The role of macrophages in the regulation of erythroid colony growth in vitro.
Wang, C Q; Udupa, K B; Lipschitz, D A
1992-10-01
Depletion of macrophages from murine marrow by the use of a monoclonal anti-macrophage antibody resulted in a significant increase in the number of erythroid burst forming units (BFU-E). This increase could be neutralized by the addition back to culture of macrophages or macrophage conditioned medium indicating that the suppression was mediated by soluble factors. To further characterize this effect, the addition to culture, either alone or in combination, of interleukin-1 alpha (IL-1 alpha), tumor necrosis factor alpha (TNF alpha), and granulocyte-macrophage colony-stimulating factor (GM-CSF) on the growth of BFU-E and the colony-forming unit granulocyte-macrophage (CFU-GM) was examined in macrophage-containing and macrophage-depleted cultures. The addition of IL-1 alpha to culture stimulated the release of both TNF alpha and GM-CSF and acted synergistically with both cytokines, resulting in a dose-dependent suppression of BFU-E and stimulation of CFU-GM growth. The increase in CFU-GM caused by the addition of IL-1 alpha was mediated by GM-CSF but not by TNF alpha as the increase was prevented by the addition of a monoclonal anti-GM-CSF antibody but not by anti-TNF alpha. When either TNF alpha or GM-CSF was neutralized by monoclonal antibodies the addition of IL-1 alpha resulted in a significant increase in BFU-E growth. The addition of GM-CSF to culture caused a dose-dependent suppression of BFU-E that was mediated by TNF alpha, as colony number was not reduced when GM-CSF and a monoclonal anti-TNF alpha antibody were simultaneously added to culture. TNF alpha-induced suppression of BFU-E only occurred in the presence of macrophages. In macrophage-depleted cultures, a dose-dependent suppression of BFU-E could be induced if subinhibitory concentrations of IL-1 alpha or GM-CSF were simultaneously added with increasing concentrations of TNF alpha. The effects of IL-1 alpha or GM-CSF and TNF alpha were markedly synergistic so that the doses required to induce suppression when added simultaneously was only 10% of that required when either were added to culture alone. Suppression of BFU-E by GM-CSF or the combined addition of GM-CSF and TNF alpha did not require IL-1 alpha because inhibition was not neutralized by the addition of anti-IL-1 alpha antibody.(ABSTRACT TRUNCATED AT 400 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belanger, Adam J.; Luo Zhengyu; Vincent, Karen A.
2007-12-21
In response to cellular hypoxia, cardiomyocytes adapt to consume less oxygen by shifting ATP production from mitochondrial fatty acid {beta}-oxidation to glycolysis. The transcriptional activation of glucose transporters and glycolytic enzymes by hypoxia is mediated by hypoxia-inducible factor 1 (HIF-1). In this study, we examined whether HIF-1 was involved in the suppression of mitochondrial fatty acid {beta}-oxidation in hypoxic cardiomyocytes. We showed that either hypoxia or adenovirus-mediated expression of a constitutively stable hybrid form (HIF-1{alpha}/VP16) suppressed mitochondrial fatty acid metabolism, as indicated by an accumulation of intracellular neutral lipid. Both treatments also reduced the mRNA levels of muscle carnitine palmitoyltransferasemore » I which catalyzes the rate-limiting step in the mitochondrial import of fatty acids for {beta}-oxidation. Furthermore, adenovirus-mediated expression of HIF-1{alpha}/VP16 in cardiomyocytes under normoxic conditions also mimicked the reduction in the DNA binding activity of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})/retinoid X receptor (RXR), in the presence or absence of a PPAR{alpha} ligand. These results suggest that HIF-1 may be involved in hypoxia-induced suppression of fatty acid metabolism in cardiomyocytes by reducing the DNA binding activity of PPAR{alpha}/RXR.« less
Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C J; Makino, Shinji
2009-02-01
Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, and fever and high rates of abortions in livestock. A nonstructural RVFV NSs protein inhibits the transcription of host mRNAs, including interferon-beta mRNA, and is a major virulence factor. The present study explored a novel function of the RVFV NSs protein by testing the replication of RVFV lacking the NSs gene in the presence of actinomycin D (ActD) or alpha-amanitin, both of which served as a surrogate of the host mRNA synthesis suppression function of the NSs. In the presence of the host-transcriptional inhibitors, the replication of RVFV lacking the NSs protein, but not that carrying NSs, induced double-stranded RNA-dependent protein kinase (PKR)-mediated eukaryotic initiation factor (eIF)2alpha phosphorylation, leading to the suppression of host and viral protein translation. RVFV NSs promoted post-transcriptional downregulation of PKR early in the course of the infection and suppressed the phosphorylated eIF2alpha accumulation. These data suggested that a combination of RVFV replication and NSs-induced host transcriptional suppression induces PKR-mediated eIF2alpha phosphorylation, while the NSs facilitates efficient viral translation by downregulating PKR and inhibiting PKR-mediated eIF2alpha phosphorylation. Thus, the two distinct functions of the NSs, i.e., the suppression of host transcription, including that of type I interferon mRNAs, and the downregulation of PKR, work together to prevent host innate antiviral functions, allowing efficient replication and survival of RVFV in infected mammalian hosts.
Kino, T; Rice, K C; Chrousos, G P
2007-05-01
Interleukin-6 and downstream liver effectors acute phase reactants are implicated in the systemic inflammatory reaction. Peroxisome proliferator-activated receptor delta (PPARdelta), which binds to and is activated by a variety of fatty acids, was recently shown to have anti-inflammatory actions. We examined the ability of the synthetic PPARdelta agonist GW501516 to suppress interleukin-6-induced expression of acute phase proteins in human hepatoma HepG2 cells and rat primary hepatocytes. Results GW501516 dose-dependently suppressed interleukin-6-induced mRNA expression of the acute phase protein alpha1-antichymotrypsin in HepG2 cells. The compound also suppressed interleukin-6-induced mRNA expression of alpha2-acid glycoprotein, beta-fibrinogen and alpha2-macroglobulin in and the secretion of C-reactive protein by rat primary hepatocytes. Depletion of the PPARdelta receptor, but not of PPARalpha or gamma, attenuated the suppressive effect of GW501516 on interleukin-6-induced alpha1-antichymotrypsin mRNA expression, indicating that PPARdelta specifically mediated this effect. Since interleukin-6 stimulates the transcriptional activity of the alpha1-antichymotrypsin promoter by activating the signal transducer and activator of transcription (STAT) 3, we examined functional interaction of this transcription factor and PPARdelta on this promoter. Overexpression of PPARdelta enhanced the suppressive effect of GW501516 on STAT3-activated transcriptional activity of the alpha1-antichymotrypsin promoter, while GW501516 suppressed interleukin-6-induced binding of this transcription factor to this promoter. These findings indicate that agonist-activated PPARdelta interferes with interleukin-6-induced acute phase reaction in the liver by inhibiting the transcriptional activity of STAT3. PPARdelta agonists might be useful for the suppression of systemic inflammatory reactions in which IL-6 plays a central role.
Araya, Jun; Cambier, Stephanie; Morris, Alanna; Finkbeiner, Walter; Nishimura, Stephen L
2006-08-01
Trophic interactions between pulmonary epithelial and mesenchymal cell types, known as the epithelial-mesenchymal trophic unit (EMTU), are crucial in lung development and lung disease. Transforming growth factor (TGF)-beta is a key factor in mediating these interactions, but it is expressed in a latent form that requires activation to be functional. Using intact fetal tracheal tissue and primary cultures of fetal tracheal epithelial cells and fibroblasts, we demonstrate that a subset of integrins, alpha(v)beta(6) and alpha(v)beta(8), are responsible for almost all of the TGF-beta activation in the EMTU. Both alpha(v)beta(8) and alpha(v)beta(6) contribute to fetal tracheal epithelial activation of TGF-beta, whereas only alpha(v)beta(8) contributes to fetal tracheal fibroblast activation of TGF-beta. Interestingly, fetal tracheal epithelial alpha(v)beta(8)-mediated TGF-beta activation can be enhanced by phorbol esters, likely because of the increased activity of MT1-MMP, an essential co-factor in alpha(v)beta(8)-mediated activation of TGF-beta. Autocrine alpha(v)beta(8)-mediated TGF-beta activation by fetal tracheal fibroblasts results in suppression of both transcription and secretion of hepatocyte growth factor, which is sufficient to affect phosphorylation of the airway epithelial hepatocyte growth factor receptor, c-Met, as well as airway epithelial proliferation in a co-culture model of the EMTU. These findings elucidate the function and complex regulation of integrin-mediated activation of TGF-beta within the EMTU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichikawa, Tomonaga; Li, Jinqing; Dong, Xiaoyu
2010-01-01
Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNF{alpha})-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNF{alpha}-induced activation of ERK andmore » DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNF{alpha} hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.« less
Mizuno, Tetsuya; Kuno, Reiko; Nitta, Atsumi; Nabeshima, Toshitaka; Zhang, Guiqin; Kawanokuchi, Jun; Wang, Jinyan; Jin, Shijie; Takeuchi, Hideyuki; Suzumura, Akio
2005-12-20
We examined the neuroprotective role of nicergoline in neuron-microglia or neuron-astrocytes co-cultures. Nicergoline, an ergoline derivative, significantly suppressed the neuronal cell death induced by co-culture with activated microglia or astrocytes stimulated with lipopolysaccharide (LPS) and interferon (IFN)-gamma. To elucidate the mechanism by which nicergoline exerts a neuroprotective effect, we examined the production of inflammatory mediators and neurotrophic factors in activated microglia and astrocytes following nicergoline treatment. In microglia stimulated with LPS and IFN-gamma, nicergoline suppressed the production of superoxide anions, interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha in a dose-dependent manner. In astrocytes, nicergoline also suppressed the production of proinflammatory cytokines and enhanced brain-derived neurotrophic factor (BDNF). Thus, nicergoline-mediated neuroprotection resulted primarily from the inhibition of inflammatory mediators and the upregulation of neurotrophic factors by glial cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kyoung-Hee; Lee, Choon-Taek; Kim, Young Whan
2005-07-01
Heat shock (HS) treatment has been previously shown to suppress the I{kappa}B/nuclear factor-{kappa}B (NF-{kappa}B) cascade by denaturing, and thus inactivating I{kappa}B kinase (IKK). HS is characterized by the induction of a group of heat shock proteins (HSPs). However, their role in the HS-induced suppression of the I{kappa}B/NF-{kappa}B cascade is unclear. Adenovirus-mediated HSP70 overexpression was found not to suppress the TNF-{alpha}-induced activation of the I{kappa}B/NF-{kappa}B pathway, thus suggesting that HSP70 is unlikely to suppress this pathway. When TNF-{alpha}-induced activation of the I{kappa}B/NF-{kappa}B pathway was regained 24 h after HS, HSP70 was found to be highly up-regulated. Moreover, blocking HSP70 induction delayedmore » TNF-{alpha}-induced I{kappa}B{alpha} degradation and the resolubilization of IKK. In addition, HSP70 associated physically with IKK, suggesting that HSP70 is involved in the recovery process via molecular chaperone effect. Adenovirus-mediated HSP70 overexpression prior to HS blocked the I{kappa}B{alpha} stabilizing effect of HS by suppressing IKK insolubilization. Moreover, the up-regulation of endogenous HSP70 by preheating, suppressed this subsequent HS-induced IKK insolubilization, and this effect was abrogated by blocking HSP70 induction. These findings indicate that HSP70 accumulates during HS and negatively regulates the HS-induced suppression of the I{kappa}B/NF-{kappa}B cascade by facilitating the renaturation of IKK and blocking its further denaturation.« less
Adam, Liana; Black, Peter C; Kassouf, Wassim; Eve, Beryl; McConkey, David; Munsell, Mark F; Benedict, William F; Dinney, Colin P N
2007-05-01
Intravesical adenovirus mediated interferon-alpha gene transfer has a potent therapeutic effect against superficial human bladder carcinoma xenografts growing in the bladder of athymic nude mice. We determined whether the inhibition of angiogenesis might contribute to the antitumor effect. We treated several human urothelial carcinoma cells with adenovirus mediated interferon-alpha 2b and monitored its effects on the production of angiogenic factors using real-time reverse-transcription polymerase chain reaction, Western blotting, and immunohistochemical analysis and a gel shift based transcription factor array. To assess the role of adenovirus mediated interferon 2b in angiogenic activity we used in vitro invasion assays and evaluated the anti-angiogenic effects of adenovirus mediated interferon gene therapy in an orthotopic murine model of human superficial bladder cancer. In adenovirus mediated interferon-alpha infected 253J B-V cells vascular endothelial growth factor was decreased and anti-angiogenic interferon-gamma inducible protein 10 was up-regulated. In contrast, the addition of as much as 100,000 IU recombinant interferon had no apparent effect on vascular endothelial growth factor production. Conditioned medium derived from adenovirus mediated interferon 2b infected 253J B-V cells greatly decreased the invasive potential of human endothelial cells and down-regulated their matrix metalloproteinase 2 expression compared to controls. Furthermore, adenovirus mediated interferon 2b blocked pro-angiogenic nuclear signals, such as the transcription factors activating protein-1 and 2, stimulating protein-1, nuclear factor kappaB and c-myb. In vivo experiments revealed significant vascular endothelial growth factor down-regulation and decreased tumor vessel density in the adenovirus mediated interferon 2b treated group compared to controls. Treatment with adenovirus mediated interferon 2b increases the angiostatic activity of the bladder cancer microenvironment. This inhibition may prove beneficial for treating superficial bladder cancer with adenovirus mediated interferon-alpha and hopefully contribute to a decreased recurrence rate of this neoplasm.
Becklund, Bryan R; James, Bradley J; Gagel, Robert F; DeLuca, Hector F
2009-08-15
The active form of vitamin D, 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), can suppress disease in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Calcium appears to be a critical component of 1,25(OH)(2)D(3)-mediated suppression of EAE, as complete disease prevention only occurs with a concomitant increase in serum calcium levels. Calcitonin (CT) is a peptide hormone released in response to acute increases in serum calcium, which led us to explore its importance in 1,25(OH)(2)D(3)-mediated suppression of EAE. Previously, we discovered that co-administration of pharmacological doses of CT enhanced the suppressive effect of 1,25(OH)(2)D(3) on EAE, suggesting CT may play a role in 1,25(OH)(2)D(3)-mediated suppression of EAE. To determine the importance of CT in EAE we have utilized a mouse strain in which the gene encoding CT and its alternative splice product, calcitonin gene related peptide-alpha (CGRP), have been deleted. Deletion of the CT/CGRP gene had no effect on EAE progression. Furthermore, treatment with 1,25(OH)(2)D(3) suppressed EAE in CT/CGRP knock-out mice equal to that in wild type mice. Therefore, we conclude that CT is not necessary for 1,25(OH)(2)D(3)-mediated suppression of EAE.
Bhatt, S; Bhatt, R S; Zalcman, S S; Siegel, A
2009-11-10
Based upon recent findings in our laboratory that cytokines microinjected into the medial hypothalamus or periaqueductal gray (PAG) powerfully modulate defensive rage behavior in cat, the present study determined the effects of peripherally released cytokines following lipopolysaccharide (LPS) challenge upon defensive rage. The study involved initial identification of the effects of peripheral administration of LPS upon defensive rage by electrical stimulation from PAG and subsequent determination of the peripheral and central mechanisms governing this process. The results revealed significant elevation in response latencies for defensive rage from 60 to 300 min, post LPS injection, with no detectable signs of sickness behavior present at 60 min. In contrast, head turning behavior elicited by stimulation of adjoining midbrain sites was not affected by LPS administration, suggesting a specificity of the effects of LPS upon defensive rage. Direct administration of LPS into the medial hypothalamus had no effect on defensive rage, suggesting that the effects of LPS were mediated by peripheral cytokines rather than by any direct actions upon hypothalamic neurons. Complete blockade of the suppressive effects of LPS by peripheral pretreatment with an Anti-tumor necrosis factor-alpha (TNFalpha) antibody but not with an anti- interleukin-1 (IL-1) antibody demonstrated that the effects of LPS were mediated through TNF-alpha rather than through an IL-1 mechanism. A determination of the central mechanisms governing LPS suppression revealed that pretreatment of the medial hypothalamus with PGE(2) or 5-HT(1A) receptor antagonists each completely blocked the suppressive effects of LPS, while microinjections of a TNF-alpha antibody into the medial hypothalamus were ineffective. Microinjections of -Iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) benzamide monohydrochloride (p-MPPI) into lateral hypothalamus (to test for anatomical specificity) had no effect upon LPS induced suppression of defensive rage. The results demonstrate that LPS suppresses defensive rage by acting through peripheral TNF-alpha in periphery and that central effects of LPS suppression of defensive rage are mediated through PGE(2) and 5-HT(1A) receptors in the medial hypothalamus.
Spencer, Juliet V
2007-02-01
Human cytomegalovirus (CMV) has evolved numerous strategies for evading host immune defenses, including piracy of cellular cytokines. A viral homolog of interleukin-10, designated cmvIL-10, binds to the cellular IL-10 receptor and effects potent immune suppression. The signaling pathways employed by cmvIL-10 were investigated, and the classic IL-10R/JAK1/Stat3 pathway was found to be activated in monocytes. However, inhibition of JAK1 had little effect on cmvIL-10-mediated suppression of tumor necrosis factor alpha (TNF-alpha) production. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway had a more significant impact on TNF-alpha levels but did not completely relieve the immune suppression, demonstrating that cmvIL-10 stimulates multiple signaling pathways to modulate cell function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young-Rae; Jin, Guo Hua; Lee, Sang-Myeong
Highlights: {yields} We synthesized SPA0537, a benzothiazole analog. {yields} SPA0537 is a potent NF-{kappa}B inhibitor. {yields} SPA0537 suppresses the production of proinflammatory mediators in human rheumatoid fibroblast-like synoviocytes. {yields} SPA0537 is effective at suppressing osteoclast differentiation. -- Abstract: The pathologic processes of rheumatoid arthritis are mediated by a number of cytokines, chemokines, and matrix metalloproteinases, the expressions of which are controlled by NF-{kappa}B. This study was performed to explore the effects of a benzothiazole analog, SPA0537, on the control of the NF-{kappa}B activation pathway. We also investigated whether SPA0537 had any anti-inflammatory effects in human rheumatoid fibroblast-like synoviocytes (FLS). SPA0537more » inhibited the nuclear translocation and the DNA binding of NF-{kappa}B subunits, which correlated with the inhibitory effects on IKK phosphorylation and I{kappa}B{alpha} degradation in TNF-{alpha}-stimulated rheumatoid FLS. These events further suppressed chemokine production, matrix metalloproteinase secretion, and TNF-{alpha}-induced cell proliferation. In addition, SPA0537 inhibited the osteoclast differentiation induced by macrophage colony-stimulating factor (MCSF) and receptor activator of the NF-{kappa}B ligand (RANKL) in bone marrow macrophages. These findings suggest that SPA0537 exerts anti-inflammatory effects in rheumatoid FLS through the inhibition of the NF-{kappa}B pathway. Therefore, it may have therapeutic value for the treatment of rheumatoid arthritis.« less
Minagawa, Masahiro; Kawamura, Hiroki; Liu, Zhangxu; Govindarajan, Sugantha; Dennert, Gunther
2005-06-01
Injection of adenoviral constructs causes liver infection prompting immunity, which suppress viral gene expression. Innate and adaptive immunity mediate these processes raising the question which pathways are the most prominent. Adenovirus expressing the beta-galactosidase (beta-gal) gene was injected into normal and immunodeficient mice. Elimination of beta-gal-expressing hepatocytes and increases in liver enzymes were assayed. Major histocompatibility complex (MHC) class I densities, perforin channel insertion and apoptosis by Fas and tumor necrosis factor (TNF)-alpha were assayed. At high virus doses, suppression of viral gene expression was as efficient in immunodeficient as in normal mice, while at low doses effects of cytotoxic T lymphocytes (CTL) were demonstrable. Despite CTL priming and elimination of infected hepatocytes no liver injury is detected. Hepatocyte MHC I densities were able to trigger CTL granule exocytosis and perforin lysis in vitro but not in vivo. This is we show is because of decreased sensitivity of hepatocytes from infected mice to perforin and increased sensitivity to Fas and TNF-alpha lysis. Effector cells of the innate immune system are exceedingly effective in suppressing adenoviral gene expression. Perforin-independent pathways, those mediated by TNF-alpha and Fas are very efficient in hepatocytes from virus-infected livers.
Dagia, Nilesh M; Agarwal, Gautam; Kamath, Divya V; Chetrapal-Kunwar, Anshu; Gupte, Ravindra D; Jadhav, Mahesh G; Dadarkar, Shruta S; Trivedi, Jacqueline; Kulkarni-Almeida, Asha A; Kharas, Firuza; Fonseca, Lyle C; Kumar, Sanjay; Bhonde, Mandar R
2010-04-01
A promising therapeutic approach to diminish pathological inflammation is to inhibit the increased production and/or biological activity of proinflammatory cytokines (e.g., TNF-alpha, IL-6). The production of proinflammatory cytokines is controlled at the gene level by the activity of transcription factors, such as NF-kappaB. Phosphatidylinositol 3-kinase (PI3K), a lipid kinase, is known to induce the activation of NF-kappaB. Given this, we hypothesized that inhibitors of PI3K activation would demonstrate anti-inflammatory potential. Accordingly, we studied the effects of a preferential p110alpha/gamma PI3K inhibitor (compound 8C; PIK-75) in inflammation-based assays. Mechanism-based assays utilizing human cells revealed that PIK-75-mediated inhibition of PI3K activation is associated with dramatic suppression of downstream signaling events, including AKT phosphorylation, IKK activation, and NF-kappaB transcription. Cell-based assays revealed that PIK-75 potently and dose dependently inhibits in vitro and in vivo production of TNF-alpha and IL-6, diminishes the induced expression of human endothelial cell adhesion molecules (E-selectin, ICAM-1, and VCAM-1), and blocks human monocyte-endothelial cell adhesion. Most importantly, PIK-75, when administered orally in a therapeutic regimen, significantly suppresses the macroscopic and histological abnormalities associated with dextran sulfate sodium-induced murine colitis. The efficacy of PIK-75 in attenuating experimental inflammation is mediated, at least in part, due to the downregulation of pertinent inflammatory mediators in the colon. Collectively, these results provide first evidence that PIK-75 possesses anti-inflammatory potential. Given that PIK-75 is known to exhibit anti-cancer activity, the findings from this study thus reinforce the cross-therapeutic functionality of potential drugs.
Liu, Chung-Jung; Lo, Jeng-Fan; Kuo, Chia-Hua; Chu, Chun-Hsien; Chen, Li-Ming; Tsai, Fuu-Jen; Tsai, Chang-Hai; Tzang, Bor-Show; Kuo, Wei-Wen; Huang, Chih-Yang
2009-09-01
Evidence shows that women have lower tumour necrosis factor-alpha (TNF-alpha) levels and lower incidences of heart dysfunction and sepsis-related morbidity and mortality. To identify the cardioprotective effects and precise cellular/molecular mechanisms behind estrogen and estrogen receptors (ERs), we investigated the effects of 17beta-estradiol (E(2)) and estrogen receptor alpha (ERalpha) on LPS-induced apoptosis by analyzing the activation of survival and death signalling pathways in doxycycline (Dox)-inducible Tet-On/ERalpha H9c2 myocardial cells and ERalpha-transfected primary cardiomyocytes overexpressing ERalpha. We found that LPS challenge activated JNK1/2, and then induced IkappaB degradation, NFkappaB activation, TNF-alpha up-regulation and subsequent myocardial apoptotic responses. In addition, treatments involving E(2), membrane-impermeable BSA-E(2) and/or Dox, which induces ERalpha overexpression, significantly inhibited LPS-induced apoptosis by suppressing LPS-up-regulated JNK1/2 activity, IkappaB degradation, NFkappaB activation and pro-apoptotic proteins (e.g. TNF-alpha, active caspases-8, t-Bid, Bax, released cytochrome c, active caspase-9, active caspase-3) in myocardial cells. However, the cardioprotective properties of E(2), BSA-E(2) and ERalpha overexpression to inhibit LPS-induced apoptosis and promote cell survival were attenuated by applying LY294002 (PI3K inhibitor) and PI3K siRNA. These findings suggest that E(2), BSA-E(2) and ERalpha expression exert their cardioprotective effects by inhibiting JNK1/2-mediated LPS-induced TNF-alpha expression and cardiomyocyte apoptosis through activation of Akt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, G.-J.; Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
2008-04-01
Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-{alpha} (TNF-{alpha}) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 {mu}M ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 {mu}M of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-{alpha}more » and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-{alpha} and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 {mu}M) significantly inhibited LPS-induced TNF-{alpha} and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-{alpha} and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-{alpha} and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated sequential activations of c-Jun N-terminal kinase and activator protein-1.« less
Wu, Gone-Jhe; Chen, Ta-Liang; Ueng, Yune-Fang; Chen, Ruei-Ming
2008-04-01
Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-alpha (TNF-alpha) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 microM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 microM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-alpha and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-alpha and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 microM) significantly inhibited LPS-induced TNF-alpha and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-alpha and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-alpha and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated sequential activations of c-Jun N-terminal kinase and activator protein-1.
Williams, Lynn; Bradley, Laura; Smith, Alexandra; Foxwell, Brian
2004-01-01
The signaling mechanism by which the anti-inflammatory cytokine IL-10 mediates suppression of proinflammatory cytokine synthesis remains largely unknown. Macrophage-specific STAT3-null mice have demonstrated that STAT3 plays a critical role in the suppression of LPS-induced TNF-alpha release, although the mechanism by which STAT3 mediates this inhibition is still not clear. Using an adenoviral system, we have expressed a dominant negative (DN) STAT3 in human macrophages to broaden the investigation to determine the role of STAT3 in IL-10-mediated anti-inflammatory signaling and gene expression. Overexpression of STAT3 DN completely inhibited IL-10-induced suppressor of cytokine signaling 3, tissue inhibitor of MMP-1, TNF receptor expression, and the recently identified IL-10-inducible genes, T cell protein tyrosine phosphatase and signaling lymphocyte activation molecule. STAT3 DN also blocked IL-10-mediated inhibition of MHC class II and COX2 expression. In agreement with the studies in STAT3-null mice, overexpression of the STAT3 DN completely reversed the ability of IL-10 to inhibit LPS-mediated TNF-alpha and IL-6 production. However, real-time PCR analysis showed that STAT3 DN expression did not affect immediate suppression of TNF-alpha mRNA, but did reverse the suppression observed at later time points, suggesting a biphasic regulation of TNF-alpha mRNA levels by IL-10. In conclusion, although STAT3 does appear to be the dominant mediator of the majority of IL-10 functions, there are elements of its anti-inflammatory activity that are STAT3 independent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch
The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-IImore » binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.« less
Thapa, Dinesh; Lee, Jong Suk; Park, Su-Young; Bae, Yun-Hee; Bae, Soo-Kyung; Kwon, Jun Bum; Kim, Kyoung-Jin; Kwak, Mi-Kyoung; Park, Young-Joon; Choi, Han Gon; Kim, Jung-Ae
2008-11-01
Increased interleukin (IL)-8 plays an important role not only in activation and recruitment of neutrophils but also in inducing exaggerated angiogenesis at the inflamed site. In the present study, we investigated the fact that clotrimazole (CLT) inhibits intestinal inflammation, and the inhibitory action is mediated through suppression of IL-8 expression. In the trinitrobenzene sulfonic acid (TNBS)-induced rat colitis model, CLT dose-dependently protected from the TNBS-induced weight loss, colon ulceration, and myeloperoxidase activity increase. In the lesion site, CLT also suppressed the TNBS-induced angiogenesis, IL-8 expression, and nuclear factor (NF)-kappaB activation. In a cellular model of colitis using tumor necrosis factor (TNF)-alpha-stimulated HT29 colon epithelial cells, treatment with CLT significantly suppressed TNF-alpha-mediated IL-8 induction and NF-kappaB transcriptional activity revealed by a luciferase reporter gene assay. Furthermore, cotreatment with CLT and pyrrolidine dithiocarbamate, a NF-kappaB inhibitor, synergistically reduced the NF-kappaB transcriptional activity as well as IL-8 expression. In an in vitro angiogenesis assay, CLT suppressed IL-8-induced proliferation, tube formation, and invasion of human umbilical vein endothelial cells. The in vivo angiogenesis assay using chick chorioallantoic membrane also showed that CLT significantly inhibited the IL-8-induced formation of new blood vessels. Taken together, these results suggest that CLT may prevent the progression of intestinal inflammation by not only down-regulating IL-8 expression but also inhibiting the action of IL-8 in both colon epithelial and vascular endothelial cells during pathogenesis of intestinal inflammation.
Carlini, Leslie E; Getz, Michael J; Strauch, Arthur R; Kelm, Robert J
2002-03-08
An asymmetric polypurine-polypyrimidine cis-element located in the 5' region of the mouse vascular smooth muscle alpha-actin gene serves as a binding site for multiple proteins with specific affinity for either single- or double-stranded DNA. Here, we test the hypothesis that single-stranded DNA-binding proteins are responsible for preventing a cryptic MCAT enhancer centered within this element from cooperating with a nearby serum response factor-interacting CArG motif to trans-activate the minimal promoter in fibroblasts and smooth muscle cells. DNA binding studies revealed that the core MCAT sequence mediates binding of transcription enhancer factor-1 to the double-stranded polypurine-polypyrimidine element while flanking nucleotides account for interaction of Pur alpha and Pur beta with the purine-rich strand and MSY1 with the complementary pyrimidine-rich strand. Mutations that selectively impaired high affinity single-stranded DNA binding by fibroblast or smooth muscle cell-derived Pur alpha, Pur beta, and MSY1 in vitro, released the cryptic MCAT enhancer from repression in transfected cells. Additional experiments indicated that Pur alpha, Pur beta, and MSY1 also interact specifically, albeit weakly, with double-stranded DNA and with transcription enhancer factor-1. These results are consistent with two plausible models of cryptic MCAT enhancer regulation by Pur alpha, Pur beta, and MSY1 involving either competitive single-stranded DNA binding or masking of MCAT-bound transcription enhancer factor-1.
Flaxseed and cardiovascular health.
Prasad, Kailash
2009-11-01
Flaxseed and its components may improve cardiovascular health because of their numerous attributes. Flaxseed contains 35% of its mass as oil, of which 55% is alpha-linolenic acid (ALA). Flax meal, which is devoid of oil, contains the lignan secoisolariciresinol diglucoside (SDG). Flaxseed, flaxseed with very low ALA, flaxseed oil, flax lignan complex (FLC), and SDG reduce the development of hypercholesterolemic atherosclerosis by 46%, 69%, 0%, 73%, and 34%, respectively, in the rabbit model. FLC and SDG slow the progression of atherosclerosis but have no effect in regression of atherosclerosis. Suppression of atherosclerosis by flaxseed is the result of its lignan content and not the result of ALA content. Suppression of atherosclerosis is associated with lowering of serum lipids and antioxidant activity. Effects of flaxseed on serum lipids in experimental animals are variable from no change to slight reduction. Flaxseed oil does not affect serum lipids, except for a slight reduction in serum triglycerides. Lignan in general reduces serum total cholesterol and low-density lipoprotein cholesterol and raises serum high-density lipoprotein cholesterol. SDG and its metabolites have antioxidant activity. Flaxseed and flaxseed oil do not have antioxidant activity except they suppress oxygen radical production by white blood cells. Flaxseed oil/ALA has variable effects on inflammatory mediators/markers (interleukin [IL]-1beta, IL-2, IL-4, IL-6, IL-10, tumor necrosis factor-alpha, interferon-gamma, C-reactive protein, and serum amyloid A). Doses of ALA less than 14 g/d do not affect inflammatory mediators/markers, but 14 g/d or greater reduce inflammatory mediators/markers. Flaxseed oil decreases soluble vascular cell adhesion molecule-1 but has no effect on soluble intracellular adhesion molecule-1, soluble E-selectin, and monocyte colony-stimulating factor. Flaxseed has variable effects on IL-6, high-sensitivity C-reactive protein, and soluble vascular cell adhesion molecule-1. FLC reduces plasma levels of C-reactive protein but has no effects on IL-6, tumor necrosis factor-alpha, soluble intracellular adhesion molecule-1, soluble vascular cell adhesion molecule-1, or monocyte chemoattractant protein. Flaxseed has a very small hypotensive effect, but flaxseed oil does not lower blood pressure. However, SDG is a very potent hypotensive agent. Flaxseed oil decreases platelet aggregation and increases platelet activating inhibitor-1 and bleeding time. Flaxseed and FLC have no effect on the hemopoietic system. SDG is a potent angiogenic and antiapoptotic agent that may have a role in cardioprotection in ischemic heart disease. In conclusion, flaxseed, FLC, and SDG, but not flaxseed oil, suppress atherosclerosis, and FLC and SDG slow progression of atherosclerosis but have no effect on regression. Flaxseed oil suppresses oxygen radical production by white blood cells, prolongs bleeding time, and in higher doses suppresses serum levels of inflammatory mediators and does not lower serum lipids.
Ii, Masayuki; Matsunaga, Naoko; Hazeki, Kaoru; Nakamura, Kazuyo; Takashima, Katsunori; Seya, Tsukasa; Hazeki, Osamu; Kitazaki, Tomoyuki; Iizawa, Yuji
2006-04-01
Proinflammatory mediators such as cytokines and NO play pivotal roles in various inflammatory diseases. To combat inflammatory diseases successfully, regulation of proinflammatory mediator production would be a critical process. In the present study, we investigated the in vitro effects of ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), a novel small molecule cytokine production inhibitor, and its mechanism of action. In RAW264.7 cells and mouse peritoneal macrophages, TAK-242 suppressed lipopolysaccharide (LPS)-induced production of NO, tumor necrosis factor-alpha (TNF-alpha), and interleukin (IL)-6, with 50% inhibitory concentration (IC50) of 1.1 to 11 nM. TAK-242 also suppressed the production of these cytokines from LPS-stimulated human peripheral blood mononuclear cells (PBMCs) at IC50 values from 11 to 33 nM. In addition, the inhibitory effects on the LPS-induced IL-6 and IL-12 production were similar in human PBMCs, monocytes, and macrophages. TAK-242 inhibited mRNA expression of IL-6 and TNF-alpha induced by LPS and interferon-gamma in RAW264.7 cells. The phosphorylation of mitogen-activated protein kinases induced by LPS was also inhibited in a concentration-dependent manner. However, TAK-242 did not antagonize the binding of LPS to the cells. It is noteworthy that TAK-242 suppressed the cytokine production induced by Toll-like receptor (TLR) 4 ligands, but not by ligands for TLR2, -3, and -9. In addition, IL-1beta-induced IL-8 production from human PBMCs was not markedly affected by TAK-242. These data suggest that TAK-242 suppresses the production of multiple cytokines by selectively inhibiting TLR4 intracellular signaling. Finally, TAK-242 is a novel small molecule TLR4 signaling inhibitor and could be a promising therapeutic agent for inflammatory diseases, whose pathogenesis involves TLR4.
Hendrickx, Nico; Dewaele, Michael; Buytaert, Esther; Marsboom, Glenn; Janssens, Stefan; Van Boven, Maurits; Vandenheede, Jackie R; de Witte, Peter; Agostinis, Patrizia
2005-11-25
Photodynamic therapy (PDT) is an established anticancer modality and hypericin is a promising photosensitizer for the treatment of bladder tumors. We show that exposure of bladder cancer cells to hypericin PDT leads to a rapid rise in the cytosolic calcium concentration which is followed by the generation of arachidonic acid by phospholipase A2 (PLA2). PLA2 inhibition significantly protects cells from the PDT-induced intrinsic apoptosis and attenuates the activation of p38 MAPK, a survival signal mediating the up-regulation of cyclooxygenase-2 that converts arachidonic acid into prostanoids. Importantly, inhibition of p38alpha MAPK blocks the release of vascular endothelial growth factor and suppresses tumor-promoted endothelial cell migration, a key step in angiogenesis. Hence, targeted inhibition of p38alpha MAPK could be therapeutically beneficial to PDT, since it would prevent COX-2 expression, the inducible release of growth and angiogenic factors by the cancer cells, and cause an increase in the levels of free arachidonic acid, which promotes apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Cheng-hu; Cao, Guo-Fan; Jiang, Qin, E-mail: Jqin710@vip.sina.com
Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-addedmore » active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.« less
Joyce, D A; Steer, J H; Kloda, A
1996-07-01
The activities of monocyte-derived tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 beta are potentially modified by IL-1RA and soluble receptors for TNF (sTNF-R), which are themselves monocyte products. IL-4, IL-10, TGF-beta, and glucocorticoids (GC) all suppress the lipopolysaccharide (LPS)-stimulated release of TNF-alpha and IL-1beta but vary in their effects on IL-1RA and sTNF-R. This raises the prospect of interactions between the cytokines and glucocorticoids, which may be antagonistic or additive on IL-1 and TNF activity. We, therefore, studied the interactions of the GC dexamethasone (Dex) with IL-4, IL-10, and transforming growth factor (TGF)-beta on the release of TNF-alpha and IL-1RA by human monocytes and the monocytic THP-1 cell line. Low concentration of Dex (10(-8)-10(-7)M) acted additively with low concentrations of IL-4 (0.01-1 ng/ml), IL-10 (0.01-0.1 U/ml), or TGF-beta (0.01-1 ng/ml) to profoundly suppress LPS-stimulated release of TNF-alpha by whole blood and, to a lesser degree, THP-1 cells. Dex also suppressed spontaneous release of IL-1RA from PBMC and THP-1 cells, whereas IL-4 and IL-10, but not TGF-beta, stimulated release. Dex antagonized the enhanced release in IL-4 and IL-10-stimulated cultures. The capacity to stimulate release of IL-1RA may contribute to the anti-inflammatory potential of IL-4 and IL-10 in monocyte/macrophage-mediated disease. GC, therefore, do not uniquely enhance the suppressive functions of IL-4 and IL-10 on monokine activity. The therapeutic benefit of combinations of GC and IL-4, IL-10 or TGF-beta in disease may depend on the roles of the individual monokines and antagonists in pathogenesis.
Targeted delivery of siRNA to macrophages for anti-inflammatory treatment.
Kim, Sang-Soo; Ye, Chunting; Kumar, Priti; Chiu, Isaac; Subramanya, Sandesh; Wu, Haoquan; Shankar, Premlata; Manjunath, N
2010-05-01
Inflammation mediated by tumor necrosis factor-alpha (TNF-alpha) and the associated neuronal apoptosis characterizes a number of neurologic disorders. Macrophages and microglial cells are believed to be the major source of TNF-alpha in the central nervous system (CNS). Here, we show that suppression of TNF-alpha by targeted delivery of small interfering RNA (siRNA) to macrophage/microglial cells dramatically reduces lipopolysaccharide (LPS)-induced neuroinflammation and neuronal apoptosis in vivo. Because macrophage/microglia express the nicotinic acetylcholine receptor (AchR) on their surface, we used a short AchR-binding peptide derived from the rabies virus glycoprotein (RVG) as a targeting ligand. This peptide was fused to nona-D-arginine residues (RVG-9dR) to enable siRNA binding. RVG-9dR was able to deliver siRNA to induce gene silencing in macrophages and microglia cells from wild type, but not AchR-deficient mice, confirming targeting specificity. Treatment with anti-TNF-alpha siRNA complexed to RVG-9dR achieved efficient silencing of LPS-induced TNF-alpha production by primary macrophages and microglia cells in vitro. Moreover, intravenous injection with RVG-9dR-complexed siRNA in mice reduced the LPS-induced TNF-alpha levels in blood as well as in the brain, leading to a significant reduction in neuronal apoptosis. These results demonstrate that RVG-9dR provides a tool for siRNA delivery to macrophages and microglia and that suppression of TNF-alpha can potentially be used to suppress neuroinflammation in vivo.
Kim, Jung-Hee; Jeong, Ji-Hye; Jeon, Sung-Tak; Kim, Ho; Ock, Jiyeon; Suk, Kyoungho; Kim, Sang-In; Song, Kyung-Sik; Lee, Won-Ha
2006-06-01
In the course of screening inhibitors of matrix metalloproteinase (MMP)-9 induction in macrophages, we isolated decursin, a coumarin compound, from the roots of Angelicae gigas. As a marker for the screening and isolation, we tested expression of MMP-9 in RAW264.7 cells and THP-1 cells after treatment with bacterial lipopolysaccharide (LPS), the TLR-4 ligand. Decursin suppressed MMP-9 expression in cells stimulated by LPS in a dose-dependent manner at concentrations below 60 microM with no sign of cytotoxicity. The suppressive effect of decursin was observed not only in cells stimulated with ligands for TLR4, TLR2, TLR3, and TLR9 but also in cells stimulated with interleukin (IL)-1beta, and tumor necrosis factor (TNF)-alpha, indicating that the molecular target of decursin is common signaling molecules induced by these stimulants. In addition to the suppression of MMP-9 expression, decursin blocked nitric oxide production and cytokine (IL-8, MCP-1, IL-1beta, and TNF-alpha) secretion induced by LPS. To find out the molecular mechanism responsible for the suppressive effect of decursin, we analyzed signaling molecules involved in the TLR-mediated activation of MMP-9 and cytokines. Decursin blocked phosphorylation of IkappaB and nuclear translocation of NF-kappaB in THP-1 cells activated with LPS. Furthermore, expression of a luciferase reporter gene under the promoter containing NF-kappaB binding sites was blocked by decursin. These data indicate that decursin is a novel inhibitor of NF-kappaB activation in signaling induced by TLR ligands and cytokines.
Bee venom inhibits hepatic fibrosis through suppression of pro-fibrogenic cytokine expression.
Kim, Soo-Jung; Park, Ji-Hyun; Kim, Kyung-Hyun; Lee, Woo-Ram; Chang, Young-Chae; Park, Kwan-Kyu; Lee, Kwang-Gill; Han, Sang-Mi; Yeo, Joo-Hong; Pak, Sok Cheon
2010-01-01
Bee venom (BV) has a long tradition of use for the control of pain and inflammation in various chronic diseases. Carbon tetrachloride (CCl4) is known to induce hepatotoxicity after being metabolized to the highly reactive trichloromethyl free radical and its peroxy radical. The purpose of the current study was to examine whether BV regulates the pro-inflammation and fibrosis related genes against a mouse model of hepatic fibrosis induced by CCl4 and ethanol-treated hepatocytes (ETH). Test mice were administered with CCl4 (2 ml/mg) and hepatocytes were treated with 25 mM ethanol. BV was added to the final concentration of 0.05-0.5 mg/kg and 1-100 ng/ml for in vivo and in vitro testing, respectively. Fibrotic livers and ETH were used for the measurement of hepatocyte necrosis, pro-inflammatory cytokines and fibrogenic genes. BV suppressed CCl4-induced hepatocyte necrosis markers of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). It also inhibited the secretion of interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha. Moreover, BV inhibited CCl4-induced expression of transforming growth factor (TGF)-beta1, alpha-smooth muscle actin (SMA) and fibronectin. Similarly, ETH exhibited significant suppression of IL-1beta, TNF-alpha, TGF-beta1 and fibronectin when cultured with BV. These results suggest that BV possesses anti-fibrogenic properties that are mediated by the suppression of pro-inflammatory cytokines and fibrogenic gene expression. BV has substantial therapeutic potential for the treatment of fibrotic diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Yohan; Chung, Kwang Chul, E-mail: kchung@yonsei.ac.kr
Highlights: Black-Right-Pointing-Pointer ZNF131 directly interacts with ER{alpha}. Black-Right-Pointing-Pointer The binding affinity of ZNF131 to ER{alpha} increases upon E2 stimulation. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-dimerization and E2-induced breast cancer cell proliferation. Black-Right-Pointing-Pointer ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor. -- Abstract: Steroid hormone estrogen elicits various physiological functions, many of which are mediated through two structurally and functionally distinct estrogen receptors, ER{alpha} and ER{beta}. The functional role of zinc finger protein 131 (ZNF131) is poorly understood, but it is assumed to possess transcriptional regulation activity due to the presence of amore » DNA binding motif. A few recent reports, including ours, revealed that ZNF131 acts as a negative regulator of ER{alpha} and that SUMO modification potentiates the negative effect of ZNF131 on estrogen signaling. However, its molecular mechanism for ER{alpha} inhibition has not been elucidated in detail. Here, we demonstrate that ZNF131 directly interacts with ER{alpha}, which consequently inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Moreover, we show that the C-terminal region of ZNF131 containing the SUMOylation site is necessary for its inhibition of estrogen signaling. Taken together, these data suggest that ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sun Hong; Kyeong, Min Sik; Hwang, Yuri
Highlights: Black-Right-Pointing-Pointer 1-Dehydro-10-gingerdione (1D10G) from ginger inhibits LPS binding to MD-2. Black-Right-Pointing-Pointer 1D10G suppresses MyD88- or TRIF-dependent signaling in LPS-activated macrophages. Black-Right-Pointing-Pointer 1D10G down-regulates the expression of NF-{kappa}B-, AP1- or IRF3-target genes. Black-Right-Pointing-Pointer MD-2 is a molecular target in the anti-inflammatory action of 1D10G. -- Abstract: Myeloid differentiation protein 2 (MD-2) is a co-receptor of toll-like receptor 4 (TLR4) for innate immunity. Here, we delineated a new mechanism of 1-dehydro-10-gingerdione (1D10G), one of pungent isolates from ginger (Zingiber officinale), in the suppression of lipopolysaccharide (LPS)-induced gene expression of inflammatory cytokines. 1D10G inhibited LPS binding to MD-2 with higher affinity thanmore » gingerol and shogaol from dietary ginger. Moreover, 1D10G down-regulated TLR4-mediated expression of nuclear factor-{kappa}B (NF-{kappa}B) or activating protein 1 (AP1)-target genes such as tumor necrosis factor {alpha} (TNF-{alpha}) and interleukin-1{beta}, as well as those of interferon (IFN) regulatory factor 3 (IRF3)-target IFN-{beta} gene and IFN-{gamma} inducible protein 10 (IP-10) in LPS-activated macrophages. Taken together, MD-2 is a molecular target in the anti-inflammatory action of 1D10G.« less
Method for detecting the presence of prostate cancer
Karin, Michael; Luo, Jun-Li; Tan, Wei
2010-04-13
The present invention relates to compositions and methods for cancer diagnosis, treatment and drug screening. In particular, the present invention provides compositions and methods for targeting the nuclear translocation of IkB kinase-.alpha. (IKK.alpha.) and the IKK.alpha.-mediated suppression of Maspin expression observed in metastatic prostate cancer cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dang; Fang, Liurong; Luo, Rui
2010-08-13
Research highlights: {yields} FMDV L{sup pro} inhibits poly(I:C)-induced IFN-{alpha}1/{beta} mRNA expression. {yields} L{sup pro} inhibits MDA5-mediated activation of the IFN-{alpha}1/{beta} promoter. {yields} L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes. {yields} L{sup pro} inhibits IFN-{alpha}1/{beta} promoter activation by decreasing IRF-3/7 in protein levels. {yields} The ability to process eIF-4G of L{sup pro} is not necessary to inhibit IFN-{alpha}1/{beta} activation. -- Abstract: The leader proteinase (L{sup pro}) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-{beta} (IFN-{beta}) antagonist that disrupts the integrity of transcription factor nuclear factor {kappa}B (NF-{kappa}B). In this study, we showed that the reductionmore » of double stranded RNA (dsRNA)-induced IFN-{alpha}1/{beta} expression caused by L{sup pro} was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-{alpha}/{beta}. Furthermore, overexpression of L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L{sup pro} mutants indicated that the ability to process eIF-4G of L{sup pro} is not required for suppressing dsRNA-induced activation of the IFN-{alpha}1/{beta} promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-{kappa}B, L{sup pro} also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.« less
Gao, Xiu-Ren; Adhikari, Chandar M; Peng, Long-Yun; Guo, Xiao-Gang; Zhai, Yuan-Sheng; He, Xu-Yu; Zhang, Li-Yuan; Lin, Jun; Zuo, Zhi-Yi
2009-11-01
Inflammation and platelet aggregation and activation are key processes in the initiation of a cardiovascular event. Patients with metabolic syndrome have a high risk of cardiovascular events. This study determined whether small and medium doses of aspirin have anti-inflammation and antiplatelet aggregation effects in patients with metabolic syndrome. One hundred and twenty-one consecutive patients with metabolic syndrome were randomized into three groups, receiving 100 mg/day of aspirin, 300 mg/day of aspirin or a placebo, respectively, for 2 weeks. The blood levels of thromboxane B2 (TXB2), a stable product of the platelet aggregation mediator TXA2, 6-keto-prostaglandin F1-alpha (6-keto-PGF1-alpha), a stable product of the endogenous cyclooxygenase metabolite prostaglandin I2, and inflammatory mediators including high-sensitivity C-reactive protein (hs-CRP), tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6), were determined by ELISA and radioimmunoassay. The blood levels of hs-CRP, TNF-alpha, IL-6 and TXB2 were significantly decreased after 2 weeks of treatment with 300 mg/day of aspirin. Patients who received 100 mg/day of aspirin had decreased blood levels of hs-CRP and TXB2. The blood level of IL-6 in the 300 mg/day aspirin group was significantly lower than that in the other two groups after 2 weeks of therapy. Aspirin at either dose did not affect the blood level of 6-keto-PGF1-alpha. Aspirin at all doses suppresses the blood levels of inflammatory markers and the platelet aggregation mediator TXA2 in Chinese patients with metabolic syndrome. Since the suppression induced by 300 mg/day of aspirin was greater than that induced by 100 mg/day of aspirin, these data suggest that 300 mg/day of aspirin may be beneficial in decreasing the risk of cardiovascular events in Chinese patients with metabolic syndrome.
Yoon, Taesook; Cheon, Myeong Sook; Lee, A Yeong; Lee, Do Yeon; Moon, Byeong Cheol; Chun, Jin Mi; Choo, Byung Kil; Kim, Ho Kyoung
2010-01-01
Glehnia littoralis (Umbelliferae) has been used traditionally in Korean, Japanese, and Chinese medicine for the treatment of immune-related diseases; however, its anti-inflammatory activity and underlying mechanism remain to be defined. We investigated the anti-inflammatory effect and inhibitory mechanism on inflammation by the methylene chloride fraction from Glehnia littoralis extract (MCF-GLE), which was more effective than Glehnia littoralis extract (GLE). MCF-GLE inhibited 12-O-Tetradecanoyl-phorbol-13-acetate (TPA)-induced inflammation in an inflammatory edema mouse model. Also, MCF-GLE strongly inhibited the releases of nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta) and significantly suppressed the mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-stimulated RAW 264.7 macrophage cells in a dose-dependent manner. Furthermore, MCF-GLE suppressed NF-kappaB activation and IkappaB-alpha degradation. MCF-GLE also attenuated the activation of ERK and JNK in a dose-dependent manner. These results indicate that MCF-GLE has an inhibitory effect on the in vivo and in vitro inflammatory reaction and is a possible therapeutic agent. Our results suggest that the anti-inflammatory properties of MCF-GLE may result from the inhibition of pro-inflammatory mediators, such as NO, PGE(2), TNF-alpha, and IL-1beta via suppression of NF-kappaB- and mitogen-activated protein kinases-dependent pathways.
1995-01-01
To examine the function of the alpha 6 beta 4 integrin we have determined its ligand-binding ability and overexpressed two potentially dominant negative mutant beta 4 subunits, lacking either the cytoplasmic or extracellular domain, in bladder epithelial 804G cells. The results of cell adhesion and radioligand-binding assays showed that alpha 6 beta 4 is a receptor for several laminin isoforms, including laminin 1, 2, 4, and 5. Overexpression of the tail-less or head-less mutant beta 4 subunit did not suppress alpha 6 beta 4-mediated adhesion to laminins, as both types of transfectants adhered to these ligands in the presence of blocking anti-beta 1 antibodies as well as the controls. However, immunofluorescence experiments indicated that the endogenous alpha 6 beta 4 integrin and other hemidesmosomal markers were not concentrated in hemidesmosomes in cells overexpressing tail- less beta 4, while the distribution of these molecules was not altered in cells overexpressing the head-less subunit. Electron microscopic studies confirmed that cells overexpressing tail-less beta 4 had a drastically reduced number of hemidesmosomes, while cells expressing the head-less subunit had a normal number of these structures. Thus, expression of a tail-less, but not a head-less mutant beta 4 subunit leads to a dominant negative effect on hemidesmosome assembly without suppressing initial adhesion to laminins. We conclude that the alpha 6 beta 4 integrin binds to several laminins and plays an essential role in the assembly and/or stability of hemidesmosomes, that alpha 6 beta 4- mediated adhesion and hemidesmosome assembly have distinct requirements, and that it is possible to use a dominant negative approach to selectively interfere with a specific function of an integrin. PMID:7721947
Steer, J H; Kroeger, K M; Abraham, L J; Joyce, D A
2000-06-16
Glucocorticoid drugs suppress tumor necrosis factor-alpha (TNF-alpha) synthesis by activated monocyte/macrophages, contributing to an anti-inflammatory action in vivo. In lipopolysaccharide (LPS)-activated human monocytic THP-1 cells, glucocorticoids acted primarily on the TNF-alpha promoter to suppress a burst of transcriptional activity that occurred between 90 min and 3 h after LPS exposure. LPS increased nuclear c-Jun/ATF-2, NF-kappaB(1)/Rel-A, and Rel-A/C-Rel transcription factor complexes, which bound specifically to oligonucleotide sequences from the -106 to -88 base pair (bp) region of the promoter. The glucocorticoid, dexamethasone, suppressed nuclear binding activity of these complexes prior to and during the critical phase of TNF-alpha transcription. Site-directed mutagenesis in TNF-alpha promoter-luciferase reporter constructs showed that the adjacent c-Jun/ATF-2 (-106 to -99 bp) and NF-kappaB (-97 to -88 bp) binding sites each contributed to the LPS-stimulated expression. Mutating both sites largely prevented dexamethasone from suppressing TNF-alpha promoter-luciferase reporters. LPS exposure also increased nuclear Egr-1 and PU.1 abundance. The Egr-1/Sp1 (-172 to -161 bp) binding sites and the PU.1-binding Ets site (-116 to -110 bp) each contributed to the LPS-stimulated expression but not to glucocorticoid response. Dexamethasone suppressed the abundance of the c-Fos/c-Jun complex in THP-1 cell nuclei, but there was no direct evidence for c-Fos/c-Jun transactivation through sites in the -172 to -52 bp region. Small contributions to glucocorticoid response were attributable to promoter sequences outside the -172 to -88 bp region and to sequences in the TNF-alpha 3'-untranslated region. We conclude that glucocorticoids suppress LPS-stimulated secretion of TNF-alpha from human monocytic cells largely through antagonizing transactivation by c-Jun/ATF-2 and NF-kappaB complexes at binding sites in the -106 to -88 bp region of the TNF-alpha promoter.
Usuki, Fusako; Fujimura, Masatake; Yamashita, Akio
2013-01-01
We demonstrate that methylmercury (MeHg)-susceptible cells preconditioned with an inhibitor of endoplasmic reticulum (ER) Ca2+-ATPase, thapsigargin, showed resistance to MeHg cytotoxicity through favorable stress responses, which included phosphorylation of eukaryotic initiation factor 2 alpha (Eif2α), accumulation of activating transcription factor 4 (Atf4), upregulation of stress-related proteins, and activation of extracellular signal regulated kinase pathway. In addition, ER stress preconditioning induced suppression of nonsense-mediated mRNA decay (NMD) mainly through the phospho-Eif2α-mediated general suppression of translation initiation and possible combined effects of decreased several NMD components expression. Atf4 accumulation was not mediated by NMD inhibition but translation inhibition of its upstream open reading frame (uORF) and translation facilitation of its protein-coding ORF by the phospho-Eif2α. These results suggested that ER stress plays an important role in MeHg cytotoxicity and that the modulation of ER stress has therapeutic potential to attenuate MeHg cytotoxicity, the underlying mechanism being the induction of integrated stress responses. PMID:23907635
Moussaieff, Arieh; Shohami, Esther; Kashman, Yoel; Fride, Ester; Schmitz, M Lienhard; Renner, Florian; Fiebich, Bernd L; Munoz, Eduardo; Ben-Neriah, Yinon; Mechoulam, Raphael
2007-12-01
Boswellia resin is a major anti-inflammatory agent in herbal medical tradition, as well as a common food supplement. Its anti-inflammatory activity has been attributed to boswellic acid and its derivatives. Here, we re-examined the anti-inflammatory effect of the resin, using inhibitor of nuclear factor-kappaB alpha (IkappaB alpha) degradation in tumor necrosis factor (TNF) alpha-stimulated HeLa cells for a bioassay-guided fractionation. We thus isolated two novel nuclear factor-kappaB (NF-kappaB) inhibitors from the resin, their structures elucidated as incensole acetate (IA) and its nonacetylated form, incensole (IN). IA inhibited TAK/TAB-mediated IkappaB kinase (IKK) activation loop phosphorylation, resulting in the inhibition of cytokine and lipopolysaccharide-mediated NF-kappaB activation. It had no effect on IKK activity in vitro, and it did not suppress IkappaB alpha phosphorylation in costimulated T-cells, indicating that the kinase inhibition is neither direct nor does it affect all NF-kappaB activation pathways. The inhibitory effect seems specific; IA did not interfere with TNFalpha-induced activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase. IA treatment had a robust anti-inflammatory effect in a mouse inflamed paw model. Cembrenoid diterpenoids, specifically IA and its derivatives, may thus constitute a potential novel group of NF-kappaB inhibitors, originating from an ancient anti-inflammatory herbal remedy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engdahl, Ryan; Monroy, M. Alexandra; Temple University School of Medicine, Department of Anatomy and Cell Biology, 3400 North Broad Street, Philadelphia, PA 19140
2007-07-20
Prostaglandin metabolite 15-Deoxy-{delta}{sup 12,14}-prostaglandin J2 (15d-PGJ2) is known to inhibit a number of pro-inflammatory cytokines as well as being a ligand for nuclear receptor PPAR{gamma}. We investigated the ability of 15d-PGJ2 to inhibit TNF-{alpha} gene expression through mechanisms that involve histone modification. Pretreatment with 15d-PGJ2 (10 {mu}M) inhibited LPS-stimulated TNF-{alpha} mRNA in THP-1 monocytes or PMA-differentiated cells to nearly basal levels. A specific PPAR{gamma} ligand, GW1929, failed to inhibit LPS-induced TNF-{alpha} mRNA expression nor did a PPAR{gamma} antagonist, GW9662, alter the repression of TNF-{alpha} mRNA in LPS-stimulated cells pretreated with 15d-PGJ2 suggesting a PPAR{gamma}-independent inhibition of TNF-{alpha} mRNA in THP-1more » cells. Transfection studies with a reporter construct and subsequent treatment with 15d-PGJ2 demonstrated a dose-dependent inhibition of the TNF-{alpha} promoter. Additional studies demonstrated that inhibition of histone deacetylases with trichostatin A (TSA) or overexpression of histone acetyltransferase CBP could overcome 15d-PGJ2-mediated repression of the TNF-{alpha} promoter, suggesting that an important mechanism whereby 15d-PGJ2 suppresses a cytokine is through factors that regulate histone modifications. To examine the endogenous TNF-{alpha} promoter, chromatin immunoprecipitations (ChIP) were performed. ChIP assays demonstrated that LPS stimulation induced an increase in histone H3 and H4 acetylation at the TNF-{alpha} promoter, which was reduced in cells pretreated with 15d-PGJ2. These results highlight the ability of acetylation and deacetylation factors to affect the TNF-{alpha} promoter and demonstrate that an additional important mechanism whereby 15d-PGJ2 mediates TNF-{alpha} transcriptional repression by altering levels of acetylated histone H3 and H4 at its promoter.« less
González Rodríguez, Manuel; Avero Delgado, Pedro; Rovella, Anna Teresa; Cubas León, Rosario
2008-11-01
This paper introduces the validation of the Spanish adaptation of the White Bear Suppression Inventory (WBSI) by Wegner and Zanakos (1994). A sample of 833 people from the general population completed the WBSI along with other questionnaires. The exploratory factor analysis and the confirmatory factor analysis supported a two-factor solution accounting for 51.8% of the cumulative variance. This structure is comprised of the two following factors: unwanted intrusive thoughts (alpha = .87, r = .70) and actions of distraction and suppression of thoughts (alpha = .80, r = .60). Both internal consistency reliability (alpha = .89) and test-retest reliability (r = .71) showed adequate homogeneity, sound consistency, and stability over time. The results are discussed bearing in mind both isolated factors and the possible relationships of the suppression factor with automatic negative thoughts and insomnia.
Schulze-Tanzil, G; de, Souza P; Behnke, B; Klingelhoefer, S; Scheid, A; Shakibaei, M
2002-04-01
Inflammatory joint diseases are characterized by enhanced extracellular matrix degradation which is predominantly mediated by cytokine-stimulated upregulation of matrix metalloproteinase (MMP) expression. Besides tumour necrosis factor-alpha (TNF-alpha), Interleukin-1beta (IL-1beta) produced by articular chondrocytes and synovial macrophages, is the most important cytokine stimulating MMP expression under inflammatory conditions. Blockade of these two cytokines and their downstream effectors are suitable molecular targets of antirheumatic therapy. Hox alpha is a novel stinging nettle (Urtica dioica/Urtica urens) leaf extract used for treatment of rheumatic diseases. The aim of the present study was to clarify the effects of Hox alpha and the monosubstance 13-HOTrE (13-Hydroxyoctadecatrienic acid) on the expression of matrix metalloproteinase-1, -3 and -9 proteins (MMP-1, -3, -9). Human chondrocytes were cultured on collagen type-II-coated petri dishes, exposed to IL-1beta and treated with or without Hox alpha and 13-HOTrE. A close analysis by immunofluorescence microscopy and western blot analysis showed that Hox alpha and 13-HOTrE significantly suppressed IL-1beta-induced expression of matrix metalloproteinase-1, -3 and -9 proteins on the chondrocytes in vitro. The potential of Hox alpha and 13-HOTrE to suppress the expression of matrix metalloproteinases may explain the clinical efficacy of stinging nettle leaf extracts in treatment of rheumatoid arthritis. These results suggest that the monosubstance 13-HOTrE is one of the more active antiinflammatory substances in Hox alpha and that Hox alpha may be a promising remedy for therapy of inflammatory joint diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shuai; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208; Lv, Jiaju
2012-03-30
Highlights: Black-Right-Pointing-Pointer Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. Black-Right-Pointing-Pointer Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. Black-Right-Pointing-Pointer CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-{kappa}B) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-{kappa}B activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responsesmore » in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-{kappa}B activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNF{alpha})-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-{kappa}B transcriptional activity in RASMCs; however, did not affect the TNF{alpha}-induced NF-{kappa}B activity. Intriguingly, the TNF{alpha}-induced I{kappa}B phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of I{kappa}B{alpha} and I{kappa}B{beta} proteins, it did not alter the kinetics of TNF{alpha}-induced I{kappa}B protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-{kappa}B activity and TNF{alpha}-induced I{kappa}B kinase activation without affecting TNF{alpha}-induced NF-{kappa}B activity in VSMCs. In addition, knocking down of Cyld suppressed TNF{alpha}-induced activation of mitogen activated protein kinases (MAPKs) including extracellular signal-activated kinases (ERK), c-Jun N-terminal kinase (JNK), and p38 in RASMCs. TNF{alpha}-induced RASMC migration and monocyte adhesion to RASMCs were inhibited by the Cyld knockdown. Finally, immunochemical staining revealed a dramatic augment of CYLD expression in the injured coronary artery with neointimal hyperplasia. Taken together, our results uncover an unexpected role of CYLD in promoting inflammatory responses in VSMCs via a mechanism involving MAPK activation but independent of NF-{kappa}B activity, contributing to the pathogenesis of vascular disease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Ming-Chu; Hu, Wan-Ping; Yu, Hsin-Su
2011-09-01
Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) chemicals are antitumor antibiotics inhibiting nucleic acid synthesis. An indole carboxylate-PBD hybrid with six-carbon spacer structure (IN6CPBD) has been previously demonstrated to induce melanoma cell apoptosis and reduce metastasis in mouse lungs. This study aimed at investigating the efficacy of the other hybrid compound with four-carbon spacer (IN4CPBD) and elucidating its anti-metastatic mechanism. Human melanoma A375 cells with IN4CPBD treatment underwent cytotoxicity and apoptosis-associated assays. Transwell migration assay, Western blotting, and ELISA were used for mechanistic study. IN4CPBD exhibited potent melanoma cytotoxicity through interrupting G1/S cell cycle progression, increasing DNA fragmentation and hypodipoidic DNA contents, and reducing mitochondrialmore » membrane potential. Caspase activity elevation suggested that both intrinsic and extrinsic pathways were involved in IN4CPBD-induced melanoma apoptosis. IN4CPBD up-regulated p53 and p21, thereby concomitantly derailing the equilibrium between Bcl-2 and Bax levels. Transwell migration assay demonstrated that stromal cell-derived factor-1{alpha} (SDF-1{alpha}) stimulated A375 cell motility, while kinase inhibitors treatment confirmed that Rho/ROCK, Akt, ERK1/2, and p38 MAPK pathways were involved in SDF-1{alpha}-enhanced melanoma migration. IN4CPBD not only abolished the SDF-1{alpha}-enhanced chemotactic motility but also suppressed constitutive MMP-9 and VEGF expression. Mechanistically, IN4CPBD down-regulated Akt, ERK1/2, and p38 MAPK total proteins and MYPT1 phosphorylation. In conclusion, beyond the fact that IN4CPBD induces melanoma cell apoptosis at cytotoxic dose, the interruption in the VEGF expression and the SDF-1{alpha}-related signaling at cytostatic dose may partially constitute the rationale for its in vivo anti-metastatic potency. - Research Highlights: > A novel carboxylate-PBD hybrid as anti-melanoma drug. > IN4CPBD interrupts melanoma cell cycle progression and induces apoptosis. > IN4CPBD suppresses SDF-1{alpha}-enhanced signaling and melanoma migration. > IN4CPBD abolishes angiogenic factor production and chemotactic effect of SDF-1{alpha}. > This drug is clinically applicable to melanoma therapy.« less
Shannon, Edward; Noveck, Robert; Sandoval, Felipe; Kamath, Burde
2008-01-01
Thalidomide is used to treat erythema nodosum leprosum (ENL). The events that precipitate this inflammatory reaction, which may occur in multibacillary leprosy patients, and the mechanism by which thalidomide arrest ENL, are not known. Thalidomide's ability to inhibit tumor necrosis factor alpha (TNF-alpha) in vitro has been proposed as a partial explanation of its effective treatment of ENL. In in vitro assays, thalidomide can enhance or suppress TNF-alpha. This is dependent on the stimulant used to evoke TNF-alpha; the procedure used to isolate the mononuclear cells from blood, and the predominant mononuclear cell type in the culture. To avoid artifacts that may occur during isolation of mononuclear cells from blood, we stimulated normal human blood with LPS and evaluated the effect of thalidomide and dexamethasone on TNF-alpha, and other inflammatory cytokines and biomarkers. Thalidomide suppressed interleukin 1 beta (IL-1beta) (p = 0.007), and it enhanced TNF-alpha (p = 0.007) and interleukin 10 (IL-10) (p = 0.031). Dexamethasone enhanced IL-10 (p = 0.013) and suppressed IL-1beta, TNF-alpha, interleukin 6 (IL-6), and interleukin 8 (IL-8) (p = 0.013). The two drugs did not suppress: C-reactive protein (CRP), Ig-superfamily cell-adhesion molecule 1 (ICAM 1), tumor necrosis factor receptor 1 (TNFR1), tumor necrosis factor receptor 2 (TNFR2), or amyloid A. In vitro and in vivo evidence is accumulating that TNF-alpha is not the primary cytokine targeted by thalidomide in ENL and other inflammatory conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Nam Hee; Jung, Hye Jin; Shibasaki, Futoshi
2010-01-15
Nuclear factor-{kappa}B (NF-{kappa}B) is a crucial transcription factor that contributes to cancer development by regulating a number of genes involved in angiogenesis and tumorigenesis. Here, we describe (Z)-N-(3-(7-nitro-3-oxobenzo[d][1,2]selenazol-2(3H)-yl)benzylidene) propan-2-amine oxide (NBBA) as a new anti-angiogenic small molecule that targets NF-{kappa}B activity. NBBA showed stronger growth inhibition on human umbilical vein endothelial cells (HUVECs) than on the cancer cell lines we tested. Moreover, NBBA inhibited tumor necrosis factor-alpha (TNF-{alpha})-induced tube formation and invasion of HUVECs. In addition, NBBA suppressed the neovascularization of chorioallantonic membrane from growing chick embryos in vivo. To address the mode of action of the compound, the effectmore » of NBBA on TNF-{alpha}-induced NF-{kappa}B transcription activity was investigated. NBBA suppressed TNF-{alpha}-induced c-Jun N-terminal kinase phosphorylation, which resulted in suppression of transcription of NF-{kappa}B and its target genes, including interleukin-8, interleukin-1{alpha}, and epidermal growth factor. Collectively, these results demonstrated that NBBA is a new anti-angiogenic small molecule that targets the NF-{kappa}B signaling pathway.« less
3,4-dichloropropionaniline suppresses normal macrophage function.
Ustyugova, Irina V; Frost, Laura L; Van Dyke, Knox; Brundage, Kathleen M; Schafer, Rosana; Barnett, John B
2007-06-01
Macrophages are a critical part of the innate immune response and natural surveillance mechanisms. As such, proper macrophage function is crucial for engulfing bacterial pathogens through phagocytosis and destroying them by generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The production of a number of cytokines by macrophages, such as tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, and IL-6, plays an important role in the initiation of the acquired immune response creating an inflammatory environment favorable for fighting a bacterial infection. 3,4-Dichloropropionaniline (DCPA) suppresses several inflammatory parameters, including TNF-alpha production through a mechanism where nuclear factor-kappaB (NF-kappaB)-DNA binding is inhibited but not entirely abrogated. The goal of the present study was to evaluate the effects of DCPA on the inflammatory mediators of macrophages, including ROS and RNS in both murine peritoneal exudate cells and the human monocytic cell line, THP-1. The ability to perform phagocytosis and directly kill Listeria monocytogenes was also assessed. The results indicate that DCPA decreases the ability of both types of macrophages to phagocytize beads and generate both types of reactive species, which was correlated with a decrement in listericidal activity. These results demonstrate that DCPA has profound effects on macrophage function and provide insight into the potential mechanisms of immunosuppression by DCPA.
Bao, Jing-Yin; Huang, Yan; Wang, Feng; Peng, Yu-Ping; Qiu, Yi-Hua
2007-01-01
Previous work in our laboratory has shown that alpha-adrenoreceptors (alpha-ARs) and beta-ARs exist on lymphocytes from functional profile, and that the receptors mediate the regulation of lymphocyte function by catecholamines. In the present study, we directly examined the expression of alpha-AR subtypes, alpha(1)-AR and alpha(2)-AR mRNAs, in T lymphocytes and explored the roles of the alpha-AR subtypes and intracellular signal transduction mechanisms linked to the receptors in mediating the modulation of T lymphocyte function. T lymphocytes from mesenteric lymph nodes of rats were purified by using a nylon wool column. Reverse transcription polymerase chain reaction was used to detect the expression of alpha(1)-AR and alpha(2)-AR mRNAs in the freshly isolated T cells and the mitogen concanavalin A (Con A)-activated lymphocytes. Colorimetric methylthiazoletetrazolium assay was employed to measure lymphocyte proliferation induced by Con A. Interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) levels in the Con A-stimulated lymphocyte culture supernatants were examined by enzyme-linked immunosorbent assay. T cells expressed both alpha(1)-AR and alpha(2)-AR mRNAs. The expression of both alpha(1)-AR and alpha(2)-AR mRNAs was significantly higher in the Con A-activated lymphocytes than in the resting lymphocytes. Phenylephrine, a selective alpha(1)-AR agonist, had no evident effect on lymphocyte proliferation nor on IFN-gamma and IL-4 production induced by Con A. However, the selective alpha(2)-AR agonist clonidine attenuated Con A-induced lymphocyte proliferation as well as IFN-gamma and IL-4 production. The inhibited lymphocyte proliferation and IFN-gamma and IL-4 production by clonidine were blocked by yohimbine, an alpha(2)-AR antagonist. Either phospholipase C inhibitor U-73122 or protein kinase C inhibitor chelerythrine partially prevented the suppressive effect of clonidine on Con A-stimulated lymphocyte proliferation and IL-4 production. T lymphocytes express both alpha(1)-ARs and alpha(2)-ARs, but only the alpha(2)-ARs participate in the suppressive modulation of lymphocyte proliferation and cytokine production in vitro. The inhibitory effect of alpha(2)-AR stimulation on lymphocyte function is partially mediated via the phospholipase C-protein kinase C pathway. (c) 2008 S. Karger AG, Basel.
Chun, Jin Mi; Nho, Kyoung Jin; Kim, Hyo Seon; Lee, A Yeong; Moon, Byeong Cheol; Kim, Ho Kyoung
2014-07-10
Houttuynia cordata Thunb. (Saururaceae) has been used in traditional medicine for treatment of inflammatory diseases. This study evaluated the anti-inflammatory effects of an ethyl acetate fraction derived from a Houttuynia cordata extract (HCE-EA) on the production of inflammatory mediators and the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. To measure the effects of HCE-EA on pro-inflammatory cytokine and inflammatory mediator's expression in RAW 264.7 cells, we used the following methods: cell viability assay, Griess reagent assay, enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting analysis. HCE-EA downregulated nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin (IL-6) production in the cells, as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, HCE-EA suppressed nuclear translocation of the NF-κB p65 subunit, which correlated with an inhibitory effect on IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) phosphorylation. HCE-EA also attenuated the activation of MAPKs (p38 and JNK). Our results suggest that the anti-inflammatory properties of HCE-EA may stem from the inhibition of pro-inflammatory mediators via suppression of NF-κB and MAPK signaling pathways.
Paracrine regulation of matrix metalloproteinase expression in the normal human endometrium.
Osteen, K G; Keller, N R; Feltus, F A; Melner, M H
1999-01-01
Endometrial expression of matrix metalloproteinase (MMP)-3, MMP-7 and MMP-11 occurs during menstrual breakdown and subsequent estrogen-mediated growth, but not during the secretory phase. These enzymes are suppressed by progesterone treatment. Paracrine factors, including transforming growth factor-beta (TGF-beta) and retinoic acid, are also critical for MMP regulation in the endometrium. In contrast, inflammatory cytokines such as interleukin-1alpha may block or interfere with steroid-mediated MMP regulation at ectopic sites of growth. Using in vitro models, our laboratory has investigated the complex interactions between progesterone and locally produced cytokines that may affect MMP expression during the development of endometriosis. Our results indicate that targeting the regulation of MMPs may represent an appropriate therapeutic strategy for the treatment of endometriosis. Copyrightz1999S. KargerAG,Basel
Liu, Qingli; Yang, Meng; Fu, Xuekun; Liu, Renzhong; Sun, Caijun; Pan, Haobo; Wong, Chi-Wai; Guan, Min
2016-11-15
As a novel mediator of hepatic very low-density lipoproteins (VLDL) secretion, phospholipase A2 G12B (PLA2G12B) is transcriptionally regulated by hepatocyte nuclear factor-4 alpha (HNF-4α). Farnesoid X receptor (FXR) plays a critical role in maintaining bile acids and triglycerides (TG) homeostasis. Here we report that FXR regulates serum TG level in part through PLA2G12B. Activation of FXR by chenodeoxycholic acid (CDCA) or GW4064 significantly decreased PLA2G12B expression in HepG2 cells. PLA2G12B expression was transcriptionally repressed due to an FXR-mediated up-regulation of small heterodimer partner (SHP) which functionally suppresses HNF-4α activity. We found that hepatic PLA2G12B expression was suppressed and serum TG level reduced in high fat diet mice treated with CDCA. Concurrently, CDCA treatment lowered hepatic VLDL-TG secretion. Our data demonstrate that activation of FXR promotes TG lowering, not only by decreasing de novo lipogenesis but also reducing hepatic secretion of TG-rich VLDL particles in part through suppressing PLA2G12B expression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wang, C Q; Udupa, K B; Lipschitz, D A
1995-01-01
Interferon-gamma (INF-gamma) has been shown to suppress erythropoiesis and perhaps to contribute to the anemia of chronic disease. In this study we demonstrated that the concentration of INF gamma required to suppress murine burst forming unit-erythroid (BFU-E) growth was significantly less than that required to suppress colony forming unit-erythroid (CFU-E) growth. INF gamma acted at the most primitive step in erythroid progenitor cell differentiation and proliferation, as inhibition was maximal when added at the time of BFU-E culture initiation. Inhibition was progressively less if INF gamma addition was delayed after culture initiation. The effects of INF gamma on BFU-E did not require the presence of interleukin-1 alpha (IL-1 alpha), tumor necrosis factor-alpha (TNF alpha), or granulocyte macrophage colony stimulating factor (GM-CSF), as its effects were not neutralized by monoclonal antibodies against IL-1 alpha, TNF alpha, or GM-CSF. This applied whether INF gamma was added to culture with individual antibodies or with a combination of all three antibodies. INF gamma was not required for IL-1 alpha- or TNF alpha-induced suppression of BFU-E, as their effects were not neutralized by a monoclonal anti-INF gamma antibody. In contrast, GM-CSF-induced suppression of BFU-E was negated by the simultaneous addition of anti-INF gamma. We have previously shown that the addition of TNF alpha does not suppress BFU-E growth in cultures from marrow depleted of macrophages. Suppression did occur, however, if a small concentration of INF gamma that does not inhibit and increasing concentration of TNF alpha were added to culture, suggesting a synergistic effect between INF-gamma and TNF alpha. These observations suggest that INF gamma is a potent direct inhibitor of erythroid colony growth in vitro. It exerts its negative regulatory effect primarily on the earliest stages of erythroid progenitor cell differentiation and proliferation, as much higher doses are required to suppress late erythroid cell development. INF gamma is also involved in GM-CSF-induced inhibition of BFU-E colony growth.
Vyas, Bimal; Ishikawa, Keiko; Duflo, Suzy; Chen, Xia; Thibeault, Susan L
2010-05-01
The role of myofibroblasts in vocal fold scarring has not been extensively studied, partly because of the lack of a robust in vitro model. The objective of this investigation was to develop and characterize a myofibroblast in vitro model that could be utilized to investigate the molecular mechanism of myofibroblast differentiation and function in injured vocal fold tissue. Differentiation of human primary vocal fold fibroblasts (hVFFs) to myofibroblasts was stimulated with 5, 10, or 20 ng/mL of recombinant transforming growth factor-beta1 (TGF-beta1). Cultures were analyzed by immunofluorescence and Western blotting, with an alpha-smooth muscle actin (alpha-SMA) antibody used as a myofibroblast marker. Normal rabbit vocal folds were treated with 10 ng/mL of TGF-beta1 for 7 days for in vivo corroboration. The effects of interleukin-6 (IL-6) and hepatocyte growth factor (HGF) on myofibroblast differentiation were studied with Western blots. The hVFFs demonstrated positive alpha-SMA labeling in cells stimulated by 10 and 20 ng/mL TGF-beta1, indicating that hVFFs were capable of differentiation to myofibroblasts. Transforming growth factor-beta1 induced the largest increase in alpha-SMA at 10 ng/mL on day 5 of treatment. Both HGF and IL-6 suppressed the expression of TGF-beta1-induced alpha-SMA. Our work characterizes a useful in vitro model of TGF-beta1-mediated vocal fold fibroblast-myofibroblast differentiation. The extent of differentiation appears to be attenuated by HGF, suggesting a potential mechanism to support prior work indicating that HGF plays a protective role in reducing scar formation in vocal fold injuries. Paradoxically, IL-6, which has been shown to play a profibrotic role in dermal studies, also attenuated the TGF-beta1 response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, So Young; Jeong, Eunshil; Joung, Sun Myung
2012-03-16
Highlights: Black-Right-Pointing-Pointer Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. Black-Right-Pointing-Pointer PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. Black-Right-Pointing-Pointer p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. Black-Right-Pointing-Pointer Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated bymore » hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl{sub 2}. Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1{alpha}. A PI3K inhibitor (LY294002) attenuated CoCl{sub 2}-induced nuclear accumulation and transcriptional activation of HIF-1{alpha}. In addition, HIF-1{alpha}-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl{sub 2}-induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1{alpha}. However, p38 was not involved in HIF-1{alpha} activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K/Akt contributes to hypoxic stress-induced TLR4 expression at least partly through the regulation of HIF-1 activation. These reveal a novel mechanism for regulation of TLR4 expression upon hypoxic stress and provide a therapeutic target for chronic diseases related to hypoxic stress.« less
Involvement of Sp1 elements in the promoter activity of genes affected in keratoconus.
Maruyama, Y; Wang, X; Li, Y; Sugar, J; Yue, B Y
2001-08-01
Keratoconus is a progressive disease that thins and scars the corneal stroma. In keratoconus corneas, levels of degradative enzymes, including lysosomal acid phosphatase (LAP) and cathepsin B, are elevated, and those of the inhibitors alpha1-proteinase inhibitor (alpha 1-PI) and alpha 2-macroglobulin (alpha 2-M) are reduced, especially in the epithelial layer. An increased expression of the transcription factor Sp1 was also demonstrated. The role of Sp1 in regulation of the genes affected in keratoconus was examined in this study. DNA segments, containing 5'-flanking promoter sequences of the alpha 1-PI, LAP, cathepsin B, and alpha 2-M genes were ligated into the secreted alkaline phosphatase (SEAP) reporter gene vector. These constructs, along with the pSV beta-galactosidase control vector, were transfected into cultured human corneal epithelial and stromal cells and skin fibroblasts. Cotransfection with the Sp1 expression vector was performed in parallel. SEAP and beta-galactosidase enzyme activities were assayed. In corneal epithelial cells, as in stromal cells, alpha 1-PI promoter activity was suppressed by cotransfection of pPacSp1. The LAP, cathepsin B, and alpha 2-M promoters were functional in corneal cells, whereas activities of these promoters were much lower in skin fibroblasts. Cotransfection experiments indicated that the up- or downregulation of LAP, cathepsin B, and alpha 2-M observed in keratoconus-affected corneas was not mediated by Sp1. These results support the theory that the corneal epithelium, along with the stroma, is involved in keratoconus. An upstream role of Sp1 is indicated and the Sp1-mediated downregulation of the alpha 1-PI gene may be a key event in the disease development.
Blood-brain barrier transport of the alpha-keto acid analogs of amino acids.
Steele, R D
1986-06-01
A number of alpha-keto acid analogs of amino acids have been found to penetrate the blood-brain barrier (BBB). Pyruvate, alpha-ketobutyrate, alpha-ketoisocaproate, and alpha-keto-gamma-methiolbutyrate all cross the BBB by a carrier-mediated process and by simple diffusion. Under normal physiological conditions, diffusion accounts for roughly 15% or less of total transport. Aromatic alpha-keto acids, phenylpyruvate, and p-hydroxyphenylpyruvate do not penetrate the BBB, nor do they inhibit the transport of other alpha-keto acids. Evidence based primarily on inhibition studies indicates that the carrier-mediated transport of alpha-keto acids occurs via the same carrier demonstrated previously for propionate, acetoacetate, and beta-hydroxybutyrate transport, commonly referred to as the monocarboxylate carrier. As a group, the alpha-keto acid analogs of the amino acids have the highest affinity for the carrier, followed by propionate and beta-hydroxybutyrate. Starvation for 4 days induces transport of alpha-keto acids, but transport is suppressed in rats fed commercial laboratory rations and subjected to portacaval shunts. The mitochondrial pyruvate translocator inhibitor alpha-cyanocinnamate has no effect on the BBB transport of alpha-keto acids.
Tanaka, Tomoharu; Wakamatsu, Takuhiko; Daijo, Hiroki; Oda, Seiko; Kai, Shinichi; Adachi, Takehiko; Kizaka-Kondoh, Shinae; Fukuda, Kazuhiko; Hirota, Kiichi
2010-03-01
The transcription factor hypoxia-inducible factor-1 (HIF-1) plays an essential role in regulating gene expression in response to hypoxia-ischemia. Ischemia causes the tissue not only to be hypoxic but also to be hypothermic because of the hypoperfusion under certain circumstances. On the other hand, the induced hypothermia is one of the most common therapeutic modalities to extend tolerance to hypoxia. Although hypoxia elicits a variety of cellular and systemic responses at different organizational levels in the body, little is known about how hypoxia-induced responses are affected by low temperature. We examined the influence of mild hypothermic conditions (28-32 degrees C) on HIF-1 in both in vitro and in vivo settings. In vitro experiments adopting cultured cells elucidated that hypoxia-induced HIF-1 activation was resistant to 4-h exposure to the low temperature. In contrast, exposure to the low temperature as long as 24 h suppressed HIF-1 activation and the subsequent upregulation of HIF-1 target genes such as VEGF or GLUT-1. HIF-1alpha protein stability in the cell was not affected by hypothermic treatment. Furthermore, intracellular ATP content was reduced under 1% O(2) conditions but was not largely affected by hypothermic treatment. The evidence indicates that reduction of oxygen consumption is not largely involved in suppression of HIF-1. In addition, we demonstrated that HIF-1 DNA-binding activity and HIF-1-dependent gene expressions induced under 10% O(2) atmosphere in mouse brain were not influenced by treatment under 3-h hypothermic temperature but were inhibited under 5-h treatment. On the other hand, we indicated that warming ischemic legs of mice for 24 h preserved HIF-1 activity. In this report we describe for the first time that persisting low temperature significantly reduced HIF-1alpha neosynthesis under hypoxic conditions, leading to a decrease in gene expression for adaptation to hypoxia in both in vitro and in vivo settings.
Inflammation induction of Dickkopf-1 mediates chondrocyte apoptosis in osteoarthritic joint.
