Zhang, Yixiang; Liang, Xinqiang; Wang, Zhibo; Xu, Lixian
2015-01-01
High content of organic matter in the downstream of watersheds underscored the severity of non-point source (NPS) pollution. The major objectives of this study were to characterize and quantify dissolved organic matter (DOM) in watersheds affected by NPS pollution, and to apply self-organizing map (SOM) and parallel factor analysis (PARAFAC) to assess fluorescence properties as proxy indicators for NPS pollution and labor-intensive routine water quality indicators. Water from upstreams and downstreams was sampled to measure dissolved organic carbon (DOC) concentrations and excitation-emission matrix (EEM). Five fluorescence components were modeled with PARAFAC. The regression analysis between PARAFAC intensities (Fmax) and raw EEM measurements indicated that several raw fluorescence measurements at target excitation-emission wavelength region could provide similar DOM information to massive EEM measurements combined with PARAFAC. Regression analysis between DOC concentration and raw EEM measurements suggested that some regions in raw EEM could be used as surrogates for labor-intensive routine indicators. SOM can be used to visualize the occurrence of pollution. Relationship between DOC concentration and PARAFAC components analyzed with SOM suggested that PARAFAC component 2 might be the major part of bulk DOC and could be recognized as a proxy indicator to predict the DOC concentration. PMID:26526140
Parastar, Hadi; Akvan, Nadia
2014-03-13
In the present contribution, a new combination of multivariate curve resolution-correlation optimized warping (MCR-COW) with trilinear parallel factor analysis (PARAFAC) is developed to exploit second-order advantage in complex chromatographic measurements. In MCR-COW, the complexity of the chromatographic data is reduced by arranging the data in a column-wise augmented matrix, analyzing using MCR bilinear model and aligning the resolved elution profiles using COW in a component-wise manner. The aligned chromatographic data is then decomposed using trilinear model of PARAFAC in order to exploit pure chromatographic and spectroscopic information. The performance of this strategy is evaluated using simulated and real high-performance liquid chromatography-diode array detection (HPLC-DAD) datasets. The obtained results showed that the MCR-COW can efficiently correct elution time shifts of target compounds that are completely overlapped by coeluted interferences in complex chromatographic data. In addition, the PARAFAC analysis of aligned chromatographic data has the advantage of unique decomposition of overlapped chromatographic peaks to identify and quantify the target compounds in the presence of interferences. Finally, to confirm the reliability of the proposed strategy, the performance of the MCR-COW-PARAFAC is compared with the frequently used methods of PARAFAC, COW-PARAFAC, multivariate curve resolution-alternating least squares (MCR-ALS), and MCR-COW-MCR. In general, in most of the cases the MCR-COW-PARAFAC showed an improvement in terms of lack of fit (LOF), relative error (RE) and spectral correlation coefficients in comparison to the PARAFAC, COW-PARAFAC, MCR-ALS and MCR-COW-MCR results. Copyright © 2014 Elsevier B.V. All rights reserved.
Gere, Attila; Losó, Viktor; Györey, Annamária; Kovács, Sándor; Huzsvai, László; Nábrádi, András; Kókai, Zoltán; Sipos, László
2014-12-01
Traditional internal and external preference mapping methods are based on principal component analysis (PCA). However, parallel factor analysis (PARAFAC) and Tucker-3 methods could be a better choice. To evaluate the methods, preference maps of sweet corn varieties will be introduced. A preference map of eight sweet corn varieties was established using PARAFAC and Tucker-3 methods. Instrumental data were also integrated into the maps. The triplot created by the PARAFAC model explains better how odour is separated from texture or appearance, and how some varieties are separated from others. Internal and external preference maps were created using parallel factor analysis (PARAFAC) and Tucker-3 models employing both sensory (trained panel and consumers) and instrumental parameters simultaneously. Triplots of the applied three-way models have a competitive advantage compared to the traditional biplots of the PCA-based external preference maps. The solution of PARAFAC and Tucker-3 is very similar regarding the interpretation of the first and third factors. The main difference is due to the second factor as it differentiated the attributes better. Consumers who prefer 'super sweet' varieties (they place great emphasis especially on taste) are much younger and have significantly higher incomes, and buy sweet corn products rarely (once a month). Consumers who consume sweet corn products mainly because of their texture and appearance are significantly older and include a higher ratio of men. © 2014 Society of Chemical Industry.
Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments.
Choi, Ji Yeh; Hwang, Heungsun; Timmerman, Marieke E
2018-03-01
Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode, to explain the maximum variance of the data. Functional PARAFAC permits the entities in different modes to be smooth functions or curves, varying over a continuum, rather than a collection of unconnected responses. The existing functional PARAFAC methods handle functions of a one-dimensional argument (e.g., time) only. In this paper, we propose a new extension of functional PARAFAC for handling three-way data whose responses are sequenced along both a two-dimensional domain (e.g., a plane with x- and y-axis coordinates) and a one-dimensional argument. Technically, the proposed method combines PARAFAC with basis function expansion approximations, using a set of piecewise quadratic finite element basis functions for estimating two-dimensional smooth functions and a set of one-dimensional basis functions for estimating one-dimensional smooth functions. In a simulation study, the proposed method appeared to outperform the conventional PARAFAC. We apply the method to EEG data to demonstrate its empirical usefulness.
Identifying fluorescent pulp mill effluent in the Gulf of Maine and its watershed
Cawley, Kaelin M.; Butler, Kenna D.; Aiken, George R.; Larsen, Laurel G.; Huntington, Thomas G.; McKnight, Diane M.
2012-01-01
Using fluorescence spectroscopy and parallel factor analysis (PARAFAC) we characterized and modeled the fluorescence properties of dissolved organic matter (DOM) in samples from the Penobscot River, Androscoggin River, Penobscot Bay, and the Gulf of Maine (GoM). We analyzed excitation-emission matrices (EEMs) using an existing PARAFAC model (Cory and McKnight, 2005) and created a system-specific model with seven components (GoM PARAFAC). The GoM PARAFAC model contained six components similar to those in other PARAFAC models and one unique component with a spectrum similar to a residual found using the Cory and McKnight (2005) model. The unique component was abundant in samples from the Androscoggin River immediately downstream of a pulp mill effluent release site. The detection of a PARAFAC component associated with an anthropogenic source of DOM, such as pulp mill effluent, demonstrates the importance for rigorously analyzing PARAFAC residuals and developing system-specific models.
NASA Astrophysics Data System (ADS)
Murphy, K.; Stedmon, C. A.; Wunsch, U.
2017-12-01
The study of dissolved organic matter in aquatic milieu frequently involves measuring and interpreting fluorescence excitation emission matrices (EEMs) as a proxy for studying the total organic matter pool. Parallel Factor Analysis (PARAFAC) is used widely to identify and track independent organic matter fractions. This approach assumes that each EEM reflects the combined fluorescence signal from a limited number of unique, non-interacting chemical components, which are determined via a fitting algorithm. During the past fifteen years, considerable progress in understanding dissolved organic matter fluorescence has been achieved with the aid of PARAFAC; however, very few identical or ubiquitous fluorescence spectra have been independently identified. We studied the influence of wavelength selection on PARAFAC models and found this factor to have a decisive impact on PARAFAC spectra despite receiving little attention in most studies. Because large, chemically-diverse datasets may be too complex to analyse with PARAFAC, we are exploring novel methods for increasing variability in small datasets in order to reduce biases and increase interpretability. Our results suggest that spectral variability in PARAFAC models between studies are in many cases due to artefacts that could be minimised by careful experimental and modelling approaches.
Watson, Nathanial E; Prebihalo, Sarah E; Synovec, Robert E
2017-08-29
Comprehensive three-dimensional gas chromatography with time-of-flight mass spectrometry (GC 3 -TOFMS) creates an opportunity to explore a new paradigm in chemometric analysis. Using this newly described instrument and the well understood Parallel Factor Analysis (PARAFAC) model we present one option for utilization of the novel GC 3 -TOFMS data structure. We present a method which builds upon previous work in both GC 3 and targeted analysis using PARAFAC to simplify some of the implementation challenges previously discovered. Conceptualizing the GC 3 -TOFMS instead as a one-dimensional gas chromatograph with GC × GC-TOFMS detection we allow the instrument to create the PARAFAC target window natively. Each first dimension modulation thus creates a full GC × GC-TOFMS chromatogram fully amenable to PARAFAC. A simple mixture of 115 compounds and a diesel sample are interrogated through this methodology. All test analyte targets are successfully identified in both mixtures. In addition, mass spectral matching of the PARAFAC loadings to library spectra yielded results greater than 900 in 40 of 42 test analyte cases. Twenty-nine of these cases produced match values greater than 950. Copyright © 2017 Elsevier B.V. All rights reserved.
