or with both of them. The strain harboring the plasmid encoding each subunit produced a small amount of the corresponding subunit protein in the periplasmic space but exhibited no enzymatic activity. The strain transformed with both plasmids together exhibited the enzymatic activity, but its specific activity was approximately 3% of that of a strain harboring a plasmid encoding the intact structural gene. These results indicate that a portion of the separated large and small subunits can be reconstituted in vitro and exhibit the enzymatic activity, and that the expressed large and small subunits independently are able to associate in vivo and be folded into an active structure, though the specific activity of the associated subunits was much lower than that of native enzyme. This suggests that the synthesis of gamma-glutamyltranspeptidase in a single precursor polypeptide and subsequent processing are more effective to construct

  8. Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons.

    PubMed

    Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T

    2013-11-01

    Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons. © 2013 International Society for Neurochemistry.

  9. Hantaan virus nucleocapsid protein binds to importin alpha proteins and inhibits tumor necrosis factor alpha-induced activation of nuclear factor kappa B.

    PubMed

    Taylor, Shannon L; Frias-Staheli, Natalia; García-Sastre, Adolfo; Schmaljohn, Connie S

    2009-02-01

    Hantaviruses such as Hantaan virus (HTNV) and Andes virus cause two human diseases, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome, respectively. For both, disease pathogenesis is thought to be immunologically mediated and there have been numerous reports of patients with elevated levels of proinflammatory and inflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha), in their sera. Multiple viruses have developed evasion strategies to circumvent the host cell inflammatory process, with one of the most prevalent being the disruption of nuclear factor kappa B (NF-kappaB) activation. We hypothesized that hantaviruses might also moderate host inflammation by interfering with this pathway. We report here that the nucleocapsid (N) protein of HTNV was able to inhibit TNF-alpha-induced activation of NF-kappaB, as measured by a reporter assay, and the activation of endogenous p65, an NF-kappaB subunit. Surprisingly, there was no defect in the degradation of the inhibitor of NF-kappaB (IkappaB) protein, nor was there any alteration in the level of p65 expression in HTNV N-expressing cells. However, immunofluorescence antibody staining demonstrated that cells expressing HTNV N protein and a green fluorescent protein-p65 fusion had limited p65 nuclear translocation. Furthermore, we were able to detect an interaction between HTNV N protein and importin alpha, a nuclear import molecule responsible for shuttling NF-kappaB to the nucleus. Collectively, our data suggest that HTNV N protein can sequester NF-kappaB in the cytoplasm, thus inhibiting NF-kappaB activity. These findings, which were obtained using cells transfected with cDNA representing the HTNV N gene, were confirmed using HTNV-infected cells.

  10. Functional expression of the GABAA receptor α2 and α3 subunits at synapses between intercalated medial paracapsular neurons of mouse amygdala

    PubMed Central

    Geracitano, Raffaella; Fischer, David; Kasugai, Yu; Ferraguti, Francesco; Capogna, Marco

    2012-01-01

    In the amygdala, GABAergic neurons in the intercalated medial paracapsular cluster (Imp) have been suggested to play a key role in fear learning and extinction. These neurons project to the central (CE) amygdaloid nucleus and to other areas within and outside the amygdala. In addition, they give rise to local collaterals that innervate other neurons in the Imp. Several drugs, including benzodiazepines (BZ), are allosteric modulators of GABAA receptors. BZ has both anxiolytic and sedative actions, which are mediated through GABAA receptors containing α2/α3 and α1 subunits, respectively. To establish whether α1 or α2/α3 subunits are expressed at Imp cell synapses, we used paired recordings of anatomically identified Imp neurons and high resolution immunocytochemistry in the mouse. We observed that a selective α3 subunit agonist, TP003 (100 nM), significantly increased the decay time constant of the unitary IPSCs. A similar effect was also induced by zolpidem (10 μM) or by diazepam (1 μM). In contrast, lower doses of zolpidem (0.1–1 μM) did not significantly alter the kinetics of the unitary IPSCs. Accordingly, immunocytochemical experiments established that the α2 and α3, but not the α1 subunits of the GABAA receptors, were present at Imp cell synapses of the mouse amygdala. These results define, for the first time, some of the functional GABAA receptor subunits expressed at synapses of Imp cells. The data also provide an additional rationale to prompt the search of GABAA receptor α3 selective ligands as improved anxiolytic drugs. PMID:22666188

  11. GSK3 Protein Positively Regulates Type I Insulin-like Growth Factor Receptor through Forkhead Transcription Factors FOXO1/3/4

    PubMed Central

    Huo, Xiaodong; Liu, Shu; Shao, Ting; Hua, Hui; Kong, Qingbin; Wang, Jiao; Luo, Ting; Jiang, Yangfu

    2014-01-01

    Glycogen synthase kinase-3 (GSK3) has either tumor-suppressive roles or pro-tumor roles in different types of human tumors. A number of GSK3 targets in diverse signaling pathways have been uncovered, such as tuberous sclerosis complex subunit 2 and β-catenin. The O subfamily of forkhead/winged helix transcription factors (FOXO) is known as tumor suppressors that induce apoptosis. In this study, we find that FOXO binds to type I insulin-like growth factor receptor (IGF-IR) promoter and stimulates its transcription. GSK3 positively regulates the transactivation activity of FOXO and stimulates IGF-IR expression. Although kinase-dead GSK3β cannot up-regulate IGF-IR, the constitutively active GSK3β induces IGF-IR expression in a FOXO-dependent manner. Serum starvation or Akt inhibition leads to an increase in IGF-IR expression, which could be blunted by GSK3 inhibition. GSK3β knockdown or GSK3 inhibitor suppresses IGF-I-induced IGF-IR, Akt, and ERK1/2 phosphorylation. Moreover, knockdown of GSK3β or FOXO1/3/4 leads to a decrease in cellular proliferation and abrogates IGF-I-induced hepatoma cell proliferation. These results suggest that GSK3 and FOXO may positively regulate IGF-I signaling and hepatoma cell proliferation. PMID:25053419

  12. Insulin-like growth factor II messenger RNA-binding protein-3 is an independent prognostic factor in uterine leiomyosarcoma.

    PubMed

    Yasutake, Nobuko; Ohishi, Yoshihiro; Taguchi, Kenichi; Hiraki, Yuka; Oya, Masafumi; Oshiro, Yumi; Mine, Mari; Iwasaki, Takeshi; Yamamoto, Hidetaka; Kohashi, Kenichi; Sonoda, Kenzo; Kato, Kiyoko; Oda, Yoshinao

    2018-04-01

    The aim of this study was to identify the prognostic factors of uterine leiomyosarcoma (ULMS). We reviewed 60 cases of surgically resected ULMSs and investigated conventional clinicopathological factors, together with the expression of insulin-like growth factor II messenger RNA-binding protein-3 (IMP3), hormone receptors and cell cycle regulatory markers by immunohistochemistry. Mediator complex subunit 12 (MED12) mutation analysis was also performed. Univariate analyses revealed that advanced stage (P < 0.0001), older age (P = 0.0244) and IMP3 expression (P = 0.0011) were significant predictors of a poor outcome. Multivariate analysis revealed advanced stage (P < 0.0001) and IMP3 (P = 0.0373) as independent predictors of a poor prognosis. Expressions of cell cycle markers and hormone receptors, and MED12 mutations (12% in ULMSs) were not identified as prognostic markers in this study. IMP3 expression in ULMS could be a marker of a poor prognosis. © 2017 John Wiley & Sons Ltd.

  13. Chromatin-Remodeling-Factor ARID1B Represses Wnt/β-Catenin Signaling.

    PubMed

    Vasileiou, Georgia; Ekici, Arif B; Uebe, Steffen; Zweier, Christiane; Hoyer, Juliane; Engels, Hartmut; Behrens, Jürgen; Reis, André; Hadjihannas, Michel V

    2015-09-03

    The link of chromatin remodeling to both neurodevelopment and cancer has recently been highlighted by the identification of mutations affecting BAF chromatin-remodeling components, such as ARID1B, in individuals with intellectual disability and cancer. However, the underlying molecular mechanism(s) remains unknown. Here, we show that ARID1B is a repressor of Wnt/β-catenin signaling. Through whole-transcriptome analysis, we find that in individuals with intellectual disability and ARID1B loss-of-function mutations, Wnt/β-catenin target genes are upregulated. Using cellular models of low and high Wnt/β-catenin activity, we demonstrate that knockdown of ARID1B activates Wnt/β-catenin target genes and Wnt/β-catenin-dependent transcriptional reporters in a β-catenin-dependent manner. Reciprocally, forced expression of ARID1B inhibits Wnt/β-catenin signaling downstream of the β-catenin destruction complex. Both endogenous and exogenous ARID1B associate with β-catenin and repress Wnt/β-catenin-mediated transcription through the BAF core subunit BRG1. Accordingly, mutations in ARID1B leading to partial or complete deletion of its BRG1-binding domain, as is often observed in intellectual disability and cancers, compromise association with β-catenin, and the resultant ARID1B mutant proteins fail to suppress Wnt/β-catenin signaling. Finally, knockdown of ARID1B in mouse neuroblastoma cells leads to neurite outgrowth through β-catenin. The data suggest that aberrations in chromatin-remodeling factors, such as ARID1B, might contribute to neurodevelopmental abnormalities and cancer through deregulation of developmental and oncogenic pathways, such as the Wnt/β-catenin signaling pathway. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. An Fe-S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes.