Weng, L-H; Wang, C-J; Ko, J-Y; Sun, Y-C; Su, Y-S; Wang, F-S
2009-07-01
Dysregulated Wnt signaling appears to modulate chondrocyte fate and joint disorders. Dickkopf-1 (DKK1) regulates the pathogenesis of skeletal tissue by inhibiting Wnt actions. This study examined whether DKK1 expression is linked to chondrocyte fate in osteoarthritis (OA). Articular cartilage specimens harvested from nine patients with knee OA and from six controls with femoral neck fracture were assessed for DKK1, interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), Bad, Bax, Bcl2 and caspase-3 expression by real time-polymerase chain reaction (RT-PCR) and immunohistochemistry. Apoptotic chondrocytes were detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labelling (TUNEL) and 4', 6-dianidino-2-phenylindole dihydrochloride (DAPI) staining. Human chondrocyte cultures were treated with recombinant IL-1beta and monoclonal DKK1 antibody to determine whether DKK1 impairs chondrocyte survival. Expression of DKK1 correlated with inflammatory cytokine levels (IL-1beta and TNF-alpha expressions), proapoptosis regulators (Bad and caspase-3 expressions) and TUNEL staining in OA cartilage tissues. The IL-1beta induced expressions of DKK1, Bax, Bad and caspase-3-dependent apoptosis of chondrocyte cultures. Neutralization of DKK1 by monoclonal DKK1 antibody significantly abrogated IL-1beta-mediated caspase-3 cleavage and apoptosis and reversed chondrocyte proliferation. Recombinant DKK1 treatment impaired chondrocyte growth and promoted apoptosis. By suppressing nuclear beta-catenin accumulation and Akt phosphorylation, DKK1 mediated IL-1beta promotion of chondrocyte apoptosis. Chondrocyte apoptosis correlates with joint OA. Expression of DKK1 contributes to cartilage deterioration and is a potent factor in OA pathogenesis. Attenuating DKK1 may reduce cartilage deterioration in OA.
Arroyo, Carmen M; Kan, Robert K; Burman, Damon L; Kahler, David W; Nelson, Marian R; Corun, Charlene M; Guzman, Juanita J; Broomfield, Clarence A
2003-05-01
The regulatory effects of the active form of vitamin D, 1-alpha, 25-dihydroxyvitamin D3 (1-alpha, 25 (OH)2D3) were assessed on the cytokine and chemokine secretion induced by sulfur mustard on human skin fibroblasts and human epidermal keratinocytes. Stimulation of human skin fibroblasts with sulfur mustard (10(-4) M for 24 hr at 37 degrees ) resulted in approximately a 5 times increase in the secretion of interleukin-6 and over a 10 times increase for interleukin-8, which was inhibited by 1-alpha, 25 (OH)2D3, at
Insulin signaling in skeletal muscle and liver of neonatal pigs during endotoxemia
USDA-ARS?s Scientific Manuscript database
Sepsis has been associated with tumor necrosis factor alpha (TNF-alpha) and nitric oxide (NO) overproduction, insulin resistance, and a profound suppression of muscle protein synthesis. However, lesser suppression of muscle protein synthesis in neonatal pigs occurs in response to endotoxin (LPS) whe...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimura, Hiroaki
Mating pheromones, a- and {alpha}-factors, arrest the division of cells of opposite mating types, {alpha} and a cells, respectively. The author has isolated a sterile mutant of Saccharomyces cerevisiae using EMS that is defective in division arrest in response to {alpha}-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18, and dac1). Although dac2 cells had no phenotype in the absence ofmore » pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation.« less
Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells.
Park, Hyo-Hyun; Lee, Soyoung; Son, Hee-Young; Park, Seung-Bin; Kim, Mi-Sun; Choi, Eun-Ju; Singh, Thoudam S K; Ha, Jeoung-Hee; Lee, Maan-Gee; Kim, Jung-Eun; Hyun, Myung Chul; Kwon, Taeg Kyu; Kim, Yeo Hyang; Kim, Sang-Hyun
2008-10-01
Mast cells participate in allergy and inflammation by secreting inflammatory mediators such as histamine and proinflammatory cytokines. Flavonoids are naturally occurring molecules with antioxidant, cytoprotective, and antiinflammatory actions. However, effect of flavonoids on the release of histamine and proinflammatory mediator, and their comparative mechanism of action in mast cells were not well defined. Here, we compared the effect of six flavonoids (astragalin, fisetin, kaempferol, myricetin, quercetin, and rutin) on the mast cell-mediated allergic inflammation. Fisetin, kaempferol, myricetin, quercetin, and rutin inhibited IgE or phorbol-12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-mediated histamine release in RBL-2H3 cells. These five flavonoids also inhibited elevation of intracellular calcium. Gene expressions and secretion of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, IL-6, and IL-8 were assessed in PMACI-stimulated human mast cells (HMC-1). Fisetin, quercetin, and rutin decreased gene expression and production of all the proinflammatory cytokines after PMACI stimulation. Myricetin attenuated TNF-alpha and IL-6 but not IL-1beta and IL-8. Fisetin, myricetin, and rutin suppressed activation of NF-kappaB indicated by inhibition of nuclear translocation of NF-kappaB, NF-kappaB/DNA binding, and NF-kappaB-dependent gene reporter assay. The pharmacological actions of these flavonoids suggest their potential activity for treatment of allergic inflammatory diseases through the down-regulation of mast cell activation.
Aziz, Moammir H; Wheeler, Deric L; Bhamb, Bhushan; Verma, Ajit K
2006-01-15
Protein kinase C delta (PKCdelta), a Ca(2+)-independent, phospholipid-dependent serine/threonine kinase, is among the novel PKCs (delta, epsilon, and eta) expressed in mouse epidermis. We reported that FVB/N transgenic mice that overexpress ( approximately 8-fold) PKCdelta protein in basal epidermal cells and cells of the hair follicle are resistant to the development of both skin papillomas and squamous cell carcinoma (SCC) elicited by 7,12-dimethylbenz(a)anthracene initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA) promotion protocol. We now present that PKCdelta overexpression in transgenic mice failed to suppress the induction of SCC developed by repeated exposures to UV radiation (UVR), the environmental carcinogen linked to the development of human SCC. Both TPA and UVR treatment of wild-type mice (a) increased the expression of proliferating cell nuclear antigen (PCNA) and apoptosis; (b) stimulated the expression of cytokines tumor necrosis factor-alpha (TNF-alpha), granulocyte macrophage colony-stimulating factor (GM-CSF), and granulocyte CSF (G-CSF); and (c) increased cyclooxygenase-2 (COX-2) expression and expression of phosphorylated Akt (p-Akt), p38, extracellular signal-regulated kinase-1 (ERK1), and ERK2. PKCdelta overexpression in transgenic mice enhanced TPA-induced but not UVR-induced apoptosis and suppressed TPA-stimulated but not UVR-stimulated levels of cell PCNA, cytokines (TNF-alpha, G-CSF, and GM-CSF), and the expression of COX-2, p-Akt, and p38. The results indicate that UVR-mediated signal transduction pathway to the induction of SCC does not seem to be sensitive to PKCdelta overexpression. The proapoptotic activity of PKCdelta coupled with its ability to suppress TPA-induced expression of proinflammatory cytokines, COX-2 expression, and the phosphorylation of Akt and p38 may play roles in the suppression of TPA-promoted development of SCC.
Lobier, Muriel; Palva, J Matias; Palva, Satu
2018-01-15
Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.
Hirata, Marina; Ishigami, Masatoshi; Matsushita, Yoshihiro; Ito, Takanori; Hattori, Hisashi; Hibi, Hideharu; Goto, Hidemi; Ueda, Minoru; Yamamoto, Akihito
2016-10-01
: Chronic liver injury from various causes often results in liver fibrosis (LF). Although the liver possesses endogenous tissue-repairing activities, these can be overcome by sustained inflammation and excessive fibrotic scar formation. Advanced LF leads to irreversible cirrhosis and subsequent liver failure and/or hepatic cancer. Here, using the mouse carbon tetrachloride (CCl 4 )-induced LF model, we showed that a single intravenous administration of stem cells derived from human exfoliated deciduous teeth (SHEDs) or of SHED-derived serum-free conditioned medium (SHED-CM) resulted in fibrotic scar resolution. SHED-CM suppressed the gene expression of proinflammatory mediators, such as TNF-α, IL-1β, and iNOS, and eliminated activated hepatic stellate cells by inducing their apoptosis, but protected parenchymal hepatocytes from undergoing apoptosis. In addition, SHED-CM induced tissue-repairing macrophages that expressed high levels of the profibrinolytic factor, matrix metalloproteinase 13. Furthermore, SHED-CM suppressed the CCl 4 -induced apoptosis of primary cultured hepatocytes. SHED-CM contained a high level of hepatocyte growth factor (HGF). Notably, HGF-depleted SHED-CM (dHGF-CM) did not suppress the proinflammatory response or resolve fibrotic scarring. Furthermore, SHED-CM, but not dHGF-CM, inhibited CCl 4 -induced hepatocyte apoptosis. These results suggest that HGF plays a central role in the SHED-CM-mediated resolution of LF. Taken together, our findings suggest that SHED-CM provides multifaceted therapeutic benefits for the treatment of LF. This study demonstrated that a single intravenous administration of stem cells from human exfoliated deciduous teeth (SHEDs) or of the serum-free conditioned medium (CM) derived from SHEDs markedly improved mouse liver fibrosis (LF). SHED-CM suppressed chronic inflammation, eliminated activated hepatic stellate cells by inducing their apoptosis, protected hepatocytes from undergoing apoptosis, and induced differentiation of tissue-repairing macrophages expressing high levels of the profibrinolytic factor matrix metalloproteinase 13. Furthermore, hepatocyte growth factor played a central role in the SHED-CM-mediated resolution of LF. This is the first report demonstrating the multifaceted therapeutic benefits of secreted factors derived from SHEDs for LF. ©AlphaMed Press.
TRIM45 negatively regulates NF-{kappa}B-mediated transcription and suppresses cell proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibata, Mio; Sato, Tomonobu; Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638
2012-06-22
Highlights: Black-Right-Pointing-Pointer NF-{kappa}B plays an important role in cell survival and carcinogenesis. Black-Right-Pointing-Pointer TRIM45 negatively regulates TNF{alpha}-induced NF-{kappa}B-mediated transcription. Black-Right-Pointing-Pointer TRIM45 overexpression suppresses cell growth. Black-Right-Pointing-Pointer TRIM45 acts as a repressor for the NF-{kappa}B signal and regulates cell growth. -- Abstract: The NF-{kappa}B signaling pathway plays an important role in cell survival, immunity, inflammation, carcinogenesis, and organogenesis. Activation of NF-{kappa}B is regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. The NF-{kappa}B signaling pathway is activated by two distinct signaling mechanisms and is strictly modulated by the ubiquitin-proteasome system. It has been reported that overexpression of TRIM45, one ofmore » the TRIM family ubiquitin ligases, suppresses transcriptional activities of Elk-1 and AP-1, which are targets of the MAPK signaling pathway. In this study, we showed that TRIM45 also negatively regulates TNF{alpha}-induced NF-{kappa}B-mediated transcription by a luciferase reporter assay and that TRIM45 lacking a RING domain also has an activity to inhibit the NF-{kappa}B signal. Moreover, we found that TRIM45 overexpression suppresses cell growth. These findings suggest that TRIM45 acts as a repressor for the NF-{kappa}B signal and regulates cell growth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onda, Kenji; Nagashima, Masahiro; Kawakubo, Yo
2006-12-08
Glucocorticoids (GCs) are essential drugs administered topically or systematically for the treatment of autoimmune skin diseases such as pemphigus. However, a certain proportion of patients does not respond well to GCs. Although studies on the relationship between cytokines and GC insensitivity in local tissues have attracted attention recently, little is known about the underlying mechanism(s) for GC insensitivity in epidermal keratinocytes. Here, we report that tumor necrosis factor (TNF) {alpha} reduces GC-induced transactivation of endogenous genes as well as a reporter plasmid which contains GC responsive element (GRE) in human epidermal keratinocyte cells (HaCaT). The GC insensitivity by TNF{alpha} wasmore » not accompanied by changes in mRNA expressions of GR isoforms ({alpha} or {beta}). However, we observed that mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase (MEK-1/ERK) inhibitors (PD98059 and U0126) significantly sensitized the GC-induced transactivation of anti-inflammatory genes (glucocorticoid-induced leucine zipper (GILZ) and mitogen-activated protein kinase phosphatase (MKP)-1) and FK506 binding protein (FKBP) 51 gene in the presence of TNF{alpha}. Additionally, we observed that TNF{alpha} reduced prednisolone (PSL)-dependent nuclear translocation of GR, which was restored by pre-treatment of MEK-1 inhibitors. This is the first study demonstrating a role of the MEK-1/ERK cascade in TNF{alpha}-mediated GC insensitivity. Our data suggest that overexpression of TNF{alpha} leads to topical GC insensitivity by reducing GR nuclear translocation in keratinocytes, and our findings also suggest that inhibiting the MEK-1/ERK cascade may offer a therapeutic potential for increasing GC efficacy in epidermis where sufficient inflammatory suppression is required.« less
Rafei, Moutih; Wu, Jian Hui; Annabi, Borhane; Lejeune, Laurence; François, Moïra; Galipeau, Jacques
2007-03-01
We hypothesized that a granulocyte macrophage colony-stimulating factor (GMCSF) and interleukin 15 (IL-15) fusokine (GIFT15) would possess greater immune-stimulatory properties than their combined use. Unexpectedly, tumor cells engineered to secrete GIFT15 protein led to suppression of natural killer (NK) and NKT-cell recruitment in vivo, suggesting an unanticipated immune-suppressive effect. We found GIFT15 to have pleiotropic effects on an array of immune-competent cells. Among these, macrophages treated with GIFT15 secrete de novo the tissue inhibitor of metalloproteinase-2 (TIMP-2); activated matrix metalloproteinase-2 (MMP-2); transforming growth factor-beta (TGF-beta); as well as vascular endothelial growth factor (VEGF). We show that the GIFT15 fusokine has increased affinity for the alpha chain component of the IL-15R, leading to aberrant signaling through the beta chain manifested by the hyperphosphorylation of STAT3 both in macrophages and splenocytes. Suppression of common gamma chain-mediated STAT5 phosphorylation and blockade of the IL-15-dependent IFN-gamma response in mouse splenocytes were also observed. We tested GIFT15 as an immunosuppressor and demonstrated that it allowed engraftment of allogeneic B16F0 and human xenograft U87GM glioma cells in immunocompetent mice. Thus, GIFT15 defines a new class of fusokine that mediates proangiogenic and immunosuppressive effects via aberrant signaling by the IL-15R in lymphomyeloid cells.
EJE PRIZE 2018: A gut feeling about glucagon.
Knop, Filip K
2018-06-01
Hyperglucagonaemia (in the fasting as well as in the postprandial state) is considered a core pathophysiological component of diabetes and is found to contribute substantially to the hyperglycaemic state of diabetes. Hyperglucagonaemia is usually viewed upon as a consequence of pancreatic alpha cell insensitivity to the glucagon-suppressive effects of glucose and insulin. Since we observed that the well-known hyperglucagonaemic response to oral glucose in patients with type 2 diabetes is exchanged by normal suppression of plasma glucagon levels following isoglycaemic intravenous glucose administration in these patients, we have been focusing on the gut and gut-derived factors as potential mediators of diabetic hyperglucagonaemia. In a series of clinical experiments, we have elucidated the role of gut-derived factors in diabetic hyperglucagonaemia and shown that glucose-dependent insulinotropic polypeptide promotes hyperglucagonaemia and that glucagon, hitherto considered a pancreas-specific hormone, may also be secreted from extrapancreatic tissues - most likely from proglucagon-producing enteroendocrine cells. Furthermore, our observation that fasting hyperglucagonaemia is unrelated to the diabetic state, but strongly correlates with obesity, liver fat content and circulating amino acids, has made us question the common 'pancreacentric' and 'glucocentric' understanding of hyperglucagonaemia and led to the hypothesis that steatosis-induced hepatic glucagon resistance (and reduced amino acid turnover) and compensatory glucagon secretion mediated by increased circulating amino acids constitute a complete endocrine feedback system: the liver-alpha cell axis. This article summarises the physiological regulation of glucagon secretion in humans and considers new findings suggesting that the liver and the gut play key roles in determining fasting and postabsorptive circulating glucagon levels. © 2018 European Society of Endocrinology.
Effect of proinflammatory cytokines on PIGA- hematopoiesis.
Kulkarni, Shashikant; Bessler, Monica
2003-09-01
Blood cells from patients with paroxysmal nocturnal hemoglobinuria lack glycosyl phosphatidylinositol (GPI)-linked proteins, due to a somatic mutation in the X-linked PIGA gene. It is believed that clonal expansion of PIGA- blood cells is due to a survival advantage in the hostile marrow environment of aplastic anemia. Here we investigated the effects of inhibitory cytokines in mice genetically engineered to have blood cells deficient in GPI-linked proteins. The effect of inhibitory cytokines (tumor necrosis factor-alpha [TNF-alpha], interferon-gamma [IFN-gamma], macrophage inflammatory protein-1 alpha [MIP-1alpha], and transforming growth factor-beta1 [TGF-beta1]) was investigated, using clonogenic assays, competitive repopulation, and in vivo induction of proinflammatory cytokines by double-stranded RNA. The expression of Fas on progenitor cells and its up-regulation by inhibitory cytokines were analyzed by flow cytometry. TNF-alpha, IFN-gamma, MIP-1alpha, and TGF-beta1 suppressed colony formation in a dose-dependent fashion that was similar for PIGA+ and PIGA- blood bone marrow cells. Competitive repopulation of bone marrow cells cultured in IFN-gamma and TNF-alpha resulted in a comparable ability of PIGA+ and PIGA- hematopoietic stem cells to reconstitute hematopoiesis. Fas expression was minimal on PIGA+ and PIGA- progenitor cells and was up-regulated to the same extent in response to IFN-gamma and TNF-alpha as assessed by Fas antibody-mediated apoptosis. Similarly, in vivo induction of proinflammatory cytokines by double-stranded RNA had no effect on the proportion of circulating PIGA- blood cells. These results indicate that PIGA+ and PIGA- hematopoietic progenitor cells respond similarly to inhibitory cytokines, suggesting that other factors are responsible for the clonal expansion of paroxysmal nocturnal hemoglobinuria cells.
Matsumoto, M; Imagawa, M; Aoki, Y
2000-07-01
Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression.
Matsumoto, M; Imagawa, M; Aoki, Y
2000-01-01
Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression. PMID:10861232
Scholl, Dorothy C; Embers, Monica E; Caskey, John R; Kaushal, Deepak; Mather, Thomas N; Buck, Wayne R; Morici, Lisa A; Philipp, Mario T
2016-07-08
The prolonged feeding process of ixodid ticks, in combination with bacterial transmission, should lead to a robust inflammatory response at the blood-feeding site. Yet, factors present in tick saliva may down-regulate such responses, which may be beneficial to spirochete transmission. The primary goal of this study was to test the hypothesis that tick saliva, in the context of Borrelia burgdorferi, can have widespread effects on the production of immune mediators in skin. A cross-section of tick feeding on skin was examined histologically. Human THP-1 cells stimulated with B. burgdorferi and grown in the presence or absence of tick saliva were examined by human DNA microarray, cytokine bead array, sandwich ELISA, and qRT-PCR. Similar experiments were also conducted using dermal fibroblasts. Tick feeding on skin showed dermal infiltration of histiocytes and granulocytes at the bite location. Changes in monocytic transcript levels during co-culture with B. burgdorferi and saliva indicated that tick saliva had a suppressive effect on the expression of certain pro-inflammatory mediators, such as IL-8 (CXCL8) and TLR2, but had a stimulatory effect on specific molecules such as the Interleukin 10 receptor, alpha subunit (IL-10RA), a known mediator of the immunosuppressive signal of IL-10. Stimulated cell culture supernatants were analyzed via antigen-capture ELISA and cytokine bead array for inflammatory mediator production. Treatment of monocytes with saliva significantly reduced the expression of several key mediators including IL-6, IL-8 and TNF-alpha. Tick saliva had an opposite effect on dermal fibroblasts. Rather than inhibiting, saliva enhanced production of pro-inflammatory mediators, including IL-8 and IL-6 from these sentinel skin cells. The effects of ixodid tick saliva on resident skin cells is cell type-dependent. The response to both tick and pathogen at the site of feeding favors pathogen transmission, but may not be wholly suppressed by tick saliva.
Fan, L; Zheng, S; Wang, X
1997-01-01
Membrane disruption has been proposed to be a key event in plant senescence, and phospholipase D (PLD; EC 3.1.4.4) has been thought to play an important role in membrane deterioration. We recently cloned and biochemically characterized three different PLDs from Arabidopsis. In this study, we investigated the role of the most prevalent phospholipid-hydrolyzing enzyme, PLD alpha, in membrane degradation and senescence in Arabidopsis. The expression of PLD alpha was suppressed by introducing a PLD alpha antisense cDNA fragment into Arabidopsis. When incubated with abscisic acid and ethylene, leaves detached from the PLD alpha-deficient transgenic plants showed a slower rate of senescence than did those from wild-type and transgenic control plants. The retardation of senescence was demonstrated by delayed leaf yellowing, lower ion leakage, greater photosynthetic activity, and higher content of chlorophyll and phospholipids in the PLD alpha antisense leaves than in those of the wild type. Treatment of detached leaves with abscisic acid and ethylene stimulated PLD alpha expression, as indicated by increases in PLD alpha mRNA, protein, and activity. In the absence of abscisic acid and ethylene, however, detached leaves from the PLD alpha-deficient and wild-type plants showed a similar rate of senescence. In addition, the suppression of PLD alpha did not alter natural plant growth and development. These data suggest that PLD alpha is an important mediator in phytohormone-promoted senescence in detached leaves but is not a direct promoter of natural senescence. The physiological relevance of these findings is discussed. PMID:9437863
Tocotrienols and cardiovascular health.
Prasad, Kailash
2011-01-01
This review emphasizes the effects of tocotrienols on the risk factors for atherosclerosis, plaque instability and thrombogenesis, and compares these effects with tocopherol. Tocotrienols reduce serum lipids and raise serum HDL-C. Alpha-tocopherol, on the other hand, has no effect on serum lipids. Tocotrienols have greater antioxidant activity than tocopherols. Both reduce the serum levels of C-reactive protein (CRP) and advanced glycation end products, and expression of cell adhesion molecules. The CRP-lowering effects of tocotrienols are greater than tocopherol. Tocotrienols reduce inflammatory mediators, δ-tocotrienol being more potent, followed by γ- and α-tocotrienol. Tocotrienols are antithrombotic and suppress the expression of matrix metalloproteinases. They suppress, regress and slow the progression of atherosclerosis, while tocopherol only suppresses, and has no effect on regression and slowing of progression of atherosclerosis. Tocotrienol reduces risk factors for destabilization of atherosclerotic plaques. There are no firm data to suggest that tocotrienols are effective in reducing the risk of cardiac events in established ischemic heart disease. Alpha-tocopherol is effective in primary prevention of coronary artery disease (CAD), but has no conclusive evidence that it has beneficial effects in patients with established ischemic heart disease. Tocotrienols are effective in reducing ischemia-reperfusion cardiac injury in experimental animals and has the potential to be used in patients undergoing angioplasty, stent implantation and aorto-coronary bypass surgery. In conclusion, experimental data suggest that tocotrienols have a potential for cardiovascular health, but long-term randomized clinical trials are needed to establish their efficacy in primary and secondary prevention of CAD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouchi, Zen, E-mail: zkouchi@toyaku.ac.jp; Fujiwara, Yuki; Yamaguchi, Hideki
2011-05-20
Highlights: {yields} We analyzed Phosphatidylinositol 5-phosphate kinase II{beta} (PIPKII{beta}) function in cancer. {yields} PIPKII{beta} is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. {yields} PIPKII{beta} suppresses cellular motility through E-cadherin induction in SW480 cells. {yields} Nuclear PIP{sub 2} but not plasma membrane-localized PIP{sub 2} mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1{alpha},25-dihydroxyvitamin D{sub 3} (1{alpha},25(OH){sub 2}D{sub 3}) has anti-cancer activity in several colon cancers. 1{alpha},25(OH){sub 2}D{sub 3} induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however,more » its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKII{beta}) but not PIPKII{alpha} is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLC{delta}1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P{sub 2}) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLC{delta}1 PHD inhibited 1{alpha},25(OH){sub 2}D{sub 3}-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P{sub 2} production mediates E-cadherin expression through PIPKII{beta} in a VDR-dependent manner. PIPKII{beta} is also involved in the suppression of the cell motility induced by 1{alpha},25(OH){sub 2}D{sub 3}. These results indicate that PIPKII{beta}-mediated PI(4,5)P{sub 2} signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.« less
Vita, Serena; Lichtner, Miriam; Marchetti, Giulia; Mascia, Claudia; Merlini, Esther; Cicconi, Paola; Vullo, Vincenzo; Viale, Pierluigi; Costantini, Andrea; DʼArminio Monforte, Antonella
2017-03-01
To contribute to the understanding of the role played by cytomegalovirus (CMV) in sustaining monocyte/macrophage-mediated immune activation in antiretroviral therapy treated HIV-infected subjects. We selected 23 CMV-uninfected and 46 CMV-infected HIV+ subjects, matched for age, CD4 nadir, HIV infection duration, and viral hepatitis serostatus. All subjects were on successful antiretroviral therapy since at least 1 year. A group of 16 healthy donors with similar age and sex was also included. Plasma levels of tumor necrosis factor-alpha, interleukin-6, sCD163, sCD14, and CMV immunoglobulin G levels were measured in duplicate with human enzyme-linked immunosorbent assay kits. We found significantly higher sCD163 plasma levels in HIV+CMV+ compared with HIV+CMV- subjects and healthy donors. This augmentation was confirmed also when subjects positive for hepatitis C virus-Ab were excluded from analysis. Interestingly, a correlation between anti-CMV immunoglobulin G levels and sCD163, tumor necrosis factor-alpha, interleukin-6, and sCD14 in HIV+CMV+ subjects was found. CMV coinfection could be a major driver of monocyte/macrophage activation in virally suppressed HIV+ individuals and might explain the increased risk of non-AIDS morbidity/mortality in HIV/CMV-coinfected subjects.
Rahim, Sheikh Showkat; Khan, Nooruddin; Boddupalli, Chandra Sekhar; Hasnain, Seyed E; Mukhopadhyay, Sangita
2005-01-01
Interleukin-10 (IL-10) is known to inhibit IL-12 production in macrophages primarily at the transcriptional level with the involvement of p50 and p65 nuclear factor-κB (NF-κB). We demonstrate that the c-rel transcription factor also plays a major role in IL-10-mediated IL-12 suppression. Treatment of macrophages with recombinant IL-10 inhibited nuclear c-rel levels, whereas addition of neutralizing anti-IL-10 antibody up-regulated both nuclear c-rel levels and IL-12 production by macrophages. Decreased nuclear c-rel was associated with a reduction in phosphorylation of inhibitory kappa B alpha (IκBα) in the cytoplasm, indicating that IL-10 prevents degradation of IκBα and the subsequent translocation of c-rel into the nucleus. Treatment with leptomycin B, a known inhibitor of c-rel at a concentration of 10 nm, when used with anti-IL-10 antibody, resulted in reduced expression of IL-12. In a complementary experiment, in vitro transient expression of p65 NF-κB could not rescue the inhibitory effect of IL-10 on IL-12 production, suggesting that NF-κB alone was not sufficient to restore IL-12 production during IL-10 treatment. However, over-expression of c-rel resulted in IL-12 restoration upon stimulation with lipopolysaccharide plus interferon-γ during IL-10 treatment. Our studies highlight the involvement of c-rel in IL-10-mediated IL-12 regulation. PMID:15720433
Koshikawa, Nobuko; Hayashi, Jun-Ichi; Nakagawara, Akira; Takenaga, Keizo
2009-11-27
Lewis lung carcinoma-derived high metastatic A11 cells constitutively overexpress hypoxia-inducible factor (HIF)-1alpha mRNA compared with low metastatic P29 cells. Because A11 cells exclusively possess a G13997A mutation in the mitochondrial NADH dehydrogenase subunit 6 (ND6) gene, we addressed here a causal relationship between the ND6 mutation and the activation of HIF-1alpha transcription, and we investigated the potential mechanism. Using trans-mitochondrial cybrids between A11 and P29 cells, we found that the ND6 mutation was directly involved in HIF-1alpha mRNA overexpression. Stimulation of HIF-1alpha transcription by the ND6 mutation was mediated by overproduction of reactive oxygen species (ROS) and subsequent activation of phosphatidylinositol 3-kinase (PI3K)-Akt and protein kinase C (PKC) signaling pathways. The up-regulation of HIF-1alpha transcription was abolished by mithramycin A, an Sp1 inhibitor, but luciferase reporter and chromatin immunoprecipitation assays indicated that Sp1 was necessary but not sufficient for HIF-1alpha mRNA overexpression in A11 cells. On the other hand, trichostatin A, a histone deacetylase (HDAC) inhibitor, markedly suppressed HIF-1alpha transcription in A11 cells. In accordance with this, HDAC activity was high in A11 cells but low in P29 cells and in A11 cells treated with the ROS scavenger ebselene, the PI3K inhibitor LY294002, and the PKC inhibitor Ro31-8220. These results suggest that the ROS-generating ND6 mutation increases HIF-1alpha transcription via the PI3K-Akt/PKC/HDAC pathway, leading to HIF-1alpha protein accumulation in hypoxic tumor cells.
Henderson, Michael W.; Inatsuka, Carol S.; Sheets, Amanda J.; Williams, Corinne L.; Benaron, David J.; Donato, Gina M.; Gray, Mary C.; Hewlett, Erik L.
2012-01-01
Bordetella pertussis and Bordetella bronchiseptica establish respiratory infections with notorious efficiency. Our previous studies showed that the fhaB genes of B. pertussis and B. bronchiseptica, which encode filamentous hemagglutinin (FHA), are functionally interchangeable and provided evidence that FHA-deficient B. bronchiseptica induces more inflammation in the lungs of mice than wild-type B. bronchiseptica. We show here that the robust inflammatory response to FHA-deficient B. bronchiseptica is characterized by the early and sustained influx of interleukin-17 (IL-17)-positive neutrophils and macrophages and, at 72 h postinoculation, IL-17-positive CD4+ T cells, suggesting that FHA allows the bacteria to suppress the development of an IL-17-mediated inflammatory response. We also show that the cyaA genes of B. pertussis and B. bronchiseptica, which encode adenylate cyclase toxin (ACT), are functionally interchangeable and that ACT, specifically its catalytic activity, is required for B. bronchiseptica to resist phagocytic clearance but is neither required for nor inhibitory of the induction of inflammation if bacteria are present in numbers sufficient to persist during the first 3 days postinoculation. Incubation of bone marrow-derived macrophages with a ΔcyaA strain caused decreased production of IL-1β and increased production of tumor necrosis factor alpha (TNF-α) and IL-12, while incubation with a ΔcyaA ΔfhaB strain caused increased production of IL-23. These data suggest that FHA and ACT both contribute to suppress the recruitment of neutrophils and the development of an IL-17-mediated immune response. To our knowledge, this is the first demonstration of a microbial pathogen suppressing IL-17-mediated inflammation in vivo as a strategy to evade innate immunity. PMID:22473603
Shannon, Edward; Noveck, Robert; Sandoval, Felipe; Kamath, Burde; Kearney, Michael
2007-11-01
An early rationale for using thalidomide to treat erythema nodosum leprosum had been based on some reports that it suppresses tumor necrosis factor-alpha (TNF-alpha). However, in vivo and in vitro studies have yielded variable results, having shown that thalidomide can either enhance or suppress TNF-alpha. Since the course of circulating cytokines like TNF-alpha after infusion of endotoxin into volunteers is reproducible and characteristic, we investigated the effect of thalidomide on endotoxin-induced synthesis of TNF-alpha, interleukin (IL)-6, and IL-8. The cytokine response from 18 placebo-treated subjects who had undergone the endotoxin challenge were pooled with a placebo-treated subject from the current study and were compared with 4 subjects who received thalidomide (100 mg) every 6 h for 5 doses before endotoxin challenge. Thirty minutes after the last dose of thalidomide or placebo, volunteers were infused with 4-ng/kg endotoxin. Plasma was collected and assayed for cytokines by enzyme-linked immunosorbent assay. Endotoxin evoked the synthesis of the cytokines in all volunteers. The peak response for TNF-alpha was 1.5 h, 2.5 h for IL-8, and 3.0 h for IL-6. Thalidomide did not significantly delay the release of cytokines into the circulating blood. At the peak response, thalidomide reduced the concentration of the cytokines in the plasma. Using the area under the dose response curve (AUC(0 to 24) h), thalidomide reduced the AUC for IL-6 by 56%, for IL-8 by 30%, and TNF-alpha by 32%. In this model, thalidomide did not suppress TNF-alpha or IL-8, but it did suppress IL-6 at 4-h postinfusion with lipopolysaccharide (P=0.004), at 6 h (P=0.014), at 12 h (P=0.001), and at 16 h (P=0.012).
Roles of Epidermal Growth Factor (EGF) and Transforming Growth Factor-alpha (TGF-a) in Mediation of Dioxin (TCDD)-Induced Delays in Development of the Mouse Mammary Gland.
Suzanne E. Fenton, Barbara Abbott, Lamont Bryant, and Angela Buckalew. U.S. EPA, NHEERL, Reproductive Tox...
Williams, Erin J.; Sibley, Kelly; Miller, Aleisha N.; Lane, Elizabeth A.; Fishwick, John; Nash, Deborah M.; Herath, Shan; England, Gary CW; Dobson, Hilary; Sheldon, I. Martin
2009-01-01
Problem Pelvic inflammatory disease and metritis are important causes of infertility in humans and domestic animals. Uterine infection with Escherichia coli in cattle is associated with reduced ovarian follicle growth and decreased estradiol secretion. We hypothesized that this effect could be mediated by the bacterial lipopolysaccharide (LPS) or cytokines such as tumor necrosis factor alpha (TNFα). Method of study In vitro, bovine ovarian theca and granulosa cells were treated with LPS or TNFα and steroid secretion measured. In vivo, the effect of LPS or TNFα intrauterine infusion was determined by ovarian ultrasonography and measurement of hormones in cattle. Results LPS reduced granulosa cell estradiol secretion, whilst TNFα decreased theca and granulosa cell androstenedione and estradiol production, respectively. In vivo, fewer animals ovulated following intrauterine infusion with LPS or TNFα. Conclusion LPS and TNFα suppress ovarian cell function, supporting the concept that pelvic inflammatory disease and metritis are detrimental for bovine ovarian health. PMID:19238751
Task motivation influences alpha suppression following errors.
Compton, Rebecca J; Bissey, Bryn; Worby-Selim, Sharoda
2014-07-01
The goal of the present research is to examine the influence of motivation on a novel error-related neural marker, error-related alpha suppression (ERAS). Participants completed an attentionally demanding flanker task under conditions that emphasized either speed or accuracy or under conditions that manipulated the monetary value of errors. Conditions in which errors had greater motivational value produced greater ERAS, that is, greater alpha suppression following errors compared to correct trials. A second study found that a manipulation of task difficulty did not affect ERAS. Together, the results confirm that ERAS is both a robust phenomenon and one that is sensitive to motivational factors. Copyright © 2014 Society for Psychophysiological Research.
Mun, Se Hwan; Kim, Hyuk Soon; Kim, Jie Wan; Ko, Na Young; Kim, Do Kyun; Lee, Beob Yi; Kim, Bokyung; Won, Hyung Sik; Shin, Hwa-Sup; Han, Jeung-Whan; Lee, Hoi Young; Kim, Young Mi; Choi, Wahn Soo
2009-09-01
We investigated whether oral administration of curcumin suppressed type II collagen-induced arthritis (CIA) in mice and its effect and mechanism on matrix metalloproteinase (MMP)-1 and MMP-3 production in CIA mice, RA fibroblast-like synoviocytes (FLS), and chondrocytes. CIA in mice was suppressed by oral administration of curcumin in a dose-dependent manner. Macroscopic observations were confirmed by histological examinations. Histological changes including infiltration of immune cells, synovial hyperplasia, cartilage destruction, and bone erosion in the hind paw sections were extensively suppressed by curcumin. The histological scores were consistent with clinical arthritis indexes. Production of MMP-1 and MMP-3 were inhibited by curcumin in CIA hind paw sections and tumor necrosis factor (TNF)-alpha-stimulated FLS and chondrocytes in a dose-dependent manner. As for the mechanism, curcumin inhibited activating phosphorylation of protein kinase Cdelta (PKCdelta) in CIA, FLS, and chondrocytes. Curcumin also suppressed the JNK and c-Jun activation in those cells. This study suggests that the suppression of MMP-1 and MMP-3 production by curcumin in CIA is mediated through the inhibition of PKCdelta and the JNK/c-Jun signaling pathway.
FcepsilonRI-alpha siRNA inhibits the antigen-induced activation of mast cells.
Safaralizadeh, Reza; Soheili, Zahra-Soheila; Deezagi, Abdolkhaleg; Pourpak, Zahra; Samiei, Shahram; Moin, Mostafa
2009-12-01
FcepsilonRI, The high affinity receptor for IgE plays a critical role in triggering the allergic reactions. It is responsible for inducing mast cell degranulation and deliberation of allergy mediators when it is aggregated by allergen and IgE complexes. FcepsilonRI on the mast cells consists of three subunits; alpha chain directly binds IgE, beta chain and dimmer of gamma chains together mediate intracellular signaling. Cross-linking of IgE-bound FcepsilonRI on the surface of mast cells and basophils by the multivalent antigen induces release of chemical mediators. The present in vitro study was designed to investigate the effect of synthetic FcepsilonRI-alpha siRNA on the antigen-induced activation of MC/9 cells. MC/9 cells which are murine mast cells were transfected by FcepsilonRI-alpha siRNA and negative control siRNA. After 6 h, anti-DNP (Dinitrophenyl) IgE was used for the cells sensitization. Then the cells were challenged with Dinitrophenyl-Human Serum Albumin (DNP-HSA) for mast cell degranulation induction before collection of supernatants. The amount of mRNA and protein expression was measured by Real Time PCR and western blot analysis, respectively. Determination of the expression rate of FcepsilonRI-alpha on cell surface was achieved by flow cytometry. ELISA and spectrophotometry methods were used subsequently for measuring the effects of FcepsilonRI-alpha siRNA on antigen-induced histamine and beta-hexosaminidase release. FcepsilonRI-alpha siRNA treated cells showed significant decrease in FcepsilonRI-alpha mRNA and protein expression in comparison to control cells. FcepsilonRI-mediated mast cell release of beta-hexosaminidase and histamine were also inhibited. In this study it was shown that FcepsilonRI-alpha siRNA could suppress FcepsilonRI-alpha expression and inhibited degranulation and histamine release in antigen-stimulated MC/9 cells. In conclusion, knock-down of FcepsilonRI-alpha by siRNA could be a promising method for inhibition of the mast cell-mediated allergic reactions.
Woo, Hae-Mi; Kang, Ji-Hye; Kawada, Teruo; Yoo, Hoon; Sung, Mi-Kyung; Yu, Rina
2007-02-13
Inflammation plays a key role in obesity-related pathologies such as cardiovascular disease, type II diabetes, and several types of cancer. Obesity-induced inflammation entails the enhancement of the recruitment of macrophages into adipose tissue and the release of various proinflammatory proteins from fat tissue. Therefore, the modulation of inflammatory responses in obesity may be useful for preventing or ameliorating obesity-related pathologies. Some spice-derived components, which are naturally occurring phytochemicals, elicit antiobesity and antiinflammatory properties. In this study, we investigated whether active spice-derived components can be applied to the suppression of obesity-induced inflammatory responses. Mesenteric adipose tissue was isolated from obese mice fed a high-fat diet and cultured to prepare an adipose tissue-conditioned medium. Raw 264.7 macrophages were treated with the adipose tissue-conditioned medium with or without active spice-derived components (i.e., diallyl disulfide, allyl isothiocyanate, piperine, zingerone and curcumin). Chemotaxis assay was performed to measure the degree of macrophage migration. Macrophage activation was estimated by measuring tumor necrosis factor-alpha (TNF-alpha), nitric oxide, and monocyte chemoattractant protein-1 (MCP-1) concentrations. The active spice-derived components markedly suppressed the migration of macrophages induced by the mesenteric adipose tissue-conditioned medium in a dose-dependent manner. Among the active spice-derived components studied, allyl isothiocyanate, zingerone, and curcumin significantly inhibited the cellular production of proinflammatory mediators such as TNF-alpha and nitric oxide, and significantly inhibited the release of MCP-1 from 3T3-L1 adipocytes. Our findings suggest that the spice-derived components can suppress obesity-induced inflammatory responses by suppressing adipose tissue macrophage accumulation or activation and inhibiting MCP-1 release from adipocytes. These spice-derived components may have a potential to improve chronic inflammatory conditions in obesity.
Bauditz, J; Wedel, S; Lochs, H
2002-02-01
Thalidomide improves clinical symptoms in patients with therapy refractory Crohn's disease, as shown in two recent studies. The mechanism of this effect however is still unknown. Suppression of tumour necrosis factor alpha (TNF-alpha) by thalidomide has been suggested as a possible mechanism. However, effects on other cytokines have not been adequately investigated. The aim of our study was to investigate the effects of thalidomide on cytokine production in patients with inflammatory bowel disease (IBD). Ten patients with therapy refractory IBD (nine Crohn's disease, one ulcerative colitis) received thalidomide 300 mg daily in a 12 week open label study. Production of TNF-alpha, interleukin (IL)-1 beta, IL-6, and IL-12 was investigated in short term cultures of stimulated colonic lamina propria mononuclear cells (LPMC) and peripheral blood monocytes (PBMC) before and after 12 weeks of treatment. LPMC were also cultured with graded doses of thalidomide. Three patients discontinued treatment because of sedative side effects. In the other patients, disease activity decreased significantly, with four patients achieving remission. Production of TNF-alpha and IL-12 decreased during treatment with thalidomide: LPMC (TNF-alpha: 42.3 (8.3) pg/ml v 16.4 (6.3); IL-12: 9.7 (3.3) v 5.0 (2.5); p<0.04) and PBMC (TNF-alpha: 62.8 (14.6) v 22.5 (9.2); p<0.02). Production of IL-1 beta and IL-6 did not change significantly. Culturing of LPMC with thalidomide showed a dose dependent decrease in TNF-alpha and IL-12 production. The clinical effects of thalidomide in Crohn's disease may be mediated by reduction of both TNF-alpha and IL-12.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wei; Department of cardiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin 150081; Guo, Ting
2011-05-01
Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPAR{gamma}) coactivator-1 alpha (PGC-1{alpha}) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1{alpha} in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1{alpha} expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1{alpha} mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1{alpha} expression while stimulating VSMC migration.more » Mechanistic study showed that suppression of PGC-1{alpha} by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1{alpha} had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1{alpha} decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPAR{gamma} activation by a PPAR{gamma} antagonist GW9662 abolished the suppressive effects of PGC-1{alpha} on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1{alpha} were enhanced by a PPAR{gamma} agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1{alpha} expression. PGC-1{alpha} suppresses PDGF-induced VSMC migration through PPAR{gamma} coactivation and, consequently, p38 MAPK inhibition.« less
2014-01-01
Background Houttuynia cordata Thunb. (Saururaceae) has been used in traditional medicine for treatment of inflammatory diseases. This study evaluated the anti-inflammatory effects of an ethyl acetate fraction derived from a Houttuynia cordata extract (HCE-EA) on the production of inflammatory mediators and the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods To measure the effects of HCE-EA on pro-inflammatory cytokine and inflammatory mediator’s expression in RAW 264.7 cells, we used the following methods: cell viability assay, Griess reagent assay, enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting analysis. Results HCE-EA downregulated nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin (IL-6) production in the cells, as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, HCE-EA suppressed nuclear translocation of the NF-κB p65 subunit, which correlated with an inhibitory effect on IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) phosphorylation. HCE-EA also attenuated the activation of MAPKs (p38 and JNK). Conclusions Our results suggest that the anti-inflammatory properties of HCE-EA may stem from the inhibition of pro-inflammatory mediators via suppression of NF-κB and MAPK signaling pathways. PMID:25012519
Riehemann, K; Behnke, B; Schulze-Osthoff, K
1999-01-08
Activation of transcription factor NF-kappaB is elevated in several chronic inflammatory diseases and is responsible for the enhanced expression of many proinflammatory gene products. Extracts from leaves of stinging nettle (Urtica dioica) are used as antiinflammatory remedies in rheumatoid arthritis. Standardized preparations of these extracts (IDS23) suppress cytokine production, but their mode of action remains unclear. Here we demonstrate that treatment of different cells with IDS23 potently inhibits NF-kappaB activation. An inhibitory effect was observed in response to several stimuli, suggesting that IDS23 suppressed a common NF-kappaB pathway. Inhibition of NF-kappaB activation by IDS23 was not mediated by a direct modification of DNA binding, but rather by preventing degradation of its inhibitory subunit IkappaB-alpha. Our results suggests that part of the antiinflammatory effect of Urtica extract may be ascribed to its inhibitory effect on NF-kappaB activation.
Uitdehaag, B M; Hoekstra, K; Koper, J W; Polman, C H; Dijkstra, C D
2001-03-01
We studied the effect of recombinant interferon-beta1b (IFN-beta1b) on the sensitivity to glucocorticoids (GC) and on the number of GC receptors (GCR) in the human monocytic cell line THP-1. We found that IFN-beta1b augments the suppressive effect that dexamethasone has on the stimulated production of tumor necrosis factor-alpha (TNF-alpha), most likely related to the increased number of GCR observed after exposure to IFN-beta1b. This provides a possible clue to the mechanism of action of IFN-beta in multiple sclerosis.
Kakinuma, Yoshihiko; Katare, Rajesh G; Arikawa, Mikihiko; Muramoto, Kazuyo; Yamasaki, Fumiyasu; Sato, Takayuki
2008-01-23
Recently, we reported that acetylcholine-induced hypoxia-inducible factor-1alpha protects cardiomyocytes from hypoxia; however, the downstream factors reducing hypoxic stress are unknown. We identified apoptosis inhibitor (AI) gene as being differentially expressed between von Hippel Lindau (VHL) protein-positive cells with high levels of GRP78 expression and VHL-negative cells with lower GRP levels, using cDNA subtraction. AI decreased GRP78 level, suppressed mitochondrial function, reduced oxygen consumption and, ultimately, suppressed hypoxia-induced apoptosis. By contrast, knockdown of the AI gene increased mitochondrial function. Hypoxic cardiomyocytes and ischemic myocardium showed increased AI mRNA expression. These findings suggest that AI is involved in suppressing mitochondrial function, thereby leading to cellular stress eradication and consequently to protection during hypoxia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpiainen, Satu; Jaervenpaeae, Sanna-Mari; Manninen, Aki
The nutritional state of organisms and energy balance related diseases such as diabetes regulate the metabolism of xenobiotics such as drugs, toxins and carcinogens. However, the mechanisms behind this regulation are mostly unknown. The xenobiotic-metabolizing cytochrome P450 (CYP) 2A5 enzyme has been shown to be induced by fasting and by glucagon and cyclic AMP (cAMP), which mediate numerous fasting responses. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} triggers many of the important hepatic fasting effects in response to elevated cAMP levels. In the present study, we were able to show that cAMP causes a coordinated induction of PGC-1{alpha} and CYP2A5 mRNAsmore » in murine primary hepatocytes. Furthermore, the elevation of the PGC-1{alpha} expression level by adenovirus mediated gene transfer increased CYP2A5 transcription. Co-transfection of Cyp2a5 5' promoter constructs with the PGC-1{alpha} expression vector demonstrated that PGC-1{alpha} is able to activate Cyp2a5 transcription through the hepatocyte nuclear factor (HNF)-4{alpha} response element in the proximal promoter of the Cyp2a5 gene. Chromatin immunoprecipitation assays showed that PGC-1{alpha} binds, together with HNF-4{alpha}, to the same region at the Cyp2a5 proximal promoter. In conclusion, PGC-1{alpha} mediates the expression of CYP2A5 induced by cAMP in mouse hepatocytes through coactivation of transcription factor HNF-4{alpha}. This strongly suggests that PGC-1{alpha} is the major factor mediating the fasting response of CYP2A5.« less
Gonçalves, Dawit A P; Lira, Eduardo C; Baviera, Amanda M; Cao, Peirang; Zanon, Neusa M; Arany, Zoltan; Bedard, Nathalie; Tanksale, Preeti; Wing, Simon S; Lecker, Stewart H; Kettelhut, Isis C; Navegantes, Luiz C C
2009-12-01
Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutylmethylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutylmethylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1alpha (peroxisome proliferator-activated receptor-gamma coactivator 1alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3.
Sodium 4-phenylbutyrate protects against cerebral ischemic injury.
Qi, Xin; Hosoi, Toru; Okuma, Yasunobu; Kaneko, Masayuki; Nomura, Yasuyuki
2004-10-01
Sodium 4-phenylbutyrate (4-PBA) is a low molecular weight fatty acid that has been used for treatment of urea cycle disorders in children, sickle cell disease, and thalassemia. It has been demonstrated recently that 4-PBA can act as a chemical chaperone by reducing the load of mutant or mislocated proteins retained in the endoplasmic reticulum (ER) under conditions associated with cystic fibrosis and liver injury. In the present study, we evaluated the neuroprotective effect of 4-PBA on cerebral ischemic injury. Pre- or post-treatment with 4-PBA at therapeutic doses attenuated infarction volume, hemispheric swelling, and apoptosis and improved neurological status in a mouse model of hypoxia-ischemia. Moreover, 4-PBA suppressed ER-mediated apoptosis by inhibiting eukaryotic initiation factor 2alpha phosphorylation, CCAAT/enhancer-binding protein homologous protein induction, and caspase-12 activation. In neuroblastoma neuro2a cells, 4-PBA reduced caspase-12 activation, DNA fragmentation, and cell death induced by hypoxia/reoxygenation. It protected against ER stress-induced but not mitochondria-mediated cell death. Additionally, 4-PBA inhibited the expression of inducible nitric-oxide synthase and tumor necrosis factor-alpha in primary cultured glial cells under hypoxia/reoxygenation. These results indicate that 4-PBA could protect against cerebral ischemia through inhibition of ER stress-mediated apoptosis and inflammation. Therefore, the multiple actions of 4-PBA may provide a strong effect in treatment of cerebral ischemia, and its use as a chemical chaperone would provide a novel approach for the treatment of stroke.
Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes
NASA Technical Reports Server (NTRS)
Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)
1999-01-01
Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.
Viviani, B; Corsini, E; Pesenti, M; Galli, C L; Marinovich, M
2001-04-15
Exposure of a primary culture of glial cells to the classical neurotoxicant trimethyltin (TMT) results in the release of prostaglandin (PG)E(2) and tumor necrosis factor (TNF)-alpha. Prior treatment of glial cells with either the nonspecific inhibitor of cyclooxygenase and lypoxygenase eicosatetraynoic acid (ETYA) or the cyclooxygenase inhibitor indomethacin completely prevented TMT-induced PGE(2) production and TNF-alpha release, suggesting a role for cyclooxygenase metabolites in TMT-induced TNF-alpha release. Exposure of glial cells to increasing concentrations of PGE(2) or other prostanoids did not increase TNF-alpha synthesis, while the presence of exogenous PGE(2) during treatment of glial cells with TMT actually suppressed TNF-alpha release. The activation of arachidonic acid metabolism produces reactive oxygen species (ROS). Scavenging of ROS by means of the antioxidant trolox prevented the TMT-induced release of TNF-alpha from glial cells, while indomethacin was found to suppress ROS formation induced by 1 microM TMT in glial cells. These results suggest that activation of arachidonic acid metabolism causes TNF-alpha release through the production of ROS rather than PGE(2). Indeed, PGE(2) may exert negative feedback on the release of TNF-alpha. Copyright 2001 Academic Press.
TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription.
Cavadini, Gionata; Petrzilka, Saskia; Kohler, Philipp; Jud, Corinne; Tobler, Irene; Birchler, Thomas; Fontana, Adriano
2007-07-31
Production of TNF-alpha and IL-1 in infectious and autoimmune diseases is associated with fever, fatigue, and sleep disturbances, which are collectively referred to as sickness behavior syndrome. In mice TNF-alpha and IL-1 increase nonrapid eye movement sleep. Because clock genes regulate the circadian rhythm and thereby locomotor activity and may alter sleep architecture we assessed the influence of TNF-alpha on the circadian timing system. TNF-alpha is shown here to suppress the expression of the PAR bZip clock-controlled genes Dbp, Tef, and Hlf and of the period genes Per1, Per2, and Per3 in fibroblasts in vitro and in vivo in the liver of mice infused with the cytokine. The effect of TNF-alpha on clock genes is shared by IL-1beta, but not by IFN-alpha, and IL-6. Furthermore, TNF-alpha interferes with the expression of Dbp in the suprachiasmatic nucleus and causes prolonged rest periods in the dark when mice show spontaneous locomotor activity. Using clock reporter genes TNF-alpha is found here to inhibit CLOCK-BMAL1-induced activation of E-box regulatory elements-dependent clock gene promoters. We suggest that the increase of TNF-alpha and IL-1beta, as seen in infectious and autoimmune diseases, impairs clock gene functions and causes fatigue.
Anti-Inflammatory Effects of Progesterone in Lipopolysaccharide-Stimulated BV-2 Microglia
Lei, Beilei; Mace, Brian; Dawson, Hana N.; Warner, David S.; Laskowitz, Daniel T.; James, Michael L.
2014-01-01
Female sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO) and prostaglandin E2 (PGE2), mediated by inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone’s effects on tumor necrosis factor alpha (TNF-α), iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways. LPS (30 ng/ml) upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury. PMID:25080336
Ikeguchi, M; Cai, J; Fukuda, K; Oka, S; Katano, K; Tsujitani, S; Maeta, M; Kaibara, N
2001-06-01
The aim of this study was to investigate whether angiogenic factors influence the occurrence of spontaneous apoptosis in advanced gastric cancer. The apoptotic indices (AIs) of 97 tumors from 97 patients with advanced gastric cancer (pT3, pN0, pM0, Stage II) were analyzed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end labeling (TUNEL) method. Intratumoral microvessel densities (IMVDs) of tumors stained with anti-CD34 monoclonal antibody were quantified under x 200 magnification using computer-assisted image analysis. The expressions of angiogenic factors, such as vascular endothelial growth factor (VEGF), thymidine phosphorylase (dThdPase), transforming growth factor-alpha (TGF-alpha), and p53 were analyzed immunohistochemically and compared with IMVDs and AIs. The mean IMVD of the 97 tumors was 365/mm2 (range 147-990/mm2). The mean AI of tumors was 2.1% (range 0-11.3%). A significant inverse correlation between the AIs and the IMVDs was shown (p = -0.278, P = 0.0064). The mean IMVDs of tumors with high expressions of dThdPase, TGF-alpha, or p53 were significantly higher than those of tumors with low expressions of these factors. The mean AI of tumors with high expressions of dThdPase was significantly lower than that of tumors with low expressions of dThdPase (P = 0.023). However, no significant correlations were detected between AIs and the expression levels of VEGF, TGF-alpha, or p53. In gastric cancer, dThdPase may play an important role in tumor progression by increasing microvessels and by suppressing apoptosis of cancer cells.
NASA Astrophysics Data System (ADS)
Arling, J.-H.; Gerhardt, M.; Gößling, C.; Gehre, D.; Klingenberg, R.; Kröninger, K.; Nitsch, C.; Quante, T.; Rohatsch, K.; Tebrügge, J.; Temminghoff, R.; Theinert, R.; Zatschler, S.; Zuber, K.
2017-11-01
The COBRA collaboration searches for neutrinoless double beta-decay (0νββ-decay) using CdZnTe semiconductor detectors with a coplanar-grid readout and a surrounding guard-ring structure. The operation of the COBRA demonstrator at the Gran Sasso underground laboratory (LNGS) indicates that alpha-induced lateral surface events are the dominant source of background events. By instrumenting the guard-ring electrode it is possible to suppress this type of background. In laboratory measurements this method achieved a suppression factor of alpha-induced lateral surface events of 5300+2660-1380, while retaining (85.3 ±0.1%) of gamma events occurring in the entire detector volume. This suppression is superior to the pulse-shape analysis methods used so far in COBRA by three orders of magnitude.
Quinn, Jeffrey A; Graeber, C Thomas; Frackelton, A Raymond; Kim, Minsoo; Schwarzbauer, Jean E; Filardo, Edward J
2009-07-01
Estrogen promotes changes in cytoskeletal architecture not easily attributed to the biological action of estrogen receptors, ERalpha and ERbeta. The Gs protein-coupled transmembrane receptor, GPR30, is linked to specific estrogen binding and rapid estrogen-mediated release of heparin-bound epidermal growth factor. Using marker rescue and dominant interfering mutant strategies, we show that estrogen action via GPR30 promotes fibronectin (FN) matrix assembly by human breast cancer cells. Stimulation with 17beta-estradiol or the ER antagonist, ICI 182, 780, results in the recruitment of FN-engaged integrin alpha5beta1 conformers to fibrillar adhesions and the synthesis of FN fibrils. Concurrent with this cellular response, GPR30 promotes the formation of Src-dependent, Shc-integrin alpha5beta1 complexes. Function-blocking antibodies directed against integrin alpha5beta1 or soluble Arg-Gly-Asp peptide fragments derived from FN specifically inhibited GPR30-mediated epidermal growth factor receptor transactivation. Estrogen-mediated FN matrix assembly and epidermal growth factor receptor transactivation were similarly disrupted in integrin beta1-deficient GE11 cells, whereas reintroduction of integrin beta1 into GE11 cells restored these responses. Mutant Shc (317Y/F) blocked GPR30-induced FN matrix assembly and tyrosyl phosphorylation of erbB1. Interestingly, relative to recombinant wild-type Shc, 317Y/F Shc was more readily retained in GPR30-induced integrin alpha5beta1 complexes, yet this mutant did not prevent endogenous Shc-integrin alpha5beta1 complex formation. Our results suggest that GPR30 coordinates estrogen-mediated FN matrix assembly and growth factor release in human breast cancer cells via a Shc-dependent signaling mechanism that activates integrin alpha5beta1.
Melis, Miriam; Pillolla, Giuliano; Luchicchi, Antonio; Muntoni, Anna Lisa; Yasar, Sevil; Goldberg, Steven R; Pistis, Marco
2008-12-17
Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-alpha triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-alpha in the brain and provide a potential new target for the treatment of nicotine addiction.
Cellular immunodepression preceding infectious complications after acute ischemic stroke in humans.
Haeusler, Karl Georg; Schmidt, Wolf U H; Föhring, Fabian; Meisel, Christian; Helms, Thomas; Jungehulsing, G Jan; Nolte, Christian H; Schmolke, Katrin; Wegner, Brigitte; Meisel, Andreas; Dirnagl, Ulrich; Villringer, Arno; Volk, Hans-Dieter
2008-01-01
We have recently shown that ischemic stroke causes a stress-mediator-induced long-lasting immunodepressive state in mice. Using head magnetic resonance imaging and standardized immunoassays, we prospectively investigated whether poststroke immunodepression is also seen in humans. Compared to healthy volunteers (n = 30), a rapid depression of lymphocyte counts and a functional deactivation of monocytes and T helper type 1 cells was observed in acute stroke patients (SP; n = 40). Immunodepression was more pronounced in patients with severe clinical deficit or large infarction. On admission the combination of monocytic tumor necrosis factor alpha release ex vivo and the National Institute of Health Stroke Scale score were the best predictors for nosocomial infection, preferentially affecting older SP. Our data provide evidence for an immediate suppression of cell-mediated immune responses after ischemic stroke in humans. (c) 2007 S. Karger AG, Basel.
Da Silva, Diane M; Movius, Carly A; Raff, Adam B; Brand, Heike E; Skeate, Joseph G; Wong, Michael K; Kast, W Martin
2014-03-01
Human papillomavirus (HPV) has evolved mechanisms that allow it to evade the human immune system. Studies have shown HPV-mediated suppression of activation of Langerhans cells (LC) is a key mechanism through which HPV16 evades initial immune surveillance. However, it has not been established whether high- and low-risk mucosal and cutaneous HPV genotypes share a common mechanism of immune suppression. Here, we demonstrate that LC exposed to capsids of HPV types 18, 31, 45, 11, (alpha-papillomaviruses) and HPV5 (beta-papillomavirus) similarly suppress LC activation, including lack of costimulatory molecule expression, lack of cytokine and chemokine secretion, lack of migration, and deregulated cellular signaling. In contrast, HPV1 (mu-papillomavirus) induced costimulatory molecule and cytokine upregulation, but LC migration and cellular signaling was suppressed. These results suggest that alpha and beta HPV genotypes, and partially a mu genotype, share a conserved mechanism of immune escape that enables these viruses to remain undetected in the absence of other inflammatory events. Copyright © 2014 Elsevier Inc. All rights reserved.
Tan, Woan Sean; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Fakurazi, Sharida
2015-01-01
Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2), interleukin- (IL-) 6, IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL). Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway. PMID:26609199
Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon
2016-09-01
This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E₂ (PGE₂), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells.
Hallahan, D E; Virudachalam, S; Kuchibhotla, J; Kufe, D W; Weichselbaum, R R
1994-01-01
Cells adapt to adverse environmental conditions through a wide range of responses that are conserved throughout evolution. Physical agents such as ionizing radiation are known to initiate a stress response that is triggered by the recognition of DNA damage. We have identified a signaling pathway involving the activation of phospholipase A2 and protein kinase C in human cells that confers x-ray induction of the tumor necrosis factor alpha gene. Treatment of human cells with ionizing radiation or H2O2 was associated with the production of arachidonic acid. Inhibition of phospholipase A2 abolished radiation-mediated arachidonate production as well as the subsequent activation of protein kinase C and tumor necrosis factor alpha gene expression. These findings demonstrate that ionizing radiation-mediated gene expression in human cells is regulated in part by extranuclear signal transduction. One practical application of phospholipase A2 inhibitors is to ameliorate the adverse effects of radiotherapy associated with tumor necrosis factor alpha production. Images PMID:8197153
Rusten, L S; Smeland, E B; Jacobsen, F W; Lien, E; Lesslauer, W; Loetscher, H; Dubois, C M; Jacobsen, S E
1994-01-01
Stem cell factor (SCF), a key regulator of hematopoiesis, potently synergizes with a number of hematopoietic growth factors. However, little is known about growth factors capable of inhibiting the actions of SCF. TNF-alpha has been shown to act as a bidirectional regulator of myeloid cell proliferation and differentiation. This study was designed to examine interactions between TNF-alpha and SCF. Here, we demonstrate that TNF-alpha potently and directly inhibits SCF-stimulated proliferation of CD34+ hematopoietic progenitor cells. Furthermore, TNF-alpha blocked all colony formation stimulated by SCF in combination with granulocyte colony-stimulating factor (CSF) or CSF-1. The synergistic effect of SCF observed in combination with GM-CSF or IL-3 was also inhibited by TNF-alpha, resulting in colony numbers similar to those obtained in the absence of SCF. These effects of TNF-alpha were mediated through the p55 TNF receptor, whereas little or no inhibition was signaled through the p75 TNF receptor. Finally, TNF-alpha downregulated c-kit cell-surface expression on CD34+ bone marrow cells, and this was predominantly a p55 TNF receptor-mediated event as well. Images PMID:7518828
Horai, R; Asano, M; Sudo, K; Kanuka, H; Suzuki, M; Nishihara, M; Takahashi, M; Iwakura, Y
1998-05-04
Interleukin (IL)-1 is a major mediator of inflammation and exerts pleiotropic effects on the neuro-immuno-endocrine system. To elucidate pathophysiological roles of IL-1, we have first produced IL-1alpha/beta doubly deficient (KO) mice together with mice deficient in either the IL-1alpha, IL-1beta, or IL-1 receptor antagonist (IL-1ra) genes. These mice were born healthy, and their growth was normal except for IL-1ra KO mice, which showed growth retardation after weaning. Fever development upon injection with turpentine was suppressed in IL-1beta as well as IL-1alpha/beta KO mice, but not in IL-1alpha KO mice, whereas IL-1ra KO mice showed an elevated response. At this time, expression of IL-1beta mRNA in the diencephalon decreased 1.5-fold in IL-1alpha KO mice, whereas expression of IL-1alpha mRNA decreased >30-fold in IL-1beta KO mice, suggesting mutual induction between IL-1alpha and IL-1beta. This mutual induction was also suggested in peritoneal macrophages stimulated with lipopolysaccharide in vitro. In IL-1beta KO mice treated with turpentine, the induction of cyclooxygenase-2 (EC 1.14.99.1) in the diencephalon was suppressed, whereas it was enhanced in IL-1ra KO mice. We also found that glucocorticoid induction 8 h after turpentine treatment was suppressed in IL-1beta but not IL-1alpha KO mice. These observations suggest that IL-1beta but not IL-1alpha is crucial in febrile and neuro-immuno-endocrine responses, and that this is because IL-1alpha expression in the brain is dependent on IL-1beta. The importance of IL-1ra both in normal physiology and under stress is also suggested.
Kataoka, Hiroki; Murakami, Ryuichiro; Numaguchi, Yasushi; Okumura, Kenji; Murohara, Toyoaki
2010-06-25
Decrease in endothelial nitric oxide synthase (eNOS) expression is one of the adverse outcomes of endothelial dysfunction. Tumor necrosis factor-alpha (TNF-alpha) is known to decrease eNOS expression and is an important mediator of endothelial dysfunction. We hypothesized that an angiotensin II type 1 (AT1) receptor blocker would improve endothelial function via not only inhibition of the angiotensin II signaling but also inhibition of the TNF-alpha-mediated signaling. Therefore we investigated whether an AT1 receptor blocker would restore the TNF-alpha-induced decrease in eNOS expression in cultured human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with an antioxidant (superoxide dismutase, alpha-tocopherol) or AT1 receptor blockers (olmesartan or candesartan) restored the TNF-alpha-dependent reduction of eNOS. The AT1 receptor blocker decreased the TNF-alpha-dependent increase of 8-isoprostane. The superoxide dismutase activities in HUVEC were stable during AT1 receptor blocker treatment, and the AT1 receptor blocker did not scavenge superoxide directly. The AT1 receptor blocker also decreased TNF-alpha-induced phosphorylation of I kappaB alpha and cell death. These results suggest that AT1 receptor blockers are able to ameliorate TNF-alpha-dependent eNOS reduction or cell injury by inhibiting superoxide production or nuclear factor-kappaB activation. (c) 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.
Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor ({alpha}7 nAChR) and {beta}-adrenergic receptors. Treatment of cells with {alpha}-bungarotoxin ({alpha}-BTX, {alpha}7nAChR antagonist) or propranolol ({beta}-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE{sub 2} and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE{sub 2} induction canmore » only be suppressed by propranolol, but not {alpha}-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.« less
N-acetylcysteine inhibits induction of nitric oxide synthase in 3T3-L1 adipocytes.
Araki, Shunsuke; Dobashi, Kazushige; Kubo, Kazuyasu; Kawagoe, Rinko; Yamamoto, Yukiyo; Shirahata, Akira
2007-12-01
The present study was designed to determine whether N-acetylcysteine (NAC), a potent antioxidant, modulates nitric oxide (NO) production stimulated by lipopolysaccharide (LPS) and tumor necrosis factor-alpha (TNF-alpha) in adipocytes. Stimulation by the combination of 5 microg/ml of LPS and 100 ng/ml of TNF-alpha (LT) significantly enhanced NO production in 3T3-L1 adipocytes. Preincubation of the cells with NAC (5-20 mM) for 24 h suppressed the increased NO production in a dose-dependent manner. The production of NO was decreased by 49% at the concentration of 20 mM of NAC. The decrease in NO production by NAC was accompanied by a decrease in inducible nitric oxide synthase (iNOS) protein, detected by immunoblot analysis, and iNOS mRNA, determined by real-time reverse-transcriptase coupled polymerase chain reaction analysis. Nuclear factor-kappa B (NF-kappa B) was significantly activated by LT-treatment, while the pretreatment with 20 mM of NAC prevented the activity by 42%. Pyrrolidine dithiocarbamate (PDTC), a NF-kappaB inhibitor, also inhibited the LT-mediated NO production dose-dependently. One hundred microM of PDTC inhibited the NO production by 46%. We also investigated the effect of NAC and PDTC on the production of interleukein-6 (IL-6), which is regulated transcriptionally by NF-kappa B in 3T3-L1 adipocytes. IL-6 production was markedly increased by LT stimulus, and the enhanced secretion of IL-6 was suppressed in a dose-dependent manner by pretreatment with NAC or PDTC. These results suggest that NAC regulates iNOS expression and NO production in adipocytes through the modulating activation of NF-kappa B.
Jang, Ji Yeon; Kim, Ha Neui; Kim, Yu Ri; Choi, Yung Hyun; Kim, Byung Woo; Shin, Hwa Kyoung; Choi, Byung Tae
2012-05-07
Semen cuscutae has been used traditionally to treat pimples and alleviate freckles and melasma in Korea. The present study aimed to investigate the inhibitory effect of Cuscuta japonica Choisy seeds on alpha-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. The aqueous fraction from Semen cuscutae (AFSC) was used to determine anti-melanogenic effects by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay and Western blot analysis for melanin synthesis-related signaling proteins in B16F10 mouse melanoma cells. AFSC markedly inhibited α-MSH-induced melanin synthesis and tyrosinase activity, and also decreased α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase-related proteins (TRPs). Moreover, AFSC significantly decreased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK) signaling through the down-regulation of α-MSH-induced cAMP. Furthermore, we confirmed that the specific inhibitor of p38 MAPK (SB203580)-mediated suppressed melanin synthesis and tyrosinase activity was further attenuated by AFSC. AFSC also further decreased SB203580-mediated suppression of MITF and TRP expression. These results indicate that AFSC inhibits p38 MAPK phosphorylation with suppressed cAMP levels and subsequently down-regulate MITF and TRP expression, which results in a marked reduction of melanin synthesis and tyrosinase activity in α-MSH-stimulated B16F10 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Lee, Sang Kil; Kim, Youn Wha; Chi, Sung-Gil; Joo, Yeong-Shil; Kim, Hyo Jong
2009-02-01
Saccharomyces boulardii (S. boulardii) has beneficial effects in the treatment of intestinal inflammation; however, little is known about the mechanisms by which these effects occur. We investigated the effects of S. boulardii on the expression of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and interleukin-8 (IL-8), using human HT-29 colonocytes and a rat model of trinitrobenzene sulfonic acid (TNBS)-induced colitis. The effect of S. boulardii on gene expression was assessed by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), and Northern blot and Western blot assays. Pharmacological inhibitors for various signaling pathways were used to determine the signaling pathways implicated in the S. boulardii regulation of PPAR-gamma and IL-8. We found that S. boulardii up-regulated and down-regulated PPAR-gamma and IL-8 expression at the transcription level, both in vitro and in vivo (P < 0.05, respectively). Saccharomyces boulardii blocked tumor necrosis factor-alpha (TNF-alpha) regulation of PPAR-gamma and IL-8 through disruption of TNF-alpha-mediated nuclear factor kappa B (NF-kappaB) activation. Furthermore, S. boulardii suppressed colitis and expression of pro-inflammatory cytokine genes in vivo (P < 0.05, respectively). Our study demonstrated that S. boulardii reduces colonic inflammation and regulates inflammatory gene expression.
Ueyama, T; Zhu, C; Valenzuela, Y M; Suzow, J G; Stewart, A F
2000-06-09
Cardiac myocytes respond to alpha(1)-adrenergic receptor stimulation by a progressive hypertrophy accompanied by the activation of many fetal genes, including skeletal muscle alpha-actin. The skeletal muscle alpha-actin gene is activated by signaling through an MCAT element, the binding site of the transcription enhancer factor-1 (TEF-1) family of transcription factors. Previously, we showed that overexpression of the TEF-1-related factor (RTEF-1) increased the alpha(1)-adrenergic response of the skeletal muscle alpha-actin promoter, whereas TEF-1 overexpression did not. Here, we identified the functional domains and specific sequences in RTEF-1 that mediate the alpha(1)-adrenergic response. Chimeric TEF-1 and RTEF-1 expression constructs localized the region responsible for the alpha(1)-adrenergic response to the carboxyl-terminal domain of RTEF-1. Site-directed mutagenesis was used to inactivate eight serine residues of RTEF-1, not present in TEF-1, that are putative targets of alpha(1)-adrenergic-dependent kinases. Mutation of a single serine residue, Ser-322, reduced the alpha(1)-adrenergic activation of RTEF-1 by 70% without affecting protein stability, suggesting that phosphorylation at this serine residue accounts for most of the alpha(1)-adrenergic response. Thus, these results demonstrate that RTEF-1 is a direct target of alpha(1)-adrenergic signaling in hypertrophied cardiac myocytes.
Koide, Naoki; Morikawa, Akiko; Naiki, Yoshikazu; Tumurkhuu, Gantsetseg; Yoshida, Tomoaki; Ikeda, Hiroshi; Yokochi, Takashi
2009-02-01
The susceptibility of NC/Nga mice to tumor necrosis factor (TNF)-alpha was examined by using sensitization with d-galactosamine (d-GalN). Administration of TNF-alpha and d-GalN killed none of the NC/Nga mice, whereas it killed all of the BALB/c mice. Treatment with TNF-alpha and d-GalN caused few hepatic lesions in NC/Nga mice but massive hepatocellular apoptosis in BALB/c mice. Unlike BALB/c mice, there was no elevation in caspase 3 and 8 activities in the livers of NC/Nga mice receiving TNF-alpha and d-GalN. On the other hand, administration of anti-Fas antibody definitely killed both NC/Nga and BALB/c mice via activation of caspases 3 and 8. Treatment with TNF-alpha and d-GalN led to translocation of nuclear factor (NF)-kappaB in NC/Nga and BALB/c mice. However, NF-kappaB translocation was sustained in NC/Nga mice, although it disappeared in BALB/c mice 7 h after the treatment. NF-kappaB inhibitors activated caspases 3 and 8, and enhanced TNF-alpha-mediated lethality in NC/Nga. Taken together, the low susceptibility of NC/Nga mice to TNF-alpha-mediated lethality was suggested to be responsible for the sustained NF-kappaB activation.
Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida
2015-01-01
Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794
Chen, Shuliang; Bonifati, Serena; Qin, Zhihua; St Gelais, Corine; Kodigepalli, Karthik M; Barrett, Bradley S; Kim, Sun Hee; Antonucci, Jenna M; Ladner, Katherine J; Buzovetsky, Olga; Knecht, Kirsten M; Xiong, Yong; Yount, Jacob S; Guttridge, Denis C; Santiago, Mario L; Wu, Li
2018-04-17
Sterile alpha motif and HD-domain-containing protein 1 (SAMHD1) blocks replication of retroviruses and certain DNA viruses by reducing the intracellular dNTP pool. SAMHD1 has been suggested to down-regulate IFN and inflammatory responses to viral infections, although the functions and mechanisms of SAMHD1 in modulating innate immunity remain unclear. Here, we show that SAMHD1 suppresses the innate immune responses to viral infections and inflammatory stimuli by inhibiting nuclear factor-κB (NF-κB) activation and type I interferon (IFN-I) induction. Compared with control cells, infection of SAMHD1-silenced human monocytic cells or primary macrophages with Sendai virus (SeV) or HIV-1, or treatment with inflammatory stimuli, induces significantly higher levels of NF-κB activation and IFN-I induction. Exogenous SAMHD1 expression in cells or SAMHD1 reconstitution in knockout cells suppresses NF-κB activation and IFN-I induction by SeV infection or inflammatory stimuli. Mechanistically, SAMHD1 inhibits NF-κB activation by interacting with NF-κB1/2 and reducing phosphorylation of the NF-κB inhibitory protein IκBα. SAMHD1 also interacts with the inhibitor-κB kinase ε (IKKε) and IFN regulatory factor 7 (IRF7), leading to the suppression of the IFN-I induction pathway by reducing IKKε-mediated IRF7 phosphorylation. Interactions of endogenous SAMHD1 with NF-κB and IFN-I pathway proteins were validated in human monocytic cells and primary macrophages. Comparing splenocytes from SAMHD1 knockout and heterozygous mice, we further confirmed SAMHD1-mediated suppression of NF-κB activation, suggesting an evolutionarily conserved property of SAMHD1. Our findings reveal functions of SAMHD1 in down-regulating innate immune responses to viral infections and inflammatory stimuli, highlighting the importance of SAMHD1 in modulating antiviral immunity.
Dinesh, Palani; Rasool, MahaboobKhan
2017-03-01
The current study was designed to investigate the therapeutic potential of berberine on monosodium urate (MSU) crystal stimulated RAW 264.7 macrophages and in MSU crystal induced rats. Our results indicate that berberine (25, 50 and 75μM) suppressed the levels of pro-inflammatory cytokines (interleukin-1beta (IL-1β) and tumor necrosis factor alpha (TNFα)) and intracellular reactive oxygen species in MSU crystal stimulated RAW 264.7 macrophages. The mRNA expression levels of IL-1β, caspase 1, nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3), thioredoxin interacting protein (TXNIP) and kelch-like ECH-associated protein 1 (Keap1) were found downregulated with the upregulation of nuclear factor erythroid-2-related factor 2 (Nrf2) transcription factor and its associated anti-oxidant enzymes: Heme oxygenase I (HO-1), superoxide dismutase (SOD1), glutathione peroxidase (GPx), NADPH quinone oxidoreductase-1 (NQO1) and catalase (CAT) in MSU crystal stimulated RAW 264.7 macrophages upon berberine treatment. Subsequently, western blot analysis revealed that berberine decreased the protein expression of IL-1β and caspase 1 and increased Nrf2 expression in RAW 264.7 macrophages. Immunofluorescence analysis also explored increased expression of Nrf2 in MSU crystal stimulated RAW 264.7 macrophages by berberine treatment. In addition, the paw edema, pain score, pro-inflammatory cytokines (IL-1β and TNFα) and articular elastase activity were found significantly reduced in berberine (50mg/kgb·wt) administered MSU crystal-induced rats. Conclusively, our current findings suggest that berberine may represent as a potential candidate for the treatment of gouty arthritis by suppressing inflammatory mediators and activating Nrf2 anti-oxidant pathway. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Do Youn; Park, Hae Sun; Kim, Jun Seok
2008-09-15
A pharmacological dose (2.5-10 {mu}M) of 17{alpha}-estradiol (17{alpha}-E{sub 2}) exerted a cytotoxic effect on human leukemias Jurkat T and U937 cells, which was not suppressed by the estrogen receptor (ER) antagonist ICI 182,780. Along with cytotoxicity in Jurkat T cells, several apoptotic events including mitochondrial cytochrome c release, activation of caspase-9, -3, and -8, PARP degradation, and DNA fragmentation were induced. The cytotoxicity of 17{alpha}-E{sub 2} was not blocked by the anti-Fas neutralizing antibody ZB-4. While undergoing apoptosis, there was a remarkable accumulation of G{sub 2}/M cells with the upregulatoin of cdc2 kinase activity, which was reflected in the Thr56more » phosphorylation of Bcl-2. Dephosphorylation at Tyr15 and phosphorylation at Thr161 of cdc2, and significant increase in the cyclin B1 level were underlying factors for the cdc2 kinase activation. Whereas the 17{alpha}-E{sub 2}-induced apoptosis was completely abrogated by overexpression of Bcl-2 or by pretreatment with the pan-caspase inhibitor z-VAD-fmk, the accumulation of G{sub 2}/M cells significantly increased. The caspase-8 inhibitor z-IETD-fmk failed to influence 17{alpha}-E{sub 2}-mediated caspase-9 activation, but it markedly reduced caspase-3 activation and PARP degradation with the suppression of apoptosis, indicating the contribution of caspase-8; not as an upstream event of the mitochondrial cytochrome c release, but to caspase-3 activation. In the presence of hydroxyurea, which blocked the cell cycle progression at the G{sub 1}/S boundary, 17{alpha}-E{sub 2} failed to induce the G{sub 2}/M arrest as well as apoptosis. These results demonstrate that the cytotoxicity of 17{alpha}-E{sub 2} toward Jurkat T cells is attributable to apoptosis mainly induced in G{sub 2}/M-arrested cells, in an ER-independent manner, via a mitochondria-dependent caspase pathway regulated by Bcl-2.« less
Staniforth, Vanisree; Wang, Sheng-Yang; Shyur, Lie-Fen; Yang, Ning-Sun
2004-02-13
Tumor necrosis factor alpha (TNF-alpha) contributes to the pathogenesis of both acute and chronic inflammatory diseases and has been a target for the development of new anti-inflammatory drugs. Shikonins, the naphthoquinone pigments present in the root tissues of Lithospermum erythrorhizon Sieb. et Zucc. (Boraginaceae), have been reported to exert anti-inflammatory effects both in vitro and in vivo. In this study, we evaluated the effects of shikonin and its derivatives on the transcriptional activation of human TNF-alpha promoter in a gene gun-transfected mouse skin system by using a luciferase reporter gene assay. The crude plant extract of L. erythrorhizon as well as derived individual compounds shikonin, isobutyryl shikonin, acetyl shikonin, dimethylacryl shikonin and isovaleryl shikonin showed significant dose-dependent inhibition of TNF-alpha promoter activation. Among the tested compounds, shikonin and isobutyryl shikonin exhibited the highest inhibition of TNF-alpha promoter activation and also showed significant suppression of transgenic human TNF-alpha mRNA expression and protein production. We demonstrated that shikonin-inhibitory response was retained in the core TNF-alpha promoter region containing the TATA box and a 48-bp downstream sequence relative to the transcription start site. Further our results indicated that shikonin suppressed the basal transcription and activator-regulated transcription of TNF-alpha by inhibiting the binding of transcription factor IID protein complex (TATA box-binding protein) to TATA box. These in vivo results suggest that shikonins inhibit the transcriptional activation of the human TNF-alpha promoter through interference with the basal transcription machinery. Thus, shikonins may have clinical potential as anti-inflammatory therapeutics.
Anti-inflammatory effect of a human prothrombin fragment-2-derived peptide, NSA9, in EOC2 microglia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji Yeon; Kim, Tae Hyong; Kim, Soung Soo
2008-04-11
Pro-inflammatory mediators, such as nitric oxide (NO), prostaglandin E{sub 2} (PGE{sub 2}), and several cytokines (tumor necrosis factor (TNF)-{alpha}, interleukin (IL)-1{beta}, and IL-6) are responsible for central nervous system (CNS) injuries that include ischemia, Alzheimer's disease, and neural death. Inhibition of these pro-inflammatory mediators would be an effective therapy to reduce the progression of neurodegenerative diseases. In this study, we examined the anti-inflammatory effects of a human prothrombin fragment-2-derived peptide, NSA9 (NSAVQLVEN), on the production of pro-inflammatory mediators in lipopolysaccharide (LPS)-activated brain microglia. NSA9 significantly inhibited the release of NO, PGE{sub 2}, and pro-inflammatory cytokines in a dose-dependent manner. Furthermore,more » NSA9 reduced the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 mRNA and protein, which control the production of NO and PGE{sub 2}, respectively. Moreover, NSA9 suppressed the LPS-induced nuclear translocation and activation of nuclear factor-{kappa}B (NF-{kappa}B). These results suggest that NSA9 strongly inhibits the pro-inflammatory responses of microglia through the modulation of NF-{kappa}B activity.« less
McClintock, Jennifer L; Ceresa, Brian P
2010-07-01
PURPOSE. The goal of this study was to determine the molecular mechanism by which transforming growth factor-alpha (TGF-alpha) is a more potent activator of epidermal growth factor receptor (EGFR)-mediated corneal wound healing than epidermal growth factor (EGF). METHODS. Telomerase immortalized human corneal epithelial (hTCEpi) cells and primary human corneal epithelial cells were tested for their ability to migrate in response to EGF and TGF-alpha. In parallel, the endocytic trafficking of the EGFR in response to these same ligands was examined using indirect immunofluorescence, immunoblots, and radioligand binding. RESULTS. TGF-alpha, compared with EGF, is a more potent activator of corneal epithelial cell migration. Although both TGF-alpha and EGF were able to induce EGFR internalization and phosphorylation, only those receptors that were stimulated with EGF progressed to lysosomal degradation. EGFRs stimulated with TGF-alpha recycled back to the plasma membrane, where they could be reactivated with ligand. CONCLUSIONS. This study reveals that EGFR-mediated cell migration is limited by ligand-stimulated downregulation of the EGFR. This limitation can be overcome by treating cells with TGF-alpha because TGF-alpha stimulates EGFR endocytosis, but not degradation. After internalization of the TGF-alpha/EGFR complex, EGFR recycles back to the plasma membrane, where it can be restimulated. This sequence of events provides the receptor multiple opportunities for stimulation. Thus, stimulation with TGF-alpha prolongs EGFR signaling compared with EGF.
Yagi, Yukie; Watanabe, Eri; Watari, Eiji; Shinya, Eiji; Satomi, Misao; Takeshita, Toshiyuki; Takahashi, Hidemi
2010-08-01
The majority of cells in early/colostrum milk are breast milk macrophages (BrMMø) expressing dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM3) grabbing nonintegrin (DC-SIGN), and the expression level of DC-SIGN on BrMMø will determine cell-to-cell human immunodeficiency virus type 1 (HIV-1) transmissibility. Thus, one of the strategies to prevent vertical transmission of HIV-1 through breast-feeding is to find a way to suppress DC-SIGN expression on BrMMø. As for the expression of Toll-like receptors (TLRs) in BrMMø, TLR3 was always seen in BrMMø but not in peripheral blood monocytes (PBMo). Also, the expression of TLR3 was slightly enhanced in BrMMø when the cells were treated with interleukin (IL)-4. Moreover, when TLR3 was stimulated with its specific ligand, the double-stranded RNA (dsRNA) poly(I:C), DC-SIGN expression on BrMMø was reduced even in the IL-4-mediated enhanced state. Some reduction may be caused by type I interferons (IFNs), such as IFN-alpha/beta, secreted from BrMMø. Indeed, both IFNs, particularly IFN-beta, showed a strong capacity to suppress the enhancement of DC-SIGN expression on IL-4-treated BrMMø and such TLR3-mediated DC-SIGN suppression was partially abrogated by the addition of anti-IFN-alpha/beta-receptor-specific antibodies. As expected, DC-SIGN-mediated HIV-1 transmission to CD4-positive cells by BrMMø was inhibited by either poly(I:C) stimulation or by treatment with type I IFNs. These findings suggest a possible strategy for preventing mother-to-child transmission (MTCT) of HIV-1 via breast-feeding through TLR3 signalling.