Boguta, Patrycja; Pieczywek, Piotr M.; Sokołowska, Zofia
2016-01-01
The main aim of this study was the application of excitation-emission fluorescence matrices (EEMs) combined with two decomposition methods: parallel factor analysis (PARAFAC) and nonnegative matrix factorization (NMF) to study the interaction mechanisms between humic acids (HAs) and Zn(II) over a wide concentration range (0–50 mg·dm−3). The influence of HA properties on Zn(II) complexation was also investigated. Stability constants, quenching degree and complexation capacity were estimated for binding sites found in raw EEM, EEM-PARAFAC and EEM-NMF data using mathematical models. A combination of EEM fluorescence analysis with one of the proposed decomposition methods enabled separation of overlapping binding sites and yielded more accurate calculations of the binding parameters. PARAFAC and NMF processing allowed finding binding sites invisible in a few raw EEM datasets as well as finding totally new maxima attributed to structures of the lowest humification. Decomposed data showed an increase in Zn complexation with an increase in humification, aromaticity and molecular weight of HAs. EEM-PARAFAC analysis also revealed that the most stable compounds were formed by structures containing the highest amounts of nitrogen. The content of oxygen-functional groups did not influence the binding parameters, mainly due to fact of higher competition of metal cation with protons. EEM spectra coupled with NMF and especially PARAFAC processing gave more adequate assessments of interactions as compared to raw EEM data and should be especially recommended for modeling of complexation processes where the fluorescence intensities (FI) changes are weak or where the processes are interfered with by the presence of other fluorophores. PMID:27782078
Yu, Yong-Jie; Wu, Hai-Long; Fu, Hai-Yan; Zhao, Juan; Li, Yuan-Na; Li, Shu-Fang; Kang, Chao; Yu, Ru-Qin
2013-08-09
Chromatographic background drift correction has been an important field of research in chromatographic analysis. In the present work, orthogonal spectral space projection for background drift correction of three-dimensional chromatographic data was described in detail and combined with parallel factor analysis (PARAFAC) to resolve overlapped chromatographic peaks and obtain the second-order advantage. This strategy was verified by simulated chromatographic data and afforded significant improvement in quantitative results. Finally, this strategy was successfully utilized to quantify eleven antibiotics in tap water samples. Compared with the traditional methodology of introducing excessive factors for the PARAFAC model to eliminate the effect of background drift, clear improvement in the quantitative performance of PARAFAC was observed after background drift correction by orthogonal spectral space projection. Copyright © 2013 Elsevier B.V. All rights reserved.
Ortiz, M C; Sarabia, L A; Sánchez, M S; Giménez, D
2009-05-29
Due to the second-order advantage, calibration models based on parallel factor analysis (PARAFAC) decomposition of three-way data are becoming important in routine analysis. This work studies the possibility of fitting PARAFAC models with excitation-emission fluorescence data for the determination of ciprofloxacin in human urine. The finally chosen PARAFAC decomposition is built with calibration samples spiked with ciprofloxacin, and with other series of urine samples that were also spiked. One of the series of samples has also another drug because the patient was taking mesalazine. The mesalazine is a fluorescent substance that interferes with the ciprofloxacin. Finally, the procedure is applied to samples of a patient who was being treated with ciprofloxacin. The trueness has been established by the regression "predicted concentration versus added concentration". The recovery factor is 88.3% for ciprofloxacin in urine, and the mean of the absolute value of the relative errors is 4.2% for 46 test samples. The multivariate sensitivity of the fit calibration model is evaluated by a regression between the loadings of PARAFAC linked to ciprofloxacin versus the true concentration in spiked samples. The multivariate capability of discrimination is near 8 microg L(-1) when the probabilities of false non-compliance and false compliance are fixed at 5%.
Al-Degs, Yahya; Andri, Bertyl; Thiébaut, Didier; Vial, Jérôme
2017-01-01
Retention mechanisms involved in supercritical fluid chromatography (SFC) are influenced by interdependent parameters (temperature, pressure, chemistry of the mobile phase, and nature of the stationary phase), a complexity which makes the selection of a proper stationary phase for a given separation a challenging step. For the first time in SFC studies, Parallel Factor Analysis (PARAFAC) was employed to evaluate the chromatographic behavior of eight different stationary phases in a wide range of chromatographic conditions (temperature, pressure, and gradient elution composition). Design of Experiment was used to optimize experiments involving 14 pharmaceutical compounds present in biological and/or environmental samples and with dissimilar physicochemical properties. The results showed the superiority of PARAFAC for the analysis of the three-way (column × drug × condition) data array over unfolding the multiway array to matrices and performing several classical principal component analyses. Thanks to the PARAFAC components, similarity in columns' function, chromatographic trend of drugs, and correlation between separation conditions could be simply depicted: columns were grouped according to their H-bonding forces, while gradient composition was dominating for condition classification. Also, the number of drugs could be efficiently reduced for columns classification as some of them exhibited a similar behavior, as shown by hierarchical clustering based on PARAFAC components. PMID:28695040
NASA Astrophysics Data System (ADS)
Zhao, Ying; Song, Kaishan; Wen, Zhidan; Li, Lin; Zang, Shuying; Shao, Tiantian; Li, Sijia; Du, Jia
2016-03-01
The seasonal characteristics of fluorescent components in chromophoric dissolved organic matter (CDOM) for lakes in the semiarid region of Northeast China were examined by excitation-emission matrix (EEM) spectra and parallel factor analysis (PARAFAC). Two humic-like (C1 and C2) and protein-like (C3 and C4) components were identified using PARAFAC. The average fluorescence intensity of the four components differed under seasonal variation from June and August 2013 to February and April 2014. Components 1 and 2 exhibited a strong linear correlation (R2 = 0.628). Significantly positive linear relationships between CDOM absorption coefficients a(254) (R2 = 0.72, 0.46, p < 0.01), a(280) (R2 = 0.77, 0.47, p < 0.01), a(350) (R2 = 0.76, 0.78, p < 0.01) and Fmax for two humic-like components (C1 and C2) were exhibited, respectively. A significant relationship (R2 = 0.930) was found between salinity and dissolved organic carbon (DOC). However, almost no obvious correlation was found between salinity and EEM-PARAFAC-extracted components except for C3 (R2 = 0.469). Results from this investigation demonstrate that the EEM-PARAFAC technique can be used to evaluate the seasonal dynamics of CDOM fluorescent components for inland waters in the semiarid regions of Northeast China, and to quantify CDOM components for other waters with similar environmental conditions.
Nahorniak, Michelle L; Booksh, Karl S
2006-12-01
A field portable, single exposure excitation-emission matrix (EEM) fluorometer has been constructed and used in conjunction with parallel factor analysis (PARAFAC) to determine the sub part per billion (ppb) concentrations of several aqueous polycyclic aromatic hydrocarbons (PAHs), such as benzo(k)fluoranthene and benzo(a)pyrene, in various matrices including aqueous motor oil extract and asphalt leachate. Multiway methods like PARAFAC are essential to resolve the analyte signature from the ubiquitous background in environmental samples. With multiway data and PARAFAC analysis it is shown that reliable concentration determinations can be achieved with minimal standards in spite of the large convoluting fluorescence background signal. Thus, rapid fieldable EEM analyses may prove to be a good screening method for tracking pollutants and prioritizing sampling and analysis by more complete but time consuming and labor intensive EPA methods.
A new approach for SSVEP detection using PARAFAC and canonical correlation analysis.
Tello, Richard; Pouryazdian, Saeed; Ferreira, Andre; Beheshti, Soosan; Krishnan, Sridhar; Bastos, Teodiano
2015-01-01
This paper presents a new way for automatic detection of SSVEPs through correlation analysis between tensor models. 3-way EEG tensor of channel × frequency × time is decomposed into constituting factor matrices using PARAFAC model. PARAFAC analysis of EEG tensor enables us to decompose multichannel EEG into constituting temporal, spectral and spatial signatures. SSVEPs characterized with localized spectral and spatial signatures are then detected exploiting a correlation analysis between extracted signatures of the EEG tensor and the corresponding simulated signatures of all target SSVEP signals. The SSVEP that has the highest correlation is selected as the intended target. Two flickers blinking at 8 and 13 Hz were used as visual stimuli and the detection was performed based on data packets of 1 second without overlapping. Five subjects participated in the experiments and the highest classification rate of 83.34% was achieved, leading to the Information Transfer Rate (ITR) of 21.01 bits/min.