    PubMed

    Shiota, Masaki; Yamazaki, Tomohiko; Yoshimatsu, Keiichi; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2016-12-01

    Several bacterial flavin adenine dinucleotide (FAD)-harboring dehydrogenase complexes comprise three distinct subunits: a catalytic subunit with FAD, a cytochrome c subunit containing three hemes, and a small subunit. Owing to the cytochrome c subunit, these dehydrogenase complexes have the potential to transfer electrons directly to an electrode. Despite various electrochemical applications and engineering studies of FAD-dependent dehydrogenase complexes, the intra/inter-molecular electron transfer pathway has not yet been revealed. In this study, we focused on the conserved Cys-rich region in the catalytic subunits using the catalytic subunit of FAD dependent glucose dehydrogenase complex (FADGDH) as a model, and site-directed mutagenesis and electron paramagnetic resonance (EPR) were performed. By co-expressing a hitch-hiker protein (γ-subunit) and a catalytic subunit (α-subunit), FADGDH γα complexes were prepared, and the properties of the catalytic subunit of both wild type and mutant FADGDHs were investigated. Substitution of the conserved Cys residues with Ser resulted in the loss of dye-mediated glucose dehydrogenase activity. ICP-AEM and EPR analyses of the wild-type FADGDH catalytic subunit revealed the presence of a 3Fe-4S-type iron-sulfur cluster, whereas none of the Ser-substituted mutants showed the EPR spectrum characteristic for this cluster. The results suggested that three Cys residues in the Cys-rich region constitute an iron-sulfur cluster that may play an important role in the electron transfer from FAD (intra-molecular) to the multi-heme cytochrome c subunit (inter-molecular) electron transfer pathway. These features appear to be conserved in the other three-subunit dehydrogenases having an FAD cofactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Relating proton pumps with gap junctions: colocalization of ductin, the channel-forming subunit c of V-ATPase, with subunit a and with innexins 2 and 3 during Drosophila oogenesis.

    PubMed

    Lautemann, Julia; Bohrmann, Johannes

    2016-07-13

    Ion-transport mechanisms and gap junctions are known to cooperate in creating bioelectric phenomena, like pH gradients, voltage gradients and ion fluxes within single cells, tissues, organs, and whole organisms. Such phenomena have been shown to play regulatory roles in a variety of developmental and regenerative processes. Using Drosophila oogenesis as a model system, we aim at characterizing in detail the mechanisms underlying bioelectric phenomena in order to reveal their regulatory functions. We, therefore, investigated the stage-specific distribution patterns of V-ATPase components in relation to gap-junction proteins. We analysed the localization of the V-ATPase components ductin (subunit c) and subunit a, and the gap-junction components innexins 2 and 3, especially in polar cells, border cells, stalk cells and centripetally migrating cells. These types of follicle cells had previously been shown to exhibit characteristic patterns of membrane channels as well as membrane potential and intracellular pH. Stage-specifically, ductin and subunit a were found either colocalized or separately enriched in different regions of soma and germ-line cells. While ductin was often more prominent in plasma membranes, subunit a was more prominent in cytoplasmic and nuclear vesicles. Particularly, ductin was enriched in polar cells, stalk cells, and nurse-cell membranes, whereas subunit a was enriched in the cytoplasm of border cells, columnar follicle cells and germ-line cells. Comparably, ductin and both innexins 2 and 3 were either colocalized or separately enriched in different cellular regions. While ductin often showed a continuous membrane distribution, the distribution of both innexins was mostly punctate. Particularly, ductin was enriched in polar cells and stalk cells, whereas innexin 2 was enriched in the oolemma, and innexin 3 in centripetally migrating follicle cells. In lateral follicle-cell membranes, the three proteins were found colocalized as well as

  16. T-Cell-Specific Loss of the PI-3-Kinase p110α Catalytic Subunit Results in Enhanced Cytokine Production and Antitumor Response

    PubMed Central

    Aragoneses-Fenoll, Laura; Ojeda, Gloria; Montes-Casado, María; Acosta-Ampudia, Yeny; Dianzani, Umberto; Portolés, Pilar; Rojo, José M.

    2018-01-01

    Class IA phosphatidylinositol 3-kinase (PI3K) catalytic subunits p110α and p110δ are targets in cancer therapy expressed at high levels in T lymphocytes. The role of p110δ PI3K in normal or pathological immune responses is well established, yet the importance of p110α subunits in T cell-dependent immune responses is not clear. To address this problem, mice with p110α conditionally deleted in CD4+ and CD8+ T lymphocytes (p110α−/−ΔT) were used. p110α−/−ΔT mice show normal development of T cell subsets, but slightly reduced numbers of CD4+ T cells in the spleen. “In vitro,” TCR/CD3 plus CD28 activation of naive CD4+ and CD8+ p110α−/−ΔT T cells showed enhanced effector function, particularly IFN-γ secretion, T-bet induction, and Akt, Erk, or P38 activation. Tfh derived from p110α−/−ΔT cells also have enhanced responses when compared to normal mice, and IL-2 expanded p110α−/−ΔT CD8+ T cells had enhanced levels of LAMP-1 and Granzyme B. By contrast, the expansion of p110α−/−ΔT iTreg cells was diminished. Also, p110α−/−ΔT mice had enhanced anti-keyhole limpet hemocyanin (KLH) IFN-γ, or IL-4 responses and IgG1 and IgG2b anti-KLH antibodies, using CFA or Alum as adjuvant, respectively. When compared to WT mice, p110α−/−ΔT mice inoculated with B16.F10 melanoma showed delayed tumor progression. The percentage of CD8+ T lymphocytes was higher and the percentage of Treg cells lower in the spleen of tumor-bearing p110α−/−ΔT mice. Also, IFN-γ production in tumor antigen-activated spleen cells was enhanced. Thus, PI3K p110α plays a significant role in antigen activation and differentiation of CD4+ and CD8+ T lymphocytes modulating antitumor immunity. PMID:29535720

  17. Wheat glutenin: the "tail" of the 1By protein subunits.

    PubMed

    Nunes-Miranda, Júlio D; Bancel, Emmanuelle; Viala, Didier; Chambon, Christophe; Capelo, José L; Branlard, Gérard; Ravel, Catherine; Igrejas, Gilberto

    2017-10-03

    Gluten-forming storage proteins play a major role in the viscoelastic properties of wheat dough through the formation of a continuous proteinaceous network. The high-molecular-weight glutenin subunits represent a functionally important subgroup of gluten proteins by promoting the formation of large glutenin polymers through interchain disulphide bonds between glutenin subunits. Here, we present evidences that y-type glutenin subunits encoded at the Glu-B1 locus are prone to proteolytic processing at the C-terminus tail, leading to the loss of the unique cysteine residue present at the C-terminal domain. Results obtained by intact mass measurement and immunochemistry for each proteoform indicate that the proteolytic cleavage appears to occur at the carboxyl-side of two conserved asparagine residues at the C-terminal domain start. Hence, we hypothesize that the responsible enzymes are a class of cysteine endopeptidases - asparaginyl endopeptidases - described in post-translational processing of other storage proteins in wheat. Biological significance The reported study provides new insights into wheat storage protein maturation. In view of the importance of gluten proteins on dough viscoelastic properties and end-product quality, the reported C-terminal domain cleavage of high-molecular-weight glutenin subunits is of particular interest, since this domain possesses a unique conserved cysteine residue which is assumed to participate in gluten polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The cachectic mediator proteolysis inducing factor activates NF-kappaB and STAT3 in human Kupffer cells and monocytes.

    PubMed

    Watchorn, Tammy M; Dowidar, Nabil; Dejong, Cornelis H C; Waddell, Ian D; Garden, O James; Ross, James A

    2005-10-01

    A novel proteoglycan, proteolysis inducing factor (PIF), is capable of inducing muscle proteolysis during the process of cancer cachexia, and of inducing an acute phase response in human hepatocytes. We investigated whether PIF is able to activate pro-inflammatory pathways in human Kupffer cells, the resident macrophages of the liver, and in monocytes, resulting in the production of pro-inflammatory cytokines. Normal liver tissue was obtained from patients undergoing partial hepatectomy and Kupffer cells were isolated. Monocytes were isolated from peripheral blood. Following exposure to native PIF, pro-inflammatory cytokine production from Kupffer cells and monocytes was measured and the NF-kappaB and STAT3 transcriptional pathways were investigated using electrophoretic mobility shift assays. We demonstrate that PIF is able to activate the transcription factor NF-kappaB and NF-kappaB-inducible genes in human Kupffer cells, and in monocytes, resulting in the production of pro-inflammatory cytokines such as TNF-alpha, IL-8 and IL-6. PIF enhances the expression of the cell surface molecules LFA-1 and CD14 on macrophages. PIF also activates the transcription factor STAT3 in Kupffer cells. The pro-inflammatory effects of PIF, mediated via NF-kappaB and STAT3, are important in macrophage behaviour and may contribute to the inflammatory pro-cachectic process in the liver.

  19. Repeated electroconvulsive shock (ECS) alters the phosphorylation of glutamate receptor subunits in the rat hippocampus.

    PubMed

    Fumagalli, Fabio; Pasini, Matteo; Sartorius, Alexander; Scherer, Rosine; Racagni, Giorgio; Riva, Marco A; Gass, Peter

    2010-10-01

    Glutamate and its receptors are involved in the pathophysiology of mood disorders and have recently emerged as potential targets for the pharmacotherapy of depression. In rats, we investigated plasticity changes of the glutamatergic system evoked by electroconvulsive shock (ECS), which represents the most effective therapy for patients who are refractory to antidepressants. Chronic ECS produced a marked increase in the phosphorylation of the regulatory NMDA receptor subunit NR2B (Ser1303) and the AMPA receptor subunit GluR-A (Ser831) in the hippocampus, with no effects on the obligatory subunit NR1. No effects were found on total receptor subunit expression levels. We suggest that, at least in part, ECS exerts its clinical activity through the modulation of the glutamatergic synapses, via potentiation of AMPA currents mediated by GluR-A (Ser831) phosphorylation, and a reduction of NMDA receptor activity through the phosphorylation of NR2B (Ser1303), presumably uncoupling NR2B from its signalling partner CaMKII. These effects functionally resemble the recently described antidepressant effects of ketamine.