Yang, Lihua; Guo, Yinli; Huang, Mengbin; Wu, Xiaoli; Li, Xiang; Chen, Guobing; Li, Ye; Bai, Jie
2018-01-01
Methamphetamine (METH) is a psychostimulant abused around the world. Emerging evidence indicates that METH causes brain damage. However, there are very few reports on METH-induced demyelination. Thioredoxin-1 (Trx-1) is a redox regulating protein and plays the roles in protecting neurons from various stresses. However, whether Trx-1 resists demyelination induced by METH has not been reported. In this study, we found that METH-induced thin myelin sheaths in spinal cord, whereas Trx-1 overexpression transgenic (TG) mice restored the myelin sheaths thickness. The expressions of myelin-associated glycoprotein, myelin basic protein, and cyclin-dependent kinase 5 were decreased by METH, whereas these alterations were blocked in Trx-1 TG mice. The expressions of procaspase-12 and procaspase-3 were decreased by METH, the expression of calpain1 was increased by METH, whereas the alterations were suppressed in Trx-1 TG mice. As same as, the expressions of the extracellular signal-regulated kinase, nuclear factor κB, tumor necrosis factor-alpha, and interleukin-1beta were induced by METH, which were suppressed in Trx-1 TG mice. These data suggest that Trx-1 may play a critical role in resisting the METH-mediated demyelination in spinal cord through regulating endoplasmic reticulum stress and inflammation pathways. PMID:29467717
Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon
2016-01-01
This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells. PMID:27169820
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Cheng-Fei; Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang; Han, Ya-Ling, E-mail: hanyaling53@gmail.com
2011-03-25
Research highlights: {yields} CREG protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis. {yields} CREG inhibits the phosphorylation of I{kappa}B{alpha} and prevents the activation of NF-{kappa}B. {yields} CREG inhibits NF-{kappa}B nuclear translocation and pro-apoptosis protein transcription. {yields} CREG anti-apoptotic effect involves inhibition of the death receptor pathway. {yields} p53 is downregulated by CREG via NF-{kappa}B pathway under TNF-{alpha} stimulation. -- Abstract: Bone marrow-derived mesenchymal stem cells (MSCs) show great potential for therapeutic repair after myocardial infarction. However, poor viability of transplanted MSCs in the ischemic heart has limited their use. Cellular repressor of E1A-stimulated genes (CREG) has been identified asmore » a potent inhibitor of apoptosis. This study therefore aimed to determine if rat bone marrow MSCs transfected with CREG-were able to effectively resist apoptosis induced by inflammatory mediators, and to demonstrate the mechanism of CREG action. Apoptosis was determined by flow cytometric and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays. The pathways mediating these apoptotic effects were investigated by Western blotting. Overexpression of CREG markedly protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis by 50% after 10 h, through inhibition of the death-receptor-mediated apoptotic pathway, leading to attenuation of caspase-8 and caspase-3. Moreover, CREG resisted the serine phosphorylation of I{kappa}B{alpha} and prevented the nuclear translocation of the transcription factor nuclear factor-{kappa}B (NF-{kappa}B) under TNF-{alpha} stimulation. Treatment of cells with the NF-{kappa}B inhibitor pyrrolidine dithiocarbamate (PDTC) significantly increased the transcription of pro-apoptosis proteins (p53 and Fas) by NF-{kappa}B, and attenuated the anti-apoptotic effects of CREG on MSCs. The results of this study indicate that CREG acts as a novel and potent survival factor in MSCs, and may therefore be a useful therapeutic adjunct for transplanting MSCs into the damaged heart after myocardial infarction.« less
USDA-ARS?s Scientific Manuscript database
In several studies, vitamin E has been observed to influence angiogenesis and vasculogenesis. We recently showed that the phosphorylated form of alpha-tocopherol (alphaT), alpha-tocopheryl phosphate (alphaTP), increases the expression of the vascular endothelial growth factor (VEGF). Thus, alphaTP m...
Lahm, H.; Schindel, M.; Frikart, L.; Cerottini, J. P.; Yilmaz, A.; Givel, J. C.; Fischer, J. R.
1998-01-01
We have investigated the secretion of interferon alpha (IFN-alpha), IFN-gamma, interleukin-1alpha (IL-1alpha), IL-1beta, IL-2 and tumour necrosis factor alpha (TNF-alpha) in whole blood cell cultures (WBCCs) of colorectal cancer patients upon mitogen stimulation. Whereas the values for IL-1beta and TNF-alpha remained virtually unchanged in comparison with healthy control subjects, WBCCs of colorectal cancer patients secreted significantly lower amounts of IFN-alpha (P < 0.005), IFN-gamma (P < 0.0001), IL-1alpha (P < 0.0001) and IL-2 (P < 0.05). This reduction correlated with the progression of the disease. The total leucocyte and monocyte population were almost identical in both groups. In contrast, a dramatic depletion of lymphocytes was observed in colorectal cancer patients, which affected both lymphocyte counts (P < 0.0005) and their distribution (P < 0.0001). Our results suggest a selective suppression of cytokines in colorectal cancer patients that is related to tumour burden. Several mechanisms might account for this phenomenon, one of which might be lymphocyte depletion. PMID:9792144
Specht, C; Junker, R; Krüger, A; Rademaekers, A; Redlich, H; Kölsch, E
1999-09-01
The humoral immune response against alpha(1-->3) dextran (Dex) in BALB/c mice is characterized by the formation of predominantly IgM antibodies bearing the J558 idiotype. IgG antibodies do not appear in euthymic mice. In athymic animals, however, the response proceeds to a vigorous IgG production. In euthymic mice formation of IgG is suppressed by J558 idiotype specific regulatory T cells recognizing in association with I-Ed and in cognate T/B interaction the V(H) CDR3 derived peptide of the J558 idiotype. Only B-2 lymphocytes produce IgG whereas B-1 cells do not participate in the production of this Ig class. Using novel synthetic all alpha(1-->3)-D-gluco configured tetrasaccharide the Dex-specific B cells can for the first time be analyzed in FACS. In experiments using this newly designed low molecular Dex no signs of B cell apoptosis can be found. This demonstrates a true silencing of persisting Bgamma memory cells as previously suggested by adoptive transfer experiments. In this suppression a further involvement of CD28 and B7-1 interaction can be demonstrated which delivers a necessary costimulatory suppression signal in addition to the cognate TCR/peptide-I-Ed interaction between J558 specific T cells and J558 idiotype bearing B cells.
Huntington, M O; Krell, K E; Armour , W E; Liljenquist, J E
2001-06-01
Tumor necrosis factor-alpha (TNF-alpha) is an important mediator of insulin resistance in obesity and diabetes through its ability to decrease the tyrosine kinase activity of the insulin receptor. We report here a remarkable degree of insulin resistance in a patient with adult respiratory distress syndrome and myelodysplasia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp; Kameshima, Satoshi; Usui, Tatsuya
Highlights: Black-Right-Pointing-Pointer Chemerin is a novel adipocytokine with almost unknown function in vasculature. Black-Right-Pointing-Pointer Chemerin activates Akt/eNOS/NO pathways in endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-{alpha}-induced monocyte adhesion to endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-induced VCAM-1 via suppressing NF-{kappa}B and p38 signal. Black-Right-Pointing-Pointer Chemerin is anti-inflammatory through producing NO in vascular endothelium. -- Abstract: Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min)more » induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1-300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-{kappa}B p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-{alpha} (5 ng/ml, 20 min-6 h). Inhibitor of NF-{kappa}B or p38 significantly inhibited the TNF-{alpha}-induced VCAM-1 expression. Chemerin also inhibited TNF-{alpha}-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-{alpha}-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-{alpha}-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-{alpha}-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-{alpha}-induced VCAM-1 expression and monocytes adhesion in vascular endothelial cells. The effect is mediated via inhibiting activation of NF-{kappa}B and p38 through stimulation of Akt/eNOS signaling and NO production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogura, Hirotsugu; Tsukumo, Yoshinori; Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501
2008-04-01
The transcription factor nuclear factor {kappa}B (NF-{kappa}B) plays a major role in the inducible resistance to death receptor-mediated apoptosis. It has been established that the protein synthesis inhibitor cycloheximide (CHX) sensitizes many types of cells to tumor necrosis factor (TNF)-{alpha}-induced apoptosis, mainly due to its ability to block de novo synthesis of cellular FLICE-inhibitory protein (c-FLIP). Nevertheless, we have surprisingly found that CHX, as well as its structural analogue acetoxycycloheximide (Ac-CHX), prevents TNF-{alpha}-mediated activation of NF-{kappa}B and caspase-8 in human lung carcinoma A549 cells. Both CHX and Ac-CHX reduced the expression of cell surface TNF receptor 1 (TNF-R1) in amore » dose-dependent manner, while Ac-CHX was approximately 100-fold more effective than CHX. Consistent with this observation, Ac-CHX induced the proteolytic cleavage of TNF-R1 and its release into the culture medium. CHX and Ac-CHX profoundly decreased constitutive and inducible expression of c-FLIP, whereas these compounds potentiated TNF-{alpha}-induced caspase-8 activation only when metalloprotease inhibitors were present. Thus, our results indicate that ectodomain shedding of TNF-R1 induced by protein synthesis inhibitors regulates TNF-{alpha}-mediated activation of NF-{kappa}B and caspase-8.« less
Rasheed, Zafar; Anbazhagan, Arivarasu N; Akhtar, Nahid; Ramamurthy, Sangeetha; Voss, Frank R; Haqqi, Tariq M
2009-01-01
The major risk factor for osteoarthritis (OA) is aging, but the mechanisms underlying this risk are only partly understood. Age-related accumulation of advanced glycation end products (AGEs) can activate chondrocytes and induce the production of proinflammatory cytokines and matrix metalloproteinases (MMPs). In the present study, we examined the effect of epigallocatechin-3-gallate (EGCG) on AGE-modified-BSA (AGE-BSA)-induced activation and production of TNFalpha and MMP-13 in human OA chondrocytes. Human chondrocytes were derived from OA cartilage by enzymatic digestion and stimulated with in vitro-generated AGE-BSA. Gene expression of TNFalpha and MMP-13 was measured by quantitative RT-PCR. TNFalpha protein in culture medium was determined using cytokine-specific ELISA. Western immunoblotting was used to analyze the MMP-13 production in the culture medium, phosphorylation of mitogen-activated protein kinases (MAPKs), and the activation of NF-kappaB. DNA binding activity of NF-kappaB p65 was determined using a highly sensitive and specific ELISA. IkappaB kinase (IKK) activity was determined using an in vitro kinase activity assay. MMP-13 activity in the culture medium was assayed by gelatin zymography. EGCG significantly decreased AGE-stimulated gene expression and production of TNFalpha and MMP-13 in human chondrocytes. The inhibitory effect of EGCG on the AGE-BSA-induced expression of TNFalpha and MMP-13 was mediated at least in part via suppression of p38-MAPK and JNK activation. In addition, EGCG inhibited the phosphorylating activity of IKKbeta kinase in an in vitro activity assay and EGCG inhibited the AGE-mediated activation and DNA binding activity of NF-kappaB by suppressing the degradation of its inhibitory protein IkappaBalpha in the cytoplasm. These novel pharmacological actions of EGCG on AGE-BSA-stimulated human OA chondrocytes provide new suggestions that EGCG or EGCG-derived compounds may inhibit cartilage degradation by suppressing AGE-mediated activation and the catabolic response in human chondrocytes.
Dixon, C I; Rosahl, T W; Stephens, D N
2008-07-01
Mice with point-mutated alpha2 GABA(A) receptor subunits (rendering them diazepam insensitive) are resistant to the anxiolytic-like effects of benzodiazepines (BZs) in the conditioned emotional response (CER) test, but show normal anxiolytic effects of a barbiturate. We investigated the consequence of deleting the alpha2-subunit on acquisition of the CER with increasing intensity of footshock, and on the anxiolytic efficacy of a benzodiazepine, diazepam, and a barbiturate, pentobarbital. alpha2 knockout (KO) and wildtype (WT) mice were trained in a conditioned emotional response (CER) task, in which lever pressing for food on a variable interval (VI) schedule was suppressed during the presentation of a compound light/tone conditioned stimulus (CS+) that predicted footshock. The ability of diazepam and of pentobarbital to reduce suppression during the CS+ was interpreted as an anxiolytic response. There were no differences between the genotypes in shock sensitivity, as assessed by their flinch responses to increasing levels of shock. However, alpha2 KO mice showed a greater suppression of lever pressing than WT littermates in the presence of a compound cue signalling footshock. Diazepam (0, 0.5, 1 and 2 mg/kg) induced a dose-dependent anxiolytic-like effect in WT mice but no such effect was seen in KO mice. Similarly, although pentobarbital (20 mg/kg) reduced the ability of the CS+ to reduce lever pressing rates in WT mice, this effect was not seen in the KO. These findings suggest that alpha2-containing GABA(A) receptors mediate the anxiolytic effects of barbiturates, as well as benzodiazepines, and that they may be involved in neuronal circuits underlying conditioned anxiety.
Kim, Eun-Kyung; Tang, Yujiao; Cha, Kwang-Suk; Choi, Heeri; Lee, Chun Bok; Yoon, Jin-Hwan; Kim, Sang Bae; Kim, Jong-Shik; Kim, Jong Moon; Han, Weon Cheol; Choi, Suck-Jun; Lee, Sangmin; Choi, Eun-Ju; Kim, Sang-Hyun
2015-01-01
Abstract The present study aimed to examine the anti-inflammatory effects and potential mechanism of action of Artemisia asiatica Nakai (A. asiatica Nakai) extract in activated murine macrophages. A. asiatica Nakai extract showed dose-dependent suppression of lipopolysaccharide (LPS)-induced nitric oxide, inducible nitric oxide synthase, and cyclooxygenase-2 activity. It also showed dose-dependent inhibition of nuclear factor-κB (NF-κB) translocation from the cytosol to the nucleus and as an inhibitor of NF-κB-alpha phosphorylation. The extract's inhibitory effects were found to be mediated through NF-κB inhibition and phosphorylation of extracellular signal-regulated kinase 1/2 and p38 in LPS-stimulated J774A.1 murine macrophages, suggesting a potential mechanism for the anti-inflammatory activity of A. asiatica Nakai. To our knowledge, this is the first report of the anti-inflammatory effects of A. asiatica Nakai on J774A.1 murine macrophages; these results may help develop functional foods possessing an anti-inflammatory activity. PMID:26061361
Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha.
Leibovich, S J; Polverini, P J; Shepard, H M; Wiseman, D M; Shively, V; Nuseir, N
Macrophages are important in the induction of new blood vessel growth during wound repair, inflammation and tumour growth. We show here that tumour necrosis factor-alpha (TNF-alpha), a secretory product of activated macrophages that is believed to mediate tumour cytotoxicity, is a potent inducer of new blood vessel growth (angiogenesis). In vivo, TNF-alpha induces capillary blood vessel formation in the rat cornea and the developing chick chorioallantoic membrane at very low doses. In vitro, TNF-alpha stimulates chemotaxis of bovine adrenal capillary endothelial cells and induces cultures of these cells grown on type-1 collagen gels to form capillary-tube-like structures. The angiogenic activity produced by activated murine peritoneal macrophages is completely neutralized by a polyclonal antibody to TNF-alpha, suggesting immunological features are common to TNF-alpha and the protein responsible for macrophage-derived angiogenic activity. In inflammation and wound repair, TNF-alpha could augment repair by stimulating new blood vessel growth; in tumours, TNF-alpha might both stimulate tumour development by promoting vessel growth and participate in tumour destruction by direct cytotoxicity.
USDA-ARS?s Scientific Manuscript database
All-trans-retinoic acid stimulates dendritic growth in hippocampal neurons within minutes by activating mitogen-activated protein kinase and mTOR and increasing dendritic translation of calcium calmodulin-dependent protein kinase II alpha and the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionat...
Kim, Yeji; Kim, Chu-Sook; Joe, Yeonsoo; Chung, Hun Taeg; Ha, Tae Youl; Yu, Rina
2018-06-01
The inflammatory cytokine tumor necrosis factor α (TNFα), upregulated in the obese condition, promotes protein degradation and is implicated in obesity-related skeletal muscle atrophy and age-related sarcopenia. Quercetin, a flavonoid, elicits antioxidative and anti-inflammatory activities. In this study, we investigated the effect of quercetin on TNFα-induced skeletal muscle atrophy as well as its potential mechanism of action. In this study, we observed that quercetin suppressed expression of TNFα-induced atrophic factors such as MAFbx/atrogin-1 and MuRF1 in myotubes, and it enhanced heme oxygenase-1 (HO-1) protein level accompanied by increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) in myotubes. The HO-1 inhibitor ZnPP suppressed the inhibitory actions of quercetin on TNFα-induced atrophic responses and degradation of IκB-α in myotubes. Moreover, quercetin supplementation to high-fat diet-fed obese mice inhibited obesity-induced atrophic responses in skeletal muscle, accompanied by upregulation of HO-1 and inactivation of nuclear factor-kappa B (NF-κB), and the quercetin actions were attenuated in Nrf2-deficient mice. These findings suggest that quercetin protects against TNFα-induced muscle atrophy under obese conditions through Nrf2-mediated HO-1 induction accompanied by inactivation of NF-κB. Quercetin may be used as a dietary supplement to protect against obesity-induced skeletal muscle atrophy.
DNA-binding activity of TNF-{alpha} inducing protein from Helicobacter pylori
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzuhara, T.; Suganuma, M.; Oka, K.
2007-11-03
Tumor necrosis factor-{alpha} (TNF-{alpha}) inducing protein (Tip{alpha}) is a carcinogenic factor secreted from Helicobacter pylori (H. pylori), mediated through both enhanced expression of TNF-{alpha} and chemokine genes and activation of nuclear factor-{kappa}B. Since Tip{alpha} enters gastric cancer cells, the Tip{alpha} binding molecules in the cells should be investigated. The direct DNA-binding activity of Tip{alpha} was observed by pull down assay using single- and double-stranded genomic DNA cellulose. The surface plasmon resonance assay, indicating an association between Tip{alpha} and DNA, revealed that the affinity of Tip{alpha} for (dGdC)10 is 2400 times stronger than that of del-Tip{alpha}, an inactive Tip{alpha}. This suggestsmore » a strong correlation between DNA-binding activity and carcinogenic activity of Tip{alpha}. And the DNA-binding activity of Tip{alpha} was first demonstrated with a molecule secreted from H. pylori.« less
Khatai, Leila; Goessler, Walter; Lorencova, Helena; Zangger, Klaus
2004-06-01
Metallothioneins (MTs) release bound metals when exposed to nitric oxide. At inflammatory sites, both metallothionein and inducible nitric oxide synthase (iNOS) are induced by the same factors and the zinc released from metallothionein by NO suppresses both the induction and activity of iNOS. In a search for a possible modulatory mechanism of this coexpression of counteracting proteins, we investigated the role of the glutathione redox state in vitro because the oxidation state of thiols is involved in the metal binding in Cd-S or Zn-S clusters found in metallothioneins, and NO also binds to reduced glutathione via S-nitrosation. Using a variety of techniques, we found that NO and also ONOO(-)-mediated metal release from purified MTs is suppressed by reduced glutathione (GSH), but not by oxidized glutathione. Considering the millimolar concentrations of GSH present in mammalian cells, the metal release from MTs by NO should play no role in living systems. Therefore, the fact that it has been observed in vivo points to a hitherto unknown mechanism or additional compound(s) being involved in this physiologically relevant reaction and as long as this additional factor is not found experimental results on the MT-NO interaction should be treated with caution. Contrary to the peroxynitrite-induced activation of guanylyl cyclase, where GSH is needed, we found that the metal release from metallothionein by peroxynitrite is not enhanced, but also suppressed by reduced glutathione. In addition, we show that zinc, the major natural metal ligand in mammalian MTs and suppressor of iNOS, is released more readily under the influence of NO than cadmium, but in contrast to the MT isoform 1, the amount of metal released from the beta-domain of MT-2 is comparable to that from the alpha-domain.
Aedo, Cristian; Terreros, Gonzalo; León, Alex; Delano, Paul H.
2016-01-01
Background and Objective The auditory efferent system is a complex network of descending pathways, which mainly originate in the primary auditory cortex and are directed to several auditory subcortical nuclei. These descending pathways are connected to olivocochlear neurons, which in turn make synapses with auditory nerve neurons and outer hair cells (OHC) of the cochlea. The olivocochlear function can be studied using contralateral acoustic stimulation, which suppresses auditory nerve and cochlear responses. In the present work, we tested the proposal that the corticofugal effects that modulate the strength of the olivocochlear reflex on auditory nerve responses are produced through cholinergic synapses between medial olivocochlear (MOC) neurons and OHCs via alpha-9/10 nicotinic receptors. Methods We used wild type (WT) and alpha-9 nicotinic receptor knock-out (KO) mice, which lack cholinergic transmission between MOC neurons and OHC, to record auditory cortex evoked potentials and to evaluate the consequences of auditory cortex electrical microstimulation in the effects produced by contralateral acoustic stimulation on auditory brainstem responses (ABR). Results Auditory cortex evoked potentials at 15 kHz were similar in WT and KO mice. We found that auditory cortex microstimulation produces an enhancement of contralateral noise suppression of ABR waves I and III in WT mice but not in KO mice. On the other hand, corticofugal modulations of wave V amplitudes were significant in both genotypes. Conclusion These findings show that the corticofugal modulation of contralateral acoustic suppressions of auditory nerve (ABR wave I) and superior olivary complex (ABR wave III) responses are mediated through MOC synapses. PMID:27195498
Glycine ameliorates lung reperfusion injury after cold preservation in an ex vivo rat lung model.
Omasa, Mitsugu; Fukuse, Tatsuo; Toyokuni, Shinya; Mizutani, Yoichi; Yoshida, Hiroshi; Ikeyama, Kazuyuki; Hasegawa, Seiki; Wada, Hiromi
2003-03-15
The role of glycine has not been investigated in lung ischemia-reperfusion injury after cold preservation. Furthermore, the role of apoptosis after reperfusion following cold preservation has not been fully understood. Lewis rats were divided into three groups (n=6 each). In the GLY(-) and GLY(+) groups, isolated lungs were preserved for 15 hr at 4 degrees C after a pulmonary artery (PA) flush using our previously developed preservation solution (ET-K; extracellular-type trehalose containing Kyoto), with or without the addition of glycine (5 mM). In the Fresh group, isolated lungs were reperfused immediately after a PA flush with ET-K. They were reperfused for 60 min with an ex vivo perfusion model. Pulmonary function, oxidative stress, apoptosis, and tumor necrosis factor (TNF)-alpha expression were assessed after reperfusion. Shunt fraction and peak inspiratory pressure after reperfusion in the GLY(-) group were significantly higher than those in the GLY(+) and Fresh groups. Oxidative damage and apoptosis in the alveolar epithelial cells of the GLY(-) group, assessed by immunohistochemical staining and quantification of 8-hydroxy-2'-deoxyguanosine and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling method, were significantly higher than those of the GLY(+) and Fresh groups. There were correlations among shunt fraction, oxidative damage, and apoptosis. There was no expression of TNF-alpha messenger RNA in all groups evaluated by the reverse transcription-polymerase chain reaction. Glycine attenuates ischemia/reperfusion injury after cold preservation by reducing oxidative damage and suppressing apoptosis independent of TNF-alpha in this model. The suppression of apoptosis might ameliorate lung function after reperfusion.
The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlomai, Amir, E-mail: amirsh@tasmc.health.gov.il; Institute for Gastroenterology and Liver disease, Tel-Aviv Sourasky Medical Center, 6 Weizmann street, Tel-Aviv; Shaul, Yosef
2009-04-17
Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1{alpha} coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1{alpha} coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4{alpha} and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1{alpha} coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhancedmore » in the presence of PGC-1{alpha}, implying that FOXO1 is a target for PGC-1{alpha} coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.« less
Koide, M; Okahashi, N; Tanaka, R; Kazuno, K; Shibasaki, K; Yamazaki, Y; Kaneko, K; Ueda, N; Ohguchi, M; Ishihara, Y; Noguchi, T; Nishihara, T
1999-09-01
It is known that bone resorption is mediated by osteoclasts, and lipopolysaccharide (LPS) and inflammatory mediators such as interleukin-1 (IL-1) and prostaglandin E2 (PGE2) induce osteoclast differentiation from haemopoietic cells, 2-aminoethanesulphonic acid, which is known as taurine, is an important nutrient and is added to most synthetic human infant milk formulas. In this study, it was found that 2-aminoethanesulphonic acid inhibits the stimulation of bone resorption mediated by LPS of the periodontopathic microorganism Actinobacillus actinomycetemcomitans Y4 in organ cultures of newborn mouse calvaria. The effect of 2-aminoethanesulphonic acid on the development and survival of osteoclast-like multinucleated cells produced in a mouse bone-marrow culture system was also examined. 2-aminoethanesulphonic acid (100 microg/ml) suppressed the formation of these osteoclast-like cells in the presence of LPS of A. actinomycetemcomitans Y4, IL-1alpha or PGE2 in mouse marrow cultures. On the other hand, 2-aminoethanesulphonic acid did not inhibit 1alpha, 25-dihydroxyvitamin D3-mediated osteoclast differentiation. Although IL-1alpha elongated the survival of the osteoclast-like cells, 2-aminoethanesulphonic acid blocked the supportive effect of IL-1alpha on osteoclast survival. 2-aminoethanesulphonic acid showed no effect on the growth of mouse osteoblasts. Finally, it was found that 2-aminoethanesulphonic acid inhibited alveolar bone resorption in experimental periodontitis in hamsters. These results suggest that 2-aminoethanesulphonic acid is an effective agent in preventing inflammatory bone resorption in periodontal diseases.
Costunolide inhibits proinflammatory cytokines and iNOS in activated murine BV2 microglia.
Rayan, Nirmala Arul; Baby, Nimmi; Pitchai, Daisy; Indraswari, Fransisca; Ling, Eng-Ang; Lu, Jia; Dheen, Thameem
2011-06-01
Costunolide, a sesquiterpene lactone present in Costus speciosus root exerts a variety of pharmacological activity but its effects on neuroinflammation have not been studied. Microglia, the resident phagocytic cells in the central nervous system respond to neuroinflammation and their overwhelming response in turn aggravate brain damage during infection, ischemia and neurodegenerative diseases. In this study, we report the effect of Costunolide on the production of proinflammatory mediators and mechanisms involved in BV2 microglial cells stimulated with LPS. Costunolide attenuated the expression of tumour necrosis factor-alpha, interleukin-1,6, inducible nitric oxide synthase, monocyte chemotactic protein 1 and cyclooxygenase 2 in activated microglia. This Costunolide-mediated inhibition was correspondent with the inhibition of NFkappaB activation. It has been further shown that Costunolide suppressed MAPK pathway activation by inducing MKP-1 production. Collectively our results suggest that Costunolide shows an ability to inhibit expression of multiple neuroinflammatory mediators and this is attributable to the compounds inhibition of NFkappaB and MAPK activation. This novel role of Costunolide upon investigation may aid in developing better therapeutic strategies for treatment of neuroinflammatory diseases.
Suppression of complete Freund's adjuvant-induced adjuvant arthritis by cobratoxin.
Liu, Yan-Li; Lin, Hai-Ming; Zou, Rong; Wu, Jun-Chao; Han, Rong; Raymond, Laurence N; Reid, Paul F; Qin, Zheng-Hong
2009-02-01
Cobratoxin (CTX), the long-chain alpha-neurotoxin from Thailand cobra venom, has been demonstrated to have analgesic action in rodent pain models. The present study evaluated the anti-inflammatory and anti-nociceptive effects of CTX on adjuvant arthritis (AA) in rats. Arthritis was induced by injection of complete Freund's adjuvant (CFA) in rats. Paw swelling and hyperalgesia of AA rats were measured at various times after CFA administration. Tumor necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1), interleukin-2 (IL-2) and interleukin-10 (IL-10) levels in serum were determined with ELISA. Histopathological changes in synoviocytes were examined under a microscope. Involvement of the cholinergic system in the effects of CTX was examined by pretreatment of animals with the alpha(7) nicotinic receptor (alpha(7)-nAChR) antagonist methyllycaconitine (MLA). CFA induced marked paw swelling and reduced thresholds of mechanical and cold-induced paw withdrawal. The levels of TNF-alpha, IL-1 and IL-2 in the serum of AA rats were increased, whereas the level of IL-10 was decreased. Histopathological examination of synoviocytes showed pronounced inflammation and accumulation of collagen. The administration of CTX (17.0 microg/kg, ip) significantly reduced paw swelling and mechanical and thermal hyperalgesia. CTX also reduced the production of TNF-alpha, IL-1, and IL-2 but increased the production of IL-10 and altered pathohistological changes. The analgesic and anti-inflammatory efficacy of CTX was significantly reduced by MLA (3 mg/kg, sc). These results indicate that CTX has a beneficial effect on CFA-induced arthritis by modulating the production of inflammatory cytokines. alpha(7)-nAChR appears to mediate the anti-nociceptive and anti-inflammatory actions of CTX.
McMaster, S K; Paul-Clark, M J; Walters, M; Fleet, M; Anandarajah, J; Sriskandan, S; Mitchell, J A
2008-02-01
Smoking cigarettes is a major risk factor for the development of cardiovascular and respiratory disease. Moreover, smokers are more prone to infections. This has been associated with a suppression of the immune system by smoke. However, it is not clear how cigarette smoke affects the ability of immune cells to sense pathogens. Cigarette smoke contains a large number of molecules which may mediate responses on immune cells and of these, nicotine and oxidants have both been identified as inhibitory for the sensing of bacterial lipopolysaccharide (LPS). Nitric oxide synthase (NOS) and tumour necrosis factor (TNF)-alpha are both induced in macrophages on stimulation with Gram negative bacteria or LPS. We used murine macrophages stimulated with whole heat-killed bacteria or LPS. We measured output of NO (as nitrite) and TNFalpha, NOS protein by Western blotting and cellular oxidant stress. Cigarette smoke extract suppressed the ability of murine macrophages to release NO, but not TNFalpha in response to whole bacteria. Cigarette smoke extract also inhibited nitric oxide synthase II protein expression in response to LPS. The effects of cigarette smoke extract on nitrite formation stimulated by LPS were unaffected by inhibition of nicotinic receptors with alpha-bungarotoxin (100 units ml(-1)). However, the effects of cigarette smoke extract on LPS-induced nitrite formation were mimicked by hydrogen peroxide and reversed by the anti-oxidants N-acetyl cysteine and glutathione. We suggest that cigarette smoke exerts its immunosuppressive effects through an oxidant-dependent and not a nicotine-dependent mechanism.
Fibroblast growth factor 7 inhibits cholesterol 7{alpha}-hydroxylase gene expression in hepatocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Zhichao; Yu, Xuemei; Wu, Weibin
2012-07-13
Highlights: Black-Right-Pointing-Pointer FGF7 strongly and rapidly down-regulates the expression of CYP7A1 in hepatocytes. Black-Right-Pointing-Pointer FGF7 suppresses the expression of CYP7A1 via FGFR2 and downstream JNK activation. Black-Right-Pointing-Pointer Blocking FGF7 abrogates HSC-induced inhibition of CYP7A1 expression in hepatocytes. -- Abstract: Cholesterol 7{alpha}-hydroxylase (CYP7A1) is the initial and rate-limiting enzyme for bile acid synthesis. Transcription of the CYP7A1 gene is regulated by bile acids, nuclear receptors and cytokines. Fibroblast growth factor 7 (FGF7) secreted from activated hepatic stellate cells (HSC) during chronic liver fibrosis regulates hepatocyte survival and liver regeneration. In the carbon tetrachloride (CCl{sub 4})-induced fibrotic mouse liver, we demonstrated thatmore » the expression of CYP7A1 was largely decreased while the expression of FGF7 was significantly increased. We further demonstrated that FGF7 inhibited CYP7A1 gene expression in hepatocytes. Knockdown study by short interfering RNA, kinase inhibition and phosphorylation assays revealed that the suppression of CYP7A1 expression by FGF7 was mediated by FGFR2 and its downstream JNK signaling cascade. The FGF7 neutralizing antibody restored CYP7A1 expression in Hep3B cells treated with conditioned medium from HSC. In summary, the data suggest that FGF7 is a novel regulator of CYP7A1 expression in hepatocytes and may prevent hepatocytes from accumulating toxic bile acids during liver injury and fibrosis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Won Seok; Chang, Jai Won; Han, Nam Jeong
The role of spleen tyrosine kinase (Syk) in high glucose-induced intracellular signal transduction has yet to be elucidated. We investigated whether Syk is implicated in high glucose-induced transforming growth factor-{beta}1 (TGF-{beta}1) up-regulation in cultured human proximal tubular epithelial cells (HK-2 cell). High glucose increased TGF-{beta}1 gene expression through Syk, extracellular signal-regulated kinase (ERK), AP-1 and NF-{kappa}B. High glucose-induced AP-1 DNA binding activity was decreased by Syk inhibitors and U0126 (an ERK inhibitor). Syk inhibitors suppressed high glucose-induced ERK activation, whereas U0126 had no effect on Syk activation. High glucose-induced NF-{kappa}B DNA binding activity was also decreased by Syk inhibitors. Highmore » glucose increased nuclear translocation of p65 without serine phosphorylation of I{kappa}B{alpha} and without degradation of I{kappa}B{alpha}, but with an increase in tyrosine phosphorylation of I{kappa}B{alpha} that may account for the activation of NF-{kappa}B. Both Syk inhibitors and Syk-siRNA attenuated high glucose-induced I{kappa}B{alpha} tyrosine phosphorylation and p65 nuclear translocation. Depletion of p21-activated kinase 2 (Pak2) by transfection of Pak2-siRNA abolished high glucose-induced Syk activation. In summary, high glucose-induced TGF-{beta}1 gene transcription occurred through Pak2, Syk and subsequent ERK/AP-1 and NF-{kappa}B pathways. This suggests that Syk might be implicated in the diabetic kidney disease.« less
Chong, Lee-Won; Hsu, Yi-Chao; Chiu, Yung-Tsung; Yang, Kuo-Ching; Huang, Yi-Tsau
2006-05-01
Tumor necrosis factor-alpha (TNF-alpha) plays a central role in cellular necrosis, apoptosis, organ failure, tissue damage, inflammation and fibrosis. These processes, occurring in liver injury, may lead to cirrhosis. Thalidomide, alpha-N-phthalidoglutarimide, (C(13)H(10)N(2))(4), has been shown to have immunomodulatory and anti-inflammatory properties, possibly mediated through its anti-TNF-alpha effect. In this study, we investigated the in vitro and in vivo effects of thalidomide on hepatic fibrosis. A cell line of rat hepatic stellate cells (HSC-T6) was stimulated with transforming growth factor-beta1 (TGF-beta1) or TNF-alpha. The inhibitory effects of thalidomide on the NFkappaB signaling cascade and fibrosis markers including alpha-smooth muscle actin (alpha-SMA) and collagen, were assessed. An in vivo therapeutic study was conducted in dimethylnitrosamine (DMN)-treated rats, which were randomly assigned to 1 of 4 groups: vehicle (0.7% carboxyl methyl cellulose, CMC), thalidomide (40 mg/kg), thalidomide (200 mg/kg), or silymarin (50 mg/kg), each given by gavage twice daily for 3 weeks starting after 1 week of DMN administration. Thalidomide (100-800 nM) concentration-dependently inhibited NFkappaB transcriptional activity induced by TNF-alpha, including IKKalpha expression and IkappaBalpha phosphorylation in HSC-T6 cells. In addition, thalidomide also suppressed TGF-beta1-induced alpha-SMA expression and collagen deposition in HSC-T6 cells. Fibrosis scores of livers from DMN-treated rats receiving high dose of thalidomide (0.89 +/- 0.20) were significantly reduced in comparison with those of DMN-treated rats receiving vehicle (1.56 +/- 0.18). Hepatic collagen contents of DMN rats were also significantly reduced by either thalidomide or silymarin treatment. Immunohistochemical double staining results showed that alpha-SMA- and NFkappaB-positive cells were decreased in the livers from DMN rats receiving either thalidomide or silymarin treatment. In addition, real-time PCR analysis indicated that hepatic mRNA expressions of TGF-beta1, alpha-SMA, collagen 1alpha2, TNF-alpha and iNOS genes were attenuated by thalidomide treatment. In conclusion, our results showed that thalidomide inhibited activation of HSC-T6 cells by TNF-alpha and ameliorated liver fibrosis in DMN-intoxicated rats.
Shakiba, Khashayar; Falcone, Tommaso
2006-09-01
Several studies have shown that tumour necrosis factor (TNF)-alpha levels are increased in the peritoneal fluid of women with endometriosis, with correlation between TNF-alpha concentrations and the degree of disease. It is also likely that elevation of peritoneal fluids' TNF-alpha levels may play a role in the pathogenesis of infertility associated with endometriosis. Use of drugs such as etanercept, a TNF-alpha receptor immunoglobulin fusion protein which inhibits TNF-alpha activity, showed in an animal study to reduce the severity of the disease, and the size of endometriotic foci. TNF-alpha blockers were recommended as a possible new line of therapy for endometriosis. Our case involved a 35-year-old Para 0, with rheumatic arthritis and stage 4 endometriosis. After 6 years of constant use of etanercept, she showed no improvement of endometriosis as demonstrated at laparoscopy. However, she underwent a successful IVF after the first attempt. TNF-alpha-blocker medications might not be beneficial for patients with advanced endometriosis. However, we cannot exclude the possible effect of these medications on early-stage endometriosis, and further study is required. Some of the immunologic abnormalities in the pelvis of patients with endometriosis could be the consequence of the disease and not the cause, and possibly suppression of immune cells and their products may not have a major effect on endometriotic lesions at an advanced stage. This also could explain why suppression of TNF-alpha showed no effect on infertility. However, use of TNF-alpha-blockers before IVF might increase the success rate in advanced endometriosis.
Voloshin, Olga; Gocheva, Yana; Gutnick, Marina; Movshovich, Natalia; Bakhrat, Anya; Baranes-Bachar, Keren; Bar-Zvi, Dudy; Parvari, Ruti; Gheber, Larisa; Raveh, Dina
2010-06-01
Mutation of tubulin chaperone E (TBCE) underlies hypoparathyroidism, retardation, and dysmorphism (HRD) syndrome with defective microtubule (MT) cytoskeleton. TBCE/yeast Pac2 comprises CAP-Gly, LRR (leucine-rich region), and UbL (ubiquitin-like) domains. TBCE folds alpha-tubulin and promotes alpha/beta dimerization. We show that Pac2 functions in MT dynamics: the CAP-Gly domain binds alpha-tubulin and MTs, and functions in suppression of benomyl sensitivity of pac2Delta mutants. Pac2 binds proteasomes: the LRR binds Rpn1, and the UbL binds Rpn10; the latter interaction mediates Pac2 turnover. The UbL also binds the Skp1-Cdc53-F-box (SCF) ubiquitin ligase complex; these competing interactions for the UbL may impact on MT dynamics. pac2Delta mutants are sensitive to misfolded protein stress. This is suppressed by ectopic PAC2 with both the CAP-Gly and UbL domains being essential. We propose a novel role for Pac2 in the misfolded protein stress response based on its ability to interact with both the MT cytoskeleton and the proteasomes.
Chen, M; Hieng, S; Qian, X; Costa, R; Ou, J H
1994-11-15
Hepatitis B virus (HBV) ENI enhancer can activate the expression of HBV and non-HBV genes in a liver-specific manner. By performing the electrophoretic mobility-shift assays, we demonstrated that the three related, liver-enriched, transcription factors, HNF3 alpha, HNF3 beta, and HNF3 gamma could all bind to the 2c site of HBV ENI enhancer. Mutations introduced in the 2c site to abolish the binding by HNF3 reduced the enhancer activity approximately 15-fold. Moreover, expression of HNF3 antisense sequences to suppress the expression of HNF3 in Huh-7 hepatoma cells led to reduction of the ENI enhancer activity. These results indicate that HNF3 positively regulates the ENI enhancer activity and this regulation is most likely mediated through the 2c site. The requirement of HNF3 for the ENI enhancer activity could explain the liver specificity of this enhancer element.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, You Jin; Park, Sun Young; Kim, Sun Gun
2010-01-22
A novel {alpha}-iso-cubebenol, which has anti-inflammatory effects in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, was isolated from the fruits of Schisandra chinensis. {alpha}-iso-cubebenol inhibited LPS-induced nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) production. Consistent with these findings, {alpha}-iso-cubebenol also reduced the LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 at the protein and mRNA levels in a concentration-dependent manner. {alpha}-iso-cubebenol also inhibited LPS-induced nuclear translocation of the NF-{kappa}B p65 subunit. Furthermore, {alpha}-iso-cubebenol suppressed the phosphorylation of ERK, JNK, and p38 kinase induced by LPS. Since the novel {alpha}-iso-cubebenol blocked the production of several pro-inflammatory mediators induced by LPSmore » in macrophages, the molecule can be useful material for the development of anti-inflammatory agents against bacterial infections or endotoxin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bin; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208; Abdalrahman, Akram
2014-02-21
Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promisesmore » in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation of Nrf2 independently of Keap1 and NF-κB, suggesting a unique therapeutic potential of dh404 for specific targeting a Nrf2-mediated resolution of inflammation.« less
Kim, Min Sun; Hwang, Yoon Jung; Yoon, Ki Joon; Zenke, Kosuke; Nam, Yoon Kwon; Kim, Sung Koo; Kim, Ki Hong
2009-11-01
Rock bream (Oplegnathus fasciatus) tumor necrosis factor-alpha (rbTNF-alpha) gene was cloned, recombinantly produced, and the effect of the recombinant rbTNF-alpha on the respiratory burst activity of rock bream phagocytes was analyzed. Structurally, genomic DNA of rbTNF-alpha was comprised with four exons and three introns, and deduced amino acid sequence of its cDNA possessed the TNF family signature, a transmembrane domain, a protease cleavage site, and two cysteine residues, which are the typical characteristics of TNF-alpha gene in mammals and fish. The chemiluminescent (CL) response of rock bream phagocytes was significantly enhanced by pre-incubation with recombinant rbTNF-alpha, when opsonized zymosan was used as a stimulant of the respiratory burst. However, CL enhancing effect of the recombinant rbTNF-alpha was very weak when the respiratory burst activity of phagocytes was triggered with phorbol-12-myristate-13-acetate (PMA) instead of zymosan. These results suggest that rock bream TNF-alpha might have an ability to prime the respiratory burst activity of phagocytes against receptor-mediated phagocytosis inducing stimulants, such as zymosan, but have little ability against stimulants not accompanying receptor-mediated phagocytosis.
Lin, Chun-che; Yin, Mei-chin; Liu, Wen-hu
2008-11-01
Alleviative effects of s-allyl cysteine (SAC) and s-ethyl cysteine (SEC) upon methionine and choline deficient (MCD) diet-induced hepatotoxicity in mice were examined. SAC or SEC at 1g/L was added into drinking water for 7 weeks with MCD diet. MCD feeding significantly increased hepatic triglyceride and cholesterol levels, and elevated the activity of glucose-6-phosphate dehydrogenase (G6PDH), malic enzyme, fatty acid synthase (FAS) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (P < 0.05). However, the intake of SAC or SEC significantly decreased hepatic triglyceride accumulation, and reduced G6PDH and FAS activities (P < 0.05). MCD feeding significantly lowered serum and hepatic glutathione (GSH) levels, increased malondialdehyde (MDA) and oxidized glutathione (GSSG) formation, and suppressed the activity and mRNA expression of glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (P < 0.05). The intake of SAC or SEC significantly increased serum and hepatic GSH levels, decreased MDA and GSSG formation, restored the activity and mRNA expression of GPX, SOD and catalase (P < 0.05). MCD feeding significantly enhanced the mRNA expression of interleukin (IL)-1beta, IL-6, tumor necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta1, matrix metalloproteinases-9 (MMP-9) and collagen-alpha1 (P < 0.05). The intake of SAC and SEC significantly blunted the mRNA expression of IL-1beta, IL-6, TNF-alpha, TGF-beta1 and collagen-alpha1 (P < 0.05). SEC was greater than SAC in suppressing IL-6 and TNF-alpha expression (P < 0.05), but SAC was greater than SEC in suppressing collagen-alpha1 and TGF-beta1 expression (P < 0.05). These data suggest that SAC and SEC are potent agents against MCD-induced hepatotoxicity.
Knowlton, K U; Baracchini, E; Ross, R S; Harris, A N; Henderson, S A; Evans, S M; Glembotski, C C; Chien, K R
1991-04-25
To study the mechanisms which mediate the transcriptional activation of cardiac genes during alpha adrenergic stimulation, the present study examined the regulated expression of three cardiac genes, a ventricular embryonic gene (atrial natriuretic factor, ANF), a constitutively expressed contractile protein gene (cardiac MLC-2), and a cardiac sodium channel gene. alpha 1-Adrenergic stimulation activates the expression and release of ANF from neonatal ventricular cells. As assessed by RNase protection analyses, treatment with alpha-adrenergic agonists increases the steady-state levels of ANF mRNA by greater than 15-fold. However, a rat cardiac sodium channel gene mRNA is not induced, indicating that alpha-adrenergic stimulation does not lead to an increase in the expression of all cardiac genes. Studies employing a series of rat ANF luciferase and rat MLC-2 luciferase fusion genes identify 315- and 92-base pair cis regulatory sequences within an embryonic gene (ANF) and a constitutively expressed contractile protein gene (MLC-2), respectively, which mediate alpha-adrenergic-inducible gene expression. Transfection of various ANF luciferase reporters into neonatal rat ventricular cells demonstrated that upstream sequences which mediate tissue-specific expression (-3003 to -638) can be segregated from those responsible for inducibility. The lack of inducibility of a cardiac Na+ channel gene, and the segregation of ANF gene sequences which mediate cardiac specific from those which mediate inducible expression, provides further insight into the relationship between muscle-specific and inducible expression during cardiac myocyte hypertrophy. Based on these results, a testable model is proposed for the induction of embryonic cardiac genes and constitutively expressed contractile protein genes and the noninducibility of a subset of cardiac genes during alpha-adrenergic stimulation of neonatal rat ventricular cells.
Bruner, K L; Rodgers, W H; Gold, L I; Korc, M; Hargrove, J T; Matrisian, L M; Osteen, K G
1995-01-01
Unlike most normal adult tissues, cyclic growth and tissue remodeling occur within the uterine endometrium throughout the reproductive years. The matrix metalloproteinases (MMPs), a family of structurally related enzymes that degrade specific components of the extracellular matrix are thought to be the physiologically relevant mediators of extracellular matrix composition and turnover. Our laboratory has identified MMPs of the stromelysin family in the cycling human endometrium, implicating these enzymes in mediating the extensive remodeling that occurs in this tissue. While the stromelysins are expressed in vivo during proliferation-associated remodeling and menstruation-associated endometrial breakdown, none of the stromelysins are expressed during the progesterone-dominated secretory phase of the cycle. Our in vitro studies of isolated cell types have confirmed progesterone suppression of stromal MMPs, but a stromal-derived paracrine factor was found necessary for suppression of the epithelial-specific MMP matrilysin. In this report, we demonstrate that transforming growth factor beta (TGF-beta) is produced by endometrial stroma in response to progesterone and can suppress expression of epithelial matrilysin independent of progesterone. Additionally, we find that an antibody directed against the mammalian isoforms of TGF-beta abolishes progesterone suppression of matrilysin in stromal-epithelial cocultures, implicating TGF-beta as the principal mediator of matrilysin suppression in the human endometrium. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7638197
Maeda, H; Tsuru, S; Shiraishi, A
1994-11-01
An experimental therapy for improvement of macrophage dysfunction caused by transforming growth factor-beta (TGF-beta) was tried in EL4 tumor-bearing mice. TGF-beta was detected in cell-free ascitic fluid from EL4-bearers, but not in that from normal mice, by western blot analysis. The ascites also showed growth-suppressive activity against Mv1Lu cells, and the suppressive activity was potentiated by transient acidification. To investigate whether the functions of peritoneal macrophages were suppressed in EL4-bearers, the abilities to produce nitric oxide and tumor necrosis factor-alpha (TNF-alpha) upon lipopolysaccharide (LPS) stimulation were measured. Both abilities of macrophages in EL4-bearing mice were suppressed remarkably on day 9, and decreased further by day 14, compared with non-tumor-bearing controls. TGF-beta activity was abrogated by administration of anti-TGF-beta antibody to EL4-bearing mice. While a large amount of TGF-beta was detected in ascitic fluid from control EL4-bearers, little TGF-beta was detectable in ascites from EL4-bearers given anti-TGF-beta antibody. Furthermore, while control macrophages exhibited little or no production of nitric oxide and TNF-alpha on LPS stimulation in vitro, macrophages from EL4-bearers administered with anti-TGF-beta antibody showed the same ability as normal macrophages. These results clearly indicate that TGF-beta contributes to macrophage dysfunction and that the administration of specific antibody for TGF-beta reverses macrophage dysfunction in EL4-bearing hosts.
Chakravarthy, Divya; Muñoz, Amanda R.; Su, Angel; Hwang, Rosa F.; Keppler, Brian R.; Chan, Daniel E.; Halff, Glenn; Ghosh, Rita; Kumar, Addanki P.
2018-01-01
Reciprocal interaction between pancreatic stellate cells (PSCs) and cancer cells (PCCs) in the tumor microenvironment (TME) promotes tumor cell survival and progression to lethal, therapeutically resistant pancreatic cancer. The goal of this study was to test the ability of Palmatine (PMT) to disrupt this reciprocal interaction in vitro and examine the underlying mechanism of interaction. We show that PSCs secrete glutamine into the extracellular environment under nutrient deprivation. PMT suppresses glutamine-mediated changes in GLI signaling in PCCs resulting in the inhibition of growth and migration while inducing apoptosis by inhibition of survivin. PMT-mediated inhibition of (glioma-associated oncogene 1) GLI activity in stellate cells leads to suppression (collagen type 1 alpha 1) COL1A1 activation. Remarkably, PMT potentiated gemcitabine’s growth inhibitory activity in PSCs, PCCs and inherently gemcitabine-resistant pancreatic cancer cells. This is the first study that shows the ability of PMT to inhibit growth of PSCs and PCCs either alone or in combination with gemcitabine. These studies warrant additional investigations using preclinical models to develop PMT as an agent for clinical management of pancreatic cancer. PMID:29414301
Alpha-band rhythm suppression during memory recall reflecting memory performance.
Yokosawa, Koichi; Kimura, Keisuke; Chitose, Ryota; Momiki, Takuya; Kuriki, Shinya
2016-08-01
Alpha-band rhythm is thought to be involved in memory processes, similarly to other spontaneous brain rhythms. Ten right-handed healthy volunteers participated in our proposed sequential short-term memory task that provides a serial position effect in accuracy rate. We recorded alpha-band rhythms by magnetoencephalography during performance of the task and observed that the amplitude of the rhythm was suppressed dramatically in the memory recall period. The suppressed region was estimated to be in the occipital lobe, suggesting that alpha-band rhythm is suppressed by activation of the occipital attentional network. Additionally, the alpha-band suppression reflected accuracy rate, that is, the amplitude was suppressed more when recalling items with higher accuracy rate. The sensors with a significant correlation between alpha-band amplitude and accuracy rate were located widely from the frontal to occipital regions mainly in the right hemisphere. The results suggests that alpha-band rhythm is involved in memory recall and can be index of memory performance.
C/EBP beta regulation of the tumor necrosis factor alpha gene.
Pope, R M; Leutz, A; Ness, S A
1994-01-01
Activated macrophages contribute to chronic inflammation by the secretion of cytokines and proteinases. Tumor necrosis factor alpha (TNF alpha) is particularly important in this process because of its ability to regulate other inflammatory mediators in an autocrine and paracrine fashion. The mechanism(s) responsible for the cell type-specific regulation of TNF alpha is not known. We present data to show that the expression of TNF alpha is regulated by the transcription factor C/EBP beta (NF-IL6). C/EBP beta activated the TNF alpha gene promoter in cotransfection assays and bound to it at a site which failed to bind the closely related protein C/EBP alpha. Finally, a dominant-negative version of C/EBP beta blocked TNF alpha promoter activation in myeloid cells. Our results implicate C/EBP beta as an important regulator of TNF alpha by myelomonocytic cells. Images PMID:7929820
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warrington, R.J.; Rutherford, W.J.
1990-01-01
A low-frequency suppressor-cell population in normal peripheral blood inhibits the B-cell CESS response to IL-6, following pokeweed mitogen stimulation. The suppression of IL-6 responsiveness is radiation sensitive, directed against CESS targets and not mediated by inhibition of IL-6 production, and associated with nonspecific cytotoxic activity against CESS targets. The generation of these cytolytic cells is also radiation sensitive. A correlation was found between PWM-induced cytotoxicity against CESS and the suppression of IL-6-dependent IgG production. But cytotoxicity toward CESS targets is not responsible for this suppression because IL-2 induces equivalent or greater nonspecific cytotoxicity against CESS in the total absence ofmore » suppression of CESS-derived IgG production and suppression is also induced by mitogen-activated PBL separated from CESS targets by a cell-impermeable membrane. This suppression was not mediated by TNF alpha/beta or IFN-gamma. In systemic lupus erythematosus, suppression of IL-6-dependent IgG production is impaired in patients with active disease (29.2 +/- 13.7%) compared to patients with inactive disease (70 +/- 19.5%) or normal controls (82.8 +/- 9.2%). There is also a defect in mitogen-induced nonspecific cytotoxicity in active SLE (specific lysis 15.1 +/- 3.5%, compared to 34 +/- 4% in normals). Pokeweed mitogen-activated PBL can therefore normally induce suppression of B-cell IL-6 responses and this response is deficient in lupus.« less
Evidence suggesting a negative regulatory role for macrophages in murine erythropoiesis in vivo.
Wang, C Q; Udupa, K B; Xiao, H; Lipschitz, D A
1994-04-01
Increasing the rate of erythropoiesis in C57BL/6 mice, either by hypoxia or by the injection of recombinant erythropoietin (Epo), resulted in significant reductions in marrow macrophage number, as assessed by flow cytometry employing the monoclonal antibody against the macrophage antigen Mac-1 and by histologic determination of reductions in the number of marrow esterase-positive cells. This decline was paralleled by decreases in marrow colony-forming unit-macrophage (CFU-M) and colony-forming unit-granulocyte/macrophage (CFU-GM) number. The intramedullary concentration of the cytokines interleukin-1 alpha (IL-1 alpha) and tumor necrosis factor-alpha (TNF-alpha), which are produced by macrophages, was also reduced. Cessation of erythropoiesis was associated with increases in macrophage number, CFU-M and CFU-GM colony number, and IL-1 alpha concentrations. Increased erythropoiesis resulted in reductions in number of burst-forming unit-erythroid (BFU-E) colonies, which were less sensitive to suppression by macrophages as evidence by less increase in colony number when macrophages were removed from the marrow before in vitro BFU-E culture. BFU-E colony number was suppressed less when IL-1 alpha and TNF-alpha were added to cultures obtained from animals with stimulated erythropoiesis. Compared to controls, BFU-E number and suppression by macrophages increased significantly when erythropoiesis was reduced. These observations provide compelling evidence for a regulatory role for macrophages in normal erythropoiesis in vivo, presumably acting as a negative balance to the stimulatory effects of Epo.
Feng, Yaling; Xu, Jianjuan; Zhou, Qin; Wang, Rong; Liu, Nin; Wu, Yanqun; Yuan, Hua; Che, Haisha
2016-01-01
Preeclampsia (PE) and its complications have become the leading cause of maternal and fetal morbidity and mortality in the world. And the development of PE is still barely predictable and thus challenging to prevent and manage clinically. Oxidative stress contributes to the development of the disease. Our previous study demonstrated that exogenous Alpha-1 antitrypsin (AAT) played a cytoprotective role in vascular endothelial cell by suppressing oxidative stress. In this study, we aim to investigate whether AAT contributes to the development of PE, and to identify the mechanism behind these effects. We found that AAT levels were significantly decreased in placenta tissues from women with PE compared that of healthy women. Notably, we demonstrate that AAT injection is able to relieve the high blood pressure and reduce urine protein levels in a dose-dependent manner in PE mice. In addition, our results showed that AAT injection exhibited an anti-oxidative stress role by significantly reducing PE mediated-upregulation of ROS, MMP9 and MDA, and increasing the levels of SOD, eNOS, and GPx with increased dosage of AAT. Furthermore, we found that AAT injection inactivated PE mediated activation of PAK/STAT1/p38 signaling. These findings were confirmed in human samples. In conclusion, our study suggests that exogenous AAT injection increases the antioxidants and suppresses oxidative stress, and subsequent prevention of PE development through inactivation of STAT1/p38 signaling. Thus, AAT would become a potential strategy for PE therapy.
Csaki, Constanze; Mobasheri, Ali; Shakibaei, Mehdi
2009-01-01
Currently available treatments for osteoarthritis (OA) are restricted to nonsteroidal anti-inflammatory drugs, which exhibit numerous side effects and are only temporarily effective. Thus novel, safe and more efficacious anti-inflammatory agents are needed for OA. Naturally occurring polyphenolic compounds, such as curcumin and resveratrol, are potent agents for modulating inflammation. Both compounds mediate their effects by targeting the NF-kappaB signalling pathway. We have recently demonstrated that in chondrocytes resveratrol modulates the NF-kappaB pathway by inhibiting the proteasome, while curcumin modulates the activation of NF-kappaB by inhibiting upstream kinases (Akt). However, the combinational effects of these compounds in chondrocytes has not been studied and/or compared with their individual effects. The aim of this study was to investigate the potential synergistic effects of curcumin and resveratrol on IL-1beta-stimulated human chondrocytes in vitro using immunoblotting and electron microscopy. Treatment with curcumin and resveratrol suppressed NF-kappaB-regulated gene products involved in inflammation (cyclooxygenase-2, matrix metalloproteinase (MMP)-3, MMP-9, vascular endothelial growth factor), inhibited apoptosis (Bcl-2, Bcl-xL, and TNF-alpha receptor-associated factor 1) and prevented activation of caspase-3. IL-1beta-induced NF-kappaB activation was suppressed directly by cocktails of curcumin and resveratrol through inhibition of Ikappakappa and proteasome activation, inhibition of IkappaBalpha phosphorylation and degradation, and inhibition of nuclear translocation of NF-kappaB. The modulatory effects of curcumin and resveratrol on IL-1beta-induced expression of cartilage specific matrix and proinflammatory enzymes were mediated in part by the cartilage-specific transcription factor Sox-9. We propose that combining these natural compounds may be a useful strategy in OA therapy as compared with separate treatment with each individual compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangwala, Shamina M.; Li, Xiaoyan; Lindsley, Loren
2007-05-25
Estrogen-related receptor {alpha} (ERR{alpha}) is an important mediator of mitochondrial biogenesis and function. To investigate the transcriptional network controlling these phenomena, we investigated mitochondrial gene expression in embryonic fibroblasts isolated from ERR{alpha} null mice. Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) stimulated mitochondrial gene expression program in control cells, but not in the ERR{alpha} null cells. Interestingly, the induction of levels of mitochondrial oxidative stress protection genes in response to increased PGC-1{alpha} levels was dependent on ERR{alpha}. Furthermore, we found that the PGC-1{alpha}-mediated induction of estrogen-related receptor {gamma} and nuclear respiratory factor 2 (NRF-2), was dependent on the presence of ERR{alpha}.more » Basal levels of NRF-2 were decreased in the absence of ERR{alpha}. The absence of ERR{alpha} resulted in a decrease in citrate synthase enzyme activity in response to PGC-1{alpha} overexpression. Our results indicate an essential role for ERR{alpha} as a key regulator of oxidative metabolism.« less
Akashi, Iwao; Kagami, Keisuke; Hirano, Toshihiko; Oka, Kitaro
2009-04-01
The protective effects of coffee-derived compounds on lipopolysaccharide/D-galactosamine (LPS/D-GalN) induced acute liver injury in rats were investigated. Wistar rats were orally administered saline (control) or one of the test compounds (caffeine, chlorogenic acid, trigonelline, nicotinic acid or eight pyrazinoic acids) at a dose of 100 mg/kg, respectively. This was followed by intraperitoneal injection with LPS (100 mug/kg)/D-GalN (250 mg/kg) 1 h after administration of the test compounds. Blood samples were collected up to 12 h after LPS/D-GalN injection, followed by determination of plasma aspartate aminotransferase, alanine aminotransferase, tumour necrosis factor alpha (TNF-alpha) and interleukin 10 (IL-10) levels. Plasma aspartate aminotransferase and alanine aminotransferase levels were significantly increased after LPS/D-GalN-treatment, but were suppressed by pretreatment with caffeine (n = 5), nicotinic acid, non-substituted pyrazinoic acid or 5-methylpyrazinoic acid (n = 6, respectively) 12 h after LPS/D-GalN-treatment (P < 0.01, respectively). Moreover, the animals pretreated with these test compounds showed significantly higher survival rates (83-100%) compared with the control (23%). Only pretreatment with caffeine significantly suppressed the LPS/D-GalN induced elevation of plasma TNF-alpha levels 1 and 2 h after LPS/D-GalN-treatment (P < 0.01, respectively). Pretreatment with caffeine, nicotinic acid or non-substituted pyrazinoic acid activated the LPS/D-GalN induced elevation of plasma IL-10 levels at 1 and 2 h, although there were no statistically significant differences in IL-10 levels between control and nicotinic acid or non-substituted pyrazinoic acid treated rats. The results suggest that caffeine, nicotinic acid, non-substituted pyrazinoic acid and 5-methylpyrazinoic acid can protect against LPS/D-GalN induced acute liver injury, which may be mediated by the reduction of TNF-alpha production and/or increasing IL-10 production.
Cloning and characterization of the rat HIF-1 alpha prolyl-4-hydroxylase-1 gene.
Cobb, Ronald R; McClary, John; Manzana, Warren; Finster, Silke; Larsen, Brent; Blasko, Eric; Pearson, Jennifer; Biancalana, Sara; Kauser, Katalin; Bringmann, Peter; Light, David R; Schirm, Sabine
2005-08-01
Prolyl-4-hydroxylase domain-containing enzymes (PHDs) mediate the oxygen-dependent regulation of the heterodimeric transcription factor hypoxia-inducible factor-1 (HIF-1). Under normoxic conditions, one of the subunits of HIF-1, HIF-1alpha, is hydroxylated on specific proline residues to target HIF-1alpha for degradation by the ubiquitin-proteasome pathway. Under hypoxic conditions, the hydroxylation by the PHDs is attenuated by lack of the oxygen substrate, allowing HIF-1 to accumulate, translocate to the nucleus, and mediate HIF-mediated gene transcription. In several mammalian species including humans, three PHDs have been identified. We report here the cloning of a full-length rat cDNA that is highly homologous to the human and murine PHD-1 enzymes and encodes a protein that is 416 amino acids long. Both cDNA and protein are widely expressed in rat tissues and cell types. We demonstrate that purified and crude baculovirus-expressed rat PHD-1 exhibits HIF-1alpha specific prolyl hydroxylase activity with similar substrate affinities and is comparable to human PHD-1 protein.
Production and action of cytokines in space
NASA Technical Reports Server (NTRS)
Chapes, Stephen K.; Morrison, Dennis R.; Guikema, James A.; Lewis, Marian L.; Spooner, Brian S.
1994-01-01
B6MP102 cells, a continuously cultured murine bone marrow macrophage cell line, were tested for secretion of tumor necrosis factor-alpha and Interleukin-1 during space flight. We found that B6MP102 cells secreted more tumor necrosis factor-alpha and interleukin-1 when stimulated in space with lipopolysaccharide than controls similarly stimulated on earth. This compared to increased secretion of interferon-beta and -gamma by lymphocytes that was measured on the same shuttle flights. Although space flight enhanced B6MP102 secretion of tumor necrosis factor-alpha, an experiment on a subsequent space flight (STS-50) found that cellular cytotoxicity, mediated by tumor necrosis factor-alpha, was inhibited.
Yamaguchi, Y; Tsumura, H; Miwa, M; Inaba, K
1997-01-01
Dendritic cells (DC) are a distinct population of leukocytes and specialized antigen-presenting cells for T cell responses. Prior work has shown that GM-CSF can induce the development of large numbers of DC from proliferating progenitors in mouse bone marrow. We have monitored the effects of potentially enhancing and suppressive cytokines in these cultures. In this system, many immature DC develop from proliferating precursors during the first six days of culture, and between days 6-8 maturation of typical nonadherent and nonreplicating DC takes place. The maturation is accompanied by a large increase in the expression of major histocompatibilities complex class II (MHC II) and B7-2/CD86, and in mixed leukocyte reaction stimulating activity. Tumor necrosis factor-alpha (TNF-alpha), previously shown to be required for development of human DC, was found to enhance the maturation of mouse DC in the last two days of culture. Transforming growth factor-beta 1 (TGF-beta 1), on the other hand, almost totally blocked DC maturation, but it had to be given in the first six days of culture when the DC were actively proliferating. TGF-beta 1 did not block the production of immature, MHC II-positive but B7-2/CD86-negative DC. Maturation would take place between days 6-8 as long as the cultures were depleted of Fc-receptor-bearing cells, or if TNF-alpha were added. In both instances, maturation was not blocked even when TGF-beta 1 remained in the culture. We conclude that the development of DC, in response to GM-CSF, can be modified by other cytokines. TGF-beta 1 is suppressive but only indirectly via Fc-receptor-bearing suppressive cells, presumably suppressive macrophages, while TNF-alpha enhances the final maturation of DC.
Froidure, Solène; Canonne, Joanne; Daniel, Xavier; Jauneau, Alain; Brière, Christian; Roby, Dominique; Rivas, Susana
2010-08-24
The hypersensitive response (HR), characterized by a rapid and localized cell death at the inoculation site, is one of the most efficient resistance reactions to pathogen attack in plants. The transcription factor AtMYB30 was identified as a positive regulator of the HR and resistance responses during interactions between Arabidopsis and bacteria. Here, we show that AtMYB30 and the secreted phospholipase AtsPLA(2)-alpha physically interact in vivo, following the AtMYB30-mediated specific relocalization of AtsPLA(2)-alpha from cytoplasmic vesicles to the plant cell nucleus. This protein interaction leads to repression of AtMYB30 transcriptional activity and negative regulation of plant HR. Moreover, Atspla(2)-alpha mutant plants are more resistant to bacterial inoculation, whereas AtsPLA(2)-alpha overexpression leads to decreased resistance, confirming that AtsPLA(2)-alpha is a negative regulator of AtMYB30-mediated defense. These data underline the importance of cellular dynamics and, particularly, protein translocation to the nucleus, for defense-associated gene regulation in plants.
Role of hypoxia-inducible factor-{alpha} in hepatitis-B-virus X protein-mediated MDR1 activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Hyo-Kyung; Han, Chang Yeob; Cheon, Eun-Pa
2007-06-01
The transition from chemotherapy-responsive cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multi-drug resistance 1 (MDR1). We found that hepatitis-B-virus X protein (HBx) increases the transcriptional activity and protein level of MDR1 in a hepatoma cell line, H4IIE. In addition, HBx overexpression made H4IIE cells more resistant to verapamil-uptake. HBx stabilized hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) and induced the nuclear translocation of C/EBP{beta}. Reporter gene analyses showed that HBx increased the reporter activity in the cells transfected with the reporter containing MDR1 gene promoter. Moreover, the luciferase reporter gene activity was significantly inhibited by HIF-1{alpha} siRNAmore » but not by overexpression of C/EBP dominant negative mutant. These results imply that HBx increases the MDR1 transporter activity through the transcriptional activation of the MDR1 gene with HIF-1{alpha} activation, and suggest HIF-1{alpha} for the therapeutic target of HBV-mediated chemoresistance.« less
Expression and function of CD8 alpha/beta chains on rat and human mast cells.
Kim, Mi-Sun; Kim, Sung-Hoon; Lee, Hye-Jung; Kim, Hyung-Min
2004-03-01
The expression and functional role of CD8 glycoprotein, a marker of cytotoxic/suppressor T lymphocytes and NK cells, were not studied on freshly isolated connective tissue type rat peritoneal mast cells, a rat mucosal type mast cell line (RBL 2H3), or human mast cell line (HMC-1). We used the reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis, immunohistochemistry and enzyme-linked immunosorbent assay. RT-PCR and Western blot analysis identified the presence of CD8 alpha/beta chains on the mast cells, and immunohistochemistry confirmed CD8alpha expression on rat or human mast cells. Functional studies demonstrated that stimulation of CD8 alpha/beta chains on rat mast cells induced the secretion of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6), which are regarded as important mediators during infection. However, co-stimulation with stem cell factor had no effect on CD8-induced mediator secretion. Our findings demonstrate novel biological roles of CD8 molecules in mast cells.
In vitro evaluation of the immunotoxic potential of perfluorinated compounds (PFCs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corsini, Emanuela, E-mail: emanuela.corsini@unimi.it; Avogadro, Anna; Galbiati, Valentina
2011-01-15
There is evidence from both epidemiology and laboratory studies that perfluorinated compounds may be immunotoxic, affecting both cell-mediated and humoral immunity. The overall goal of this study was to investigate the mechanisms underlying the immunotoxic effects of perfluorooctane sulfonate (PFOS) and perfluorooctane acid (PFOA), using in vitro assays. The release of the pro-inflammatory cytokines IL-6, IL-8, and TNF-{alpha} was evaluated in lipolysaccharide (LPS)-stimulated human peripheral blood leukocytes and in the human promyelocytic cell line THP-1, while the release of IL-4, IL-10 and IFN-{gamma} was evaluated in phytohaemagglutinin (PHA)-stimulated peripheral blood leukocytes. PFOA and PFOS suppressed LPS-induced TNF-{alpha} production in primarymore » human cultures and THP-1 cells, while IL-8 was suppressed only in THP-1 cells. IL-6 release was decreased only by PFOS. Both PFOA and PFOS decreased T-cell derived, PHA-induced IL-4 and IL-10 release, while IFN-{gamma} release was affected only by PFOS. In all instances, PFOS was more potent than PFOA. Mechanistic investigations carried out in THP-1 cells demonstrated that the effect on cytokine release was pre-transcriptional, as assessed by a reduction in LPS-induced TNF-{alpha} mRNA expression. Using siRNA, a role for PPAR-{alpha} could be demonstrated for PFOA-induced immunotoxicity, while an inhibitory effect on LPS-induced I-{kappa}B degradation could explain the immunomodulatory effect of PFOS. The dissimilar role of PPAR-{alpha} in PFOA and PFOS-induced immunotoxicity was consistent with the differing effects observed on LPS-induced MMP-9 release: PFOA, as the PPAR-{alpha} agonist fenofibrate, modulated the release, while PFOS had no effect. Overall, these studies suggest that PFCs directly suppress cytokine secretion by immune cells, and that PFOA and PFOS have different mechanisms of action.« less
Yoshizumi, Masanori; Abe, Jun-Ichi; Tsuchiya, Koichiro; Berk, Bradford C; Tamaki, Toshiaki
2003-03-01
Atherosclerosis preferentially occurs in areas of turbulent blood flow and low fluid shear stress, whereas laminar blood flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. Recent findings suggest a steady laminar blood flow decreases EC apoptosis and inhibits TNF-mediated EC activation. EC apoptosis or activation is suggested to be involved in plaque erosion, which may lead to platelet aggregation. TNF-alpha regulates gene expression in ECs, in part, by stimulating mitogen-activated protein (MAP) kinases, which phosphorylate transcription factors. We hypothesized that steady laminar flow inhibits cytokine-mediated activation of MAP kinases in ECs. To test this hypothesis, we determined the effects of steady laminar flow (shear stress = 12 dynes/cm(2)) on TNF-alpha-stimulated activity of three MAP kinases in human umbilical vein ECs (HUVEC): extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. TNF-alpha activated ERK1/2, JNK, and p38 maximally at 15 min in HUVEC. Pre-exposing HUVEC for 10 min to flow inhibited TNF-alpha activation of JNK, but showed no significant effect on ERK1/2 or p38 activation. Incubation of HUVEC with PD98059, a specific ERK1/2 inhibitor, blocked the flow-mediated inhibition of TNF activation of JNK. Transfection studies with dominant-negative constructs of the protein kinase MEK5 suggested an important role for big mitogen-activated protein kinase 1 (BMK1) in flow-mediated regulation of EC activation by TNF-alpha. Understanding the mechanisms by which steady laminar flow regulates JNK activation by cytokines may provide insight into the atheroprotective mechanisms induced by laminar blood flow.
Kawamata, Yuji; Imamura, Takeshi; Babendure, Jennie L; Lu, Juu-Chin; Yoshizaki, Takeshi; Olefsky, Jerrold M
2007-09-28
Tumor necrosis factor-alpha (TNFalpha) is a proinflammatory cytokine secreted from macrophages and adipocytes. It is well known that chronic TNFalpha exposure can lead to insulin resistance both in vitro and in vivo and that elevated blood levels of TNFalpha are observed in obese and/or diabetic individuals. TNFalpha has many acute biologic effects, mediated by a complex intracellular signaling pathway. In these studies we have identified new G-protein signaling components to this pathway in 3T3-L1 adipocytes. We found that beta-arrestin-1 is associated with TRAF2 (TNF receptor-associated factor 2), an adaptor protein of TNF receptors, and that TNFalpha acutely stimulates tyrosine phosphorylation of G alpha(q/11) with an increase in G alpha(q/11) activity. Small interfering RNA-mediated knockdown of beta-arrestin-1 inhibits TNFalpha-induced tyrosine phosphorylation of G alpha(q/11) by interruption of Src kinase activation. TNFalpha stimulates lipolysis in 3T3-L1 adipocytes, and beta-arrestin-1 knockdown blocks the effects of TNFalpha to stimulate ERK activation and glycerol release. TNFalpha also led to activation of JNK with increased expression of the proinflammatory gene, monocyte chemoattractant protein-1 and matrix metalloproteinase 3, and beta-arrestin-1 knockdown inhibited both of these effects. Taken together these results reveal novel elements of TNFalpha action; 1) the trimeric G-protein component G alpha(q/11) and the adapter protein beta-arrestin-1 can function as signaling molecules in the TNFalpha action cascade; 2) beta-arrestin-1 can couple TNFalpha stimulation to ERK activation and lipolysis; 3) beta-arrestin-1 and G alpha(q/11) can mediate TNFalpha-induced phosphatidylinositol 3-kinase activation and inflammatory gene expression.
Urushiol (poison ivy)-triggered suppressor T cell clone generated from peripheral blood.
Kalish, R S; Morimoto, C
1988-01-01
Allergic contact dermatitis to Toxicodendron radicans (poison ivy) is mediated by the hapten urushiol. An urushiol-specific, interleukin 2 (IL-2)-dependent T cell clone (RLB9-7) was generated from the peripheral blood of a patient with a history of allergic contact dermatitis to T. radicans. This clone proliferated specifically to both leaf extract and pure urushiol. Although the clone had the phenotype CD3+CD4+CD8+, proliferation to antigen was blocked by anti-CD8 and anti-HLA-A, B, C, but not by anti-CD4, suggesting that CD4 was not functionally associated with the T cell receptor. Furthermore, studies with antigen-presenting cells from MHC-typed donors indicated that the clone was MHC class 1 restricted. RLB9-7 was WT31 positive, indicating it bears the alpha beta T cell receptor. The clone lacked significant natural killer cell activity and produced only low levels of IL-2 or gamma-interferon upon antigen stimulation. Addition of RLB9-7 to autologous peripheral blood mononuclear cells in the presence of urushiol inhibited the pokeweed mitogen-driven IgG synthesis. This suppression was resistant to irradiation (2,000 rad) and was not seen when RLB9-7 was added to allogeneic cells, even in the presence of irradiated autologous antigen-presenting cells, suggesting that suppression was MHC restricted and not mediated by nonspecific soluble factors. However, RLB9-7 cells in the presence of urushiol inhibited the synthesis of tetanus toxoid-specific IgG by autologous lymphocytes, indicating that the suppression, although triggered specifically by urushiol, was nonspecific. PMID:2458387
Majumdar, Sekhar; Lamothe, Betty; Aggarwal, Bharat B
2002-03-15
Thalidomide ([+]-alpha-phthalimidoglutarimide), a psychoactive drug that readily crosses the blood-brain barrier, has been shown to exhibit anti-inflammatory, antiangiogenic, and immunosuppressive properties through a mechanism that is not fully established. Due to the central role of NF-kappaB in these responses, we postulated that thalidomide mediates its effects through suppression of NF-kappaB activation. We investigated the effects of thalidomide on NF-kappaB activation induced by various inflammatory agents in Jurkat cells. The treatment of these cells with thalidomide suppressed TNF-induced NF-kappaB activation, with optimum effect occurring at 50 microg/ml thalidomide. These effects were not restricted to T cells, as other hematopoietic and epithelial cell types were also inhibited. Thalidomide suppressed H(2)O(2)-induced NF-kappaB activation but had no effect on NF-kappaB activation induced by PMA, LPS, okadaic acid, or ceramide, suggesting selectivity in suppression of NF-kappaB. The suppression of TNF-induced NF-kappaB activation by thalidomide correlated with partial inhibition of TNF-induced degradation of an inhibitory subunit of NF-kappaB (IkappaBalpha), abrogation of IkappaBalpha kinase activation, and inhibition of NF-kappaB-dependent reporter gene expression. Thalidomide abolished the NF-kappaB-dependent reporter gene expression activated by overexpression of TNFR1, TNFR-associated factor-2, and NF-kappaB-inducing kinase, but not that activated by the p65 subunit of NF-kappaB. Overall, our results clearly demonstrate that thalidomide suppresses NF-kappaB activation specifically induced by TNF and H(2)O(2) and that this may contribute to its role in suppression of proliferation, inflammation, angiogenesis, and the immune system.
Zhang, Leying; Handel, Michelle Van; Schartner, Jill M; Hagar, Aaron; Allen, Grant; Curet, Marjorie; Badie, Behnam
2007-03-01
Understanding the local CNS immune response to neoplasms is essential in the development of immune-based treatments for malignant brain tumors. Using rodent glioma models, we have recently found tumor-associated microglia/macrophages (MG/MP) to be less responsive to known MG/MP activators such as CpG, LPS and IFN-gamma. To understand the mechanism of MG/MP suppression, nuclear extracts from rodent intracranial C6 gliomas, C6 glioma-associated MG/MP, normal brain, and normal MG/MP were obtained and studied using Electrophoretic Mobility Shift Assay (EMSA). Among the nuclear factors studied (AP-1, IRF, USF-1 and Stat-1) only USF-1, which is constitutively expressed in most cells, was down-regulated in tumor-associated MG/MP, but not normal MG/MP. Because tumor-associated MG/MP had higher expression of IL-10 (but not TNF-alpha or TGF-beta), we evaluated the role of USF-1 on IL-10 expression. siRNA mediated inhibition of USF-1 expression in primary MG/MP cultures resulted in up-regulation of IL-10 mRNA but not TNF-alpha or TGF-beta. These findings suggest that USF-1 may play a role in IL-10 regulation in MG/MP in brain tumors.
Rorato, Rodrigo; Menezes, Aline Motta; Giusti-Paiva, Alexandre; de Castro, Margaret; Antunes-Rodrigues, José; Elias, Lucila Leico Kagohara
2009-03-01
Corticotrophin-releasing factor (CRF) and alpha-melanocyte-stimulating hormone (alpha-MSH), both of which are synthesized by hypothalamic neurons, play an essential role in the control of energy homeostasis. Neuroendocrine and behavioural responses induced by lipopolyssacharide (LPS) have been shown to involve prostaglandin-mediated pathways. This study investigated the effects of prostaglandin on CRF and alpha-MSH neuronal activities in LPS-induced anorexia. Male Wistar rats were pretreated with indomethacin (10 mg kg(-1); i.p.) or vehicle; 15 min later they received LPS (500 microg kg(-1); i.p.) or saline injection. Food intake, hormone responses and Fos-CRF and Fos-alpha-MSH immunoreactivity in the paraventricular and arcuate nuclei, respectively, were evaluated. In comparison with saline treatment, LPS administration induced lower food intake and increased plasma ACTH and corticosterone levels, as well as an increase in Fos-CRF and Fos-alpha-MSH double-labelled neurons in vehicle-pretreated rats. In contrast, indomethacin treatment partly reversed the hypophagic effect, blunted the hormonal increase and blocked the Fos-CRF and Fos-alpha-MSH hypothalamic double labelling increase in response to the LPS stimulus. These data demonstrate that the activation of pro-opiomelanocortin and CRF hypothalamic neurons following LPS administration is at least partly mediated by the prostaglandin pathway and is likely to be involved in the modulation of feeding behaviour during endotoxaemia.
Yanaga, F; Watson, S P
1994-01-01
The effect of tumour necrosis factor alpha (TNF alpha) on superoxide generation in human neutrophils was investigated using the Nitro Blue Tetrazolium reduction assay. TNF alpha stimulated superoxide generation in a time- and concentration-dependent fashion. The maximally effective concentration of TNF alpha for superoxide generation was 10 nM and maximal response was obtained after 15-20 min. The monoclonal antibody (mAb), utr-1, which was raised against the 75 kDa receptor and behaves as an antagonist, had no effect on superoxide generation, but partially inhibited the response to TNF alpha. mAb htr-9, which was raised against the 55 kDa receptor and behaves as an agonist, mimicked the effect of TNF alpha, but with a lower maximal response. As it has been reported that ceramide might act as a second messenger to mediate many of the effects of TNF alpha, the effects of exogenous sphingomyelinase and the cell-permeable ceramide analogue, C2- ceramide, on production of superoxide anions, induction of priming in response to formylmethionyl-leucyl-phenylalanine, and cell-shape change were examined. Neither sphingomyelinase nor C2-ceramide mimicked the effect of TNF alpha. Ceramide is converted into ceramide 1-phosphate by ceramide kinase and we have measured levels of this metabolite to clarify the effect of TNF alpha on sphingomyelinase activity in neutrophils. Although exogenous sphingomyelinase increased the amount of ceramide 1-phosphate in a time-dependent manner, and C2-ceramide was rapidly converted into C2-ceramide phosphate, TNF alpha had no effect on the level of ceramide 1-phosphate. These results suggest that TNF alpha stimulates superoxide generation through both the 55 kDa and 75 kDa receptors, but that ceramide does not act as an intracellular mediator for TNF alpha in human neutrophils. Images Figure 4 PMID:8141790
Regulation and function of the atypical cadherin FAT1 in hepatocellular carcinoma.
Valletta, Daniela; Czech, Barbara; Spruss, Thilo; Ikenberg, Kristian; Wild, Peter; Hartmann, Arndt; Weiss, Thomas S; Oefner, Peter J; Müller, Martina; Bosserhoff, Anja-Katrin; Hellerbrand, Claus
2014-06-01
In human cancers, giant cadherin FAT1 may function both, as an oncogene and a tumor suppressor. Here, we investigated the expression and function of FAT1 in hepatocellular carcinoma (HCC). FAT1 expression was increased in human HCC cell lines and tissues compared with primary human hepatocytes and non-tumorous liver tissue as assessed by quantitative PCR and western blot analysis. Combined immunohistochemical and tissue microarray analysis showed a significant correlation of FAT1 expression with tumor stage and proliferation. Suppression of FAT1 expression by short hairpin RNA impaired proliferation and migration as well as apoptosis resistance of HCC cells in vitro. In nude mice, tumors formed by FAT1-suppressed HCC cells showed a delayed onset and more apoptosis compared with tumors of control cells. Both hepatocyte growth factor and hypoxia-mediated hypoxia-inducible factor 1 alpha activation were identified as strong inducers of FAT1 in HCC. Moreover, demethylating agents induced FAT1 expression in HCC cells. Hypoxia lead to reduced levels of the methyl group donor S-adenosyl-L-methionine (SAM) and hypoxia-induced FAT1 expression was inhibited by SAM supplementation in HCC cells. Together, these findings indicate that FAT1 expression in HCC is regulated via promotor methylation. FAT1 appears as relevant mediator of hypoxia and growth receptor signaling to critical tumorigenic pathways in HCC. This knowledge may facilitate the rational design of novel therapeutics against this highly aggressive malignancy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shajari, Shiva; Laliena, Almudena; Heegsma, Janette; Tuñón, María Jesús; Moshage, Han; Faber, Klaas Nico
2015-10-01
Liver fibrosis is scar tissue resulting from an uncontrolled wound-healing process in response to chronic liver injury. Liver damage generates an inflammatory reaction that activates hepatic stellate cells (HSC) that transdifferentiate from quiescent cells that control retinol metabolism to proliferative and migratory myofibroblasts that produce excessive amounts of extracellular matrix proteins, in particular collagen 1a1 (COL1A1). Although liver fibrosis is reversible, no effective drug therapy is available to prevent or reverse HSC activation. Melatonin has potent hepatoprotective properties in a variety of acute and chronic liver injury models and suppresses liver fibrosis. However, it remains unclear whether melatonin acts indirectly or directly on HSC to prevent liver fibrosis. Here, we studied the effect of melatonin on culture-activated rat HSC. Melatonin dose-dependently suppressed the expression of HSC activation markers Col1a1 and alpha-smooth muscle actin (αSMA, Acta2), as well as HSC proliferation and loss of lipid droplets. The nuclear melatonin sensor retinoic acid receptor-related orphan receptor-alpha (RORα/Nr1f1) was expressed in quiescent and activated HSC, while the membranous melatonin receptors (Mtrn1a and Mtrn1b) were not. The synthetic RORα agonist SR1078 more potently suppressed Col1a1 and αSma expression, HSC proliferation, and lipid droplet loss, while the RORα antagonist SR1001 blocked the antifibrotic features of melatonin. Melatonin and SR1078 inhibited the expression of Alox5, encoding 5-lipoxygenase (5-LO). The pharmacological 5-LO inhibitor AA861 reduced Acta2 and Col1a1 expression in activated HSC. We conclude that melatonin directly suppresses HSC activation via RORα-mediated inhibition of Alox5 expression, which provides novel drug targets to treat liver fibrosis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression.
Scarlatti, G; Tresoldi, E; Björndal, A; Fredriksson, R; Colognesi, C; Deng, H K; Malnati, M S; Plebani, A; Siccardi, A G; Littman, D R; Fenyö, E M; Lusso, P
1997-11-01
Following the identification of the C-C chemokines RANTES, MIP-1alpha and MIP-1beta as major human immunodeficiency virus (HIV)-suppressive factors produced by CD8+ T cells, several chemokine receptors were found to serve as membrane co-receptors for primate immunodeficiency lentiretroviruses. The two most widely used co-receptors thus far recognized, CCR5 and CXCR4, are expressed by both activated T lymphocytes and mononuclear phagocytes. CCR5, a specific RANTES, MIP-1alpha and MIP-1 receptor, is used preferentially by non-MT2-tropic HIV-1 and HIV-2 strains and by simian immunodeficiency virus (SIV), whereas CXCR4, a receptor for the C-X-C chemokine SDF-1, is used by MT2-tropic HIV-1 and HIV-2, but not by SIV. Other receptors with a more restricted cellular distribution, such as CCR2b, CCR3 and STRL33, can also function as co-receptors for selected viral isolates. The third variable region (V3) of the gp120 envelope glycoprotein of HIV-1 has been fingered as a critical determinant of the co-receptor choice. Here, we document a consistent pattern of evolution of viral co-receptor usage and sensitivity to chemokine-mediated suppression in a longitudinal follow-up of children with progressive HIV-1 infection. Viral isolates obtained during the asymptomatic stages generally used only CCR5 as a co-receptor and were inhibited by RANTES, MIP-1alpha and MIP-1beta, but not by SDF-1. By contrast, the majority of the isolates derived after the progression of the disease were resistant to C-C chemokines, having acquired the ability to use CXCR4 and, in some cases, CCR3, while gradually losing CCR5 usage. Surprisingly, most of these isolates were also insensitive to SDF-1, even when used in combination with RANTES. An early acquisition of CXCR4 usage predicted a poor prognosis. In children who progressed to AIDS without a shift to CXCR4 usage, all the sequential isolates were CCR5-dependent but showed a reduced sensitivity to C-C chemokines. Discrete changes in the V3 domain of gp120 were associated with the loss of sensitivity to C-C chemokines and the shift in co-receptor usage. These results suggest an adaptive evolution of HIV-1 in vivo, leading to escape from the control of the antiviral C-C chemokines.