Divya, O; Mishra, Ashok K
2007-05-29
Quantitative determination of kerosene fraction present in diesel has been carried out based on excitation emission matrix fluorescence (EEMF) along with parallel factor analysis (PARAFAC) and N-way partial least squares regression (N-PLS). EEMF is a simple, sensitive and nondestructive method suitable for the analysis of multifluorophoric mixtures. Calibration models consisting of varying compositions of diesel and kerosene were constructed and their validation was carried out using leave-one-out cross validation method. The accuracy of the model was evaluated through the root mean square error of prediction (RMSEP) for the PARAFAC, N-PLS and unfold PLS methods. N-PLS was found to be a better method compared to PARAFAC and unfold PLS method because of its low RMSEP values.
Zou, Hong-Yan; Wu, Hai-Long; OuYang, Li-Qun; Zhang, Yan; Nie, Jin-Fang; Fu, Hai-Yan; Yu, Ru-Qin
2009-09-14
Two second-order calibration methods based on the parallel factor analysis (PARAFAC) and the alternating penalty trilinear decomposition (APTLD) method, have been utilized for the direct determination of terazosin hydrochloride (THD) in human plasma samples, coupled with the excitation-emission matrix fluorescence spectroscopy. Meanwhile, the two algorithms combing with the standard addition procedures have been applied for the determination of terazosin hydrochloride in tablets and the results were validated by the high-performance liquid chromatography with fluorescence detection. These second-order calibrations all adequately exploited the second-order advantages. For human plasma samples, the average recoveries by the PARAFAC and APTLD algorithms with the factor number of 2 (N=2) were 100.4+/-2.7% and 99.2+/-2.4%, respectively. The accuracy of two algorithms was also evaluated through elliptical joint confidence region (EJCR) tests and t-test. It was found that both algorithms could give accurate results, and only the performance of APTLD was slightly better than that of PARAFAC. Figures of merit, such as sensitivity (SEN), selectivity (SEL) and limit of detection (LOD) were also calculated to compare the performances of the two strategies. For tablets, the average concentrations of THD in tablet were 63.5 and 63.2 ng mL(-1) by using the PARAFAC and APTLD algorithms, respectively. The accuracy was evaluated by t-test and both algorithms could give accurate results, too.
Morais, E C; Esmerino, E A; Monteiro, R A; Pinheiro, C M; Nunes, C A; Cruz, A G; Bolini, Helena M A
2016-01-01
The addition of prebiotic and sweeteners in chocolate dairy desserts opens up new opportunities to develop dairy desserts that besides having a lower calorie intake still has functional properties. In this study, prebiotic low sugar dairy desserts were evaluated by 120 consumers using a 9-point hedonic scale, in relation to the attributes of appearance, aroma, flavor, texture, and overall liking. Internal preference map using parallel factor analysis (PARAFAC) and principal component analysis (PCA) was performed using the consumer data. In addition, physical (texture profile) and optical (instrumental color) analyses were also performed. Prebiotic dairy desserts containing sucrose and sucralose were equally liked by the consumers. These samples were characterized by firmness and gumminess, which can be considered drivers of liking by the consumers. Optimization of the prebiotic low sugar dessert formulation should take in account the choice of ingredients that contribute in a positive manner for these parameters. PARAFAC allowed the extraction of more relevant information in relation to PCA, demonstrating that consumer acceptance analysis can be evaluated by simultaneously considering several attributes. Multiple factor analysis reported Rv value of 0.964, suggesting excellent concordance for both methods. © 2015 Institute of Food Technologists®
Dinç, Erdal; Ertekin, Zehra Ceren
2016-01-01
An application of parallel factor analysis (PARAFAC) and three-way partial least squares (3W-PLS1) regression models to ultra-performance liquid chromatography-photodiode array detection (UPLC-PDA) data with co-eluted peaks in the same wavelength and time regions was described for the multicomponent quantitation of hydrochlorothiazide (HCT) and olmesartan medoxomil (OLM) in tablets. Three-way dataset of HCT and OLM in their binary mixtures containing telmisartan (IS) as an internal standard was recorded with a UPLC-PDA instrument. Firstly, the PARAFAC algorithm was applied for the decomposition of three-way UPLC-PDA data into the chromatographic, spectral and concentration profiles to quantify the concerned compounds. Secondly, 3W-PLS1 approach was subjected to the decomposition of a tensor consisting of three-way UPLC-PDA data into a set of triads to build 3W-PLS1 regression for the analysis of the same compounds in samples. For the proposed three-way analysis methods in the regression and prediction steps, the applicability and validity of PARAFAC and 3W-PLS1 models were checked by analyzing the synthetic mixture samples, inter-day and intra-day samples, and standard addition samples containing HCT and OLM. Two different three-way analysis methods, PARAFAC and 3W-PLS1, were successfully applied to the quantitative estimation of the solid dosage form containing HCT and OLM. Regression and prediction results provided from three-way analysis were compared with those obtained by traditional UPLC method. Copyright © 2015 Elsevier B.V. All rights reserved.
Kim, Eun-Ah; Nguyen, Hang Vo-Minh; Oh, Hae Sung; Hur, Jin; Choi, Jung Hyun
2016-03-01
This study investigated the effects of various soil conditions, including drying-rewetting, nitrogen deposition, and temperature rise, on the quantities and the composition of dissolved organic matter leached from forest and wetland soils. A set of forest and wetland soils with and without the nitrogen deposition were incubated in the growth chambers under three different temperatures. The moisture contents were kept constant, except for two-week drying intervals. Comparisons between the original and the treated samples revealed that drying-rewetting was a crucial environmental factor driving changes in the amount of dissolved organic carbon (DOC). The DOC was also notably increased by the nitrogen deposition to the dry forest soil and was affected by the temperature of the dry wetland soil. A parallel factor (PARAFAC) analysis identified three sub-fractions of the fluorescent dissolved organic matter (FDOM) from the fluorescence excitation-emission matrices (EEMs), and their compositions depended on drying-rewetting. The data as a whole, including the DOC and PARAFAC components and other optical indices, were possibly explained by the two main variables, which were closely related with the PARAFAC components and DOC based on principal component analysis (PCA). Our results suggested that the DOC and PARAFAC component information could provide a comprehensive interpretation of the changes in the soil-leached DOM in response to the different environmental conditions.
Lee, Sonmin; Hur, Jin
2016-04-01
Heterogeneous adsorption behavior of landfill leachate on granular activated carbon (GAC) was investigated by fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (PARAFAC). The equilibrium adsorption of two leachates on GAC was well described by simple Langmuir and Freundlich isotherm models. More nonlinear isotherm and a slower adsorption rate were found for the leachate with the higher values of specific UV absorbance and humification index, suggesting that the leachate containing more aromatic content and condensed structures might have less accessible sites of GAC surface and a lower degree of diffusive adsorption. Such differences in the adsorption behavior were found even within the bulk leachate as revealed by the dissimilarity in the isotherm and kinetic model parameters between two identified PARAFAC components. For both leachates, terrestrial humic-like fluorescence (C1) component, which is likely associated with relatively large sized and condensed aromatic structures, exhibited a higher isotherm nonlinearity and a slower kinetic rate for GAC adsorption than microbial humic-like (C2) component. Our results were consistent with size exclusion effects, a well-known GAC adsorption mechanism. This study demonstrated the promising benefit of using EEM-PARAFAC for GAC adsorption processes of landfill leachate through fast monitoring of the influent and treated leachate, which can provide valuable information on optimizing treatment processes and predicting further environmental impacts of the treated effluent. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mangalgiri, Kiranmayi P; Timko, Stephen A; Gonsior, Michael; Blaney, Lee
2017-07-18
Parallel factor analysis (PARAFAC) applied to fluorescence excitation emission matrices (EEMs) allows quantitative assessment of the composition of fluorescent dissolved organic matter (DOM). In this study, we fit a four-component EEM-PARAFAC model to characterize DOM extracted from poultry litter. The data set included fluorescence EEMs from 291 untreated, irradiated (253.7 nm, 310-410 nm), and oxidized (UV-H 2 O 2 , ozone) poultry litter extracts. The four components were identified as microbial humic-, terrestrial humic-, tyrosine-, and tryptophan-like fluorescent signatures. The Tucker's congruence coefficients for components from the global (i.e., aggregated sample set) model and local (i.e., single poultry litter source) models were greater than 0.99, suggesting that the global EEM-PARAFAC model may be suitable to study poultry litter DOM from individual sources. In general, the transformation trends of the four fluorescence components were comparable for all poultry litter sources tested. For irradiation at 253.7 nm, ozonation, and UV-H 2 O 2 advanced oxidation, transformation of the humic-like components was slower than that of the tryptophan-like component. The opposite trend was observed for irradiation at 310-410 nm, due to differences in UV absorbance properties of components. Compared to the other EEM-PARAFAC components, the tyrosine-like component was fairly recalcitrant in irradiation and oxidation processes. This novel application of EEM-PARAFAC modeling provides insight into the composition and fate of agricultural DOM in natural and engineered systems.