  20. ADP binding to TF1 and its subunits induces ultraviolet spectral changes.

    PubMed

    Hisabori, T; Yoshida, M; Sakurai, H

    1986-09-01

    Adenine nucleotide binding sites on the coupling factor ATPase of thermophilic bacterium PS3 (TF1) were investigated by UV spectroscopy and by equilibrium dialysis. When ADP was mixed with TF1 in the presence and in the absence of Mg2+, an UV absorbance change was induced (t1/2 approximately 1 min) with a peak at about 278 nm and a trough at about 250 nm. Similar spectral changes were induced by ADP with the isolated beta subunits in the presence and in the absence of Mg2+, and with the isolated alpha subunits in the presence of Mg2+ although the magnitudes of the changes were different. From equilibrium dialysis measurement we identified two classes of nucleotide binding sites in TF1 in the presence of Mg2+, three high-affinity sites (Kd = 61 nM) and three low-affinity sites (Kd = 87 microM). In the absence of Mg2+, TF1 has one high-affinity site (Kd less than 10 nM) and five low-affinity sites (Kd = 100 microM). Moreover, we found a single Mg2+-dependent ADP binding site on the isolated alpha subunit and a single Mg2+-independent ADP binding site on the isolated beta subunit. From the above observations, we concluded that the three Mg2+-dependent high-affinity sites for ADP are located on the alpha subunit in TF1 and that the single high-affinity site is located on one of the beta subunits in TF1 in the absence of Mg2+.

  1. Balanol analogues probe specificity determinants and the conformational malleability of the cyclic 3',5'-adenosine monophosphate-dependent protein kinase catalytic subunit.

    PubMed

    Akamine, Pearl; Madhusudan; Brunton, Laurence L; Ou, Horng D; Canaves, Jaume M; Xuong, Nguyen-huu; Taylor, Susan S

    2004-01-13

    The protein kinase family is a prime target for therapeutic agents, since unregulated protein kinase activities are linked to myriad diseases. Balanol, a fungal metabolite consisting of four rings, potently inhibits Ser/Thr protein kinases and can be modified to yield potent inhibitors that are selective-characteristics of a desirable pharmaceutical compound. Here, we characterize three balanol analogues that inhibit cyclic 3',5'-adenosine monophosphate-dependent protein kinase (PKA) more specifically and potently than calcium- and phospholipid-dependent protein kinase (PKC). Correlation of thermostability and inhibition potency suggests that better inhibitors confer enhanced protection against thermal denaturation. Crystal structures of the PKA catalytic (C) subunit complexed to each analogue show the Gly-rich loop stabilized in an "intermediate" conformation, disengaged from important phosphoryl transfer residues. An analogue that perturbs the PKA C-terminal tail has slightly weaker inhibition potency. The malleability of the PKA C subunit is illustrated by active site residues that adopt alternate rotamers depending on the ligand bound. On the basis of sequence homology to PKA, a preliminary model of the PKC active site is described. The balanol analogues serve to test the model and to highlight differences in the active site local environment of PKA and PKC. The PKA C subunit appears to tolerate balanol analogues with D-ring modifications; PKC does not. We attribute this difference in preference to the variable B helix and C-terminal tail. By understanding the details of ligand binding, more specific and potent inhibitors may be designed that differentiate among closely related AGC protein kinase family members.

  2. Sucrose regulation of ADP-glucose pyrophosphorylase subunit genes transcript levels in leaves and fruits

    NASA Technical Reports Server (NTRS)

    Li, Xiangyang; Xing, Jinpeng; Gianfagna, Thomas J.; Janes, Harry W.

    2002-01-01

    ADP-glucose pyrophosphorylase (AGPase, EC2.7.7.27) is a key regulatory enzyme in starch biosynthesis. The enzyme is a heterotetramer with two S and two B subunits. In tomato, there are three multiple forms of the S subunit gene. Agp S1, S2 and B are highly expressed in fruit from 10 to 25 days after anthesis. Agp S3 is only weakly expressed in fruit. Sucrose significantly elevates expression of Agp S1, S2 and B in both leaves and fruits. Agp S1 exhibits the highest degree of regulation by sucrose. In fact, sucrose may be required for Agp S1 expression. For excised leaves incubated in water, no transcripts for Agp S1 could be detected in the absence of sucrose, whereas it took up to 16 h in water before transcripts were no longer detectable for Agp S2 and B. Neither Agp S3 nor the tubulin gene is affected by sucrose, demonstrating that this response is specifically regulated by a carbohydrate metabolic signal, and is not due to a general increase in metabolism caused by sucrose treatment. Truncated versions of the promoter for Agp S1 indicate that a specific region 1.3-3.0 kb upstream from the transcription site is responsible for sucrose sensitivity. This region of the S1 promoter contains several cis-acting elements present in the promoters of other genes that are also regulated by sucrose. c2002 Elsevier Science Ireland Ltd. All rights reserved.

  3. Expression of Chlamydophila psittaci MOMP heat-labile toxin B subunit fusion gene in transgenic rice.

    PubMed

    Zhang, Xiuxiang; Yuan, Ziguo; Guo, Xuejun; Li, Jingwen; Li, Zhaonan; Wang, Qingyu

    2008-09-01

    A DNA fragment encoding the MOMP gene of Chlamydophila psittaci was fused to the heat-labile toxin B subunit gene (LTB-MOMP) and transferred into rice callus by Agrobacterium tumefaciens-mediated transformation. The LTB-MOMP fusion gene was detected in genomic DNA from transformed rice leaves by Southern blot and RT-PCR amplification. Synthesis and assembly of the LTB-MOMP fusion protein into pentamers was detected in transformed leaf extracts by immunoblot analysis. Binding of the pentamers to intestinal epithelial cell membrane glycolipid receptors was quantified by GM1-ganglioside enzyme-linked immunosorbent assay (GM1-ELISA). The ELISA results indicated that LTB-MOMP fusion protein made up 0.0033-0.0054% of the total soluble leaf protein. Meanwhile, this suggested that the fusion protein retained both its native antigenicity and the ability to form pentamers.

  4. Matrix Metalloproteinase 3 Promotes Cellular Anti-Dengue Virus Response via Interaction with Transcription Factor NFκB in Cell Nucleus

    PubMed Central

    Zuo, Xiangyang; Pan, Wen; Feng, Tingting; Shi, Xiaohong; Dai, Jianfeng

    2014-01-01

    Dengue virus (DENV), the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus of immense global health importance. Characterization of cellular factors promoting or inhibiting DENV infection is important for understanding the mechanism of DENV infection. In this report, MMP3 (stromelysin-1), a secretory endopeptidase that degrades extracellular matrices, has been shown promoting cellular antiviral response against DENV infection. Quantitative RT-PCR and Western Blot showed that the expression of MMP3 was upregulated in DENV-infected RAW264.7 cells. The intracellular viral loads were significantly higher in MMP3 silenced cells compared with controls. The expression level of selective anti-viral cytokines were decreased in MMP3 siRNA treated cells, and the transcription factor activity of NFκB was significantly impaired upon MMP3 silencing during DENV infection. Further, we found that MMP3 moved to cell nucleus upon DENV infection and colocalized with NFκB P65 in nucleus. Co-immunoprecipitation analysis suggested that MMP3 directly interacted with NFκB in nucleus during DENV infection and the C-terminal hemopexin-like domain of MMP3 was required for the interaction. This study suggested a novel role of MMP3 in nucleus during viral infection and provided new evidence for MMPs in immunomodulation. PMID:24416274

  5. Matrix metalloproteinase 3 promotes cellular anti-dengue virus response via interaction with transcription factor NFκB in cell nucleus.

    PubMed

    Zuo, Xiangyang; Pan, Wen; Feng, Tingting; Shi, Xiaohong; Dai, Jianfeng

    2014-01-01

    Dengue virus (DENV), the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus of immense global health importance. Characterization of cellular factors promoting or inhibiting DENV infection is important for understanding the mechanism of DENV infection. In this report, MMP3 (stromelysin-1), a secretory endopeptidase that degrades extracellular matrices, has been shown promoting cellular antiviral response against DENV infection. Quantitative RT-PCR and Western Blot showed that the expression of MMP3 was upregulated in DENV-infected RAW264.7 cells. The intracellular viral loads were significantly higher in MMP3 silenced cells compared with controls. The expression level of selective anti-viral cytokines were decreased in MMP3 siRNA treated cells, and the transcription factor activity of NFκB was significantly impaired upon MMP3 silencing during DENV infection. Further, we found that MMP3 moved to cell nucleus upon DENV infection and colocalized with NFκB P65 in nucleus. Co-immunoprecipitation analysis suggested that MMP3 directly interacted with NFκB in nucleus during DENV infection and the C-terminal hemopexin-like domain of MMP3 was required for the interaction. This study suggested a novel role of MMP3 in nucleus during viral infection and provided new evidence for MMPs in immunomodulation.

  6. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-κB activation

    PubMed Central

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-01-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-α-evoked translocation of nuclear factor (NF)-κB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-κB and production of TNF-α in mouse macrophage RAW264·7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-α level and inhibited the LPS-evoked nuclear translocation of NF-κB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS. PMID:20030669

  7. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-kappaB activation.

    PubMed

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-05-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-alpha-evoked translocation of nuclear factor (NF)-kappaB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-kappaB and production of TNF-alpha in mouse macrophage RAW264.7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-alpha level and inhibited the LPS-evoked nuclear translocation of NF-kappaB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS.

  8. S1PR3 is essential for phosphorylated fingolimod to protect astrocytes against oxygen-glucose deprivation-induced neuroinflammation via inhibiting TLR2/4-NFκB signalling.

    PubMed

    Dong, Yin-Feng; Guo, Ruo-Bing; Ji, Juan; Cao, Lu-Lu; Zhang, Ling; Chen, Zheng-Zhen; Huang, Ji-Ye; Wu, Jin; Lu, Jun; Sun, Xiu-Lan

    2018-03-13

    Fingolimod (FTY720) is used as an immunosuppressant for multiple sclerosis. Numerous studies indicated its neuroprotective effects in stroke. However, the mechanism remains to be elucidated. This study was intended to investigate the mechanisms of phosphorylated FTY720 (pFTY720), which was the principle active molecule in regulating astrocyte-mediated inflammatory responses induced by oxygen-glucose deprivation (OGD). Results demonstrated that pFTY720 could protect astrocytes against OGD-induced injury and inflammatory responses. It significantly decreased pro-inflammatory cytokines, including high mobility group box 1 (HMGB1) and tumour necrosis factor-α (TNF-α). Further, studies displayed that pFTY720 could prevent up-regulation of Toll-like receptor 2 (TLR2), phosphorylation of phosphoinositide 3-kinase (PI3K) and nuclear translocation of nuclear factor kappa B (NFκB) p65 subunit caused by OGD. Sphingosine-1-phosphate receptor 3 (S1PR3) knockdown could reverse the above change. Moreover, administration of TLR2/4 blocker abolished the protective effects of pFTY720. Taken together, this study reveals that pFTY720 depends on S1PR3 to protect astrocytes against OGD-induced neuroinflammation, due to inhibiting TLR2/4-PI3K-NFκB signalling pathway. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Direct molecular interactions between Beclin 1 and the canonical NFκB activation pathway.