NASA Technical Reports Server (NTRS)
Moursi, A. M.; Globus, R. K.; Damsky, C. H.
1997-01-01
We previously showed that anti-fibronectin antibodies or soluble fibronectin fragments containing the central cell-binding domain inhibit formation of mineralized nodules by fetal calvarial osteoblasts in vitro. These findings suggest a critical role for fibronectin in osteoblast differentiation and morphogenesis. In this study we tested the hypothesis that fibronectin's effects on osteogenesis are mediated via direct interactions with integrin receptors for fibronectin on osteoblasts. Immunocytochemical analysis identified the integrin fibronectin receptor alpha5ss1 in fetal rat calvarial tissue and in cultured osteoblasts at all stages of differentiation. Three other integrins, alpha3ss1, alpha8ss1 and alphavss3, which can bind fibronectin, as well as other matrix components, were also identified in tissue and at all stages of cell culture. Immunoprecipitation data showed that alpha5ss1 levels are constant throughout osteoblast differentiation whereas levels of alpha3ss1 and alpha8ss1 decline in mature mineralized cultures. To determine whether integrin fibronectin receptors are required for osteoblast formation of mineralized nodules, we examined the extent of nodule formation in the presence and absence of function-perturbing anti-integrin antibodies. The antibodies were present continuously in cultures beginning at confluence (day 3), and nodule formation was measured at days 10 and 20. An anti-alpha5 integrin subunit antibody reduced nodule formation to less than 5% of control values at both time points. Inhibition of nodule formation was reversible and did not affect cell attachment and viability. Function-perturbing antibodies against alpha3ss1 and alpha8ss1 also reduced nodule formation, to less than 20% of control values. In contrast, function-perturbing antibodies to alphavss3 and alphavss5 did not affect nodule formation, indicating that the inhibitions noted were indeed specific. To determine the effect of antibody treatment on gene expression, steady-state mRNA expression was examined and found to be suppressed for osteoblast markers alkaline phosphatase and osteocalcin. Together, these results indicate that direct osteoblast interactions with the extracellular matrix are mediated by a select group of integrin receptors that includes alpha5ss1, alpha3ss1 and alpha8ss1. We further conclude that the specific alpha5ss1 fibronectin receptor mediates critical interactions between osteoblasts and fibronectin required for both bone morphogenesis and osteoblast differentiation.
Ward, Stephen L; Scheuner, Donalyn; Poppers, Jeremy; Kaufman, Randal J; Mohr, Ian; Leib, David A
2003-04-01
In animal models of herpes simplex virus type 1 (HSV-1) infection, ICP34.5-null viruses are avirulent and also fail to grow in a variety of cultured cells due to their inability to prevent RNA-dependent protein kinase (PKR)-mediated inhibition of protein synthesis. We show here that the inability of ICP34.5 mutants to grow in vitro is due specifically to the accumulation of phosphorylated eIF2 alpha. Mutations suppressing the in vitro phenotype of ICP34.5-null mutants have been described which map to the unique short region of the HSV-1 genome, resulting in dysregulated expression of the US11 gene. Despite the inability of the suppressor mutation to suppress the avirulent phenotype of the ICP34.5-null parental virus following intracranial inoculation, the suppressor mutation enhanced virus growth in the cornea, trigeminal ganglia, and periocular skin following corneal infection compared to that with the ICP34.5-null virus. The phosphorylation state of eIF2 alpha following in vitro infection with the suppressor virus was examined to determine if in vivo differences could be attributed to differential regulation of eIF2 alpha phosphorylation. The suppressor virus prevented accumulation of phosphorylated eIF2 alpha, while the wild-type virus substantially reduced eIF2 alpha phosphorylation levels. These data suggest that US11 functions as a PKR antagonist in vivo, although its activity may be modulated by tissue-specific differences in translation regulation.
Anti-tumor effect of evodiamine by inducing Akt-mediated apoptosis in hepatocellular carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fan; Shi, Le; Liang, Tao
Background: Evodiamine is an alkaloid extracted from Euodia rutaecarpa (Juss.) Benth. There is little information about the mechanisms of evodiamine on the apoptosis of hepatocellular carcinoma (HCC). Materials and methods: A xenograft model and CCK8 assay were used to investigate the anti-HCC effect of evodiamine. The effect of evodiamine on apoptosis was evaluated by DAPI staining and flow cytometry. Western blot analyses and immunohistochemistry were processed to assess the protein expressions of Akt and apoptotic proteins. Results: Evodiamine suppressed tumor growth, improved the expression of cleaved-caspase3 and decreased tumor specific growth factor (TSGF) and alpha fetoprotein (AFP) activities. Furthermore, evodiaminemore » inhibited cell viability and induced cell cycle arrest. DAPI staining revealed nuclear condensation in evodiamine-treated groups. Meanwhile, evodiamine increased the number of apoptotic cells. Furthermore, evodiamine suppressed Akt and regulated apoptotic proteins in HepG2 cells. Evodiamine decreased p-Akt levels activated by SC79, which led to the increase of bax/bcl-2 and cleaved-caspase3. Conclusions: Our findings suggested that evodiamine could exert anti-HCC effect through inducing Akt-mediated apoptosis. Evodiamine has the potential to be a therapeutic medicine for HCCs. - Highlights: • Anti-tumor effect of evodiamine in hepatocellular carcinoma. • Evodiamine induces apoptosis in hepatocellular carcinoma. • The correlation between induction of apoptosis and Akt expression.« less
Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O
2015-04-01
Gingerols are phenolic compounds in ginger (Zingiber officinale), which have been reported to exhibit antiinflammatory, antioxidant, and anticancer properties. The present study aimed at evaluating the possible pharmacologic activity of 6-gingerol in a mouse model of dextran sulphate sodium (DSS)-induced ulcerative colitis. Adult male mice were exposed to DSS in drinking water alone or co-treated with 6-gingerol orally at 50, 100, and 200 mg/kg for 7 days. Disease activity index, inflammatory mediators, oxidative stress indices, and histopathological examination of the colons were evaluated to monitor treatment-related effects of 6-gingerol in DSS-treated mice. Administration of 6-gingerol significantly reversed the DSS-mediated reduction in body weight, diarrhea, rectal bleeding, and colon shrinkage to near normal. Moreover, 6-gingerol significantly suppressed the circulating concentrations of interleukin-1β and tumor necrosis factor alpha and restored the colonic nitric oxide concentration and myeloperoxidase activity to normal in DSS-treated mice. 6-Gingerol efficiently prevented colonic oxidative damage by increasing the activities of antioxidant enzymes and glutathione content, decreasing the hydrogen peroxide and malondialdehyde levels, and ameliorated the colonic atrophy in DSS-treated mice. 6-Gingerol suppressed the induction of ulcerative colitis in mice via antioxidant and antiinflammatory activities, and may thus represent a potential anticolitis drug candidate. Copyright © 2015 John Wiley & Sons, Ltd.
Tadesse, Azeb; Abebe, Markos; Bizuneh, Elizabeth; Mulugeta, Wondwossen; Aseffa, Abraham; Shannon, E J
2006-01-01
Hypersensitivity reactions called reversal reaction (RR) and erythema nodosum leprosum (ENL) occur in leprosy. They are characterized by an increase in tumor necrosis factor-alpha (TNF-alpha). Thalidomide is an effective treatment for ENL but not RR. Its effectiveness in ENL is attributed to inhibition of TNF-alpha, and this does not explain its failure to treat RR. We assessed thalidomide's effect on TNF-alpha in RR. Mononuclear cells from RR and non-RR patients and healthy individuals were treated with thalidomide and M.leprae (AFB), a cytosol fraction of M. leprae or Dharmendra lepromin. Thalidomide suppressed TNF-alpha, but when some RR patients' cells were stimulated with AFB, it enhanced TNF-alpha.
Oral, H; Dorn, G W; Mann, D L
1997-02-21
To determine whether activation of the neutral sphingomyelinase pathway was responsible for the immediate (<30 min) negative inotropic effects of tumor necrosis factor-alpha (TNF-alpha), we examined sphingosine levels in diluent and TNF-alpha-stimulated cardiac myocytes. TNF-alpha stimulation of adult feline cardiac myocytes provoked a rapid (<15 min) increase in the hydrolysis of [14C]sphingomyelin in cell-free extracts, as well as an increase in ceramide mass, consistent with cytokine-induced activation of the neutral sphingomyelinase pathway. High performance liquid chromatographic analysis of lipid extracts from TNF-alpha-stimulated cardiac myocytes showed that TNF-alpha stimulation produced a rapid (<30 min) increase in free sphingosine levels. Moreover, exogenous D-sphingosine mimicked the effects of TNF-alpha on intracellular calcium homeostasis, as well as the negative inotropic effects of TNF-alpha in isolated contracting myocytes; time course studies showed that exogenous D-sphingosine produced abnormalities in cell shortening that were maximal at 5 min. Finally, blocking sphingosine production using an inhibitor of ceramidase, n-oleoylethanolamine, completely abrogated the negative inotropic effects of TNF-alpha in isolated contracting cardiac myocytes. Additional studies employing biologically active ceramide analogs and sphingosine 1-phosphate suggested that neither the immediate precursor of sphingosine nor the immediate metabolite of sphingosine, respectively, were likely to be responsible for the immediate negative inotropic effects of TNF-alpha. Thus, these studies suggest that sphingosine mediates the immediate negative inotropic effects of TNF-alpha in isolated cardiac myocytes.
Huang, Po-Hsun; Chen, Yung-Hsiang; Tsai, Hsiao-Ya; Chen, Jia-Shiong; Wu, Tao-Cheng; Lin, Feng-Yen; Sata, Masataka; Chen, Jaw-Wen; Lin, Shing-Jong
2010-04-01
Red wine (RW) consumption has been associated with a reduction of cardiovascular events, but limited data are available on potential mediating mechanisms. This study tested the hypothesis that intake of RW may promote the circulating endothelial progenitor cell (EPC) level and function through enhancement of nitric oxide bioavailability. Eighty healthy, young subjects were randomized and assigned to consume water (100 mL), RW (100 mL), beer (250 mL), or vodka (30 mL) daily for 3 weeks. Flow cytometry was used to quantify circulating EPC numbers, and in vitro assays were used to evaluate EPC functions. After RW ingestion, endothelial function determined by flow-mediated vasodilation was significantly enhanced; however, it remained unchanged after water, beer, or vodka intake. There were significantly increased numbers of circulating EPC (defined as KDR(+)CD133(+), CD34(+)CD133(+), CD34(+)KDR(+)) and EPC colony-forming units only in the RW group (all P<0.05). Only RW ingestion significantly enhanced plasma levels of nitric oxide and decreased asymmetrical dimethylarginine (both P<0.01). Incubation of EPC with RW (but not beer or ethanol) and resveratrol in vitro attenuated tumor necrosis factor-alpha-induced EPC senescence and improved tumor necrosis factor-alpha-suppressed EPC functions and tube formation. Incubation with nitric oxide donor sodium nitroprusside significantly ameliorated the inhibition of tumor necrosis factor-alpha on EPC proliferation, but incubation with endothelial nitric oxide synthase inhibitor l-NAME and PI3K inhibitor markedly attenuated the effect of RW on EPC proliferation. The intake of RW significantly enhanced circulating EPC levels and improved EPC functions by modifying nitric oxide bioavailability. These findings may help explain the beneficial effects of RW on the cardiovascular system. This study demonstrated that a moderate intake of RW can enhance circulating levels of EPC in healthy subjects by increasing nitric oxide availability. Direct incubation of EPC with RW and resveratrol can modify the functions of EPC, including attenuation of senescence and promotion of EPC adhesion, migration, and tube formation. These data suggest that RW ingestion may alter the biology of EPC, and these alterations may contribute to its unique cardiovascular-protective effect.
Martìnez Cordero, E; Gonzàlez, M M; Aguilar, L D; Orozco, E H; Hernàndez Pando, R
2008-05-01
Alpha-1-acid glycoprotein (AGP) is one of the major acute-phase proteins (APPs). Hepatic production and serum concentrations increase in response to systemic injury, inflammation, or infection. We reported previously that expression of the AGP gene is induced in the liver during experimental pulmonary tuberculosis. Since AGP may also be produced at the infection site and has some immunomodulatory properties, we used a model of progressive pulmonary tuberculosis in Balb/c mice to study the kinetics of AGP production in the lung and its influence on immunopathology. We found that AGP was produced in the lung during experimental tuberculosis. Alveolar macrophages and type II pneumocytes were the most important cellular sources during early infection (days 1-14). From day 21 postinfection, during the progressive phase of the infection, foamy macrophages located in pneumonic areas were the most important source of AGP and 10-fold higher concentrations were found on day 60. In a second part of the study, AGP was inactivated during the progressive phase by the administration of specific blocking antibodies. In comparison with control infected animals, tuberculous mice treated with blocking AGP antibodies showed higher expression of interferon gamma (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), and inducible nitric oxide synthase (iNOS) in association with significantly reduced bacillary loads and tissue damage. Thus, AGP is produced in the lung during experimental pulmonary tuberculosis and it has immunomodulatory activities, suppressing cell-mediated immunity and facilitating growth of bacilli and disease progression.
Dexamethasone impairs hypoxia-inducible factor-1 function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, A.E.; Huck, G.; Stiehl, D.P.
2008-07-25
Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription-factor composed of {alpha}- and {beta}-subunits. HIF-1 is not only necessary for the cellular adaptation to hypoxia, but it is also involved in inflammatory processes and wound healing. Glucocorticoids (GC) are therapeutically used to suppress inflammatory responses. Herein, we investigated whether GC modulate HIF-1 function using GC receptor (GR) possessing (HepG2) and GR deficient (Hep3B) human hepatoma cell cultures as model systems. Dexamethasone (DEX) treatment increased HIF-1{alpha} levels in the cytosol of HepG2 cells, while nuclear HIF-1{alpha} levels and HIF-1 DNA-binding was reduced. In addition, DEX dose-dependently lowered the hypoxia-induced luciferase activity in amore » reporter gene system. DEX suppressed the hypoxic stimulation of the expression of the HIF-1 target gene VEGF (vascular endothelial growth factor) in HepG2 cultures. DEX did not reduce hypoxically induced luciferase activity in HRB5 cells, a Hep3B derivative lacking GR. Transient expression of the GR in HRB5 cells restored the susceptibility to DEX. Our study discloses the inhibitory action of GC on HIF-1 dependent gene expression, which may be important with respect to the impaired wound healing in DEX-treated patients.« less
Griveau, A; Devailly, G; Eberst, L; Navaratnam, N; Le Calvé, B; Ferrand, M; Faull, P; Augert, A; Dante, R; Vanacker, J M; Vindrieux, D; Bernard, D
2016-09-22
Little is known about the biological role of the phospholipase A2 receptor (PLA2R1) transmembrane protein. In recent years, PLA2R1 has been shown to have an important role in regulating tumor-suppressive responses via JAK2 activation, but the underlying mechanisms are largely undeciphered. In this study, we observed that PLA2R1 increases the mitochondrial content, judged by increased levels of numerous mitochondrial proteins, of the mitochondrial structural component cardiolipin, of the mitochondrial DNA content, and of the mitochondrial DNA replication and transcription factor TFAM. This effect of PLA2R1 relies on a transcriptional program controlled by the estrogen-related receptor alpha1 (ERRα) mitochondrial master regulator. Expression of ERRα and of its nucleus-encoded mitochondrial targets is upregulated upon PLA2R1 ectopic expression, and this effect is mediated by JAK2. Conversely, downregulation of PLA2R1 decreases the level of ERRα and of its nucleus-encoded mitochondrial targets. Finally, blocking the ERRα-controlled mitochondrial program largely inhibits the PLA2R1-induced tumor-suppressive response. Together, our data document ERRα and its mitochondrial program as downstream effectors of the PLA2R1-JAK2 pathway leading to oncosuppression.
Poppers, D M; Schwenger, P; Vilcek, J
2000-09-22
Transcription factor NF-kappa B is normally sequestered in the cytoplasm, complexed with I kappa B inhibitory proteins. Tumor necrosis factor (TNF) and interleukin-1 induce I kappa B-alpha phosphorylation, leading to I kappa B-alpha degradation and translocation of NF-kappa B to the nucleus where it activates genes important in inflammatory and immune responses. TNF and interleukin-1 actions are typically terminated by desensitization, and I kappa B-alpha reappearance normally occurs within 30-60 min. We found that in normal human FS-4 fibroblasts maintained in the presence of TNF, I kappa B-alpha protein failed to return to base-line levels for up to 15 h. Removal of TNF at any time during the 15-h period resulted in complete I kappa B-alpha resynthesis, suggesting that I kappa B-alpha reappearance was prevented by continued TNF signaling. Long term exposure of FS-4 fibroblasts to TNF led to a persistent presence of I kappa B-alpha mRNA, sustained I kappa B kinase activation, continuous proteasome-mediated degradation of I kappa B-alpha, and sustained nuclear localization of NF-kappa B. Continuous exposure of FS-4 cells to TNF did not lead to a sustained activation of p38 or ERK mitogen-activated protein kinases, suggesting that not all TNF-induced signaling pathways are persistently activated. These findings challenge the notion that all cytokine-mediated signals are rapidly terminated by desensitization and illustrate the need to elucidate the process of deactivation of TNF-induced signaling.
Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukasaki, Masayuki; Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp; Suzuki, Dai
2011-07-15
Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- andmore » dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.« less
Feliciani, C; Toto, P; Amerio, P; Pour, S M; Coscione, G; Shivji, G; Wang, B; Sauder, D N
2000-01-01
Keratinocyte-derived cytokines have been implicated in the pathogenesis of a number of skin diseases. In this study we examined the possible role of keratinocyte-derived cytokines in the development of acantholysis in pemphigus vulgaris. Nineteen patients with pemphigus vulgaris, demonstrating the characteristic clinical, pathologic, and immunopathologic findings were studied. In situ immunolabeling demonstrated the presence of two cytokines interleukin-1alpha and tumor necrosis factor-alpha, in lesional and perilesional areas. Results were confirmed by reverse transcriptase-polymerase chain reaction, demonstrating overexpression of both cytokines in vivo. To study the role of these cytokines in the pathogenesis of pemphigus vulgaris both in vitro and in vivo studies were performed. The results of the in vitro study demonstrated that pemphigus vulgaris IgG induced interleukin-1alpha and tumor necrosis factor-alpha mRNA in the skin. The potential pathogenic role of these mediators was demonstrated by a blocking study using antibodies against human interleukin-1alpha and tumor necrosis factor-alpha in keratinocytes cultures. A combination of anti-interleukin-1alpha and anti-tumor necrosis factor-alpha antibodies inhibited in vitro pemphigus vulgaris IgG induced acantholysis. To confirm the role of interleukin-1 and tumor necrosis factor-alpha in pemphigus, we utilized passive transfer studies using interleukin-1 deficient mice (ICE-/-, interleukin-1beta-/-) and tumor necrosis factor-alpha receptor deficient mice (TNFR1R2-/-). Both groups demonstrated a decreased susceptibility to the passive transfer of pemphigus. Our data support the role of cytokines interleukin-1 and tumor necrosis factor-alpha in the pathogenesis of pemphigus vulgaris.
[Locally administered lentivirus-mediated siRNA inhibits wear debris-induced inflammation].
Peng, Xiao-chun; Zhang, Xian-long; Tao, Kun; Cheng, Tao; Zhu, Jun-feng; Zeng, Bing-fang
2009-03-01
To determine the safety and efficacy of local administration of lentivirus-mediated small interfering RNA (siRNA) targeting tumor necrosis factor-alpha (TNF-alpha) in murine air pouch model. From May 2007 to April 2008 a siRNA targeting TNF-alpha and a missense siRNA were designed, and recombine lentivirus which coexpressed the green fluorescent protein (GFP) as a marker gene was constructed. Air pouches were established and stimulated by Ti-6Al-4V particles. Pouches were divided into 3 groups randomly. Lentivirus-mediated siRNA targeting TNF-alpha (TNF-alpha group) or lentivirus-mediated missense siRNA (MS group), or virus-free saline (control group) were injected into pouches respectively. Pouch membrane, peripheral blood, heart, liver, spleen, kidney, lung and brain were harvested at 28 d after transfection, and assayed for markers of inflammation using histological, molecular, immunological techniques and Xenogen in vivo imaging system (IVIS) 50 vivo bioluminescent assay system. Xenogen IVIS 50 vivo image revealed strong expression of GFP localized in pouch areas and no expression in other parts of mice both in TNF-alpha group and MS group at 4 weeks after transfection, while no expression of GFP was found in control group. By RT-PCR and ELISA, the mRNA and protein levels of TNF-alpha in TNF-alpha group decreased by 81.6% and 82.6% respectively compared to control group (P < 0.01), and decreased by 78.9% and 84.0% respectively compared to MS group (P < 0.01), whereas TNF-alpha level in peripheral blood, heart, liver, spleen, kidney, lung and brain remained invariant (P > 0.05). Less inflammatory responses (thinner pouch membrane and decreased cellular infiltration) were observed in TNF-alpha group. Efficient local delivery of lentivirus-mediated siRNA targeting TNF-alpha into modified murine air pouch can inhibit debris-induced inflammation effectively, with no systemic adverse effects.
TNF{alpha} release from peripheral blood leukocytes depends on a CRM1-mediated nuclear export
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miskolci, Veronika; Department of Pediatrics, Feinstein Institute for Medical Research at the North Shore-Long Island Jewish Health System, New Hyde Park, NY 11040; Ghosh, Chandra C.
2006-12-15
Tumor necrosis factor-{alpha} (TNF{alpha}) is a potent pro-inflammatory cytokine that plays a major role in the pathogenesis of acute and chronic inflammatory disorders such as septic shock and arthritis, respectively. Leukocytes stimulated with inflammatory signals such as lipopolysaccharide (LPS) are the predominant producers of TNF{alpha}, and thus control of TNF{alpha} release from stimulated leukocytes represents a potential therapeutic target. Here, we report that leptomycin B (LMB), a specific inhibitor of CRM1-dependent nuclear protein export, inhibits TNF{alpha} release from LPS-stimulated human peripheral blood neutrophils and mononuclear cells. In addition, immunofluorescence confocal microscopy and immunoblotting analysis indicate that TNF{alpha} is localized inmore » the nucleus of human neutrophils and mononuclear cells. This study demonstrates that the cellular release of TNF{alpha} from stimulated leukocytes is mediated by the CRM1-dependent nuclear export mechanism. Inhibition of CRM1-dependent cellular release of TNF{alpha} could thus provide a novel therapeutic approach for disorders involving excessive TNF{alpha} release.« less
USDA-ARS?s Scientific Manuscript database
Estrogen receptor-alpha (ERalpha) expressed by hypothalamic proopiomelanocortin and steroidogenic factor-1 neurons largely mediates the antiobesity effects of estrogens in females. However, the critical molecular events that are coupled to ERalpha and mediate estrogenic effects on energy balance rem...
Okuhata, Shiho; Kusanagi, Takuya; Kobayashi, Tetsuo
2013-10-25
The present study investigated EEG alpha activity during visual Sternberg memory tasks using two different stimulus presentation modes to elucidate how the presentation mode affected parietal alpha activity. EEGs were recorded from 10 healthy adults during the Sternberg tasks in which memory items were presented simultaneously and successively. EEG power and suppression time (ST) in the alpha band (8-13Hz) were computed for the memory maintenance and retrieval phases. The alpha activity differed according to the presentation mode during the maintenance phase but not during the retrieval phase. Results indicated that parietal alpha power recorded during the maintenance phase did not reflect the memory load alone. In contrast, ST during the retrieval phase increased with the memory load for both presentation modes, indicating a serial memory scanning process, regardless of the presentation mode. These results indicate that there was a dynamic transition in the memory process from the maintenance phase, which was sensitive to external factors, toward the retrieval phase, during which the process converged on the sequential scanning process, the Sternberg task essentially required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Shin, Soon Young; Kim, Heon-Woong; Jang, Hwan-Hee; Hwang, Yu-Jin; Choe, Jeong-Sook; Kim, Jung-Bong; Lim, Yoongho; Lee, Young Han
2017-09-16
Cyclooxygenase (COX)-2 produces prostanoids, which contribute to inflammatory responses. Nuclear factor (NF)-κB is a key transcription factor mediating COX-2 expression. γ-Oryzanol is an active component in rice bran oil, which inhibits lipopolysaccharide (LPS)-mediated COX-2 expression by inhibiting NF-κB. However, the inhibition of COX-2 expression by γ-oryzanol independently of NF-κB is poorly understood. We found that LPS upregulated Egr-1 expression at the transcriptional level. Forced expression of Egr-1 trans-activated the Cox-2 promoter independently of NF-κB. In contrast, silencing of Egr-1 abrogated LPS-mediated COX-2 expression. LPS produced reactive oxygen species (ROS), which, in turn, induced Egr-1 expression via the Erk1/2 MAPK pathway. ROS scavenging activity of γ-oryzanol suppressed Egr-1 expression by inhibiting the Erk1/2 MAPK pathway. Our results suggest that γ-oryzanol inhibits LPS-mediated COX-2 expression by suppressing Erk1/2-mediated Egr-1 expression. This study supports that γ-oryzanol may be useful for ameliorating LPS-mediated inflammatory responses. Copyright © 2017 Elsevier Inc. All rights reserved.
Leon-Reyes, Antonio; Du, Yujuan; Koornneef, Annemart; Proietti, Silvia; Körbes, Ana P; Memelink, Johan; Pieterse, Corné M J; Ritsema, Tita
2010-02-01
Cross-talk between jasmonate (JA), ethylene (ET), and Salicylic acid (SA) signaling is thought to operate as a mechanism to fine-tune induced defenses that are activated in response to multiple attackers. Here, 43 Arabidopsis genotypes impaired in hormone signaling or defense-related processes were screened for their ability to express SA-mediated suppression of JA-responsive gene expression. Mutant cev1, which displays constitutive expression of JA and ET responses, appeared to be insensitive to SA-mediated suppression of the JA-responsive marker genes PDF1.2 and VSP2. Accordingly, strong activation of JA and ET responses by the necrotrophic pathogens Botrytis cinerea and Alternaria brassicicola prior to SA treatment counteracted the ability of SA to suppress the JA response. Pharmacological assays, mutant analysis, and studies with the ET-signaling inhibitor 1-methylcyclopropene revealed that ET signaling renders the JA response insensitive to subsequent suppression by SA. The APETALA2/ETHYLENE RESPONSE FACTOR transcription factor ORA59, which regulates JA/ET-responsive genes such as PDF1.2, emerged as a potential mediator in this process. Collectively, our results point to a model in which simultaneous induction of the JA and ET pathway renders the plant insensitive to future SA-mediated suppression of JA-dependent defenses, which may prioritize the JA/ET pathway over the SA pathway during multi-attacker interactions.
NASA Technical Reports Server (NTRS)
Reed, G. L.; Matsueda, G. R.; Haber, E.
1992-01-01
Platelet clots resist fibrinolysis by plasminogen activators. We hypothesized that platelet factor XIII may enhance the fibrinolytic resistance of platelet-rich clots by catalyzing the crosslinking of alpha 2-antiplasmin (alpha 2AP) to fibrin. Analysis of plasma clot structure by polyacrylamide gel electrophoresis and immunoblotting revealed accelerated alpha 2AP-fibrin crosslinking in platelet-rich compared with platelet-depleted plasma clots. A similar study of clots formed with purified fibrinogen (depleted of factor XIII activity), isolated platelets, and specific factor XIII inhibitors indicated that this accelerated crosslinking was due to the catalytic activity of platelet factor XIII. Moreover, when washed platelets were aggregated by thrombin, there was evidence of platelet factor XIII-mediated crosslinking between platelet alpha 2AP and platelet fibrin(ogen). Specific inhibition (by a monoclonal antibody) of the alpha 2AP associated with washed platelet aggregates accelerated the fibrinolysis of the platelet aggregate. Thus in platelet-rich plasma clots, and in thrombin-induced platelet aggregates, platelet factor XIII actively formed alpha 2AP-fibrin crosslinks, which appeared to enhance the resistance of platelet-rich clots to fibrinolysis.
Datta, Jharna; Majumder, Sarmila; Kutay, Huban; Motiwala, Tasneem; Frankel, Wendy; Costa, Robert; Cha, Hyuk C; MacDougald, Ormond A; Jacob, Samson T; Ghoshal, Kalpana
2007-03-15
Reactive oxygen species (ROS) resulting from chronic inflammation cause liver injury leading to transformation of regenerating hepatocytes. Metallothioneins (MT), induced at high levels by oxidative stress, are potent scavengers of ROS. Here, we report that the levels of MT-1 and MT-2A are drastically reduced in primary human hepatocellular carcinomas (HCCs) and in diethylnitrosamine-induced liver tumors in mice, which is primarily due to transcriptional repression. Expression of the transcription factor, MTF-1, essential for MT expression, and its target gene Zn-T1 that encodes the zinc transporter-1 was not significantly altered in HCCs. Inhibitors of both phosphatidylinositol 3-kinase (PI3K) and its downstream target AKT increased expression of MT genes in HCC cells but not in liver epithelial cells. Suppression of MT-1 and MT-2A by ectopic expression of the constitutively active PI3K or AKT and their up-regulation by dominant-negative PI3K or AKT mutant confirmed negative regulation of MT expression by PI3K/AKT signaling pathway. Further, treatment of cells with a specific inhibitor of glycogen synthase kinase-3 (GSK-3), a downstream effector of PI3K/AKT, inhibited MT expression specifically in HCC cells. Short interfering RNA-mediated depletion of CCAAT/enhancer binding protein alpha (C/EBPalpha), a target of GSK-3, impeded MT expression, which could not be reversed by PI3K inhibitors. DNA binding activity of C/EBPalpha and its phosphorylation at T222 and T226 by GSK-3 are required for MT expression. MTF-1 and C/EBPalpha act in concert to increase MT-2A expression, which probably explains the high level of MT expression in the liver. This study shows the role of PI3K/AKT signaling pathway and C/EBPalpha in regulation of MT expression in hepatocarcinogenesis.
Knock, Greg A; Shaifta, Yasin; Snetkov, Vladimir A; Vowles, Benjamin; Drndarski, Svetlana; Ward, Jeremy P T; Aaronson, Philip I
2008-02-01
We investigated the role of src family kinases (srcFK) in agonist-mediated Ca2+-sensitization in pulmonary artery and whether this involves interaction with the rho/rho-kinase pathway. Intra-pulmonary arteries (IPAs) and cultured pulmonary artery smooth muscle cells (PASMC) were obtained from rat. Expression of srcFK was determined at the mRNA and protein levels. Ca2+-sensitization was induced by prostaglandin F(2 alpha) (PGF(2 alpha)) in alpha-toxin-permeabilized IPAs. Phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and of myosin light-chain-20 (MLC20) and translocation of rho-kinase in response to PGF(2 alpha) were also determined. Nine srcFK were expressed at the mRNA level, including src, fyn, and yes, and PGF(2 alpha) enhanced phosphorylation of three srcFK proteins at tyr-416. In alpha-toxin-permeabilized IPAs, PGF(2 alpha) enhanced the Ca2+-induced contraction (pCa 6.9) approximately three-fold. This enhancement was inhibited by the srcFK blockers SU6656 and PP2 and by the rho-kinase inhibitor Y27632. Y27632, but not SU6656 or PP2, also inhibited the underlying pCa 6.9 contraction. PGF(2 alpha) enhanced phosphorylation of MYPT-1 at thr-697 and thr-855 and of MLC20 at ser-19. This enhancement, but not the underlying basal phosphorylation, was inhibited by SU6656. Y27632 suppressed both basal and PGF(2 alpha)-mediated phosphorylation. The effects of SU6656 and Y27632, on both contraction and MYPT-1 and MLC20 phosphorylation, were not additive. PGF(2 alpha) triggered translocation of rho-kinase in PASMC, and this was inhibited by SU6656. srcFK are activated by PGF(2 alpha) in the rat pulmonary artery and may contribute to Ca2+-sensitization and contraction via rho-kinase translocation and phosphorylation of MYPT-1.
Vittori, Daniela; Vota, Daiana; Callero, Mariana; Chamorro, María E; Nesse, Alcira
2010-05-04
The TNF-alpha (tumour necrosis factor) affects a wide range of biological activities, such as cell proliferation and apoptosis. Cell life or death responses to this cytokine might depend on cell conditions. This study focused on the modulation of factors that would affect the sensitivity of erythroid-differentiated cells to TNF-alpha. Hemin-differentiated K562 cells showed higher sensitivity to TNF-induced apoptosis than undifferentiated cells. At the same time, hemin-induced erythroid differentiation reduced c-FLIP (cellular FLICE-inhibitory protein) expression. However, this negative effect was prevented by prior treatment with Epo (erythropoietin), which allowed the cell line to maintain c-FLIP levels. On the other hand, erythroid-differentiated UT-7 cells - dependent on Epo for survival - showed resistance to TNF-alpha pro-apoptotic action. Only after the inhibition of PI3K (phosphatidylinositol-3 kinase)-mediated pathways, which was accompanied by negative c-FLIP modulation and increased erythroid differentiation, were UT-7 cells sensitive to TNF-alpha-triggered apoptosis. In summary, erythroid differentiation might deregulate the balance between growth promotion and death signals induced by TNF-alpha, depending on cell type and environmental conditions. The role of c-FLIP seemed to be critical in the protection of erythroid-differentiated cells from apoptosis or in the determination of their sensitivity to TNF-mediated programmed cell death. Epo, which for the first time was found to be involved in the prevention of c-FLIP down-regulation, proved to have an anti-apoptotic effect against the pro-inflammatory factor. The identification of signals related to cell life/death switching would have significant implications in the control of proliferative diseases and would contribute to the understanding of mechanisms underlying the anaemia associated with inflammatory processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alimirah, Fatouma; Peng, Xinjian; Yuan, Liang
Heterodimerization and cross-talk between nuclear hormone receptors often occurs. For example, estrogen receptor alpha (ER{alpha}) physically binds to peroxisome proliferator-activated receptor gamma (PPAR{gamma}) and inhibits its transcriptional activity. The interaction between PPAR{gamma} and the vitamin D receptor (VDR) however, is unknown. Here, we elucidate the molecular mechanisms linking PPAR{gamma} and VDR signaling, and for the first time we show that PPAR{gamma} physically associates with VDR in human breast cancer cells. We found that overexpression of PPAR{gamma} decreased 1{alpha},25-dihydroxyvitamin D{sub 3} (1,25D{sub 3}) mediated transcriptional activity of the vitamin D target gene, CYP24A1, by 49% and the activity of VDRE-luc, amore » vitamin D responsive reporter, by 75% in T47D human breast cancer cells. Deletion mutation experiments illustrated that helices 1 and 4 of PPAR{gamma}'s hinge and ligand binding domains, respectively, governed this suppressive function. Additionally, abrogation of PPAR{gamma}'s AF2 domain attenuated its repressive action on 1,25D{sub 3} transactivation, indicating that this domain is integral in inhibiting VDR signaling. PPAR{gamma} was also found to compete with VDR for their binding partner retinoid X receptor alpha (RXR{alpha}). Overexpression of RXR{alpha} blocked PPAR{gamma}'s suppressive effect on 1,25D{sub 3} action, enhancing VDR signaling. In conclusion, these observations uncover molecular mechanisms connecting the PPAR{gamma} and VDR pathways. -- Highlights: PPAR{gamma}'s role on 1{alpha},25-dihydroxyvitamin D{sub 3} transcriptional activity is examined. Black-Right-Pointing-Pointer PPAR{gamma} physically binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} action. Black-Right-Pointing-Pointer PPAR{gamma}'s hinge and ligand binding domains are important for this inhibitory effect. Black-Right-Pointing-Pointer PPAR{gamma} competes with VDR for the availability of their binding partner, RXR{alpha}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan
2011-11-15
Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosismore » in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP-2 or CXCL12 prevented dendritic regression and apoptosis in vitro. Black-Right-Pointing-Pointer Neuroprotection through activation of Akt, ERK1/2 and maintenance of ADAM17. Black-Right-Pointing-Pointer Neuroprotection of hippocampal pyramidal neurons in vivo by MIP-2 or CXCL12. Black-Right-Pointing-Pointer MIP-2 or CXCL12 prevent elevation of F2-Isoprostanes against A{beta} treatment.« less
Suppressed Alpha Oscillations Predict Intelligibility of Speech and its Acoustic Details
Weisz, Nathan
2012-01-01
Modulations of human alpha oscillations (8–13 Hz) accompany many cognitive processes, but their functional role in auditory perception has proven elusive: Do oscillatory dynamics of alpha reflect acoustic details of the speech signal and are they indicative of comprehension success? Acoustically presented words were degraded in acoustic envelope and spectrum in an orthogonal design, and electroencephalogram responses in the frequency domain were analyzed in 24 participants, who rated word comprehensibility after each trial. First, the alpha power suppression during and after a degraded word depended monotonically on spectral and, to a lesser extent, envelope detail. The magnitude of this alpha suppression exhibited an additional and independent influence on later comprehension ratings. Second, source localization of alpha suppression yielded superior parietal, prefrontal, as well as anterior temporal brain areas. Third, multivariate classification of the time–frequency pattern across participants showed that patterns of late posterior alpha power allowed best for above-chance classification of word intelligibility. Results suggest that both magnitude and topography of late alpha suppression in response to single words can indicate a listener's sensitivity to acoustic features and the ability to comprehend speech under adverse listening conditions. PMID:22100354
Silva, J S; Vespa, G N; Cardoso, M A; Aliberti, J C; Cunha, F Q
1995-01-01
Cell invasion by Trypanosoma cruzi and its intracellular replication are essential for continuation of the parasite life cycle and for production of Chagas' disease. T. cruzi is able to replicate in nucleated cells and can be killed by activated macrophages. Gamma interferon (IFN-gamma) is one of the major stimuli for the activation of macrophages and has been shown to be a key activation factor for the killing of intracellular parasites through a mechanism dependent upon nitric oxide (NO) biosynthesis. We show that although the addition of exogenous tumor necrosis factor alpha (TNF-alpha) does not potentiate the trypanocidal activity of IFN-gamma in vitro, treatment of resistant C57BI/6 mice with an anti-TNF-alpha monoclonal antibody increased parasitemia and mortality. In addition, the anti-TNF-alpha-treated animals had decreased NO production, both in vivo and in vitro, suggesting an important role for TNF-alpha in controlling infection. In order to better understand the role of TNF-alpha in the macrophage-mediating killing of parasites, cultures of T. cruzi-infected macrophages were treated with an anti-TNF-alpha monoclonal antibody. IFN-gamma-activated macrophages failed to kill intracellular parasites following treatment with 100 micrograms of anti-TNF-alpha. In these cultures, the number of parasites released at various time points after infection was significantly increased while NO production was significantly reduced. We conclude that IFN-gamma-activated macrophages produce TNF-alpha after infection by T. cruzi and suggest that this cytokine plays a role in amplifying NO production and parasite killing. PMID:7591147
Osteen, K G; Rodgers, W H; Gaire, M; Hargrove, J T; Gorstein, F; Matrisian, L M
1994-01-01
The hallmark of the menstrual cycle is extensive steroid-dependent tissue turnover. Estrogen mediates endometrial cell growth and structural remodeling, whereas progesterone suppresses estrogen-dependent proliferation and promotes cellular differentiation. In nonfertile cycles, tissue degradation and menstruation occur as a consequence of steroidal deprivation as the ovarian corpus luteum fails. Stromal-epithelial interactions are recognized as a necessary component in mediating steroid-induced endometrial turnover. Specific mRNAs for metalloproteinases of the stromelysin family are expressed during endometrial growth and menstrual breakdown but are absent in the progestin-dominated secretory phase. This expression pattern suggests involvement of stromelysins in remodeling the extracellular matrix of the endometrium during tissue growth and breakdown and implicates progesterone in the suppression of these enzymes. We examined the regulation of endometrial stromelysins in explant cultures and found no acute effect of estradiol on their expression, whereas progesterone was a potent inhibitor of stromelysin expression. Progesterone also suppressed stromelysin expression in cultures of isolated stromal cells, but epithelial cells were progesterone insensitive. Coculture of recombined stromal and epithelial cells restored steroidal suppression of the epithelial-specific metalloproteinase. Our data confirm that progesterone inhibits endometrial stromelysins and further demonstrate the necessity for a stromal-derived factor(s) as a mediator of steroid suppression of an epithelial metalloproteinase. Images PMID:7937850
Steroid hormone regulation of antiviral immunity.
Padgett, D A; Loria, R M; Sheridan, J F
2000-01-01
Recent observations in both humans and animals have demonstrated that stress is immunomodulatory and can alter the pathogenesis of microbial infections to the extent that it may be adverse to health. Stress disrupts homeostasis, and the body responds through endocrine and nervous system interactions in an effort to re-establish the health of the host. However, the resulting physiologic changes associated with stress, such as the rise in serum glucocorticoids (GCs), are implicated in suppression of antiviral immunity. Therefore, it would be of significance to counterregulate stress-mediated immunosuppression during viral infection to improve immune responses and limit virus-mediated damage. The data in this study focus upon the antiglucocorticoid influence of a native steroid hormone that has been shown to augment immune function and protect animals against lethal viral infections. Androstenediol (5-androstene-3 beta,17 beta-diol, AED), a metabolite of dehydroepiandrosterone (DHEA), confers protection against lethal infection with influenza A virus. The protective activity appears to counterbalance the function of the regulatory GCs because AED prevents GC-mediated suppression of IL-1, TNF-alpha, and IL-2 secretion. Furthermore, AED inhibits GC-induced transcription of a GC-sensitive reporter gene.
NASA Technical Reports Server (NTRS)
Woods, K. M.; Fattaey, H.; Johnson, T. C.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)
1994-01-01
The tumor necrosis factor-alpha (TNF)-resistant, SV40-transformed, murine fibroblast cell lines, F5b and F5m, became sensitive to TNF-mediated cytolysis after treatment with a biologically active 18 kDa peptide fragment (SGP) derived from a 66-kDa parental cell surface sialoglycoprotein. Neither TNF nor the SGP alone exhibited cytotoxicity to the two SV40-transformed cell lines. However, Balb/c 3T3 cells, incubated with SGP alone or with SGP and TNF, were not killed. Therefore, SGP can selectively sensitize cells for TNF alpha-mediated cytotoxicity. This selective sensitization may be due to the previously documented ability of the SGP to selectively mediate cell cycle arrest.
Cao, Yingnan; Wang, Zhaohe; Bu, Xianzhang; Tang, Shu; Mei, Zhengrong; Liu, Peiqing
2009-06-01
Tumour necrosis factor alpha (TNF-alpha) is a proinflammatory cytokine, which has been shown to be a causative factor in rheumatoid arthritis, inflammatory bowel disease and septic shock. Proinflammatory effect of TNF-alpha is activated mainly through human TNF receptor-1 (TNF-R1). However, the role of the fourth cystein-rich domain (CRD4) of TNF-R1 extracellular portion in the interaction of TNF-alpha with TNF-R1 is still unclear. In the present study, binding activity of TNF-alpha to TNF-R1 and protein levels of IkappaB-alpha and nuclear transcription factor kappa B (NF-kappaB) p65 subunit in HeLa cells were measured using enzyme-linked immunosorbent assay (ELISA) and western-blot analysis. Pep 3 (LRENECVS) which was derived from the hydrophilic region of A1 module in CRD4 remarkably inhibited the binding of TNF-alpha to TNF-R1, and also reversed TNF-alpha-induced degradation of IkappaB-alpha and nuclear translocation of NF-kappaB p65 subunit in HeLa cells. Our results confirmed that the hydrophilic region of A1 module in CRD4 participated in the interaction of TNF-alpha with TNF-R1, and demonstrated the potential of small-molecule TNF-alpha extracellular inhibitors targeting at A1 module in CRD4 of TNF-R1 in suppressing proinflammatory effect of TNF-alpha.
Clausell, N.; de Lima, V. C.; Molossi, S.; Liu, P.; Turley, E.; Gotlieb, A. I.; Adelman, A. G.; Rabinovitch, M.
1995-01-01
BACKGROUND--The formation of coronary artery neointima experimentally induced in piglets after cardiac transplantation is related to an immune-inflammatory reaction associated with increased expression of T cells and inflammatory mediators (tumour necrosis factor alpha and interleukin 1 beta) and upregulation of fibronectin. In vivo blockade of tumour necrosis factor alpha in rabbits after cardiac transplantation results in reduced neointimal formation. The objective of this study was to investigate the hypothesis that coronary restenosis after atherectomy or percutaneous balloon angioplasty is associated with a similar inflammatory cascade initiated by mechanical injury. METHODS--Specimens taken at coronary atherectomy were analysed from 16 patients. Nine had had the procedure performed twice, firstly, to remove a primary lesion, and secondly, to remove a restenotic lesion. Seven had percutaneous balloon angioplasty after removal of restenotic tissue. Coronary atherectomy specimens were analysed by immunohistochemistry for the presence of T cells, macrophages, major histocompatibility complex II, interleukin 1 beta, tumour necrosis factor alpha, fibronectin, and the receptor for hyaluronan mediated motility. RESULTS--The groups were clinically and angiographically similar with equivalent lumens before and after atherectomy. Restenotic lesions had increased expression of tumour necrosis factor alpha and fibronectin compared with the primary lesions (P < 0.05 for both). There was also a trend towards a greater number of T cells and increased expression of interleukin 1 beta. CONCLUSIONS--Restenosis is associated with increased expression of tumour necrosis factor alpha and fibronectin, suggesting that an immune-inflammatory reaction probably contributes to neointimal formation and may represent a form of wound healing and repair secondary to mechanical injury. Images PMID:7626352
Kousteni, Stavroula; Almeida, Maria; Han, Li; Bellido, Teresita; Jilka, Robert L; Manolagas, Stavros C
2007-02-01
Estrogens control gene transcription by cis or trans interactions of the estrogen receptor (ER) with target DNA or via the activation of cytoplasmic kinases. We report that selective activation of kinase-mediated actions of the ER with 4-estren-3alpha,17beta-diol (estren) or an estradiol-dendrimer conjugate, each a synthetic compound that stimulates kinase-mediated ER actions 1,000 to 10,000 times more potently than direct DNA interactions, induced osteoblastic differentiation in established cell lines of uncommitted osteoblast precursors and primary cultures of osteoblast progenitors by stimulating Wnt and BMP-2 signaling in a kinase-dependent manner. In sharp contrast, 17beta-estradiol (E(2)) suppressed BMP-2-induced osteoblast progenitor commitment and differentiation. Consistent with the in vitro findings, estren, but not E(2), stimulated Wnt/beta-catenin-mediated transcription in T-cell factor-lacZ transgenic mice. Moreover, E(2) stimulated BMP signaling in mice in which ERalpha lacks DNA binding activity and classical estrogen response element-mediated transcription (ERalpha(NERKI/-)) but not in wild-type controls. This evidence reveals for the first time the existence of a large signalosome in which inputs from the ER, kinases, bone morphogenetic proteins, and Wnt signaling converge to induce differentiation of osteoblast precursors. ER can either induce it or repress it, depending on whether the activating ligand (and presumably the resulting conformation of the receptor protein) precludes or accommodates ERE-mediated transcription.
Hashimoto, S; Gon, Y; Matsumoto, K; Takeshita, I; Horie, T
2001-01-01
1. We have previously shown that tumour necrosis factor-alpha (TNF-alpha) activates p38 mitogen-activated protein (MAP) kinase to produce interleukin-8 (IL-8) by human pulmonary vascular endothelial cells. Reactive oxygen species (ROS) including H(2)O(2) generated by TNF-alpha can act as signalling intermediates for cytokine induction; therefore, scavenging ROS by anti-oxidants is important for the regulation of cytokine production. However, the effect of N-acetylcysteine (NAC), which acts as a precursor of glutathione (GSH) synthesis, on TNF-alpha-induced activation of p38 MAP kinase pathway and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells has not been determined. To clarify these issues, we examined the effect of NAC on TNF-alpha-induced activation of p38 MAP kinase, MAP kinase kinase (MKK) 3 and MKK6 which are upstream regulators of p38 MAP kinase, and p38 MAP kinase-mediated IL-8 production. 2. Human pulmonary vascular endothelial cells that had been preincubated with NAC were stimulated with TNF-alpha and then the activation of p38 MAP kinase and MKK3/MKK6 in the cells and IL-8 concentrations in the culture supernatants were determined. 3. Intracellular GSH levels increased in NAC-treated cells. 4. NAC attenuated TNF-alpha-induced activation of p38 MAP kinase and MKK3/MKK6. 5. NAC attenuated p38 MAP kinase-mediated IL-8 production by TNF-alpha-stimulated cells. 6. These results indicate that the cellular reduction and oxidation (redox) regulated by intracellular GSH is critical for TNF-alpha-induced activation of p38 MAP kinase pathway and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells, and we emphasize that anti-oxidant therapy is an important strategy for the treatment of acute lung injury.
Kim, Jin Hyoung; Kim, Jeong Hun; Lee, You Mie; Ahn, Eun-Mi; Kim, Kyu-Won; Yu, Young Suk
2009-09-01
The blood-retinal barrier (BRB) is essential for the normal structural and functional integrity of the retina, whose breakdown could cause the serious vision loss. Vascular endothelial growth factor (VEGF), as a permeable factor, induces alteration of tight junction proteins to result in BRB breakdown. Herein, we demonstrated that decursin inhibits VEGF-mediated inner BRB breakdown through suppression of VEGFR-2 signaling pathway. In retinal endothelial cells, decursin inhibited VEGF-mediated hyperpermeability. Decursin prevented VEGF-mediated loss of tight junction proteins including zonula occludens-1 (ZO-1), ZO-2, and occludin in retinal endothelial cells, which was also supported by restoration of tight junction proteins in intercellular junction. In addition, decursin significantly inhibited VEGF-mediated vascular leakage from retinal vessels, which was accompanied by prevention of loss of tight junction proteins in retinal vessels. Decursin significantly suppressed VEGF-induced VEGFR-2 phosphrylation that consequently led to inhibition of extracellular signal-regulated kinase (ERK) 1/2 activation. Moreover, decursin induced no cytotoxicity to retinal endothelial cells and no retinal toxicity under therapeutic concentrations. Therefore, our results suggest that decursin prevents VEGF-mediated BRB breakdown through blocking of loss of tight junction proteins, which might be regulated by suppression of VEGFR-2 activation. As a novel inhibitor to BRB breakdown, decursin could be applied to variable retinopathies with BRB breakdown.
Han, Eun Hee; Park, Jin Hee; Kim, Ji Young; Jeong, Hye Gwang
2009-07-01
Houttuynia cordata has been used as a traditional medicine in Korea and is known to have antioxidant, anti-cancer and anti-allergic activities. The precise effect of H. cordata, however, remains unknown. In this study, we investigated the effects of H. cordata water extract (HCWE) on passive cutaneous anaphylaxis (PCA) in mice and on IgE-mediated allergic response in rat mast RBL-2H3 cells. Oral administration of HCWE inhibited IgE-mediated systemic PCA in mice. HCWE also reduced antigen (DNP-BSA)-induced release of beta-hexosaminidase, histamine, and reactive oxygen species in IgE-sensitized RBL-2H3 cells. In addition, HCWE inhibited antigen-induced IL-4 and TNF-alpha production and expression in IgE-sensitized RBL-2H3 cells. HCWE inhibited antigen-induced activation of NF-kappaB and degradation of IkappaB-alpha. To investigate the inhibitory mechanism of HCWE on degranulation and cytokine production, we examined the activation of intracellular FcepsilonRI signaling molecules. HCWE suppressed antigen-induced phosphorylation of Syk, Lyn, LAT, Gab2, and PLC gamma2. Further downstream, antigen-induced phosphorylation of Akt and MAP kinases (ERK1/2 and JNK1/2 but not p38 MAP kinase) were inhibited by HCWE. Taken together, the in vivo/in vitro anti-allergic effect of HCWE suggests possible therapeutic applications of this agent in inflammatory allergic diseases through inhibition of cytokines and multiple events of FcepsilonRI-dependent signaling cascades in mast cells.
Davies, M Frances; Tsui, Janet; Flannery, Judy A; Li, Xiangqi; DeLorey, Timothy M; Hoffman, Brian B
2004-02-01
alpha(2) adrenergic agonists such as dexmedetomidine generally suppress noradrenergic transmission and have sedative, analgesic, and antihypertensive properties. Considering the importance of the neurotransmitter norepinephrine in forming memories for fearful events, we have investigated the acute and chronic effects of dexmedetomidine on discrete cue and contextual fear conditioning in mice. When administered before training, dexmedetomidine (10-20 microg/kg, i.p.) selectively suppressed discrete cue fear conditioning without affecting contextual memory. This behavioral change was associated with a decrease in memory retrieval-induced expression of c-Fos and P-CREB in the lateral, basolateral, and central nuclei of the amygdala. Dexmedetomidine's action on discrete cue memory did not occur in alpha(2A) adrenoceptor knockout (KO) mice. When dexmedetomidine was administered after training, it suppressed contextual memory, an effect that did not occur in alpha(2A) adrenoceptor KO mice. We conclude that dexmedetomidine, acting at alpha(2A) adrenoceptors, must be present during the encoding process to decrease discrete cue fear memory; however, its ability to suppress contextual memory is likely the result of blocking the consolidation process. The ability of alpha(2) agonists to suppress fear memory may be a valuable property clinically in order to suppress the formation of memories during stressful situations.
Ben-Nathan, D; Padgett, D A; Loria, R M
1999-05-01
The protective effects of the hormones androstenediol (androstene-3beta, 17beta,-diol; AED) and dehydroepiandrosterone (5-androsten-3beta-ol-17-one; DHEA) on the pathophysiology of two lethal bacterial infections and endotoxin shock were examined. The infections included a gram-positive organism (Enterococcus faecalis) and a gram-negative organism (Pseudomonas aeruginosa). Both hormones protected mice from the lethal bacterial infections and from lipopolysaccharide (LPS) challenge. Treatment of animals lethally infected with P. aeruginosa with DHEA resulted in a 43% protection whereas treatment with AED gave a 67% protection. Both hormones also protected completely animals infected with an LD50 dose of E. faecalis. Similarly, the 88% mortality rate seen in LPS challenge was reduced to 17% and 8.5%, by treatment with DHEA and AED, respectively. The protective influences of both steroids were shown not to be directly antibacterial, but primarily an indirect antitoxin reaction. DHEA appears to mediate its protective effect by a mechanism that blocks the toxin-induced production of pathophysiological levels of tumour necrosis factor-alpha (TNF-alpha) and interleukin-1. AED usually had greater protective effects than DHEA; however, the AED effect was independent of TNF-alpha suppression, both in vivo and in vitro. The data suggest that both DHEA and AED may have a role in the neuro-endocrine regulation of antibacterial immune resistance.
Lin, Yi-Chin; Uang, Hao-Wei; Lin, Rong-Jyh; Chen, Ing-Jun; Lo, Yi-Ching
2007-12-01
Glyceryl nonivamide (GLNVA), a vanilloid receptor (VR) agonist, has been reported to have calcitonin gene-related peptide-associated vasodilatation and to prevent subarachnoid hemorrhage-induced cerebral vasospasm. In this study, we investigated the neuroprotective effects of GLNVA on activated microglia-like cell mediated- and proparkinsonian neurotoxin 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. In coculture conditions, we used lipopolysaccharide (LPS)-stimulated BV-2 cells as a model of activated microglia. LPS-induced neuronal death was significantly inhibited by diphenylene iodonium (DPI), an inhibitor of NADPH oxidase. However, capsazepine, the selective VR1 antagonist, did not block the neuroprotective effects of GLNVA. GLNVA reduced LPS-activated microglia-mediated neuronal death, but it lacked protection in DPI-pretreated cultures. GLNVA also decreased LPS activated microglia induced overexpression of neuronal nitric-oxide synthase (nNOS) and glycoprotein 91 phagocyte oxidase (gp91(phox)) on SH-SY5Y cells. Pretreatment of BV-2 cells with GLNVA diminished LPS-induced nitric oxide production, overexpression of inducible nitric-oxide synthase (iNOS), and gp91(phox) and intracellular reactive oxygen species (iROS). GLNVA also reduced cyclooxygenase (COX)-2 expression, inhibitor of nuclear factor (NF)-kappaB (IkappaB)alpha/IkappaBbeta degradation, NF-kappaB activation, and the overproduction of tumor necrosis factor-alpha, interleukin (IL)-1beta, and prostaglandin E2 in BV-2 cells. However, GLNVA augmented anti-inflammatory cytokine IL-10 production on LPS-stimulated BV-2 cells. Furthermore, in 6-OHDA-treated SH-SY5Y cells, GLNVA rescued the changes in condensed nuclear and apoptotic bodies, prevented the decrease in mitochondrial membrane potential, and reduced cells death. GLNVA also suppressed accumulation of iROS and up-regulated heme oxygenase-1 expression. 6-OHDA-induced overexpression of nNOS, iNOS, COX-2, and gp91(phox) was also reduced by GLNVA. In summary, the neuroprotective effects of GLNVA are mediated, at least in part, by decreasing the inflammation- and oxidative stress-associated factors induced by microglia and 6-OHDA.
Tutau, Federico; Rodríguez-Ortigosa, Carlos; Puche, Juan Enrique; Juanarena, Nerea; Monreal, Iñigo; García Fernández, María; Clavijo, Encarna; Castilla, Alberto; Castilla-Cortázar, Inma
2009-01-01
Cirrhosis is a diffuse process of hepatic fibrosis and regenerative nodule formation. The liver is the major source of circulating insulin-like growth factor-I (IGF-I) whose plasma levels are diminished in cirrhosis. IGF-I supplementation has been shown to induce beneficial effects in cirrhosis, including antifibrogenic and hepatoprotective effects. On other hand, interferon-alpha (IFN-alpha) therapy seems to suppress the progression of hepatic fibrosis. The aim of this study was to investigate the effect of the co-administration of IGF-I+IFN-alpha to Wistar rats with CCl(4)-induced cirrhosis, exploring liver function tests, hepatic lipid peroxidation and histopathology. The mechanisms underlying the effects of these agents were studied by reverse transcription-polymerase chain reaction, determining the expression of some factors [hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-beta), alpha-smooth muscle actin, collagen, tissular inhibitor of metalloproteinases-1 and pregnane X receptor (PXR)] involved in fibrogenesis, fibrolysis and/or hepatoprotection. Both IGF-I and IFN-alpha exerted significant effects on fibrogenesis. IGF-I significantly increased serum albumin and HGF whereas IFN-alpha-therapy did not. The inhibition of TGF-beta expression was only observed by the effect of IFN-alpha-therapy. In addition, only the co-administration of IGF-I and IFN-alpha was able to increase the PXR. The combined therapy with both factors improved liver function tests, hepatic lipid peroxidation and reduced fibrosis, inducing a relevant histological improvement, reducing fibrosis and recovering hepatic architecture. The co-administration IGF-I+IFN enhanced all the beneficial effects observed with each factor separately, showing an additive action on histopathology and PXR expression, which is involved in the inhibition of fibrogenesis.
Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sun Ae; Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr
2012-09-07
Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), amore » key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK and PTEN. Inhibiting AMPK and PTEN restored ROS levels stimulated with TNF-{alpha}. Taken together, PTEN could be a possible downstream regulator of AMPK, and the AMPK-PTEN pathway might be important in the regulation of the inflammatory response in VSMCs.« less
Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators.
Jin, Yiping; Arita, Makoto; Zhang, Qiang; Saban, Daniel R; Chauhan, Sunil K; Chiang, Nan; Serhan, Charles N; Dana, Reza
2009-10-01
Resolvins and lipoxins are lipid mediators generated from essential polyunsaturated fatty acids that are the first dual anti-inflammatory and pro-resolving signals identified in the resolution phase of inflammation. Here the authors investigated the potential of aspirin-triggered lipoxin (LX) A4 analog (ATLa), resolving (Rv) D1, and RvE1, in regulating angiogenesis in a murine model. ATLa and RvE1 receptor expression was tested in different corneal cell populations by RT-PCR. Corneal neovascularization (CNV) was induced by suture or micropellet (IL-1 beta, VEGF-A) placement. Mice were then treated with ATLa, RvD1, RvE1, or vehicle, subconjunctivally at 48-hour intervals. Infiltration of neutrophils and macrophages was quantified after immunofluorescence staining. The mRNA expression levels of inflammatory cytokines, VEGFs, and VEGFRs were analyzed by real-time PCR. CNV was evaluated intravitally and morphometrically. The receptors for LXA4, ALX/Fpr-rs-2 and for RvE1, ChemR23 were each expressed by epithelium, stromal keratocytes, and infiltrated CD11b(+) cells in corneas. Compared to the vehicle-treated eye, ATLa-, RvD1-, and RvE1-treated eyes had reduced numbers of infiltrating neutrophils and macrophages and reduced mRNA expression levels of TNF-alpha, IL-1 alpha, IL-1 beta, VEGF-A, VEGF-C, and VEGFR2. Animals treated with these mediators had significantly suppressed suture-induced or IL-1 beta-induced hemangiogenesis (HA) but not lymphangiogenesis. Interestingly, only the application of ATLa significantly suppressed VEGF-A-induced HA. ATLa, RvE1, and RvD1 all reduce inflammatory corneal HA by early regulation of resolution mechanisms in innate immune responses. In addition, ATLa directly inhibits VEGF-A-mediated angiogenesis and is the most potent inhibitor of NV among this new genus of dual anti-inflammatory and pro-resolving lipid mediators.
Synergic effects of mycoplasmal lipopeptides and extracellular ATP on activation of macrophages.
Into, Takeshi; Fujita, Mari; Okusawa, Tsugumi; Hasebe, Akira; Morita, Manabu; Shibata, Ken-Ichiro
2002-07-01
Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1 beta, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2',4'-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor kappa B inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor kappa B. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides.
Jiang, Dong; Weidner, Jessica M; Qing, Min; Pan, Xiao-Ben; Guo, Haitao; Xu, Chunxiao; Zhang, Xianchao; Birk, Alex; Chang, Jinhong; Shi, Pei-Yong; Block, Timothy M; Guo, Ju-Tao
2010-08-01
Interferons (IFNs) are key mediators of the host innate antiviral immune response. To identify IFN-stimulated genes (ISGs) that instigate an antiviral state against two medically important flaviviruses, West Nile virus (WNV) and dengue virus (DENV), we tested 36 ISGs that are commonly induced by IFN-alpha for antiviral activity against the two viruses. We discovered that five ISGs efficiently suppressed WNV and/or DENV infection when they were individually expressed in HEK293 cells. Mechanistic analyses revealed that two structurally related cell plasma membrane proteins, IFITM2 and IFITM3, disrupted early steps (entry and/or uncoating) of the viral infection. In contrast, three IFN-induced cellular enzymes, viperin, ISG20, and double-stranded-RNA-activated protein kinase, inhibited steps in viral proteins and/or RNA biosynthesis. Our results thus imply that the antiviral activity of IFN-alpha is collectively mediated by a panel of ISGs that disrupt multiple steps of the DENV and WNV life cycles.
Jeong, Jin-Woo; Lee, Won Sup; Shin, Sung Chul; Kim, Gi-Young; Choi, Byung Tae; Choi, Yung Hyun
2013-01-01
Anthocyanins are naturally occurring polyphenols that impart bright color to fruits, vegetables and plants and have a variety of protective properties, which have generally been attributed to their antioxidant capacity. However, little is known about the molecular mechanisms underlying anti-inflammatory effects of anthocyanins related to neurodegenerative diseases. Therefore, we determined whether anthocyanins isolated from black soybean seed coats would inhibit pro-inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated murine BV2 microglial cells. Our results showed that anthocyanins significantly inhibited LPS-induced pro-inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2, and pro-inflammatory cytokines including tumor necrosis factor (TNF)-α and interleukin (IL)-1β, without significant cytotoxicity. Anthocyanins also downregulated excessive expression of inducible NO synthase, cyclooxygenase-2, TNF-α, and IL-1β in LPS-stimulated BV2 cells. Moreover, anthocyanins inhibited nuclear translocation of nuclear factor-kappa B (NF-κB) by reducing inhibitor of NF-κB alpha degradation as well as phosphorylating extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and Akt. These findings suggest that anthocyanins may offer substantial therapeutic potential for treating inflammatory and neurodegenerative diseases accompanied by microglial activation. PMID:23344054
Lu, Zhonghui; Ott, Gregory R; Anand, Rajan; Liu, Rui-Qin; Covington, Maryanne B; Vaddi, Krishna; Qian, Mingxin; Newton, Robert C; Christ, David D; Trzaskos, James; Duan, James J-W
2008-03-15
Potent and selective inhibitors of tumor necrosis factor-alpha converting enzyme (TACE) were discovered with several new heterocyclic P1' groups in conjunction with cyclic beta-amino hydroxamic acid scaffolds. Among them, the pyrazolopyridine provided the best overall profile when combined with tetrahydropyran beta-amino hydroxamic acid scaffold. Specifically, inhibitor 49 showed IC(50) value of 1 nM against porcine TACE and 170 nM in the suppression of LPS-induced TNF-alpha of human whole blood. Compound 49 also displayed excellent selectivity over a wide panel of MMPs as well as excellent oral bioavailability (F%>90%) in rat n-in-1 PK studies.
The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha.
Gort, E H; van Haaften, G; Verlaan, I; Groot, A J; Plasterk, R H A; Shvarts, A; Suijkerbuijk, K P M; van Laar, T; van der Wall, E; Raman, V; van Diest, P J; Tijsterman, M; Vooijs, M
2008-03-06
Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that play a crucial role in oxygen homeostasis. Intratumoral hypoxia and genetic alterations lead to HIF activity, which is a hallmark of solid cancer and is associated with poor clinical outcome. HIF activity is regulated by an evolutionary conserved mechanism involving oxygen-dependent HIFalpha protein degradation. To identify novel components of the HIF pathway, we performed a genome-wide RNA interference screen in Caenorhabditis elegans, to suppress HIF-dependent phenotypes, like egg-laying defects and hypoxia survival. In addition to hif-1 (HIFalpha) and aha-1 (HIFbeta), we identified hlh-8, gska-3 and spe-8. The hlh-8 gene is homologous to the human oncogene TWIST1. We show that TWIST1 expression in human cancer cells is enhanced by hypoxia in a HIF-2alpha-dependent manner. Furthermore, intronic hypoxia response elements of TWIST1 are regulated by HIF-2alpha, but not HIF-1alpha. These results identify TWIST1 as a direct target gene of HIF-2alpha, which may provide insight into the acquired metastatic capacity of hypoxic tumors.
TNF-alpha infusion impairs corpora cavernosa reactivity.
Carneiro, Fernando S; Zemse, Saiprazad; Giachini, Fernanda R C; Carneiro, Zidonia N; Lima, Victor V; Webb, R Clinton; Tostes, Rita C
2009-03-01
Erectile dysfunction (ED), as well as cardiovascular diseases (CVDs), is associated with endothelial dysfunction and increased levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha). We hypothesized that increased TNF-alpha levels impair cavernosal function. In vitro organ bath studies were used to measure cavernosal reactivity in mice infused with vehicle or TNF-alpha (220 ng/kg/min) for 14 days. Gene expression of nitric oxide synthase isoforms was evaluated by real-time polymerase chain reaction. Corpora cavernosa from TNF-alpha-infused mice exhibited decreased nitric oxide (NO)-dependent relaxation, which was associated with decreased endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) cavernosal expression. Cavernosal strips from the TNF-alpha-infused mice displayed decreased nonadrenergic-noncholinergic (NANC)-induced relaxation (59.4 +/- 6.2 vs. control: 76.2 +/- 4.7; 16 Hz) compared with the control animals. These responses were associated with decreased gene expression of eNOS and nNOS (P < 0.05). Sympathetic-mediated, as well as phenylephrine (PE)-induced, contractile responses (PE-induced contraction; 1.32 +/- 0.06 vs. control: 0.9 +/- 0.09, mN) were increased in cavernosal strips from TNF-alpha-infused mice. Additionally, infusion of TNF-alpha increased cavernosal responses to endothelin-1 and endothelin receptor A subtype (ET(A)) receptor expression (P < 0.05) and slightly decreased tumor necrosis factor-alpha receptor 1 (TNFR1) expression (P = 0.063). Corpora cavernosa from TNF-alpha-infused mice display increased contractile responses and decreased NANC nerve-mediated relaxation associated with decreased eNOS and nNOS gene expression. These changes may trigger ED and indicate that TNF-alpha plays a detrimental role in erectile function. Blockade of TNF-alpha actions may represent an alternative therapeutic approach for ED, especially in pathologic conditions associated with increased levels of this cytokine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miletich, R.S.
The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and /sup 3/H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by ..cap alpha..-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period,more » phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S/sub 2/ episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. /sup 3/H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system.« less
Role of phosphoinositide 3-kinase regulatory isoforms in development and actin rearrangement.
Brachmann, Saskia M; Yballe, Claudine M; Innocenti, Metello; Deane, Jonathan A; Fruman, David A; Thomas, Sheila M; Cantley, Lewis C
2005-04-01
Class Ia phosphoinositide 3-kinases (PI3Ks) are heterodimers of p110 catalytic and p85 regulatory subunits that mediate a variety of cellular responses to growth and differentiation factors. Although embryonic development is not impaired in mice lacking all isoforms of the p85alpha gene (p85alpha-/- p55alpha-/- p50alpha-/-) or in mice lacking the p85beta gene (p85beta-/-) (D. A. Fruman, F. Mauvais-Jarvis, D. A. Pollard, C. M. Yballe, D. Brazil, R. T. Bronson, C. R. Kahn, and L. C. Cantley, Nat Genet. 26:379-382, 2000; K. Ueki, C. M. Yballe, S. M. Brachmann, D. Vicent, J. M. Watt, C. R. Kahn, and L. C. Cantley, Proc. Natl. Acad. Sci. USA 99:419-424, 2002), we show here that loss of both genes results in lethality at embryonic day 12.5 (E12.5). The phenotypes of these embryos, including subepidermal blebs flanking the neural tube at E8 and bleeding into the blebs during the turning process, are similar to defects observed in platelet-derived growth factor receptor alpha null (PDGFRalpha-/-) mice (P. Soriano, Development 124:2691-2700, 1997), suggesting that PI3K is an essential mediator of PDGFRalpha signaling at this developmental stage. p85alpha-/- p55alpha+/+ p50alpha+/+ p85beta-/- mice had similar but less severe defects, indicating that p85alpha and p85beta have a critical and redundant function in development. Mouse embryo fibroblasts deficient in all p85alpha and p85beta gene products (p85alpha-/- p55alpha-/- p50alpha-/- p85beta-/-) are defective in PDGF-induced membrane ruffling. Overexpression of the Rac-specific GDP-GTP exchange factor Vav2 or reintroduction of p85alpha or p85beta rescues the membrane ruffling defect. Surprisingly, reintroduction of p50alpha also restored PDGF-dependent membrane ruffling. These results indicate that class Ia PI3K is critical for PDGF-dependent actin rearrangement but that the SH3 domain and the Rho/Rac/Cdc42-interacting domain of p85, which lacks p50alpha, are not required for this response.
Regulation by interferon alpha of immunoglobulin isotype selection and lymphokine production in mice
1991-01-01
Antigens and infectious agents that stimulate interferon alpha(IFN- alpha) production in mice induce antibody responses that are predominantly of the immunoglobulin (Ig)G2a isotype and contain little or no IgE. This suggested the possibility that IFN-alpha might have a role in directing Ig isotype selection. Consistent with this possibility, we have found that injection of mice with recombinant mouse IFN-alpha suppresses IgE secretion, enhances IgG2a secretion, and has no independent effect on IgG1 secretion in mice stimulated with a foreign anti-IgD antibody. Injection of mice with polyinosinic acid.polycytidylic acid (poly I.C), an inducer of macrophage IFN-alpha production, also suppresses the anti-IgD antibody-induced IgE response and stimulates the IgG2a response; these effects are blocked by a sheep antibody that neutralizes mouse IFN-alpha/beta. Both recombinant IFN- alpha and poly I.C have maximum IgE suppressive and IgG2a stimulatory effects when injected early in the anti-IgD antibody-induced immune response. Addition of IFN-alpha to mouse B cells cultured with lipopolysaccharide (LPS) + interleukin 4 (IL-4) suppresses both IgG1 and IgE production, but much less potently than IFN-gamma. IFN-alpha suppresses anti-IgD antibody-induced increases in the level of splenic IL-4 mRNA, but enhances the anti-IgD antibody-induced increase in the splenic level of IFN-gamma mRNA. These results are consistent with the effect of IFN-alpha on Ig isotype expression in mice, as IL-4 stimulates IgE and suppresses IgG2a secretion while IFN-gamma exerts opposite effects. These observations suggest that antigen presenting cells, by secreting IFN-alpha early in the course of an immune response, can influence the nature of that response both through direct effects on B cells and by influencing the differentiation of T cells. PMID:1940796
Zhang, Yan; Tao, Gao-Jian; Hu, Liang; Qu, Jie; Han, Yuan; Zhang, Guangqin; Qian, Yanning; Jiang, Chun-Yi; Liu, Wen-Tao
2017-11-02
Morphine tolerance is a clinical challenge, and its pathogenesis is closely related to the neuroinflammation mediated by Toll-like receptor 4 (TLR4). In Chinese pain clinic, lidocaine is combined with morphine to treat chronic pain. We found that lidocaine sufficiently inhibited neuroinflammation induced by morphine and improved analgesic tolerance on the basis of non-affecting pain threshold. CD-1 mice were utilized for tail-flick test to evaluate morphine tolerance. The microglial cell line BV-2 was utilized to investigate the mechanism of lidocaine. Neuroinflammation-related cytokines were measured by western blotting and real-time PCR. The level of suppressor of cytokine signaling 3 (SOCS3) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-related signaling pathway was evaluated by western blotting, real-time PCR, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining. Lidocaine potentiated an anti-nociceptive effect of morphine and attenuated the chronic analgesic tolerance. Lidocaine suppressed morphine-induced activation of microglia and downregulated inflammatory cytokines, interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) via upregulating SOCS3 by activating AMPK. Lidocaine enhanced AMPK phosphorylation in a calcium-dependent protein kinase kinase β (CaMKKβ)-dependent manner. Furthermore, lidocaine decreased the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and inhibited the nuclear factor-κB (NF-κB) in accordance with the inhibitory effects to TLR4. Lidocaine as a prevalent local anesthetic suppresses morphine tolerance efficiently. AMPK-dependent upregulation of SOCS3 by lidocaine plays a crucial role in the improvement of analgesic tolerance.
Non-canonical effects of anthrax toxins on haematopoiesis: implications for vaccine development.
Liu, Katherine; Wong, Elaine W; Schutzer, Steven E; Connell, Nancy D; Upadhyay, Alok; Bryan, Margarette; Rameshwar, Pranela
2009-08-01
Anthrax receptor (ATR) shares similarities with molecules relevant to haematopoiesis. This suggests that anthrax proteins might bind to these mimicking molecules and exert non-specific haematopoietic effects. The haematopoietic system is the site of immune cell development in the adult. As such, ATR ligand, protective antigen (PA) and the other anthrax proteins, lethal factor, edema factor, could be significant to haematopoietic responses against Bacillus anthracis infection. Because haematopoiesis is the process of immune cell development, effects by anthrax proteins could be relevant to vaccine development. Here, we report on effects of anthrax proteins and toxins on early and late haematopoiesis. Flow cytometry shows binding of PA to haematopoietic cells. This binding might be partly specific because flow cytometry and Western blots demonstrate the presence of ATR1 on haematopoietic cell subsets and the supporting stromal cells. Functional studies with long-term initiating cell and clonogenic assays determined haematopoietic suppression by anthrax toxins and stimulation by monomeric proteins. The suppressive effects were not attributed to cell death, but partly through the induction of haematopoietic suppressors, interleukin (IL)-10 and CCL3 (MIP-1alpha). In summary, anthrax proteins affect immune cell development by effects on haematopoiesis. The type of effect, stimulation or suppression, depend on whether the stimulator is a toxin or monomeric protein. The studies show effects of anthrax proteins beginning at the early stage of haematopoiesis, and also show secondary mediators such as IL-10 and CCL3. The roles of other cytokines and additional ATR are yet to be investigated.
Chaea, Han-Jung; Kim, Hyung-Ryong; Kang, Young Jin; Hyun, Kwang Chul; Kim, Hye Jung; Seo, Han Geuk; Lee, Jae Heun; Yun-Choi, Hye Sook; Chang, Ki Churl
2007-12-05
Activation of the inducible nitric oxide synthase (iNOS) pathway contributes to inflammation-induced osteoporosis by suppressing bone formation and causing osteoblast apoptosis. We investigated the mechanism of action by which YS-51S, a synthetic isoquinoline alkaloid, inhibits iNOS expression and nitric oxide (NO) production in ROS 17/28 osteoblast cells activated with the mixture of TNF-alpha, IFN-gamma and LPS (MIX). YS-51S, concentration- and time-dependently, increased heme oxygenase (HO-1) expression. Treatment with YS-51S 1 h prior to MIX significantly reduced MIX-induced NO production and iNOS expression with the IC50 to NO production of 47+/-3.3 microM. Electrophoretic mobility shift assay (EMSA) and western blot analysis showed that YS-51S inhibited MIX-mediated activation and translocation of NF-kappaB to nucleus by suppressing the degradation of its inhibitory protein IkappaBalpha in cytoplasm. YS-51S also reduced NF-kappaB-luciferase activity. In addition, an HO-1 inhibitor ZnPPIX, antagonized the inhibitory effect of YS-51S on iNOS expression and DNA strand break induced by MIX, indicating prevention of NO production by YS-51S is associated with HO-1 activity. Moreover, YS-51S inhibited the oxidation of cytochrome c(2+) by peroxynitrite (PN). Our results indicated that YS-51S may be beneficial in NO-mediated inflammatory conditions such as rheumatoid arthritis by alleviating iNOS expression and NO-mediated cell death of osteoblast with 1) inducing HO-1 expression, 2) interfering the activation of NF-kappaB and 3) quenching of PN.
Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin
2018-01-01
Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state.
Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin
2018-01-01
Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state. PMID:29410668
Han, Kyu Yeon; Kwon, Taek Hwan; Lee, Tae Hoon; Lee, Sung-Joon; Kim, Sung-Hoon; Kim, Jiyoung
2008-04-30
A variety of anti-inflammatory agents have been shown to exert chemopreventive activity via targeting of transcription factors such as NF-kappaB and AP-1. Lithospermum erythrorhizon (LE) has long been used in traditional oriental medicine. In this study, we demonstrated the inhibitory effects of LE extracts on lipopolysaccharide (LPS)-stimulated production of inflammatory cytokines. As an underlying mechanism of inhibition, LE extracts reduced LPS-induced transactivation of AP-1 as well as NF-kappaB in mouse macrophage cells. Electrophoretic mobility shift assays indicated that LE extracts inhibited the DNA binding activities of AP-1 and NF-kappaB. In addition, phosphorylation of IkappaB-alpha protein was suppressed by LE extracts. Moreover, LE extracts inhibited c-Jun N-terminal kinase and extracellular signal-regulated signaling pathways. Our results suggest that the anti-inflammatory activity of LE extracts may be mediated by the inhibition of signal transduction pathways that normally lead to the activation of AP-1and NF-kappaB. These inhibitory effects may be useful for chemoprevention of cancer or other chronic inflammatory diseases.
Yang, Huan; Tüzün, Erdem; Alagappan, Dhivyaa; Yu, Xiang; Scott, Benjamin G; Ischenko, Alexander; Christadoss, Premkumar
2005-08-01
In myasthenia gravis (MG), TNF and IL-1beta polymorphisms and high serum levels of these proinflammatory cytokines have been observed. Likewise, TNF and IL-1beta are critical for the activation of acetylcholine receptor (AChR)-specific T and B cells and for the development of experimental autoimmune myasthenia gravis (EAMG) induced by AChR immunization. We tested the therapeutic effect of human recombinant IL-1 receptor antagonist (IL-1ra) in C57BL/6 mice with EAMG. Multiple daily injections of 0.01 mg of IL-1ra administered for 2 wk following two AChR immunizations decreased the incidence and severity of clinical EAMG. Furthermore, IL-1ra treatment of mice with ongoing clinical EAMG reduced the clinical symptoms of disease. The IL-1ra-mediated suppression of clinical disease was associated with suppressed serum IFN-gamma, TNF-alpha, IL-1beta, IL-2, IL-6, C3, and anti-AChR IgG1 without influencing total serum IgG. Therefore, IL-1ra could be used as a nonsteroidal drug for the treatment of MG.
Kawabata, A.; Kasamatsu, K.; Umeda, N.; Takagi, H.
1994-01-01
1. Systemic (s.c. or p.o.) administration of L-threo-3,4-dihydroxyphenylserine (droxidopa, L-threo-DOPS; L-DOPS), a noradrenaline precursor, at a dose-range of 100-800 mg kg-1, produced naloxone-resistant antinociception in a dose-dependent manner in the mouse, as assessed by the tail flick test, kaolin-induced writhing test and formalin-induced nociception test. 2. Antinociception elicited by L-DOPS (400 mg kg-1, s.c.) was not affected by s.c. injection of benserazide, a peripherally preferential L-aromatic amino acid decarboxylase inhibitor, but was suppressed by its intracerebroventricular (i.c.v.) injection. 3. I.c.v. or intrathecal (i.t.) administration of the non-selective alpha-blocker, phentolamine, significantly reduced L-DOPS-induced antinociception. 4. I.c.v. administration of the alpha 1-blocker, prazosin, but not the alpha 2-blocker, yohimbine, abolished the antinociceptive effects of L-DOPS. In contrast, both blockers, when administered i.t., exhibited significant inhibitory effects. 5. These results suggest that systemic L-DOPS produces opioid-independent antinociception, mediated by supraspinal alpha 1-adrenoceptors and by spinal alpha 1- and alpha 2-adrenoceptors and may predict additional therapeutic applications of L-DOPS as an analgesic. PMID:7911717
Yamada, Masami; Ichikawa, Takashi; Ii, Masayuki; Sunamoto, Mie; Itoh, Katsumi; Tamura, Norikazu; Kitazaki, Tomoyuki
2005-11-17
To develop a new therapeutic agent for sepsis, screening of the Takeda chemical library was carried out using mouse macrophages stimulated with lipopolysaccharide (LPS) to identify a new class of small-molecule inhibitors of inflammatory mediator production. The lead compound 5a was discovered, from which a series of novel cyclohexene derivatives I bearing a sulfamoyl and ester group were designed, synthesized and tested for their inhibitory activity against nitric oxide (NO) production. Derivatives I were synthesized by the coupling of sulfonyl chlorides and anilines with concomitant double bond migration in the presence of triethylamine, and phenyl ring substitution and modification of the ester and cyclohexene moieties were carried out. Among the compounds synthesized, ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate [(R)-(+)-5n, TAK-242] was found to exhibit the most potent suppressive activity for the production of not only NO but also inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) induced by LPS-stimulated mouse macrophages with IC50 values of 1.8, 1.9 and 1.3 nM, respectively. It shows marked beneficial effects in vivo also. Intravenous administration of (R)-(+)-5n at doses of 0.1 mg/kg or more suppressed the production of NO and various cytokines [TNF-alpha, IL-6 and IL-1beta] in the mouse endotoxin shock model. Furthermore, it protected mice from death dose-dependently and all mice survived at a dose of 3 mg/kg. The minimum effective dose to protect mice from lethality in this model was 0.3 mg/kg, which was consistent with those for inhibitory effects on the production of NO and cytokines. Compound (R)-(+)-5n is currently undergoing clinical trials for the treatment of sepsis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul
Highlights: {yields} Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. {yields} Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. {yields} Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-{kappa}B. {yields} Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymesmore » (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKB{alpha}. Accordingly, DP treatment inhibited TNF{alpha}-stimulated increases in NF-{kappa}B function and expression of NF-{kappa}B target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.« less
Goh, Jessamine G; Ravikumar, Sharada; Win, Mar Soe; Cao, Qiong; Tan, Ai Ling; Lim, Joan H J; Leong, Winnie; Herbrecht, Raoul; Troke, Peter F; Kullberg, Bart Jan; Netea, Mihai G; Chng, Wee Joo; Dan, Yock Young; Chai, Louis Y A
2018-03-01
Invasive aspergillosis (IA) remains a major cause of morbidity in immunocompromised hosts. This is due to the inability of the host immunity to respond appropriately to Aspergillus. An established risk factor for IA is neutropenia that is encountered by patients undergoing chemotherapy. Herein, we investigate the role of neutrophils in modulating host response to Aspergillus. We found that neutrophils had the propensity to suppress proinflammatory cytokine production but through different mechanisms for specific cytokines. Cellular contact was requisite for the modulation of interleukin-1 beta production by Aspergillus with the involvement of complement receptor 3. On the other hand, inhibition of tumour necrosis factor-alpha production (TNF-α) was cell contact-independent and mediated by secreted myeloperoxidase. Specifically, the inhibition of TNF-α by myeloperoxidase was through the TLR4 pathway and involved interference with the mRNA transcription of TNF receptor-associated factor 6/interferon regulatory factor 5. Our study illustrates the extended immune modulatory role of neutrophils beyond its primary phagocytic function. The absence of neutrophils and loss of its inhibitory effect on cytokine production explains the hypercytokinemia seen in neutropenic patients when infected with Aspergillus. © 2017 John Wiley & Sons Ltd.
Kennedy, M. F.; Tutton, P. J.; Barkla, D. H.