Gu, Chaochao; Gao, Pin; Yang, Fan; An, Dongxuan; Munir, Mariya; Jia, Hanzhong; Xue, Gang; Ma, Chunyan
2017-05-01
The presence of antibiotic residues in the environment has been regarded as an emerging concern due to their potential adverse environmental consequences such as antibiotic resistance. However, the interaction between antibiotics and extracellular polymeric substances (EPSs) of biofilms in wastewater treatment systems is not entirely clear. In this study, the effect of ciprofloxacin (CIP) antibiotic on biofilm EPS matrix was investigated and characterized using fluorescence excitation-emission matrix (EEM) and parallel factor (PARAFAC) analysis. Physicochemical analysis showed that the proteins were the major EPS fraction, and their contents increased gradually with an increase in CIP concentration (0-300 μg/L). Based on the characterization of biofilm tightly bound EPS (TB-EPS) by EEM, three fluorescent components were identified by PARAFAC analysis. Component C1 was associated with protein-like substances, and components C2 and C3 belonged to humic-like substances. Component C1 exhibited an increasing trend as the CIP addition increased. Pearson's correlation results showed that CIP correlated significantly with the protein contents and component C1, while strong correlations were also found among UV 254 , dissolved organic carbon, humic acids, and component C3. A combined use of EEM-PARAFAC analysis and chemical measurements was demonstrated as a favorable approach for the characterization of variations in biofilm EPS in the presence of CIP antibiotic.
Singh, Shatrughan; D'Sa, Eurico J; Swenson, Erick M
2010-07-15
Chromophoric dissolved organic matter (CDOM) variability in Barataria Basin, Louisiana, USA,was examined by excitation emission matrix (EEM) fluorescence combined with parallel factor analysis (PARAFAC). CDOM optical properties of absorption and fluorescence at 355nm along an axial transect (36 stations) during March, April, and May 2008 showed an increasing trend from the marine end member to the upper basin with mean CDOM absorption of 11.06 + or - 5.01, 10.05 + or - 4.23, 11.67 + or - 6.03 (m(-)(1)) and fluorescence 0.80 + or - 0.37, 0.78 + or - 0.39, 0.75 + or - 0.51 (RU), respectively. PARAFAC analysis identified two terrestrial humic-like (component 1 and 2), one non-humic like (component 3), and one soil derived humic acid like (component 4) components. The spatial variation of the components showed an increasing trend from station 1 (near the mouth of basin) to station 36 (end member of bay; upper basin). Deviations from this increasing trend were observed at a bayou channel with very high chlorophyll-a concentrations especially for component 3 in May 2008 that suggested autochthonous production of CDOM. The variability of components with salinity indicated conservative mixing along the middle part of the transect. Component 1 and 4 were found to be relatively constant, while components 2 and 3 revealed an inverse relationship for the sampling period. Total organic carbon showed increasing trend for each of the components. An increase in humification and a decrease in fluorescence indices along the transect indicated an increase in terrestrial derived organic matter and reduced microbial activity from lower to upper basin. The use of these indices along with PARAFAC results improved dissolved organic matter characterization in the Barataria Basin. Copyright 2010 Elsevier B.V. All rights reserved.
Mazina, Jekaterina; Vaher, Merike; Kuhtinskaja, Maria; Poryvkina, Larisa; Kaljurand, Mihkel
2015-07-01
The aim of the present study was to compare the polyphenolic compositions of 47 medicinal herbs (HM) and four herbal tea mixtures from Central Estonia by rapid, reliable and sensitive Spectral Fluorescence Signature (SFS) method in a front face mode. The SFS method was validated for the main identified HM representatives including detection limits (0.037mgL(-1) for catechin, 0.052mgL(-1) for protocatechuic acid, 0.136mgL(-1) for chlorogenic acid, 0.058mgL(-1) for syringic acid and 0.256mgL(-1) for ferulic acid), linearity (up to 5.0-15mgL(-1)), intra-day precision (RSDs=6.6-10.6%), inter-day precision (RSDs=6.4-13.8%), matrix effect (-15.8 to +5.5) and recovery (85-107%). The phytochemical fingerprints were differentiated by parallel factor analysis (PARAFAC) combined with hierarchical cluster analysis (CA) and principal component analysis (PCA). HM were clustered into four main clusters (catechin-like, hydroxycinnamic acid-like, dihydrobenzoic acid-like derivatives containing HM and HM with low/very low content of fluorescent constituents) and 14 subclusters (rich, medium, low/very low contents). The average accuracy and precision of CA for validation HM set were 97.4% (within 85.2-100%) and 89.6%, (within 66.7-100%), respectively. PARAFAC-PCA/CA has improved the analysis of HM by the SFS method. The results were verified by two separation methods CE-DAD and HPLC-DAD-MS also combined with PARAFAC-PCA/CA. The SFS-PARAFAC-PCA/CA method has potential as a rapid and reliable tool for investigating the fingerprints and predicting the composition of HM or evaluating the quality and authenticity of different standardised formulas. Moreover, SFS-PARAFAC-PCA/CA can be implemented as a laboratory and/or an onsite method. Copyright © 2015 Elsevier B.V. All rights reserved.
Chemical structure of the Chromophoric Dissolved Organic Matter (CDOM) fluorescent matter.
NASA Astrophysics Data System (ADS)
Blough, N. V.; Del Vecchio, R.; Cartisano, C. M.; Bianca, M.
2017-12-01
The structure(s), distribution and dynamics of CDOM have been investigated over the last several decades largely through optical spectroscopy (including both absorption and fluorescence) due to the fairly inexpensive instrumentation and the easy-to-gather data (over thousands published papers from 1990-2016). Yet, the chemical structure(s) of the light absorbing and emitting species or constituents within CDOM has only recently being proposed and tested through chemical manipulation of selected functional groups (such as carbonyl and carboxylic/phenolic containing molecules) naturally occurring within the organic matter pool. Similarly, fitting models (among which the PArallel FACtor analysis, PARAFAC) have been developed to better understand the nature of a subset of DOM, the CDOM fluorescent matter (FDOM). Fluorescence spectroscopy coupled with chemical tests and PARAFAC analyses could potentially provide valuable insights on CDOM sources and chemical nature of the FDOM pool. However, despite that applications (and publications) of PARAFAC model to FDOM have grown exponentially since its first application/publication (2003), a large fraction of such publications has misinterpreted the chemical meaning of the delivered PARAFAC `components' leading to more confusion than clarification on the nature, distribution and dynamics of the FDOM pool. In this context, we employed chemical manipulation of selected functional groups to gain further insights on the chemical structure of the FDOM and we tested to what extent the PARAFAC `components' represent true fluorophores through a controlled chemical approach with the ultimate goal to provide insights on the chemical nature of such `components' (as well as on the chemical nature of the FDOM) along with the advantages and limitations of the PARAFAC application.
Hur, Jin; Cho, Jinwoo
2012-01-01
The development of a real-time monitoring tool for the estimation of water quality is essential for efficient management of river pollution in urban areas. The Gap River in Korea is a typical urban river, which is affected by the effluent of a wastewater treatment plant (WWTP) and various anthropogenic activities. In this study, fluorescence excitation-emission matrices (EEM) with parallel factor analysis (PARAFAC) and UV absorption values at 220 nm and 254 nm were applied to evaluate the estimation capabilities for biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total nitrogen (TN) concentrations of the river samples. Three components were successfully identified by the PARAFAC modeling from the fluorescence EEM data, in which each fluorophore group represents microbial humic-like (C1), terrestrial humic-like organic substances (C2), and protein-like organic substances (C3), and UV absorption indices (UV(220) and UV(254)), and the score values of the three PARAFAC components were selected as the estimation parameters for the nitrogen and the organic pollution of the river samples. Among the selected indices, UV(220), C3 and C1 exhibited the highest correlation coefficients with BOD, COD, and TN concentrations, respectively. Multiple regression analysis using UV(220) and C3 demonstrated the enhancement of the prediction capability for TN.