    PubMed

    Niso-Santano, Mireia; Criollo, Alfredo; Malik, Shoaib Ahmad; Michaud, Michael; Morselli, Eugenia; Mariño, Guillermo; Lachkar, Sylvie; Galluzzi, Lorenzo; Maiuri, Maria Chaira; Kroemer, Guido

    2012-02-01

    General (macro)autophagy and the activation of NFκB constitute prominent responses to a large array of intracellular and extracellular stress conditions. The depletion of any of the three subunits of the inhibitor of NFκB (IκB) kinase (IKKα, IKKβ, IKKγ/NEMO), each of which is essential for the canonical NFκB activation pathway, limits autophagy induction by physiological or pharmacological triggers, while constitutive active IKK subunits suffice to stimulate autophagy. The activation of IKK usually relies on TGFβ-activated kinase 1 (TAK1), which is also necessary for the optimal induction of autophagy in multiple settings. TAK1 interacts with two structurally similar co-activators, TAK1-binding proteins 2 and 3 (TAB2 and TAB3). Importantly, in resting conditions both TAB2 and TAB3 bind the essential autophagic factor Beclin 1, but not TAK1. In response to pro-autophagic stimuli, TAB2 and TAB3 dissociate from Beclin 1 and engage in stimulatory interactions with TAK1. The inhibitory interaction between TABs and Beclin 1 is mediated by their coiled-coil domains (CCDs). Accordingly, the overexpression of either TAB2 or TAB3 CCD stimulates Beclin 1- and TAK1-dependent autophagy. These results point to the existence of a direct molecular crosstalk between the canonical NFκB activation pathway and the autophagic core machinery that guarantees the coordinated induction of these processes in response to stress.

  10. Differential regulation of thyrotropin subunit apoprotein and carbohydrate biosynthesis by thyroid hormone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, T.; Weintraub, B.D.

    1985-04-01

    The regulation of TSH apoprotein and carbohydrate biosynthesis by thyroid hormone was studied by incubating pituitaries from normal and hypothyroid (3 weeks post-thyroidectomy) rats in medium containing (/sup 14/C)alanine and (/sup 3/H) glucosamine. After 6 h, samples were sequentially treated with anti-TSH beta to precipitate TSH and free TSH beta, anti-LH beta to clear the sample of LH and free LH beta, then anti-LH alpha to precipitate free alpha-subunit. Total proteins were acid precipitated. All precipitates were subjected to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, which were then sliced and assayed by scintillation spectrometry. In hypothyroid pituitaries plus medium, (/supmore » 14/C)alanine incorporation in combined and free beta-subunits was 26 times normal and considerably greater than the 3.4-fold increase seen in total protein; combined and free alpha-subunits showed no specific increase in apoprotein synthesis. (/sup 3/H)Glucosamine incorporation in combined alpha- and beta-subunits in hypothyroid samples was 13 and 21 times normal, respectively, and was greater than the 1.9-fold increase in total protein; free alpha-subunit showed no specific increase in carbohydrate synthesis. The glucosamine to alanine ratio, reflecting relative glycosylation of newly synthesized molecules, was increased in hypothyroidism for combined alpha-subunits, but not for combined beta-subunits, free alpha-subunits, or total proteins. In summary, short term hypothyroidism selectively stimulated TSH beta apoprotein synthesis and carbohydrate synthesis of combined alpha- and beta-subunits. Hypothyroidism also increased the relative glycosylation of combined alpha-subunit. Thus, thyroid hormone deficiency appears to alter the rate-limiting step in TSH assembly (i.e. beta-subunit synthesis) as well as the carbohydrate structure of TSH, which may play important roles in its biological function.« less

  11. Functional diversification of maize RNA polymerase IV and V subtypes via alternative catalytic subunits

    DOE PAGES

    Haag, Jeremy R.; Brower-Toland, Brent; Krieger, Elysia K.; ...

    2014-10-02

    Unlike nuclear multisubunit RNA polymerases I, II, and III, whose subunit compositions are conserved throughout eukaryotes, plant RNA polymerases IV and V are nonessential, Pol II-related enzymes whose subunit compositions are still evolving. Whereas Arabidopsis Pols IV and V differ from Pol II in four or five of their 12 subunits, respectively, and differ from one another in three subunits, proteomic analyses show that maize Pols IV and V differ from Pol II in six subunits but differ from each other only in their largest subunits. Use of alternative catalytic second subunits, which are nonredundant for development and paramutation, yieldsmore » at least two sub-types of Pol IV and three subtypes of Pol V in maize. Pol IV/Pol V associations with MOP1, RMR1, AGO121, Zm_DRD1/CHR127, SHH2a, and SHH2b extend parallels between paramutation in maize and the RNA-directed DNA methylation pathway in Arabidopsis.« less

  12. Functional diversification of maize RNA polymerase IV and V subtypes via alternative catalytic subunits

    PubMed Central

    Haag, Jeremy R.; Brower-Toland, Brent; Krieger, Elysia K.; Sidorenko, Lyudmila; Nicora, Carrie D.; Norbeck, Angela D.; Irsigler, Andre; LaRue, Huachun; Brzeski, Jan; McGinnis, Karen; Ivashuta, Sergey; Pasa-Tolic, Ljiljana; Chandler, Vicki L.; Pikaard, Craig S.

    2014-01-01

    Summary Unlike nuclear multisubunit RNA polymerases I, II and III, whose subunit compositions are conserved throughout eukaryotes, plant RNA Polymerases IV and V are non-essential, Pol II-related enzymes whose subunit compositions are still evolving. Whereas Arabidopsis Pols IV and V differ from Pol II in four or five of their twelve subunits, respectively, and differ from one another in three subunits, proteomic analyses show that maize Pols IV and V differ from Pol II in six subunits, but differ from each other only in their largest subunits. Use of alternative catalytic second-subunits, which are non-redundant for development and paramutation, yields at least two subtypes of Pol IV, and three subtypes of Pol V in maize. Pol IV/V associations with MOP1, RMR1, AGO121, Zm_DRD1/CHR127, SHH2a and SHH2b extend parallels between paramutation in maize and the RNA-directed DNA methylation pathway in Arabidopsis. PMID:25284785

  13. Synergistic growth inhibition of squamous cell carcinoma of the head and neck by erlotinib and epigallocatechin-3-gallate: the role of p53-dependent inhibition of nuclear factor-kappaB.

    PubMed

    Amin, A R M Ruhul; Khuri, Fadlo R; Chen, Zhuo Georgia; Shin, Dong M

    2009-06-01

    We have previously reported that the green tea polyphenol epigallocatechin-3-gallate (EGCG) and the epidermal growth factor receptor-tyrosine kinase inhibitor erlotinib had synergistic growth-inhibitory effects in cell culture and a nude mouse xenograft model of squamous cell carcinoma of the head and neck. However, the mechanism of their antitumor synergism is not fully understood. In the current study, we investigate the mechanism of their synergistic growth-inhibitory effects. The treatment of squamous cell carcinoma of the head and neck cell lines with erlotinib time-dependently increased the expression of cell cycle regulatory proteins p21 and p27 and apoptosis regulatory protein Bim. EGCG alone had very little or no effect on the expression of these proteins among the cell lines. However, simultaneous treatment with EGCG and erlotinib strongly inhibited erlotinib-induced expression of p21 and p27 without affecting the expression of Bim. Moreover, erlotinib increased the expression of p53 protein, the ablation of which by short hairpin RNA strongly inhibited EGCG- and erlotinib-mediated growth inhibition and the expression of p21, p27, and Bim. In addition, combined treatment with erlotinib and EGCG inhibited the protein level of p65 subunit of nuclear factor-kappaB and its transcriptional target Bcl-2, but failed to do so in cells with ablated p53. Taken together, our results, for the first time, suggest that erlotinib treatment activates p53, which plays a critical role in synergistic growth inhibition by erlotinib and EGCG via inhibiting nuclear factor-kappaB signaling pathway. Characterizing the underlying mechanisms of EGCG and erlotinib synergism will provide an important rationale for chemoprevention or treatment trials using this combination.

  14. 25 CFR Appendix B to Subpart C - Population Adjustment Factor

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Population Adjustment Factor B Appendix B to Subpart C...—Population Adjustment Factor 1. The Population Adjustment Factor allows for participation in the IRR Program... Distribution factor* Number of tribes** Funding amount per tribe Less than 25 1 N1 MBA*** × 1 25-100 3.5 N2 MBA...

  15. Tet2 and Tet3 cooperate with B-lineage transcription factors to regulate DNA modification and chromatin accessibility.

    PubMed

    Lio, Chan-Wang; Zhang, Jiayuan; González-Avalos, Edahí; Hogan, Patrick G; Chang, Xing; Rao, Anjana

    2016-11-21

    Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine, facilitating DNA demethylation and generating new epigenetic marks. Here we show that concomitant loss of Tet2 and Tet3 in mice at early B cell stage blocked the pro- to pre-B cell transition in the bone marrow, decreased Irf4 expression and impaired the germline transcription and rearrangement of the Igκ locus. Tet2/3-deficient pro-B cells showed increased CpG methylation at the Igκ 3' and distal enhancers that was mimicked by depletion of E2A or PU.1, as well as a global decrease in chromatin accessibility at enhancers. Importantly, re-expression of the Tet2 catalytic domain in Tet2/3-deficient B cells resulted in demethylation of the Igκ enhancers and restored their chromatin accessibility. Our data suggest that TET proteins and lineage-specific transcription factors cooperate to influence chromatin accessibility and Igκ enhancer function by modulating the modification status of DNA.