1985-01-01
Evidence exists implicating adrenergic factors in the control of intestinal epithelial cell proliferation in both normal and diseased states. In this report, attention is focussed on changes in the amine requirements of proliferating cells during the chemical induction of tumours in the colon of mouse. Cell proliferation rates were measured stathmokinetically. Tumours were induced by s.c. injection of dimethylhydrazine (DMH). Results with a series of adrenoceptor agonists and antagonists suggest that there is an alpha 2-adrenoceptor mediated excitatory effect in normal colon but an alpha 2 adrenoceptor mediated inhibitory effect in adenoma and carcinoma. Alpha 1 adrenoceptors, on the other hand, have an inhibitory effect in normal crypts and in adenomas, and an excitatory effect in carcinomas. Beta adrenoceptors have an inhibitory effect in the normal and DMH-treated crypt, and in adenomas, but not in carcinomas. In the crypt epithelium of DMH-treated mice, two regions on cell proliferation, with differing regulatory factors, could be identified. In the upper region of the carcinogen-exposed crypt is a zone where cell proliferation is stimulated by an alpha 2 adrenergic mechanism, thus resembling the basal region of the normal crypt. By contrast, in the basal region of these crypts, cell proliferation is stimulated by an alpha 1 mechanism, thus resembling a malignant tumour. PMID:4041364
Kennedy, M F; Tutton, P J; Barkla, D H
1985-09-01
Evidence exists implicating adrenergic factors in the control of intestinal epithelial cell proliferation in both normal and diseased states. In this report, attention is focussed on changes in the amine requirements of proliferating cells during the chemical induction of tumours in the colon of mouse. Cell proliferation rates were measured stathmokinetically. Tumours were induced by s.c. injection of dimethylhydrazine (DMH). Results with a series of adrenoceptor agonists and antagonists suggest that there is an alpha 2-adrenoceptor mediated excitatory effect in normal colon but an alpha 2 adrenoceptor mediated inhibitory effect in adenoma and carcinoma. Alpha 1 adrenoceptors, on the other hand, have an inhibitory effect in normal crypts and in adenomas, and an excitatory effect in carcinomas. Beta adrenoceptors have an inhibitory effect in the normal and DMH-treated crypt, and in adenomas, but not in carcinomas. In the crypt epithelium of DMH-treated mice, two regions on cell proliferation, with differing regulatory factors, could be identified. In the upper region of the carcinogen-exposed crypt is a zone where cell proliferation is stimulated by an alpha 2 adrenergic mechanism, thus resembling the basal region of the normal crypt. By contrast, in the basal region of these crypts, cell proliferation is stimulated by an alpha 1 mechanism, thus resembling a malignant tumour.
Chu, C-Y; Cha, S-T; Chang, C-C; Hsiao, C-H; Tan, C-T; Lu, Y-C; Jee, S-H; Kuo, M-L
2007-04-12
Basal cell carcinoma (BCC) is one of the most common skin neoplasms in humans and is usually characterized by local aggressiveness with little metastatic potential, although deep invasion, recurrence, and regional and distant metastases may occur. Here, we studied the mechanism of BCC invasion. We found that human BCC tissues and a BCC cell line had significant expression of CXCR4, which was higher in invasive than non-invasive BCC types. Further, of 19 recurrent tumors among 390 BCCs diagnosed during the past 12 years, 17/19 (89.5%) had high CXCR4 expression. We found that the CXCR4 ligand, stromal-cell-derived factor 1alpha (SDF-1alpha), directed BCC invasion and that this was mediated by time-dependent upregulation of mRNA expression and gelatinase activity of matrix metalloproteinase-13 (MMP-13). The transcriptional regulation of MMP-13 by SDF-1alpha was mediated by phosphorylation of extracellular signal-related kinase 1/2 and activation of the AP-1 component c-Jun. Finally, CXCR4-transfected BCC cells injected into nude mice induced aggressive BCCs that co-expressed CXCR4 and MMP-13. The identification of SDF-1alpha/CXCR4 as an important factor in BCC invasiveness may contribute insight into mechanisms involved in the aggressive potential of human BCC and may improve therapy for invasive BCCs.
Sen, Shib Sankar; Sukumaran, V; Giri, Sib Sankar; Park, Se Chang
2015-11-01
Psidium guajava L. is a well-known traditional medicinal plant widely used in folk medicine. To explore the anti-inflammatory activity of the flavonoid fraction of guava leaf extract (FGLE), we investigated its ability to suppress the levels of inflammatory mediators elevated by lipopolysaccharide (LPS) in Labeo rohita head-kidney (HK) macrophages. HK macrophages of L. rohita were treated with LPS in the presence or absence of the FGLE. We examined the inhibitory effect of FGLE on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. The inhibitory effect of FGLE on nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were investigated by RT-PCR and western blot. The effect of FGLE on proinflammatory cytokines tumour necrosis factor alpha (TNF-α) or interleukin-1β (IL-1β) was also investigated by ELISA and RT-PCR. The phosphorylation of three mitogen activated protein kinases (MAPK) molecules ERK, JNK and p38 was analysed by western blot analysis. FGLE inhibited LPS-induced NO and PGE2 production. It also effectively inhibited TNF-α, IL-1β, IL-10, iNOS, and COX-2 production in a concentration-dependent manner. In addition, FGLE suppressed the mRNA expression levels of TNF-α and IL-1β in LPS-stimulated HK macrophages. RT-PCR and western blot analysis showed that FGLE decreased both the mRNA and protein expression levels of LPS-induced iNOS and COX-2 in HK macrophages. FGLE suppresses the phosphorylation of MAPK molecules in LPS-stimulated HK macrophages. FGLE also significantly inhibited LPS-induced NF-κB transcriptional activity. The molecular mechanism by which FGLE suppresses the expression of inflammatory mediators appears to involve the inhibition of NF-κB activation, through the suppression of LPS-induced IκB-α degradation. Together these results suggest that FGLE contains potential therapeutic agent(s), which regulate NF-κB activation, for the treatment of inflammatory conditions in L. rohita macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nehmé, Alissar; Edelman, Jeffrey
2008-05-01
To characterize the effects of dexamethasone in human retinal pericytes (HRMPs), monocytes (THP-1), and retinal endothelial cells (HRECs) treated with high glucose, TNF-alpha, or IL-1beta. HRMP and HREC phenotypes were verified by growth factor stimulation of intracellular calcium-ion mobilization. Glucocorticoid receptor phosphorylation was assessed with an anti-phospho-Ser(211) glucocorticoid receptor antibody. Secretion of 89 inflammatory and angiogenic proteins were compared in cells incubated with (1) normal (5 mM) or high (25 mM) D-glucose and (2) control medium, TNF-alpha (10 ng/mL), or IL-1beta (10 ng/mL), with or without dexamethasone (1 nM to 1 microM). The proteins were compared by using multianalyte profile testing. HRMPs and HRECs expressed functional PDGFB-R and VEGFR-2, respectively. Dexamethasone induction of glucocorticoid receptor phosphorylation was dose-dependent in all cell types. High glucose increased secretion of inflammatory mediators in HRMPs, but not in HRECs. Dexamethasone dose dependently inhibited secretion of these mediators in HRMPs. For all cells, TNF-alpha and IL-1beta induced a fivefold or more increase in inflammatory and angiogenic mediators; HRMPs secreted the greatest number and level of mediators. Dexamethasone dose dependently inhibited the secretion of multiple proteins from HRMPs and THP-1 cells, but not from HRECs (IC(50) 2 nM to 1 microM). High glucose, TNF-alpha, and IL-1beta induced an inflammatory phenotype in HRMPs, characterized by hypersecretion of inflammatory and angiogenic mediators. Dexamethasone at various potencies blocked hypersecretion of several proteins. Pericytes may be a key therapeutic target in retinal inflammatory diseases, including diabetic retinopathy. Inhibition of pathologic mediators may depend on delivering high levels ( approximately 1 microM) of glucocorticoid to the retina.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cazanave, Sophie; Vadrot, Nathalie; Tinel, Marina
Fas stimulation recruits neutrophils and activates macrophages that secrete tumor necrosis factor-{alpha} (TNF-{alpha}), which aggravates Fas-mediated liver injury. To determine whether nonsteroidal anti-inflammatory drugs modify these processes, we challenged 24-hour-fasted mice with the agonistic Jo2 anti-Fas antibody (4 {mu}g/mouse), and treated the animals 1 h later with saline or ibuprofen (250 mg/kg), a dual cyclooxygenase (COX)-1 and COX-2 inhibitor. Ibuprofen attenuated the Jo2-mediated recruitment/activation of myeloperoxidase-secreting neutrophils/macrophages in the liver, and attenuated the surge in serum TNF-{alpha}. Ibuprofen also minimized hepatic glutathione depletion, Bid truncation, caspase activation, outer mitochondrial membrane rupture, hepatocyte apoptosis and the increase in serum alanine aminotransferasemore » (ALT) activity 5 h after Jo2 administration, to finally decrease mouse mortality at later times. The concomitant administration of pentoxifylline (decreasing TNF-{alpha} secretion) and infliximab (trapping TNF-{alpha}) likewise attenuated the Jo2-mediated increase in TNF-{alpha}, the decrease in hepatic glutathione, and the increase in serum ALT activity 5 h after Jo2 administration. The concomitant administration of the COX-1 inhibitor, SC-560 (10 mg/kg) and the COX-2 inhibitor, celecoxib (40 mg/kg) 1 h after Jo2 administration, also decreased liver injury 5 h after Jo2 administration. In contrast, SC-560 (10 mg/kg) or celecoxib (40 or 160 mg/kg) given alone had no significant protective effects. In conclusion, secondary TNF-{alpha} secretion plays an important role in Jo2-mediated glutathione depletion and liver injury. The combined inhibition of COX-1 and COX-2 by ibuprofen attenuates TNF-{alpha} secretion, glutathione depletion, mitochondrial alterations, hepatic apoptosis and mortality in Jo2-treated fasted mice.« less
USDA-ARS?s Scientific Manuscript database
The influenza pandemic of 1918-1919 was one of the worst global pandemics in recent history. The highly pathogenic nature of the 1918 virus is thought to be mediated in part by a dysregulation of the host response, including an exacerbated pro-inflammatory cytokine response. In the present study, we...
Suppression of no-longer relevant information in Working Memory: An alpha-power related mechanism?
Poch, Claudia; Valdivia, María; Capilla, Almudena; Hinojosa, José Antonio; Campo, Pablo
2018-03-27
Selective attention can enhance Working Memory (WM) performance by selecting relevant information, while preventing distracting items from encoding or from further maintenance. Alpha oscillatory modulations are a correlate of visuospatial attention. Specifically, an enhancement of alpha power is observed in the ipsilateral posterior cortex to the locus of attention, along with a suppression in the contralateral hemisphere. An influential model proposes that the alpha enhancement is functionally related to the suppression of information. However, whether ipsilateral alpha power represents a mechanism through which no longer relevant WM representations are inhibited has yet not been explored. Here we examined whether the amount of distractors to be suppressed during WM maintenance is functionally related to alpha power lateralized activity. We measure EEG activity while participants (N = 36) performed a retro-cue task in which the WM load was varied across the relevant/irrelevant post-cue hemifield. We found that alpha activity was lateralized respect to the locus of attention, but did not track post-cue irrelevant load. Additionally, non-lateralized alpha activity increased with post-cue relevant load. We propose that alpha lateralization associated to retro-cuing might be related to a general orienting mechanism toward relevant representation. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Jingjing; Sun, Zhen; Gou, Wenyu; Adams, David B; Cui, Wanxing; Morgan, Katherine A; Strange, Charlie; Wang, Hongjun
2017-04-01
Islet cell transplantation has limited effectiveness because of an instant blood-mediated inflammatory reaction (IBMIR) that occurs immediately after cell infusion and leads to dramatic β-cell death. In intraportal islet transplantation models using mouse and human islets, we demonstrated that α-1 antitrypsin (AAT; Prolastin-C), a serine protease inhibitor used for the treatment of AAT deficiency, inhibits IBMIR and cytokine-induced inflammation in islets. In mice, more diabetic recipients reached normoglycemia after intraportal islet transplantation when they were treated with AAT compared with mice treated with saline. AAT suppressed blood-mediated coagulation pathways by diminishing tissue factor production, reducing plasma thrombin-antithrombin complex levels and fibrinogen deposition on islet grafts, which correlated with less graft damage and apoptosis. AAT-treated mice showed reduced serum tumor necrosis factor-α levels, decreased lymphocytic infiltration, and decreased nuclear factor (NF)-κB activation compared with controls. The potent anti-inflammatory effect of AAT is possibly mediated by suppression of c-Jun N-terminal kinase (JNK) phosphorylation. Blocking JNK activation failed to further reduce cytokine-induced apoptosis in β-cells. Taken together, AAT significantly improves islet graft survival after intraportal islet transplantation by mitigation of coagulation in IBMIR and suppression of cytokine-induced JNK and NF-κB activation. AAT-based therapy has the potential to improve graft survival in human islet transplantation and other cellular therapies on the horizon. © 2017 by the American Diabetes Association.
Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo
2012-05-05
Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jawan, Bruno; Kao, Y.-H.; Department of Biological Sciences, National Sun Yat-Sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan
Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cytokine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 {mu}M after 48 h incubation. Pretreatment with 100 {mu}M PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstratedmore » that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-{alpha}, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and I{kappa}B{alpha}, as well as the nuclear translocation of NF-{kappa}B primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-{kappa}B nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers.« less
Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein.
Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo
2013-07-19
RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways. Copyright © 2013 Elsevier Inc. All rights reserved.
Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Kyoung-Tae; Choi, Yung Hyun; Moon, Sung-Kwon; Kim, Wun-Jae; Kim, Gi-Young
2015-10-01
Although acetylshikonin (ACS) is known to have antioxidant and antitumor activities, whether ACS regulates the expression of proinflammatory mediators in lipopolysaccharide (LPS)-stimulated microglial cells remains unclear. In this study, it was found that ACS isolated from Lithospermum erythrorhizon inhibits LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) release by suppressing the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in BV2 microglial cells. Furthermore, ACS reduced the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) and subsequently suppressed iNOS and COX-2 expression. Consistent with these data, ACS attenuated the phosphorylation of PI3K and Akt and suppressed the DNA-binding activity of NF-κB by inducing the generation of reactive oxygen species (ROS) in LPS-stimulated cells. In addition, ACS enhanced heme oxygenase-1 (HO-1) expression via nuclear factor-erythroid 2-related factor 2 (Nrf2) activation. Zinc protoporphyrin, a specific HO-1 inhibitor, partially attenuated the antagonistic effects of ACS on LPS-induced NO and PGE2 production. By contrast, the presence of cobalt protoporphyrin, a specific HO-1 inducer, potently suppressed LPS-induced NO and PGE2 production. These data indicate that ACS downregulates proinflammatory mediators such as NO and PGE2 by suppressing PI3K/Akt-dependent NF-κB activity induced by ROS as well as inducing Nrf2-dependent HO-1 activity. Taken together, ACS might be a good candidate to regulate LPS-mediated inflammatory diseases.
Exogenous regucalcin suppresses the growth of human liver cancer HepG2 cells in vitro.
Yamaguchi, Masayoshi; Murata, Tomiyasu
2018-04-05
Regucalcin, which its gene is localized on the X chromosome, plays a pivotal role as a suppressor protein in signal transduction in various types of cells and tissues. Regucalcin gene expression has been demonstrated to be suppressed in various tumor tissues of animal and human subjects, suggesting a potential role of regucalcin in carcinogenesis. Regucalcin, which is produced from the tissues including liver, is found to be present in the serum of human subjects and animals. This study was undertaken to determine the effects of exogenous regucalcin on the proliferation in cloned human hepatoma HepG2 cells in vitro. Proliferation of HepG2 cells was suppressed after culture with addition of regucalcin (0.01 – 10 nM) into culture medium. Exogenous regucalcin did not reveal apoptotic cell death in HepG2 cells in vitro. Suppressive effects of regucalcin on cell proliferation were not enhanced in the presence of various signaling inhibitors including tumor necrosis factor-α (TNF-α), Bay K 8644, PD98059, staurosporine, worthomannin, 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) or gemcitabine, which were found to suppress the proliferation. In addition, exogenous regucalcin suppressed the formation of colonies of cultured hepatoma cells in vitro. These findings demonstrated that exogenous regucalcin exhibits a suppressive effect on the growth of human hepatoma HepG2 cells, proposing a strategy with the gene therapy for cancer treatment.
Methamphetamine enhances Hepatitis C virus replication in human hepatocytes
Ye, L.; Peng, J. S.; Wang, X.; Wang, Y. J.; Luo, G. X.; Ho, W. Z.
2009-01-01
SUMMARY Very little is known about the interactions between hepatitis C virus (HCV) and methamphetamine, which is a highly abused psychostimulant and a known risk factor for human immunodeficiency virus (HIV)/HCV infection. This study examined whether methamphetamine has the ability to inhibit innate immunity in the host cells, facilitating HCV replication in human hepatocytes. Methamphetamine inhibited intracellular interferon alpha expression in human hepatocytes, which was associated with the increase in HCV replication. In addition, methamphetamine also compromised the anti-HCV effect of recombinant interferon alpha. Further investigation of mechanism(s) responsible for the methamphetamine action revealed that methamphetamine was able to inhibit the expression of the signal transducer and activator of transcription 1, a key modulator in interferon-mediated immune and biological responses. Methamphetamine also down-regulated the expression of interferon regulatory factor-5, a crucial transcriptional factor that activates the interferon pathway. These in vitro findings that methamphetamine compromises interferon alpha-mediated innate immunity against HCV infection indicate that methamphetamine may have a cofactor role in the immunopathogenesis of HCV disease. PMID:18307590
Albertsmeyer, Ann-Christin; Kakkassery, Vinodh; Spurr-Michaud, Sandra; Beeks, Olivia; Gipson, Ilene K
2010-03-01
Membrane-associated mucins are altered on the ocular surface in non-Sjögren's dry eye. This study sought to determine if inflammatory mediators, present in tears of dry eye patients, regulate membrane-associated mucins MUC1 and -16 at the level of gene expression, protein biosynthesis and/or ectodomain release. A human corneal limbal epithelial cell line (HCLE), which produces membrane-associated mucins, was used. Cells were treated with interleukin (IL)-6, -8, or -17, tumor necrosis factor-alpha (TNF-alpha), and Interferon-gamma (IFN-gamma), or a combination of TNF-alpha and IFN-gamma, or IFN-gamma and IL-17, for 1, 6, 24, or 48 h. Presence of receptors for these mediators was verified by RT-PCR. Effects of the cytokines on expression levels of MUC1 and -16 were determined by real-time PCR, and on mucin protein biosynthesis and ectodomain release in cell lysates and culture media, respectively, by immunoblot analysis. TNF-alpha and IFN-gamma each significantly induced MUC1 expression, cellular protein content and ectodomain release over time. Combined treatment with the two cytokines was not additive. By comparison, one of the inflammatory mediators, IFN-gamma, affected all three parameters-gene expression, cellular protein, and ectodomain release-for MUC16. Combined treatment with TNF-alpha and IFN-gamma showed effects similar to IFN-gamma alone, except that ectodomain release followed that of TNF-alpha, which induced MUC16 ectodomain release. In conclusion, inflammatory mediators present in tears of dry eye patients can affect MUC1 and -16 on corneal epithelial cells and may be responsible for alterations of surface mucins in dry eye.
Yen, Yu-Hsiu; Pu, Chi-Ming; Liu, Chen-Wei; Chen, Ya-Chun; Chen, Yu-Chen; Liang, Chan-Jung; Hsieh, Jung-Hsien; Huang, Hui-Fu; Chen, Yuh-Lien
2018-04-16
Curcumin, a constituent of the turmeric plant, has antitumor, anti-inflammatory, and antioxidative effects, but its effects on wound healing are unclear. We created back wounds in 72 mice and treated them with or without topical curcumin (0.2 mg/mL) in Pluronic F127 gel (20%) daily for 3, 5, 7, 9, and 12 days. Healing in wounds was evaluated from gross appearance, microscopically by haematoxylin and eosin staining, by immunohistochemistry for tumour necrosis factor alpha and alpha smooth muscle actin, and by polymerase chain reaction amplification of mRNA expression levels. Treatment caused fast wound closure with well-formed granulation tissue dominated by collagen deposition and regenerating epithelium. Curcumin increased the levels of tumour necrosis factor alpha mRNA and protein in the early phase of healing, which then decreased significantly. However, these levels remained high in controls. Levels of collagen were significantly higher in curcumin-treated wounds. Immunohistochemical staining for alpha smooth muscle actin was increased in curcumin-treated mice on days 7 and 12. Curcumin treatment significantly suppressed matrix metallopeptidase-9 and stimulated alpha smooth muscle levels in tumour necrosis factor alpha-treated fibroblasts via nuclear factor kappa B signalling. Thus, topical curcumin accelerated wound healing in mice by regulating the levels of various cytokines. © 2018 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Synergic Effects of Mycoplasmal Lipopeptides and Extracellular ATP on Activation of Macrophages
Into, Takeshi; Fujita, Mari; Okusawa, Tsugumi; Hasebe, Akira; Morita, Manabu; Shibata, Ken-Ichiro
2002-01-01
Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1β, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2′,4′-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor κB inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor κB. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides. PMID:12065499
Lim, Jung Hwa; Jung, Cho-Rok; Lee, Chan-Hee; Im, Dong-Soo
2008-11-01
E2-EPF ubiquitin carrier protein (UCP) has been shown to be highly expressed in common human cancers and target von Hippel-Lindau (VHL) for proteosomal degradation in cells, thereby stabilizing hypoxia-inducible factor (HIF)-1alpha. Here, we investigated cellular factors that regulate the expression of UCP gene. Promoter deletion assay identified binding sites for early growth response-1 (Egr-1) and serum response factor (SRF) in the UCP promoter. Hepatocyte or epidermal growth factor (EGF), or phorbol 12-myristate 13-acetate induced UCP expression following early induction of Egr-1 expression in HeLa cells. Serum increased mRNA and protein levels of SRF and UCP in the cell. By electrophoretic mobility shift and chromatin immunoprecipitation assays, sequence-specific DNA-binding of Egr-1 and SRF to the UCP promoter was detected in nuclear extracts from HeLa cells treated with EGF and serum, respectively. Overexpression of Egr-1 or SRF increased UCP expression. RNA interference-mediated depletion of endogenous Egr-1 or SRF impaired EGF- or serum-mediated induction of UCP expression, which was required for cancer cell proliferation. Systemic delivery of EGF into mice also increased UCP expression following early induction of Egr-1 expression in mouse liver. The induced UCP expression by the growth factors or serum increased HIF-1alpha protein level under non-hypoxic conditions, suggesting that the Egr-1/SRF-UCP-VHL pathway is in part responsible for the increased HIF-1alpha protein level in vitro and in vivo. Thus, growth factors and serum induce expression of Egr-1 and SRF, respectively, which in turn induces UCP expression that positively regulates cancer cell growth.
Lehnert, B E; Goodwin, E H
1997-01-01
The mechanism(s) by which alpha (alpha) particles like those emitted from inhaled radon and radon progeny cause their carcinogenic effects in the lung remains unclear. Although direct nuclear traversals by alpha-particles may be involved in mediating these outcomes, increasing evidence indicates that a particles can cause alterations in DNA in the absence of direct hits to cell nuclei. Using the occurrence of excessive sister chromatid exchanges (SCE) as an index of DNA damage in human lung fibroblasts, we investigated the hypothesis that alpha-particles may induce DNA damage through the generation of extracellular factors. We have found that a relatively low dose of alpha-particles can result in the generation of extracellular factors, which, upon transfer to unexposed normal human cells, can cause excessive SCE to an extent equivalent to that observed when the cells are directly irradiated with the same irradiation dose. A short-lived, SCE-inducing factor(s) is generated in alpha-irradiated culture medium containing serum in the absence of cells. A more persistent SCE-inducing factor(s), which can survive freeze-thaw and is heat labile is produced by fibroblasts after exposure to the alpha-particles. These results indicate that the initiating target for alpha-particle-induced genetic changes can be larger than a cell's nucleus or even a whole cell. How transmissible factors like those observed here in vitro may extend to the in vivo condition in the context of a-particle-induced carcinogenesis in the respiratory tract remains to be determined. PMID:9400706
Protective effect of thalidomide on endotoxin-induced liver injury.
Enomoto, Nobuyuki; Takei, Yoshiyuki; Hirose, Miyoko; Kitamura, Tsuneo; Ikejima, Kenichi; Sato, Nobuhiro
2003-08-01
Activation of Kupffer cells by lipopolysaccharide (LPS) plays a pivotal role in the onset of pathophysiological events that occur during endotoxemia, and intracellular calcium concentration ([Ca2+]i) is involved in LPS-stimulated cytokine production. Tumor necrosis factor (TNF)-alpha is produced exclusively by the monocyte-macrophage lineage, which is mostly made up of Kupffer cells, and thalidomide has been shown to reduce TNF-alpha production from macrophages. However, there is increasing evidence that TNF-alpha may play a role in the initiation or progression of multiple organ failure syndrome. Therefore, the purpose of this work was to determine whether thalidomide could prevent LPS-induced liver injury. Rats were given a single oral dose of thalidomide (5 mg/kg). To assess the sensitization of Kupffer cells, LPS (5 or 10 mg/kg) was administered intravenously, and mortality, liver histology, and transaminases were evaluated 24 hr later. Kupffer cells were isolated 2 hr after thalidomide treatment. After the addition of LPS, [Ca2+]i was measured by using a microspectrofluorometer with the fluorescent indicator fura-2, and TNF-alpha was measured by enzyme-linked immunosorbent assay. LPS caused focal necrosis with neutrophil infiltration in the liver. Moreover, LPS dramatically increased transaminases. These pathologic parameters and increases of serum transaminases were diminished markedly by thalidomide. In isolated Kupffer cells, LPS-induced increases in [Ca2+]i and TNF-alpha production were suppressed by treatment with thalidomide. To further explore the mechanism by which thalidomide directly abrogated Kupffer cell sensitivity to LPS, we determined the effect of thalidomide (5 microM) in vitro on LPS-induced [Ca2+]i response and TNF-alpha production. With the addition of thalidomide (5 microM) in vitro to the culture media for 2 hr before LPS, these parameters were suppressed. Thalidomide prevents LPS-induced liver injury via mechanisms dependent on the suppression of TNF-alpha production from Kupffer cells.
NKG2D and CD94 bind to multimeric alpha2,3-linked N-acetylneuraminic acid.
Imaizumi, Yuzo; Higai, Koji; Suzuki, Chiho; Azuma, Yutaro; Matsumoto, Kojiro
2009-05-08
Killer lectin-like receptors on natural killer cells mediate cytotoxicity through glycans on target cells including the sialyl Lewis X antigen (sLeX). We investigated whether NK group 2D (NKG2D) and CD94 can bind to sialylated N-linked glycans, using recombinant glutathione S-transferase-fused extracellular lectin-like domains of NKG2D (rNKG2Dlec) and CD94 (rCD94lec). Both rNKG2Dlec and rCD94lec bound to plates coated with high-sLeX-expressing transferrin secreted by HepG2 cells (HepTF). The binding of rNKG2Dlec and rCD94lec to HepTF was markedly suppressed by treatment of HepTF with neuraminidase and in the presence of N-acetylneuraminic acid. Moreover, rNKG2Dlec and rCD94lec bound to alpha2,3-sialylated human alpha(1)-acid glycoprotein (AGP) but not to alpha2,6-sialylated AGP. Mutagenesis revealed that (152)Y of NKG2D and (144)F and (160)N of CD94 were critical for HepTF binding. This is the first report that NKG2D and CD94 bind to alpha2,3-sialylated but not to alpha2,6-sialylated multi-antennary N-glycans.
Yang, Lan; Wen, Ya; Lv, Guoqing; Lin, Yuntao; Tang, Junlong; Lu, Jingxiao; Zhang, Manqiao; Liu, Wen; Sun, Xiaojuan
2017-12-09
Alpha lipoic acid (α -LA) is a naturally occurring antioxidant and metabolic enzyme co-factor. Recently, α -LA has been reported to inhibit the growth of various cancer cells, but the precise signaling pathways that mediate the effects of α -LA on non-small cell lung cancer (NSCLC) development remain unclear. The CCK-8 assay was used to assess cell proliferation in NSCLC cell lines after α -LA treatment. The expression of growth factor receptor-bound protein 2 (Grb2), cyclin-dependent kinase (CDK)-2, CDK4, CDK6, Cyclin D3, Cyclin E1, Ras, c-Raf, epidermal growth factor receptor (EGFR), ERK1/2 and activated EGFR and ERK1/2 was evaluated by western blotting. Grb2 levels were restored in α-LA-treated cells by transfection of a plasmid carrying Grb2 and were reduced in NSCLC cells via specific siRNA-mediated knockdown. α -LA dramatically decreased NSCLC cell proliferation by downregulating Grb2; in contrast, Grb2 overexpression significantly prevented α-LA-induced decrease in cell growth in vitro. Western blot analysis indicated that α-LA decreased the levels of phospho-EGFR, CDK2/4/6, Cyclins D3 and E1, which are associated with the inhibition of G1/S-phase transition. Additional experiments indicated that Grb2 inhibition partially abolished EGF-induced phospho-EGFR and phospho-ERK1/2 activity. In addition, α-LA exerted greater inhibitory effects than gefitinib on NSCLC cells by preventing EGF-induced EGFR activation. For the first time, these findings provide the first evidence that α-LA inhibits cell proliferation through Grb2 by suppressing EGFR phosphorylation and that MAPK/ERK is involved in this pathway. Copyright © 2017. Published by Elsevier Inc.
The role of hypoxia and HIF1α in the regulation of STAR-mediated steroidogenesis in granulosa cells.
Kowalewski, Mariusz Pawel; Gram, Aykut; Boos, Alois
2015-02-05
The adaptive responses to hypoxia are mediated by hypoxia-inducible factor 1 alpha (HIF1α). Its role, however, in regulating steroidogenesis remains poorly understood. We examined the role of hypoxia and HIF1α in regulating steroid acute regulatory protein (STAR) expression and steroidogenesis in immortalized (KK1) mouse granulosa cells under progressively lowering O2 concentrations (20%, 15%, 10%, 5%, 1%). Basal and dbcAMP-stimulated progesterone synthesis was decreased under severe hypoxia (1% and 5% O2). The partial hypoxia revealed opposing effects, with a significant increase in steroidogenic response at 10% O2 in dbcAMP-treated cells: Star-promoter activity, mRNA and protein expression were increased. The hypoxia-stimulated STAR expression was PKA-dependent. Binding of HIF1α to the Star-promoter was potentiated under partial hypoxia. Inhibition of the transcriptional activity or expression of HIF1α suppressed STAR-expression. HIF1α appears to be a positive regulator of basal and stimulated STAR-expression, which under partial hypoxia is capable of increasing the steroidogenic capacity of granulosa cells. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Tumor necrosis factor-alpha converting enzyme in the human placenta throughout gestation.
Hung, Tai-Ho; Chen, Szu-Fu; Hsieh, Ching-Chang; Hsu, Jenn-Jeih; Li, Meng-Jen; Yeh, Yi-Lin; Hsieh, T'sang-T'ang
2008-02-01
Ectodomain shedding of epidermal growth factor receptor ligands such as transforming growth factor- alpha (TGF-alpha), heparin-binding epidermal growth factor-like growth factor (HBEGF), and amphiregulin (AREG) is considered to be important during implantation. Tumor necrosis factor-alpha converting enzyme (TACE) has been suggested as the major sheddase for these molecules. The objectives of this study are (1) to characterize the expression of TACE in the human placenta throughout gestation; (2) to determine the association between the expression of TACE with TGF-alpha, HBEGF, and AREG; (3) to ascertain whether TACE mediates TGF-alpha, HBEGF, and AREG shedding; and (4) to examine the effect of hypoxia on the expression of TACE. By analyzing a total of 55 villous samples representing different gestational ages, the authors found that TACE was continuously expressed in the placentas throughout gestation and that the levels of TACE were positively correlated with the levels of TGF-alpha, HBEGF, and AREG. Preadministration of a TACE inhibitor in villous explant cultures or transfection of cytotrophoblastic cells with TACE-specific small interference RNA decreased the shedding of HBEGF and AREG. Moreover, hypoxia (2% O(2)) caused an increase in the levels of TACE mRNA and protein in villous explants and primary cytotrophoblastic cells in vitro. These results indicate that oxygen regulates the expression of TACE and that TACE may be important for placental development during human pregnancy.
Oh, Jung Hwa; Kwon, Taeg Kyu
2009-05-01
We here investigated the functional effect of withaferin A on airway inflammation and its action mechanism. Withaferin A inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in human lung epithelial A549 cells stimulated with tumor necrosis factor-alpha (TNF-alpha), resulting in the suppression of leukocyte adhesion to lung epithelial A549 cells. In addition, withaferin A inhibited TNF-alpha-induced expression of adhesion molecules (ICAM-1 and VCAM-1) protein and mRNA in a dose-dependent manner. Withaferin A prevented DNA binding activity of nuclear factor-kappaB (NF-kappaB) and nuclear translocation of NF-kappaB. It also inhibited phosphorylation of Akt and extracellular signal-regulated kinase (ERK), which are upstream in the regulation of adhesion molecules by TNF-alpha. Furthermore, withaferin A inhibited U937 monocyte adhesion to A549 cells stimulated by TNF-alpha, suggesting that it may inhibit the binding of these cells by regulating the expression of critical adhesion molecules by TNF-alpha. Taken together, these results suggest that withaferin A inhibits cell adhesion through inhibition of ICAM-1 and VCAM-1 expression, at least in part, by blocking Akt and down-regulating NF-kappaB activity.
Tsang, Wing Pui; Zhang, Fengjie; He, Qiling; Cai, Waijiao; Huang, Jianhua; Chan, Wai Yee; Shen, Ziyin; Wan, Chao
2017-01-01
Utilization of small molecules in modulation of stem cell self-renewal is a promising approach to expand stem cells for regenerative therapy. Here, we identify Icaritin, a phytoestrogen molecule enhances self-renewal of mouse embryonic stem cells (mESCs). Icaritin increases mESCs proliferation while maintains their self-renewal capacity in vitro and pluripotency in vivo. This coincides with upregulation of key pluripotency transcription factors OCT4, NANOG, KLF4 and SOX2. The enhancement of mESCs self-renewal is characterized by increased population in S-phase of cell cycle, elevation of Cylin E and Cyclin-dependent kinase 2 (CDK2) and downregulation of p21, p27 and p57. PCR array screening reveals that caudal-related homeobox 2 (Cdx2) and Rbl2/p130 are remarkably suppressed in mESCs treated with Icaritin. siRNA knockdown of Cdx2 or Rbl2/p130 upregulates the expression of Cyclin E, OCT4 and SOX2, and subsequently increases cell proliferation and colony forming efficiency of mESCs. We then demonstrate that Icaritin co-localizes with estrogen receptor alpha (ERα) and activates its nuclear translocation in mESCs. The promotive effect of Icaritin on cell cycle and pluripotency regulators are eliminated by siRNA knockdown of ERα in mESCs. The results suggest that Icaritin enhances mESCs self-renewal by regulating cell cycle machinery and core pluripotency transcription factors mediated by ERα. PMID:28091581
Tsang, Wing Pui; Zhang, Fengjie; He, Qiling; Cai, Waijiao; Huang, Jianhua; Chan, Wai Yee; Shen, Ziyin; Wan, Chao
2017-01-16
Utilization of small molecules in modulation of stem cell self-renewal is a promising approach to expand stem cells for regenerative therapy. Here, we identify Icaritin, a phytoestrogen molecule enhances self-renewal of mouse embryonic stem cells (mESCs). Icaritin increases mESCs proliferation while maintains their self-renewal capacity in vitro and pluripotency in vivo. This coincides with upregulation of key pluripotency transcription factors OCT4, NANOG, KLF4 and SOX2. The enhancement of mESCs self-renewal is characterized by increased population in S-phase of cell cycle, elevation of Cylin E and Cyclin-dependent kinase 2 (CDK2) and downregulation of p21, p27 and p57. PCR array screening reveals that caudal-related homeobox 2 (Cdx2) and Rbl2/p130 are remarkably suppressed in mESCs treated with Icaritin. siRNA knockdown of Cdx2 or Rbl2/p130 upregulates the expression of Cyclin E, OCT4 and SOX2, and subsequently increases cell proliferation and colony forming efficiency of mESCs. We then demonstrate that Icaritin co-localizes with estrogen receptor alpha (ERα) and activates its nuclear translocation in mESCs. The promotive effect of Icaritin on cell cycle and pluripotency regulators are eliminated by siRNA knockdown of ERα in mESCs. The results suggest that Icaritin enhances mESCs self-renewal by regulating cell cycle machinery and core pluripotency transcription factors mediated by ERα.
Tumor Necrosis Factor alpha (TNF{alpha}) regulates CD40 expression through SMAR1 phosphorylation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Kamini; Sinha, Surajit; Malonia, Sunil Kumar
2010-01-08
CD40 plays an important role in mediating inflammatory response and is mainly induced by JAK/STAT phosphorylation cascade. TNF{alpha} is the key cytokine that activates CD40 during inflammation and tumorigenesis. We have earlier shown that SMAR1 can repress the transcription of Cyclin D1 promoter by forming a HDAC1 dependent repressor complex. In this study, we show that SMAR1 regulates the transcription of NF-{kappa}B target gene CD40. SMAR1 recruits HDAC1 and forms a repressor complex on CD40 promoter and keeps its basal transcription in check. Further, we show that TNF{alpha} stimulation induces SMAR1 phosphorylation at Ser-347 and promotes its cytoplasmic translocation, thusmore » releasing its negative effect. Concomitantly, TNF{alpha} induced phosphorylation of STAT1 at Tyr-701 by JAK1 facilitates its nuclear translocation and activation of CD40 through p300 recruitment and core Histone-3 acetylation. Thus, TNF{alpha} mediated regulation of CD40 expression occurs by dual phosphorylation of SMAR1 and STAT1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rho, Mun-Chual; Ah Lee, Kyeong; Mi Kim, Sun
2007-05-01
Saturated free fatty acids (FFAs), including palmitate, can activate the intrinsic death pathway in cells. However, the relationship between FFAs and receptor-mediated death pathway is still unknown. In this study, we have investigated whether FFAs are able to trigger receptor-mediated death. In addition, to clarify the mechanisms responsible for the activation, we examined the biochemical changes in dying vascular smooth muscle cell (VSMC) and the effects of various molecules to the receptor-mediated VSMC death. Tumor necrosis factor (TNF)-{alpha}-mediated VSMC death occurred in the presence of sub-cytotoxic concentration of palmitate as determined by assessing viability and DNA degradation, while the cytokinemore » did not influence VSMC viability in the presence of oleate. The VSMC death was inhibited by the gene transfer of a dominant-negative Fas-associated death domain-containing protein and the baculovirus p35, but not by the bcl-xL or the c-Jun N-terminal kinase (JNK) binding domain of JNK-interacting protein-1, in tests utilizing recombinant adenoviruses. The VSMC death was also inhibited by a neutralizing anti-TNF receptor 1 antibody, the caspase inhibitor z-VAD, and the cathepsin B inhibitor CA074, a finding indicative of the role of both caspases and cathepsin B in this process. Consistent with this finding, caspase-3 activation and an increase in cytosolic cathepsin B activity were detected in the dying VSMC. Palmitate inhibited an increase of TNF-{alpha}-mediated nuclear factor kappa B (NF-{kappa}B) activity, the survival pathway activated by the cytokine, by hindering the translocation of the NF-{kappa}B subunit of p65 from the cytosol into the nucleus. The gene transfer of inhibitor of NF-{kappa}B predisposed VSMC to palmitate-induced cell death. To the best of our knowledge, this study is the first report to demonstrate the activation of TNF-{alpha}-mediated cell death in the presence of palmitate. The current study proposes that FFAs would take part in deleterious vascular consequences of such patients with elevated levels of FFAs as diabetics and obese individuals via the triggering of receptor-mediated death pathways of VSMC.« less
Kaminski, Alexander; Ma, Nan; Donndorf, Peter; Lindenblatt, Nicole; Feldmeier, Gregor; Ong, Lee-Lee; Furlani, Dario; Skrabal, Christian A; Liebold, Andreas; Vollmar, Brigitte; Steinhoff, Gustav
2008-01-01
In the era of intravascular approaches for regenerative cell therapy, the underlying mechanisms of stem cell migration to non-marrow tissue have not been clarified. We hypothesized that next to a local inflammatory response implying adhesion molecule expression, endothelial nitric oxide synthase (eNOS)-dependent signaling is required for stromal- cell-derived factor-1 alpha (SDF-1alpha)-induced adhesion of c-kit+ cells to the vascular endothelium. SDF-1alpha/tumor necrosis factor-alpha (TNF-alpha)-induced c-kit+-cell shape change and migration capacity was studied in vitro using immunohistochemistry and Boyden chamber assays. In vivo interaction of c-kit+ cells from bone marrow with the endothelium in response to SDF-1alpha/TNF-alpha stimulation was visualized in the cremaster muscle microcirculation of wild-type (WT) and eNOS (-/-) mice using intravital fluorescence microscopy. In addition, NOS activity was inhibited with N-nitro-L-arginine-methylester-hydrochloride in WT mice. To reveal c-kit+-specific adhesion behavior, endogenous leukocytes (EL) and c-kit+ cells from peripheral blood served as control. Moreover, intercellular adhesion molecule-1 (ICAM-1) and CXCR4 were blocked systemically to determine their role in inflammation-related c-kit+-cell adhesion. In vitro, SDF-1alpha enhanced c-kit+-cell migration. In vivo, SDF-1alpha alone triggered endothelial rolling-not firm adherence-of c-kit+ cells in WT mice. While TNF-alpha alone had little effect on adhesion of c-kit+ cells, it induced maximum endothelial EL adherence. However, after combined treatment with SDF-1alpha+TNF-alpha, endothelial adhesion of c-kit+ cells increased independent of their origin, while EL adhesion was not further incremented. Systemic treatment with anti-ICAM-1 and anti-CXCR4-monoclonal antibody completely abolished endothelial c-kit+-cell adhesion. In N-nitro-L-arginine-methylester-hydrochloride-treated WT mice as well as in eNOS (-/-) mice, firm endothelial adhesion of c-kit+ cells was entirely abrogated, while EL adhesion was significantly increased. The chemokine SDF-1alpha mediates firm adhesion c-kit+ cells only in the presence of TNF-alpha stimulation via an ICAM-1- and CXCR4-dependent mechanism. The presence of eNOS appears to be a crucial and specific factor for firm c-kit+-cell adhesion to the vascular endothelium.
Kim, Mi Hye; Choi, You Yeon; Yang, Gabsik; Cho, Ik-Hyun; Nam, Dongwoo; Yang, Woong Mo
2013-01-09
Indirubin, isolated from Indigo naturalis (Apiaceae) is a purple 3,2- bisindole and a stable isomer of indigo. Although it is known to have anti-inflammatory activities, its mechanism of action has not been elucidated. Seven-week-old female BALB/c mice were sensitized with 1-chloro-2,4-dinitrobenzene (DNCB) to induce skin inflammation. Hematoxylin and eosin staining was performed to assess epidermal and dermal hyperplasia, which were determined by measuring the thicknesses of the epidermis and dermis, respectively. We also evaluated serum immunoglobulin E (IgE) levels and cytokines production, such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-4, 6 and Interferon (IFN)-gamma. In addition, we investigated nuclear factor (NF)-κB, IκB-α and mitogen-activated protein (MAP) kinase activities for verifying the molecular mechanism of inflammation. Indirubin treatment suppressed skin inflammation in DNCB-exposed mice. The skin lesions were significantly thinner in the Indirubin-treated group than in untreated controls, and the hyperkeratosis disappeared. Indirubin reduced the total serum IgE level and cytokines production. In addition, it normalized NF-κB, IκB-α and MAP kinase expression. Indirubin might be a useful treatment for allergic contact dermatitis via regulating the co-expression of T helper (Th) 1 and 2 cell-mediated immune responses. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
RORC2 is involved in T cell polarization through interaction with the FOXP3 promoter.
Burgler, Simone; Mantel, Pierre-Yves; Bassin, Claudio; Ouaked, Nadia; Akdis, Cezmi A; Schmidt-Weber, Carsten B
2010-06-01
The process of Th cell differentiation toward polarized effector T cells tailors specific immunity against invading pathogens while allowing tolerance against commensal microorganisms, harmless allergens, or autologous Ags. Identification of the mechanisms underlying this polarization process is therefore central to understand how the immune system confers immunity and tolerance. The present study demonstrates that retinoic acid receptor-related orphan receptor C2 (RORC2), a key transcription factor in Th17 cell development, inhibits FOXP3 expression in human T cells. Although overexpression of RORC2 in naive T cells reduces levels of FOXP3, small interfering RNA-mediated knockdown of RORC2 enhances its expression. RORC2 mediates this inhibition at least partially by binding to two out of four ROR-responsive elements on the FOXP3 promoter. Knockdown of RORC2 promotes high FOXP3 levels and decreased expression of proinflammatory cytokines beta form of pro-IL-1, IL-6, IL-17A, IFN-gamma, and TNF-alpha in differentiating naive T cells, suggesting that the role of RORC2 in Th17 cell development involves not only induction of Th17-characteristic genes, but also suppression of regulatory T cell-specific programs. Together, this study identifies RORC2 as a polarizing factor in transcriptional cross-regulation and provides novel viewpoints on the control of immune tolerance versus effector immune responses.
Bodell, Lindsay P.; Brown, Tiffany A.; Keel, Pamela K.
2016-01-01
Weight suppression predicts the onset and maintenance of bulimic syndromes. Despite this finding, no study has examined psychological mechanisms contributing to these associations using a longitudinal design. Given societal pressures to be thin and an actual history of higher weight, it is possible that greater weight suppression contributes to increased fear of gaining weight and preoccupation with being thin, which increase vulnerability to eating disorders. The present study investigated whether greater drive for thinness mediates associations between weight suppression and bulimic symptoms over long-term follow-up. Participants were women (n = 1190) and men (n = 509) who completed self-report surveys in college and 10- and 20- years later. Higher weight suppression at baseline predicted higher bulimic symptoms at 20-year follow-up (p < .001), while accounting for demographic variables and baseline bulimic symptoms, body mass index, and drive for thinness. Increased drive for thinness at 10-year follow-up mediated this effect. Findings highlight the long-lasting effect of weight suppression on bulimic symptoms and suggest that preoccupation with thinness may help maintain this association. Future studies would benefit from incorporating other hypothesized consequences of weight suppression, including biological factors, into risk models. PMID:27808544
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandur, Santosh K.; Deorukhkar, Amit; Pandey, Manoj K.
2009-10-01
Purpose: Radiation therapy is an integral part of the preoperative treatment of rectal cancers. However, only a minority of patients achieve a complete pathologic response to therapy because of resistance of these tumors to radiation therapy. This resistance may be mediated by constitutively active pro-survival signaling pathways or by inducible/acquired mechanisms in response to radiation therapy. Simultaneous inhibition of these pathways can sensitize these tumors to radiation therapy. Methods and Materials: Human colorectal cancer cells were exposed to clinically relevant doses of gamma rays, and the mechanism of their radioresistance was investigated. We characterized the transcription factor nuclear factor-{kappa}B (NF-{kappa}B)more » activation as a mechanism of inducible radioresistance in colorectal cancer and used curcumin, the active ingredient in the yellow spice turmeric, to overcome this resistance. Results: Curcumin inhibited the proliferation and the post-irradiation clonogenic survival of multiple colorectal cancer cell lines. Radiation stimulated NF-{kappa}B activity in a dose- and time-dependent manner, whereas curcumin suppressed this radiation-induced NF-{kappa}B activation via inhibition of radiation-induced phosphorylation and degradation of inhibitor of {kappa}B alpha, inhibition of inhibitor of {kappa}B kinase activity, and inhibition of Akt phosphorylation. Curcumin also suppressed NF-{kappa}B-regulated gene products (Bcl-2, Bcl-x{sub L}, inhibitor of apoptosis protein-2, cyclooxygenase-2, and cyclin D1). Conclusions: Our results suggest that transient inducible NF-{kappa}B activation provides a prosurvival response to radiation that may account for development of radioresistance. Curcumin blocks this signaling pathway and potentiates the antitumor effects of radiation therapy.« less
Effects of Inteferons on Human B-cell Differentiation in vitro
Kim, Samyong; Stoetter, Hans; Heimpel, Herrman
1987-01-01
The effects of interferons (IFN) on in vitro differentiation of B-lymphocytes were studied. Peripheral lymphocytes from normal subjects were cultivated under polyclonal activator pokeweed mitogen (PWN) or Epstein-Barr virus (EBV) stimulation. The secreted Ig in the culture supernatants were measured for IgM by ELISA method. To determine the cellular level of IFN action T-cell enriched fraction (Te) or B-cell enriched fraction (Be) were preincubated with IFN prior to recombination culture. IFN had modulatory activities on Ig production; at low to moderately high doses (10–1000 U/ml of IFN-alpha or 12–120 U/ml of IFN-gamma) stimulating when IFN was added until 48 hr after the start of the culture, while after 72 hr from culture start IFN suppressed Ig production. Preincubation of Be-cells with moderately high doses of IFN (120 U/ml of IFN-gamma or 1000 U/ml of IFN-alpha) prior to PWM-stimulation suppressed Ig production. Likewise, in EBV-stimulated culture, high dose IFN suppressed Ig production. But low dose of IFN enhanced ig production in EBV-stimulated culture. Preincubation of Te-cells with IFN prior to PWM-stimulation with Be-cells enhanced the Ig production. The T-cell subset analysis at the end of these culture showed enhanced ratio of T-helper cell relative to T-suppressor cells, suggesting increased T-helper cell proliferation after incubation with IFN. Thus, it is concluded that IFNs have modulatory activities on B-cell differentiation. The mechanism seems to be direct effects on B-cells (in PWM and EBV system) as well as through T-helper cell mediation (PWM system). The IFN-gamma showed more potent (2-to 6-fold) stimulatory activities than IFN-alpha. PMID:2484953
Pur-alpha regulates cytoplasmic stress granule dynamics and ameliorates FUS toxicity
Daigle, J Gavin; Krishnamurthy, Karthik; Ramesh, Nandini; Casci, Ian; Monaghan, John; McAvoy, Kevin; Godfrey, Earl W; Daniel, Dianne C.; Johnson, Edward M.; Monahan, Zach; Shewmaker, Frank; Pasinelli, Piera; Pandey, Udai Bhan
2016-01-01
Amyotrophic lateral Sclerosis is characterized by progressive loss of motor neurons in the brain and spinal cord. Mutations in several genes, including FUS, TDP43, Matrin 3, hnRNPA2 and other RNA binding proteins, have been linked to ALS pathology. Recently, Pur-alpha a DNA/RNA binding protein was found to bind to C9orf72 repeat expansions and could possibly play a role in the pathogenesis of ALS. When overexpressed, Pur-alpha mitigates toxicities associated with Fragile X tumor ataxia syndrome (FXTAS) and C9orf72 repeat expansion diseases in Drosophila and mammalian cell culture models. However, the function of Pur-alpha in regulating ALS pathogenesis has not been fully understood. We identified Pur-alpha as a novel component of cytoplasmic stress granules (SGs) in ALS patient cells carrying disease-causing mutations in FUS. When cells were challenged with stress, we observed that Pur-alpha co-localized with mutant FUS in ALS patient cells and became trapped in constitutive SGs. We also found that FUS physically interacted with Pur-alpha in mammalian neuronal cells. Interestingly, shRNA mediated knock down of endogenous Pur-alpha significantly reduced formation of cytoplasmic stress granules in mammalian cells suggesting that Pur-alpha is essential for the formation of SGs. Furthermore, ectopic expression of Pur-alpha blocked cytoplasmic mislocalization of mutant FUS and strongly suppressed toxicity associated with mutant FUS expression in primary motor neurons. Our data emphasizes the importance of stress granules in ALS pathogenesis and identifies Pur-alpha as a novel regulator of SG dynamics. PMID:26728149
RGS16 inhibits breast cancer cell growth by mitigating phosphatidylinositol 3-kinase signaling.
Liang, Genqing; Bansal, Geetanjali; Xie, Zhihui; Druey, Kirk M
2009-08-07
Aberrant activity of the phosphatidylinositol 3-kinase (PI3K) pathway supports growth of many tumors including those of breast, lung, and prostate. Resistance of breast cancer cells to targeted chemotherapies including tyrosine kinase inhibitors (TKI) has been linked to persistent PI3K activity, which may in part be due to increased membrane expression of epidermal growth factor (EGF) receptors (HER2 and HER3). Recently we found that proteins of the RGS (regulator of G protein signaling) family suppress PI3K activity downstream of the receptor by sequestering its p85alpha subunit from signaling complexes. Because a substantial percentage of breast tumors have RGS16 mutations and reduced RGS16 protein expression, we investigated the link between regulation of PI3K activity by RGS16 and breast cancer cell growth. RGS16 overexpression in MCF7 breast cancer cells inhibited EGF-induced proliferation and Akt phosphorylation, whereas shRNA-mediated extinction of RGS16 augmented cell growth and resistance to TKI treatment. Exposure to TKI also reduced RGS16 expression in MCF7 and BT474 cell lines. RGS16 bound the amino-terminal SH2 and inter-SH2 domains of p85alpha and inhibited its interaction with the EGF receptor-associated adapter protein Gab1. These results suggest that the loss of RGS16 in some breast tumors enhances PI3K signaling elicited by growth factors and thereby promotes proliferation and TKI evasion downstream of HER activation.
Broer, Johanna; Behnke, Bert
2002-04-01
Dendritic cells are important antigen presenting cells that play a role in the initiation of rheumatoid arthritis (RA). The stinging nettle leaf extract IDS 30 (Hox alpha) has been recommended for adjuvant therapy of rheumatic diseases. We investigated the immunomodulating effect of IDS 30 extract on the maturation of hematopoietic dendritic cells. Human dendritic cells were generated from peripheral blood mononuclear cells cultured in granulocyte macrophage-colony stimulating factor and interleukin 4 (IL-4). Dendritic cell maturation was induced by keyhole limped hemocyanin (KLH). Dendritic cell phenotype was characterized by flow cytometric analysis; dendritic cell cytokine production was measured by ELISA. The ability of dendritic cells to activate naive autologous T cells was evaluated by mixed leukocyte reaction. IDS 30 prevented the maturation of dendritic cells, but did not affect their viability. IDS 30 reduced the expression of CD83 and CD86. It increased the expression of chemokine receptor 5 and CD36 in a dose dependent manner. The secretion of tumor necrosis factor-alpha was reduced. Application of IDS 30 to dendritic cells in culture caused a high endocytosis of dextran and a low capacity to stimulate T cell proliferation. Our in vitro results showed the suppressive effect of IDS 30 on the maturation of human myeloid dendritic cells, leading to reduced induction of primary T cell responses. This may contribute to the therapeutic effect of IDS 30 on T cell mediated inflammatory diseases like RA.
Artificial ligand binding within the HIF2[alpha] PAS-B domain of the HIF2 transcription factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheuermann, Thomas H.; Tomchick, Diana R.; Machius, Mischa
2009-05-12
The hypoxia-inducible factor (HIF) basic helix-loop-helix Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim (bHLH-PAS) transcription factors are master regulators of the conserved molecular mechanism by which metazoans sense and respond to reductions in local oxygen concentrations. In humans, HIF is critically important for the sustained growth and metastasis of solid tumors. Here, we describe crystal structures of the heterodimer formed by the C-terminal PAS domains from the HIF2{alpha} and ARNT subunits of the HIF2 transcription factor, both in the absence and presence of an artificial ligand. Unexpectedly, the HIF2{alpha} PAS-B domain contains a large internal cavity that accommodates ligands identified frommore » a small-molecule screen. Binding one of these ligands to HIF2{alpha} PAS-B modulates the affinity of the HIF2{alpha}:ARNT PAS-B heterodimer in vitro. Given the essential role of PAS domains in forming active HIF heterodimers, these results suggest a presently uncharacterized ligand-mediated mechanism for regulating HIF2 activity in endogenous and clinical settings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Demin; Li, Hongji; Zhou, Bo
2012-06-15
Highlights: Black-Right-Pointing-Pointer Conjugated linoleic acid supplementation suppresses perilipin1 in epididymal fat. Black-Right-Pointing-Pointer Conjugated linoleic acid inhibits promoter activity of perilipin1 in 3T3-L1 cells. Black-Right-Pointing-Pointer Conjugated linoleic acids elevate basal but blunt hormone-stimulated lipolysis. -- Abstract: Perilipin1, a coat protein of lipid droplet, plays a key role in adipocyte lipolysis and fat formation of adipose tissues. However, it is not clear how the expression of perilipin1 is affected in the decreased white adipose tissues (WAT) of mice treated with dietary supplement of conjugated linoleic acids (CLA). Here we obtained lipodystrophic mice by dietary administration of CLA which exhibited reduced epididymal (EPI)more » WAT, aberrant adipocytes and decreased expression of leptin in this tissue. We found both transcription and translation of perilipin1 was suppressed significantly in EPI WAT of CLA-treated mice compared to that of control mice. The gene expression of negative regulator tumor necrosis factor {alpha} (TNF{alpha}) and the positive regulator Peroxisome Proliferator-Activated Receptor-{gamma} (PPAR{gamma}) of perilipin1 was up-regulated and down-regulated, respectively. In cultured 3T3-L1 cells the promoter activity of perilipin1 was dramatically inhibited in the presence of CLA. Using ex vivo experiment we found that the basal lipolysis was elevated but the hormone-stimulated lipolysis blunted in adipose explants of CLA-treated mice compared to that of control mice, suggesting that the reduction of perilipin1 in white adipose tissues may at least in part contribute to CLA-mediated alternation of lipolysis of WAT.« less
Karakan, Tarkan; Kerem, Mustafa; Cindoruk, Mehmet; Engin, Doruk; Alper, Murat; Akın, Okan
2013-01-01
Peroxisome proliferators-activated receptor alpha activation modulates cholesterol metabolism and suppresses bile acid synthesis. The trefoil factor family comprises mucin-associated proteins that increase the viscosity of mucins and help protect epithelial linings from insults. We evaluated the effect of short-term administration of fenofibrate, a peroxisome proliferators activated receptor alpha agonist, on trefoil factor family-3 expression, degree of apoptosis, generation of free radicals, and levels of proinflammatory cytokines in the liver tissue of bile duct-ligated rats. Forty male Wistar rats were randomly divided into four groups: 1 = sham operated, 2 = bile duct ligation, 3 = bile duct-ligated + vehicle (gum Arabic), and 4 = bile duct-ligated + fenofibrate (100 mg/kg/day). All rats were sacrificed on the 7 th day after obtaining blood samples and liver tissue. Liver function tests, tumor necrosis factor-alpha and interleukin 1 beta in serum, and trefoil factor family-3 mRNA expression, degree of apoptosis (TUNEL) and tissue malondialdehyde (malondialdehyde, end-product of lipid peroxidation by reactive oxygen species) in liver tissue were evaluated. Fenofibrate administration significantly reduced serum total bilirubin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, and tumor necrosis factor-alpha and interleukin-1β levels. Apoptosis and malondialdehyde were significantly reduced in the fenofibrate group. Trefoil factor family-3 expression increased with fenofibrate treatment in bile duct-ligated rats. The peroxisome proliferators-activated receptor alpha agonist fenofibrate significantly increased trefoil factor family-3 expression and decreased apoptosis and lipid peroxidation in the liver and attenuated serum levels of proinflammatory cytokines in bile duct-ligated rats. Further studies are needed to determine the protective role of fenofibrate in human cholestatic disorders.
Peng, Hui-Ling; Huang, Wen-Chung; Cheng, Shu-Chen; Liou, Chian-Jiun
2018-07-01
Fisetin, a flavone that can be isolated from fruits and vegetables, has anti-tumor and anti-oxidative properties and ameliorates airway hyperresponsiveness in asthmatic mice. This study investigated whether fisetin can suppress the expression of inflammatory mediators and intercellular adhesion molecule 1 (ICAM-1) in A549 human lung epithelial cells that were stimulated with interleukin-1β (IL-1β) to induce inflammatory responses. A549 cells were treated with fisetin (3-30 μM) and then with IL-1β. Fisetin significantly inhibited COX-2 expression and reduced prostaglandin E 2 production, and it suppressed the levels of IL-8, CCL5, monocyte chemotactic protein 1, tumor necrosis factor α, and IL-6. Fisetin also significantly attenuated the expression of chemokine and inflammatory cytokine genes and decreased the expression of ICAM-1, which mediates THP-1 monocyte adhesion to inflammatory A549 cells. Fisetin decreased the translocation of nuclear transcription factor kappa-B (NF-κB) subunit p65 into the nucleus and inhibited the phosphorylation of proteins in the ERK1/2 pathway. Co-treatment of IL-1β-stimulated A549 cells with ERK1/2 inhibitors plus fisetin reduced ICAM-1 expression. Furthermore, fisetin significantly increased the effects of the protective antioxidant pathway by promoting the expression of nuclear factor erythroid-2-related factor-2 and heme oxygenase 1. Taken together, these data suggest that fisetin has anti-inflammatory effects and that it suppresses the expression of chemokines, inflammatory cytokines, and ICAM-1 by suppressing the NF-κB and ERK1/2 signaling pathways in IL-1β-stimulated human lung epithelial A549 cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Vermes, C; Roebuck, K A; Chandrasekaran, R; Dobai, J G; Jacobs, J J; Glant, T T
2000-09-01
Particulate wear debris generated mechanically from prosthetic materials is phagocytosed by a variety of cell types within the periprosthetic space including osteoblasts, which cells with an altered function may contribute to periprosthetic osteolysis. Exposure of osteoblast-like osteosarcoma cells or bone marrow-derived primary osteoblasts to either metallic or polymeric particles of phagocytosable sizes resulted in a marked decrease in the steady-state messenger RNA (mRNA) levels of procollagen alpha1[I] and procollagen alpha1[III]. In contrast, no significant effect was observed for the osteoblast-specific genes, such as osteonectin and osteocalcin (OC). In kinetic studies, particles once phagocytosed, maintained a significant suppressive effect on collagen gene expression and type I collagen synthesis for up to five passages. Large particles of a size that cannot be phagocytosed also down-regulated collagen gene expression suggesting that an initial contact between cells and particles can generate gene responsive signals independently of the phagocytosis process. Concerning such signaling, titanium particles rapidly increased protein tyrosine phosphorylation and nuclear transcription factor kappaB (NF-kappaB) binding activity before the phagocytosis of particles. Protein tyrosine kinase (PTK) inhibitors such as genistein and the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) significantly reduced the suppressive effect of titanium on collagen gene expression suggesting particles suppress collagen gene expression through the NF-kappaB signaling pathway. These results provide a mechanism by which particulate wear debris can antagonize the transcription of the procollagen alpha1[I] gene in osteoblasts, which may contribute to reduced bone formation and progressive periprosthetic osteolysis.
Stefanoni, Giovanni; Melchionda, Laura; Riva, Chiara; Brighina, Laura
2013-01-01
Dysfunctions of chaperone-mediated autophagy (CMA), the main catabolic pathway for alpha-synuclein, have been linked to the pathogenesis of Parkinson's disease (PD). Since till now there is limited information on how PD-related toxins may affect CMA, in this study we explored the effect of mitochondrial complex I inhibitor rotenone on CMA substrates, alpha-synuclein and MEF2D, and effectors, lamp2A and hsc70, in a human dopaminergic neuroblastoma SH-SY5Y cell line. Rotenone induced an upregulation of alpha-synuclein and MEF2D protein levels through the stimulation of their de novo synthesis rather than through a reduction of their CMA-mediated degradation. Moreover, increased MEF2D transcription resulted in higher nuclear protein levels that exert a protective role against mitochondrial dysfunction and oxidative stress. These results were compared with those obtained after lysosome inhibition with ammonium chloride. As expected, this toxin induced the cytosolic accumulation of both alpha-synuclein and MEF2D proteins, as the result of the inhibition of their lysosome-mediated degradation, while, differently from rotenone, ammonium chloride decreased MEF2D nuclear levels through the downregulation of its transcription, thus reducing its protective function. These results highlight that rotenone affects alpha-synuclein and MEF2D protein levels through a mechanism independent from lysosomal degradation inhibition. PMID:23984410
Sugano, M; Tsuchida, K; Makino, N
2000-06-16
High-density lipoproteins (HDL) levels have been shown to be inversely correlated with coronary heart disease, but the mechanisms of the direct protective effect of HDL on endothelial cells are not fully understood. The apoptosis of endothelial cells induced by cytokines and/or oxidized low-density lipoproteins, etc. may provide a mechanistic clue to the "response-to-injury" hypothesis of atherogenesis. Here we report that HDL prevent the apoptosis of human umbilical venous endothelial cells (HUVECs) induced by tumor necrosis factor-alpha (TNF-alpha) via an inhibition of CPP32-like protease activity. The incubation of HUVECs with TNF-alpha significantly increased the CPP32-like protease activity, and induced apoptosis. Preincubation of HUVECs with HDL before incubation with TNF-alpha significantly suppressed the increase in the CPP32-like protease activity, preventing apoptosis in a concentration-dependent manner. These results suggest that HDL prevent the suicide pathway leading to apoptosis of endothelial cells by decreasing the CPP32-like protease activity and that HDL thus play a protective role against the "response-to-injury" hypothesis of atherogenesis. Copyright 2000 Academic Press.
Inhibition of HIF-1{alpha} activity by BP-1 ameliorates adjuvant induced arthritis in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shankar, J.; Thippegowda, P.B., E-mail: btprabha@uic.edu; Kanum, S.A.
Rheumatoid arthritis (RA) is a chronic inflammatory, angiogenic disease. Inflamed synovitis is a hallmark of RA which is hypoxic in nature. Vascular endothelial growth factor (VEGF), one of the key regulators of angiogenesis, is overexpressed in the pathogenesis of RA. VEGF expression is regulated by hypoxia-inducible factor-1{alpha} (HIF-1{alpha}), a master regulator of homeostasis which plays a pivotal role in hypoxia-induced angiogenesis. In this study we show that synthetic benzophenone analogue, 2-benzoyl-phenoxy acetamide (BP-1) can act as a novel anti-arthritic agent in an experimental adjuvant induced arthritis (AIA) rat model by targeting VEGF and HIF-1{alpha}. BP-1 administered hypoxic endothelial cells andmore » arthritic animals clearly showed down regulation of VEGF expression. Further, BP-1 inhibits nuclear translocation of HIF-1{alpha}, which in turn suppresses transcription of the VEGF gene. These results suggest a further possible clinical application of the BP-1 derivative as an anti-arthritic agent in association with conventional chemotherapeutic agents.« less
Camussi, G; Lupia, E
1998-05-01
Tumour necrosis factor-alpha (TNF alpha) is a pleiotropic cytokine which is overproduced in rheumatoid joints primarily by macrophages. This cytokine has a potential pathogenic role in the establishment of rheumatoid synovitis, in the formation of pannus tissue and in the process of joint destruction, as it increases synoviocyte proliferation and triggers a cascade of secondary mediators involved in the recruitment of inflammatory cells, in neo-angiogenesis and in the process of joint destruction. These findings made TNF alpha a potential target for anticytokine therapy. Experimental studies have shown that TNF alpha blockade by monoclonal antibodies or by soluble TNF receptor reduced the extent and severity of arthritis both in collagen-induced arthritis in mice and in transgenic mice overexpressing TNF alpha, which develop a rheumatoid-like destructive arthritis. Clinical studies based on the use of anti-TNF alpha antibodies or soluble receptors have suggested a potential beneficial effect of TNF alpha-blocking therapy in inducing amelioration of inflammatory parameters in patients with long-standing active disease. In these patients anti-TNF alpha therapy induces a rapid improvement in multiple clinical assessment of disease activity, including morning stiffness, pain score, Ritchie articular index and swollen joint count. The clinical benefits are associated with an improvement in some serological parameters, such as C-reactive protein and serum amyloid-A, erythrocyte sedimentation rate, blood cytokine levels, haemoglobin, white cells and platelet counts, rheumatoid factor titre and histological features of the synovium. However, it remains to be determined whether anti-TNF alpha therapy may be useful in the long term management of rheumatoid patients and in the achievement of better outcomes of disease. Because TNF alpha production also serves a specific function in host defence against infections and tumours, the adverse effects of long term anti-TNF alpha therapy must be carefully evaluated. In addition, targeting a single mediator may be not sufficient to block the complex inflammatory response in rheumatoid arthritis. For these reasons therapeutic strategies aimed at concomitantly interfering with multiple pathogenic pathways are currently under investigation.
Patel, Sachin; Kingsley, Philip J; Mackie, Ken; Marnett, Lawrence J; Winder, Danny G
2009-12-01
Psychosocial stress is a risk factor for development and exacerbation of neuropsychiatric illness. Repeated stress causes biochemical adaptations in endocannabinoid (eCB) signaling that contribute to stress-response habituation, however, the synaptic correlates of these adaptations have not been examined. Here, we show that the synthetic enzyme for the eCB 2-arachidonoylglycerol (2-AG), diacylglycerol (DAG) lipase alpha, is heterogeneously expressed in the amygdala, and that levels of 2-AG and precursor DAGs are increased in the basolateral amygdala (BLA) after 10 days, but not 1 day, of restraint stress. In contrast, arachidonic acid was decreased after both 1 and 10 days of restraint stress. To examine the synaptic correlates of these alterations in 2-AG metabolism, we used whole-cell electrophysiology to determine the effects of restraint stress on depolarization-induced suppression of inhibition (DSI) in the BLA. A single restraint stress exposure did not alter DSI compared with control mice. However, after 10 days of restraint stress, DSI duration, but not magnitude, was significantly prolonged. Inhibition of 2-AG degradation with MAFP also prolonged DSI duration; the effects of repeated restraint stress and MAFP were mutually occlusive. These data indicate that exposure to repeated, but not acute, stress produces neuroadaptations that confer BLA neurons with an enhanced capacity to elevate 2-AG content and engage in 2-AG-mediated short-term retrograde synaptic signaling. We suggest stress-induced enhancement of eCB-mediated suppression of inhibitory transmission in the BLA could contribute to affective dysregulation associated with chronic stress.
Immune Regulatory Properties of CD117pos Amniotic Fluid Stem Cells Vary According to Gestational Age
Di Trapani, Mariano; Bassi, Giulio; Fontana, Emanuela; Giacomello, Luca; Pozzobon, Michela; Guillot, Pascale V.; De Coppi, Paolo
2015-01-01
Amniotic Fluid Stem (AFS) cells are broadly multipotent fetal stem cells derived from the positive selection and ex vivo expansion of amniotic fluid CD117/c-kitpos cells. Considering the differentiation potential in vitro toward cell lineages belonging to the three germ layers, AFS cells have raised great interest as a new therapeutic tool, but their immune properties still need to be assessed. We analyzed the in vitro immunological properties of AFS cells from different gestational age in coculture with T, B, and natural killer (NK) cells. Nonactivated (resting) first trimester-AFS cells showed lower expression of HLA class-I molecules and NK-activating ligands than second and third trimester-AFS cells, whose features were associated with lower sensitivity to NK cell-mediated lysis. Nevertheless, inflammatory priming with interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) enhanced resistance of all AFS cell types to NK cytotoxicity. AFS cells modulated lymphocyte proliferation in a different manner according to gestational age: first trimester-AFS cells significantly inhibited T and NK cell proliferation, while second and third trimester-AFS cells were less efficient. In addition, only inflammatory-primed second trimester-AFS cells could suppress B cell proliferation, which was not affected by the first and third trimester-AFS cells. Indolamine 2,3 dioxygenase pathway was significantly involved only in T cell suppression mediated by second and third trimester-AFS cells. Overall, this study shows a number of significant quantitative differences among AFS cells of different gestational age that have to be considered in view of their clinical application. PMID:25072397
Kim, Jae-Sung; Ellman, Michael B.; Yan, Dongyao; An, Howard S.; Kc, Ranjan; Li, Xin; Chen, Di; Xiao, Guozhi; Cs-Zabo, Gabriella; Hoskin, David W.; Buechter, D.D.; Van Wijnen, Andre J.; Im, Hee-Jeong
2013-01-01
The catabolic cytokine interleukin-1 (IL-1) and endotoxin lipopolysaccharide (LPS) are well-known inflammatory mediators involved in degenerative disc disease, and inhibitors of IL-1 and LPS may potentially be used to slow or prevent disc degeneration in vivo. Here, we elucidate the striking anti-catabolic and anti-inflammatory effects of bovine lactoferricin (LfcinB) in the intervertebral disc (IVD) via antagonism of both IL-1 and LPS-mediated catabolic activity using in vitro and ex vivo analyses. Specifically, we demonstrate the biological counteraction of LfcinB against IL-1 and LPS-mediated proteoglycan (PG) depletion, matrix-degrading enzyme production and enzyme activity in long-term (alginate beads) and short-term (monolayer) culture models using bovine and human nucleus pulposus (NP) cells. LfcinB significantly attenuates the IL-1 and LPS-mediated suppression of PG production and synthesis, and thus restores PG accumulation and pericellular matrix formation. Simultaneously, LfcinB antagonizes catabolic factor mediated induction of multiple cartilage-degrading enzymes, including MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, in bovine NP cells at both mRNA and protein levels. LfcinB also suppresses the catabolic factor-induced stimulation of oxidative and inflammatory factors such as iNOS, IL-6, and toll-like receptor-2 (TLR-2) and TLR-4. Finally, the ability of LfcinB to antagonize IL-1 and LPS-mediated suppression of PG is upheld in an en bloc intradiscal microinjection model followed by ex vivo organ culture using both mouse and rabbit IVD tissue, suggesting a potential therapeutic benefit of LfcinB on degenerative disc disease in the future. PMID:23460134
Kim, Jae-Sung; Ellman, Michael B; Yan, Dongyao; An, Howard S; Kc, Ranjan; Li, Xin; Chen, Di; Xiao, Guozhi; Cs-Szabo, Gabriella; Hoskin, David W; Buechter, Doug D; Van Wijnen, Andre J; Im, Hee-Jeong
2013-09-01
The catabolic cytokine interleukin-1 (IL-1) and endotoxin lipopolysaccharide (LPS) are well-known inflammatory mediators involved in degenerative disc disease, and inhibitors of IL-1 and LPS may potentially be used to slow or prevent disc degeneration in vivo. Here, we elucidate the striking anti-catabolic and anti-inflammatory effects of bovine lactoferricin (LfcinB) in the intervertebral disc (IVD) via antagonism of both IL-1 and LPS-mediated catabolic activity using in vitro and ex vivo analyses. Specifically, we demonstrate the biological counteraction of LfcinB against IL-1 and LPS-mediated proteoglycan (PG) depletion, matrix-degrading enzyme production, and enzyme activity in long-term (alginate beads) and short-term (monolayer) culture models using bovine and human nucleus pulposus (NP) cells. LfcinB significantly attenuates the IL-1 and LPS-mediated suppression of PG production and synthesis, and thus restores PG accumulation and pericellular matrix formation. Simultaneously, LfcinB antagonizes catabolic factor mediated induction of multiple cartilage-degrading enzymes, including MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, in bovine NP cells at both mRNA and protein levels. LfcinB also suppresses the catabolic factor-induced stimulation of oxidative and inflammatory factors such as iNOS, IL-6, and toll-like receptor-2 (TLR-2) and TLR-4. Finally, the ability of LfcinB to antagonize IL-1 and LPS-mediated suppression of PG is upheld in an en bloc intradiscal microinjection model followed by ex vivo organ culture using both mouse and rabbit IVD tissue, suggesting a potential therapeutic benefit of LfcinB on degenerative disc disease in the future. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamagishi, Nobuyuki; Ishihara, Keiichi; Saito, Youhei
2006-10-15
Hsp105 (Hsp105{alpha} and Hsp105{beta}), major heat shock proteins in mammalian cells, belong to a subgroup of the HSP70 family, HSP105/110. Previously, we have shown that Hsp105{alpha} has completely different effects on stress-induced apoptosis depending on cell type. However, the molecular mechanisms by which Hsp105{alpha} regulates stress-induced apoptosis are not fully understood. Here, we established HeLa cells that overexpress either Hsp105{alpha} or Hsp105{beta} by removing doxycycline and examined how Hsp105 modifies staurosporine (STS)-induced apoptosis in HeLa cells. Apoptotic features such as the externalization of phosphatidylserine on the plasma membrane and nuclear morphological changes were induced by the treatment with STS, andmore » the STS-induced apoptosis was suppressed by overexpression of Hsp105{alpha} or Hsp105{beta}. In addition, we found that overexpression of Hsp105{alpha} or Hsp105{beta} suppressed the activation of caspase-3 and caspase-9 by preventing the release of cytochrome c from mitochondria. Furthermore, the translocation of Bax to mitochondria, which results in the release of cytochrome c from the mitochondria, was also suppressed by the overexpression of Hsp105{alpha} or Hsp105{beta}. Thus, it is suggested that Hsp105 suppresses the stress-induced apoptosis at its initial step, the translocation of Bax to mitochondria in HeLa cells.« less
Anti-inflammatory effect of resveratrol on TNF-{alpha}-induced MCP-1 expression in adipocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Jian; Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Science, Jiangsu Province Diabetes Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029; Yong Wei
2008-05-02
Chronic low-grade inflammation characterized by adipose tissue macrophage accumulation and abnormal cytokine production is a key feature of obesity and type 2 diabetes. Adipose-tissue-derived monocyte chemoattractant protein (MCP)-1, induced by cytokines, has been shown to play an essential role in the early events during macrophage infiltration into adipose tissue. In this study we investigated the effects of resveratrol upon both tumor necrosis factor (TNF)-{alpha}-induced MCP-1 gene expression and its underlying signaling pathways in 3T3-L1 adipoctyes. Resveratrol was found to inhibit TNF-{alpha}-induced MCP-1 secretion and gene transcription, as well as promoter activity, which based on down-regulation of TNF-{alpha}-induced MCP-1 transcription. Nuclearmore » factor (NF)-{kappa}B was determined to play a major role in the TNF-{alpha}-induced MCP-1 expression. Further analysis showed that resveratrol inhibited DNA binding activity of the NF-{kappa}B complex and subsequently suppressed NF-{kappa}B transcriptional activity in TNF-{alpha}-stimulated cells. Finally, the inhibition of MCP-1 may represent a novel mechanism of resveratrol in preventing obesity-related pathologies.« less
Mugheddu, Cristina; Atzori, Laura; Del Piano, Maria; Lappi, Astrid; Pau, Monica; Murgia, Severino; Zucca, Ignazio; Rongioletti, Franco
2017-09-01
We report the first successful treatment of noninfectious uveitis with ustekinumab in a patient with severe concomitant psoriasis and psoriatic arthritis who failed to respond to conventional immune suppressants and with contraindications to tumor necrosis factor alpha inhibitors. © 2017 Wiley Periodicals, Inc.
Alpha-1 Antitrypsin Attenuates M1 Microglia-Mediated Neuroinflammation in Retinal Degeneration
Zhou, Tian; Huang, Zijing; Zhu, Xiaowei; Sun, Xiaowei; Liu, Yan; Cheng, Bing; Li, Mei; Liu, Yizhi; He, Chang; Liu, Xialin
2018-01-01
Neurodegenerative diseases are a set of disorders characterized by progressive neuronal death and are associated with microglia-mediated neuroinflammation. Recently, neuroinflammation is proposed as a promising therapeutic target for many neurodegenerative diseases. Alpha-1 antitrypsin (AAT) is recognized as a novel immunomodulatory agent in autoimmune diseases and transplantation, however, its impact on neuroinflammation and neurodegeneration remains unknown. This study aims to explore the effects of AAT on microglia-mediated neuroinflammation and retinal degeneration in rd1 mouse model. We found reduced expression of AAT in rd1 retina, and AAT supplement exhibited certain protective effect on retinal degeneration, presenting with increased amount of photoreceptor nuclei, and amplified wave amplitudes in electroretinogram analysis. Of note, AAT shifted microglia phenotype from pro-inflammatory M1 (CD16/CD32+, iNOS+) to anti-inflammatory M2 (CD206+, Arg1+) both in vivo and in vitro, underscoring the concept of immunomodulation on microglia polarization by AAT during neurodegeneration. Furthermore, AAT suppressed the activation of STAT1, promoted the expression of IRF4 while inhibited IRF8 expression, indicating the involvement of these signaling pathways in AAT immunomodulation. Collectively, our data provided evidence for a novel protective role of AAT through immunomodulation on microglia polarization. Attenuating neuroinflammation by AAT may be beneficial to retard neurodegeneration in rd1 mice. PMID:29899745
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanno, Yuichiro, E-mail: ykanno@phar.toho-u.ac.jp; Serikawa, Takafumi; Inajima, Jun
Highlights: Black-Right-Pointing-Pointer DP97 interacts with nuclear receptor CAR. Black-Right-Pointing-Pointer DP97 enhances CAR-mediated transcriptional activation. Black-Right-Pointing-Pointer DP97 synergistically enhances transactivity of CAR by the co-expression of SRC-1 or PGC1{alpha}. Black-Right-Pointing-Pointer DP97 is a gene-selective co-activator for hCAR. -- Abstract: The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that DP97, a member of the DEAD box DNA/RNA helicase protein family, is a novel CAR-interacting protein. Using HepG2 cells expressing human CAR in the presence of tetracycline, we showed that knockdown of DP97 with smallmore » interfering RNAs suppressed tetracycline-inducible mRNA expression of CYP2B6 and UGT1A1 but not CYP3A4. Thus, DP97 was found to be a gene (or promoter)-selective co-activator for hCAR. DP97-mediated CAR transactivation was synergistically enhanced by the co-expression of SRC-1 or PGC1{alpha}, therefore it might act as mediator between hCAR and appropriate co-activators.« less
Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells.
Ruan, H; Zhan, Y Y; Hou, J; Xu, B; Chen, B; Tian, Y; Wu, D; Zhao, Y; Zhang, Y; Chen, X; Mi, P; Zhang, L; Zhang, S; Wang, X; Cao, H; Zhang, W; Wang, H; Li, H; Su, Y; Zhang, X K; Hu, T
2017-12-14
Berberine, an isoquinoline alkaloid, is a traditional oriental medicine used to treat diarrhea and gastroenteritis. Recently, we reported that it could inhibit the growth of intestinal polyp in animals and in patients with the familial adenomatous polyposis by downregulating β-catenin signaling. However, the intracellular target mediating the effects of berberine remains elusive. Here, we provide evidence that berberine inhibits β-catenin function via directly binding to a unique region comprising residues Gln275, Arg316 and Arg371 in nuclear receptor retinoid X receptor alpha (RXRα), where berberine concomitantly binding to and synergistically activating RXRα with 9-cis-retinoic acid (9-cis-RA), a natural ligand binding to the classical ligand-binding pocket of RXRα. Berberine binding promotes RXRα interaction with nuclear β-catenin, leading to c-Cbl mediated degradation of β-catenin, and consequently inhibits the proliferation of colon cancer cells. Furthermore, berberine suppresses the growth of human colon carcinoma xenograft in nude mice in an RXRα-dependent manner. Together, our study not only identifies RXRα as a direct protein target for berberine but also dissects their binding mode and validates that berberine indeed suppresses β-catenin signaling and cell growth in colon cancer via binding RXRα, which provide new strategies for the design of new RXRα-based antitumor agents and drug combinations.
Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells
Ruan, H; Zhan, Y Y; Hou, J; Xu, B; Chen, B; Tian, Y; Wu, D; Zhao, Y; Zhang, Y; Chen, X; Mi, P; Zhang, L; Zhang, S; Wang, X; Cao, H; Zhang, W; Wang, H; Li, H; Su, Y; Zhang, X K; Hu, T
2017-01-01
Berberine, an isoquinoline alkaloid, is a traditional oriental medicine used to treat diarrhea and gastroenteritis. Recently, we reported that it could inhibit the growth of intestinal polyp in animals and in patients with the familial adenomatous polyposis by downregulating β-catenin signaling. However, the intracellular target mediating the effects of berberine remains elusive. Here, we provide evidence that berberine inhibits β-catenin function via directly binding to a unique region comprising residues Gln275, Arg316 and Arg371 in nuclear receptor retinoid X receptor alpha (RXRα), where berberine concomitantly binding to and synergistically activating RXRα with 9-cis-retinoic acid (9-cis-RA), a natural ligand binding to the classical ligand-binding pocket of RXRα. Berberine binding promotes RXRα interaction with nuclear β-catenin, leading to c-Cbl mediated degradation of β-catenin, and consequently inhibits the proliferation of colon cancer cells. Furthermore, berberine suppresses the growth of human colon carcinoma xenograft in nude mice in an RXRα-dependent manner. Together, our study not only identifies RXRα as a direct protein target for berberine but also dissects their binding mode and validates that berberine indeed suppresses β-catenin signaling and cell growth in colon cancer via binding RXRα, which provide new strategies for the design of new RXRα-based antitumor agents and drug combinations. PMID:28846104
Walk, Ryan M; Elliott, Steven T; Blanco, Felix C; Snyder, Jason A; Jacobi, Ashley M; Rose, Scott D; Behlke, Mark A; Salem, Aliasger K; Vukmanovic, Stanislav; Sandler, Anthony D
2012-01-01
Toll-like receptor (TLR) agonists represent potentially useful cancer vaccine adjuvants in their ability to stimulate antigen-presenting cells (APCs) and subsequently amplify the cytotoxic T-cell response. The purpose of this study was to characterize APC responses to TLR activation and to determine the subsequent effect on lymphocyte activation. We exposed murine primary bone marrow-derived macrophages to increasing concentrations of agonists to TLRs 2, 3, 4, and 9. This resulted in a dose-dependent increase in production of not only tumor necrosis factor–alpha (TNF-α), a surrogate marker of the proinflammatory response, but also interleukin 10 (IL-10), a well-described inhibitory cytokine. Importantly, IL-10 secretion was not induced by low concentrations of TLR agonists that readily produced TNF-α. We subsequently stimulated lymphocytes with anti-CD3 antibody in the presence of media from macrophages activated with higher doses of TLR agonists and observed suppression of interferon gamma release. Use of both IL-10 knockout macrophages and IL-10 small-interfering RNA (siRNA) ablated this suppressive effect. Finally, IL-10 siRNA was successfully used to suppress CpG-induced IL-10 production in vivo. We conclude that TLR-mediated APC stimulation can induce a paradoxical inhibitory effect on T-cell activation mediated by IL-10. PMID:27471682
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Kui Lea; Ko, Na Young; Lee, Jun Ho
2011-12-15
4-Chlorotetrazolo[1,5-a]quinoxaline is a quinoxaline derivative. We aimed to study the effects of 4-chlorotetrazolo[1,5-a]quinoxaline on activation of mast cells in vitro and in mice. 4-Chlorotetrazolo[1,5-a]quinoxaline reversibly inhibited degranulation of mast cells in a dose-dependent manner, and also suppressed the expression and secretion of TNF-{alpha} and IL-4 in mast cells. Mechanistically, 4-chlorotetrazolo[1,5-a]quinoxaline inhibited activating phosphorylation of Syk and LAT, which are crucial for early Fc{epsilon}RI-mediated signaling events, as well as Akt and MAP kinases, which play essential roles in the production of various pro-inflammatory cytokines in mast cells. Notably, although 4-chlorotetrazolo[1,5-a]quinoxaline inhibited the activation of Fyn and Syk, minimal inhibition was observedmore » in mast cells in the case of Lyn. Furthermore, consistent with its in vitro activity, 4-chlorotetrazolo[1,5-a]quinoxaline significantly suppressed mast cell-mediated passive cutaneous anaphylaxis in mice. In summary, the results from this study demonstrate that 4-chlorotetrazolo[1,5-a]quinoxaline shows an inhibitory effect on mast cells in vitro and in vivo, and that this is mediated by inhibiting the activation of Syk in mast cells. Therefore, 4-chlorotetrazolo[1,5-a]quinoxaline could be useful in the treatment of mast cell-mediated allergic diseases. -- Highlights: Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline is a quinoxaline derivative. Black-Right-Pointing-Pointer The effect of 4-chlorotetrazolo[1,5-a]quinoxaline on mast cells was investigated. Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline reversibly inhibited Syk activation. Black-Right-Pointing-Pointer 4-chlorotetrazolo[1,5-a]quinoxaline could be useful for IgE-mediated allergy.« less
BARAM, D; RASHKOVSKY, M; HERSHKOVIZ, R; DRUCKER, I; RESHEF, T; BEN-SHITRIT, S; MEKORI, Y A
1997-01-01
There has been substantial evidence that suggests that heparin may modulate various aspects of immune function and inflammation in addition to its well known anticoagulant activity. In this regard heparin was found to suppress cell-mediated immune responses or asthmatic reactions to allergen challenge. In the present study we analyse the effects of low molecular weight heparin (LMWH) on mast cell degranulation and cytokine production in vitro and on the elicitation of IgE-mediated mast cell-dependent late cutaneous allergic inflammation in vivo. We have established that LMWH preferentially inhibited tumour necrosis factor-alpha (TNF-α) and IL-4 production without having any significant effect on mast cell degranulation. These effects have been observed in mast cells derived from three different origins that were activated by either immunological or non-immunological stimuli. We have shown that there is inhibition of TNF-α production (and not neutralization of activity), as elimination of the drug after a short preincubation and addition of LMWH to rTNF-α had no effect on TNF-α-mediated cytotoxic activity. These results were also confirmed by ELISA. In vivo, s.c. injection of the LMWH inhibited the leucocyte infiltration associated with the late cutaneous response which followed passive cutaneous anaphylaxis (PCA) reaction, without affecting mast cell numbers or degranulation. These data suggest that LMWH may have an inhibitory role in mast cell-mediated allergic inflammation, and thus might be considered as a possible therapeutic modality. PMID:9409655
Antinociceptive synergism of MD-354 and clonidine. Part II. The alpha-adrenoceptor component.