Yang, Liyang; Kim, Daekyun; Uzun, Habibullah; Karanfil, Tanju; Hur, Jin
2015-02-01
The formation of disinfection byproducts (DBPs) is a major challenge in drinking water treatments. This study explored the applicability of fluorescence excitation-emission matrices and parallel factor analysis (EEM-PARAFAC) for assessing the formation potentials (FPs) of trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA), and the treatability of THM and NDMA precursors in nine drinking water treatment plants. Two humic-like and one tryptophan-like components were identified for the samples using PARAFAC. The total THM FP (TTHM FP) correlated strongly with humic-like component C2 (r=0.874), while NDMA FP showed a moderate and significant correlation with the tryptophan-like component C3 (r=0.628). The reduction by conventional treatment was more effective for C2 than C3, and for TTHM FP than NDMA FP. The treatability of DOM and TTHM FP correlated negatively with the absorption spectral slope (S275-295) and biological index (BIX) of the raw water, but it correlated positively with humification index (HIX). Our results demonstrated that PARAFAC components were valuable for assessing DBPs FP in drinking water treatments, and also that the raw water quality could affect the treatment efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cécillon, Lauric; Quénéa, Katell; Anquetil, Christelle; Barré, Pierre
2015-04-01
Due to its large heterogeneity at all scales (from soil core to the globe), several measurements are often mandatory to get a meaningful value of a measured soil property. A large number of measurements can therefore be needed to study a soil property whatever the scale of the study. Moreover, several soil investigation techniques produce large and complex datasets, such as pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) which produces complex 3-way data. In this context, straightforward methods designed to speed up data treatments are needed to deal with large datasets. GC-MS pyrolysis (py-GCMS) is a powerful and frequently used tool to characterize soil organic matter (SOM). However, the treatment of the results of a py-GCMS analysis of soil sample is time consuming (number of peaks, co-elution, etc.) and the treatment of large data set of py-GCMS results is rather laborious. Moreover, peak position shifts and baseline drifts between analyses make the automation of GCMS programs data treatment difficult. These problems can be fixed using the Parallel Factor Analysis 2 (PARAFAC 2, Kiers et al., 1999; Bro et al., 1999). This algorithm has been applied frequently on chromatography data but has never been applied to analyses of SOM. We developed a Matlab routine based on existing Matlab packages dedicated to the simultaneous treatment of dozens of pyro-chromatograms mass spectra. We applied this routine on 40 soil samples. The benefits and expected improvements of our method will be discussed in our poster. References Kiers et al. (1999) PARAFAC2 - PartI. A direct fitting algorithm for the PARAFAC2 model. Journal of Chemometrics, 13: 275-294. Bro et al. (1999) PARAFAC2 - PartII. Modeling chromatographic data with retention time shifts. Journal of Chemometrics, 13: 295-309.
Cui, Hongyang; Shi, Jianhong; Qiu, Linlin; Zhao, Yue; Wei, Zimin; Wang, Xinglei; Jia, Liming; Li, Jiming
2016-05-01
Chromophoric dissolved organic matter (CDOM) is an important optically active substance that can transports nutrients and pollutants from terrestrial to aquatic systems. Additionally, it is used as a measure of water quality. To investigate the source and composition of CDOM, we used chemical and fluorescent analyses to characterize CDOM in Heilongjiang. The composition of CDOM can be investigated by excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC). PARAFAC identified four individual components that were attributed to microbial humic-like (C1) and terrestrial humic-like (C2-4) in water samples collected from the Heilongjiang River. The relationships between the maximum fluorescence intensities of the four PARAFAC components and the water quality parameters indicate that the dynamic of the four components is related to nutrients in the Heilongjiang River. The relationships between the fluorescence component C3 and the biochemical oxygen demand (BOD5) indicates that component C3 makes a great contribution to BOD5 and it can be used as a carbon source for microbes in the Heilongjiang River. Furthermore, the relationships between component C3, the particulate organic carbon (POC), and the chemical oxygen demand (CODMn) show that component C3 and POC make great contributions to BOD5 and CODMn. The use of these indexes along with PARAFAC results would be of help to characterize the co-variation between the CDOM and water quality parameters in the Heilongjiang River.
Wu, Jun; Zhang, Hua; He, Pin-Jing; Shao, Li-Ming
2011-02-01
Dissolved organic matter (DOM) plays an important role in heavy metal migration from municipal solid waste (MSW) to aquatic environments via the leachate pathway. In this study, fluorescence excitation-emission matrix (EEM) quenching combined with parallel factor (PARAFAC) analysis was adopted to characterize the binding properties of four heavy metals (Cu, Pb, Zn and Cd) and DOM in MSW leachate. Nine leachate samples were collected from various stages of MSW management, including collection, transportation, incineration, landfill and subsequent leachate treatment. Three humic-like components and one protein-like component were identified in the MSW-derived DOM by PARAFAC. Significant differences in quenching effects were observed between components and metal ions, and a relatively consistent trend in metal quenching curves was observed among various leachate samples. Among the four heavy metals, Cu(II) titration led to fluorescence quenching of all four PARAFAC-derived components. Additionally, strong quenching effects were only observed in protein-like and fulvic acid (FA)-like components with the addition of Pb(II), which suggested that these fractions are mainly responsible for Pb(II) binding in MSW-derived DOM. Moreover, the significant quenching effects of the FA-like component by the four heavy metals revealed that the FA-like fraction in MSW-derived DOM plays an important role in heavy metal speciation; therefore, it may be useful as an indicator to assess the potential ability of heavy metal binding and migration. © 2010 Elsevier Ltd. All rights reserved.
Yang, Liyang; Hur, Jin; Zhuang, Wane
2015-05-01
Fluorescence excitation emission matrices-parallel factor analysis (EEM-PARAFAC) is a powerful tool for characterizing dissolved organic matter (DOM), and it is applied in a rapidly growing number of studies on drinking water and wastewater treatments. This paper presents an overview of recent findings about the occurrence and behavior of PARAFAC components in drinking water and wastewater treatments, as well as their feasibility for assessing the treatment performance and water quality including disinfection by-product formation potentials (DBPs FPs). A variety of humic-like, protein-like, and unique (e.g., pyrene-like) fluorescent components have been identified, providing valuable insights into the chemical composition of DOM and the effects of various treatment processes in engineered systems. Coagulation/flocculation-clarification preferentially removes humic-like components, and additional treatments such as biological activated carbon filtration, anion exchange, and UV irradiation can further remove DOM from drinking water. In contrast, biological treatments are more effective for protein-like components in wastewater treatments. PARAFAC components have been proven to be valuable as surrogates for conventional water quality parameter, to track the changes of organic matter quantity and quality in drinking water and wastewater treatments. They are also feasible for assessing formations of trihalomethanes and other DBPs and evaluating treatment system performance. Further studies of EEM-PARAFAC for assessing the effects of the raw water quality and variable treatment conditions on the removal of DOM, and the formation potentials of various emerging DBPs, are essential for optimizing the treatment processes to ensure treated water quality.
Macalady, Donald L.; Walton-Day, Katherine
2009-01-01
This paper reports the use of excitation-emission matrix fluorescence spectroscopy (EEMS), parallel factor statistical analysis (PARAFAC), and oxidation-reduction experiments to examine the effect of redox conditions on PARAFAC model results for aqueous samples rich in natural organic matter. Fifty-four aqueous samples from 11 different geographic locations and two plant extracts were analyzed untreated and after chemical treatments or irradiation were used in attempts to change the redox status of the natural organic matter. The EEMS spectra were generated and modeled using a PARAFAC package developed by Cory and McKnight (2005). The PARAFAC model output was examined for consistency with previously reported relations and with changes expected to occur upon experimental oxidation and reduction of aqueous samples. Results indicate the implied fraction of total sample fluorescence attributed to quinone-like moieties was consistent (0.64 to 0.78) and greater than that observed by Cory and McKnight (2005). The fraction of the quinone-like moieties that was reduced (the reducing index, RI) showed relatively little variation (0.46 to 0.71) despite attempts to alter the redox status of the natural organic matter. The RI changed little after reducing samples using zinc metal, oxidizing at high pH with air, or irradiating with a Xenon lamp. Our results, however, are consistent with the correlations between the fluorescence indices (FI) of samples and the ratio of PARAFAC fitting parameters suggested by Cory and McKnight (2005), though we used samples with a much narrower range of FI values.