  16. Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit.

    PubMed

    Ragupathy, Raja; Naeem, Hamid A; Reimer, Elsa; Lukow, Odean M; Sapirstein, Harry D; Cloutier, Sylvie

    2008-01-01

    Sequencing of a BAC clone encompassing the Glu-B1 locus in Glenlea, revealed a 10.3 Kb segmental duplication including the Bx7 gene and flanking an LTR retroelement. To better understand the evolution of this locus, two collections of wheat were surveyed. The first consisted of 96 diploid and tetraploid species accessions while the second consisted of 316 Triticum aestivum cultivars and landraces from 41 countries. The genotypes were first characterized by SDS-PAGE and a total of 40 of the 316 T. aestivum accessions were found to display the overexpressed Bx7 phenotype (Bx7OE). Three lines from the 96 diploid/tetraploid collection also displayed the stronger intensity staining characteristic of the Bx7(OE) subunit. The relative amounts of the Bx7 subunit to total HMW-GS were quantified by RP-HPLC for all Bx7OE accessions and a number of checks. The entire collection was assessed for the presence of four DNA markers namely an 18 bp indel of the coding region of Bx7 variant alleles, a 43 bp indel of the 5'-region and the left and right junctions of the LTR retrotransposon borders and the duplicated segment. All 43 accessions found to have the Bx7OE subunit by SDS-PAGE and RP-HPLC produced the four diagnostic PCR amplicons. None of the lines without the Bx7OE had the LTR retroelement/duplication genomic structure. However, the 18 and 43 bp indel were found in accessions other than Bx7OE. These results indicate that the overexpression of the Bx7 HMW-GS is likely the result of a single event, i.e., a gene duplication at the Glu-B1 locus mediated by the insertion of a retroelement. Also, the 18 and 43 bp indels pre-date the duplication event. Allelic variants Bx7*, Bx7 with and without 43 bp insert and Bx7OE were found in both tetraploid and hexaploid collections and shared the same genomic organization. Though the possibility of introgression from T. aestivum to T. turgidum cannot be ruled out, the three structural genomic changes of the B-genome taken together support

  17. Sequence and functional characterization of hypoxia-inducible factors, HIF1α, HIF2αa, and HIF3α, from the estuarine fish, Fundulus heteroclitus.

    PubMed

    Townley, Ian K; Karchner, Sibel I; Skripnikova, Elena; Wiese, Thomas E; Hahn, Mark E; Rees, Bernard B

    2017-03-01

    The hypoxia-inducible factor (HIF) family of transcription factors plays central roles in the development, physiology, pathology, and environmental adaptation of animals. Because many aquatic habitats are characterized by episodes of low dissolved oxygen, fish represent ideal models to study the roles of HIF in the response to aquatic hypoxia. The estuarine fish Fundulus heteroclitus is found in habitats prone to hypoxia. It responds to low oxygen via behavioral, physiological, and molecular changes, and one member of the HIF family, HIF2α, has been previously described. Herein, cDNA sequencing, phylogenetic analyses, and genomic approaches were used to determine other members of the HIFα family from F. heteroclitus and their relationships to HIFα subunits from other vertebrates. In vitro and cellular approaches demonstrated that full-length forms of HIF1α, HIF2α, and HIF3α independently formed complexes with the β-subunit, aryl hydrocarbon receptor nuclear translocator, to bind to hypoxia response elements and activate reporter gene expression. Quantitative PCR showed that HIFα mRNA abundance varied among organs of normoxic fish in an isoform-specific fashion. Analysis of the F. heteroclitus genome revealed a locus encoding a second HIF2α-HIF2αb-a predicted protein lacking oxygen sensing and transactivation domains. Finally, sequence analyses demonstrated polymorphism in the coding sequence of each F. heteroclitus HIFα subunit, suggesting that genetic variation in these transcription factors may play a role in the variation in hypoxia responses among individuals or populations. Copyright © 2017 the American Physiological Society.

  18. Insulin-like growth factor-binding protein-3 inhibits IGF-1-induced proliferation of human hepatocellular carcinoma cells by controlling bFGF and PDGF autocrine/paracrine loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Yang; Han, Chen-chen; Li, Yifan

    Basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) produced by hepatocellular carcinoma (HCC) cells are responsible for the growth of HCC cells. Accumulating evidence shows that insulin-like growth factor-binding protein-3 (IGFBP-3) suppresses HCC cell proliferation in both IGF-dependent and independent manners. It's unknown, however, whether treatment with exogenous IGFBP-3 inhibits bFGF and PDGF production in HCC cells. The present study demonstrates that IGFBP-3 suppressed IGF-1-induced bFGF and PDGF expression while it does not affect their expression in the absence of IGF-1. To delineate the underlying mechanism, western-blot and RT-PCR assays confirmed that the transcription factor early growth responsemore » protein 1 (EGR1) is involved in IGFBP-3 regulation of bFGF and PDGF. IGFBP-3 inhibition of type 1 insulin-like growth factor receptor (IGF1R), ERK and AKT activation is IGF-1-dependent. Furthermore, transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1, bFGF and PDGF expression. In conclusion, these findings suggest that IGFBP-3 suppresses transcription of EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation. It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation, suggesting that IGFBP-3 could be a target for the treatment of HCC. - Highlights: • IGFBP-3 plays an inhibition role in IGF1-induced HCC cell growth. • IGFBP-3 inhibits bFGF and PDGF production in the IGF-dependent manner. • EGR1 is involved in IGFBP-3 regulation of bFGF and PDGF in HCC cells. • IGFBP-3 suppresses EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.« less

  19. Immunogenicity and protective efficacy of rotavirus VP8* fused to cholera toxin B subunit in a mouse model.

    PubMed

    Xue, Miaoge; Yu, Linqi; Jia, Lianzhi; Li, Yijian; Zeng, Yuanjun; Li, Tingdong; Ge, Shengxiang; Xia, Ningshao

    2016-11-01

    In attempts to develop recombinant subunit vaccines against rotavirus disease, it was previously shown that the N-terminal truncated VP8* protein, VP8-1 (aa26-231), is a good vaccine candidate when used for immunization in combination with Freund's adjuvant. However, this protein stimulated only weak immune response when aluminum hydroxide was used as an adjuvant. In this study, the nontoxic B subunit of cholera toxin (CTB) was employed as intra-molecular adjuvant to improve the immunogenicity of VP8-1. Both, the N-terminal and C-terminal fusion proteins, were purified to homogeneity, at which stage they formed pentamers, and showed significantly higher immunogenicity and protective efficacy than a VP8-1/aluminum hydroxide mixture in a mouse model. Compared to VP8-1-CTB, CTB-VP8-1 showed higher binding activity to both, GM1 and the conformation sensitive neutralizing monoclonal antibodies specific to VP8. More importantly, CTB-VP8-1 elicited higher titers of neutralizing antibodies and conferred higher protective efficacy than VP8-1-CTB. Therefore, the protein CTB-VP8-1, with enhanced immunogenicity and immunoprotectivity, could be considered as a viable candidate for further development of an alternative, replication-incompetent, parenterally administered vaccine against rotavirus disease.

  20. Essential arginine in subunit a and aspartate in subunit c of FoF1 ATP synthase: effect of repositioning within helix 4 of subunit a and helix 2 of subunit c.

    PubMed

    Langemeyer, Lars; Engelbrecht, Siegfried

    2007-07-01

    FoF1 ATP synthase couples proton flow through the integral membrane portion Fo (ab2c10) to ATP-synthesis in the extrinsic F1-part ((alphabeta)3gammadeltaepsilon) (Escherichia coli nomenclature and stoichiometry). Coupling occurs by mechanical rotation of subunits c10gammaepsilon relative to (alphabeta)3deltaab2. Two residues were found to be essential for proton flow through ab2c10, namely Arg210 in subunit a (aR210) and Asp61 in subunits c (cD61). Their deletion abolishes proton flow, but "horizontal" repositioning, by anchoring them in adjacent transmembrane helices, restores function. Here, we investigated the effects of "vertical" repositioning aR210, cD61, or both by one helical turn towards the N- or C-termini of their original helices. Other than in the horizontal the vertical displacement changes the positions of the side chains within the depth of the membrane. Mutant aR210A/aN214R appeared to be short-circuited in that it supported proton conduction only through EF1-depleted EFo, but not in EFoEF1, nor ATP-driven proton pumping. Mutant cD61N/cM65D grew on succinate, retained the ability to synthesize ATP and supported passive proton conduction but apparently not ATP hydrolysis-driven proton pumping.

  1. Prefoldin Subunits Are Protected from Ubiquitin-Proteasome System-mediated Degradation by Forming Complex with Other Constituent Subunits*

    PubMed Central

    Miyazawa, Makoto; Tashiro, Erika; Kitaura, Hirotake; Maita, Hiroshi; Suto, Hiroo; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2011-01-01

    The molecular chaperone prefoldin (PFD) is a complex comprised of six different subunits, PFD1-PFD6, and delivers newly synthesized unfolded proteins to cytosolic chaperonin TRiC/CCT to facilitate the folding of proteins. PFD subunits also have functions different from the function of the PFD complex. We previously identified MM-1α/PFD5 as a novel c-Myc-binding protein and found that MM-1α suppresses transformation activity of c-Myc. However, it remains unclear how cells regulate protein levels of individual subunits and what mechanisms alter the ratio of their activities between subunits and their complex. In this study, we found that knockdown of one subunit decreased protein levels of other subunits and that transfection of five subunits other than MM-1α into cells increased the level of endogenous MM-1α. We also found that treatment of cells with MG132, a proteasome inhibitor, increased the level of transfected/overexpressed MM-1α but not that of endogenous MM-1α, indicating that overexpressed MM-1α, but not endogenous MM-1α, was degraded by the ubiquitin proteasome system (UPS). Experiments using other PFD subunits showed that the UPS degraded a monomer of PFD subunits, though extents of degradation varied among subunits. Furthermore, the level of one subunit was increased after co-transfection with the respective subunit, indicating that there are specific combinations between subunits to be stabilized. These results suggest mutual regulation of protein levels among PFD subunits and show how individual subunits form the PFD complex without degradation. PMID:21478150

  2. Human neuronal acetylcholine receptor A5-A3-B4 haplotypes are associated with multiple nicotine dependence phenotypes

    PubMed Central

    Weiss, Robert B.; Bolt, Daniel; von Niederhausern, Andrew; Fiore, Michael C.; Dunn, Diane M.; Piper, Megan E.; Matsunami, Nori; Smith, Stevens S.; Coon, Hilary; McMahon, William M.; Scholand, Mary B.; Singh, Nanda; Hoidal, John R.; Kim, Su-Young; Leppert, Mark F.; Cannon, Dale S.