Young, Shawquia; Vainio, Minna; Scheinin, Mika; Dukat, Małgorzata
2010-08-01
Previously, we reported that antinociceptive synergism of a 5-HT(3)/alpha(2)-adrenoceptor ligand MD-354 (m-chlorophenylguanidine) and clonidine combination occurs, in part, through a 5-HT(3) receptor antagonist mechanism. In the present investigation, a possible role for alpha(2)-adrenoceptors was examined. Mechanistic studies using yohimbine (a subtype non-selective alpha(2)-adrenoceptor antagonist), BRL 44408 (a preferential alpha(2A)-adrenoceptor antagonist) and imiloxan (a preferential alpha(2B/C)-adrenoceptor antagonist) on the antinociceptive actions of a MD-354/clonidine combination were conducted. Subcutaneous pre-treatment with all three antagonists inhibited the antinociceptive synergism of MD-354 and clonidine in the mouse tail-flick assay in a dose-dependent manner (AD(50) = 0.33, 2.1, and 0.17 mg/kg, respectively). Enhancement of clonidine antinociception by MD-354 did not potentiate clonidine's locomotor suppressant activity in a mouse locomotor assay. When [ethyl-3H]RS-79948-197 was used as radioligand, MD-354 displayed almost equal affinity to alpha(2A)- and alpha(2B)-adrenoceptors (K(i) = 110 and 220 nM) and showed lower affinity at alpha(2C)-adrenoceptors (K(i) = 4,700 nM). MD-354 had no subtype-selectivity for the alpha(2)-adrenoceptor subtypes as an antagonist in functional [35S]GTPgammaS binding assays. MD-354 was a weak partial agonist at alpha(2A)-adrenoceptors. Overall, in addition to the 5-HT(3) receptor component, the present investigation found MD-354 to be a weak partial alpha(2A)-adrenoceptor agonist that enhances clonidine's thermal antinociceptive actions through an alpha(2)-adrenoceptor-mediated mechanism without augmenting sedation.
Brain oscillatory substrates of visual short-term memory capacity.
Sauseng, Paul; Klimesch, Wolfgang; Heise, Kirstin F; Gruber, Walter R; Holz, Elisa; Karim, Ahmed A; Glennon, Mark; Gerloff, Christian; Birbaumer, Niels; Hummel, Friedhelm C
2009-11-17
The amount of information that can be stored in visual short-term memory is strictly limited to about four items. Therefore, memory capacity relies not only on the successful retention of relevant information but also on efficient suppression of distracting information, visual attention, and executive functions. However, completely separable neural signatures for these memory capacity-limiting factors remain to be identified. Because of its functional diversity, oscillatory brain activity may offer a utile solution. In the present study, we show that capacity-determining mechanisms, namely retention of relevant information and suppression of distracting information, are based on neural substrates independent of each other: the successful maintenance of relevant material in short-term memory is associated with cross-frequency phase synchronization between theta (rhythmical neural activity around 5 Hz) and gamma (> 50 Hz) oscillations at posterior parietal recording sites. On the other hand, electroencephalographic alpha activity (around 10 Hz) predicts memory capacity based on efficient suppression of irrelevant information in short-term memory. Moreover, repetitive transcranial magnetic stimulation at alpha frequency can modulate short-term memory capacity by influencing the ability to suppress distracting information. Taken together, the current study provides evidence for a double dissociation of brain oscillatory correlates of visual short-term memory capacity.
Pandey, Manoj K; Kale, Vijay P; Song, Chunhua; Sung, Shen-shu; Sharma, Arun K; Talamo, Giampaolo; Dovat, Sinisa; Amin, Shantu G
2014-10-01
Bone disease, characterized by the presence of lytic lesions and osteoporosis is the hallmark of multiple myeloma (MM). Stromal cell-derived factor 1α (SDF-1α) and its receptor, CXC chemokine receptor 4 (CXCR4), has been implicated as a regulator of bone resorption, suggesting that agents that can suppress SDF1α/CXCR4 signaling might inhibit osteoclastogenesis, a process closely linked to bone resorption. We, therefore, investigated whether gambogic acid (GA), a xanthone, could inhibit CXCR4 signaling and suppress osteoclastogenesis induced by MM cells. Through docking studies we predicted that GA directly interacts with CXCR4. This xanthone down-regulates the expression of CXCR4 on MM cells in a dose- and time-dependent manner. The down-regulation of CXCR4 was not due to proteolytic degradation, but rather GA suppresses CXCR4 mRNA expression by inhibiting nuclear factor-kappa B (NF-κB) DNA binding. This was further confirmed by quantitative chromatin immunoprecipitation assay, as GA inhibits p65 binding at the CXCR4 promoter. GA suppressed SDF-1α-induced chemotaxis of MM cells and downstream signaling of CXCR4 by inhibiting phosphorylation of Akt, p38, and Erk1/2 in MM cells. GA abrogated the RANKL-induced differentiation of macrophages to osteoclasts in a dose- and time-dependent manner. In addition, we found that MM cells induced differentiation of macrophages to osteoclasts, and that GA suppressed this process. Importantly, suppression of osteoclastogenesis by GA was mediated through IL-6 inhibition. Overall, our results show that GA is a novel inhibitor of CXCR4 expression and has a strong potential to suppress osteoclastogenesis mediated by MM cells. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potapovich, Alla I.; Biology Department, Belarus State University, Skorina Prosp. 10, Minsk 220050; Lulli, Daniela
Molecular mechanisms underlying modulation of inflammatory responses in primary human keratinocytes by plant polyphenols (PPs), namely the glycosylated phenylpropanoid verbascoside, the stilbenoid resveratrol and its glycoside polydatin, and the flavonoid quercetin and its glycoside rutin were evaluated. As non-lethal stimuli, the prototypic ligand for epidermal growth factor receptor (EGFR) transforming growth factor alpha (TGFalpha), the combination of tumor necrosis factor (TNFalpha) and interferon (IFNgamma) (T/I), UVA + UVB irradiation, and bacterial lipopolysaccharide (LPS) were used. We demonstrated differential modulation of inflammatory responses in keratinocytes at signal transduction, gene transcription, and protein synthesis levels as a function of PP chemical structure,more » the pro-inflammatory trigger used, and PP interaction with intracellular detoxifying systems. The PPs remarkably inhibited constitutive, LPS- and T/I-induced but not TGFalpha-induced ERK phosphorylation. They also suppressed NFkappaB activation by LPS and T/I. Verbascoside and quercetin invariably impaired EGFR phosphorylation and UV-associated aryl hydrocarbon receptor (AhR)-mediated signaling, while rutin, polydatin and resveratrol did not affect EGFR phosphorylation and further activated AhR machinery in UV-exposed keratinocytes. In general, PPs down-regulated gene expression of pro-inflammatory cytokines/enzymes, except significant up-regulation of IL-8 observed under stimulation with TGFalpha. Both spontaneous and T/I-induced release of IL-8 and IP-10 was suppressed, although 50 {mu}M resveratrol and polydatin up-regulated IL-8. At this concentration, resveratrol activated both gene expression and de novo synthesis of IL-8 and AhR-mediated mechanisms were involved. We conclude that PPs differentially modulate the inflammatory response of human keratinocytes through distinct signal transduction pathways, including AhR and EGFR. - Graphical abstract: Display Omitted Highlights: > Effects of plant polyphenols on inflammatory responses in human keratinocytes. > Inflammatory stimuli used: TGFalpha, TNFalpha+IFNgamma, UVA+UVB, and LPS. > Inflammatory pathways connected with NFB, ERK1/2, EGFR, and AhR were investigated. > Plant polyphenols, flavonoids, stilbenoids, and phenylpropanoids, were studied. > Modulation of inflammation depends on phenolic core structure and glycosylation.« less
HNF4alpha dysfunction as a molecular rational for cyclosporine induced hypertension.
Niehof, Monika; Borlak, Jürgen
2011-01-27
Induction of tolerance against grafted organs is achieved by the immunosuppressive agent cyclosporine, a prominent member of the calcineurin inhibitors. Unfortunately, its lifetime use is associated with hypertension and nephrotoxicity. Several mechanism for cyclosporine induced hypertension have been proposed, i.e. activation of the sympathetic nervous system, endothelin-mediated systemic vasoconstriction, impaired vasodilatation secondary to reduction in prostaglandin and nitric oxide, altered cytosolic calcium translocation, and activation of the renin-angiotensin system (RAS). In this regard the molecular basis for undue RAS activation and an increased signaling of the vasoactive oligopeptide angiotensin II (AngII) remain elusive. Notably, angiotensinogen (AGT) is the precursor of AngII and transcriptional regulation of AGT is controlled by the hepatic nuclear factor HNF4alpha. To better understand the molecular events associated with cyclosporine induced hypertension, we investigated the effect of cyclosporine on HNF4alpha expression and activity and searched for novel HNF4alpha target genes among members of the RAS cascade. Using bioinformatic algorithm and EMSA bandshift assays we identified angiotensin II receptor type 1 (AGTR1), angiotensin I converting enzyme (ACE), and angiotensin I converting enzyme 2 (ACE2) as genes targeted by HNF4alpha. Notably, cyclosporine represses HNF4alpha gene and protein expression and its DNA-binding activity at consensus sequences to AGT, AGTR1, ACE, and ACE2. Consequently, the gene expression of AGT, AGTR1, and ACE2 was significantly reduced as evidenced by quantitative real-time RT-PCR. While RAS is composed of a sophisticated interplay between multiple factors we propose a decrease of ACE2 to enforce AngII signaling via AGTR1 to ultimately result in vasoconstriction and hypertension. Taken collectively we demonstrate cyclosporine to repress HNF4alpha activity through calcineurin inhibitor mediated inhibition of nuclear factor of activation of T-cells (NFAT) which in turn represses HNF4alpha that leads to a disturbed balance of RAS.
Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Kyoung-Tae; Kang, Chang-Hee; Dilshara, Matharage Gayani; Lee, Hak-Ju; Choi, Yung Hyun; Choi, Il-Whan; Kim, Gi-Young
2014-12-01
Microglia are important macrophages to defend against pathogens in the central nervous system (CNS); however, persistent or acute inflammation of microglia lead to CNS disorders via neuronal cell death. Therefore, we theorized that a good strategy for the treatment of CNS disorders would be to target inflammatory mediators from microglia in disease. Consequently, we investigated whether isobutyrylshikonin (IBS) attenuates the production of proinflammatory mediators, such as nitric oxide (NO) and prostaglandin E2, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Treatment with IBS inhibited the secretion of NO and prostaglandin E2 (as well as the expression of their key regulatory genes), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). Isobutyrylshikonin also suppressed LPS-induced DNA-binding activity of nuclear transcription factor-κB (NF-κB), by inhibiting the nuclear translocation of p50 and p65 in addition to blocking the phosphorylation and degradation of IκBα. Pretreatment with pyrrolidine dithiocarbamate, a specific NF-κB inhibitor, showed the down-regulation of LPS-induced iNOS and COX-2 messenger RNA by suppressing NF-κB activity. This indirectly suggests that IBS-mediated NF-κB inhibition is the main signaling pathway involved in the inhibition of iNOS and COX-2 expression. In addition, IBS attenuated LPS-induced phosphorylation of PI3K and Akt, which are upstream molecules of NF-κB, in LPS-stimulated BV2 microglial cells. The functional aspects of the PI3K/Akt signaling pathway were analyzed with LY294002, which is a specific PI3K/Akt inhibitor that attenuated LPS-induced iNOS and COX-2 expression by suppressing NF-κB activity. These data suggest that an IBS-mediated anti-inflammatory effect may be involved in suppressing the PI3K/Akt-mediated NF-κB signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.
Sundarrajan, Lakshminarasimhan; Unniappan, Suraj
2017-10-01
Irisin is a myokine encoded in fibronectin type III domain containing 5 (FNDC5). FNDC5 forms an integral part of the muscle post-exercise, and causes an increase in energy expenditure in mammals. Irisin is abundantly expressed in cardiac and skeletal muscles and is secreted upon activation of peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1 alpha). Irisin regulates feeding behaviour and cardiovascular function in mammals. More recently, irisin has gained importance as a potential biomarker for myocardial infarction due to its abundance in cardiac muscle. The goal of this research was to determine whether irisin influences feeding, and regulates appetite regulatory peptides in zebrafish. Intraperitoneal injection of irisin [0.1, 1, 10 and 100ng/g body weight (BW)] did not affect feeding, but its knockdown using siRNA (10ng/g BW) caused a significant reduction in food intake. Knockdown of irisin reduced ghrelin and orexin-A mRNA expression, and increased cocaine and amphetamine regulated transcript mRNA expression in zebrafish brain and gut. siRNA mediated knockdown of irisin also downregulated brain derived neurotrophic factor mRNA in zebrafish. The role of endogenous irisin on food intake is likely mediated by its actions on other metabolic peptides. Collectively, these results indicate that unaltered endogenous irisin is required to maintain food intake in zebrafish. Copyright © 2017 Elsevier Inc. All rights reserved.
Cystatin E/M Suppresses Tumor Cell Growth through Cytoplasmic Retention of NF-κB
Soh, Hendrick; Venkatesan, Natarajan; Veena, Mysore S.; Ravichandran, Sandhiya; Zinabadi, Alborz; Basak, Saroj K.; Parvatiyar, Kislay; Srivastava, Meera; Liang, Li-Jung; Gjertson, David W.; Torres, Jorge Z.; Moatamed, Neda A.
2016-01-01
We and others have shown that the cystatin E/M gene is inactivated in primary human tumors, pointing to its role as a tumor suppressor gene. However, the molecular mechanism of tumor suppression is not yet understood. Using plasmid-directed cystatin E/M gene overexpression, a lentivirus-mediated tetracycline-inducible vector system, and human papillomavirus 16 (HPV 16) E6 and E7 gene-immortalized normal human epidermal keratinocytes, we demonstrated intracellular and non-cell-autonomous apoptotic growth inhibition of tumor cell lines and that growth inhibition is associated with cytoplasmic retention of NF-κB. We further demonstrated decreased phosphorylation of IκB kinase (IKKβ) and IκBα in the presence of tumor necrosis factor alpha (TNF-α), confirming the role of cystatin E/M in the regulation of the NF-κB signaling pathway. Growth suppression of nude mouse xenograft tumors carrying a tetracycline-inducible vector system was observed with the addition of doxycycline in drinking water, confirming that the cystatin E/M gene is a tumor suppressor gene. Finally, immunohistochemical analyses of cervical carcinoma in situ and primary tumors have shown a statistically significant inverse relationship between the expression of cystatin E/M and cathepsin L and a direct relationship between the loss of cystatin E/M expression and nuclear expression of NF-κB. We therefore propose that the cystatin E/M suppressor gene plays an important role in the regulation of NF-κB. PMID:27090639
Liu, Hongtao; Wang, Qin; Liu, Yawen; Zhao, Xiaoying; Imaizumi, Takato; Somers, David E.; Tobin, Elaine M.; Lin, Chentao
2013-01-01
Plants possess multiple photoreceptors to mediate light regulation of growth and development, but it is not well understood how different photoreceptors coordinate their actions to jointly regulate developmental responses, such as flowering time. In Arabidopsis, the photoexcited cryptochrome 2 interacts with the transcription factor CRYPTOCHROME-INTERACTING basic helix–loop–helix 1 (CIB1) to activate transcription and floral initiation. We show that the CIB1 protein expression is regulated by blue light; CIB1 is highly expressed in plants exposed to blue light, but levels of the CIB1 protein decreases in the absence of blue light. We demonstrate that CIB1 is degraded by the 26S proteasome and that blue light suppresses CIB1 degradation. Surprisingly, although cryptochrome 2 physically interacts with CIB1 in response to blue light, it is not the photoreceptor mediating blue-light suppression of CIB1 degradation. Instead, two of the three light–oxygen–voltage (LOV)-domain photoreceptors, ZEITLUPE and LOV KELCH PROTEIN 2, but not FLAVIN-BINDING KELCH REPEAT 1, are required for the function and blue-light suppression of degradation of CIB1. These results support the hypothesis that the evolutionarily unrelated blue-light receptors, cryptochrome and LOV-domain F-box proteins, mediate blue-light regulation of the same transcription factor by distinct mechanisms. PMID:24101505
Berksoy Hayta, Sibel; Durmuş, Kasim; Altuntaş, Emine Elif; Yildiz, Esin; Hisarciklıo, Mehmet; Akyol, Melih
2018-03-01
Numerous growth factors, cytokine, mitogen and chemotactic factors are involved in wound healing. Even though inflammation is important for the stimulation of proliferative phase, excessive inflammation also causes impairment in wound healing. Strontium salts suppress keratinocyte-induced TNF-alpha and interleukin-1 and interleukin-6 in in vitro cultures. This study was conducted to determine the effects of administration of topical strontium chloride hexahydrate on wound healing through TNF-alpha and TGF-beta in surgical wound healing model of in-vivo rat skin. Twenty-four rats were used in the study. After approximately 2 cm cutaneous-subcutaneous incision was horizontally carried out on the mid-neckline of the rats, the incision was again closed using 2.0 vicryl. The rats were assigned into three groups including eight rats in each group. Placebo emollient ointment and also the ointments, which were containing 5% and 10% strontium chloride hexahydrate and were prepared at the same base with placebo ointment, were administered to the groups by a blind executor twice a day for a week. At the end of seventh day, the rats were sacrificed and cutaneous and subcutaneous tissue of their wound site was resected for histopathological examination. Scoring of histopathological wound healing and scoring of tissue TNF-alpha and TGF-beta level with immunohistochemical staining were performed. The groups, to which both 5% and 10% strontium chloride hexahydrate was administered, had lower immunohistochemical TNF-alpha levels and histopathological wound scores compared to controls, which was statistically significant (p < 0.05). Strontium chloride hexahydrate can lead to impairment in wound healing by suppressing inflammation through TNF-alpha.
Schreckenberger, Mathias; Lange-Asschenfeldt, Christian; Lange-Asschenfeld, Christian; Lochmann, Matthias; Mann, Klaus; Siessmeier, Thomas; Buchholz, Hans-Georg; Bartenstein, Peter; Gründer, Gerhard
2004-06-01
Purpose of this study was to investigate the functional relationship between electroencephalographic (EEG) alpha power and cerebral glucose metabolism before and after pharmacological alpha suppression by lorazepam. Ten healthy male volunteers were examined undergoing two F18-fluorodeoxyglucose (18-FDG) positron emission tomography (PET) scans with simultaneous EEG recording: 1x placebo, 1x lorazepam. EEG power spectra were computed by means of Fourier analysis. The PET data were analyzed using SPM99, and the correlations between metabolism and alpha power were calculated for both conditions. The comparison lorazepam versus placebo revealed reduced glucose metabolism of the bilateral thalamus and adjacent subthalamic areas, the occipital cortex and temporo-insular areas (P < 0.001). EEG alpha power was reduced in all derivations (P < 0.001). Under placebo, there was a positive correlation between alpha power and metabolism of the bilateral thalamus and the occipital and adjacent parietal cortex (P < 0.001). Under lorazepam, the thalamic and parietal correlations were maintained, whereas the occipital correlation was no longer detectable (P < 0.001). The correlation analysis of the difference lorazepam-placebo showed the alpha power exclusively correlated with the thalamic activity (P < 0.0001). These results support the hypothesis of a close functional relationship between thalamic activity and alpha rhythm in humans mediated by corticothalamic loops which are independent of sensory afferences. The study paradigm could be a promising approach for the investigation of cortico-thalamo-cortical feedback loops in neuropsychiatric diseases.
Khurana, Satish; Jaiswal, Amit K; Mukhopadhyay, Asok
2010-02-12
Hematopoietic stem cells can directly transdifferentiate into hepatocytes because of cellular plasticity, but the molecular basis of transdifferentiation is not known. Here, we show the molecular basis using lineage-depleted oncostatin M receptor beta-expressing (Lin(-)OSMRbeta(+)) mouse bone marrow cells in a hepatic differentiation culture system. Differentiation of the cells was marked by the expression of albumin. Hepatocyte nuclear factor (HNF)-4alpha was expressed and translocated into the nuclei of the differentiating cells. Suppression of its activation in OSM-neutralized culture medium inhibited cellular differentiation. Ectopic expression of full-length HNF4alpha in 32D myeloid cells resulted in decreased myeloid colony-forming potential and increased expression of hepatocyte-specific genes and proteins. Nevertheless, the neohepatocytes produced in culture expressed active P450 enzyme. The obligatory role of HNF4alpha in hepatic differentiation was confirmed by transfecting Lin(-)OSMRbeta(+) cells with dominant negative HNF4alpha in the differentiation culture because its expression inhibited the transcription of the albumin and tyrosine aminotransferase genes. The loss and gain of functional activities strongly suggested that HNF4alpha plays a central role in the transdifferentiation process. For the first time, this report demonstrates the mechanism of transdifferentiation of hematopoietic cells into hepatocytes, in which HNF4alpha serves as a molecular switch.
Yang, Di; Xiao, Chen-Xi; Su, Zheng-Hua; Huang, Meng-Wei; Qin, Ming; Wu, Wei-Jun; Jia, Wan-Wan; Zhu, Yi-Zhun; Hu, Jin-Feng; Liu, Xin-Hua
2017-08-15
Endothelial inflammation is an increasingly prevalent condition in the pathogenesis of many cardiovascular diseases. (-)-7(S)-hydroxymatairesinol (7-HMR), a naturally occurring plant lignan, possesses both antioxidant and anti-cancer properties and therefore would be a good strategy to suppress tumor necrosis factor-α (TNF-α)-mediated inflammation in vascular endothelial cells (VECs). The objective of this study is to evaluate for its anti-inflammatory effect on TNF-α-stimulated VECs and underling mechanisms. The effect of the 7-HMR on suppression of TNF-α-induced inflammation mediators in VECs were determined by qRT-PCR and Western blot. MAPKs and phosphorylation of Akt, HO-1 and NF-κB p65 were examined using Western blot. Nuclear localisation of NF-κB was also examined using Western blot and immunofluorescence. Here we found that 7-HMR could suppress TNF-α-induced inflammatory mediators, such as vascularcelladhesion molecule-1, interleukin-6 and inducible nitric oxide synthase expression both in mRNA and protein levels, and concentration-dependently attenuated reactive oxidase species generation. We further identified that 7-HMR remarkably induced superoxide dismutase and heme oxygenase-1 expression associated with degradation of Kelch-like ECH-associated protein 1 (keap1) and up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2). In addition, 7-HMR time- and concentration-dependently attenuated TNF-α-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK) and Akt, but not p38, or c-Jun N-terminal kinase 1/2. Moreover, 7-HMR significantly suppressed TNF-α-mediated nuclear factor-κB (NF-κB) activation by inhibiting phosphorylation and nuclear translocation of NF-κB p65. Our results demonstrated that 7-HMR inhibited TNF-α-stimulated endothelial inflammation, at least in part, through inhibition of NF-κB activation and upregulation of Nrf2-antioxidant response element signaling pathway, suggesting 7-HMR might be used as a promising vascular protective drug. Copyright © 2017. Published by Elsevier GmbH.
Kasimanickam, Ramanathan K; Kasimanickam, Vanmathy R; Haldorson, Gary J; Tibary, Ahmed
2012-01-23
Interleukins (IL) play an important role in angiogenesis. Tocopherol possesses immunomodulating effect in addition to antioxidant property. The objective of this study was to determine whether gamma tocopherol's (gT) angiogenic activity in placental network is enhanced via promoting interleukins. Pregnant ewes (N=18) were supplemented, orally, with 500 mg of alpha tocopherol (aT; N=6) or 1,000 mg of gT (N=7) or placebo (CON; N=5) once daily from 107 to 137 days post breeding. Uterine and placental tissue samples were obtained at the end of supplementation to evaluate relative mRNA expressions of IL-1b, IL-6, IL-8, Tumor Necrosis Factor (TNF) alpha, Vascular Endothelial Growth Factor (VEGF), kinase insert domain receptor (KDR; VGFR2; a type III receptor tyrosine kinase), and soluble fms-like tyrosine kniase-1 (sFlt1 or sVEGFR1) in uterus, caruncle and cotyledon. Oral supplementation of gT increased IL-6, IL-8, KDR and VEGF mRNA abundances whereas sFlt1 mRNA abundance was suppressed in uterus, caruncle and cotyledon, compared to aT and placebo treated ewes (P<0.05). The TNF alpha and IL-1b mRNA abundances were suppressed in uterus, caruncle and cotyledon but TNF alpha is higher in gT group compared to aT group (P<0.05), whereas IL-1b was similar between treatment groups (P>0.1). Gamma tocopherol supplementation increased IL-6, IL-8, and KDR mRNA abundances and suppressed sFlt1 and TNFalpha mRNA abundances thereby increased VEGF mRNA expression and angiogenesis in placental vascular network during late gestation. It is plausible that the angiogenic effect of gamma tocopherol in placental vascular network is exerted via an alternate path by enhancing IL-6 and IL-8.
2012-01-01
Background Interleukins (IL) play an important role in angiogenesis. Tocopherol possesses immunomodulating effect in addition to antioxidant property. The objective of this study was to determine whether gamma tocopherol's (gT) angiogenic activity in placental network is enhanced via promoting interleukins. Methods Pregnant ewes (N = 18) were supplemented, orally, with 500 mg of alpha tocopherol (aT; N = 6) or 1,000 mg of gT (N = 7) or placebo (CON; N = 5) once daily from 107 to 137 days post breeding. Uterine and placental tissue samples were obtained at the end of supplementation to evaluate relative mRNA expressions of IL-1b, IL-6, IL-8, Tumor Necrosis Factor (TNF) alpha, Vascular Endothelial Growth Factor (VEGF), kinase insert domain receptor (KDR; VGFR2; a type III receptor tyrosine kinase), and soluble fms-like tyrosine kniase-1 (sFlt1 or sVEGFR1) in uterus, caruncle and cotyledon. Results Oral supplementation of gT increased IL-6, IL-8, KDR and VEGF mRNA abundances whereas sFlt1 mRNA abundance was suppressed in uterus, caruncle and cotyledon, compared to aT and placebo treated ewes (P < 0.05). The TNF alpha and IL-1b mRNA abundances were suppressed in uterus, caruncle and cotyledon but TNF alpha is higher in gT group compared to aT group (P < 0.05), whereas IL-1b was similar between treatment groups (P > 0.1). Conclusions Gamma tocopherol supplementation increased IL-6, IL-8, and KDR mRNA abundances and suppressed sFlt1 and TNFalpha mRNA abundances thereby increased VEGF mRNA expression and angiogenesis in placental vascular network during late gestation. It is plausible that the angiogenic effect of gamma tocopherol in placental vascular network is exerted via an alternate path by enhancing IL-6 and IL-8. PMID:22269218
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dambach, Donna M.; Pharmaceutical Research Institute, Bristol-Myers Squibb, Princeton, NJ 08543; Durham, Stephen K.
2006-03-01
Oxidative stress plays an important role in acetaminophen (APAP)-induced hepatotoxicity. In addition to inducing direct cellular damage, oxidants can activate transcription factors including NF-{kappa}B, which regulate the production of inflammatory mediators implicated in hepatotoxicity. Here, we investigated the role of APAP-induced oxidative stress and NF-{kappa}B in inflammatory mediator production. Treatment of mice with APAP (300 mg/kg, i.p.) resulted in centrilobular hepatic necrosis and increased serum aminotransferase levels. This was correlated with depletion of hepatic glutathione and CuZn superoxide dismutase (SOD). APAP administration also increased expression of the proinflammatory mediators, interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF{alpha}), macrophage chemotactic protein-1 (MCP-1), andmore » KC/gro, and the anti-inflammatory cytokine, interleukin-10 (IL-10). Pretreatment of mice with the antioxidant, N-acetylcysteine (NAC) prevented APAP-induced depletion of glutathione and CuZnSOD, as well as hepatotoxicity. NAC also abrogated APAP-induced increases in TNF{alpha}, KC/gro, and IL-10, but augmented expression of the anti-inflammatory cytokines interleukin-4 (IL-4) and transforming growth factor-{beta} (TGF{beta}). No effects were observed on IL-1{beta} or MCP-1 expression. To determine if NF-{kappa}B plays a role in regulating mediator production, we used transgenic mice with a targeted disruption of the gene for NF-{kappa}B p50. As observed with NAC pretreatment, the loss of NF-{kappa}B p50 was associated with decreased ability of APAP to upregulate TNF{alpha}, KC/gro, and IL-10 expression and increased expression of IL-4 and TGF{beta}. However, in contrast to NAC pretreatment, the loss of p50 had no effect on APAP-induced hepatotoxicity. These data demonstrate that APAP-induced cytokine expression in the liver is influenced by oxidative stress and that this is dependent, in part, on NF-{kappa}B. However, NF-{kappa}B p50-dependent responses do not appear to play a major role in the pathogenesis of toxicity in this model.« less
Negative regulation of parathyroid hormone-related protein expression by steroid hormones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko
Highlights: {yields} Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. {yields} Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. {yields} Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here wemore » studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor {alpha}, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.« less
Molecular basis for ebolavirus VP35 suppression of human dendritic cell maturation.
Yen, Benjamin; Mulder, Lubbertus C F; Martinez, Osvaldo; Basler, Christopher F
2014-11-01
Zaire ebolavirus (EBOV) VP35 is a double-stranded RNA (dsRNA)-binding protein that inhibits RIG-I signaling and alpha/beta interferon (IFN-α/β) responses by both dsRNA-binding-dependent and -independent mechanisms. VP35 also suppresses dendritic cell (DC) maturation. Here, we define the pathways and mechanisms through which VP35 impairs DC maturation. Wild-type VP35 (VP35-WT) and two well-characterized VP35 mutants (F239A and R322A) that independently ablate dsRNA binding and RIG-I inhibition were delivered to primary human monocyte-derived DCs (MDDCs) using a lentivirus-based expression system. VP35-WT suppressed not only IFN-α/β but also proinflammatory responses following stimulation of MDDCs with activators of RIG-I-like receptor (RLR) signaling, including RIG-I activators such as Sendai virus (SeV) or 5'-triphosphate RNA, or MDA5 activators such as encephalomyocarditis virus (EMCV) or poly(I · C). The F239A and R322A mutants exhibited greatly reduced suppression of IFN-α/β and proinflammatory cytokine production following treatment of DCs with RLR agonists. VP35-WT also blocked the upregulation of DC maturation markers and the stimulation of allogeneic T cell responses upon SeV infection, whereas the mutants did not. In contrast to the RLR activators, VP35-WT and the VP35 mutants impaired IFN-β production induced by Toll-like receptor 3 (TLR3) or TLR4 agonists but failed to inhibit proinflammatory cytokine production induced by TLR2, TLR3, or TLR4 agonists. Furthermore, VP35 did not prevent lipopolysaccharide (LPS)-induced upregulation of surface markers of MDDC maturation and did not prevent LPS-triggered allogeneic T cell stimulation. Therefore, VP35 is a general antagonist of DC responses to RLR activation. However, TLR agonists can circumvent many of the inhibitory effects of VP35. Therefore, it may be possible to counteract EBOV immune evasion by using treatments that bypass the VP35-imposed block to DC maturation. The VP35 protein, which is an inhibitor of RIG-I signaling and alpha/beta interferon (IFN-α/β) responses, has been implicated as an EBOV-encoded factor that contributes to suppression of dendritic cell (DC) function. We used wild-type VP35 and previously characterized VP35 mutants to clarify VP35-DC interactions. Our data demonstrate that VP35 is a general inhibitor of RIG-I-like receptor (RLR) signaling that blocks not only RIG-I- but also MDA5-mediated induction of IFN-α/β responses. Furthermore, in DCs, VP35 also impairs the RLR-mediated induction of proinflammatory cytokine production, upregulation of costimulatory markers, and activation of T cells. These inhibitory activities require VP35 dsRNA-binding activity, an activity previously correlated to VP35 RIG-I inhibitory function. In contrast, while VP35 can inhibit IFN-α/β production induced by TLR3 or TLR4 agonists, this occurs in a dsRNA-independent fashion, and VP35 does not inhibit TLR-mediated expression of proinflammatory cytokines. These data suggest strategies to overcome VP35 inhibition of DC function. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Yanpallewar, Sudhirkumar U; Fernandes, Kimberly; Marathe, Swananda V; Vadodaria, Krishna C; Jhaveri, Dhanisha; Rommelfanger, Karen; Ladiwala, Uma; Jha, Shanker; Muthig, Verena; Hein, Lutz; Bartlett, Perry; Weinshenker, David; Vaidya, Vidita A
2010-01-20
Slow-onset adaptive changes that arise from sustained antidepressant treatment, such as enhanced adult hippocampal neurogenesis and increased trophic factor expression, play a key role in the behavioral effects of antidepressants. alpha(2)-Adrenoceptors contribute to the modulation of mood and are potential targets for the development of faster acting antidepressants. We investigated the influence of alpha(2)-adrenoceptors on adult hippocampal neurogenesis. Our results indicate that alpha(2)-adrenoceptor agonists, clonidine and guanabenz, decrease adult hippocampal neurogenesis through a selective effect on the proliferation, but not the survival or differentiation, of progenitors. These effects persist in dopamine beta-hydroxylase knock-out (Dbh(-/-)) mice lacking norepinephrine, supporting a role for alpha(2)-heteroceptors on progenitor cells, rather than alpha(2)-autoreceptors on noradrenergic neurons that inhibit norepinephrine release. Adult hippocampal progenitors in vitro express all the alpha(2)-adrenoceptor subtypes, and decreased neurosphere frequency and BrdU incorporation indicate direct effects of alpha(2)-adrenoceptor stimulation on progenitors. Furthermore, coadministration of the alpha(2)-adrenoceptor antagonist yohimbine with the antidepressant imipramine significantly accelerates effects on hippocampal progenitor proliferation, the morphological maturation of newborn neurons, and the increase in expression of brain derived neurotrophic factor and vascular endothelial growth factor implicated in the neurogenic and behavioral effects of antidepressants. Finally, short-duration (7 d) yohimbine and imipramine treatment results in robust behavioral responses in the novelty suppressed feeding test, which normally requires 3 weeks of treatment with classical antidepressants. Our results demonstrate that alpha(2)-adrenoceptors, expressed by progenitor cells, decrease adult hippocampal neurogenesis, while their blockade speeds up antidepressant action, highlighting their importance as targets for faster acting antidepressants.
Wang, Rui; Wan, Qi; Kozhaya, Lina; Fujii, Hodaka; Unutmaz, Derya
2008-07-16
Regulatory T (T(reg)) cells control immune activation and maintain tolerance. How T(regs) mediate their suppressive function is unclear. Here we identified a cell surface molecule, called GARP, (or LRRC32), which within T cells is specifically expressed in T(regs) activated through the T cell receptor (TCR). Ectopic expression of GARP in human naïve T (T(N)) cells inhibited their proliferation and cytokine secretion upon TCR activation. Remarkably, GARP over-expression in T(N) cells induced expression of T(reg) master transcription factor Foxp3 and endowed them with a partial suppressive function. The extracellular but not the cytoplasmic region of GARP, was necessary for these functions. Silencing Foxp3 in human T(reg) cells reduced expression of GARP and attenuated their suppressive function. However, GARP function was not affected when Foxp3 was downregulated in GARP-overexpressing cells, while silencing GARP in Foxp3-overexpressing cells reduced their suppressive activity. These findings reveal a novel cell surface molecule-mediated regulatory mechanism, with implications for modulating aberrant immune responses.
Reversible Smad-dependent signaling between tumor suppression and oncogenesis.
Sekimoto, Go; Matsuzaki, Koichi; Yoshida, Katsunori; Mori, Shigeo; Murata, Miki; Seki, Toshihito; Matsui, Hirofumi; Fujisawa, Jun-ichi; Okazaki, Kazuichi
2007-06-01
Cancer cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor-beta (TGF-beta) together with stimulation of its oncogenic activity as in Ras-transformed cells; however, molecular mechanisms remain largely unknown. TGF-beta activates both its type I receptor (TbetaRI) and c-Jun NH2-terminal kinase (JNK), which phosphorylate Smad2 and Smad3 at the COOH-terminal (pSmad2/3C) and linker regions (pSmad2/3L). Here, we report that Ras transformation suppresses TbetaRI-mediated pSmad3C signaling, which involves growth inhibition by down-regulating c-Myc. Instead, hyperactive Ras constitutively stimulates JNK-mediated pSmad2/3L signaling, which fosters tumor invasion by up-regulating plasminogen activator inhibitor-1 and matrix metalloproteinase-1 (MMP-1), MMP-2, and MMP-9. Conversely, selective blockade of linker phosphorylation by a mutant Smad3 lacking JNK-dependent phosphorylation sites results in preserved tumor-suppressive function via pSmad3C in Ras-transformed cells while eliminating pSmad2/3L-mediated invasive capacity. Thus, specific inhibition of the JNK/pSmad2/3L pathway should suppress cancer progression by shifting Smad-dependent signaling from oncogenesis to tumor suppression.
Souza, M H; Melo-Filho, A A; Rocha, M F; Lyerly, D M; Cunha, F Q; Lima, A A; Ribeiro, R A
1997-01-01
Clostridium difficile (Cd) toxins appear to mediate the inflammatory response in pseudomembranous colitis and/or colitis associated with the use of antibiotics. In contrast to Cd Toxin A (TxA), Cd Toxin B (TxB) has been reported not to promote fluid secretion or morphological damage in rabbits and hamsters and also does not induce neutrophil chemotaxis in vitro. However, TxB is about 1000 times more potent than TxA in stimulating the release of tumour necrosis factor-alpha (TNF-alpha) by cultured monocytes. In the present study, we investigated the ability of TxB to promote neutrophil migration into peritoneal cavities and subcutaneous air-pouches of rats. We also examined the role of resident peritoneal cells in this process as well as the inflammatory mediators involved. TxB caused a significant and dose-dependent neutrophil influx with a maximal response at 0.1 microgram/cavity after 4 hr. Depleting the peritoneal resident cell population by washing the peritoneal cavity or increasing this population by pretreating the animals with thioglycollate blocked and amplified the TxB-induced neutrophil migration, respectively. Pretreating the animals with MK886 (a lipoxygenase inhibitor), NDGA (a dual cyclo- and lipoxygenase inhibitor) or the glucocorticoid, dexamethasone, but not with indomethacin (a cyclo-oxygenase inhibitor), or BN52021 (a platelet-activating factor antagonist), inhibited the neutrophil migration evoked by TxB. Pretreatment with dexamethasone or the administration of anti-TNF-alpha serum into the air-pouches also significantly reduced the TxB-induced neutrophil migration. Supernatants from TxB-stimulated macrophages induced neutrophil migration when injected into the rat peritoneal cavity. This effect was attenuated by the addition of either MK886 or dexamethasone to the macrophage monolayer and by preincubating the supernatants with anti-TNF-alpha serum. TxB also stimulated the release of TNF-alpha by macrophages. Overall, these results suggest that TxB induces an intense neutrophil migration which is mediated by macrophage-derived TNF-alpha and lipoxygenase products. PMID:9227329
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Cheng-Hung, E-mail: chchuang@hk.edu.tw; Liu, Chia-Hua; Lu, Ta-Jung
2014-12-15
Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay.more » We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. - Graphical abstract: Possible mechanisms of α-TEA on inhibited angiogenesis of human umbilical vein endothelial cells. Brief summary In the present study, we have demonstrated that VEGF-mediated angiogenesis is significantly inhibited by α-TEA, and that this effect involves inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways related to invasion and migration. - Highlights: • The anti-angiogenic effect and the mechanistic action of α-TEA were investigated. • α-TEA significantly inhibited VEGF-mediated angiogenesis both in vitro and ex vivo. • α-TEA down-regulated MMP-2 via VEGFR-2-mediated FAK and p38 signaling pathways. • α-TEA up-regulated TIMP-2 and nm23-H1 expression in relation to invasion and migration. • Further studies are warranted on the anti-angiogenesis potential of α-TEA.« less
Gumireddy, Kiranmai; Li, Anping; Kossenkov, Andrew V.; Sakurai, Masayuki; Yan, Jinchun; Li, Yan; Xu, Hua; Wang, Jian; Zhang, Paul J.; Zhang, Lin; Showe, Louise C.; Nishikura, Kazuko; Huang, Qihong
2016-01-01
Metastasis is a critical event affecting breast cancer patient survival. To identify molecules contributing to the metastatic process, we analysed The Cancer Genome Atlas (TCGA) breast cancer data and identified 41 genes whose expression is inversely correlated with survival. Here we show that GABAA receptor alpha3 (Gabra3), normally exclusively expressed in adult brain, is also expressed in breast cancer, with high expression of Gabra3 being inversely correlated with breast cancer survival. We demonstrate that Gabra3 activates the AKT pathway to promote breast cancer cell migration, invasion and metastasis. Importantly, we find an A-to-I RNA-edited form of Gabra3 only in non-invasive breast cancers and show that edited Gabra3 suppresses breast cancer cell invasion and metastasis. A-to-I-edited Gabra3 has reduced cell surface expression and suppresses the activation of AKT required for cell migration and invasion. Our study demonstrates a significant role for mRNA-edited Gabra3 in breast cancer metastasis. PMID:26869349
Gumireddy, Kiranmai; Li, Anping; Kossenkov, Andrew V; Sakurai, Masayuki; Yan, Jinchun; Li, Yan; Xu, Hua; Wang, Jian; Zhang, Paul J; Zhang, Lin; Showe, Louise C; Nishikura, Kazuko; Huang, Qihong
2016-02-12
Metastasis is a critical event affecting breast cancer patient survival. To identify molecules contributing to the metastatic process, we analysed The Cancer Genome Atlas (TCGA) breast cancer data and identified 41 genes whose expression is inversely correlated with survival. Here we show that GABAA receptor alpha3 (Gabra3), normally exclusively expressed in adult brain, is also expressed in breast cancer, with high expression of Gabra3 being inversely correlated with breast cancer survival. We demonstrate that Gabra3 activates the AKT pathway to promote breast cancer cell migration, invasion and metastasis. Importantly, we find an A-to-I RNA-edited form of Gabra3 only in non-invasive breast cancers and show that edited Gabra3 suppresses breast cancer cell invasion and metastasis. A-to-I-edited Gabra3 has reduced cell surface expression and suppresses the activation of AKT required for cell migration and invasion. Our study demonstrates a significant role for mRNA-edited Gabra3 in breast cancer metastasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Xia, E-mail: zhongxia1977@126.com; Li, Xiaonan; Liu, Fuli
2012-08-24
Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibitedmore » TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.« less
Robinson, Angela K.; Leal, Belinda Z.; Chadwell, Linda V.; Wang, Renjing; Ilangovan, Udayar; Kaur, Yogeet; Junco, Sarah E.; Schirf, Virgil; Osmulski, Pawel A.; Gaczynska, Maria; Hinck, Andrew P.; Demeler, Borries; McEwen, Donald G.; Kim, Chongwoo A.
2012-01-01
Polyhomeotic (Ph), a member of the Polycomb Group (PcG), is a gene silencer critical for proper development. We present a previously unrecognized way of controlling Ph function through modulation of its sterile alpha motif (SAM) polymerization leading to the identification of a novel target for tuning the activities of proteins. SAM domain containing proteins have been shown to require SAM polymerization for proper function. However, the role of the Ph SAM polymer in PcG-mediated gene silencing was uncertain. Here, we first show that Ph SAM polymerization is indeed required for its gene silencing function. Interestingly, the unstructured linker sequence N-terminal to Ph SAM can shorten the length of polymers compared with when Ph SAM is individually isolated. Substituting the native linker with a random, unstructured sequence (RLink) can still limit polymerization, but not as well as the native linker. Consequently, the increased polymeric Ph RLink exhibits better gene silencing ability. In the Drosophila wing disc, Ph RLink expression suppresses growth compared with no effect for wild-type Ph, and opposite to the overgrowth phenotype observed for polymer-deficient Ph mutants. These data provide the first demonstration that the inherent activity of a protein containing a polymeric SAM can be enhanced by increasing SAM polymerization. Because the SAM linker had not been previously considered important for the function of SAM-containing proteins, our finding opens numerous opportunities to manipulate linker sequences of hundreds of polymeric SAM proteins to regulate a diverse array of intracellular functions. PMID:22275371
Gumy, Christel; Chandsawangbhuwana, Charlie; Dzyakanchuk, Anna A; Kratschmar, Denise V; Baker, Michael E; Odermatt, Alex
2008-01-01
Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT) is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT) in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR) function. We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK) and tyrosine-aminotransferase (TAT) and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6) and TNF-alpha production in lipopolysaccharide (LPS)-stimulated native human macrophages and human THP-1 macrophages. DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin.
Hao, Junli; Jin, Wensong; Li, Xinghui; Wang, Saifeng; Zhang, Xiaojun; Fan, Hongxia; Li, Changfei; Chen, Lizhao; Gao, Bin; Liu, Guangze; Meng, Songdong
2013-01-01
Alpha interferon (IFN-α)-based therapy can effectively treat chronic hepatitis B virus (HBV) infection, which causes life-threatening complications. Responses to IFN-α therapy vary greatly in chronic hepatitis B (CHB) patients, but underlying mechanisms are almost unknown. In this study, we found that IFN-α treatment induced a marked decrease of microRNA-122 (miR-122) expression in hepatocytes. We next showed that IFN-α-induced miR-122 downregulation was only partly due to transcriptional suppression. One IFN-stimulated gene (ISG), NT5C3, which was identified as a miR-122 target, efficiently inhibited miR-122 by binding and sequestering miR-122 with its mRNA 3'-untranslated region (3'-UTR), indicating that this ISG is involved in IFN-α-mediated miR-122 suppression. Notably, the inhibitory effect of IFN-α on miR-122 was completely abolished by blocking IFN-α-induced upregulation of NT5C3 mRNA expression by RNA interference (RNAi). Meanwhile, we observed that miR-122 dramatically inhibited HBV expression and replication. Finally, we showed that IFN-α-mediated HBV-inhibitory effects could be enhanced significantly by blocking IFN-α-induced downregulation of miR-122. We therefore concluded that IFN-α-induced inhibition of miR-122 may negatively affect the anti-HBV function of IFN-α. These data provide valuable insights for a better understanding of the antiviral mechanism of IFN-α and raise further potential interest in enhancing its anti-HBV efficacy.
Hao, Junli; Jin, Wensong; Li, Xinghui; Wang, Saifeng; Zhang, Xiaojun; Fan, Hongxia; Li, Changfei; Chen, Lizhao; Gao, Bin
2013-01-01
Alpha interferon (IFN-α)-based therapy can effectively treat chronic hepatitis B virus (HBV) infection, which causes life-threatening complications. Responses to IFN-α therapy vary greatly in chronic hepatitis B (CHB) patients, but underlying mechanisms are almost unknown. In this study, we found that IFN-α treatment induced a marked decrease of microRNA-122 (miR-122) expression in hepatocytes. We next showed that IFN-α-induced miR-122 downregulation was only partly due to transcriptional suppression. One IFN-stimulated gene (ISG), NT5C3, which was identified as a miR-122 target, efficiently inhibited miR-122 by binding and sequestering miR-122 with its mRNA 3′-untranslated region (3′-UTR), indicating that this ISG is involved in IFN-α-mediated miR-122 suppression. Notably, the inhibitory effect of IFN-α on miR-122 was completely abolished by blocking IFN-α-induced upregulation of NT5C3 mRNA expression by RNA interference (RNAi). Meanwhile, we observed that miR-122 dramatically inhibited HBV expression and replication. Finally, we showed that IFN-α-mediated HBV-inhibitory effects could be enhanced significantly by blocking IFN-α-induced downregulation of miR-122. We therefore concluded that IFN-α-induced inhibition of miR-122 may negatively affect the anti-HBV function of IFN-α. These data provide valuable insights for a better understanding of the antiviral mechanism of IFN-α and raise further potential interest in enhancing its anti-HBV efficacy. PMID:23055569
Bodell, Lindsay P; Brown, Tiffany A; Keel, Pamela K
2017-01-01
Weight suppression predicts the onset and maintenance of bulimic syndromes. Despite this finding, no study has examined psychological mechanisms contributing to these associations using a longitudinal design. Given societal pressures to be thin and an actual history of higher weight, it is possible that greater weight suppression contributes to increased fear of gaining weight and preoccupation with being thin, which increase vulnerability to eating disorders. The present study investigated whether greater drive for thinness mediates associations between weight suppression and bulimic symptoms over long-term follow-up. Participants were women (n = 1,190) and men (n = 509) who completed self-report surveys in college and 10- and 20-years later. Higher weight suppression at baseline predicted higher bulimic symptoms at 20-year follow-up (p < .001), while accounting for demographic variables and baseline bulimic symptoms, body mass index, and drive for thinness. Increased drive for thinness at 10-year follow-up mediated this effect. Findings highlight the long-lasting effect of weight suppression on bulimic symptoms and suggest that preoccupation with thinness may help maintain this association. Future studies would benefit from incorporating other hypothesized consequences of weight suppression, including biological factors, into risk models. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miettinen, Johanna A., E-mail: johanna.miettinen@oulu.fi; Pietilae, Mika; Salonen, Riikka J.
Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-{alpha}) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-{alpha} exposure on MSCs derived from human bone marrow. We found,more » as expected, that cell proliferation was significantly enhanced during TNF-{alpha} exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-{alpha} exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-{alpha} exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-{alpha} exposure, which might influence MSC differentiation stage and capacity.« less
Interleukin-10 attenuates experimental fetal growth restriction and demise.
Rivera, D L; Olister, S M; Liu, X; Thompson, J H; Zhang, X J; Pennline, K; Azuero, R; Clark, D A; Miller, M J
1998-02-01
Premature labor, fetal demise, and fetal growth restriction are accompanied by indices of inflammation or infection of the uteroplacental unit. To understand whether these events are causally related, we established an animal model of fetal demise and growth restriction and evaluated the potential utility of the anti-inflammatory cytokine interleukin-10 (IL-10). We administered low-dose endotoxin (lipopolysaccharide, or LPS, 100 microg/kg, i.p.) to third trimester rats (gestational days 14-20). Control rats received normal saline. A third group received IL-10 (100 microg/kg; s.c.) concomitantly with LPS for 7 prenatal days. Cytokine gene expression (IL-10 and TNF-alpha) was evaluated by RT-PCR and tissue levels (TNF-alpha) were determined by ELISA. Apoptosis was evaluated by TdT-mediated dUTP nick end labeling immunohistochemistry, and nitric oxide (NO) levels were quantified by microelectrode electrochemical detection in explants in culture media. LPS exposure resulted in 43% fetal demise and reduced the size of the surviving fetuses. Placental weight was not altered by LPS. IL-10 attenuated the LPS-induced fetal death rate (to 22%) and growth restriction (P<0.05). In normal rats, IL-10 did not affect fetus size or the incidence of resorptions, although placental size was marginally smaller. Increased uterine TNF-alpha content and NO release and apoptosis of uterine epithelia and muscularis were hallmarks of the LPS model. All were normalized by IL-10. IL-10 may represent a new therapeutic option for the treatment of a variety of perinatal complications. Benefit may result from the suppression of TNF-alpha- and NO-mediated cell death.
Biomechanical Forces Promote Immune Regulatory Function of Bone Marrow Mesenchymal Stromal Cells.
Diaz, Miguel F; Vaidya, Abishek B; Evans, Siobahn M; Lee, Hyun J; Aertker, Benjamin M; Alexander, Alexander J; Price, Katherine M; Ozuna, Joyce A; Liao, George P; Aroom, Kevin R; Xue, Hasen; Gu, Liang; Omichi, Rui; Bedi, Supinder; Olson, Scott D; Cox, Charles S; Wenzel, Pamela L
2017-05-01
Mesenchymal stromal cells (MSCs) are believed to mobilize from the bone marrow in response to inflammation and injury, yet the effects of egress into the vasculature on MSC function are largely unknown. Here we show that wall shear stress (WSS) typical of fluid frictional forces present on the vascular lumen stimulates antioxidant and anti-inflammatory mediators, as well as chemokines capable of immune cell recruitment. WSS specifically promotes signaling through NFκB-COX2-prostaglandin E 2 (PGE 2 ) to suppress tumor necrosis factor-α (TNF-α) production by activated immune cells. Ex vivo conditioning of MSCs by WSS improved therapeutic efficacy in a rat model of traumatic brain injury, as evidenced by decreased apoptotic and M1-type activated microglia in the hippocampus. These results demonstrate that force provides critical cues to MSCs residing at the vascular interface which influence immunomodulatory and paracrine activity, and suggest the potential therapeutic use of force for MSC functional enhancement. Stem Cells 2017;35:1259-1272. © 2017 AlphaMed Press.
Licastro, F; Chiappelli, M; Ianni, M; Porcellini, E
2009-01-01
Inhibitors of tumor necrosis factor-alpha have deeply changed the therapy of several inflammatory human diseases. For instance, clinical management of rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis have profoundly benefited after the introduction of new therapeutic tools, such as antagonist of TNF-alpha molecule. These drugs include etanercept, a soluble TNF-alpha receptor antagonist, three anti-TNF-alpha antibodies, adalimumab, infliximab, golimumab and certolizumab a humanized Fab fragment combined with polyethylene glycol. These compounds efficiently inhibit several TNF-alpha biological-mediated effects, however, they have also shown differential clinical efficacy in several trials from different autoimmune diseases. It is of clinical relevance that non-responders to one of these drugs often positively responded to another. Different mechanisms of action and diversity in pharmacokinetics of these three compounds may partially explain different clinical effects. However, partially diverse pathogenetic mechanisms in different diseases also contribute to differential therapeutic responses. Therefore, these apparently homogeneous agents can not be considered equivalent in their clinically efficacy. Differential therapeutic actions of these drugs may be advantageously used in clinical practice and further improve the great potential of individual TNF-alpha inhibitors.
Fiedler, M A; Wernke-Dollries, K; Stark, J M
1998-08-01
The working hypothesis of the studies described herein was that inhibition of proteasome-mediated IkappaB degradation would inhibit TNF-alpha-induced nuclear factor-kappaB (NF-kappaB) activation, interleukin-8 (IL-8) gene transcription, and IL-8 protein release in A549 cells. Mutational analysis of the 5' flanking region of the IL-8 gene confirmed that an intact NF-kappaB site is necessary for TNF-alpha-induced IL-8 gene transcription. The addition of TNF-alpha to A549 cells resulted in rapid loss of IkappaB from the cytoplasm of cells, associated with a corresponding increase in NF-kappaB-binding activity in nuclear extracts from the cells. However, pretreatment of the cells with the proteasome inhibitor N-cbz-Leu-Leu-leucinal (MG-132, 10 microM) reversed the effects of TNF-alpha on IL-8 release from A549 cells (as determined with an enzyme-linked immunosorbent assay [ELISA]) and on IL-8 gene transcription (as determined with reporter-gene assays). MG-132 reversed the effects of TNF-alpha on IkappaB degradation as determined by Western blot analysis. IkappaB phosphorylation and ubiquination were not altered by MG-132, which implies that the effects of MG-132 were secondary to proteasome inhibition. MG-132 also reversed the increase in NF-kappaB binding in nuclear extracts from TNF-alpha-treated cells. These studies show that inhibition of proteasome-mediated IkappaB degradation results in inhibition of TNF-alpha induced IL-8 production in A549 cells by limiting NF-kappaB-mediated gene transcription.
Lupia, E; Montrucchio, G; Battaglia, E; Modena, V; Camussi, G
1996-08-01
The aim of the present study was to investigate in vivo in a mouse model the stimulation of neoangiogenesis by synovial fluids of patients with rheumatoid arthritis (RA) and to determine the role of tumor necrosis factor (TNF)-alpha and platelet-activating factor (PAF) in the formation of new vessels. Angiogenesis was studied in a mouse model in which Matrigel, injected subcutaneously, was used as a vehicle for the delivery of potential angiogenic stimuli. Synovial fluids of patients with RA but not with osteoarthritis (OA) were shown to induce neoangiogenesis. Since synovial fluid of patients with RA contained significantly higher levels of TNF-alpha-like bioactivity and of PAF than that of patients with OA, the role of these mediators was evaluated by using an anti-TNF-alpha neutralizing monoclonal antibody (mAb) and a PAF receptor antagonist, WEB 2170. When added to Matrigel, anti-TNF-alpha mAb and particularly WEB 2170 significantly reduced neoangiogenesis induced by synovial fluids of RA patients. Moreover, PAF extracted and purified from synovial fluid induced angiogenesis. These results suggest that the neoangiogenesis observed in rheumatoid synovitis may be due, at least in part, to the angiogenic effect of locally produced TNF-alpha and PAF.
Newman-Tancredi, A; Chaput, C; Touzard, M; Millan, M J
2000-04-03
alpha(2)-adrenoceptor-mediated G-protein activation was examined by [(35)S]-GTPgammaS autoradiography. In alpha(2)-adrenoceptor-rich regions (amygdala, lateral septum), noradrenaline stimulated [(35)S]-GTPgammaS binding. These actions were abolished by the selective alpha(2) antagonist, atipamezole. Conversely, in caudate nucleus, which expresses few alpha(2) receptors, noradrenaline-induced stimulation was not inhibited by atipamezole, suggesting that it is not mediated by alpha(2)-adrenoceptors.
Belderbos, Mirjam E.; Levy, Ofer; Stalpers, Femke; Kimpen, Jan L.; Meyaard, Linde; Bont, Louis
2012-01-01
Human neonates are highly susceptible to infection, which may be due in part to impaired innate immune function. Neonatal Toll-like receptor (TLR) responses are biased against the generation of pro-inflammatory/Th1-polarizing cytokines, yet the underlying mechanisms are incompletely defined. Here, we demonstrate that neonatal plasma polarizes TLR4-mediated cytokine production. When exposed to cord blood plasma, mononuclear cells (MCs) produced significantly lower TLR4-mediated IL-12p70 and higher IL-10 compared to MC exposed to adult plasma. Suppression by neonatal plasma of TLR4-mediated IL-12p70 production, but not induction of TLR4-mediated IL-10 production, was maintained up to the age of 1 month. Cord blood plasma conferred a similar pattern of MC cytokine responses to TLR3 and TLR8 agonists, demonstrating activity towards both MyD88-dependent and MyD88-independent agonists. The factor causing increased TLR4-mediated IL-10 production by cord blood plasma was heat-labile, lost after protein depletion and independent of lipoprotein binding protein (LBP) or soluble CD14 (sCD14). The factor causing inhibition of TLR4-mediated IL-12p70 production by cord blood plasma was resistant to heat inactivation or protein depletion and was independent of IL-10, vitamin D and prostaglandin E2. In conclusion, human neonatal plasma contains at least two distinct factors that suppress TLR4-mediated IL-12p70 production or induce IL-10 or production. Further identification of these factors will provide insight into the ontogeny of innate immune development and might identify novel targets for the prevention and treatment of neonatal infection. PMID:22442690
Ge, Chen-Xu; Yu, Rong; Xu, Min-Xuan; Li, Pei-Qin; Fan, Chen-Yu; Li, Jian-Mei; Kong, Ling-Dong
2016-01-05
Betaine has been proven effective in treating nonalcoholic fatty liver disease (NAFLD) in animal models, however, its molecular mechanisms remain elusive. The aims of this study were to explore the mechanisms mediating the anti-inflammatory and anti-lipogenic actions of betaine in fructose-fed rats. In this study, betaine improved insulin resistance, reduced body weight gain and serum lipid levels, and prevented hepatic lipid accumulation in fructose-fed rats. It up-regulated hepatic expression of liver X receptor-alpha (LXRα) and peroxisome proliferator-activated receptor-alpha (PPARα), with the attenuation of the changes of their target genes, including hepatic carnitine palmitoyl transferase (CPT) 1α, glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1, apolipoprotein B, sterol regulatory element-binding protein 1c and adipocyte differentiation-related protein, involved in fatty acid oxidation and lipid storage in these model rats. Furthermore, betaine alleviated ER stress and inhibited acetyl-CoA carboxylase α, CPT II, stearoyl-CoA desaturase 1 and fatty acid synthase expression involved in fatty acid synthesis in the liver of fructose-fed rats. Betaine suppressed hepatic gluconeogenesis in fructose-fed rats by moderating protein kinase B -forkhead box protein O1 pathway, as well as p38 mitogen-activated protein kinase and mammalian target of rapamycin activity. Moreover, betaine inhibited hepatic nuclear factor kappa B /nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome activation-mediated inflammation in this animal model. These results demonstrated that betaine ameliorated hepatic lipid accumulation, gluconeogenesis, and inflammation through restoring LXRα and PPARα expression and alleviating ER stress in fructose-fed rats. This study provides the potential mechanisms of betaine involved in the treatment of NAFLD. Copyright © 2015 Elsevier B.V. All rights reserved.
Onda, Kenji; Nagashima, Masahiro; Kawakubo, Yo; Inoue, Shota; Hirano, Toshihiko; Oka, Kitaro
2006-12-08
Glucocorticoids (GCs) are essential drugs administered topically or systematically for the treatment of autoimmune skin diseases such as pemphigus. However, a certain proportion of patients does not respond well to GCs. Although studies on the relationship between cytokines and GC insensitivity in local tissues have attracted attention recently, little is known about the underlying mechanism(s) for GC insensitivity in epidermal keratinocytes. Here, we report that tumor necrosis factor (TNF) alpha reduces GC-induced transactivation of endogenous genes as well as a reporter plasmid which contains GC responsive element (GRE) in human epidermal keratinocyte cells (HaCaT). The GC insensitivity by TNFalpha was not accompanied by changes in mRNA expressions of GR isoforms (alpha or beta). However, we observed that mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase (MEK-1/ERK) inhibitors (PD98059 and U0126) significantly sensitized the GC-induced transactivation of anti-inflammatory genes (glucocorticoid-induced leucine zipper (GILZ) and mitogen-activated protein kinase phosphatase (MKP)-1) and FK506 binding protein (FKBP) 51 gene in the presence of TNFalpha. Additionally, we observed that TNFalpha reduced prednisolone (PSL)-dependent nuclear translocation of GR, which was restored by pre-treatment of MEK-1 inhibitors. This is the first study demonstrating a role of the MEK-1/ERK cascade in TNFalpha-mediated GC insensitivity. Our data suggest that overexpression of TNFalpha leads to topical GC insensitivity by reducing GR nuclear translocation in keratinocytes, and our findings also suggest that inhibiting the MEK-1/ERK cascade may offer a therapeutic potential for increasing GC efficacy in epidermis where sufficient inflammatory suppression is required.
Snyder, Adam C.; Foxe, John J.
2010-01-01
Retinotopically specific increases in alpha-band (~10 Hz) oscillatory power have been strongly implicated in the suppression of processing for irrelevant parts of the visual field during the deployment of visuospatial attention. Here, we asked whether this alpha suppression mechanism also plays a role in the nonspatial anticipatory biasing of feature-based attention. Visual word cues informed subjects what the task-relevant feature of an upcoming visual stimulus (S2) was, while high-density electroencephalographic recordings were acquired. We examined anticipatory oscillatory activity in the Cue-to-S2 interval (~2 s). Subjects were cued on a trial-by-trial basis to attend to either the color or direction of motion of an upcoming dot field array, and to respond when they detected that a subset of the dots differed from the majority along the target feature dimension. We used the features of color and motion, expressly because they have well known, spatially separated cortical processing areas, to distinguish shifts in alpha power over areas processing each feature. Alpha power from dorsal regions increased when motion was the irrelevant feature (i.e., color was cued), and alpha power from ventral regions increased when color was irrelevant. Thus, alpha-suppression mechanisms appear to operate during feature-based selection in much the same manner as has been shown for space-based attention. PMID:20237273
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leanos-Castaneda, Olga; Kraak, Glen van der
2007-10-15
The estrogen-dependent process of vitellogenesis is a key function on oviparous fish reproduction and it has been widely used as an indicator of xenoestrogen exposure. The two estrogen receptor (ER) subtypes, ER{alpha} and ER{beta}, are often co-expressed in the liver of fish. The relative contribution of each ER subtype to modulate vitellogenin production by hepatocytes was studied using selected compounds known to preferentially interact with specific ER subtypes: propyl-pyrazole-triol (PPT) an ER{alpha} selective agonist, methyl-piperidino-pyrazole (MPP) an ER{alpha} selective antagonist, and diarylpropionitrile (DPN) an ER{beta} selective agonist. First, the relative binding affinity of the test compounds to estradiol for rainbowmore » trout hepatic nuclear ER was determined using a competitive ligand binding assay. All the test ligands achieved complete displacement of specific [{sup 3}H]-estradiol binding from the nuclear ER extract. This indicates that the test ligands have the potential to modify the ER function in the rainbow trout liver. Secondly, the ability of the test compounds to induce or inhibit vitellogenin production by primary cultures of rainbow trout hepatocytes was studied. Estradiol and DPN were the only compounds that induced a dose-dependent increase on vitellogenin synthesis. The lack of vitellogenin induction by PPT indicates that ER{alpha} could not have a role on this reproductive process whereas the ability of DPN to induce vitellogenin production supports the participation of ER{beta}. In addition, this hypothesis is reinforced by the results obtained from MPP plus estradiol. On one hand, the absence of suppressive activity of MPP in the estradiol-induced vitellogenin production does not support the participation of ER{alpha}. On the other hand, once blocked ER{alpha} with MPP, the only manifestation of agonist activity of estradiol would be achieved via ER{beta}. In conclusion, the present results indicate that vitellogenin production is mainly mediated through ER{beta}, implying, furthermore that compounds which only exhibit ER{alpha} selectivity are not detected by vitellogenin bioassay.« less
Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo
2002-01-01
Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252
Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo
2002-12-01
Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madonna, Rosalinda; Institute of Cardiology, and Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti; Shelat, Harnath
2009-10-15
Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiacmore » myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.« less
GABA predicts visual intelligence.
Cook, Emily; Hammett, Stephen T; Larsson, Jonas
2016-10-06
Early psychological researchers proposed a link between intelligence and low-level perceptual performance. It was recently suggested that this link is driven by individual variations in the ability to suppress irrelevant information, evidenced by the observation of strong correlations between perceptual surround suppression and cognitive performance. However, the neural mechanisms underlying such a link remain unclear. A candidate mechanism is neural inhibition by gamma-aminobutyric acid (GABA), but direct experimental support for GABA-mediated inhibition underlying suppression is inconsistent. Here we report evidence consistent with a global suppressive mechanism involving GABA underlying the link between sensory performance and intelligence. We measured visual cortical GABA concentration, visuo-spatial intelligence and visual surround suppression in a group of healthy adults. Levels of GABA were strongly predictive of both intelligence and surround suppression, with higher levels of intelligence associated with higher levels of GABA and stronger surround suppression. These results indicate that GABA-mediated neural inhibition may be a key factor determining cognitive performance and suggests a physiological mechanism linking surround suppression and intelligence. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Lee, Dong-Kee; Kang, Jae-Eun; Park, Hye-Jin; Kim, Myung-Hwa; Yim, Tae-Hee; Kim, Jung-Min; Heo, Min-Kyu; Kim, Kyu-Yeun; Kwon, Ho Jeong; Hur, Man-Wook
2005-07-29
The POZ domain is a highly conserved protein-protein interaction motif found in many regulatory proteins. Nuclear factor-kappaB (NF-kappaB) plays a key role in the expression of a variety of genes in response to infection, inflammation, and stressful conditions. We found that the POZ domain of FBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) interacted with the Rel homology domain of the p65 subunit of NF-kappaB in both in vivo and in vitro protein-protein interaction assays. FBI-1 enhanced NF-kappaB-mediated transcription of E-selectin genes in HeLa cells upon phorbol 12-myristate 13-acetate stimulation and overcame gene repression by IkappaB alpha or IkappaB beta. In contrast, the POZ domain of FBI-1, which is a dominant-negative form of FBI-1, repressed NF-kappaB-mediated transcription, and the repression was cooperative with IkappaB alpha or IkappaB beta. In contrast, the POZ domain tagged with a nuclear localization sequence polypeptide of FBI-1 enhanced NF-kappaB-responsive gene transcription, suggesting that the molecular interaction between the POZ domain and the Rel homology domain of p65 and the nuclear localization by the nuclear localization sequence are important in the transcription enhancement mediated by FBI-1. Confocal microscopy showed that FBI-1 increased NF-kappaB movement into the nucleus and increased the stability of NF-kappaB in the nucleus, which enhanced NF-kappaB-mediated transcription of the E-selectin gene. FBI-1 also interacted with IkappaB alpha and IkappaB beta.
An endogenous RNA transcript antisense to CNG(alpha)1 cation channel mRNA.
Cheng, Chin-Hung; Yew, David Tai-Wai; Kwan, Hiu-Yee; Zhou, Qing; Huang, Yu; Liu, Yong; Chan, Wing-Yee; Yao, Xiaoqiang
2002-10-01
CNG channels are cyclic nucleotide-gated Ca(2+)-permeable channels that are suggested to be involved in the activity-dependent alterations of synaptic strength that are thought to underlie information storage in the CNS. In this study, we isolated an endogenous RNA transcript antisense to CNG(alpha)1 mRNA. This transcript was capable of down-regulating the expression of sense CNG(alpha)1 in the Xenopus oocyte expression system. RT-PCR, Northern blot, and in situ hybridization analyses showed that the transcript was coexpressed with CNG(alpha)1 mRNA in many regions of human brain, notably in those regions that were involved in long-term potentiation and long-term depression, such as hippocampal CA1 and CA3, dentate gyrus, and cerebellar Purkinje layer. Comparison of expression patterns between adult and fetal cerebral cortex revealed that there were concurrent developmental changes in the expression levels of anti-CNG1 and CNG(alpha)1. Treatment of human glioma cell T98 with thyroid hormone T(3) caused a significant increase in anti-CNG1 expression and a parallel decrease in sense CNG(alpha)1 expression. These data suggest that the suppression of CNG(alpha)1 expression by anti-CNG1 may play an important role in neuronal functions, especially in synaptic plasticity and cortical development. Endogenous antisense RNA-mediated regulation may represent a new mechanism through which the activity of ion channels can be regulated in the human CNS.
Lim, Wonchung; Park, Choa; Shim, Myeong Kuk; Lee, Yong Hee; Lee, You Mie; Lee, YoungJoo
2014-01-01
Background and Purpose The COX-2/PGE2 pathway in hypoxic cancer cells has important implications for stimulation of inflammation and tumourigenesis. However, the mechanism by which glucocorticoid receptors (GRs) inhibit COX-2 during hypoxia has not been elucidated. Hence, we explored the mechanisms underlying glucocorticoid-mediated inhibition of hypoxia-induced COX-2 in human distal lung epithelial A549 cells. Experimental Approach The expressions of COX-2 and glucocorticoid-induced leucine zipper (GILZ) in A549 cells were determined by Western blot and/or quantitative real time-PCR respectively. The anti-invasive effect of GILZ on A549 cells was evaluated using the matrigel invasion assay. Key Results The hypoxia-induced increase in COX-2 protein and mRNA levels and promoter activity were suppressed by dexamethasone, and this effect of dexamethasone was antagonized by the GR antagonist RU486. Overexpression of GILZ in A549 cells also inhibited hypoxia-induced COX-2 expression levels and knockdown of GILZ reduced the glucocorticoid-mediated inhibition of hypoxia-induced COX-2 expression, indicating that the inhibitory effects of dexamethasone on hypoxia-induced COX-2 are mediated by GILZ. GILZ suppressed the expression of hypoxia inducible factor (HIF)-1α at the protein level and affected its signalling pathway. Hypoxia-induced cell invasion was also dramatically reduced by GILZ expression. Conclusion and Implications Dexamethasone-induced upregulation of GILZ not only inhibits the hypoxic-evoked induction of COX-2 expression and cell invasion but further blocks the HIF-1 pathway by destabilizing HIF-1α expression. Taken together, these findings suggest that the suppression of hypoxia-induced COX-2 by glucocorticoids is mediated by GILZ. Hence, GILZ is a potential key therapeutic target for suppression of inflammation under hypoxia. PMID:24172143
Yang, Lina; McLellan, Hazel; Naqvi, Shaista; He, Qin; Boevink, Petra C; Armstrong, Miles; Giuliani, Licida M; Zhang, Wei; Tian, Zhendong; Zhan, Jiasui; Gilroy, Eleanor M; Birch, Paul R J
2016-05-01
Plant pathogens deliver effectors to manipulate host processes. We know little about how fungal and oomycete effectors target host proteins to promote susceptibility, yet such knowledge is vital to understand crop disease. We show that either transient expression in Nicotiana benthamiana, or stable transgenic expression in potato (Solanum tuberosum), of the Phytophthora infestans RXLR effector Pi02860 enhances leaf colonization by the pathogen. Expression of Pi02860 also attenuates cell death triggered by the P. infestans microbe-associated molecular pattern INF1, indicating that the effector suppresses pattern-triggered immunity. However, the effector does not attenuate cell death triggered by Cf4/Avr4 coexpression, showing that it does not suppress all cell death activated by cell surface receptors. Pi02860 interacts in yeast two-hybrid assays with potato NPH3/RPT2-LIKE1 (NRL1), a predicted CULLIN3-associated ubiquitin E3 ligase. Interaction of Pi02860 in planta was confirmed by coimmunoprecipitation and bimolecular fluorescence complementation assays. Virus-induced gene silencing of NRL1 in N. benthamiana resulted in reduced P. infestans colonization and accelerated INF1-mediated cell death, indicating that this host protein acts as a negative regulator of immunity. Moreover, whereas NRL1 virus-induced gene silencing had no effect on the ability of the P. infestans effector Avr3a to suppress INF1-mediated cell death, such suppression by Pi02860 was significantly attenuated, indicating that this activity of Pi02860 is mediated by NRL1. Transient overexpression of NRL1 resulted in the suppression of INF1-mediated cell death and enhanced P. infestans leaf colonization, demonstrating that NRL1 acts as a susceptibility factor to promote late blight disease. © 2016 American Society of Plant Biologists. All Rights Reserved.
Fujimura, Yuji; Hotokezaka, Hitoshi; Ohara, Naoya; Naito, Mariko; Sakai, Eiko; Yoshimura, Mamiko; Narita, Yuka; Kitaura, Hideki; Yoshida, Noriaki; Nakayama, Koji
2006-05-01
Extracellular proteinaceous factors of Porphyromonas gingivalis, a periodontal pathogen, that influence receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL)-induced osteoclastogenesis from bone marrow macrophages were investigated. The culture supernatant of P. gingivalis had the ability to inhibit RANKL-induced in vitro osteoclastogenesis. A major protein of the culture supernatant, hemoglobin receptor protein (HbR), suppressed RANKL-induced osteoclastogenesis in a dose-dependent fashion. HbR markedly inhibited RANKL-induced osteoclastogenesis when present in the culture for the first 24 h after addition of RANKL, whereas no significant inhibition was observed when HbR was added after 24 h or later, implying that HbR might interfere with only the initial stage of RANKL-mediated differentiation. HbR tightly bound to bone marrow macrophages and had the ability to induce phosphorylation of ERK, p38, NF-kappaB, and Akt. RANKL-induced phosphorylation of ERK, p38, and NF-kappaB was not suppressed by HbR, but that of Akt was markedly suppressed. HbR inhibited RANKL-mediated induction of c-Fos and NFATc1. HbR could induce beta interferon (IFN-beta) from bone marrow macrophages, but the induction level of IFN-beta might not be sufficient to suppress RANKL-mediated osteoclastogenesis, implying presence of an IFN-beta-independent pathway in HbR-mediated inhibition of osteoclastogenesis. Since rapid and extensive destruction of the alveolar bone causes tooth loss, resulting in loss of the gingival crevice that is an anatomical niche for periodontal pathogens such as P. gingivalis, the suppressive effect of HbR on osteoclastogenesis may help the microorganism exist long in the niche.
Im, S H; Barchan, D; Maiti, P K; Raveh, L; Souroujon, M C; Fuchs, S
2001-10-01
Interleukin-18 (IL-18) is a pleiotropic proinflammatory cytokine that plays an important role in interferon gamma (IFN-gamma) production and IL-12-driven Th1 phenotype polarization. Increased expression of IL-18 has been observed in several autoimmune diseases. In this study we have analyzed the role of IL-18 in an antibody-mediated autoimmune disease and elucidated the mechanisms involved in disease suppression mediated by blockade of IL-18, using experimental autoimmune myasthenia gravis (EAMG) as a model. EAMG is a T cell-regulated, antibody-mediated autoimmune disease in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. Th1- and Th2-type responses are both implicated in EAMG development. We show that treatment by anti-IL-18 during ongoing EAMG suppresses disease progression. The protective effect can be adoptively transferred to naive recipients and is mediated by increased levels of the immunosuppressive Th3-type cytokine TGF-beta and decreased AChR-specific Th1-type cellular responses. Suppression of EAMG is accompanied by down-regulation of the costimulatory factor CD40L and up-regulation of CTLA-4, a key negative immunomodulator. Our results suggest that IL-18 blockade may potentially be applied for immunointervention in myasthenia gravis.
Ochi, Nobuaki; Isozaki, Hideko; Takeyama, Masami; Singer, Jack W; Yamane, Hiromichi; Honda, Yoshihiro; Kiura, Katsuyuki; Takigawa, Nagio
2016-06-10
The combination effect of pacritinib, a novel JAK2/FLT3 inhibitor, with erlotinib, the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), on non-small cell lung cancer cells with EGFR activating mutations was investigated. The combination showed synergistic effects on JAK2-mediated EGFR TKI-resistant PC-9/ER3 cells in some cases. The combination markedly suppressed pAKT and pERK although pSTAT3 expression was similar regardless of treatment with the pacritinib, pacritinib + erlotinib, or control in PC-9/ER3 cells. Receptor tyrosine kinase array profiling demonstrated that pacritinib suppressed MET in the PC-9/ER3 cells. The combined treatment of pacritinib and erlotinib in PC-9/ER3 xenografts showed more tumor shrinkage compared with each drug as monotherapy. Western blotting revealed that pMET in tumor samples was inhibited. These results suggest MET suppression by pacritinib may play a role in overcoming the EGFR-TKI resistance mediated by JAK2 in the PC-9/ER3 cells. In conclusion, pacritinib combined with EGFR-TKI might be a potent strategy against JAK2-mediated EGFR-TKI resistance. Copyright © 2016 Elsevier Inc. All rights reserved.
Prasad, Rajapaksha Gedara; Choi, Yung Hyun; Kim, Gi-Young
2015-03-01
According to the expansion of lifespan, neuronal disorder based on inflammation has been social problem. Therefore, we isolated shikonin from Lithospermum erythrorhizon and evaluated anti-inflammatory effects of shikonin in lipopolysaccharide (LSP)-stimulated BV2 microglial cells. Shikonin dose-dependently inhibits the expression of the proinflammatory mediators, nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α) as well as their main regulatory genes and products such as inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α in LPS-stimulated BV2 microglial cells. Additionally, shikonin suppressed the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) to regulate the key regulatory genes of the proinflammatory mediators, such as iNOS, COX-2, and TNF-α, accompanied with downregulation of reactive oxygen species (ROS) generation. The results indicate that shikonin may downregulate the expression of proinflammatory genes involved in the synthesis of NO, PGE2, and TNF-α in LPS-treated BV2 microglial cells by suppressing ROS and NF-κB. Taken together, our results revealed that shikonin exerts downregulation of proinflammatory mediators by interference the ROS and NF-κB signaling pathway.
Prasad, Rajapaksha Gedara; Choi, Yung Hyun; Kim, Gi-Young
2015-01-01
According to the expansion of lifespan, neuronal disorder based on inflammation has been social problem. Therefore, we isolated shikonin from Lithospermum erythrorhizon and evaluated anti-inflammatory effects of shikonin in lipopolysaccharide (LSP)-stimulated BV2 microglial cells. Shikonin dose-dependently inhibits the expression of the proinflammatory mediators, nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α) as well as their main regulatory genes and products such as inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α in LPS-stimulated BV2 microglial cells. Additionally, shikonin suppressed the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) to regulate the key regulatory genes of the proinflammatory mediators, such as iNOS, COX-2, and TNF-α, accompanied with downregulation of reactive oxygen species (ROS) generation. The results indicate that shikonin may downregulate the expression of proinflammatory genes involved in the synthesis of NO, PGE2, and TNF-α in LPS-treated BV2 microglial cells by suppressing ROS and NF-κB. Taken together, our results revealed that shikonin exerts downregulation of proinflammatory mediators by interference the ROS and NF-κB signaling pathway. PMID:25767678
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imoto, Seiyu; Ohbayashi, Norihiko; Ikeda, Osamu
2008-05-30
Sma- and MAD-related protein 3 (Smad3) plays crucial roles in the transforming growth factor-{beta} (TGF-{beta})-mediated signaling pathway, which produce a variety of cellular responses, including cell proliferation and differentiation. In our previous study, we demonstrated that protein inhibitor of activated STATy (PIASy) suppresses TGF-{beta} signaling by interacting with and sumoylating Smad3. In the present study, we examined the molecular mechanisms of Smad3 sumoylation during PIASy-mediated suppression of TGF-{beta} signaling. We found that small-interfering RNA-mediated reduction of endogenous PIASy expression enhanced TGF-{beta}-induced gene expression. Importantly, coexpression of Smad3 with PIASy and SUMO1 affected the DNA-binding activity of Smad3. Furthermore, coexpression ofmore » Smad3 with PIASy and SUMO1 stimulated the nuclear export of Smad3. Finally, fluorescence resonance energy transfer analyses revealed that Smad3 interacted with SUMO1 in the cytoplasm. These results suggest that PIASy regulates TGF-{beta}/Smad3-mediated signaling by stimulating sumoylation and nuclear export of Smad3.« less
Chang, Ji Suk; Huypens, Peter; Zhang, Yubin; Black, Chelsea; Kralli, Anastasia; Gettys, Thomas W
2010-06-04
Peroxisome proliferator-activated receptor gamma co-activator-1alpha (PGC-1alpha) plays a central role in the regulation of cellular energy metabolism and metabolic adaptation to environmental and nutritional stimuli. We recently described a novel, biologically active splice variant of PGC-1alpha (NT-PGC-1alpha, amino acids 1-270) that retains the ability to interact with and transactivate nuclear hormone receptors through its N-terminal transactivation domain. Whereas PGC-1alpha is an unstable nuclear protein sensitive to ubiquitin-mediated targeting to the proteasome, NT-PGC-1alpha is relatively stable and predominantly cytoplasmic, suggesting that its ability to interact with and activate nuclear receptors and transcription factors is dependent upon regulated access to the nucleus. We provide evidence that NT-PGC-1alpha interacts with the nuclear exportin, CRM1, through a specific leucine-rich domain (nuclear export sequence) that regulates its export to the cytoplasm. The nuclear export of NT-PGC-1alpha is inhibited by protein kinase A-dependent phosphorylation of Ser-194, Ser-241, and Thr-256 on NT-PGC-1alpha, which effectively increases its nuclear concentration. Using site-directed mutagenesis to prevent or mimic phosphorylation at these sites, we show that the transcriptional activity of NT-PGC-1alpha is regulated in part through regulation of its subcellular localization. These findings suggest that the function of NT-PGC-1alpha as a transcriptional co-activator is regulated by protein kinase A-dependent inhibition of CRM1-mediated export from the nucleus.