Riley, Stephanie M; Ahoor, Danika C; Regnery, Julia; Cath, Tzahi Y
2018-02-01
Dissolved organic matter (DOM) present in oil and gas (O&G) produced water and fracturing flowback was characterized and quantified by multiple analytical techniques throughout a hybrid biological-physical treatment process. Quantitative and qualitative analysis of DOM by liquid chromatography - organic carbon detection (LC-OCD), liquid chromatography-high-resolution mass spectrometry (LC-HRMS), gas chromatography-mass spectrometry (GC-MS), and 3D fluorescence spectroscopy, demonstrated increasing removal of all groups of DOM throughout the treatment train, with most removal occurring during biological pretreatment and some subsequent removal achieved during membrane treatment. Parallel factor analysis (PARAFAC) further validated these results and identified five fluorescent components, including DOM described as humic acids, fulvic acids, proteins, and aromatics. Tryptophan-like compounds bound by complexation to humics/fulvics were most difficult to remove biologically, while aromatics (particularly low molecular weight neutrals) were more challenging to remove with membranes. Strong correlation among PARAFAC, LC-OCD, LC-HRMS, and GC-MS suggests that PARAFAC can be a quick, affordable, and accurate tool for evaluating the presence or removal of specific DOM groups in O&G wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhu, Long-Ji; Zhao, Yue; Chen, Yan-Ni; Cui, Hong-Yang; Wei, Yu-Quan; Liu, Hai-Long; Chen, Xiao-Meng; Wei, Zi-Min
2018-01-01
Atrazine is widely used in agriculture. In this study, dissolved organic matter (DOM) from soils under four types of land use (forest (F), meadow (M), cropland (C) and wetland (W)) was used to investigate the binding characteristics of atrazine. Fluorescence excitation-emission matrix-parallel factor (EEM-PARAFAC) analysis, two-dimensional correlation spectroscopy (2D-COS) and Stern-Volmer model were combined to explore the complexation between DOM and atrazine. The EEM-PARAFAC indicated that DOM from different sources had different structures, and humic-like components had more obvious quenching effects than protein-like components. The Stern-Volmer model combined with correlation analysis showed that log K values of PARAFAC components had a significant correlation with the humification of DOM, especially for C3 component, and they were all in the same order as follows: meadow soil (5.68)>wetland soil (5.44)>cropland soil (5.35)>forest soil (5.04). The 2D-COS further confirmed that humic-like components firstly combined with atrazine followed by protein-like components. These findings suggest that DOM components can significantly influence the bioavailability, mobility and migration of atrazine in different land uses. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Molodtsova, T.; Amon, R. M. W.
2016-12-01
In this study the optical properties (absorption and fluorescence intensity) of chromophoric dissolved organic matter (CDOM) were investigated in water samples collected during the cruise conducted in August and September 2007 across the Eastern and Central Arctic regions. The fluorescence spectroscopy analysis was complimented with the parallel factor analysis (PARAFAC) and the identified six components were compared to other water properties including salinity, in situ fluorescence, dissolved organic carbon, and specific ultraviolet absorbance at 254 nm. The principal component analysis was conducted to distinguish between the water masses and identify the features such as the Trans Polar Drift and the North Atlantic Current. The preliminary results indicate that investigation of the optical properties of CDOM are able to provide better understanding of Arctic Ocean circulation and environmental changes such as the loss of the perennial sea ice and more light penetrating the water column.
Goffin, Angélique; Guérin, Sabrina; Rocher, Vincent; Varrault, Gilles
2018-03-01
The online monitoring of dissolved organic matter (DOM) in raw sewage water is expected to better control wastewater treatment processes. Fluorescence spectroscopy offers one possibility for both the online and real-time monitoring of DOM, especially as regards the DOM biodegradability assessment. In this study, three-dimensional fluorescence spectroscopy combined with a parallel factor analysis (PARAFAC) has been investigated as a predictive tool of the soluble biological oxygen demand in 5 days (BOD 5 ) for raw sewage water. Six PARAFAC components were highlighted in 69 raw sewage water samples: C2, C5, and C6 related to humic-like compounds, along with C1, C3, and C4 related to protein-like compounds. Since the PARAFAC methodology is not available for online monitoring, a peak-picking approach based on maximum excitation-emission (Ex-Em) localization of the PARAFAC components identified in this study has been used. A good predictive model of soluble BOD 5 using fluorescence spectroscopy parameters was obtained (r 2 = 0.846, adjusted r 2 = 0.839, p < 0.0001). This model is quite straightforward, easy to automate, and applicable to the operational field of wastewater treatment for online monitoring purposes.
Peleato, Nicolás M; McKie, Michael; Taylor-Edmonds, Lizbeth; Andrews, Susan A; Legge, Raymond L; Andrews, Robert C
2016-06-01
The application of fluorescence spectroscopy to monitor natural organic matter (NOM) reduction as a function of biofiltration performance was investigated. This study was conducted at pilot-scale where a conventional media filter was compared to six biofilters employing varying enhancement strategies. Overall reductions of NOM were identified by measuring dissolved organic carbon (DOC), and UV absorbance at 254 nm, as well as characterization of organic sub-fractions by liquid chromatography-organic carbon detection (LC-OCD) and parallel factors analysis (PARAFAC) of fluorescence excitation-emission matrices (FEEM). The biofilter using granular activated carbon media, with exhausted absorptive capacity, was found to provide the highest removal of all identified PARAFAC components. A microbial or processed humic-like component was found to be most amenable to biodegradation by biofilters and removal by conventional treatment. One refractory humic-like component, detectable only by FEEM-PARAFAC, was not well removed by biofiltration or conventional treatment. All biofilters removed protein-like material to a high degree relative to conventional treatment. The formation potential of two halogenated furanones, 3-chloro-4(dichloromethyl)-2(5H)-furanone (MX) and mucochloric acid (MCA), as well as overall treated water genotoxicity are also reported. Using the organic characterization results possible halogenated furanone and genotoxicity precursors are identified. Comparison of FEEM-PARAFAC and LC-OCD results revealed polysaccharides as potential MX/MCA precursors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Hai-Xia; Suo, Tong-Chuan; Yu, He-Shui; Li, Zheng
2016-10-01
The manufacture of traditional Chinese medicine (TCM) products is always accompanied by processing complex raw materials and real-time monitoring of the manufacturing process. In this study, we investigated different modeling strategies for the extraction process of licorice. Near-infrared spectra associate with the extraction time was used to detemine the states of the extraction processes. Three modeling approaches, i.e., principal component analysis (PCA), partial least squares regression (PLSR) and parallel factor analysis-PLSR (PARAFAC-PLSR), were adopted for the prediction of the real-time status of the process. The overall results indicated that PCA, PLSR and PARAFAC-PLSR can effectively detect the errors in the extraction procedure and predict the process trajectories, which has important significance for the monitoring and controlling of the extraction processes. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Parot, Jérémie; Parlanti, Edith; Guéguen, Céline
2015-04-01
Dissolved organic matter (DOM) is a key parameter in the fate, transport and mobility of inorganic and organic pollutants in natural waters. Excitation emission matrix (EEM) spectra coupled to parallel factor analysis (PARAFAC) provide insights on the main fluorescent DOM constituents. However, the molecular structures associated with PARAFAC DOM remain poorly understood. In this study, DOM from rivers, marshes and algal culture was characterized by EEM-PARAFAC and electrospray ionization Fourier transform mass spectrometry (ESI-FT-MS, Orbitrap Q Exactive). The high resolution of the Orbitrap (i.e. 140,000) allowed us to separate unique molecular species from the complex DOM mixtures. The majority of chemical species were found within the mass to charge ratio (m/z) 200 to 400. Weighted averages of neutral mass were 271.254, 236.480, 213.992Da for river, marsh and algal-derived DOM, respectively, congruent with previous studies. The assigned formula were dominated by CHO in humic-rich river waters whereas N- and S-containing compounds were predominant in marsh and algal samples. Marsh consisted of N and S-containing compounds, which were presumed to be linear alkylbenzene sulfonates. And the double bond equivalent (DBE) was higher in the marsh and in comparison was lower in the algal culture. Kendrick masses, used to identify homologous compounds differing only by a number of base units in high resolution mass spectra, and Van Krevelen diagrams, plot of molar ratio of hydrogen to carbon (H/C) versus oxygen to carbon (O/C), will be discussed in relation to PARAFAC components to further discriminate freshwater systems based on the origin and maturity of DOM. Together, these results showed that ESI-FT-MS has a great potential to distinguish freshwater DOM at the molecular level without any fractionation.
Li, Sijia; Chen, Ya'nan; Zhang, Jiquan; Song, Kaishan; Mu, Guangyi; Sun, Caiyun; Ju, Hanyu; Ji, Meichen
2018-01-01
Polycyclic aromatic hydrocarbons (PAHs), a large group of persistent organic pollutants (POPs), have caused wide environmental pollution and ecological effects. Chromophoric dissolved organic matter (CDOM), which consists of complex compounds, was seen as a proxy of water quality. An attempt was made to understand the relationships of CDOM absorption parameters and parallel factor analysis (PARAFAC) components with PAHs under seasonal variation in the riverine, reservoir, and urban waters of the Yinma River watershed in 2016. These different types of water bodies provided wide CDOM and PAHs concentration ranges with CDOM absorption coefficients at a wavelength of 350 nm (a CDOM (350)) of 1.17-20.74 m -1 and total PAHs of 0-1829 ng/L. CDOM excitation-emission matrix (EEM) presented two fluorescent components, e.g., terrestrial humic-like (C1) and tryptophan-like (C2) were identified using PARAFAC. Tryptophan-like associated protein-like fluorescence often dominates the EEM signatures of sewage samples. Our finding is that seasonal CDOM EEM-PARAFAC and PAHs concentration showed consistent tendency indicated that PAHs were un-ignorable pollutants. However, the disparities in seasonal CDOM-PAH relationships relate to the similar sources of CDOM and PAHs, and the proportion of PAHs in CDOM. Overlooked and poorly appreciated, quantifying the relationship between CDOM and PAHs has important implications, because these results simplify ecological and health-based risk assessment of pollutants compared to the traditional chemical measurements.