    2009-01-01

    Introduction: Previous research revealed significant associations between haplotypes in the CHRNA5-A3-B4 subunit cluster and scores on the Fagerström Test for Nicotine Dependence among individuals reporting daily smoking by age 17. The present study used subsamples of participants from that study to investigate associations between the CHRNA5-A3-B4 haplotypes and an array of phenotypes not analyzed previously (i.e., withdrawal severity, ability to stop smoking, and specific scales on the Wisconsin Inventory of Smoking Dependence Motives (WISDM-68) that reflect loss of control, strong craving, and heavy smoking. Methods: Two cohorts of current or former smokers (N = 886) provided both self-report data and DNA samples. One sample (Wisconsin) comprised smokers making a quit smoking attempt, which permitted the assessment of withdrawal and relapse during the attempt. The other sample (Utah) comprised participants studied for risk factors for nicotine dependence and chronic obstructive pulmonary disease and included individuals originally recruited in the Lung Health Study. Results: The CHRNA5-A3-B4 haplotypes were significantly associated with the targeted WISDM-68 scales (Tolerance, Craving, Loss of Control) in both samples of participants but only among individuals who began smoking early in life. The haplotypes were significantly associated with relapse likelihood and withdrawal severity, but these associations showed no evidence of an interaction with age at daily smoking. Discussion: The CHRNA5-A3-B4 haplotypes are associated with a broad range of nicotine dependence phenotypes, but these associations are not consistently moderated by age at initial smoking. PMID:19436041

  3. Transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to gelatin.

    PubMed

    Kubo, Miyoko; Clark, Richard A F; Katz, Anne B; Taichman, Lorne B; Jin, Zaishun; Zhao, Ying; Moriguchi, Takahiko

    2007-04-01

    alphavbeta3 is a multiligand integrin receptor that interacts with fibrinogen (FG), fibrin (FB), fibronectin (FN), vitronectin (VN), and denatured collagen. We previously reported that cultured normal human keratinocytes, like in vivo keratinocytes, do not express alphavbeta3 on the cell surface, and do not adhere to and migrate on FG and FB. Furthermore, we reported that human keratinocytes transduced with beta3 integrin subunit cDNA by a retrovirus-mediated transduction method express alphavbeta3 on the cell surface and adhere to FG, FB, FN, and VN significantly compared with beta-galactosidase (beta-gal) cDNA-transduced keratinocytes (control). In this study, we determined whether these beta3 integrin subunit cDNA-transduced keratinocytes or normal human keratinocytes adhere to denatured collagen (gelatin) using a 1 h cell adhesion assay. beta3 cDNA-transduced keratinocytes adhered to gelatin, whereas no significant adhesion was observed with the control cells (beta-gal cDNA-transduced keratinocytes and normal human keratinocytes). The adhesion to gelatin was inhibited by LM609, a monoclonal antibody to alphavbeta3, and RGD peptides but not by normal mouse IgG1 nor RGE peptides. Thus, transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to denatured collagen (gelatin) as well as to FG, FB, VN, and FN. Otherwise, normal human keratinocytes do not adhere to gelatin. These data support the idea that beta3 cDNA-transduced human keratinocytes can be a good material for cultured epithelium to achieve better take rate with acute or chronic wounds, in which FG, FB, and denatured collagen are abundantly present.

  4. Effects of decoy molecules targeting NF-kappaB transcription factors in Cystic fibrosis IB3–1 cells

    PubMed Central

    Finotti, Alessia; Borgatti, Monica; Bezzerri, Valentino; Nicolis, Elena; Lampronti, Ilaria; Dechecchi, Maria; Mancini, Irene; Cabrini, Giulio; Saviano, Michele; Avitabile, Concetta; Romanelli, Alessandra; Gambari, Roberto

    2012-01-01

    One of the clinical features of cystic fibrosis (CF) is a deep inflammatory process, which is characterized by production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against CF to reduce the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. In order to demonstrate that TFD against NF-kappaB interferes with the NF-kappaB pathway we proved, by chromatin immunoprecipitation (ChIP) that treatment with TFD oligodeoxyribonucleotides of cystic fibrosis IB3–1 cells infected with Pseudomonas aeruginosa leads to a decrease occupancy of the Il-8 gene promoter by NF-kappaB factors. In order to develop more stable therapeutic molecules, peptide nucleic acids (PNAs) based agents were considered. In this respect PNA-DNA-PNA (PDP) chimeras are molecules of great interest from several points of view: (1) they can be complexed with liposomes and microspheres; (2) they are resistant to DNases, serum and cytoplasmic extracts; (3) they are potent decoy molecules. By using electrophoretic mobility shift assay and RT-PCR analysis we have demonstrated that (1) the effects of PDP/PDP NF-kappaB decoy chimera on accumulation of pro-inflammatory mRNAs in P.aeruginosa infected IB3–1 cells reproduce that of decoy oligonucleotides; in particular (2) the PDP/PDP chimera is a strong inhibitor of IL-8 gene expression; (3) the effect of PDP/PDP chimeras, unlike those of ODN-based decoys, are observed even in the absence of protection with lipofectamine. These informations are of great impact, in our opinion, for the development of stable molecules to be used in non-viral gene therapy of cystic fibrosis. PMID:22772035

  5. DiBAC4(3) hits a “sweet spot” for the activation of arterial large-conductance Ca2+-activated potassium channels independently of the β1-subunit

    PubMed Central

    Scornik, Fabiana S.; Bucciero, Ronald S.; Wu, Yuesheng; Selga, Elisabet; Bosch Calero, Cristina; Brugada, Ramon

    2013-01-01

    The voltage-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol [DiBAC4(3)] has been reported as a novel large-conductance Ca2+-activated K+ (BK) channel activator with selectivity for its β1- or β4-subunits. In arterial smooth muscle, BK channels are formed by a pore-forming α-subunit and a smooth muscle-abundant regulatory β1-subunit. This tissue specificity has driven extensive pharmacological research aimed at regulating arterial tone. Using animals with a disruption of the gene for the β1-subunit, we explored the effects of DiBAC4(3) in native channels from arterial smooth muscle. We tested the hypothesis that, in native BK channels, activation by DiBAC4(3) relies mostly on its α-subunit. We studied BK channels from wild-type and transgenic β1-knockout mice in excised patches. BK channels from brain arteries, with or without the β1-subunit, were similarly activated by DiBAC4(3). In addition, we found that saturating concentrations of DiBAC4(3) (∼30 μM) promote an unprecedented persistent activation of the channel that negatively shifts its voltage dependence by as much as −300 mV. This “sweet spot” for persistent activation is independent of Ca2+ and/or the β1–4-subunits and is fully achieved when DiBAC4(3) is applied to the intracellular side of the channel. Arterial BK channel response to DiBAC4(3) varies across species and/or vascular beds. DiBAC4(3) unique effects can reveal details of BK channel gating mechanisms and help in the rational design of BK channel activators. PMID:23542916

  6. Regulation of Mitochondria Function by TRAF3 in B Lymphocytes and B Cell Malignancies

    DTIC Science & Technology

    2014-08-01

    PARP1, PHB2 4 Background B cell neoplasms account for over 90% of lymphoid tumors worldwide, and comprise >50% of blood cancers. Despite recent... cells examined include common lymphoid progenitor, pre-pro-B, pro-B, pre-B, newly-formed B, and transitional (T1, T2 and T3) B cells . The data in...factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 2007, 27:253-267. 13. Moore CR, Liu Y, Shao CS, Covey LR

  7. A Special Extract of Bacopa monnieri (CDRI-08) Restores Learning and Memory by Upregulating Expression of the NMDA Receptor Subunit GluN2B in the Brain of Scopolamine-Induced Amnesic Mice

    PubMed Central

    Rai, Rakesh; Singh, Hemant K.; Prasad, S.

    2015-01-01

    In the present communication, we have investigated effects of the CDRI-08, a well characterized extract of Bacopa monnieri, on expression of the GluN2B subunit of NMDAR in various brain regions of the scopolamine-induced amnesic mice. Our behavioral data reveal that scopolamine-treated amnesic mice exhibit significant decline in the spatial memory compared to the normal control mice. Our RT-PCR and immunoblotting data revealed that the scopolamine treatment resulted in a significant downregulation of the NMDAR GluN2B subunit expression in prefrontal cortex and hippocampus. Our enzyme assay data revealed that scopolamine caused a significant increase in the acetylcholinesterase activity in both the brain regions. Further, oral administration of the CDRI-08 to scopolamine-treated amnesic mice restored the spatial memory which was found to be associated with significant upregulation of the GluN2B subunit expression and decline in the acetylcholinesterase activity in prefrontal cortex as well as hippocampus towards their levels in the normal control mice. Our study provides the evidence for the mechanism underlying role of the Bacopa monnieri extract (CDRI-08) in restoring spatial memory in amnesic mice, which may have therapeutic implications. PMID:26413117

  8. Distinct Contributions of T1R2 and T1R3 Taste Receptor Subunits to the Detection of Sweet Stimuli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie,Y.; Vigues, S.; Hobbs, J.