Xun, Jing; Wang, Dekun; Shen, Long; Gong, Junbo; Gao, Ruifang; Du, Lingfang; Chang, Antao; Song, Xiangrong; Xiang, Rong; Tan, Xiaoyue
2017-03-28
Epigenetic regulator JMJD3 plays an important role in both tumor progression and somatic cell reprogramming. Here, we explored the effect of JMJD3 on the stem cell-like characteristics of breast cancer and its underlying mechanism involving stemness-related transcription factor Oct4. Our data revealed that, in breast cancer cells lines and an orthotopic xenograph mouse model of breast cancer, ectopic overexpression of JMJD3 suppressed stem cell-like characteristics of breast cancer cells, whereas knockdown of JMJD3 promoted these characteristics. Oct4 mediated the suppressive effects of JMJD3 on the stemness of breast cancer cells. The inhibitory effect of JMJD3 on Oct4 was independent of demethylase activity, but mediated via degradation of PHF20. Furthermore, we applied an agonist of the vitamin D receptor, paricalcitol, and found that it induced JMJD3 in breast cancer cells. Our data showed that administration of paricalcitol suppressed stem cell-like characteristics and Oct4 expression. Taken together, JMJD3 inhibits the stem cell-like characteristics in breast cancer by suppression of stemness factor Oct4 in a PHF20-dependent manner. Administration of paricalcitol leads to upregulation of JMJD3 that suppresses Oct4 expression and the stem cell-like characteristics in breast cancer.
Hepatoprotective Effect of Wedelolactone against Concanavalin A-Induced Liver Injury in Mice.
Luo, Qingqiong; Ding, Jieying; Zhu, Liping; Chen, Fuxiang; Xu, Lili
2018-05-08
Eclipta prostrata L. is a traditional Chinese herbal medicine that has been used in the treatment of liver diseases. However, its biological mechanisms remain elusive. The current study aimed to investigate the hepatoprotective effect of wedelolactone, a major coumarin ingredient of Eclipta prostrata L., on immune-mediated liver injury. Using the well-established animal model of Concanavalin A (ConA)-induced hepatitis (CIH), we found that pretreatment of mice with wedelolactone markedly reduced both the serum levels of transaminases and the severity of liver damage. We further investigated the mechanisms of the protective effect of wedelolactone. In mice treated with wedelolactone prior to the induction of CIH, increases of serum concentrations of tumor necrosis factor (TNF)-[Formula: see text], interferon (IFN)-[Formula: see text], and interleukin (IL)-6 were dramatically attenuated. Additionally, expressions of the interferon-inducible chemokine (C-X-C motif) ligand 10 gene CXCL10 and intercellular adhesion molecule 1 gene ICAM1 were lower in livers of the treated mice. Moreover, wedelolactone-treated CIH mice exhibited reduced leukocyte infiltration and T-cell activation in liver. Furthermore, wedelolactone suppressed the activity of nuclear factor-kappa B (NF-[Formula: see text]B), a critical transcriptional factor of the above-mentioned inflammatory cytokines by limiting the phosphorylation of I kappa B alpha (I[Formula: see text]B[Formula: see text] and p65. In conclusion, these findings demonstrate the inhibitory potential of wedelolactone in immune-mediated liver injury in vivo, and show that this protection is associated with modulation of the NF-[Formula: see text]B signaling pathway.
Alpha Power Modulates Perception Independently of Endogenous Factors.
Brüers, Sasskia; VanRullen, Rufin
2018-01-01
Oscillations are ubiquitous in the brain. Alpha oscillations in particular have been proposed to play an important role in sensory perception. Past studies have shown that the power of ongoing EEG oscillations in the alpha band is negatively correlated with visual outcome. Moreover, it also co-varies with other endogenous factors such as attention, vigilance, or alertness. In turn, these endogenous factors influence visual perception. Therefore, it remains unclear how much of the relation between alpha and perception is indirectly mediated by such endogenous factors, and how much reflects a direct causal influence of alpha rhythms on sensory neural processing. We propose to disentangle the direct from the indirect causal routes by introducing modulations of alpha power, independently of any fluctuations in endogenous factors. To this end, we use white-noise sequences to constrain the brain activity of 20 participants. The cross-correlation between the white-noise sequences and the concurrently recorded EEG reveals the impulse response function (IRF), a model of the systematic relationship between stimulation and brain response. These IRFs are then used to reconstruct rather than record the brain activity linked with new random sequences (by convolution). Interestingly, this reconstructed EEG only contains information about oscillations directly linked to the white-noise stimulation; fluctuations in attention and other endogenous factors may still modulate brain alpha rhythms during the task, but our reconstructed EEG is immune to these factors. We found that the detection of near-perceptual threshold targets embedded within these new white-noise sequences depended on the power of the ~10 Hz reconstructed EEG over parieto-occipital channels. Around the time of presentation, higher power led to poorer performance. Thus, fluctuations in alpha power, induced here by random luminance sequences, can directly influence perception: the relation between alpha power and perception is not a mere consequence of fluctuations in endogenous factors.
Jin, Xue-Hai; Ohgami, Kazuhiro; Shiratori, Kenji; Suzuki, Yukari; Koyama, Yoshikazu; Yoshida, Kazuhiko; Ilieva, Iliyana; Tanaka, Tsuneo; Onoe, Kazunori; Ohno, Shigeaki
2006-05-01
The aim of the present study was to investigate the effects of blue honeysuckle extract (BHE), which contains high level of phenolic compounds, on endotoxin-induced uveitis (EIU). Male Lewis rats were randomly divided into 5 groups with 14 rats in each (eight rats for collection of aqueous humor, six rats for histologic examination). EIU was induced by a footpad injection of lipopolysaccharide (LPS). 1, 10, or 100 mg of BHE was injected intravenously immediately after LPS injection. The aqueous humor was collected at 24 h after LPS injection, the number of infiltrating cells, protein concentration, nitric oxide (NO), tumor necrosis factor (TNF)-alpha, and prostaglandin (PG)-E2 levels in the aqueous humor were determined. Some eyes were enucleated for histologic examination and immunohistochemical analysis. Immunohistochemical staining with a monoclonal antibody against activated nuclear factor (NF)-kappaB was performed to evaluate the effect of BHE on NF-kappaB activation. To further clarify the anti-inflammatory effect, RAW264.7 cells (a mouse macrophage cell line) were stimulated with LPS in the presence or absence of BHE and its major phenolics, cyanidin 3-glucoside (C3G), cyanidin 3-rutinoside (C3R), chlorogenic acid (CA). Expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) were analyzed by Western blot method. BHE treatment significantly reduced the inflammatory cell infiltration, the protein concentration, the levels of NO, TNF-alpha and PGE2 in the aqueous humor and improved histologic status of the ocular tissue. The number of activated NF-kappaB-positive cells was lower in the iris-ciliary body treated with BHE at 3 h after LPS injection. BHE significantly suppressed the production of NO, PGE2 and TNF-alpha in the culture medium as well as the expression of iNOS and COX-2 by LPS-stimulated RAW264.7 cells in a dose-dependent fashion. C3G, C3R and CA showed no or weak inhibitory effects on the level of inflammatory mediators and the expression of iNOS and COX-2. These results suggest that BHE attenuates the degree of inflammation in eyes with EIU by inhibiting the NF-kappaB dependent signaling pathway and the subsequent production of proinflammatory mediators.
Kunzmann, Volker; Kimmel, Brigitte; Herrmann, Thomas; Einsele, Hermann; Wilhelm, Martin
2009-02-01
Tumour growth promotes the expansion of CD4(+) CD25(+) FoxP3(+) regulatory T cells (Tregs) which suppress various arms of immune responses and might therefore contribute to tumour immunosurveillance. In this study, we found an inverse correlation between circulating Treg frequencies and phosphoantigen-induced gammadelta T-cell proliferation in cancer patients, which prompted us to address the role of Tregs in controlling the gammadelta T-cell arm of innate immune responses. In vitro, human Treg-peripheral blood mononuclear cell (PBMC) co-cultures strongly inhibited phosphoantigen-induced proliferation of gammadelta T cells and depletion of Tregs restored the impaired phosphoantigen-induced gammadelta T-cell proliferation of cancer patients. Tregs did not suppress other effector functions of gammadelta T cells such as cytokine production or cytotoxicity. Our experiments indicate that Tregs do not mediate their suppressive activity via a cell-cell contact-dependent mechanism, but rather secrete a soluble non-proteinaceous factor, which is independent of known soluble factors interacting with amino acid depletion (e.g. arginase-diminished arginine and indolamine 2,3-dioxygenase-diminished tryptophan) or nitric oxide (NO) production. However, the proliferative activity of alphabeta T cells was not affected by this cell-cell contact-independent suppressive activity induced by Tregs. In conclusion, these findings indicate a potential new mechanism by which Tregs can specifically suppress gammadelta T cells and highlight the strategy of combining Treg inhibition with subsequent gammadelta T-cell activation to enhance gammadelta T cell-mediated immunotherapy.
Kandil, H M; Berschneider, H M; Argenzio, R A
1994-01-01
Prostaglandins stimulate electrogenic anion secretion and inhibit sodium chloride absorption in cryptosporidium induced pig diarrhoea. Because tumour necrosis factor alpha (TNF alpha) is an early mediator of inflammation and stimulates prostaglandin secretion, we investigated its effect on intestinal ion transport. Cryptosporidium infected pig ileum showed higher macrophage infiltration and tissue TNF alpha-like activity than uninfected tissues (p < 0.05, n = 4 and p < 0.05, n = 12, respectively). TNF alpha treatment of control porcine ileal mucosa increased the short circuit current (Isc), a measurement of net anion secretion in this model (p < 0.001, n = 23). This effect was blocked by 10(-6) M indomethacin and Cl- replacement. Neither acute treatment nor preincubation of colonic intestinal epithelial cell monolayers (T84) with TNF alpha stimulated the Isc. However, co-mounting of TNF alpha preincubated pig jejunal fibroblasts (P2JF) monolayers back to back with untreated T84 monolayers dose-dependently induced an indomethacin sensitive increase in Isc compared with values in untreated co-mounted monolayers (p < 0.001, n = 11). These data suggest that in infectious diarrhoea, TNF alpha may induce Cl- secretion through a paracrine mechanism involving prostaglandin release from subepithelial cells, for example fibroblasts. PMID:8063221
Nemoto, Takashi; Maruyama, Jun-ichi; Kitamoto, Katsuhiko
2009-11-01
Aspergillus oryzae RIB40 has three alpha-amylase genes (amyA, amyB, and amyC), and secretes alpha-amylase abundantly. However, large amounts of endogenous secretory proteins such as alpha-amylase can compete with heterologous protein in the secretory pathway and decrease its production yields. In this study, we examined the effects of suppression of alpha-amylase on heterologous protein production in A. oryzae, using the bovine chymosin (CHY) as a reporter heterologous protein. The three alpha-amylase genes in A. oryzae have nearly identical DNA sequences from those promoters to the coding regions. Hence we performed silencing of alpha-amylase genes by RNA interference (RNAi) in the A. oryzae CHY producing strain. The silenced strains exhibited a reduction in alpha-amylase activity and an increase in CHY production in the culture medium. This result suggests that suppression of alpha-amylase is effective in heterologous protein production in A. oryzae.
Inaba, Kazunori; Murata, Kazuya; Naruto, Shunsuke; Matsuda, Hideaki
2010-04-01
Successive oral administration (50 mg/kg) of a 50% ethanolic extract (HP-ext) of devil's claw, the secondary root of Harpagophytum procumbens, showed a significant anti-inflammatory effect in the rat adjuvant-induced chronic arthritis model. HP-ext dose-dependently suppressed the lipopolysaccharide (LPS)-induced production of inflammatory cytokines [interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha)] in mouse macrophage cells (RAW 264.7). Harpagoside, a major iridoid glycoside present in devil's claw, was found to be one of the active agents in HP-ext and inhibited the production of IL-1beta, IL-6, and TNF-alpha by RAW 264.7.
Mine, Akira; Berens, Matthias L; Nobori, Tatsuya; Anver, Shajahan; Fukumoto, Kaori; Winkelmüller, Thomas M; Takeda, Atsushi; Becker, Dieter; Tsuda, Kenichi
2017-07-11
Phytopathogens promote virulence by, for example, exploiting signaling pathways mediated by phytohormones such as abscisic acid (ABA) and jasmonate (JA). Some plants can counteract pathogen virulence by invoking a potent form of immunity called effector-triggered immunity (ETI). Here, we report that ABA and JA mediate inactivation of the immune-associated MAP kinases (MAPKs), MPK3 and MPK6, in Arabidopsis thaliana ABA induced expression of genes encoding the protein phosphatases 2C (PP2Cs), HAI1 , HAI2 , and HAI3 through ABF/AREB transcription factors. These three HAI PP2Cs interacted with MPK3 and MPK6 and were required for ABA-mediated MPK3/MPK6 inactivation and immune suppression. The bacterial pathogen Pseudomonas syringae pv. tomato ( Pto ) DC3000 activates ABA signaling and produces a JA-mimicking phytotoxin, coronatine (COR), that promotes virulence. We found that Pto DC3000 induces HAI1 through COR-mediated activation of MYC2, a master transcription factor in JA signaling. HAI1 dephosphorylated MPK3 and MPK6 in vitro and was necessary for COR-mediated suppression of MPK3/MPK6 activation and immunity. Intriguingly, upon ETI activation, A. thaliana plants overcame the HAI1-dependent virulence of COR by blocking JA signaling. Finally, we showed conservation of induction of HAI PP2Cs by ABA and JA in other Brassicaceae species. Taken together, these results suggest that ABA and JA signaling pathways, which are hijacked by the bacterial pathogen, converge on the HAI PP2Cs that suppress activation of the immune-associated MAPKs. Also, our data unveil interception of JA-signaling activation as a host counterstrategy against the bacterial suppression of MAPKs during ETI.
Sugita, Sunao; Horie, Shintaro; Nakamura, Orie; Maruyama, Kazuichi; Takase, Hiroshi; Usui, Yoshihiko; Takeuchi, Masaru; Ishidoh, Kazumi; Koike, Masato; Uchiyama, Yasuo; Peters, Christoph; Yamamoto, Yoshimi; Mochizuki, Manabu
2009-10-15
Pigment epithelium isolated from the eye possesses immunosuppressive properties such as regulatory T (Treg) cell induction; e.g., cultured retinal pigment epithelium (RPE) converts CD4(+) T cells into Treg cells in vitro. RPE constitutively expresses a novel immunosuppressive factor, CTLA-2alpha, which is a cathepsin L (CathL) inhibitor, and this molecule acts via RPE to induce Treg cells. To clarify CTLA-2alpha's role in the T cell response to RPE in ocular inflammation, we used the experimental autoimmune uveitis (EAU) animal model to examine this new immunosuppressive property of RPE. In EAU models, TGF-beta, but not IFN-gamma inflammatory cytokines, promotes the up-regulation of the expression of CTLA-2alpha in RPE. Similarly, CTLA-2alpha via RPE was able to promote TGF-beta production by the CD4(+) T cells. The RPE-exposed T cells (RPE-induced Treg cells) greatly produced TGF-beta and suppressed bystander effector T cells. There was less expression of CathL by the RPE-exposed T cells, and CathL-inhibited T cells were able to acquire the Treg phenotype. Moreover, CathL-deficient mice spontaneously produced Treg cells, with the increase in T cells potentially providing protection against ocular inflammation. More importantly, CD4(+) T cells from EAU in CathL knockout mice or rCTLA-2alpha from EAU animals were found to contain a high population of forkhead box p3(+) T cells. In both EAU models, there was significant suppression of the ocular inflammation. These results indicate that RPE secretes CTLA-2alpha, thereby enabling the bystander T cells to be converted into Treg cells via TGF-beta promotion.
Mathewson, Kyle E.; Beck, Diane M.; Ro, Tony; Maclin, Edward L.; Low, Kathy A.; Fabiani, Monica; Gratton, Gabriele
2015-01-01
We investigated the dynamics of brain processes facilitating conscious experience of external stimuli. Previously we proposed that alpha (8-12 Hz) oscillations, which fluctuate with both sustained and directed attention, represent a pulsed inhibition of ongoing sensory brain activity. Here we tested the prediction that inhibitory alpha oscillations in visual cortex are modulated by top-down signals from frontoparietal attention networks. We measured modulations in phase-coherent alpha oscillations from superficial frontal, parietal, and occipital cortices using the event-related optical signal (EROS), a measure of neuronal activity affording high spatiotemporal resolution, along with concurrently-recorded electroencephalogram (EEG), while subjects performed a visual target-detection task. The pre-target alpha oscillations measured with EEG and EROS from posterior areas were larger for subsequently undetected targets, supporting alpha's inhibitory role. Using EROS, we localized brain correlates of these awareness-related alpha oscillations measured at the scalp to the cuneus and precuneus. Crucially, EROS alpha suppression correlated with posterior EEG alpha power across subjects. Sorting the EROS data based on EEG alpha power quartiles to investigate alpha modulators revealed that suppression of posterior alpha was preceded by increased activity in regions of the dorsal attention network, and decreased activity in regions of the cingulo-opercular network. Cross-correlations revealed the temporal dynamics of activity within these preparatory networks prior to posterior alpha modulation. The novel combination of EEG and EROS afforded localization of the sources and correlates of alpha oscillations and their temporal relationships, supporting our proposal that top-down control from attention networks modulates both posterior alpha and awareness of visual stimuli. PMID:24702458
Valerian Inhibits Rat Hepatocarcinogenesis by Activating GABA(A) Receptor-Mediated Signaling
Kakehashi, Anna; Kato, Ayumi; Ishii, Naomi; Wei, Min; Morimura, Keiichirou; Fukushima, Shoji; Wanibuchi, Hideki
2014-01-01
Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA) A receptor (GABA(A)R) system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(A)R agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis) at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN). Formation of glutathione S-transferase placental form positive (GST-P+) foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2′-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P+ foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21Waf1/Cip1, p53 and Bax mRNA expression. Interestingly, expression of the GABA(A)R alpha 1 subunit was observed in GST-P+ foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P+ foci by activating GABA(A)R-mediated signaling. PMID:25419570
Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-{alpha}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ji Hae; Jun, Hee-jin; Hoang, Minh-Hien
2012-06-15
Highlights: Black-Right-Pointing-Pointer Catalposide is a novel ligand for PPAR{alpha}. Black-Right-Pointing-Pointer Cell stimulated with catalposide improved fatty acid uptake, regulated target genes in fatty acid {beta}-oxidation and synthesis. Black-Right-Pointing-Pointer Catalposdie reduces hepatic triacylglycerides. Black-Right-Pointing-Pointer Theses demonstrate catalposide could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: Peroxisome proliferator-activated receptor-alpha (PPAR{alpha}) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPAR{alpha} agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPAR{alpha} agonist, identified from reporter gene assay-based activity screening withmore » approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPAR{alpha}. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P < 0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPAR{alpha} via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.« less
RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaki, Nao; Negishi, Manabu; Katoh, Hironori
2007-08-01
In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as amore » Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85{alpha} and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1.« less
Neurogenic vasodilatation and plasma leakage in the skin.
Holzer, P
1998-01-01
1. Primary afferent nerve fibers control cutaneous blood flow and vascular permeability by releasing vasoactive peptides. These vascular reactions and the additional recruitment of leukocytes are commonly embodied in the term neurogenic inflammation. 2. Calcitonin gene-related peptide (CGRP) acting via CGRP1 receptors is the principal transmitter of neurogenic dilatation of arterioles whereas substance P (SP) and neurokinin A (NKA) acting via NK1 receptors mediate the increase in venular permeability. 3. Neurogenic vasodilatation and plasma protein leakage play a role in inflammation because many inflammatory and immune mediators including interleukin-1 beta, nitric oxide, prostanoids, protons, bradykinin, histamine, and 5-hydroxytryptamine can stimulate peptidergic afferent nerve fibers or enhance their excitability. 4. Neurogenic inflammatory reactions can be suppressed by alpha 2-adrenoceptor agonists, histamine acting via H1 receptors, 5-hydroxytryptamine acting via 5-HT1B receptors, opioid peptides, and somatostatin through prejunctional inhibition of peptide release from vasoactive afferent nerve fibers. CGRP, SP, and NKA receptor antagonists are powerful pharmacological tools to inhibit neurogenic inflammation at the postjunctional level. 5. Imbalance between the facilitatory and inhibitory influences on afferent nerve activity has a bearing on chronic inflammatory disease. Impaired nerve function represents a deficit in skin homeostasis while neuronal overactivity is a factor in allergic and hyperreactive disorders of the skin.
Moriuchi, H; Moriuchi, M; Fauci, A S
1998-05-18
It remains controversial whether human T lymphotropic virus type I (HTLV-I) coinfection leads to more rapid progression of human immunodeficiency virus (HIV) disease in dually infected individuals. To investigate whether HTLV-I infection of certain cells can modulate HIV-1 infection of surrounding cells, primary CD4(+) T cells were treated with cell-free supernatants from HTLV-I-infected MT-2 cell cultures. The primary CD4+ T cells became resistant to macrophage (M)-tropic HIV-1 but highly susceptible to T cell (T)-tropic HIV-1. The CC chemokines RANTES (regulated on activation, normal T cell expressed and secreted), macrophage inflammatory protein (MIP)-1alpha, and MIP-1beta in the MT-2 cell supernatants were identified as the major suppressive factors for M-tropic HIV-1 as well as the enhancers of T-tropic HIV-1 infection, whereas soluble Tax protein increased susceptibility to both M- and T-tropic HIV-1. The effect of Tax or CC chemokines on T-tropic HIV-1 was mediated, at least in part, by increasing HIV Env-mediated fusogenicity. Our data suggest that the net effect of HTLV-I coinfection in HIV-infected individuals favors the transition from M- to T-tropic HIV phenotype, which is generally indicative of progressive HIV disease.
Kimball, F A; Frielink, R D; Porteus, S E
1978-01-01
Silicone rubber discs containing 15(S)-15-methyl prostaglandin F2 alpha ester (15-Me-PGF2 alpha) in the matrix were implanted in the left side of the scrotums of Sprague-Dawley rats. The effect of 1% and 2% drug concentration was examined for 10, 20, or 28 days and compared with the effects of Silastic discs containing no prostaglandin. The discs containing prostaglandin reduced mean testicular and accessory gland weights. Histologically the testes and epididymides showed decreased or absent spermatogenic elements and hypertrophy of the interstitial cell masses in comparison with other cells. Implanted prostaglandin significantly depressed serum testosterone, luteinizing hormone, and follicle-stimulating hormone (FSH) concentrations when 15-Me-PGF2 alpha plasma concentrations exceeded 2 ng/ml. Hormone concentrations returned to control values as drug concentrations declined. FSH concentrations significantly exceeded control values 10 and 20 days after implantation, when prostaglandin concentration was nondetectable. The acute suppression of all three hormones suggest that 15-Me-PGF2 alpha either may act directly on the tests to suppress testosterone production or may suppress testosterone production or may suppress gonadotropin secretion, resulting in depressed testosterone output.
Kraus, Birgit; Wolff, Horst; Elstner, Erich F; Heilmann, Jörg
2010-06-01
Upon activation, microglia, the immunocompetent cells in the brain, get highly phagocytic and release pro-inflammatory mediators like nitric oxide (NO). Excessive NO production is pivotal in neurodegenerative disorders, and there is evidence that abnormalities in NO production and inflammatory responses may at least support a range of neuropsychiatric disorders, including depression. Although extracts of St. John's wort (Hypericum perforatum L.) have been used for centuries in traditional medicine, notably for the treatment of depression, there is still considerable lack in scientific knowledge about the impact on microglia. We used N11 and BV2 mouse microglia, as well as RAW 264.7 macrophages to investigate the effects of St. John's wort extract and constituents thereof on NO production Moreover, flow cytometry and fluorescence microscopy were employed to analyze the influence on phagocytosis, transcription factor activation states, and cell motility. We found that extracts of St. John's wort efficiently suppress lipopolysaccharide-induced NO release and identified hyperforin as the responsible compound, being effective at concentrations between 0.25 and 0.75 microM. The reduced NO production was mediated by diminished inducible nitric oxide synthase expression on the mRNA and protein level. In addition, at similar concentrations, hyperforin reduced zymosan phygocytosis to 20-40% and putatively acted by downregulating the CD206 macrophage mannose receptor and modulation of cell motility. We found that the observed effects correlate with a suppression of the activated state of Nf-kappaB and phospho-CREB, while c-JUN, STAT1, and HIF-1alpha activity and cyclooxygenase-2 expression remained unaffected by hyperforin. These results reveal that hyperforin influences pro-inflammatory and immunological responses of microglia that are involved in the progression of neuropathologic disorders.
Shukla, Smita; Elson, Genie; Blackshear, Perry J.; Lutz, Carol S.; Leibovich, S. Joseph
2017-01-01
We have shown previously that bacterial lipopolysaccharide (LPS)-mediated suppression of Phospholipase-Cβ-2 (PLCβ-2) expression is involved in M1 (inflammatory) to M2-like (wound healing) phenotypic switching of macrophages triggered by adenosine. This suppression is mediated post-transcriptionally by destabilization of PLCβ-2 mRNA. To investigate the mechanism of this LPS-mediated destabilization, we examined the roles of RNA-binding agents including microRNAs and RNA-binding proteins that are involved in regulating stability of mRNAs encoding growth factors, inflammatory mediators and proto-oncogenes. Adenylate and Uridylate (AU)-rich elements (AREs) in 3′UTRs are specific recognition sites for RNA-binding proteins including Tristetraprolin (TTP), HuR and AUF1, and for microRNAs that are involved in regulating mRNA stability. In this study, we investigated the role of TTP and AREs in regulating PLCβ-2 mRNA stability. The 3′UTR of the PLCβ-2 gene was inserted into the pLightswitch luciferase reporter plasmid and transfected into RAW264.7 cells. LPS suppressed Luciferase expression from this reporter. Luciferase expression from mutant 3′UTR constructs lacking AREs was similarly down-regulated, suggesting that these regions are not required for LPS-mediated suppression of PLCβ-2. TTP was rapidly upregulated in both primary murine macrophages and RAW264.7 cells in response to LPS. Suppression of PLCβ-2 by LPS was examined using macrophages from mice lacking TTP. LPS suppressed PLCβ-2 expression to the same extent in wild type and TTP−/− macrophages. Also, the rate of decay of PLCβ-2 mRNA in LPS-treated macrophages following transcriptional blockade was similar in wild type and TTP−/− macrophages, clearly indicating that TTP is not involved in LPS-mediated destabilization of PLCβ-2 mRNA in macrophages. PMID:28124257
Shukla, Smita; Elson, Genie; Blackshear, Perry J; Lutz, Carol S; Leibovich, S Joseph
2017-04-01
We have shown previously that bacterial lipopolysaccharide (LPS)-mediated suppression of phospholipase-Cβ-2 (PLCβ-2) expression is involved in M1 (inflammatory) to M2-like (wound healing) phenotypic switching of macrophages triggered by adenosine. This suppression is mediated post-transcriptionally by destabilization of PLCβ-2 mRNA (messenger ribonucleic acid). To investigate the mechanism of this LPS-mediated destabilization, we examined the roles of RNA-binding agents including microRNAs and RNA-binding proteins that are involved in regulating stability of mRNAs encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenylate and uridylate (AU)-rich elements (AREs) in 3'UTRs are specific recognition sites for RNA-binding proteins including tristetraprolin (TTP), HuR, and AUF1 and for microRNAs that are involved in regulating mRNA stability. In this study, we investigated the role of TTP and AREs in regulating PLCβ-2 mRNA stability. The 3'UTR of the PLCβ-2 gene was inserted into the pLightswitch luciferase reporter plasmid and transfected into RAW264.7 cells. LPS suppressed luciferase expression from this reporter. Luciferase expression from mutant 3'UTR constructs lacking AREs was similarly downregulated, suggesting that these regions are not required for LPS-mediated suppression of PLCβ-2. TTP was rapidly upregulated in both primary murine macrophages and RAW264.7 cells in response to LPS. Suppression of PLCβ-2 by LPS was examined using macrophages from mice lacking TTP (TTP -/- ). LPS suppressed PLCβ-2 expression to the same extent in wild type (WT) and TTP -/- macrophages. Also, the rate of decay of PLCβ-2 mRNA in LPS-treated macrophages following transcriptional blockade was similar in WT and TTP -/- macrophages, clearly indicating that TTP is not involved in LPS-mediated destabilization of PLCβ-2 mRNA in macrophages.
Stephen, Tom L; Rutkowski, Melanie R; Allegrezza, Michael J; Perales-Puchalt, Alfredo; Tesone, Amelia J; Svoronos, Nikolaos; Nguyen, Jenny M; Sarmin, Fahmida; Borowsky, Mark E; Tchou, Julia; Conejo-Garcia, Jose R
2014-09-18
Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the upregulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8⁺ T cells from proliferating and upregulating Granzyme-B and interferon-γ in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors and promoted protection against tumor rechallenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in preactivated CD8⁺ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation. Copyright © 2014 Elsevier Inc. All rights reserved.
PPARgamma agonists inhibit TGF-beta-PKA signaling in glomerulosclerosis.
Zou, Rong; Xu, Gang; Liu, Xiao-cheng; Han, Min; Jiang, Jing-jing; Huang, Qian; He, Yong; Yao, Ying
2010-01-01
To study the probable mechanisms of the anti-glomerulosclerosis effects induced by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists in rat intraglomerular mesangial cells (MCs). Cells were transfected with the pTAL-PPRE-tk-Luc(+) plasmid and then treated with different concentrations of PPARgamma agonist, either troglitazone or telmisartan, for the indicated times. Promega luciferase assays were subsequently used for the detection of PPARgamma activation. Protein expression levels were assessed by Western blot, and PepTag assays were used for the non-radioactive detection of protein kinase A (PKA) activity. The deposition of alpha-smooth muscle actin (alpha-SMA) and p-cyclic AMP responsive element binding protein (pCREB) were analyzed by confocal laser scanning. Both troglitazone and telmisartan remarkably inhibit the PKA activation and pCREB expression that is stimulated by TGF-beta. The PPARgamma agonists also inhibited alpha-SMA and collagen IV protein expression by blocking PKA activation. PPARgamma ligands effectively suppress the activation of MCs and the accumulation of collagen IV stimulated by TGF-beta in vitro. The renal protection provided by PPARgamma agonists is partly mediated via their blockade of TGF-beta/PKA signaling.
Wu, Zhouwei; Uchi, Hiroshi; Morino-Koga, Saori; Shi, Weimin; Furue, Masutaka
2015-09-01
Ultraviolet B (UVB), a harmful environmental factor, is responsible for a variety of skin disorders including skin inflammation through reactive oxygen species (ROS) and inflammatory mediator production. Here, we investigated the effect of Z-ligustilide (Z-lig), an active ingredient isolated from the medicinal plants Cnidium officinale and Angelica acutiloba, on UVB-induced ROS generation and inflammatory mediator production in normal human epidermal keratinocytes (NHEKs) as well as its underlying mechanisms. Z-lig significantly rescued UVB-induced NHEKs damage in a dosage-dependent manner. Pretreatment of NHEKs with Z-lig inhibited UVB-induced ROS production in NHEKs. Both silencing the nuclear factor E2-related factor 2 (Nrf2) and the supplement of tin protoporphyrin IX (SnPP), a haeme oxygenase-1 (HO-1) inhibitor, cancelled the inhibitory effect of Z-lig on UVB-induced ROS upregulation in NHEKs. Moreover, pretreatment of NHEKs with Z-lig reduced UVB-induced nuclear factor kappa B (NF-κB)-dependent inflammatory mediators (IL-6, IL-8 and MCP-1) production at both mRNA and protein level. In the presence of Z-lig, UVB-induced NF-κB subunit p65 nuclear translocation was abolished, and the IκBα degradation was suppressed. Taken together, these findings suggest that Z-lig can suppress UVB-induced ROS generation through Nrf2/HO-1 upregulation and inflammation by suppressing the NF-κB pathway, suggesting that Z-lig may be beneficial in protecting skin from UVB exposure. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Koves, Timothy R; Li, Ping; An, Jie; Akimoto, Takayuki; Slentz, Dorothy; Ilkayeva, Olga; Dohm, G Lynis; Yan, Zhen; Newgard, Christopher B; Muoio, Deborah M
2005-09-30
Peroxisome proliferator-activated receptor-gamma co-activator 1alpha (PGC1alpha) is a promiscuous co-activator that plays a key role in regulating mitochondrial biogenesis and fuel homeostasis. Emergent evidence links decreased skeletal muscle PGC1alpha activity and coincident impairments in mitochondrial performance to the development of insulin resistance in humans. Here we used rodent models to demonstrate that muscle mitochondrial efficiency is compromised by diet-induced obesity and is subsequently rescued by exercise training. Chronic high fat feeding caused accelerated rates of incomplete fatty acid oxidation and accumulation of beta-oxidative intermediates. The capacity of muscle mitochondria to fully oxidize a heavy influx of fatty acid depended on factors such as fiber type and exercise training and was positively correlated with expression levels of PGC1alpha. Likewise, an efficient lipid-induced substrate switch in cultured myocytes depended on adenovirus-mediated increases in PGC1alpha expression. Our results supported a novel paradigm in which a high lipid supply, occurring under conditions of low PGC1alpha, provokes a disconnect between mitochondrial beta-oxidation and tricarboxylic acid cycle activity. Conversely, the metabolic remodeling that occurred in response to PGC1alpha overexpression favored a shift from incomplete to complete beta-oxidation. We proposed that PGC1alpha enables muscle mitochondria to better cope with a high lipid load, possibly reflecting a fundamental metabolic benefit of exercise training.
Zhao, Yunpeng; Wang, Wenhan; Wu, Xihai; Ma, Xiaoqian; Qu, Ruize; Chen, Xiaomin; Liu, Chenghao; Liu, Yaoge; Wang, Xiaokai; Yan, Pengcheng; Zhang, Hao; Pan, Jingrui; Li, Weiwei
2017-04-01
This study aimed to investigate whether mangiferin played a protective role in a well-established dermatitis mouse model and tumor necrosis factor alpha (TNF-α)-induced RAW264.7 macrophages. Contact dermatitis is an inflammatory skin disease in the clinic, while its underlying mechanism still remains to be elucidated. Mangiferin, 1,3,6,7-tetrahydroxyxanthone-C2-β-d-glucoside (C-glucosyl xanthone), a natural antioxidant that was reported to inhibit inflammatory reactions, has been recently proved to be a potential therapy for inflammation. As a result, the oxazolone-induced dermatitis mice models were established to explore whether mangiferin has an anti-inflammatory role in vivo. The phosphate-buffered saline treatment groups showed emblematic skin inflammation, whereas the administration of mangiferin obviously inhibited dermatitis in the mice models. Furthermore, exogenous mangiferin alleviated the inflammatory reaction in TNF-α-induced macrophages by suppressing the production of inflammation- and oxidative stress-associated molecules. Also, mangiferin treatment repressed the activation of nuclear factor-kappaB signaling pathway. To sum up, mangiferin could provide a new target for the therapy and prevention of skin inflammation. Copyright © 2017 Elsevier B.V. All rights reserved.
Pontes, Gerlândia N; Cardoso, Elaine C; Carneiro-Sampaio, Magda M S; Markus, Regina P
2007-11-01
The nocturnal surge of melatonin is the endocrine expression of the circadian system and is essential for organizing the timing of various endogenous processes. Previous works suggest that, in the beginning of a defense response, the increase in circulating tumor necrosis factor-alpha (TNF-alpha) leads to a transient block of nocturnal melatonin production and promotes a disruption of internal time organization. In the present paper, the concentration of melatonin and cytokines [TNF-alpha, interferon-gamma (IFN-gamma), interleukin (IL)-2, IL-4, IL-5, IL-10, IL-12] in the colostrum (postdelivery day 3) and in the milk (postdelivery days 10, 15, 20 and 30) obtained at midday and midnight from mothers who gave birth by vaginal or cesarean section were compared. The nocturnal melatonin surge observed 3 days after vaginal delivery was absent after cesarean section. IL-12 presented no daily variation in either case, while daily variations in IFN-gamma, IL-10, IL-4 and IL-5 were observed after vaginal delivery and cesarean section. On the other hand, the increase in TNF-alpha after cesarean section resulted in suppression of the nocturnal melatonin surge. Daily variation of IL-2 was only observed after recovery of the nocturnal melatonin surge, 30 days after cesarean section. The present paper supports the hypothesis of a cross-talk between the pineal gland and the immune system, which could represent a putative immune-pineal axis.
Yanagida, M; Fukamachi, H; Takei, M; Hagiwara, T; Uzumaki, H; Tokiwa, T; Saito, H; Iikura, Y; Nakahata, T
1996-01-01
We examined the effects of interferon-gamma (IFN-gamma) on 100% pure human mast cells generated in suspension cultures of umbilical cord blood mononuclear cells in the presence of stem cell factor (SCF) and interleukin-6 (IL-6). When mast cells were suspended in serum-free medium without any cytokine after the withdrawal of SCF and IL-6, they died over a period of 5 days because of apoptosis. IFN-gamma in the cultures suppressed apoptosis and prolonged their survival in a dose-dependent manner. This survival-promoting effect of IFN-gamma was blocked by neutralizing antibodies to IFN-gamma or to IFN-gamma receptor (IFN-gamma R). When mast cells were incubated with IFN-gamma in serum-free medium for more than 4 hr during sensitization, immunoglobulin E (IgE)/anti-IgE antibody-induced histamine release was effectively enhanced. Polymerase chain reaction (PCR) amplification of the alpha-chain of IFN-gamma R (IFN-gamma R alpha) yielded products of the correct size predicted from the sequence of the receptor. In addition, flow cytometry using anti-IFN-gamma R monoclonal antibodies (mAbs) indicated that these mast cells bear IFN-gamma R on their surface. These findings suggested that IFN-gamma activates human mast cells via specific receptors in certain aspects of inflammatory reactions. Images Figure 2 Figure 4 PMID:9014819
Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M
2010-05-01
Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-alpha-evoked translocation of nuclear factor (NF)-kappaB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-kappaB and production of TNF-alpha in mouse macrophage RAW264.7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-alpha level and inhibited the LPS-evoked nuclear translocation of NF-kappaB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS.
Pang, Jinke; Zhang, Geng; Lin, Yong; Xie, Zhanglian; Liu, Hongyan; Tang, Libo; Lu, Mengji; Yan, Ran; Guo, Haitao; Sun, Jian; Hou, Jinlin; Zhang, Xiaoyong
2017-01-03
Hepatitis B Virus (HBV) replication in hepatocytes is restricted by the host innate immune system and related intracellular signaling pathways. Transforming growth factor β-activated kinase 1 (TAK1) is a key mediator of toll-like receptors and pro-inflammatory cytokine signaling pathways. Here, we report that silencing or inhibition of endogenous TAK1 in hepatoma cell lines leads to an upregulation of HBV replication, transcription, and antigen expression. In contrast, overexpression of TAK1 significantly suppresses HBV replication, while an enzymatically inactive form of TAK1 exerts no effect. By screening TAK1-associated signaling pathways with inhibitors and siRNAs, we found that the MAPK-JNK pathway was involved in TAK1-mediated HBV suppression. Moreover, TAK1 knockdown or JNK pathway inhibition induced the expression of farnesoid X receptor α, a transcription factor that upregulates HBV transcription. Finally, ectopic expression of TAK1 in a HBV hydrodynamic injection mouse model resulted in lower levels of HBV DNA and antigens in both liver and serum. In conclusion, our data suggest that TAK1 inhibits HBV primarily at viral transcription level through activation of MAPK-JNK pathway, thus TAK1 represents an intrinsic host restriction factor for HBV replication in hepatocytes.
Sakamaki, Fumio; Ishizaka, Akitoshi; Urano, Tetsuya; Sayama, Koichi; Nakamura, Hidetoshi; Terashima, Takeshi; Waki, Yasuhiro; Soejima, Kenzo; Tasaka, Sadatomo; Sawafuji, Makoto; Kobayashi, Kouichi; Yamaguchi, Kazuhiro; Kanazawa, Minoru
2003-08-01
Although neutrophil depletion can reduce the level of acute lung injury (ALI) induced by Escherichia coli endotoxin, that induced by live E coli cannot be attenuated even in neutropenia. This suggests that live E coli cause ALI by way of an mechanism independent of circulating neutrophil. Tumor necrosis factor-alpha (TNF-alpha), which is released from monocytes and macrophages, is a proinflammatory cytokine that is recognized as a central mediator of several forms of inflammation. In this controlled experimental study, we examined the effects of an adenosine-receptor agonist, 2-chloroadenosine (2CA), that has suppressive effects on various cell types and TNF-alpha, on endotoxin plus latex particles, and on ALI induced by live E coli in the neutropenic state. We studied 42 guinea pigs rendered neutropenic by means of intraperitoneal cyclophosphamide administration. Experimental groups consisted of (1) a saline-solution control group; (2) an endotoxin (0.2 mg/kg)-treated group; (3) a group treated with endotoxin plus 2CA (10 micro g/kg); (4) a group treated with latex (2 x 10(9)/kg); (5) a group exposed to endotoxin and latex; (6) a group exposed to endotoxin, latex, and 2CA; (7) a group exposed to E coli (2 x 10(9)/kg); and (8) a group exposed to E coli and 2CA. The injection of endotoxin alone in neutropenic animals did not increase the indexes of ALI (lung tissue/plasma ratio [T/P] and lung wet weight/dry weight ratio [W/D], calculated with the use of iodine 125-labeled albumin). In contrast, these indexes were increased in the endotoxin-and-latex groups compared with those of the control group. ALI in the endotoxin-and-latex group was attenuated by intravenous 2CA. The intravenous injection of live E coli also caused increases in T/P, W/D, and plasma TNF-alpha, but thse were limited by 2CA. In summary, ALI induced by latex particles added to endotoxin and live E coli in the neutropenic state was attenuated by 2CA, suggesting a partial contribution of various cell types or humoral mediators as a neutrophil-independent pathway in its pathogenesis.
Lin, L; Zheng, Y; Qu, J; Bao, G
2000-06-01
Observe the effect of tumor necrosis factor-alpha (TNF-alpha) on calcium-activated potassium channel in ECV304 and the possible involvement of G-protein mediation in the action of TNF-alpha. Using the cell-attached configuration of patch clamp technique. (1) the activity of high-conductance calcium-activated potassium channel (BKca) was recorded. Its conductance is (202.54 +/- 16.62) pS; (2) the activity of BKca was potentiated by 200 U/ml TNF-alpha; (3) G-protein would intensify this TNF-alpha activation. TNF-alpha acted on vascular endothelial cell ECV304 could rapidly activate the activity of BKca. Opening of BKca resulted in membrane hyper-polarization which could increase electro-chemical gradient for the resting Ca2+ influx and open leakage calcium channel, thus resting cytoplasmic free Ca2+ concentration could be elevated. G-protein may exert an important regulation in this process.
Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J.; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S.
2016-01-01
Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically “fatless” mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation. PMID:26589913
Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.
1997-01-01
We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168
Peshavariya, Hitesh; Dusting, Gregory J; Di Bartolo, Belinda; Rye, Kerry-Anne; Barter, Philip J; Jiang, Fan
2009-08-01
Reconstituted discoidal high-density lipoprotein (rHDL) has potent vascular protective actions. Native HDL suppresses cellular generation of reactive oxygen species, whereas this antioxidant effect of rHDL is less clear. This study examined the effects of rHDL on NADPH oxidase, a major source of cellular superoxide generation, in both leukocytes and human umbilical vein endothelial cells. Superoxide was measured with lucigenin-enhanced chemiluminescence. Expression of NADPH oxidase sub-units was determined by real-time PCR. Pre-treatment of HL-60 cells with rHDL (10 and 25 microM) for 1 h significantly reduced phorbol 12-myristate 13-acetate-stimulated superoxide production. Treatment with rHDL for up to 24 h did not change the mRNA expression of NADPH oxidase sub-units. In HL-60 cells, depletion of cholesterol from the plasma membrane by methyl-beta-cyclodextrin mimicked the effect of rHDL, whereas cholesterol repletion blunted the effects of rHDL. Treatment with rHDL induced disruption of the lipid raft structures and blunted PMA-induced redistribution of p47phox into lipid rafts. In contrast, treatment of endothelial cells with rHDL for up to 18 h had no effect on either basal or tumour necrosis factor-alpha-stimulated NADPH oxidase activity, but markedly suppressed the cytokine-induced expression of proinflammatory adhesion molecules. The results suggest that rHDL inhibits NADPH oxidase activation in leukocytes, probably by interrupting the assembly of NADPH oxidase sub-units at the lipid rafts. This effect may contribute to the vascular protective actions of rHDL against inflammation-mediated oxidative damage.
HTLV-1 basic leucine zipper factor downregulates cyclin D1 expression via interactions with NF-κB.
Ma, Yunyun; Zhang, Bo; Wang, Dong; Qian, Lili; Song, Xianmei; Wang, Xueyin; Yang, Chaokuan; Zhao, Guoqiang
2017-03-01
Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus. It can cause adult T cell leukemia (ATL) and other diseases. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ), which is encoded by the minus-strand of the provirus, is expressed in all cases of ATL and involved in T cell proliferation. However, the exact mechanism underlying its growth-promoting activity is poorly understood. Herein, we demonstrated that HBZ suppressed cyclin D1 expression by inhibiting the nuclear factor (NF)-κB signaling pathway. Among the potential mechanisms of cyclin D1 inhibition mediated by HBZ, we found that HBZ suppressed cyclin D1 promoter activity. Luciferase assay analysis revealed that HBZ repressed cyclin D1 promoter activity by suppressing NF-κB‑driven transcription mediated by the p65 subunit. Using an immunoprecipitation assay, we found that HBZ could bind to p65, but not p50. Finally, we showed that HBZ selectively interacted with p65 via its AD+bZIP domains. By suppressing cyclin D1 expression, HBZ can alter cell cycle progression of HTLV-1-infected cells, which may be critical for oncogenesis.
Nam, Jeong-Seok; Suchar, Adam M; Kang, Mi-Jin; Stuelten, Christina H; Tang, Binwu; Michalowska, Aleksandra M; Fisher, Larry W; Fedarko, Neal S; Jain, Alka; Pinkas, Jan; Lonning, Scott; Wakefield, Lalage M
2006-06-15
Transforming growth factor betas (TGF-beta) play a dual role in carcinogenesis, functioning as tumor suppressors early in the process, and then switching to act as prometastatic factors in late-stage disease. We have previously shown that high molecular weight TGF-beta antagonists can suppress metastasis without the predicted toxicities. To address the underlying mechanisms, we have used the 4T1 syngeneic mouse model of metastatic breast cancer. Treatment of mice with a monoclonal anti-TGF-beta antibody (1D11) significantly suppressed metastasis of 4T1 cells to the lungs. When metastatic 4T1 cells were recovered from lungs of 1D11-treated and control mice, the most differentially expressed gene was found to be bone sialoprotein (Bsp). Immunostaining confirmed the loss of Bsp protein in 1D11-treated lung metastases, and TGF-beta was shown to regulate and correlate with Bsp expression in vitro. Functionally, knockdown of Bsp in 4T1 cells reduced the ability of TGF-beta to induce local collagen degradation and invasion in vitro, and treatment with recombinant Bsp protected 4T1 cells from complement-mediated lysis. Finally, suppression of Bsp in 4T1 cells reduced metastasis in vivo. We conclude that Bsp is a plausible mediator of at least some of the tumor cell-targeted prometastatic activity of TGF-beta in this model and that Bsp expression in metastases can be successfully suppressed by systemic treatment with anti-TGF-beta antibodies.
1993-01-01
Tumor necrosis factor alpha (TNF-alpha), a cytokine with pleiotropic biological effects, is produced by a variety of cell types in response to induction by diverse stimuli. In this paper, TNF-alpha mRNA is shown to be highly induced in a murine T cell clone by stimulation with T cell receptor (TCR) ligands or by calcium ionophores alone. Induction is rapid, does not require de novo protein synthesis, and is completely blocked by the immunosuppressant cyclosporin A (CsA). We have identified a human TNF-alpha promoter element, kappa 3, which plays a key role in the calcium-mediated inducibility and CsA sensitivity of the gene. In electrophoretic mobility shift assays, an oligonucleotide containing kappa 3 forms two DNA protein complexes with proteins that are present in extracts from unstimulated T cells. These complexes appear in nuclear extracts only after T cell stimulation. Induction of the inducible nuclear complexes is rapid, independent of protein synthesis, and blocked by CsA, and thus, exactly parallels the induction of TNF-alpha mRNA by TCR ligands or by calcium ionophore. Our studies indicate that the kappa 3 binding factor resembles the preexisting component of nuclear factor of activated T cells. Thus, the TNF-alpha gene is an immediate early gene in activated T cells and provides a new model system in which to study CsA-sensitive gene induction in activated T cells. PMID:8376940
Acetylated flavonoid glycosides potentiating NGF action from Scoparia dulcis.
Li, Yushan; Chen, Xigui; Satake, Masayuki; Oshima, Yasukatsu; Ohizumi, Yasushi
2004-04-01
Three new acetylated flavonoid glycosides, 5,6,4'-trihydroxyflavone 7-O-alpha-L-2,3-di-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (1), apigenin 7-O-alpha-L-3-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (2), and apigenin 7-O-alpha-L-2,3-di-O-acetylrhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (3), were isolated from Scoparia dulcis together with the known compound eugenyl beta-D-glucopyranoside (4). Their structures were elucidated by spectroscopic analyses. Compounds 2 and 3 showed an enhancing activity of nerve growth factor-mediated neurite outgrowth in PC12D cells.
Guo, Xiaoyun; Yin, Haifeng; Li, Lei; Chen, Yi; Li, Jing; Doan, Jessica; Steinmetz, Rachel; Liu, Qinghang
2017-08-22
Programmed cell death, including apoptosis, mitochondria-mediated necrosis, and necroptosis, is critically involved in ischemic cardiac injury, pathological cardiac remodeling, and heart failure progression. Whereas apoptosis and mitochondria-mediated necrosis signaling is well established, the regulatory mechanisms of necroptosis and its significance in the pathogenesis of heart failure remain elusive. We examined the role of tumor necrosis factor receptor-associated factor 2 (Traf2) in regulating myocardial necroptosis and remodeling using genetic mouse models. We also performed molecular and cellular biology studies to elucidate the mechanisms by which Traf2 regulates necroptosis signaling. We identified a critical role for Traf2 in myocardial survival and homeostasis by suppressing necroptosis. Cardiac-specific deletion of Traf2 in mice triggered necroptotic cardiac cell death, pathological remodeling, and heart failure. Plasma tumor necrosis factor α level was significantly elevated in Traf2 -deficient mice, and genetic ablation of TNFR1 largely abrogated pathological cardiac remodeling and dysfunction associated with Traf2 deletion. Mechanistically, Traf2 critically regulates receptor-interacting proteins 1 and 3 and mixed lineage kinase domain-like protein necroptotic signaling with the adaptor protein tumor necrosis factor receptor-associated protein with death domain as an upstream regulator and transforming growth factor β-activated kinase 1 as a downstream effector. It is important to note that genetic deletion of RIP3 largely rescued the cardiac phenotype triggered by Traf2 deletion, validating a critical role of necroptosis in regulating pathological remodeling and heart failure propensity. These results identify an important Traf2-mediated, NFκB-independent, prosurvival pathway in the heart by suppressing necroptotic signaling, which may serve as a new therapeutic target for pathological remodeling and heart failure. © 2017 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, B.-C.; Hsieh, C.-W.; Liu, Y.-C.
The production of adhesion molecules and subsequent attachment of leukocytes to endothelial cells (ECs) are critical early events in atherogenesis. These adhesion molecules thus play an important role in the development of this disease. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of cinnamaldehyde, a Cinnamomum cassia Presl-specific diterpene. In our current study, we have examined the effects of both cinnamaldehyde and extracts of C. cassia on cytokine-induced monocyte/human endothelial cell interactions. We find that these compounds inhibit the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppress the expression of the cell adhesion molecules, VCAM-1 and ICAM-1, atmore » the transcriptional level. Moreover, in TNF{alpha}-treated ECs, the principal downstream signal of VCAM-1 and ICAM-1, NF-{kappa}B, was also found to be abolished in a time-dependent manner. Interestingly, cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein I{kappa}B-{alpha}, but only in short term pretreatments, whereas it does so via the induction of Nrf2-related genes, including heme-oxygenase-1 (HO-1), over long term pretreatments. Treating ECs with zinc protoporphyrin, a HO-1 inhibitor, partially blocks the anti-inflammatory effects of cinnamaldehyde. Elevated HO-1 protein levels were associated with the inhibition of TNF{alpha}-induced ICAM-1 expression. In addition to HO-1, we also found that cinnamaldehyde can upregulate Nrf2 in nuclear extracts, and can increase ARE-luciferase activity and upregulate thioredoxin reductase-1, another Nrf2-related gene. Moreover, cinnamaldehyde exposure rapidly reduces the cellular GSH levels in ECs over short term treatments but increases these levels after 9 h exposure. Hence, our present findings indicate that cinnamaldehyde suppresses TNF-induced singling pathways via two distinct mechanisms that are activated by different pretreatment periods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hun Sik; Kim, Sunshin; Lee, Myung-Shik
2005-10-28
Although X-linked inhibitor of apoptosis protein (XIAP) is an important intracellular suppressor of apoptosis in a variety of cell types, its role in cytokine-induced pancreatic {beta}-cell apoptosis remains unclear. Here, we found that: (i) XIAP level was inversely correlated with tumor necrosis factor (TNF)-{alpha}-induced apoptosis in MIN6N8 insulinoma cells; (ii) adenoviral XIAP overexpression abrogated the TNF-{alpha}-induced apoptosis through inhibition of caspase activity; (iii) downregulation of XIAP by antisense oligonucleotide or Smac peptide sensitized MIN6N8 cells to TNF-{alpha}-induced apoptosis; (iv) XIAP expression was induced by TNF-{alpha} through a nuclear factor-{kappa}B (NF-{kappa}B)-dependent pathway, and interferon (IFN)-{gamma} prevented such an induction in amore » manner independent of NF-{kappa}B, which presents a potential mechanism underlying cytotoxic IFN-{gamma}/TNF-{alpha} synergism. Taken together, our results suggest that XIAP is an important modulator of TNF-{alpha}-induced apoptosis of MIN6N8 cells, and XIAP regulation in pancreatic {beta}-cells might play an important role in pancreatic {beta}-cell apoptosis and in the pathogenesis of type 1 diabetes.« less
Li, Liang; Sapkota, Mahesh; Gao, Ming; Choi, Hyukjae; Soh, Yunjo
2017-11-15
The balance between bone formation and bone resorption is maintained by osteoblasts and osteoclasts. In the current study, macrolactin F (MF) was investigated for novel biological activity on the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis in primary bone marrow-derived macrophages (BMMs). We found that RANKL-induced osteoclast formation and differentiation from BMMs was significantly inhibited by MF in a dose-dependent manner without cytotoxicity. RANKL-induced F-actin ring formation and bone resorption activity in BMMs which was attenuated by MF. In addition, MF suppressed the expression of osteoclast-related genes, including c-myc, RANK, tartrate-resistant acid phosphatase (TRAP), nuclear factor of activated T cells c1 (NFATc1), cathepsin K and matrix metalloproteinase 9 (MMP9). Furthermore, the protein expression NFATc1, c-Fos, MMP9, cathepsin K and phosphorylation of Jun N-terminal kinase (JNK), p38 and Akt were also down-regulated by MF treatment. Interestingly, MF promoted pre-osteoblast cell differentiation on Alizarin Red-mineralization activity, alkaline phosphatase (ALP) activity, and the expression of osteoblastogenic markers including Runx2, Osterix, Smad4, ALP, type I collagen alpha 1 (Col1α), osteopontin (OPN), and osteocalcin (OCN) via activation of the BMP-2/smad/Akt/Runx2 pathway on MC3T3-E1. Taken together, these results indicate that MF may be useful as a therapeutic agent to enhance bone health and treat osteoporosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Levy, A S A; Simon, O R
2009-09-01
We previously reported that 6-shogaol, a phenolic compound from ginger has antiinflammatory properties in a Complete Freund's Adjuvant (CFA) model of mono-arthritic rats. In the present study, we investigated the effects of 6-shogaol on the production of inflammatory mediators from lipopolysaccharide (LPS) activated RAW 264.7 macrophages. These mediators (TNF-alpha, IL-1-beta and NO) and their output from macrophages are involved in various pathophysiological events of chronic inflammation and arthritis. Effects of 6-shogaol were investigated on the production of the mediators TNF-alpha, IL-1-beta and NO (measured as nitrate)from macrophages. Lipopolysaccharide activated RAW 264.7 macrophages were cultured in the presence and absence of 6-shogaol (2 microM, 10 microM and 20 microM) and ELISA was used to quantify the output of the mediators. 6-shogoal (2 microM, 10 microM and 20 microM) significantly inhibited the production of nitric oxide (NO), IL-1beta and TNF-alpha from the LPS activated RAW264.7 macrophages. The results suggest that macrophages are targets for the anti-inflammatory effects of 6-shogaol. Also, the inhibitory effects against TNF-alpha, IL-1beta and NO production from LPS activated macrophages are cellular mechanisms by which 6-shogaol produced its anti-inflammatory effects. These mechanisms provide an explanation of the protection by 6-shogaol against development of joint inflammation and cartilage degradation in CFA induced mono-arthritis that we previously demonstrated (1). Based on these results with 6-shogaol, there is evidence that it exhibits exploitable anti-inflammatory properties.
Zoon, Harriët F A; Veth, C P M; Arns, Martijn; Drinkenburg, W H I M; Talloen, Willem; Peeters, Pieter J; Kenemans, J L
2013-06-01
Major depressive disorder has a large impact on patients and society and is projected to be the second greatest global burden of disease by 2020. The brain-derived neurotrophic factor (BDNF) gene is considered to be one of the important factors in the etiology of major depressive disorder. In a recent study, alpha power was found to mediate between BDNF Met and subclinical depressed mood. The current study looked at a population of patients with major depressive disorder (N = 107) to examine the association between the BDNF Val66Met polymorphism, resting state EEG alpha power, and depression severity. For this purpose, repeated-measures analysis of variance, partial correlation, and multiple linear models were used. Results indicated a negative association between parietal-occipital alpha power in the eyes open resting state and depression severity. In addition, Met/Met patients showed lower global absolute alpha power in the eyes closed condition compared with Val-carriers. These findings are in accordance with the previously uncovered pathway between BDNF Val66Met, resting state EEG alpha power, and depression severity. Additional research is needed for the clarification of this tentative pathway and its implication in personalized treatment of major depressive disorder.
Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M.; Farrehi, Peter; Borjigin, Jimo
2018-01-01
Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients. PMID:29487541
Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M; Farrehi, Peter; Borjigin, Jimo
2018-01-01
Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO 2 -mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients.
Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In
2013-07-19
Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediatedmore » IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.« less
Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Dilshara, Matharage Gayani; Park, Sang Rul; Choi, Yung Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kim, Gi-Young
2014-08-01
Little is known about the molecular mechanism through which 18β-glycyrrhetinic acid (GA) inhibits metastasis and invasion of cancer cells. Therefore, this study aimed to investigate the effects of GA on the expression of matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) in various types of cancer cells. We found that treatment with GA reduces tumor necrosis factor-α (TNF-α)-induced Matrigel invasion with few cytotoxic effects. Our findings also showed that MMP-9 and VEGF expression increases in response to TNF-α; however, GA reverses their expression. In addition, GA inhibited inhibitory factor kappa B degradation, sustained nuclear factor-kappa B (NF-κB) subunits, p65 and p50, in the cytosol compartments, and consequently suppressed the TNF-α-induced DNA-binding activity and luciferase activity of NF-κB. Specific NF-κB inhibitors, pyrrolidine dithiocarbamate, MG132, and PS-1145, also attenuated TNF-α-mediated MMP-9 and VEGF expression as well as activity by suppressing their regulatory genes. Furthermore, phosphorylation of TNF-α-induced phosphatidyl-inositol 3 kinase (PI3K)/Akt was significantly downregulated in the presence of GA accompanying with the inhibition of NF-κB activity, and as presumed, the specific PI3K/Akt inhibitor LY294002 significantly decreased MMP-9 and VEGF expression as well as activity. These results suggest that GA operates as a potential anti-invasive agent by downregulating MMP-9 and VEGF via inhibition of PI3K/Akt-dependent NF-κB activity. Taken together, GA might be an effective anti-invasive agent by suppressing PI3K/Akt-mediated NF-κB activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
A mechanism regulating proteolysis of specific proteins during renal tubular cell growth.
Franch, H A; Sooparb, S; Du, J; Brown, N S
2001-06-01
Growth factors suppress the degradation of cellular proteins in lysosomes in renal epithelial cells. Whether this process also involves specific classes of proteins that influence growth processes is unknown. We investigated chaperone-mediated autophagy, a lysosomal import pathway that depends on the 73-kDa heat shock cognate protein and allows the degradation of proteins containing a specific lysosomal import consensus sequence (KFERQ motif). Epidermal growth factor (EGF) or ammonia, but not transforming growth factor beta1, suppresses total protein breakdown in cultured NRK-52E renal epithelial cells. EGF or ammonia prolonged the half-life of glyceraldehyde-3-phosphate dehydrogenase, a classic substrate for chaperone-mediated autophagy, by more than 90%, whereas transforming growth factor beta1 did not. EGF caused a similar increase in the half-life of the KFERQ-containing paired box-related transcription factor, Pax2. The increase in half-life was accompanied by an increased accumulation of proteins with a KFERQ motif including glyceraldehyde-3-phosphate dehydrogenase and Pax2. Ammonia also increased the level of the Pax2 protein. Lysosomal import of KFERQ proteins depends on the abundance of the 96-kDa lysosomal glycoprotein protein (lgp96), and we found that EGF caused a significant decrease in lgp96 in cellular homogenates and associated with lysosomes. We conclude that EGF in cultured renal cells regulates the breakdown of proteins targeted for destruction by chaperone-mediated autophagy. Because suppression of this pathway results in an increase in Pax2, these results suggest a novel mechanism for the regulation of cell growth.
Herr, D; Keck, C; Tempfer, C; Pietrowski, Detlef
2004-12-01
The ovarian corpus luteum plays a critical role in reproduction being the primary source of circulating progesterone. After ovulation the corpus luteum is build by avascular granulosa lutein cells through rapid vascularization regulated by gonadotropic hormones. The present study was performed to investigate whether this process might be influenced by the human chorionic gonadotropin (hCG)-dependent expression of different tumor suppressor genes and hypoxia dependent transcription factors. RNA was isolated from cultured granulosa lutein cells, transcribed into cDNA, and the transcript level of following genes were determined: RB-1, VHL, NF-1, NF-2, Wt-1, p53, APC, and hypoxia inducible factor-1 (HIF-1), -2, and -3alpha. Additionally, the influence of hCG on the expression of VHL, p53, and HIf2alpha were investigated. We demonstrate that in human granulosa lutein cells the tumor suppressor genes RB-1, VHL, NF-1, NF-2, Wt-1, p53, and APC and the hypoxia dependent transcription factors HIF-1alpha, -2alpha, and -3alpha are expressed. In addition, we showed that hCG regulates the expression of p53, VHL, and HIF-2alpha. Our results indicate that hCG may determine the growth and development of the corpus luteum by mediating hypoxic and apoptotic pathways in human granulosa lutein cells. Copyright 2004 Wiley-Liss, Inc.
Nishihara, V; Sumimoto, R; Fukuda, Y; Southard, J H; Asahara, T; Dohi, K
1997-01-01
In this study, we tested the effect of donor fasting with or without the use of an essential fatty acids deficiency (EFAD) diet in the recipient using rat heart, pancreas, and liver transplant models. We then compared the survivals, tumor necrosis factor alpha (TNF-alpha) response, and white cell accumulation in rats in order to clarify the mechanisms of the beneficial effect of donor fasting and recipient EFAD. It was found that when the grafts were obtained from fasted donors and then transplanted into fed recipients, the survival rate was significantly higher for all three grafts than for those obtained from fed rats and transplanted into fed rats. The best survival was seen for pancreas grafts obtained from fasted donors and then transplanted into EFAD recipients. TNF-alpha secretion was significantly suppressed in both fasted and EFAD rats, and both the total cell count and neutrophil count were suppressed in EFAD rats. These results clearly indicate that in addition to liver grafts, both heart and pancreas grafts obtained from fasted animals are more tolerant to warm ischemic injury. Furthermore, the combination of donor fasting and recipient EFAD acts synergistically to inhibit the post-transplantation inflammatory reaction (through decreased TNF-alpha secretion and white cell accumulation), thus resulting in an improved survival.
Lungu, Gina F; Stoica, George; Wong, Paul K Y
2008-05-01
Moloney murine leukemia virus-temperature sensitive (MoMuLV-ts1)-mediated neuronal death is a result of both loss of glial support and release of cytokines and neurotoxins from ts1-infected glial cells. Here the authors propose vascular endothelial growth factor (VEGF) down-regulation as another contributory factor in neuronal degeneration induced by ts1 infection. To determine how ts1 affects VEGF expression in ts1-infected brain, the authors examined the expression of several proteins that are important in regulating the expression of VEGF. The authors found significant decreases in Jun-activating domain-binding protein 1 (Jab1), hypoxia-inducible factor (HIF)-1alpha, and VEGF levels and increases in p53 protein levels in ts1-infected brains compared to noninfected control brains. The authors suggest that a decrease Jab1 expression in ts1 infection leads to accumulation of p53, which binds to HIF-1alpha to accelerate its degradation. A rapid degradation of HIF-1alpha leads to decreased VEGF production and secretion. Considering that endothelial cells are the most conspicuous in virus replication and production in ts1 infection, but are not killed by the infection, the authors examined the expression of these proteins using infected and noninfected mouse cerebrovascular endothelial (CVE) cells. The ts1- infected CVE cells showed decreased Jab1, HIF-1alpha, and VEGF mRNA and protein levels and increased p53 protein levels compared with noninfected cells, consistent with the results found in vivo. These results confirm that ts1 infection results in insufficient secretion of VEGF from endothelial cells and may result in decreased neuroprotection. This study suggested that ts1-mediated neuropathology in mice may result from changes in expression and activity of Jab1, p53, and HIF-1alpha, with a final target on VEGF expression and neuronal degeneration.
Swetha, Medchalmi; Ramaiah, Kolluru V A
2015-11-01
Tyrosine phosphorylation of insulin receptor beta (IRβ) in insulin treated HepG2 cells is inversely correlated to ser(51) phosphorylation in the alpha-subunit of eukaryotic initiation factor 2 (eIF2α) that regulates protein synthesis. Insulin stimulates interaction between IRβ and PKR, double stranded RNA-dependent protein kinase, also known as EIF2AK2, and phosphorylation of tyrosine residues in PKR, as analyzed by immunoprecipitation and pull down assays using anti-IRβ and anti-phosphotyrosine antibodies, recombinant IRβ and immunopurified PKR. Further polyIC or synthetic double stranded RNA-induced threonine phosphorylation or activation of immunopurified and cellular PKR is suppressed in the presence of insulin treated purified IRβ and cell extracts. Acute, but not chronic, insulin treatment enhances tyrosine phosphorylation of IRβ, its interaction with PKR and tyrosine phosphorylation of PKR. In contrast, lipopolysaccharide that stimulates threonine phosphorylation of PKR and eIF2α phosphorylation and AG 1024, an inhibitor of the tyrosine kinase activity of IRβ, reduces PKR association with the receptor, IRβ in HepG2 cells. These findings therefore may suggest that tyrosine phosphorylated PKR plays a role in the regulation of insulin induced protein synthesis and in maintaining insulin sensitivity, whereas, suppression of polyIC-mediated threonine phosphorylation of PKR by insulin compromises its ability to fight against virus infection in host cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Involvement of Rho-kinase in cold ischemia-reperfusion injury after liver transplantation in rats.
Shiotani, Satoko; Shimada, Mitsuo; Suehiro, Taketoshi; Soejima, Yuji; Yosizumi, Tomoharu; Shimokawa, Hiroaki; Maehara, Yoshihiko
2004-08-15
Reperfusion of ischemic tissues is known to cause the generation of reactive oxygen species (ROS) with resultant tissue damage. However, the sources of ROS in reperfused tissues are not fully characterized. We hypothesized that the small GTPase Rho and its target effector Rho-kinase/ROK/ROCK are involved in the oxidative burst in reperfused tissue with resultant reperfusion injury. In an in vivo rat model of liver transplantation using cold ischemia for 12 hr followed by reperfusion, a specific Rho-kinase inhibitor, fasudil (30 mg/kg), was administered orally 1 hr before the transplantation. Fasudil suppressed the ischemia-reperfusion (I/R)-induced generation of ROS after reperfusion (P<0.01) and also suppressed the release of inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta) 3 hr after reperfusion, resulting in a significant reduction of I/R-induced hepatocellular injury (P<0.05), necrosis, apoptosis (P<0.01), and neutrophil infiltration (P<0.0001) 12 hr after reperfusion. All animals receiving a graft without fasudil died within 3 days, whereas 40% of those receiving fasudil survived (P<0.001). The present study demonstrates that Rho-kinase-mediated production of ROS and inflammatory cytokines are substantially involved in the pathogenesis of hepatocellular necrosis and apoptosis induced by cold I/R in vivo and that Rho-kinase may be regarded as a novel therapeutic target for the disorder.
Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival.
Schipani, E; Ryan, H E; Didrickson, S; Kobayashi, T; Knight, M; Johnson, R S
2001-11-01
Breakdown or absence of vascular oxygen delivery is a hallmark of many common human diseases, including cancer, myocardial infarction, and stroke. The chief mediator of hypoxic response in mammalian tissues is the transcription factor hypoxia-inducible factor 1 (HIF-1), and its oxygen-sensitive component HIF-1alpha. A key question surrounding HIF-1alpha and the hypoxic response is the role of this transcription factor in cells removed from a functional vascular bed; in this regard there is evidence indicating that it can act as either a survival factor or induce growth arrest and apoptosis. To study more closely how HIF-1alpha functions in hypoxia in vivo, we used tissue-specific targeting to delete HIF-1alpha in an avascular tissue: the cartilaginous growth plate of developing bone. We show here the first evidence that the developmental growth plate in mammals is hypoxic, and that this hypoxia occurs in its interior rather than at its periphery. As a result of this developmental hypoxia, cells that lack HIF-1alpha in the interior of the growth plate die. This is coupled to decreased expression of the CDK inhibitor p57, and increased levels of BrdU incorporation in HIF-1alpha null growth plates, indicating defects in HIF-1alpha-regulated growth arrest occurs in these animals. Furthermore, we find that VEGF expression in the growth plate is regulated through both HIF-1alpha-dependent and -independent mechanisms. In particular, we provide evidence that VEGF expression is up-regulated in a HIF-1alpha-independent manner in chondrocytes surrounding areas of cell death, and this in turn induces ectopic angiogenesis. Altogether, our findings have important implications for the role of hypoxic response and HIF-1alpha in development, and in cell survival in tissues challenged by interruption of vascular flow; they also illustrate the complexities of HIF-1alpha response in vivo, and they provide new insights into mechanisms of growth plate development.
Liu, T Z; Lee, K T; Chern, C L; Cheng, J T; Stern, A; Tsai, L Y
2001-10-01
Excessive production of hydroxyl radicals in blood and liver has previously been demonstrated by us in rats with obstructive jaundice induced by common bile duct ligation (CBDL). In this study, we demonstrate overproduction of superoxide radicals in circulating blood of CBDL rats by the lucigenin-amplified chemiluminescence technique. To pinpoint the molecular agents that mediate these processes, we measured circulating proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta ( IL-1beta), and interleukin-6 (IL-6) in controls and CBDL rats. Concentrations of these cytokines in blood of CBDL rats were markedly elevated when compared to the controls (TNF-alpha: 36.7 +/- 5.0 vs 13.8 +/- 0.5 pg/mL; IL-6: 2,814 +/- 1,740 vs 0 pg/mL; IL-1beta: 11.9 +/- 2.6 vs 0 pg/mL). The overproduction of free radicals triggered by elevated cytokines in CBDL rats was correlated with the activation of NF-kappaB in hepatic tissue. Using the TdT-mediated dUTP nick-end label staining technique, we showed that hepatic tissue sections from CBDL rats had an increase in the apoptotic index (AI). Based on these findings, we propose that the severe hepatic injury in CBDL rats is mediated by a cycle that involves the activation of NF-kappaB by combined action of proinflammatory cytokines and reactive oxygen species (ROS). NF-KB, in turn, initiates the transcription of cytokine genes (eg, IL-6, IL-8, TNF-alpha), which triggers hepatic injury, at least in part, by a free radical-mediated apoptotic mechanism. Elevated ROS may be as a positive-feedback signal that triggers NF-KB reactivation; the severe hepatic injury of CBDL rats may result from perpetuation of this vicious cycle.
Yam, Mun-Li; Abdul Hafid, Sitti Rahma; Cheng, Hwee-Ming; Nesaretnam, Kalanithi
2009-09-01
Tocotrienols are powerful chain breaking antioxidant. Moreover, they are now known to exhibit various non-antioxidant properties such as anti-cancer, neuroprotective and hypocholesterolemic functions. This study was undertaken to investigate the anti-inflammatory effects of tocotrienol-rich fraction (TRF) and individual tocotrienol isoforms namely delta-, gamma-, and alpha-tocotrienol on lipopolysaccharide-stimulated RAW264.7 macrophages. The widely studied vitamin E form, alpha-tocopherol, was used as comparison. Stimulation of RAW264.7 with lipopolysaccharide induced the release of various inflammatory markers. 10 mcirog/ml of TRF and all tocotrienol isoforms significantly inhibited the production of interleukin-6 and nitric oxide. However, only alpha-tocotrienol demonstrated a significant effect in lowering tumor necrosis factor-alpha production. Besides, TRF and all tocotrienol isoforms except gamma-tocotrienol reduced prostaglandin E(2) release. It was accompanied by the down-regulation of cyclooxygenase-2 gene expression by all vitamin E forms except alpha-tocopherol. Collectively, the data suggested that tocotrienols are better anti-inflammatory agents than alpha-tocopherol and the most effective form is delta-tocotrienol.
Suppression of Factor-Dependent Transcription Termination by Antiterminator RNA
King, Rodney A.; Weisberg, Robert A.
2003-01-01
Nascent transcripts of the phage HK022 put sites modify the transcription elongation complex so that it terminates less efficiently at intrinsic transcription terminators and accelerates through pause sites. We show here that the modification also suppresses termination in vivo at two factor-dependent terminators, one that depends on the bacterial Rho protein and a second that depends on the HK022-encoded Nun protein. Suppression was efficient when the termination factors were present at physiological levels, but an increase in the intracellular concentration of Nun increased termination both in the presence and absence of put. put-mediated antitermination thus shows no apparent terminator specificity, suggesting that put inhibits a step that is common to termination at the different types of terminator. PMID:14645267
TARGET (Translational Approaches for the Reversal, Genetic Evaluation and Treatment) of Lung Cancer
2005-09-01
AM, Belloni P, Nettesheim P (2002) Overexpression of mucin genes induced by interleukin-l beta, tumor necrosis factor - alpha , lipopolysaccharide, and...WNT, cell cycle and apoptosis, which include the mitochondrially and tumor necrosis factor (TNF)-regulated pathways], and the proliferation...part, mediated by the down- reg~llation of angiogenic molecules, such as vascular endothelial growth factor , IL-1P, tumor necrosis factor -a, IL-6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serasinghe, Madhavika N.; Mitochondrial Research and Innovation Group, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Yoon, Yisang
2008-11-15
Mitochondrial fission in mammals is mediated by at least two proteins, DLP1/Drp1 and hFis1. DLP1 mediates the scission of mitochondrial membranes through GTP hydrolysis, and hFis1 is a putative DLP1 receptor anchored at the mitochondrial outer membrane by a C-terminal single transmembrane domain. The cytosolic domain of hFis1 contains six {alpha}-helices ({alpha}1-{alpha}6) out of which {alpha}2-{alpha}5 form two tetratricopeptide repeat (TPR) folds. In this study, by using chimeric constructs, we demonstrated that the cytosolic domain contains the necessary information for hFis1 function during mitochondrial fission. By using transient expression of different mutant forms of the hFis1 protein, we found thatmore » hFis1 self-interaction plays an important role in mitochondrial fission. Our results show that deletion of the {alpha}1 helix greatly increased the formation of dimeric and oligomeric forms of hFis1, indicating that {alpha}1 helix functions as a negative regulator of the hFis1 self-interaction. Further mutational approaches revealed that a tyrosine residue in the {alpha}5 helix and the linker between {alpha}3 and {alpha}4 helices participate in hFis1 oligomerization. Mutations causing oligomerization defect greatly reduced the ability to induce not only mitochondrial fragmentation by full-length hFis1 but also the formation of swollen ball-shaped mitochondria caused by {alpha}1-deleted hFis1. Our data suggest that oligomerization of hFis1 in the mitochondrial outer membrane plays a role in mitochondrial fission, potentially through participating in fission factor recruitment.« less
Scott, Glynis; Leopardi, Sonya; Printup, Stacey; Malhi, Namrita; Seiberg, Miri; Lapoint, Randi
2004-05-01
Prostaglandins (PG) are key mediators of diverse functions in the skin and several reports suggest that PG mediate post-inflammatory pigmentary changes through modulation of melanocyte dendricity and melanin synthesis. The proteinase-activated receptor 2 (PAR-2) is important for skin pigmentation because activation of keratinocyte PAR-2 stimulates uptake of melanosomes through phagocytosis in a Rho-dependent manner. In this report, we show that activation of keratinocyte PAR-2 stimulates release of PGE(2) and PGF(2alpha) and that PGE(2) and PGF(2alpha) act as paracrine factors that stimulate melanocyte dendricity. We characterized the expression of the EP and FP receptors in human melanocytes and show that human melanocytes express EP1 and EP3, and the FP receptor, but not EP2 and EP4. Treatment of melanocytes with EP1 and EP3 receptor agonists resulted in increased melanocyte dendricity, indicating that both EP1 and EP3 receptor signaling contribute to PGE(2)-mediated melanocyte dendricity. Certain EP3 receptor subtypes have been shown to increase adenosine 3',5'-cyclic monophosphate (cAMP) through coupling to Gs, whereas EP1 is known to couple to Gq to activate phospholipase C with elevation in Ca(2+). The cAMP/protein kinase A system is known to modulate melanocyte dendrite formation through modulation of Rac and Rho activity. Neither PGF(2alpha) or PGE(2) elevated cAMP in human melanocytes showing that dendricity observed in response to PGE(2) and PGF(2alpha) is cAMP-independent. Our data suggest that PAR-2 mediates cutaneous pigmentation both through increased uptake of melanosomes by keratinocytes, as well as by release of PGE(2) and PGF(2alpha) that stimulate melanocyte dendricity through EP1, EP3, and FP receptors.
Andrieu, N; Salvayre, R; Levade, T
1994-01-01
The hydrolysis of sphingomyelin (SPM) has been reported to mediate a number of responses to extracellular agents, including cytokines. The so-called SPM cycle may result from the activation of different types of sphingomyelinases (SPMases). We investigated the hypothetical contribution of acid lysosomal SPMase in the SPM signal-transduction pathway. We examined the ability of human skin fibroblasts with a genetic deficiency of acid lysosomal SPMase activity to respond to tumour necrosis factor alpha (TNF-alpha) or interleukin-1 beta (IL-1 beta). We report that both cytokines promoted SPM hydrolysis in fibroblasts derived from patients with Niemann-Pick disease or I-cell disease, similar to that observed in normal cells. Treatment of normal fibroblasts with cationic amphiphilic drugs resulted in inhibition of acid SPMase activity, but had no effect on cytokine-induced SPM turnover. In addition, TNF-alpha and IL-1 beta stimulated [3H]thymidine incorporation in Niemann-Pick fibroblasts, as in normal cells. Thus our results argue against a role for acid endolysosomal SPMase in mediating the cytokine-induced SPM signalling cascade. Images Figure 2 PMID:7980390
Yu, Yizhi; Liu, Shuxun; Wang, Wenya; Song, Wengang; Zhang, Minghui; Zhang, Weiping; Qin, Zhihai; Cao, Xuetao
2002-07-01
Dendritic cells (DC) are potent antigen-presenting cells (APC) specialized in T-cell mediated immune responses, and also play critical roles in the homeostasis of T cells for controlling immune responses. In the present study, we demonstrated that during mouse bone-marrow-derived DC activation of ovalbumin (OVA)-specific Ia-kb-restricted T hybridoma cells, MF2.2D9 and OVA257-264-specific H-2kb-restricted RF33.70 T cells, respectively, both hybridomas undergo cell death, partially mediated via apoptotic ligand-tumour necrosis factor-alpha (TNF-alpha)-related apoptosis-inducing ligand (TRAIL). Lipopolysaccharide enhanced the cytotoxic effect on the two activated T hybridoma cells, which was correlated with up-regulation of TRAIL-expression on DC to some extent. The activation of caspase-3 in activated T hybridoma cells cocultured with DC contributed to the programmed cell death pathway T cells underwent. Therefore, our results show that activation-induced cell death of T hybridoma cells can be influenced by DC, suggesting that DC may be involved in elimination of activated T cells at the end of primary immune responses.
Interleukin-6 inhibits hepatic growth hormone signaling via upregulation of Cis and Socs-3.
Denson, Lee A; Held, Matthew A; Menon, Ram K; Frank, Stuart J; Parlow, Albert F; Arnold, Dodie L
2003-04-01
Cytokines may cause an acquired growth hormone (GH) resistance in patients with inflammatory diseases. Anabolic effects of GH are mediated through activation of STAT5 transcription factors. We have reported that TNF-alpha suppresses hepatic GH receptor (GHR) gene expression, whereas the cytokine-inducible SH2-containing protein 1 (Cis)/suppressors of cytokine signaling (Socs) genes are upregulated by TNF-alpha and IL-6 and inhibit GH activation of STAT5. However, the relative importance of these mechanisms in inflammatory GH resistance was not known. We hypothesized that IL-6 would prevent GH activation of STAT5 and that this would involve Cis/Socs protein upregulation. GH +/- LPS was administered to TNF receptor 1 (TNFR1) or IL-6 null mice and wild-type (WT) controls. STAT5, STAT3, GHR, Socs 1-3, and Cis phosphorylation and abundance were assessed by using immunoblots, EMSA, and/or real time RT-PCR. TNF-alpha and IL-6 abundance were assessed by using ELISA. GH activated STAT5 in WT and TNFR1 or IL-6 null mice. LPS pretreatment prevented STAT5 activation in WT and TNFR1 null mice; however, STAT5 activation was preserved in IL-6 null mice. GHR abundance did not change with LPS administration. Inhibition of STAT5 activation by LPS was temporally associated with phosphorylation of STAT3 and upregulation of Cis and Socs-3 protein in WT and TNFR1 null mice; STAT3, Cis, and Socs-3 were not induced in IL-6 null mice. IL-6 inhibits hepatic GH signaling by upregulating Cis and Socs-3, which may involve activation of STAT3. Therapies that block IL-6 may enhance GH signaling in inflammatory diseases.
Li, Yunlun; Zhang, Xinya; Yang, Wenqing; Li, Chao; Chu, Yanjun; Jiang, Haiqiang; Shen, Zhenzhen
2017-01-01
The aim of the present study was to investigate the effect and the underlying mechanism of the combined treatment of rhynchophylla total alkaloids (RTA) and sinapine thiocyanate for protection against a prothrombotic state (PTS) associated with the tumor necrosis factor-alpha (TNF-α)-induced inflammatory injury of vascular endothelial cells (VECs). A TNF-α-induced VEC inflammatory injury model was established, and cell morphology of VECs was evaluated using scanning electron microscopy. In addition, reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to examine the mRNA and protein expression of coagulation-related factors, including nuclear factor-κB (NF-κB), transforming growth factor-β1 (TGF-β1), tissue factor (TF), plasminogen activator inhibitor (PAI-1), protease-activation receptors (PAR-1) and protein kinase C (PKC-α) in VECs. Combined treatment with RTA and sinapine thiocyanate was demonstrated to reduce, to a varying extent, the mRNA and protein expression of NF-κB, TGF-β1, TF, PAR-1, PKC-α and PAI-1. Furthermore, combined treatment with RTA and sinapine thiocyanate was able to downregulate the expression of coagulation-related factors in injured VECs, thereby inhibiting the PTS induced by vascular endothelial injury. The underlying mechanism is partially associated with the TF-mediated activation of the thrombin-receptor signaling pathway that suppresses coagulation during inflammation and balances fibrinolysis in order to inhibit fibrin generation and deposition. PMID:28587383
Li, Yunlun; Zhang, Xinya; Yang, Wenqing; Li, Chao; Chu, Yanjun; Jiang, Haiqiang; Shen, Zhenzhen
2017-06-01
The aim of the present study was to investigate the effect and the underlying mechanism of the combined treatment of rhynchophylla total alkaloids (RTA) and sinapine thiocyanate for protection against a prothrombotic state (PTS) associated with the tumor necrosis factor-alpha (TNF-α)-induced inflammatory injury of vascular endothelial cells (VECs). A TNF-α-induced VEC inflammatory injury model was established, and cell morphology of VECs was evaluated using scanning electron microscopy. In addition, reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to examine the mRNA and protein expression of coagulation-related factors, including nuclear factor-κB (NF-κB), transforming growth factor-β1 (TGF-β1), tissue factor (TF), plasminogen activator inhibitor (PAI-1), protease-activation receptors (PAR-1) and protein kinase C (PKC-α) in VECs. Combined treatment with RTA and sinapine thiocyanate was demonstrated to reduce, to a varying extent, the mRNA and protein expression of NF-κB, TGF-β1, TF, PAR-1, PKC-α and PAI-1. Furthermore, combined treatment with RTA and sinapine thiocyanate was able to downregulate the expression of coagulation-related factors in injured VECs, thereby inhibiting the PTS induced by vascular endothelial injury. The underlying mechanism is partially associated with the TF-mediated activation of the thrombin-receptor signaling pathway that suppresses coagulation during inflammation and balances fibrinolysis in order to inhibit fibrin generation and deposition.
Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Jiwoo; Ku, Sae-Kwang; Lee, Suyeon
Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/ormore » production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.« less
Qu, Chen; Li, Bin; Lai, Yimu; Li, Hechu; Windust, Anthony; Hofseth, Lorne J.; Nagarkatti, Mitzi; Nagarkatti, Prakash; Wang, Xing Li; Tang, Dongqi; Janicki, Joseph S.; Tian, Xingsong; Cui, Taixing
2015-01-01
Ethnopharmacological relevance American ginseng is capable of ameliorating cardiac dysfunction and activating Nrf2, a master regulator of antioxidant defense, in the heart. This study was designed to isolate compounds from American ginseng and to determine those responsible for the Nrf2-mediated resolution of inflamed macrophage-induced cardiomyocyte hypertrophy. Materials and methods A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. A bioassay-based fractionization of American ginseng was performed to identify the putative substances which could activate Nrf2-mediated suppression of pro-inflammatory cytokine expression in macrophages and macrophage-mediated pro-hypertrophic growth in cardiomyocytes. Results A hexane fraction of an anti-inflammatory crude extract of American ginseng was found to be most effective in suppressing the inflammatory responses in macrophages. Preparative, reverse-phase HPLC and a comparative analysis by analytical scale LC–UV/MS revealed the hexane fraction contains predominantly C17 polyacetylenes and linolenic acid. Panaxynol, one of the major polyacetylenes, was found to be a potent Nrf2 activator. Panaxynol posttranscriptionally activated Nrf2 by inhibiting Kelch-like ECH-associated protein (Keap) 1-mediated degradation without affecting the binding of Keap1 and Nrf2. Moreover, panaxynol suppressed a selected set of cytokine expression via the activation of Nrf2 while minimally regulating nuclear factor-kappa B (NF-κB)-mediated cytokine expression in macrophages. It also dramatically inhibited the inflamed macrophage-mediated cardiomyocyte death and hypertrophy by activating Nrf2 in macrophages. Conclusions These results demonstrate that American ginseng-derived panaxynol is a specific Nrf2 activator and panaxynol-activated Nrf2 signaling is at least partly responsible for American ginseng-induced health benefit in the heart. PMID:25882312
Impact of inflammation on male fertility.