Phong, Diep Dinh; Hur, Jin
2015-12-15
Photocatalytic degradation of dissolved organic matter (DOM) using TiO2 as a catalyst and UVA as a light source was examined under various experimental settings with different TiO2 doses, solution pH, and the light intensities. The changes in UV absorbance and fluorescence with the irradiation time followed a pseudo-first order model much better than those of dissolved organic carbon. In general, the degradation rates were increased by higher TiO2 doses and light intensities. However, the exact photocatalytic responses of DOM to the irradiation were affected by many other factors such as aggregation of TiO2, light scattering, hydroxyl radicals produced, and DOM sorption on TiO2. Fluorescence excitation-emission matrix (EEM) coupled with parallel factor analysis (PARAFAC) revealed that the DOM changes in fluorescence could be described by the combinations of four dissimilar components including one protein-like, two humic-like, and one terrestrial humic-like components, each of which followed well the pseudo-first order model. The photocatalytic degradation rates were higher for protein-like versus humic-like component, whereas the opposite order was displayed for the degradation rates in the absence of TiO2, suggesting different dominant mechanisms operating between the systems with and without TiO2. Our results based on EEM-PARAFAC provided new insights into the underlying mechanisms associated with the photocatalytic degradation of DOM as well as the potential environmental impact of the treated water. This study demonstrated a successful application of EEM-PARAFAC for photocatalytic systems via directly comparing the kinetic rates of the individual DOM components with different compositions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Durán Merás, Isabel; Domínguez Manzano, Jaime; Airado Rodríguez, Diego; Muñoz de la Peña, Arsenio
2018-02-01
Within olive oils, extra virgin olive oil is the highest quality and, in consequence, the most expensive one. Because of that, it is common that some merchants attempt to take economic advantage by mixing it up with other less expensive oils, like olive oil or olive pomace oil. In consequence, the characterization and authentication of extra virgin olive oils is a subject of great interest, both for industry and consumers. This paper reports the potential of front-face total fluorescence spectroscopy combined with second-order chemometric methods for the detection of extra virgin olive oils adulteration with other olive oils. Excitation-emission matrices (EEMs) of extra virgin olive oils and extra virgin olive oils adulterated with olive oils or with olive pomace oils were recorded using front-face fluorescence spectroscopy. The full information content in these fluorescence images was analyzed with the aid of unsupervised parallel factor analysis (PARAFAC), PARAFAC supervised by linear discriminant analysis (LDA-PARAFAC), and discriminant unfolded partial least-squares (DA-UPLS). The discriminant ability of LDA-PARAFAC was studied through the tridimensional plots of the canonical vectors, defining a surface separating the established categories. For DA-UPLS, the discriminant ability was established through the bidimensional plots of predicted values of calibration and validation samples, in order to assign each sample to a given class. The models demonstrated the possibility of detecting adulterations of extra virgin olive oils with percentages of around 15% and 3% of olive and olive pomace oils, respectively. Also, UPLS regression was used to quantify the adulteration level of extra virgin olive oils with olive oils or with olive pomace oils. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Bo-Mi; Seo, Young-Soo; Hur, Jin
2015-04-15
In this study, the adsorptive fractionation of a humic acid (HA, Elliott soil humic acid) on graphene oxide (GO) was examined at pH 4 and 6 using absorption spectroscopy and fluorescence excitation-emission matrix (EEM)-parallel factor analysis (PARAFAC). The extent of the adsorption was greater at pH 4.0 than at pH 6.0. Aromatic molecules within the HA were preferentially adsorbed onto the GO surface, and the preferential adsorption was more pronounced at pH 6, which is above the zero point of charge of GO. A relative ratio of two PARAFAC humic-like components (ex/em maxima at 270/510 nm and at (250, 265)/440 nm) presented an increasing trend with larger sizes of ultrafiltered humic acid fractions, suggesting the potential for using fluorescence EEM-PARAFAC for tracking the changes in molecular sizes of aromatic HA molecules. The individual adsorption behaviors of the two humic-like components revealed that larger sized aromatic components within HA had a higher adsorption affinity and more nonlinear isotherms compared to smaller sized fractions. Our results demonstrated that adsorptive fractionation of HA occurred on the GO surface with respect to their aromaticity and the sizes, but the degree was highly dependent on solution pH as well as the amount of adsorbed HS (or available surface sites). The observed adsorption behaviors were reasonably explained by a combination of different mechanisms previously suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Liyang; Zhuang, Wan-E; Chen, Chen-Tung Arthur; Wang, Bing-Jye; Kuo, Fu-Wen
2017-03-15
The submarine hydrothermal systems are extreme environments where active cycling of dissolved organic matter (DOM) may occur. However, little is known about the optical properties and bioavailability of hydrothermal DOM, which could provide valuable insights into its transformation processes and biogeochemical reactivity. The quantity, quality, and bioavailability of DOM were investigated for four very different hydrothermal vents east of Taiwan, using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). The DOC and absorption coefficient a 280 were both lower in the two hydrothermal vents off the Orchid Island and on the Green Island than in the surrounding seawater and the two vents off the Kueishantao Island, indicating effective removals of DOM in the former two hydrothermal systems owing to possible adsorption/co-precipitation and thermal degradation respectively. The four hydrothermal DOM showed notable differences in the absorption spectral slope S 275-295 , humification index HIX, biological index BIX, EEM spectra, and the relative distributions of seven PARAFAC components. The results demonstrated a high diversity of chemical composition and transformation history of DOM under contrasting hydrothermal conditions. The little change in the hydrothermal DOC after 28-day microbial incubations indicated a low bioavailability of the bulk DOM, and different PARAFAC components showed contrasting bioavailability. The results have profound implications for understanding the biogeochemical cycling and environmental effects of hydrothermal DOM in the marine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Watson, Kalinda; Farré, Maria José; Leusch, Frederic D L; Knight, Nicole
2018-05-28
Parallel factor (PARAFAC) analysis of fluorescence excitation-emission matrices (EEMs) was used to investigate the organic matter and DBP formation characteristics of untreated, primary treated (enhanced coagulation; EC) and secondary treated synthetic waters prepared using a Suwannee River natural organic matter (SR-NOM) isolate. The organic matter was characterised by four different fluorescence components; two humic acid-like (C1 and C2) and two protein-like (C3 and C4). Secondary treatment methods tested, following EC treatment, were; powdered activated carbon (PAC), granular activated carbon (GAC), 0.1% silver-impregnated activated carbon (SIAC), and MIEX® resin. Secondary treatments were more effective at removing natural organic matter (NOM) and fluorescent DBP-precursor components than EC alone. The formation of a suite of 17 DBPs including chlorinated, brominated and iodinated trihalomethanes (THMs), dihaloacetonitriles (DHANs), chloropropanones (CPs), chloral hydrate (CH) and trichloronitromethane (TCNM) was determined after chlorinating water sampled before and after each treatment step. Regression analysis was used to investigate the relationship between peak component fluorescence intensity (F MAX ), DBP concentration and speciation, and more commonly used aggregate parameters such as DOC, UV 254 and SUVA 254 . PARAFAC component 1 (C1) was in general a better predictor of DBP formation than other aggregate parameters, and was well correlated (R ≥ 0.80) with all detected DBPs except dibromochloromethane (DBCM) and dibromoacetonitrile (DBAN). These results indicate that the fluorescence-PARAFAC approach could provide a robust analytical tool for predicting DBP formation, and for evaluating the removal of NOM fractions relevant to DBP formation during water treatment. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wheeler, K. I.; Levia, D. F.; Hudson, J. E.