    2005-01-01

    The molecular mechanisms by which G protein-coupled receptor (GPCR)-type chemosensory receptors of animals selectively interact with their cognate ligands remain poorly understood. There is growing evidence that many chemosensory receptors exist in multimeric complexes, though little is known about the relative contributions of individual subunits to receptor functions. This study showed that each of the two subunits in the mammalian heteromeric T1R2:T1R3 sweet taste receptor binds sweet stimuli, though with distinct affinities and conformational changes. Furthermore, ligand affinities for T1R3 are drastically reduced by the introduction of a single amino acid change associated with decreased sweet taste sensitivity in mice.more » Thus, individual T1R subunits increase the receptive range of the sweet taste receptor, offering a functional mechanism for phenotypic variations in sweet taste.« less

  9. Cbl-phosphatidylinositol 3 kinase interaction differentially regulates macrophage colony-stimulating factor-mediated osteoclast survival and cytoskeletal reorganization.

    PubMed

    Adapala, Naga Suresh; Barbe, Mary F; Langdon, Wallace Y; Tsygankov, Alexander Y; Sanjay, Archana

    2010-03-01

    The Cbl protein is a key player in macrophage colony-stimulating factor (M-CSF)-induced signaling. To examine the role of Cbl in M-CSF-mediated cellular events, we used Cbl(YF/YF) knockin mice in which the regulatory tyrosine 737, which when phosphorylated binds to the p85 subunit of phosphatidylinositol 3 kinase (PI3K), is substituted to phenylalanine. In ex vivo cultures, M-CSF and receptor activator of nuclear factor-kappaB ligand-mediated differentiation of bone marrow precursors from Cbl(YF/YF) mice generated increased number of osteoclasts; however, osteoclast numbers in Cbl(YF/YF) cultures were unchanged with increasing doses of M-CSF. We found that Cbl(YF/YF) osteoclasts have enhanced intrinsic ability to survive, and this response was further augmented upon exposure to M-CSF. Treatment of osteoclasts with M-CSF-induced actin reorganization and lamellipodia formation in wild-type osteoclasts; however, in Cbl(YF/YF) osteoclasts lamellipodia formation was compromised. Collectively, these results indicate that abrogation of the Cbl-PI3K interaction, although not affecting M-CSF-induced proliferation and differentiation of precursors, is required for regulation of survival and actin cytoskeletal reorganization of mature osteoclasts.

  10. Cineromycin B isolated from Streptomyces cinerochromogenes inhibits adipocyte differentiation of 3T3-L1 cells via Krüppel-like factors 2 and 3.

    PubMed

    Matsuo, Hirotaka; Kondo, Yoshiyuki; Kawasaki, Takashi; Imamura, Nobutaka

    2015-08-15

    3T3-L1 cells are preadipocytes and often used as a model for cellular differentiation to adipocytes; however, the mechanism of this differentiation is not completely understood even in these model cells. In this study, we sought to identify a unique anti-adipogenesis agent from microorganisms and to examine its mechanism of action to gain knowledge and create a tool and/or seed compound for anti-obesity drug discovery research. Screening for anti-adipogenesis agents from microorganisms was performed using a 3T3-L1 cell differentiation system, and an active compound was isolated. The inhibitory mechanism of the compound was investigated by measuring the expression of key regulators using quantitative real-time PCR and Western blot analysis. The compound with anti-adipogenic activity in 3T3-L1 cells was identified as cineromycin B. Cineromycin B at 50 μg/mL suppressed intracellular lipid accumulation and the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha (C/EBPα), which are master regulators of adipocyte differentiation. Further investigations showed that cineromycin B increased significantly the mRNA expression of two negative regulators of adipocyte differentiation, Krüppel-like factor (KLF) 2 and KLF3, at an early stage of the differentiation. The results of siRNA transfection experiments indicated that cineromycin B is a unique adipocyte differentiation inhibitor, acting mainly via upregulation of KLF2 and KLF3, and these KLFs may play a role in the early stage of differentiation. Cineromycin B inhibited adipocyte differentiation in 3T3-L1 cells mainly via upregulation of KLF2 and KLF3 mRNA expression at an early stage of the differentiation. Copyright © 2015. Published by Elsevier Inc.

  11. Rab4b controls an early endosome sorting event by interacting with the γ-subunit of the clathrin adaptor complex 1.

    PubMed

    Perrin, Laura; Laura, Perrin; Lacas-Gervais, Sandra; Sandra, Lacas-Gervais; Gilleron, Jérôme; Jérôme, Gilleron; Ceppo, Franck; Franck, Ceppo; Prodon, François; François, Prodon; Benmerah, Alexandre; Alexandre, Benmerah; Tanti, Jean-François; Jean-François, Tanti; Cormont, Mireille; Mireille, Cormont

    2013-11-01

    The endocytic pathway is essential for cell homeostasis and numerous small Rab GTPases are involved in its control. The endocytic trafficking step controlled by Rab4b has not been elucidated, although recent data suggested it could be important for glucose homeostasis, synaptic homeostasis or adaptive immunity. Here, we show that Rab4b is required for early endosome sorting of transferrin receptors (TfRs) to the recycling endosomes, and we identified the AP1γ subunit of the clathrin adaptor AP-1 as a Rab4b effector and key component of the machinery of early endosome sorting. We show that internalised transferrin (Tf) does not reach Vamp3/Rab11 recycling endosomes in the absence of Rab4b, whereas it is rapidly recycled back to the plasma membrane. By contrast, overexpression of Rab4b leads to the accumulation of internalised Tf within AP-1- and clathrin-coated vesicles. These vesicles are poor in early and recycling endocytic markers except for TfR and require AP1γ for their formation. Furthermore, the targeted overexpression of the Rab4b-binding domain of AP1γ to early endosome upon its fusion with FYVE domains inhibited the interaction between Rab4b and endogenous AP1γ, and perturbed Tf traffic. We thus proposed that the interaction between early endocytic Rab4b and AP1γ could allow the budding of clathrin-coated vesicles for subsequent traffic to recycling endosomes. The data also uncover a novel type of endosomes, characterised by low abundance of either early or recycling endocytic markers, which could potentially be generated in cell types that naturally express high level of Rab4b.

  12. Inhibition of herpesvirus and influenza virus replication by blocking polymerase subunit interactions.

    PubMed

    Palù, Giorgio; Loregian, Arianna

    2013-09-01

    Protein-protein interactions (PPIs) play a key role in many biological processes, including virus replication in the host cell. Since most of the PPIs are functionally essential, a possible strategy to inhibit virus replication is based on the disruption of viral protein complexes by peptides or small molecules that interfere with subunit interactions. In particular, an attractive target for antiviral drugs is the binding between the subunits of essential viral enzymes. This review describes the development of new antiviral compounds that inhibit herpesvirus and influenza virus replication by blocking interactions between subunit proteins of their polymerase complexes. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The equine LH/CGβ subunit combines divergent intracellular traits of the human LHβ and CGβ subunits

    PubMed Central

    Cohen, Limor; Bousfield, George R; Ben-Menahem, David

    2017-01-01

    The pituitary LHβ and placental CGβ subunits are products of different genes in primates. The major structural difference between the two subunits is in the carboxy-terminal region, where the short carboxyl sequence of hLHβ is replaced by a longer O-glycosylated carboxy-terminal peptide (CTP) in hCGβ. In association with this structural deviation, there are marked differences in the secretion kinetics and polarized routing of the two subunits. In equids, however, the CGβ and LHβ subunits are products of the same gene expressed in the placenta and pituitary (eLH/CGβ), and both contain a CTP. This unusual expression pattern intrigued us and led to our study of eLH/CGβ subunit secretion by transfected CHO and MDCK cells. In continuous labeling and pulse chase experiments, the secretion of the eLH/CGβ subunit from the transfected CHO cells was inefficient (medium recovery of 16–25%) and slow (t1/2 >6.5 hrs). This indicated that, the secretion of the eLH/CGβ subunit resembles that of hLHβ rather than hCGβ. In MDCK cells grown on Transwell filters, the eLH/CGβ subunit was preferentially secreted from the apical side, similar to the hCGβ subunit secretory route (~65% of the total protein secreted). Taken together, these data suggested that secretion of the eLH/CGβ subunit integrates features of both hLHβ and hCGβ subunits. We propose that the evolution of this intracellular behavior may fulfill the physiological demands for biosynthesis of the eLH/CGβ subunit in the pituitary as well as in the placenta. PMID:25796287

  14. The eukaryotic RNA exosome: same scaffold but variable catalytic subunits.

    PubMed

    Lykke-Andersen, Søren; Tomecki, Rafal; Jensen, Torben Heick; Dziembowski, Andrzej

    2011-01-01

    The RNA exosome is a versatile ribonucleolytic protein complex that participates in a multitude of cellular RNA processing and degradation events. It consists of an invariable nine-subunit core that associates with a variety of enzymatically active subunits and co-factors. These contribute to or even provide the catalytic activity and substrate specificity of the complex. The S. cerevisiae exosome has been intensively studied since its discovery in 1997 and thus serves as the archetype of eukaryotic exosomes. Notably, its catalytic potential, derived exclusively from associated subunits, differs between the nuclear and cytoplasmic versions of the complex. The same holds true for other eukaryotes, however, recent discoveries from various laboratories including our own have revealed that there are variations on this theme. Here, we review the latest findings concerning catalytic subunits of eukaryotic exosomes, and we discuss the apparent need for differential composition and subcellular distribution of exosome variants.

  15. TRIM44 Is a Poor Prognostic Factor for Breast Cancer Patients as a Modulator of NF-κB Signaling.

    PubMed

    Kawabata, Hidetaka; Azuma, Kotaro; Ikeda, Kazuhiro; Sugitani, Ikuko; Kinowaki, Keiichi; Fujii, Takeshi; Osaki, Akihiko; Saeki, Toshiaki; Horie-Inoue, Kuniko; Inoue, Satoshi

    2017-09-08

    Many of the tripartite motif (TRIM) proteins function as E3 ubiquitin ligases and are assumed to be involved in various events, including oncogenesis. In regard to tripartite motif-containing 44 (TRIM44), which is an atypical TRIM family protein lacking the RING finger domain, its pathophysiological significance in breast cancer remains unknown. We performed an immunohistochemical study of TRIM44 protein in clinical breast cancer tissues from 129 patients. The pathophysiological role of TRIM44 in breast cancer was assessed by modulating TRIM44 expression in MCF-7 and MDA-MB-231 breast cancer cells. TRIM44 strong immunoreactivity was significantly associated with nuclear grade ( p = 0.033), distant disease-free survival ( p = 0.031) and overall survival ( p = 0.027). Multivariate analysis revealed that the TRIM44 status was an independent prognostic factor for distant disease-free survival ( p = 0.005) and overall survival ( p = 0.002) of patients. siRNA-mediated TRIM44 knockdown significantly decreased the proliferation of MCF-7 and MDA-MB-231 cells and inhibited the migration of MDA-MB-231 cells. Microarray analysis and qRT-PCR showed that TRIM44 knockdown upregulated CDK19 and downregulated MMP1 in MDA-MB-231 cells. Notably, TRIM44 knockdown impaired nuclear factor-kappa B (NF-κB)-mediated transcriptional activity stimulated by tumor necrosis factor α (TNFα). Moreover, TRIM44 knockdown substantially attenuated the TNFα-dependent phosphorylation of the p65 subunit of NF-κB and IκBα in both MCF-7 and MDA-MB-231 cells. TRIM44 would play a role in the progression of breast cancer by promoting cell proliferation and migration, as well as by enhancing NF-κB signaling.