Sarkar, Oli; Bahrainwala, Jamila; Chandrasekaran, Sambamurthy; Kothari, Shiva; Mathur, Premendu P; Agarwal, Ashok
2011-01-01
The male uro-genital tract is susceptible to gram-negative bacterial infections that produce a state of inflammation, particularly in the testis and epididymis. Development of germline stem cells into motile spermatozoa takes place in these organs and thus any impairment therein has a direct effect on male fertility. A number of factors are known to impair male fertility including environmental and chemical factors, lifestyle, and infections. The last is a little-known and poorly understood cause of male sub-/infertility. The presence of the pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF- alpha), interleukin-1alpha (IL-1alpha) and interleukin-1beta (IL-1beta) in the male uro-genital tract following bacterial infections suggests that such infections could have cytokine-mediated anti-fertility effects. Furthermore, inflammation has been associated with elevated levels of reactive oxygen species and oxidative stress both of which affect male fertility. The present article summarizes the effects of inflammation on the testis, epididymis and spermatozoa. We review the correlations between inflammation and oxidative stress vis-à-vis spermatogenesis and discuss the implications of infections on male fertility/infertility and assisted reproductive technologies for the male.
Stavropoulos, Katherine Kuhl-Meltzoff; Carver, Leslie J
2018-01-01
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition, and multiple theories have emerged concerning core social deficits. While the social motivation hypothesis proposes that deficits in the social reward system cause individuals with ASD to engage less in social interaction, the overly intense world hypothesis (sensory over-responsivity) proposes that individuals with ASD find stimuli to be too intense and may have hypersensitivity to social interaction, leading them to avoid these interactions. EEG was recorded during reward anticipation and reward processing. Reward anticipation was measured using alpha asymmetry, and post-feedback theta was utilized to measure reward processing. Additionally, we calculated post-feedback alpha suppression to measure attention and salience. Participants were 6- to 8-year-olds with ( N = 20) and without ( N = 23) ASD. Children with ASD showed more left-dominant alpha suppression when anticipating rewards accompanied by nonsocial stimuli compared to social stimuli. During reward processing, children with ASD had less theta activity than typically developing (TD) children. Alpha activity after feedback showed the opposite pattern: children with ASD had greater alpha suppression than TD children. Significant correlations were observed between behavioral measures of autism severity and EEG activity in both the reward anticipation and reward processing time periods. The findings provide evidence that children with ASD have greater approach motivation prior to nonsocial (compared to social) stimuli. Results after feedback suggest that children with ASD evidence less robust activity thought to reflect evaluation and processing of rewards (e.g., theta) compared to TD children. However, children with ASD evidence greater alpha suppression after feedback compared to TD children. We hypothesize that post-feedback alpha suppression reflects general cognitive engagement-which suggests that children with ASD may experience feedback as overly intense. Taken together, these results suggest that aspects of both the social motivation hypothesis and the overly intense world hypothesis may be occurring simultaneously.
Stevenson, Heather L; Estes, Mark D; Thirumalapura, Nagaraja R; Walker, David H; Ismail, Nahed
2010-08-01
Human monocytotropic ehrlichiosis is caused by Ehrlichia chaffeensis, a Gram-negative bacterium lacking lipopolysaccharide. We have shown that fatal murine ehrlichiosis is associated with CD8(+)T cell-mediated tissue damage, tumor necrosis factor-alpha, and interleukin (IL)-10 overproduction, and CD4(+)Th1 hyporesponsiveness. In this study, we examined the relative contributions of natural killer (NK) and NKT cells in Ehrlichia-induced toxic shock. Lethal ehrlichial infection in wild-type mice induced a decline in NKT cell numbers, and late expansion and migration of activated NK cells to the liver, a main infection site that coincided with development of hepatic injury. The spatial and temporal changes in NK and NKT cells in lethally infected mice correlated with higher NK cell cytotoxic activity, higher expression of cytotoxic molecules such as granzyme B, higher production of interferon-gamma and tumor necrosis factor-alpha, increased hepatic infiltration with CD8alphaCD11c(+) dendritic cells and CD8(+)T cells, decreased splenic CD4(+)T cells, increased serum concentrations of IL-12p40, IL-18, RANTES, and monocyte chemotactic protein-1, and elevated production of IL-18 by liver mononuclear cells compared with nonlethally infected mice. Depletion of NK cells prevented development of severe liver injury, decreased serum levels of interferon-gamma, tumor necrosis factor-alpha, and IL-10, and enhanced bacterial elimination. These data indicate that NK cells promote immunopathology and defective anti-ehrlichial immunity, possibly via decreasing the protective immune response mediated by interferon-gamma producing CD4(+)Th1 and NKT cells.
Damiani, Elisabetta; Ullrich, Stephen E.
2016-01-01
Lipid mediators of inflammation play important roles in several diseases including skin cancer, the most prevalent type of cancer found in the industrialized world. Ultraviolet (UV) radiation is a complete carcinogen and is the primary cause of skin cancer. UV radiation is also a potent immunosuppressive agent, and UV-induced immunosuppression is a well-known risk factor for skin cancer induction. An essential mediator in this process is the glyercophosphocholine 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine commonly referred to as platelet-activating factor (PAF). PAF is produced by keratinocytes in response to diverse stimuli and exerts its biological effects by binding to a single specific G-protein-coupled receptor (PAF-R) expressed on a variety of cells. This review will attempt to describe how this lipid mediator is involved in transmitting the immunosuppressive signal from the skin to the immune system, starting from its production by keratinocytes, to its role in activating mast cell migration in vivo, and to the mechanisms involved that ultimately lead to immune suppression. Recent findings related to its role in regulating DNA repair and activating epigenetic mechanisms, further pinpoint the importance of this bioactive lipid, which may serve as a critical molecular mediator that links the environment (UVB radiation) to the immune system and the epigenome. PMID:27073146
Damiani, Elisabetta; Ullrich, Stephen E
2016-07-01
Lipid mediators of inflammation play important roles in several diseases including skin cancer, the most prevalent type of cancer found in the industrialized world. Ultraviolet (UV) radiation is a complete carcinogen and is the primary cause of skin cancer. UV radiation is also a potent immunosuppressive agent, and UV-induced immunosuppression is a well-known risk factor for skin cancer induction. An essential mediator in this process is the glyercophosphocholine 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine commonly referred to as platelet-activating factor (PAF). PAF is produced by keratinocytes in response to diverse stimuli and exerts its biological effects by binding to a single specific G-protein-coupled receptor (PAF-R) expressed on a variety of cells. This review will attempt to describe how this lipid mediator is involved in transmitting the immunosuppressive signal from the skin to the immune system, starting from its production by keratinocytes, to its role in activating mast cell migration in vivo, and to the mechanisms involved that ultimately lead to immune suppression. Recent findings related to its role in regulating DNA repair and activating epigenetic mechanisms, further pinpoint the importance of this bioactive lipid, which may serve as a critical molecular mediator that links the environment (UVB radiation) to the immune system and the epigenome. Copyright © 2016 Elsevier B.V. All rights reserved.
Tyciakova, Silvia; Matuskova, Miroslava; Bohovic, Roman; Polakova, Katarina; Toro, Lenka; Skolekova, Svetlana; Kucerova, Lucia
2015-01-01
Mesenchymal stromal cells (MSC) are a promising tool for targeted cancer therapy due to their tumour-homing ability. Intrinsic resistance enables the MSC to longer tolerate therapeutic factors, such as prodrug converting enzymes, cytokines and pro-apoptotic proteins. Tumour necrosis factor alpha (TNFα) is known to be cytotoxic to a variety of cancer cells and exert a tumour-destructive capacity. MSC were retrovirally transduced to stable express an exogenous gene encoding the desired therapeutic agent hTNFα. The effect of a TNFα-producing adipose tissue-derived MSC (AT-MSC/hTNFα) was tested on the tumour cell lines of different origins: melanoma (A375), breast carcinoma (SKBR3, MDA-MB-231), colon carcinoma (HT29), ovarian carcinoma (SKOV3) and glioblastoma (U87-MG) cells. The tumour suppressing effect of AT-MSC/hTNFα on A375 melanoma xenografts was monitored in an immunodeficient mouse model in vivo. Engineered AT-MSC are able to constitutively secrete human TNFα protein, induce apoptosis of tumour cell lines via caspase 3/7 activation and inhibit the tumour cell proliferation in vitro. Melanoma A375 and breast carcinoma SKBR3 cells were the most sensitive, and their proliferation in vitro was reduced by conditioned media produced by AT-MSC/hTNFα to 60% and 40%, respectively. The previously reported tumour supportive effect of AT-MSC on subcutaneous A375 melanoma xenograft growth was neutralised and suppressed by engineered AT-MSC stably producing hTNFα. When AT-MSC/hTNFα were coinjected with A375 melanoma cells, the tumour mass inhibition was up to 97.5%. The results of the present study demonstrate that tumour cells respond to hTNFα-based treatment mediated by genetically engineered AT-MSC/hTNFα both in vitro and in vivo. Copyright © 2015 John Wiley & Sons, Ltd.
Zhao, Dezheng; Zhan, Yanai; Koon, Hon Wai; Zeng, Huiyan; Keates, Sarah; Moyer, Mary P; Pothoulakis, Charalabos
2004-10-15
Expression of the neuropeptide neurotensin (NT) and its high affinity receptor (NTR1) is increased during the course of Clostridium difficile toxin A-induced acute colitis, and NTR1 antagonism attenuates the severity of toxin A-induced inflammation. We recently demonstrated in non-transformed human colonic epithelial NCM460 cells that NT treatment caused activation of a Ras-mediated MAP kinase pathway that significantly contributes to NT-induced interleukin-8 (IL-8) secretion. Here we used NCM460 cells, which normally express low levels of NTR1, and NCM460 cells stably transfected with NTR1 to identify the upstream signaling molecules involved in NT-NTR1-mediated MAP kinase activation. We found that inhibition of the epidermal growth factor receptor (EGFR) by either an EGFR neutralizing antibody or by its specific inhibitor AG1478 (0.2 microm) blocked NT-induced MAP kinase activation. Moreover, NT stimulated tyrosine phosphorylation of the EGFR, and pretreatment with a broad spectrum metalloproteinase inhibitor batimastat reduced NT-induced MAP kinase activation. Using neutralizing antibodies against the EGFR ligands EGF, heparin-binding-EGF, transforming growth factor-alpha (TGFalpha), or amphiregulin we have shown that only the anti-TGFalpha antibody significantly decreases NT-induced phosphorylation of EGFR and MAP kinases. Furthermore, inhibition of the EGF receptor by AG1478 significantly reduced NT-induced IL-8 promoter activity and IL-8 secretion. This is the first report demonstrating that NT binding to NTR1 transactivates the EGFR and that this response is linked to NT-mediated proinflammatory signaling. Our findings indicate that matrix metalloproteinase-mediated release of TGFalpha and subsequent EGFR transactivation triggers a NT-mediated MAP kinase pathway that leads to IL-8 gene expression in human colonic epithelial cells.
Yamaoka, J; Kume, T; Akaike, A; Miyachi, Y
2000-05-01
Zinc, an essential metal, is a critical component of zinc binding proteins such as zinc fingers, zinc enzymes and metallothioneins. Recently, evidence for its anti-inflammatory property in skin has been accumulating, as shown in the treatment of acne, alopecia and zinc deficiency. In cutaneous inflammations, a large amount of nitric oxide (NO) is produced through induction of inducible nitric oxide synthase (iNOS) under the influence of proinflammatory cytokines, resulting in tissue damages in skin, as clarified in other organs. Therefore, we asked if the effect of zinc on NO production and/or on iNOS expression in keratinocytes may explain the anti-inflammatory property of zinc in skin. Accordingly, we sought to determine in this study whether zinc ion may have effect on IFN-gamma or TNF-alpha induced NO production and iNOS expression in cultured murine keratinocytes. Ten microM of zinc ion remarkably suppressed cytokine-induced NO production in keratinocytes. Furthermore, zinc ion also suppressed cytokine-induced iNOS expression in the protein level as well as in the messenger RNA level. These results suggest the possibility that the suppressive effect of zinc ion on cytokine-induced NO production in keratinocytes may be in part implicated in the anti-inflammatory property of zinc in some of skin disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Ling; Reinach, Peter; Lu, Luo
2005-11-15
Tumor necrosis factor (TNF-{alpha}) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-{alpha} also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-{alpha} stimulation induced activation of a voltage-gated K{sup +} channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-{alpha} on downstream events included NF{kappa}B nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-{alpha} induced increases inmore » p21 expression resulting in partial cell cycle attenuation in the G{sub 1} phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-{alpha}-induced K{sup +} channel activity effectively prevented NF{kappa}B nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-{alpha}. In conclusion, TNF-{alpha} promotes survival of HCE cells through sequential stimulation of K{sup +} channel and NF{kappa}B activities. This response to TNF-{alpha} is dependent on stimulating K{sup +} channel activity because following suppression of K{sup +} channel activity TNF-{alpha} failed to activate NF{kappa}B nuclear translocation and binding to nuclear DNA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yon-Sik; Hong, Jung-Man; Lim, Sunny
2006-06-09
Mitochondrial dysfunction may cause diabetes or insulin resistance. Peroxisome proliferation-activated receptor-{gamma} (PPAR-{gamma}) coactivator-1 {alpha} (PGC-1{alpha}) increases mitochondrial transcription factor A (Tfam) resulting in mitochondrial DNA content increase. An association between a single nucleotide polymorphism (SNP), G1444A(Gly482Ser), of PGC-1{alpha} coding region and insulin resistance has been reported in some ethnic groups. In this study, we investigated whether a change of glycine to serine at codon 482 of PGC-1{alpha} affected the Tfam promoter activity. The cDNA of PGC-1{alpha} variant bearing either glycine or serine at 482 codon was transfected into Chang human hepatocyte cells. The PGC-1{alpha} protein bearing glycine had impaired coactivatormore » activity on Tfam promoter-mediated luciferase. We analyzed the PGC-1{alpha} genotype G1444A and mitochondrial DNA (mtDNA) copy number from 229 Korean leukocyte genomic DNAs. Subjects with Gly/Gly had a 20% lower amount of peripheral blood mtDNA than did subjects with Gly/Ser and Ser/Ser (p < 0.05). No correlation was observed between diabetic parameters and PGC-1{alpha} genotypes in Koreans. These results suggest that PGC-1{alpha} variants with Gly/Gly at 482nd amino acid may impair the Tfam transcription, a regulatory function of mitochondrial biogenesis, resulting in dysfunctional mtDNA replication.« less
Ihler, Friedrich; Sharaf, Kariem; Bertlich, Mattis; Strieth, Sebastian; Reichel, Christoph A; Berghaus, Alexander; Canis, Martin
2013-07-01
Tumor necrosis factor alpha (TNF-alpha) is a mediator of inflammation and microcirculation in the cochlea. This study aimed to quantify the effect of a local increase of TNF-alpha and study the effect of its interaction with etanercept on cochlear microcirculation. Cochlear lateral wall vessels were exposed surgically and assessed by intravital microscopy in guinea pigs in vivo. First, 24 animals were randomly distributed into 4 groups of 6 each. Exposed vessels were superfused repeatedly either with 1 of 3 different concentrations of TNF-alpha (5.0, 0.5, and 0.05 ng/mL) or with placebo (0.9% saline solution). Second, 12 animals were randomly distributed into 2 groups of 6 each. Vessels were pretreated with etanercept (1.0 microg/ mL) or placebo (0.9% saline solution), and then treated by repeated superfusion with TNF-alpha (5.0 ng/mL). TNF-alpha was shown to be effective in decreasing cochlear blood flow at a dose of 5.0 ng/mL (p < 0.01, analysis of variance on ranks). Lower concentrations or placebo treatment did not lead to significant changes. After pretreatment with etanercept, TNF-alpha at a dose of 5.0 ng/mL no longer led to a change in cochlear blood flow. The decreasing effect that TNF-alpha has on cochlear blood flow is dose-dependent. Etanercept abrogates this effect.
Marui, N; Offermann, M K; Swerlick, R; Kunsch, C; Rosen, C A; Ahmad, M; Alexander, R W; Medford, R M
1993-01-01
Oxidative stress and expression of the vascular cell adhesion molecule-1 (VCAM-1) on vascular endothelial cells are early features in the pathogenesis of atherosclerosis and other inflammatory diseases. Regulation of VCAM-1 gene expression may be coupled to oxidative stress through specific reduction-oxidation (redox) sensitive transcriptional or posttranscriptional regulatory factors. In cultured human umbilical vein endothelial (HUVE) cells, the cytokine interleukin 1 beta (IL-1 beta) activated VCAM-1 gene expression through a mechanism that was repressed approximately 90% by the antioxidants pyrrolidine dithiocarbamate (PDTC) and N-acetylcysteine (NAC). Furthermore, PDTC selectively inhibited the induction of VCAM-1, but not intercellular adhesion molecule-1 (ICAM-1), mRNA and protein accumulation by the cytokine tumor necrosis factor-alpha (TNF alpha) as well as the noncytokines bacterial endotoxin lipopolysaccharide (LPS) and double-stranded RNA, poly(I:C) (PIC). PDTC also markedly attenuated TNF alpha induction of VCAM-1-mediated cellular adhesion. In a distinct pattern, PDTC partially inhibited E-selectin gene expression in response to TNF alpha but not to LPS, IL-1 beta, or PIC. TNF alpha and LPS-mediated transcriptional activation of the human VCAM-1 promoter through NF-kappa B-like DNA enhancer elements and associated NF-kappa B-like DNA binding proteins was inhibited by PDTC. These studies suggest a molecular linkage between an antioxidant sensitive transcriptional regulatory mechanism and VCAM-1 gene expression that expands on the notion of oxidative stress as an important regulatory signal in the pathogenesis of atherosclerosis. Images PMID:7691889
Zhu, Qingsong; Jin, Lihua; Casero, Robert A.
2013-01-01
Our previous studies demonstrated that specific polyamine analogues, oligoamines, down-regulated the activity of a key polyamine biosynthesis enzyme, ornithine decarboxylase (ODC), and suppressed expression of estrogen receptor alpha (ERα) in human breast cancer cells. However, the mechanism underlying the potential regulation of ERα expression by polyamine metabolism has not been explored. Here, we demonstrated that RNAi-mediated knockdown of ODC (ODC KD) down-regulated the polyamine pool, and hindered growth in ERα-positive MCF7 and T47D and ERα-negative MDA-MB-231 breast cancer cells. ODC KD significantly induced the expression and activity of the key polyamine catabolism enzymes, spermine oxidase (SMO) and spermidine/spermine N1-acetyltransferase (SSAT). However, ODC KD-induced growth inhibition could not be reversed by exogenous spermidine or overexpression of antizyme inhibitor (AZI), suggesting that regulation of ODC on cell proliferation may involve the signaling pathways independent of polyamine metabolism. In MCF7 and T47D cells, ODC KD, but not DFMO treatment, diminished the mRNA and protein expression of ERα. Overexpression of antizyme (AZ), an ODC inhibitory protein, suppressed ERα expression, suggesting that ODC plays an important role in regulation of ERα expression. Decrease of ERα expression by ODC siRNA altered the mRNA expression of a subset of ERα response genes. Our previous analysis showed that oligoamines disrupt the binding of Sp1 family members to an ERα minimal promoter element containing GC/CA-rich boxes. By using DNA affinity precipitation and mass spectrometry analysis, we identified ZBTB7A, MeCP2, PARP-1, AP2, and MAZ as co-factors of Sp1 family members that are associated with the ERα minimal promoter element. Taken together, these data provide insight into a novel antiestrogenic mechanism for polyamine biosynthesis enzymes in breast cancer. PMID:22976807
Ray, Alpana; Alalem, Mohamed; Ray, Bimal K
2013-09-20
Vascular endothelial growth factor (VEGF) is recognized as an important angiogenic factor that promotes angiogenesis in a series of pathological conditions, including cancer, inflammation, and ischemic disorders. We have recently shown that the inflammatory transcription factor SAF-1 is, at least in part, responsible for the marked increase of VEGF levels in breast cancer. Here, we show that SAF-1-mediated induction of VEGF is repressed by KLF-4 transcription factor. KLF-4 is abundantly present in normal breast epithelial cells, but its level is considerably reduced in breast cancer cells and clinical cancer tissues. In the human VEGF promoter, SAF-1- and KLF-4-binding elements are overlapping, whereas SAF-1 induces and KLF-4 suppresses VEGF expression. Ectopic overexpression of KLF-4 and RNAi-mediated inhibition of endogenous KLF-4 supported the role of KLF-4 as a transcriptional repressor of VEGF and an inhibitor of angiogenesis in breast cancer cells. We show that KLF-4 recruits histone deacetylases (HDACs) -2 and -3 at the VEGF promoter. Chronological ChIP assays demonstrated the occupancy of KLF-4, HDAC2, and HDAC3 in the VEGF promoter in normal MCF-10A cells but not in MDA-MB-231 cancer cells. Co-transfection of KLF-4 and HDAC expression plasmids in breast cancer cells results in synergistic repression of VEGF expression and inhibition of angiogenic potential of these carcinoma cells. Together these results identify a new mechanism of VEGF up-regulation in cancer that involves concomitant loss of KLF-4-HDAC-mediated transcriptional repression and active recruitment of SAF-1-mediated transcriptional activation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Syng-Ook; Jeong, Yun-Jeong; Yu, Mi Hee
2006-12-08
Matrix metalloproteinase-9 (MMP-9) plays a major role in the pathogenesis of atherosclerosis and restenosis by regulating both migration and proliferation of vascular smooth muscle cells (VSMC) after an arterial injury. In this study, we examined the inhibitory effect of three major flavonoids in Scutellariae Radix, baicalin, baicalein, and wogonin, on TNF-{alpha}-induced MMP-9 expression in human aortic smooth muscle cells (HASMC). Wogonin, but not baicalin and baicalein, significantly and selectively suppressed TNF-{alpha}-induced MMP-9 expression in HASMC. Reporter gene, electrophoretic mobility shift, and Western blotting assays showed that wogonin inhibits MMP-9 gene transcriptional activity by blocking the activation of NF-{kappa}B via MAPKmore » signaling pathways. Moreover, the Matrigel migration assay showed that wogonin reduced TNF-{alpha}-induced HASMC migration. These results suggest that wogonin effectively suppresses TNF-{alpha}-induced HASMC migration through the selective inhibition of MMP-9 expression and represents a potential agent for the prevention of vascular disorders related to the migration of VSMC.« less
Kim, Jung-Hoon; Shin, Soyeon; Seo, Jinho; Lee, Eun-Woo; Jeong, Manhyung; Lee, Min-sik; Han, Hyun-Ji; Song, Jaewhan
2017-01-01
PPARγ (Peroxisome proliferator-activated receptor γ) is a nuclear receptor involved in lipid homeostasis and related metabolic diseases. Acting as a transcription factor, PPARγ is a master regulator for adipocyte differentiation. Here, we reveal that CHIP (C-terminus of HSC70-interacting protein) suppresses adipocyte differentiation by functioning as an E3 ligase of PPARγ. CHIP directly binds to and induces ubiquitylation of the PPARγ protein, leading to proteasome-dependent degradation. Stable overexpression or knockdown of CHIP inhibited or promoted adipogenesis, respectively, in 3T3-L1 cells. On the other hand, a CHIP mutant defective in E3 ligase could neither regulate PPARγ protein levels nor suppress adipogenesis, indicating the importance of CHIP-mediated ubiquitylation of PPARγ in adipocyte differentiation. Lastly, a CHIP null embryo fibroblast exhibited augmented adipocyte differentiation with increases in PPARγ and its target protein levels. In conclusion, CHIP acts as an E3 ligase of PPARγ, suppressing PPARγ-mediated adipogenesis. PMID:28059128
Huang, R P; Fan, Y; Peng, A; Zeng, Z L; Reed, J C; Adamson, E D; Boynton, A L
1998-09-11
Previously, we showed that the transcription factor Egr-1 suppressed the proliferation of v-sis transformed NIH3T3 cells and also a number of human tumor cells. Here, we investigate the possible mechanisms responsible for this function. We show that transfected Egr-1 in human fibrosarcoma cells HT1080 leads to down-regulation of Bcl-2. Transient CAT transfection assays reveal that expression of Egr-1 suppresses Bcl-2 promoter activity in a dose-dependent manner. Furthermore, overexpression of Bcl-2 in Egr-1-expressing HT1080 cells enhanced cell proliferation in monolayer culture and increased anchorage-independent growth. Our results suggest that suppression of tumor cell proliferation by Egr-1 may be at least partially mediated through the down-regulation of Bcl-2.
Hashimoto, Shoko; Imaoka, Susumu
2013-01-01
Protein-disulfide isomerase (PDI) is a dithiol/disulfide oxidoreductase that regulates the redox state of proteins. We previously found that overexpression of PDI in rat pituitary tumor (GH3) cells suppresses 3,3′,5-triiodothyronine (T3)-stimulated growth hormone (GH) expression, suggesting the contribution of PDI to the T3-mediated gene expression via thyroid hormone receptor (TR). In the present study, we have clarified the mechanism of regulation by which TR function is regulated by PDI. Overexpression of wild-type but not redox-inactive mutant PDI suppressed the T3-induced GH expression, suggesting that the redox activity of PDI contributes to the suppression of GH. We considered that PDI regulates the redox state of the TR and focused on redox factor-1 (Ref-1) as a mediator of the redox regulation of TR by PDI. Interaction between Ref-1 and TRβ1 was detected. Overexpression of wild-type but not C64S Ref-1 facilitated the GH expression, suggesting that redox activity of Cys-64 in Ref-1 is involved in the TR-mediated gene expression. Moreover, PDI interacted with Ref-1 and changed the redox state of Ref-1, suggesting that PDI controls the redox state of Ref-1. Our studies suggested that Ref-1 contributes to TR-mediated gene expression and that the redox state of Ref-1 is regulated by PDI. Redox regulation of PDI via Ref-1 is a new aspect of PDI function. PMID:23148211
Caarls, Lotte; Van der Does, Dieuwertje; Hickman, Richard; Jansen, Wouter; Verk, Marcel C Van; Proietti, Silvia; Lorenzo, Oscar; Solano, Roberto; Pieterse, Corné M J; Van Wees, Saskia C M
2017-02-01
Salicylic acid (SA) and jasmonic acid (JA) cross-communicate in the plant immune signaling network to finely regulate induced defenses. In Arabidopsis, SA antagonizes many JA-responsive genes, partly by targeting the ETHYLENE RESPONSE FACTOR (ERF)-type transcriptional activator ORA59. Members of the ERF transcription factor family typically bind to GCC-box motifs in the promoters of JA- and ethylene-responsive genes, thereby positively or negatively regulating their expression. The GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Here, we investigated whether SA-induced ERF-type transcriptional repressors, which may compete with JA-induced ERF-type activators for binding at the GCC-box, play a role in SA/JA antagonism. We selected ERFs that are transcriptionally induced by SA and/or possess an EAR transcriptional repressor motif. Several of the 16 ERFs tested suppressed JA-dependent gene expression, as revealed by enhanced JA-induced PDF1.2 or VSP2 expression levels in the corresponding erf mutants, while others were involved in activation of these genes. However, SA could antagonize JA-induced PDF1.2 or VSP2 in all erf mutants, suggesting that the tested ERF transcriptional repressors are not required for SA/JA cross-talk. Moreover, a mutant in the co-repressor TOPLESS, that showed reduction in repression of JA signaling, still displayed SA-mediated antagonism of PDF1.2 and VSP2. Collectively, these results suggest that SA-regulated ERF transcriptional repressors are not essential for antagonism of JA-responsive gene expression by SA. We further show that de novo SA-induced protein synthesis is required for suppression of JA-induced PDF1.2, pointing to SA-stimulated production of an as yet unknown protein that suppresses JA-induced transcription. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, MiRan; Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr
Ultraviolet (UV) radiation induces cyclooxygenase-2 expression to produce cellular responses including aging and carcinogenesis in skin. We hypothesised that heterotrimeric G proteins mediate UV-induced COX-2 expression by stimulating secretion of soluble HB-EGF (sHB-EGF). In this study, we aimed to elucidate the role and underlying mechanism of the {alpha} subunit of Gq protein (G{alpha}q) in UVB-induced HB-EGF secretion and COX-2 induction. We found that expression of constitutively active G{alpha}q (G{alpha}qQL) augmented UVB-induced HB-EGF secretion, which was abolished by knockdown of G{alpha}q with shRNA in HaCaT human keratinocytes. G{alpha}q was found to mediate the UVB-induced HB-EGF secretion by sequential activation of phospholipasemore » C (PLC), protein kinase C{delta} (PKC{delta}), and matrix metaloprotease-2 (MMP-2). Moreover, G{alpha}qQL mediated UVB-induced COX-2 expression in an HB-EGF-, EGFR-, and p38-dependent manner. From these results, we concluded that G{alpha}q mediates UV-induced COX-2 expression through activation of EGFR by HB-EGF, of which ectodomain shedding was stimulated through sequential activation of PLC, PKC{delta} and MMP-2 in HaCaT cells.« less
p18(Hamlet) mediates different p53-dependent responses to DNA-damage inducing agents.
Lafarga, Vanesa; Cuadrado, Ana; Nebreda, Angel R
2007-10-01
Cells organize appropriate responses to environmental cues by activating specific signaling networks. Two proteins that play key roles in coordinating stress responses are the kinase p38alpha (MAPK14) and the transcription factor p53 (TP53). Depending on the nature and the extent of the stress-induced damage, cells may respond by arresting the cell cycle or by undergoing cell death, and these responses are usually associated with the phosphorylation of particular substrates by p38alpha as well as the activation of specific target genes by p53. We recently characterized a new p38alpha substrate, named p18(Hamlet) (ZNHIT1), which mediates p53-dependent responses to different genotoxic stresses. Thus, cisplatin or UV light induce stabilization of the p18(Hamlet) protein, which then enhances the ability of p53 to bind to and activate the promoters of pro-apoptotic genes such as NOXA and PUMA leading to apoptosis induction. In a similar way, we report here that p18(Hamlet) can also mediate the cell cycle arrest induced in response to gamma-irradiation, by participating in the p53-dependent upregulation of the cell cycle inhibitor p21(Cip1) (CDKN1A).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funaki, Y.; Horiuchi, H.; International Institute for Advanced Studies, Kizugawa 619-0225
2008-06-15
At low densities, with decreasing temperatures, in symmetric nuclear matter {alpha} particles are formed, which eventually give raise to a quantum condensate with four-nucleon {alpha}-like correlations (quartetting). Starting with a model of {alpha} matter, where undistorted {alpha} particles interact via an effective interaction such as the Ali-Bodmer potential, the suppression of the condensate fraction at zero temperature with increasing density is considered. Using a Jastrow-Feenberg approach, it is found that the condensate fraction vanishes near saturation density. Additionally, the modification of the internal state of the {alpha} particle due to medium effects will further reduce the condensate. In finite systems,more » an enhancement of the S-state wave function of the center-of-mass orbital of {alpha}-particle motion is considered as the correspondence to the condensate. Wave functions have been constructed for self-conjugate 4n nuclei that describe the condensate state but are fully antisymmetrized on the nucleonic level. These condensate-like cluster wave functions have been successfully applied to describe properties of low-density states near the n{alpha} threshold. Comparison with orthogonality condition model calculations in {sup 12}C and {sup 16}O shows strong enhancement of the occupation of the S-state center-of-mass orbital of the {alpha} particles. This enhancement is decreasing if the baryon density increases, similar to the density-induced suppression of the condensate fraction in {alpha} matter. The ground states of {sup 12}C and {sup 16}O show no enhancement at all, thus a quartetting condensate cannot be formed at saturation densities.« less
Seki, Ekihiro; Tsutsui, Hiroko; Iimuro, Yuji; Naka, Tetsuji; Son, Gakuhei; Akira, Shizuo; Kishimoto, Tadamitsu; Nakanishi, Kenji; Fujimoto, Jiro
2005-03-01
Toll-like receptors (TLRs) act as innate immune signal sensors and play central roles in host defense. Myeloid differentiation factor (MyD) 88 is a common adaptor molecule required for signaling mediated by TLRs. When the receptors are activated, cells bearing TLRs produce various proinflammatory cytokines in a MyD88-dependent manner. Liver regeneration following partial hepatectomy (PH) requires innate immune responses, particularly interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) production by Kupffer cells, although the recognition and activation processes are still unknown. We investigated whether TLR/MyD88 signaling is critical for induction of innate immune responses after PH. In Myd88(-/-) mice after PH, induction of expression of immediate early genes involved in hepatocyte replication and phosphorylation of STAT3 in the liver, and production of TNF-alpha/IL-6 by and activation of NF-kappaB in the Kupffer cells were grossly subnormal and were associated with impaired liver regeneration. However, TLR2, 4 and 9, which recognize gram-negative and -positive bacterial products, are not essential for NF-kappaB activation and IL-6 production after PH, which excludes a possible contribution of TLR2/TLR4 or TLR9 to MyD88-mediated pathways. In conclusion, the TLR/MyD88 pathway is essential for incidental liver restoration, particularly its early phase.
Antoniv, Taras T; Ivashkiv, Lionel B
2011-01-01
Interleukin-10 (IL-10) is an immunosuppressive cytokine that inhibits inflammatory gene expression. Phosphatidylinositol 3-kinase (PI3K) -mediated signalling regulates inflammatory responses and can induce IL-10 production, but a role for PI3K signalling in cellular responses to IL-10 is not known. In this study we investigated the involvement of the PI3K-Akt-GSK3 signalling pathway in IL-10-induced gene expression and IL-10-mediated suppression of Toll-like receptor-induced gene expression in primary human macrophages. A combination of loss and gain of function approaches using kinase inhibitors, expression of constitutively active Akt, and RNA interference in primary human macrophages showed that expression of a subset of IL-10-inducible genes was dependent on PI3K-Akt signalling. The effects of PI3K-Akt signalling on IL-10 responses were mediated at least in part by glycogen synthase kinase 3 (GSK3). In accordance with a functional role for PI3K pathways in contributing to the suppressive actions of IL-10, PI3K signalling augmented IL-10-mediated inhibition of lipopolysaccharide-induced IL-1, IL-8 and cyclo-oxygenase-2 expression. The PI3K signalling selectively modulated IL-10 responses, as it was not required for inhibition of tumour necrosis factor expression or for induction of certain IL-10-inducible genes such as SOCS3. These findings identify a new mechanism by which PI3K-mediated signalling can suppress inflammation by regulating IL-10-mediated gene induction and anti-inflammatory function. PMID:21255011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Zhen; Li, Zhiliang; Chen, Song
2013-08-15
Endothelial cells produce nitric oxide (NO) by activation of constitutive nitric oxide synthase (NOS) and transcription of inducible NO synthase (iNOS). We explored the effect of tetramethylpyrazine (TMP), a compound derived from chuanxiong, on tumor necrosis factor (TNF)-α-induced iNOS in human umbilical vein endothelial cells (HUVECs) and explored the signal pathways involved by using RT-PCR and Western blot. TMP suppressed TNF-α-induced expression of iNOS by inhibiting IκB kinase (IKK) phosphorylation, IκB degradation and nuclear factor κB (NF-κB) nuclear translocation, which were required for NO gene transcription. Exposure to wortmannin abrogated IKK/IκB/NF-κB-mediated iNOS expression, suggesting activation of such a signal pathwaymore » might be phosphoinositide-3-kinase (PI3K) dependent. Spleen tyrosine kinase (Syk) inhibitor piceatannol significantly inhibited NO production. Furthermore, piceatannol obviously suppressed TNF-α-induced IκB phosphorylation and the downstream NF-κB activation, suggesting that Syk is an upstream key regulator in the activation of PI3K/IKK/IκB-mediated signaling. TMP significantly inhibited TNF-α-induced phosphorylation of Syk and PI3K. Our data indicate that TMP might repress iNOS expression, at least in part, through its inhibitory effect of Syk-mediated PI3K phosphorylation in TNF-α-stimulated HUVECs. -- Highlights: •TMP suppressed TNF-α-induced expression of iNOS by inhibiting IKK/IκB/NF-κB pathway. •PI3K inhibitor wortmannin abrogated IKK/IκB/NF-κB-mediated iNOS expression. •Syk inhibitor piceatannol repressed PI3K/IKK/IκB mediated NO production. •Syk is an upstream regulator in the activation of PI3K/IKK/IκB-mediated signaling. •TMP might repress iNOS expression through Syk-mediated PI3K pathway.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Wei, E-mail: detachedy@yahoo.com.cn; Sun, Ting; Cao, Jianping
2012-05-01
Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1{alpha} (HIF-1{alpha}) and miR-210 expression and cell arrest in the G{sub 0}/G{sub 1} phase inmore » all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G{sub 0}/G{sub 1} phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: Black-Right-Pointing-Pointer miR-210 downregulation radiosensitized hypoxic hepatoma. Black-Right-Pointing-Pointer AIFM3 was identified as a direct target gene of miR-210. Black-Right-Pointing-Pointer miR-210 might be a therapeutic target to hypoxic hepatoma.« less
Hu, Ge; Wang, Junjie; Hong, Dong; Zhang, Tao; Duan, Huiqin; Mu, Xiang; Yang, Zuojun
2017-01-11
Mastitis gives rise to big financial burden to farm industry (mainly dairy production) and public health. Its incidence is currently high and therefore, highly effective treatments for therapy, especially with natural products are required. Taraxacum officinale has been reported to use for anti-inflammation. However, its effect on endothelium during mastitis has not been reported. We firstly established inflammation experimental model of rat mammary microvascular endothelial cells (RMMVECs). We evaluated the effects of dandelion leaf aqueous extracts (DAE) on LPS-induced production of inflammatory mediators in RMMVECs by enzyme-linked immunosorbent assay and Western blot. We treated RMMVECs with 1 μg/ml LPS for 4 h and then incubated with 10, 100 and 200 μg/mL DAE for 4, 8, 12 and 24 h. The expression (mRNA and protein level) of targets (tumor necrosis factor-alpha (TNF- α) and Intracellular Adhesion Molecule 1 (ICAM1) was analyzed by employing real-time PCR and Western blots. The in vivo anti-inflammatory effect of DAE on mastitis within an Staphylococcus aureus-induced mouse model was also determined. The obtained results showed that dandelion extracts at the concentration of 100 and 200 μg/mL could significantly inhibit both TNF-α and ICAM-1 expression in all time points checked while 10 μg/mL of dandelion only suppress both expression at 8 and 12 h post-treatment. The in vivo tests showed that the DAE inhibited the expression of TNF-α and ICAM-1 in a time-dependent manner. All results suggest that the endothelium may use as as a possible target of dandelion for anti-inflammation.
Qian, Zhong-Ming; He, Xuan; Liang, Tuo; Wu, Ka-Chun; Yan, Yik-Chun; Lu, Li-Na; Yang, Guang; Luo, Qian Qian; Yung, Wing-Ho; Ke, Ya
2014-12-01
Neuroinflammation is closely related to brain iron homeostasis. Our previous study demonstrated that lipopolysaccharides (LPS) can regulate expression of iron-regulatory peptide hepcidin; however, the mechanism is undefined. Here, we demonstrated that intracerebroventricular injection of LPS in rat brain upregulated hepcidin and downregulated ferroportin 1 in the cortex and substantia nigra. LPS increased hepcidin expression in neurons only when they were co-cultured with BV-2 microglia, and the upregulation was suppressed by IL-6 neutralizing antibody in vitro. In addition, IL-6 but not IL-1α, IL-1β, or tumor necrosis factor-alpha increased hepcidin expression and signal transducer and activator of transcription 3 (STAT3) phosphorylation in cortical neurons and MES23.5 dopaminergic neurons. These effects were blocked by the STAT3 inhibitor, stattic. Our results show that neurons are the major source of increased hepcidin expression in response to LPS challenge but microglia play a key mediator role by releasing IL-6 and recruiting the STAT3 pathway. We conclude that LPS upregulates hepcidin expression in neurons via microglia and the IL-6/STAT3 signaling pathway.
El Ghalbzouri, Abdoelwaheb; Jonkman, Marcel F; Dijkman, Remco; Ponec, Maria
2005-01-01
This study was undertaken to examine the role fibroblasts play in the formation of the basement membrane (BM) in human skin equivalents. For this purpose, keratinocytes were seeded on top of fibroblast-free or fibroblast-populated collagen matrix or de-epidermized dermis and cultured in the absence of serum and exogenous growth factors. The expression of various BM components was analyzed on the protein and mRNA level. Irrespective of the presence or absence of fibroblasts, keratin 14, hemidesmosomal proteins plectin, BP230 and BP180, and integrins alpha1beta1, alpha2beta1, alpha3beta1, and alpha6beta4 were expressed but laminin 1 was absent. Only in the presence of fibroblasts or of various growth factors, laminin 5 and laminin 10/11, nidogen, uncein, type IV and type VII collagen were decorating the dermal/epidermal junction. These findings indicate that the attachment of basal keratinocytes to the dermal matrix is most likely mediated by integrins alpha1beta1 and alpha2beta1, and not by laminins that bind to integrin alpha6beta4 and that the epithelial-mesenchymal cross-talk plays an important role in synthesis and deposition of various BM components.
Cohen, Timothy; Craig, Nathaniel; Knapen, Simon
2016-03-15
We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ–b μ problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 10 5 to 10 8 GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loopmore » suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.« less
Soluble antigens from group B streptococci induce cytokine production in human blood cultures.
von Hunolstein, C; Totolian, A; Alfarone, G; Mancuso, G; Cusumano, V; Teti, G; Orefici, G
1997-01-01
Group B streptococcal antigens stimulated tumor necrosis factor alpha (TNF-alpha), interleukin-1 (IL-1), and IL-6 production in human blood cultures in a concentration- and time-dependent fashion. The minimal concentrations of type-specific polysaccharides, lipoteichoic acid, and group-specific polysaccharide required to produce these effects were, respectively, 0.01, 1, and 10 microg/ml. Cell separation experiments indicated that monocytes were the cell type mainly responsible for cytokine production. Time course studies indicated that TNF-alpha was released before the other cytokines. TNF-alpha, however, did not appear to directly induce IL-1beta, as shown by blockade experiments with anti-TNF-alpha antibodies. IL-6 levels were moderately but significantly decreased by anti-TNF-alpha. These data indicate that several products from group B streptococci are able to directly stimulate human monocytes to release TNF-alpha, IL-1beta, and IL-6. These findings may be clinically relevant, since proinflammatory cytokines can mediate pathophysiologic changes during sepsis. PMID:9317001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Weiping, E-mail: weiping.qin@mssm.edu; Department of Medicine, Mount Sinai School of Medicine, NY; Pan, Jiangping
Research highlights: {yields} In rat gastrocnemius muscle, dexamethasone reduced PGC-1{alpha} cellular and nuclear levels without altering mRNA levels for this factor. {yields} Dexamethasone reduced phosphorylating of p38 MAPK, which stabilizes PGC-1{alpha} and promotes its nuclear entry. {yields} Co-administration of testosterone with dexamethasone increased cellular and nuclear levels of PGC-1{alpha} protein without changing its mRNA levels. {yields} Co-administration of testosterone restored p38 MAPK levels to those of controls. -- Abstract: Glucocorticoid-induced muscle atrophy results from muscle protein catabolism and reduced protein synthesis, associated with increased expression of two muscle-specific ubiquitin ligases (MAFbx and MuRF1), and of two inhibitors of protein synthesis,more » REDD1 and 4EBP1. MAFbx, MuRF1, REDD1 and 4EBP1 are up-regulated by the transcription factors FOXO1 and FOXO3A. The transcriptional co-activator PGC-1{alpha} has been shown to attenuate many forms of muscle atrophy and to repress FOXO3A-mediated transcription of atrophy-specific genes. Dexamethasone-induced muscle atrophy can be prevented by testosterone, which blocks up-regulation by dexamethasone of FOXO1. Here, an animal model of dexamethasone-induced muscle atrophy was used to further characterize effects of testosterone to abrogate adverse actions of dexamethasone on FOXO1 levels and nuclear localization, and to determine how these agents affect PGC-1{alpha}, and its upstream activators, p38 MAPK and AMPK. In rat gastrocnemius muscle, testosterone blunted the dexamethasone-mediated increase in levels of FOXO1 mRNA, and FOXO1 total and nuclear protein. Dexamethasone reduced total and nuclear PGC-1{alpha} protein levels in the gastrocnemius; co-administration of testosterone with dexamethasone increased total and nuclear PGC-1{alpha} levels above those present in untreated controls. Testosterone blocked dexamethasone-induced decreases in activity of p38 MAPK in the gastrocnemius muscle. Regulation of FOXO1, PGC-1{alpha} and p38 MAPK by testosterone may represent a novel mechanism by which this agent protects against dexamethasone-induced muscle atrophy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yun; Kwon, Young-Chan; Kim, Soo-In
Hantaan virus (HTNV) is a pathogenic hantavirus that causes hemorrhagic fever with renal syndrome (HFRS). HTNV infection is mediated by {alpha}v{beta}3 integrin. We used protein blots of Vero E6 cell homogenates to demonstrate that radiolabeled HTNV virions bind to gC1qR/p32, the acidic 32-kDa protein known as the receptor for the globular head domain of complement C1q. RNAi-mediated suppression of gC1qR/p32 markedly reduced HTNV binding and infection in human lung epithelial A549 cells. Conversely, transient expression of either simian or human gC1qR/p32 rendered non-permissive CHO cells susceptible to HTNV infection. These results suggest an important role for gC1qR/p32 in HTNV infectionmore » and pathogenesis.« less
Ko, Wan-Kyu; Lee, Soo-Hong; Kim, Sung Jun; Jo, Min-Jae; Kumar, Hemant; Han, In-Bo; Sohn, Seil
2017-01-01
Purpose The aim of this study was to investigate the anti-inflammatory effects of Ursodeoxycholic acid (UDCA) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods We induced an inflammatory process in RAW 264.7 macrophages using LPS. The anti-inflammatory effects of UDCA on LPS-stimulated RAW 264.7 macrophages were analyzed using nitric oxide (NO). Pro-inflammatory and anti-inflammatory cytokines were analyzed by quantitative real time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 in mitogen-activated protein kinase (MAPK) signaling pathways and nuclear factor kappa-light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) signaling pathways were evaluated by western blot assays. Results UDCA decreased the LPS-stimulated release of the inflammatory mediator NO. UDCA also decreased the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin 1-α (IL-1α), interleukin 1-β (IL-1β), and interleukin 6 (IL-6) in mRNA and protein levels. In addition, UDCA increased an anti-inflammatory cytokine interleukin 10 (IL-10) in the LPS-stimulated RAW 264.7 macrophages. UDCA inhibited the expression of inflammatory transcription factor nuclear factor kappa B (NF-κB) in LPS-stimulated RAW 264.7 macrophages. Furthermore, UDCA suppressed the phosphorylation of ERK, JNK, and p38 signals related to inflammatory pathways. In addition, the phosphorylation of IκBα, the inhibitor of NF-κB, also inhibited by UDCA. Conclusion UDCA inhibits the pro-inflammatory responses by LPS in RAW 264.7 macrophages. UDCA also suppresses the phosphorylation by LPS on ERK, JNK, and p38 in MAPKs and NF-κB pathway. These results suggest that UDCA can serve as a useful anti-inflammatory drug. PMID:28665991
Tani-Ishii, N; Wang, C Y; Stashenko, P
1995-08-01
The bone-resorptive cytokines interleukin 1 (IL-1) and tumor necrosis factor (TNF) have been implicated in the pathogenesis of many chronic inflammatory diseases, including pulpitis and apical periodontitis.To further elucidate their role in these disorders, we have identified cells that express IL-1 alpha and TNF alpha in infected pulps and in developing rat periapical lesions after surgical pulp exposure. As detected by immunohistochemistry, IL-1 alpha- and TNF alpha-positive cells were present as early as 2 days after pulp exposure in both the pulp and periapical region. The numbers of cytokine-expressing cells increased up to day 4 in the pulp and up to day 30 in the periapex. In contrast, cells expressing IL-1 beta and TNF beta, the homologous forms of these mediators, were not found in pulp or periapical lesions during this period. Cells expressing IL-1 alpha and TNF alpha were identified primarily as macrophages and fibroblasts, with occasional staining of polymorphonuclear leukocytes. Osteoblasts and osteoclasts were also positive, whereas lymphocytes were negative. In general, cytokine-expressing cells were located proximal to abscesses and the root apex. These findings demonstrate that cells that express bone-resorptive cytokines IL-1 alpha and TNF alpha are present immediately after pulp exposure in this model, which supports the hypothesis that these mediators play a key role in pulpal and periapical pathogenesis, including the concomitant bone destruction. They also indicate that both resident connective tissue cells as well as infiltrating cells express bone-resorptive cytokines in response to infection in these lesions.
Gao, Jian-Li; Shui, Yan-Mei; Jiang, Wei; Huang, En-Yi; Shou, Qi-Yang; Ji, Xin; He, Bai-Cheng; Lv, Gui-Yuan; He, Tong-Chuan
2016-01-01
Hypoxic in the tumor mass is leading to the myeloproliferative-like disease (leukemoid reaction) and anemia of body, which characterized by strong extensive extramedullary hematopoiesis (EMH) in spleen. As the key transcription factor of hypoxia, hypoxia-inducible factor-1 (HIF-1) activates the expression of genes essential for EMH processes including enhanced blood cell production and angiogenesis. We found ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, inhibited growth of breast cancer both in vivo and in vitro. The suppression was mediated through the inhibition of multiple cell pathways linked to inflammation, proliferation, angiogenesis, and metastasis. UA also suppressed the leukemoid reaction and the EMH phenomenon of the tumor bearing mice without any significant suppression on body weight (i.p. by 20 mg/kg for 28 days). This is associated with the significant decrease in white blood cells (WBC), platelets (PLT) and spleen weight. During this process, we also detected the down-regulation of cell proliferative genes (PCNA, and β-catenin), and metastatic genes (VEGF, and HIF-1α), as well as the depression of nuclear protein intensity of HIF-1α. Furthermore, the expression of E2F1, p53 and MDM2 genes were increased in UA group when the VEGF and HIF-1α was over-expressed. Cancer cells were sensitive to UA treating after the silencing of HIF-1α and the response of Hypoxic pathway reporter to UA was suppressed when HIF-1α was over expressed. Overall, our results from experimental and predictive studies suggest that the anticancer activity of UA may be at least in part caused by suppressing the cancer hypoxia and hypoxia-mediated EMH. PMID:27708244
Rad52/Rad59-dependent Recombination as a Means to Rectify Faulty Okazaki Fragment Processing*
Lee, Miju; Lee, Chul-Hwan; Demin, Annie Albert; Munashingha, Palinda Ruvan; Amangyeld, Tamir; Kwon, Buki; Formosa, Tim; Seo, Yeon-Soo
2014-01-01
The correct removal of 5′-flap structures by Rad27 and Dna2 during Okazaki fragment maturation is crucial for the stable maintenance of genetic materials and cell viability. In this study, we identified RAD52, a key recombination protein, as a multicopy suppressor of dna2-K1080E, a lethal helicase-negative mutant allele of DNA2 in yeasts. In contrast, the overexpression of Rad51, which works conjointly with Rad52 in canonical homologous recombination, failed to suppress the growth defect of the dna2-K1080E mutation, indicating that Rad52 plays a unique and distinct role in Okazaki fragment metabolism. We found that the recombination-defective Rad52-QDDD/AAAA mutant did not rescue dna2-K1080E, suggesting that Rad52-mediated recombination is important for suppression. The Rad52-mediated enzymatic stimulation of Dna2 or Rad27 is not a direct cause of suppression observed in vivo, as both Rad52 and Rad52-QDDD/AAAA proteins stimulated the endonuclease activities of both Dna2 and Rad27 to a similar extent. The recombination mediator activity of Rad52 was dispensable for the suppression, whereas both the DNA annealing activity and its ability to interact with Rad59 were essential. In addition, we found that several cohesion establishment factors, including Rsc2 and Elg1, were required for the Rad52-dependent suppression of dna2-K1080E. Our findings suggest a novel Rad52/Rad59-dependent, but Rad51-independent recombination pathway that could ultimately lead to the removal of faulty flaps in conjunction with cohesion establishment factors. PMID:24711454
Maneechotesuwan, Kittipong; Wamanuttajinda, Valla; Kasetsinsombat, Kanda; Huabprasert, Sukit; Yaikwawong, Metha; Barnes, Peter J; Wongkajornsilp, Adisak
2009-01-01
Indoleamine 2, 3-dioxygenase (IDO), a tryptophan-degrading enzyme in dendritic cells (DCs), mediates an immunosuppressive effect on activated T lymphocytes. However, little is known about the effect of Der p 1 on IDO in human DCs. The aim was to investigate the effect of Der p 1 on the expression and activity of IDO in monocyte-derived DCs from house dust mite (HDM)-sensitive patients with asthma. Using real-time RT-PCR and HPLC, the expression and activity of IDO were assessed in TNF-alpha-induced mature DCs from HDM-sensitive and nonatopic patients with asthma in response to Der p 1 exposure ex vivo. We also monitored the alteration of IDO activity in Der p 1-pulsed DCs after the coincubation with autologous T cells. With a reliance on its protease activity, Der p 1 suppressed functional IDO in DCs from HDM-sensitive patients with asthma but enhanced IDO activity in DCs from nonatopic patients with asthma. This suppression was maintained by the reciprocally induced IL-4 from the coculturing autologous HDM-sensitive T cells. Conversely, the upregulation of IDO activity in Der p 1-pulsed DCs was maintained by IFN-gamma released from autologous nonatopic T cells and the regulatory T-cell subset. Der p 1 pulsation to sensitive DCs failed to raise regulatory T cells but raised progenitor fractions from cloned HDM-sensitive CD4(+) cells through direct contact and soluble mediators. House dust mite-sensitive DCs exposed to Der p 1 downregulated IDO activity and tipped the T(H)1/T(H)2 cytokine balance toward IL-4, resulting in sustainable IDO suppression.
Chacón-Salinas, Rommel; Chen, Limo; Chávez-Blanco, Alma D.; Limón-Flores, Alberto Y.; Ma, Ying; Ullrich, Stephen E.
2014-01-01
The UVB (290–320 nm) radiation in sunlight is responsible for inducing skin cancer. Exposure to UV radiation is also immunosuppressive, and the systemic immune suppression induced by UV is a well-recognized risk factor for cancer induction. As UVB radiation is absorbed within the upper layers of the skin, indirect mechanisms must play a role in activating systemic immune suppression. One prominent example is mast cell migration, which from the skin to the draining LN is an essential step in the cascade of events leading to immune suppression. What triggers mast cell migration is not entirely clear. Here, we tested the hypothesis that PAF, a lipid mediator of inflammation produced by the skin in response to UV exposure, is involved. Mast cell-deficient mice (KitW-sh/W-sh) are resistant to the suppressive effect of UV radiation, and reconstituting mast cell-deficient mice with normal bone marrow-derived mast cells restores susceptibility to immunosuppression. However, when mast cells from PAFR−/− mice were used, the reconstituted mice were not susceptible to the suppressive effects of UV. Furthermore, PAFR−/− mice showed impaired UV-induced mast cell migration when compared with WT mice. Finally, injecting PAF into WT mice mimicked the effect of UV irradiation and induced mast cell migration but not in PAFR−/− mice. Our findings indicate that PAFR binding induces mast cells to migrate from the skin to the LNs, where they mediate immune suppression. PMID:24009177
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedersen, Malin; Loefstedt, Tobias; Sun Jianmin
Signaling by the receptor for stem cell factor (SCF), c-Kit, is of major importance for hematopoiesis, melanogenesis and reproduction, and the biological responses are commonly proliferation and cell survival. Thus, constitutive activation due to c-Kit mutations is involved in the pathogenesis of several forms of cancer, e.g. leukemias, gastrointestinal stromal tumors and testicular tumors. Tumor survival requires oxygen supply through induced neovascularization, a process largely mediated by the vascular endothelial growth factor (VEGF), a prominent target of the transcription factors hypoxia-inducible factor-1 (HIF-1) and HIF-2. Using Affymetrix microarrays we have identified genes that are upregulated following SCF stimulation. Interestingly, manymore » of the genes induced were found to be related to a hypoxic response. These findings were corroborated by our observation that SCF stimulation of the hematopoietic cell lines M-07e induces HIF-1{alpha} and HIF-2{alpha} protein accumulation at normoxia. In addition, SCF-induced HIF-1{alpha} was transcriptionally active, and transcribed HIF-1 target genes such as VEGF, BNIP3, GLUT1 and DEC1, an effect that could be reversed by siRNA against HIF-1{alpha}. We also show that SCF-induced accumulation of HIF-1{alpha} is dependent on both the PI-3-kinase and Ras/MEK/Erk pathways. Our data suggest a novel mechanism of SCF/c-Kit signaling in angiogenesis and tumor progression.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragomir, Ana-Cristina; Laskin, Jeffrey D.; Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu
2011-06-15
Toxic doses of acetaminophen (AA) cause hepatocellular necrosis. Evidence suggests that activated macrophages contribute to the pathogenic process; however, the factors that activate these cells are unknown. In these studies, we assessed the role of mediators released from AA-injured hepatocytes in macrophage activation. Treatment of macrophages with conditioned medium (CM) collected 24 hr after treatment of mouse hepatocytes with 5 mM AA (CM-AA) resulted in increased production of reactive oxygen species (ROS). Macrophage expression of heme oxygenase-1 (HO-1) and catalase mRNA was also upregulated by CM-AA, as well as cyclooxygenase (COX)-2 and 12/15-lipoxygenase (LOX). CM-AA also upregulated expression of themore » proinflammatory chemokines, MIP-1{alpha} and MIP-2. The effects of CM-AA on expression of COX-2, MIP-1{alpha} and MIP-2 were inhibited by blockade of p44/42 MAP kinase, suggesting a biochemical mechanism mediating macrophage activation. Hepatocytes injured by AA were found to release HMGB1, a potent macrophage activator. This was inhibited by pretreatment of hepatocytes with ethyl pyruvate (EP), which blocks HMGB1 release. EP also blocked CM-AA induced ROS production and antioxidant expression, and reduced expression of COX-2, but not MIP-1{alpha} or MIP-2. These findings suggest that HMGB1 released by AA-injured hepatocytes contributes to macrophage activation. This is supported by our observation that expression of the HMGB1 receptor RAGE is upregulated in macrophages in response to CM-AA. These data indicate that AA-injured hepatocytes contribute to the inflammatory environment in the liver through the release of mediators such as HMGB1. Blocking HMGB1/RAGE may be a useful approach to limiting classical macrophage activation and AA-induced hepatotoxicity. - Research Highlights: > These studies analyze macrophage activation by mediators released from acetaminophen-damaged hepatocytes. > Factors released from acetaminophen-injured hepatocytes induce macrophage ROS production and expression of COX-2, chemokines, and RAGE. > Hepatocyte-mediated macrophage activation involves p44/42 MAP kinase signaling. > HMGB1 is released from acetaminophen-injured hepatocytes and contributes to macrophage activation.« less
USDA-ARS?s Scientific Manuscript database
Molecular mechanisms controlling rumen epithelial development at weaning remain largely unknown. To identify gene networks and regulatory factors responsive to concentrate versus forage feeding at weaning, Holstein bull calves (n = 18) were fed commercial milk replacer only (MRO) until 42 d of age. ...
Synergistic effects between intrathecal clonidine and neostigmine in the formalin test.
Yoon, M H; Yoo, K Y; Jeong, C Y
2001-08-01
Spinal alpha-2 adrenoceptors and cholinergic receptors are involved in the regulation of acute nociception and the facilitated processing. The aim of this study was to examine the pharmacological effect of an intrathecal alpha-2 agonist and a cholinesterase inhibitor on the facilitated pain model induced by formalin injection and to determine the nature of drug interaction using an isobolographic analysis. Both intrathecal clonidine and neostigmine dose-dependently suppressed the flinching during phase 1 and phase 2. Intrathecal pretreatment with atropine reversed the antinociceptive effects of clonidine and neostigmine in both phases. Pretreatment with intrathecal yohimbine attenuated the effect of clonidine. The antinociception of clonidine and neostigmine was not reversed by mecamylamine. Isobolographic analysis showed that intrathecal clonidine and neostigmine acted synergistically in both phase 1 and 2. Intrathecal pretreatment with atropine and yohimbine antagonized the effect of the mixture of clonidine and neostigmine in both phases, but no antagonism was observed with mecamylamine pretreatment. These data indicate that spinal clonidine and neostigmine are effective to counteract the facilitated state evoked formalin stimulus, and these two drugs interact in a synergistic fashion. In addition, the analgesic action of intrathecal clonidine is mediated by spinal muscarinic receptors as well as alpha-2 adrenoceptors.
The p53 inhibitor, pifithrin-{alpha}, suppresses self-renewal of embryonic stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelalim, Essam Mohamed, E-mail: essam_abdelalim@yahoo.com; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522; Tooyama, Ikuo
2012-04-13
Highlights: Black-Right-Pointing-Pointer We determine the role of p53 in ES cells under unstressful conditions. Black-Right-Pointing-Pointer PFT-{alpha} suppresses ES cell proliferation. Black-Right-Pointing-Pointer PFT-{alpha} induces ES cell cycle arrest. Black-Right-Pointing-Pointer PFT-{alpha} downregulates Nanog and cyclin D1. -- Abstract: Recent studies have reported the role of p53 in suppressing the pluripotency of embryonic stem (ES) cells after DNA damage and blocking the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. However, to date no evidence has been presented to support the function of p53 in unstressed ES cells. In this study, we investigated the effect of pifithrin (PFT)-{alpha}, an inhibitor ofmore » p53-dependent transcriptional activation, on self-renewal of ES cells. Our results revealed that treatment of ES cells with PFT-{alpha} resulted in the inhibition of ES cell propagation in a dose-dependent manner, as indicated by a marked reduction in the cell number and colony size. Also, PFT-{alpha} caused a cell cycle arrest and significant reduction in DNA synthesis. In addition, inhibition of p53 activity reduced the expression levels of cyclin D1 and Nanog. These findings indicate that p53 pathway in ES cells rather than acting as an inactive gene, is required for ES cell proliferation and self-renewal under unstressful conditions.« less
Liu, Bowen; Luo, Cheng; Zheng, Zhaoguang; Xia, Zhenyan; Zhang, Qian; Ke, Chienchih; Liu, Renshyan; Zhao, Yonghua
2018-05-15
As a traditional Chinese herbal formula, Shengui Sansheng San (SSS) has been employed for stroke treatment more than 300 years. We hypothesize that SSS extraction is an angiogenic switch in penumbra post-stroke, and corresponding mechanisms are investigated. In present study, rats were subjected to permanent middle cerebral artery occlusion model (MCAo) and were treated with low, middle and high doses of SSS extraction. We assessed neurological function and survival rate, and measured infarct volume by 2,3,5-triphenyltetrazolium chloride staining on day 7 after ischemia. von Willebrand factor (vWF), stromal cell-derived factor-1 alpha (SDF-1α) /chemokine (C-X-C motif) receptor 4 (CXCR4) axis, vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) as well as protein kinase B (AKT)/mammalian target of rapamycin (mTOR) /hypoxia-inducible factor-1 alpha (HIF-1α), extracellular signal-regulated kinase 1/2 (ERK1/2) and Notch1 signaling pathways were respectively investigated by immunofluorescence assay or western blotting in vivo and oxygen-glucose-deprived (OGD) brain microvascular endothelial cells (BMECs); simultaneously, wound healing of BMECs and tube formation assay were administrated. Compared to MCAo group, SSS extraction could significantly improve neurological functional scores, survival rate and cerebral infarct volume, enhance vWF + vascular density and perimeter, SDF-1α/CXCR4 axis, VEGF expression, as well as activate AKT/mTOR/HIF-1α and ERK1/2 and inhibit Notch1 pathways in penumbra. In vitro, containing SSS extraction serum increased BMEC migration, capillary formation and VEGF expression via up-regulations of AKT/mTOR and ERK1/2 pathways in OGD BMECs, but ERK inhibitor (U0126) reversed the result of VEGF expression in high dose of SSS group. Additionally, VEGFR2 and Notch1 expressions were suppressed by containing SSS extraction serum. All results were in dose dependent manner. Our study firstly demonstrates that SSS extraction is an angiogenic switch. Due to suppressed VEGFR2/Notch1 cascades and activated AKT/mTOR and ERK1/2 signals in BMECs, a feedback loop of angiogenic homeostasis is established. Furthermore, the comprehensive mediations of SDF-1α/CXCR4 axis, AKT/mTOR/HIF-α, ERK1/2 and Notch1 pathways in penumbra contribute to the improvements of neurological function, survival rate and infarct volume post-stroke. Copyright © 2018 Elsevier GmbH. All rights reserved.
Wu, Ming-Hsiu; Huang, Chao-Ching; Chio, Chung-Ching; Tsai, Kuen-Jer; Chang, Ching-Ping; Lin, Nan-Kai; Lin, Mao-Tsun
2016-09-01
Ischemic stroke, caused by obstruction of blood flow to the brain, would initiate microglia activation which contributes to neuronal damage. Therefore, inhibition of microglia-mediated neuroinflammation could be a therapeutic strategy for ischemic stroke. This study was aimed to elucidate the anti-inflammatory effects of alpha-lipoic acid and etanercept given either singly or in combination in rats subjected to middle cerebral artery occlusion. Both α-lipoic acid and etanercept markedly reduced cerebral infarct, blood-brain barrier disruption, and neurological motor deficits with the former drug being more effective with the dosage used. Furthermore, when used in combination, the reduction was more substantial. Remarkably, a greater diminution in the serum levels of tumor necrosis factor-alpha as well as the brain levels of microglial activation (e.g., microgliosis, amoeboid microglia, and microglial overexpression of tumor necrosis factor-α) was observed with the combined drug treatment as compared to the drugs given separately. We conclude that inhibition of peripheral tumor necrosis factor-alpha as well as downregulation of brain microglial activation by alpha-lipoic acid or etanercept protect rat brain against ischemic stroke. Moreover, when both drugs were used in combination, the stroke recovery was promoted more extensively.
Li, Dan; Fu, Jing; Du, Min; Zhang, Haibin; Li, Lu; Cen, Jin; Li, Weiyun; Chen, Xiaotao; Lin, Yunfei; Conway, Edward M.; Pikarsky, Eli; Wang, Hongyan; Pan, Guoyu
2016-01-01
Hepatocellular carcinoma (HCC) is a cancer lacking effective therapies. Several measures have been proposed to treat HCCs, such as senescence induction, mitotic inhibition, and cell death promotion. However, data from other cancers suggest that single use of these approaches may not be effective. Here, by genetic targeting of Survivin, an inhibitor of apoptosis protein (IAP) that plays dual roles in mitosis and cell survival, we identified a tumor necrosis factor alpha (TNFα)‐mediated synergistic lethal effect between senescence and apoptosis sensitization in malignant HCCs. Survivin deficiency results in mitosis defect‐associated senescence in HCC cells, which triggers local inflammation and increased TNFα. Survivin inactivation also sensitizes HCC cells to TNFα‐triggered cell death, which leads to marked HCC regression. Based on these findings, we designed a combination treatment using mitosis inhibitor and proapoptosis compounds. This treatment recapitulates the therapeutic effect of Survivin deletion and effectively eliminates HCCs, thus representing a potential strategy for HCC therapy. Conclusion: Survivin ablation dramatically suppresses human and mouse HCCs by triggering senescence‐associated TNFα and sensitizing HCC cells to TNFα‐induced cell death. Combined use of mitotic inhibitor and second mitochondrial‐derived activator of caspases mimetic can induce senescence‐associated TNFα and enhance TNFα‐induced cell death and synergistically eliminate HCC. (Hepatology 2016;64:1105‐1120) PMID:27177758
Kim, So Young; Park, Sojung; Yoo, SeonA; Rho, Jin Kyung; Jun, Eun Sung; Chang, Suhwan; Kim, Kyung Kon; Kim, Song Cheol; Kim, Inki
2017-09-22
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential biological anticancer agent. However, a wide range of human primary cancers, including pancreatic cancer, display resistance to apoptosis induction by TRAIL. Therefore, this resistance needs to be overcome to allow TRAIL to be successfully used in cancer therapy. In this study, we performed a compound screen to isolate TRAIL sensitizers and found that one of the identified compounds, 7-benzylidenenaltrexone maleate (BNTX), sensitized pancreatic cancer cells to TRAIL-induced apoptotic cell death. The combination of BNTX with TRAIL promoted the release of cytochrome c from mitochondria into cytosol with caspase activation and a resulting increase in annexin V-stained cells. From a mechanistic perspective, we found that BNTX downregulated X-linked inhibitor of apoptosis protein (XIAP) expression when used in combination with TRAIL, and found that TRAIL-induced apoptosis was augmented by siRNA-mediated knockdown of XIAP. We further demonstrated that BNTX promoted the ubiquitin/proteasome-dependent degradation of XIAP protein via protein kinase C (PKC) alpha/AKT pathway inhibition. Moreover, combined treatment by BNTX with TRAIL suppressed growth of pancreatic tumor xenograft of animal model. Therefore, we suggest that inhibitor of apoptosis protein-mediated resistance of pancreatic cancer cells to anticancer therapeutics can be overcome by inhibiting the PKCα/AKT pathway.
Kandhaya-Pillai, Renuka; Miro-Mur, Francesc; Alijotas-Reig, Jaume; Tchkonia, Tamara; Kirkland, James L.; Schwartz, Simo
2017-01-01
Cellular senescence is a cell fate program that entails essentially irreversible proliferative arrest in response to damage signals. Tumor necrosis factor-alpha (TNFα), an important pro-inflammatory cytokine secreted by some types of senescent cells, can induce senescence in mouse and human cells. However, downstream signaling pathways linking TNFα-related inflammation to senescence are not fully characterized. Using human umbilical vein endothelial cells (HUVECs) as a model, we show that TNFα induces permanent growth arrest and increases p21CIP1, p16INK4A, and SA-β-gal, accompanied by persistent DNA damage and ROS production. By gene expression profiling, we identified the crucial involvement of inflammatory and JAK/STAT pathways in TNFα-mediated senescence. We found that TNFα activates a STAT-dependent autocrine loop that sustains cytokine secretion and an interferon signature to lock cells into senescence. Furthermore, we show STAT1/3 activation is necessary for cytokine and ROS production during TNFα-induced senescence. However, inhibition of STAT1/3 did not rescue cells from proliferative arrest, but rather suppressed cell cycle regulatory genes and altered TNFα-induced senescence. Our findings suggest a positive feedback mechanism via the STAT pathway that sustains cytokine production and reveal a reciprocal regulatory role of JAK/STAT in TNFα-mediated senescence. PMID:29176033
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Rino; Takahashi, Nobuyuki, E-mail: nobu@kais.kyoto-u.ac.jp; Murota, Kaeko
Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of fatty acid oxidation-related genes in human intestinal epithelial Caco-2 cells. {yields} PPAR{alpha} activation also increased oxygen consumption rate and CO{sub 2} production and decreased secretion of triglyceride and ApoB from Caco-2 cells. {yields} Orally administration of bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and CO{sub 2} production in small intestinal epithelial cells. {yields} Treatment with bezafibrate decreased postprandial serum concentration of triglyceride after oral injection of olive oil in mice. {yields} It suggested that intestinal lipid metabolism regulated by PPAR{alpha} activation suppresses postprandial lipidemia. -- Abstract: Activation ofmore » peroxisome proliferator-activated receptor (PPAR)-{alpha} which regulates lipid metabolism in peripheral tissues such as the liver and skeletal muscle, decreases circulating lipid levels, thus improving hyperlipidemia under fasting conditions. Recently, postprandial serum lipid levels have been found to correlate more closely to cardiovascular diseases than fasting levels, although fasting hyperlipidemia is considered an important risk of cardiovascular diseases. However, the effect of PPAR{alpha} activation on postprandial lipidemia has not been clarified. In this study, we examined the effects of PPAR{alpha} activation in enterocytes on lipid secretion and postprandial lipidemia. In Caco-2 enterocytes, bezafibrate, a potent PPAR{alpha} agonist, increased mRNA expression levels of fatty acid oxidation-related genes, such as acyl-CoA oxidase, carnitine palmitoyl transferase, and acyl-CoA synthase, and oxygen consumption rate (OCR) and suppressed secretion levels of both triglycerides and apolipoprotein B into the basolateral side. In vivo experiments revealed that feeding high-fat-diet containing bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and production of CO{sub 2} and acid soluble metabolites in enterocytes. Moreover, bezafibrate treatment suppressed postprandial lipidemia after oral administration of olive oil to the mice. These findings indicate that PPAR{alpha} activation suppresses postprandial lipidemia through enhancement of fatty acid oxidation in enterocytes, suggesting that intestinal lipid metabolism regulated by PPAR{alpha} activity is a novel target of PPAR{alpha} agonist for decreasing circulating levels of lipids under postprandial conditions.« less
Alpha-band rhythm modulation under the condition of subliminal face presentation: MEG study.
Sakuraba, Satoshi; Kobayashi, Hana; Sakai, Shinya; Yokosawa, Koichi
2013-01-01
The human brain has two streams to process visual information: a dorsal stream and a ventral stream. Negative potential N170 or its magnetic counterpart M170 is known as the face-specific signal originating from the ventral stream. It is possible to present a visual image unconsciously by using continuous flash suppression (CFS), which is a visual masking technique adopting binocular rivalry. In this work, magnetoencephalograms were recorded during presentation of the three invisible images: face images, which are processed by the ventral stream; tool images, which could be processed by the dorsal stream, and a blank image. Alpha-band activities detected by sensors that are sensitive to M170 were compared. The alpha-band rhythm was suppressed more during presentation of face images than during presentation of the blank image (p=.028). The suppression remained for about 1 s after ending presentations. However, no significant difference was observed between tool and other images. These results suggest that alpha-band rhythm can be modulated also by unconscious visual images.
Wang, Li-Yan; Diao, Zong-Li; Zheng, Jun-Fang; Wu, Yi-Ru; Zhang, Qi-Dong; Liu, Wen-Hu
2017-10-01
Epithelial to mesenchymal transition (EMT), a process whereby fully differentiated epithelial cells transition to a mesenchymal phenotype, has been implicated in the pathogenesis of renal fibrosis. Apelin, a bioactive peptide, has recently been recognized to protect against renal profibrotic activity, but the underlying mechanism has not yet been elucidated. In this study, we investigated the regulation of EMT in the presence of apelin-13 in vitro. Expression of the mesenchymal marker alpha-smooth muscle actin (α-SMA) and the epithelial marker E-cadherin was examined by immunofluorescence and western blotting in transforming growth factor beta 1 (TGF-β1)-stimulated human proximal tubular epithelial cells. Expression of extracellular matrix, fibronectin and collagen-I was examined by quantitative real-time PCR and ELISA. F13A, an antagonist of the apelin receptor APJ, and small interfering RNA targeting protein kinase C epsilon (PKC-ε) were used to explore the relevant signaling pathways. Apelin attenuated TGF-β1-induced EMT, and inhibited the EMT-associated increase in α-SMA, loss of E-cadherin, and secretion of extracellular matrix. Moreover, apelin activated PKC-ε in tubular epithelial cells, which in turn decreased phospho-Smad2/3 levels and increased Smad-7 levels. APJ inhibition or PKC-ε deletion diminished apelin-induced modulation of Smad signaling and suppression of tubular EMT. Our findings identify a novel PKC-ε-dependent mechanism in which apelin suppresses TGF-β1-mediated activation of Smad signaling pathways and thereby inhibits tubular EMT. These results suggest that apelin may be a new agent that can suppress renal fibrosis and retard chronic kidney disease progression. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Hyun Sook; Son, Youngsook, E-mail: ysson@khu.ac.kr
Highlights: • SP can increase IL-10 levels and reduce TNF-α and IL-17 levels in RA. • SP causes the increase in T{sub reg}, M2 macrophage, and MSCs in RA. • SP-induced immune suppression leads to the blockade of RA progression. • SP can be used as the therapeutics for autoimmune-related inflammatory diseases. - Abstract: Current rheumatoid arthritis (RA) therapies such as biologics inhibiting pathogenic cytokines substantially delay RA progression. However, patient responses to these agents are not always complete and long lasting. This study explored whether substance P (SP), an 11 amino acids long endogenous neuropeptide with the novel abilitymore » to mobilize mesenchymal stem cells (MSC) and modulate injury-mediated inflammation, can inhibit RA progression. SP efficacy was evaluated by paw swelling, clinical arthritis scoring, radiological analysis, histological analysis of cartilage destruction, and blood levels of tumor necrosis factor-alpha (TNF-α) interleukin (IL)-10, and IL-17 in vivo. SP treatment significantly reduced local inflammatory signs, mean arthritis scores, degradation of joint cartilage, and invasion of inflammatory cells into the synovial tissues. Moreover, the SP treatment markedly reduced the size of spleens enlarged by excessive inflammation in CIA, increased IL-10 levels, and decreased TNF-α and IL-17 levels. Mobilization of stem cells and induction of T{sub reg} and M2 type macrophages in the circulation were also increased by the SP treatment. These effect of SP might be associated with the suppression of inflammatory responses in RA and, furthermore, blockade of RA progression. Our results propose SP as a potential therapeutic for autoimmune-related inflammatory diseases.« less
Hsu, Iawen; Chuang, Kun-Lung; Slavin, Spencer; Da, Jun; Lim, Wei-Xun; Pang, See-Tong; O'Brien, Jeanne H; Yeh, Shuyuan
2014-03-01
Epidemiological studies showed that women have a lower bladder cancer (BCa) incidence, yet higher muscle-invasive rates than men, suggesting that estrogen and the estrogen receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), may play critical roles in BCa progression. Using in vitro cell lines and an in vivo carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced mouse BCa model, we found that ERβ plays a positive role in promoting BCa progression. Knockdown of ERβ with ERβ-shRNA in ERβ-positive human BCa J82, 647v and T24 cell lines led to suppressed cell growth and invasion. Mice lacking ERβ have less cancer incidence with reduced expression of the proliferation marker Ki67 in BBN-induced BCa. Consistently, our results show that non-malignant urothelial cells with ERβ knockdown are more resistant to carcinogen-induced malignant transformation. Mechanism dissection found that targeting ERβ suppressed the expression of minichromosome maintenance complex component 5 (MCM5), a DNA replication licensing factor that is involved in tumor cell growth. Restoring MCM5 expression can partially reverse ERβ knockdown-mediated growth reduction. Supportively, treating cells with the ERβ-specific antagonist, 4-[2-Phenyl-5,7-bis(trifluoromethyl) pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP), reduced BCa cell growth and invasion, as well as MCM5 expression. Furthermore, we provide the first evidence that BCa burden and mortality can be controlled by PHTPP treatment in the carcinogen-induced BCa model. Together, these results demonstrate that ERβ could play positive roles in promoting BCa progression via MCM5 regulation. Targeting ERβ through ERβ-shRNA, PHTPP or via downstream targets, such as MCM5, could serve as potential therapeutic approaches to battle BCa.
Inhibition of Nod2 Signaling and Target Gene Expression by Curcumin
Huang, Shurong; Zhao, Ling; Kim, Kihoon; Lee, Dong Seok; Hwang, Daniel H.
2008-01-01
Nod2 is an intracellular pattern recognition receptor that detects a conserved moiety of bacterial peptidoglycan and subsequently activates proinflammatory signaling pathways. Mutations in Nod2 have been implicated to be linked to inflammatory granulomatous disorders, such as Crohn's disease and Blau syndrome. Many phytochemicals possess anti-inflammatory properties. However, it is not known whether any of these phytochemicals might modulate Nod2-mediated immune responses and thus might be of therapeutic value for the intervention of these inflammatory diseases. In this report, we demonstrate that curcumin, a polyphenol found in the plant Curcuma longa, and parthenolide, a sesquiterpene lactone, suppress both ligand-induced and lauric acid-induced Nod2 signaling, leading to the suppression of nuclear factor-κB activation and target gene interleukin-8 expression. We provide molecular and biochemical evidence that the suppression is mediated through the inhibition of Nod2 oligomerization and subsequent inhibition of downstream signaling. These results demonstrate for the first time that curcumin and parthenolide can directly inhibit Nod2-mediated signaling pathways at the receptor level and suggest that Nod2-mediated inflammatory responses can be modulated by these phytochemicals. It remains to be determined whether these phytochemicals possess protective or therapeutic efficacy against Nod2-mediated inflammatory disorders. PMID:18413660
Nemoto, Takayuki; Yanagita, Toshihiko; Kanai, Tasuku; Wada, Akihiko
2009-02-01
Glycogen synthase kinase-3 (GSK-3) is constitutively active in nonstimulated cells, where the majority of its substrates undergo inactivation/proteolysis by phosphorylation. Extracellular stimuli (e.g., insulin) catalyze inhibitory Ser(9)-phosphorylation of GSK-3beta, turning on signaling and causing other biological consequences otherwise constitutively suppressed by GSK-3beta. Regulated and dysregulated activities of GSK-3beta are pivotal to health, disease, and therapeutics (e.g., insulin resistance, neurodegeneration, tumorigenesis, inflammation); however, the underlying mechanisms of multifunctional GSK-3beta remain elusive. In cultured bovine adrenal chromaffin cells, 1) constitutive and negatively-regulated activities of GSK-3beta up- and down-regulated insulin receptor, insulin receptor substrate-1 (IRS-1), IRS-2, and Akt levels via controlling proteasomal degradation and protein synthesis; 2) nicotinic receptor/protein kinase C-alpha (PKC-alpha)/extracellular signal-regulated kinase (ERK) pathway up-regulated IRS-1 and IRS-2 levels, enhancing insulin-induced the phosphoinositide 3-kinase (PI3K)/Akt/GSK-3beta pathway; 3) inhibition of calcineurin by cyclosporin A or FK506 down-regulated IRS-2 level, attenuating insulin-like growth factor-I (IGF-I)-induced ERK and GSK-3beta pathways; and 4) insulin, IGF-I or therapeutics (e.g., lithium) up-regulated the voltage-dependent Na(v)1.7 sodium channel.
Virus Infection and Death Receptor-Mediated Apoptosis.
Zhou, Xingchen; Jiang, Wenbo; Liu, Zhongshun; Liu, Shuai; Liang, Xiaozhen
2017-10-27
Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis.
Virus Infection and Death Receptor-Mediated Apoptosis
Zhou, Xingchen; Jiang, Wenbo; Liu, Zhongshun; Liu, Shuai; Liang, Xiaozhen
2017-01-01
Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis. PMID:29077026
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wakui, Yuta; Inoue, Jun; Ueno, Yoshiyuki, E-mail: yueno@mail.tains.tohoku.ac.jp
Although chronic infection of hepatitis B virus (HBV) is currently managed with nucleot(s)ide analogues or interferon-{alpha}, the control of HBV infection still remains a clinical challenge. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor, that plays a role in glucose and lipid metabolism, immune reactions, and inflammation. In this study, the suppressive effect of PPAR ligands on HBV replication was examined in vitro using a PPAR{alpha} ligand, bezafibrate, and a PPAR{gamma} ligand, rosiglitazone. The effects were examined in HepG2 cells transfected with a plasmid containing 1.3-fold HBV genome. Whereas bezafibrate showed no effect against HBV replication, rosiglitazone reduced themore » amount of HBV DNA, hepatitis B surface antigen, and hepatitis B e antigen in the culture supernatant. Southern blot analysis showed that the replicative intermediates of HBV in the cells were also inhibited. It was confirmed that GW9662, an antagonist of PPAR{gamma}, reduced the suppressive effect of rosiglitazone on HBV. Moreover, rosiglitazone showed a synergistic effect on HBV replication with lamivudine or interferon-{alpha}-2b. In conclusion, this study showed that rosiglitazone inhibited the replication of HBV in vitro, and suggested that the combination therapy of rosiglitazone and nucleot(s)ide analogues or interferon could be a therapeutic option for chronic HBV infection.« less
Inhibitory effect of troglitazone on diabetic neuropathy in streptozotocin-induced diabetic rats.
Qiang, X; Satoh, J; Sagara, M; Fukuzawa, M; Masuda, T; Sakata, Y; Muto, G; Muto, Y; Takahashi, K; Toyota, T
1998-11-01
Free-radical scavengers and inhibitors of tumour necrosis factor-alpha (TNF-alpha) such as N-acetylcysteine and pentoxifylline have been shown to inhibit the development of peripheral neuropathy in streptozotocin(STZ)-induced diabetic rats. In this study we examined the effect of troglitazone, an anti-diabetic thiazolidinedione, on diabetic neuropathy, since it also is a free-radical scavenger and a TNF-alpha inhibitor. Rats were fed powder chow mixed with troglitazone at 0.5% and 0.125% ad libitum. Although blood glucose concentrations were remarkably higher and body weight lower in diabetic than in nondiabetic rats, troglitazone had no effect on these throughout the 24-week experiment. Serum lipoperoxide concentrations, tibial nerve lipoperoxide content and serum TNF-alpha activity induced by lipopolysaccharide was increased in diabetic rats, but inhibited in troglitazone-treated rats. Motor nerve conduction velocity (MNCV) of the tibial nerve slowed in diabetic rats, compared with that in nondiabetic rats. On the other hand, the slowed MNCV was (p < 0.05-0.01) inhibited after weeks 12 and 16 of the experiment in diabetic rats treated with high and low doses of troglitazone, respectively. Morphometric analysis showed that troglitazone suppressed the decrease of the myelinated fibre area (p < 0.05), axon/myelin ratio (p < 0.01) and fascicular area (p < 0.05) and suppressed the increase of myelinated fibre density (p < 0.001) in diabetic rats. These results indicate that troglitazone has a beneficial effect on peripheral neuropathy in STZ-induced diabetic rats irrespective of blood glucose concentrations.