  16. Yeast eIF4B binds to the head of the 40S ribosomal subunit and promotes mRNA recruitment through its N-terminal and internal repeat domains.

    PubMed

    Walker, Sarah E; Zhou, Fujun; Mitchell, Sarah F; Larson, Victoria S; Valasek, Leos; Hinnebusch, Alan G; Lorsch, Jon R

    2013-02-01

    Eukaryotic translation initiation factor (eIF)4B stimulates recruitment of mRNA to the 43S ribosomal pre-initiation complex (PIC). Yeast eIF4B (yeIF4B), shown previously to bind single-stranded (ss) RNA, consists of an N-terminal domain (NTD), predicted to be unstructured in solution; an RNA-recognition motif (RRM); an unusual domain comprised of seven imperfect repeats of 26 amino acids; and a C-terminal domain. Although the mechanism of yeIF4B action has remained obscure, most models have suggested central roles for its RRM and ssRNA-binding activity. We have dissected the functions of yeIF4B's domains and show that the RRM and its ssRNA-binding activity are dispensable in vitro and in vivo. Instead, our data indicate that the 7-repeats and NTD are the most critical domains, which mediate binding of yeIF4B to the head of the 40S ribosomal subunit via interaction with Rps20. This interaction induces structural changes in the ribosome's mRNA entry channel that could facilitate mRNA loading. We also show that yeIF4B strongly promotes productive interaction of eIF4A with the 43S•mRNA PIC in a manner required for efficient mRNA recruitment.

  17. AMPA, NMDA and kainate glutamate receptor subunits are expressed in human peripheral blood mononuclear cells (PBMCs) where the expression of GluK4 is altered by pregnancy and GluN2D by depression in pregnant women.

    PubMed

    Bhandage, Amol K; Jin, Zhe; Hellgren, Charlotte; Korol, Sergiy V; Nowak, Krzysztof; Williamsson, Louise; Sundström-Poromaa, Inger; Birnir, Bryndis

    2017-04-15

    The amino acid glutamate opens cation permeable ion channels, the iGlu receptors. These ion channels are abundantly expressed in the mammalian brain where glutamate is the main excitatory neurotransmitter. The neurotransmitters and their receptors are being increasingly detected in the cells of immune system. Here we examined the expression of the 18 known subunits of the iGlu receptors families; α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate, N-methyl-d-aspartate (NMDA) and delta in human peripheral blood mononuclear cells (PBMCs). We compared the expression of the subunits between four groups: men, non-pregnant women, healthy pregnant women and depressed pregnant women. Out of 18 subunits of the iGlu receptors, mRNAs for 11 subunits were detected in PBMCs from men and non-pregnant women; AMPA: GluA3, GluA4, kainate: GluK2, GluK4, GluK5, NMDA: GluN1, GluN2C, GluN2D, GluN3A, GluN3B, and delta: GluD1. In the healthy and the depressed pregnant women, in addition, the delta GluD2 subunit was identified. The mRNAs for GluK4, GluK5, GluN2C and GluN2D were expressed at a higher level than other subunits. Gender, pregnancy or depression during pregnancy altered the expression of GluA3, GluK4, GluN2D, GluN3B and GluD1 iGlu subunit mRNAs. The greatest changes recorded were the lower GluA3 and GluK4 mRNA levels in pregnant women and the higher GluN2D mRNA level in healthy but not in depressed pregnant women as compared to non-pregnant individuals. Using subunit specific antibodies, the GluK4, GluK5, GluN1, GluN2C and GluN2D subunit proteins were identified in the PBMCs. The results show expression of specific iGlu receptor subunit in the PBMCs and support the idea of physiology-driven changes of iGlu receptors subtypes in the immune cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Hemocyanin of the molluscan Concholepas concholepas exhibits an unusual heterodecameric array of subunits.

    PubMed

    De Ioannes, Pablo; Moltedo, Bruno; Oliva, Harold; Pacheco, Rodrigo; Faunes, Fernando; De Ioannes, Alfredo E; Becker, María Inés

    2004-06-18

    We describe here the structure of the hemocyanin from the Chilean gastropod Concholepas concholepas (CCH), emphasizing some attributes that make it interesting among molluscan hemocyanins. CCH exhibits a predominant didecameric structure as revealed by electron microscopy and a size of 8 MDa by gel filtration, and, in contrast with other mollusc hemocyanins, its stabilization does not require additional Ca(2+) and/or Mg(2+) in the medium. Polyacrylamide gel electrophoresis studies, analyses by a MonoQ FPLC column, and Western blots with specific monoclonal antibodies showed that CCH is made by two subunits noncovalently linked, named CCH-A and CCH-B, with molecular masses of 405 and 350 kDa, respectively. Interestingly, one of the subunits undergoes changes within the macromolecule; we demonstrated that CCH-A has an autocleavage site that under reducing conditions is cleaved to yield two polypeptides, CCH-A1 (300 kDa) and CCH-A2 (108 kDa), whereas CCH-B remains unchanged. The CCH-A nick occurs at 4 degrees C, increases at 37 degrees C, and is not inhibited by the addition of protease inhibitors and/or divalent cations. Since the CCH structure is a heterodimer, we investigated whether subunits would be either intermingled, forming heterodecamers, or assembled as two homogeneous decamers. Light scattering and electron microscope studies of the in vitro reassociation of purified CCH subunits demonstrated that the sole addition of Mg(2+) is needed for its reassembly into the native decameric molecule; no homodecamer reorganization was found with either CCH-A or CCH-B subunits alone. Our evidence showed that C. concholepas hemocyanin is an unusual example of heterodecameric organization.

  19. Involvement of protein IF2 N domain in ribosomal subunit joining revealed from architecture and function of the full-length initiation factor

    PubMed Central

    Simonetti, Angelita; Marzi, Stefano; Billas, Isabelle M. L.; Tsai, Albert; Fabbretti, Attilio; Myasnikov, Alexander G.; Roblin, Pierre; Vaiana, Andrea C.; Hazemann, Isabelle; Eiler, Daniel; Steitz, Thomas A.; Puglisi, Joseph D.; Gualerzi, Claudio O.; Klaholz, Bruno P.

    2013-01-01

    Translation initiation factor 2 (IF2) promotes 30S initiation complex (IC) formation and 50S subunit joining, which produces the 70S IC. The architecture of full-length IF2, determined by small angle X-ray diffraction and cryo electron microscopy, reveals a more extended conformation of IF2 in solution and on the ribosome than in the crystal. The N-terminal domain is only partially visible in the 30S IC, but in the 70S IC, it stabilizes interactions between IF2 and the L7/L12 stalk of the 50S, and on its deletion, proper N-formyl-methionyl(fMet)-tRNAfMet positioning and efficient transpeptidation are affected. Accordingly, fast kinetics and single-molecule fluorescence data indicate that the N terminus promotes 70S IC formation by stabilizing the productive sampling of the 50S subunit during 30S IC joining. Together, our data highlight the dynamics of IF2-dependent ribosomal subunit joining and the role played by the N terminus of IF2 in this process. PMID:24029017

  20. Alcohol modulation of BK channel gating depends on β subunit composition

    PubMed Central

    Kuntamallappanavar, Guruprasad

    2016-01-01

    In most mammalian tissues, Ca2+i/voltage-gated, large conductance K+ (BK) channels consist of channel-forming slo1 and auxiliary (β1–β4) subunits. When Ca2+i (3–20 µM) reaches the vicinity of BK channels and increases their activity at physiological voltages, β1- and β4-containing BK channels are, respectively, inhibited and potentiated by intoxicating levels of ethanol (50 mM). Previous studies using different slo1s, lipid environments, and Ca2+i concentrations—all determinants of the BK response to ethanol—made it impossible to determine the specific contribution of β subunits to ethanol action on BK activity. Furthermore, these studies measured ethanol action on ionic current under a limited range of stimuli, rendering no information on the gating processes targeted by alcohol and their regulation by βs. Here, we used identical experimental conditions to obtain single-channel and macroscopic currents of the same slo1 channel (“cbv1” from rat cerebral artery myocytes) in the presence and absence of 50 mM ethanol. First, we assessed the role five different β subunits (1,2,2-IR, 3-variant d, and 4) in ethanol action on channel function. Thus, two phenotypes were identified: (1) ethanol potentiated cbv1-, cbv1+β3-, and cbv1+β4-mediated currents at low Ca2+i while inhibiting current at high Ca2+i, the potentiation–inhibition crossover occurring at 20 µM Ca2+i; (2) for cbv1+β1, cbv1+wt β2, and cbv1+β2-IR, this crossover was shifted to ∼3 µM Ca2+i. Second, applying Horrigan–Aldrich gating analysis on both phenotypes, we show that ethanol fails to modify intrinsic gating and the voltage-dependent parameters under examination. For cbv1, however, ethanol (a) drastically increases the channel’s apparent Ca2+ affinity (nine-times decrease in Kd) and (b) very mildly decreases allosteric coupling between Ca2+ binding and channel opening (C). The decreased Kd leads to increased channel activity. For cbv1+β1, ethanol (a) also decreases Kd