2017-09-01
In autumn, the dissolved organic matter (DOM) contribution of leaf litter leachate to streams in forested watersheds changes as trees undergo resorption, senescence, and leaf abscission. Despite its biogeochemical importance, little work has investigated how leaf litter leachate DOM changes throughout autumn and how any changes might differ interspecifically and intraspecifically. Since climate change is expected to cause vegetation migration, it is necessary to learn how changes in forest composition could affect DOM inputs via leaf litter leachate. We examined changes in leaf litter leachate fluorescent DOM (FDOM) from American beech (
Hur, Jin; Shin, Jaewon; Kang, Minsun; Cho, Jinwoo
2014-08-01
In this study, the variations in the fluorescent components of dissolved organic matter (DOM) were tracked for an aerobic submerged membrane bioreactor (MBR) at three different operation stages (cake layer formation, condensation, and after cleaning). The fluorescent DOM was characterized using excitation-emission matrix (EEM) spectroscopy combined with parallel factor analysis (PARAFAC). Non-aromatic carbon structures appear to be actively involved in the membrane fouling for the cake layer formation stage as revealed by much higher UV-absorbing DOM per organic carbon found in the effluent versus those inside the reactor. Four fluorescent components were successfully identified from the reactor and the effluent DOMs by EEM-PARAFAC modeling. Among those in the reactor, microbial humic-like fluorescence was the most abundant component at the cake layer formation stage and tryptophan-like fluorescence at the condensation stage. In contrast to the reactor, relatively similar composition of the PARAFAC components was exhibited for the effluent at all three stages. Tryptophan-like fluorescence displayed the largest difference between the reactor and the effluent, suggesting that this component could be a good tracer for membrane fouling. It appears that the fluorescent DOM was involved in membrane fouling by cake layer formation rather than by internal pore adsorption because its difference between the reactor and the effluent was the highest among all the four components, even after the membrane cleaning. Our study provided an insight into the fate and the behavior fluorescent DOM components for an MBR system, which could be an indicator of the membrane fouling.
Maqbool, Tahir; Quang, Viet Ly; Cho, Jinwoo; Hur, Jin
2016-06-01
In this study, we successfully tracked the dynamic changes in different constitutes of bound extracellular polymeric substances (bEPS), soluble microbial products (SMP), and permeate during the operation of bench scale membrane bioreactors (MBRs) via fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (PARAFAC). Three fluorescent groups were identified, including two protein-like (tryptophan-like C1 and tyrosine-like C2) and one microbial humic-like components (C3). In bEPS, protein-like components were consistently more dominant than C3 during the MBR operation, while their relative abundance in SMP depended on aeration intensities. C1 of bEPS exhibited a linear correlation (R(2)=0.738; p<0.01) with bEPS amounts in sludge, and C2 was closely related to the stability of sludge. The protein-like components were more greatly responsible for membrane fouling. Our study suggests that EEM-PARAFAC can be a promising monitoring tool to provide further insight into process evaluation and membrane fouling during MBR operation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alcaráz, Mirta R; Bortolato, Santiago A; Goicoechea, Héctor C; Olivieri, Alejandro C
2015-03-01
Matrix augmentation is regularly employed in extended multivariate curve resolution-alternating least-squares (MCR-ALS), as applied to analytical calibration based on second- and third-order data. However, this highly useful concept has almost no correspondence in parallel factor analysis (PARAFAC) of third-order data. In the present work, we propose a strategy to process third-order chromatographic data with matrix fluorescence detection, based on an Augmented PARAFAC model. The latter involves decomposition of a three-way data array augmented along the elution time mode with data for the calibration samples and for each of the test samples. A set of excitation-emission fluorescence matrices, measured at different chromatographic elution times for drinking water samples, containing three fluoroquinolones and uncalibrated interferences, were evaluated using this approach. Augmented PARAFAC exploits the second-order advantage, even in the presence of significant changes in chromatographic profiles from run to run. The obtained relative errors of prediction were ca. 10 % for ofloxacin, ciprofloxacin, and danofloxacin, with a significant enhancement in analytical figures of merit in comparison with previous reports. The results are compared with those furnished by MCR-ALS.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Song, K.; Wen, Z.; Li, L.; Zang, S.; Shao, T.; Li, S.; Du, J.
2015-04-01
The seasonal characteristics of fluorescence components in CDOM for lakes in the semi-arid region of Northeast China were examined by excitation-emission matrices fluorescence and parallel factor analysis (EEM-PARAFAC). Two humic-like peaks C1 (Ex/Em = 230, 300/425 nm) and C2 (Ex/Em = 255, 350/460 nm) and two protein-like B (Ex/Em = 220, 275/320 nm) and T (Ex/Em = 225, 290/360 nm) peaks were identified using PARAFAC. The average fluorescence intensity of the four components differed with seasonal variation from June and August 2013 to February and April 2014. The total fluorescence intensity significantly varied from 2.54 ± 0.68 nm-1 in June to the mean value 1.93 ± 0.70 nm-1 in August 2013, and then increased to 2.34 ± 0.92 nm-1 in February and reduced to the lowest 1.57 ± 0.55 nm-1 in April 2014. In general, the fluorescence intensity was dominated by peak C1, indicating that most part of CDOM for inland waters being investigated in this study was originated from phytoplankton degradation. The lowest C2 represents only a small portion of CDOM from terrestrial imported organic matter to water bodies through rainwash and soil leaching. The two protein-like intensities (B and T) formed in situ through microbial activity have almost the same intensity. Especially, in August 2013 and February 2014, the two protein-like peaks showed obviously difference from other seasons and the highest C1 (1.02 nm-1) was present in February 2014. Components 1 and 2 exhibited strong linear correlation (R2 = 0.633). There were significantly positive linear relationships between CDOM absorption coefficients a(254) (R2 = 0.72, 0.46, p < 0.01), a(280) (R2 = 0.77, 0.47, p < 0.01), a(350) (R2 = 0.76, 0.78, p < 0.01) and Fmax for two humic-like components (C1 and C2), respectively. A close relationship (R2 = 0.931) was found between salinity and DOC. However, almost no obvious correlation was found between salinity and EEM-PARAFAC extracted components except for C3 (R2 = 0.469). Results from this investigation demonstrate that the EEM-PARAFAC technique can be used to evaluate the seasonal dynamics of CDOM fluorescence components for inland waters in semi-arid regions of Northeast China.
Yan, Caixia; Liu, Huihui; Sheng, Yanru; Huang, Xian; Nie, Minghua; Huang, Qi; Baalousha, Mohammed
2018-10-01
Characterization of natural colloids is the key to understand pollutant fate and transport in the environment. The present study investigates the relationship between size and fluorescence properties of colloidal organic matter (COM) from five tributaries of Poyang Lake. Colloids were size-fractionated using cross-flow ultrafiltration and their fluorescence properties were measured by three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM). Parallel factor analysis (PARAFAC) and/or Self-organizing map (SOM) were applied to assess fluorescence properties as proxy indicators for the different size of colloids. PARAFAC analysis identified four fluorescence components including three humic-like components (C1-C3) and a protein-like component (C4). These four fluorescence components, and in particular the protein-like component, are primarily present in <1 kDa phase. For the colloidal fractions (1-10 kDa, 10-100 kDa, and 100 kDa-0.7 μm), the majority of fluorophores are associated with the smallest size fraction. SOM analysis demonstrated that relatively high fluorescence intensity and aromaticity occur primarily in <1 kDa phase, followed by 1-10 kDa colloids. Coupling PARAFAC and SOM facilitate the visualization and interpretation of the relationship between colloidal size and fluorescence properties with fewer input variables, shorter running time, higher reliability, and nondestructive results. Fluorescence indices analysis reveals that the smallest colloidal fraction (1-10 kDa) was dominated by higher humified and less autochthonous COM. Copyright © 2018 Elsevier B.V. All rights reserved.
Pan, Hongwei; Lei, Hongjun; Liu, Xin; Wei, Huaibin; Liu, Shufang
2017-09-01
A large number of simple and informal landfills exist in developing countries, which pose as tremendous soil and groundwater pollution threats. Early warning and monitoring of landfill leachate pollution status is of great importance. However, there is a shortage of affordable and effective tools and methods. In this study, a soil column experiment was performed to simulate the pollution status of leachate using three-dimensional excitation-emission fluorescence (3D-EEMF) and parallel factor analysis (PARAFAC) models. Sum of squared residuals (SSR) and principal component analysis (PCA) were used to determine the optimal components for PARAFAC. A one-way analysis of variance showed that the component scores of the soil column leachate were significant influenced by landfill leachate (p<0.05). Therefore, the ratio of the component scores of the soil under the landfill to that of natural soil could be used to evaluate the leakage status of landfill leachate. Furthermore, a hazard index (HI) and a hazard evaluation standard were established. A case study of Kaifeng landfill indicated a low hazard (level 5) by the use of HI. In summation, HI is presented as a tool to evaluate landfill pollution status and for the guidance of municipal solid waste management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Yunlin; Yin, Yan; Feng, Longqing; Zhu, Guangwei; Shi, Zhiqiang; Liu, Xiaohan; Zhang, Yuanzhi
2011-10-15
Chromophoric dissolved organic matter (CDOM) is an important optically active substance that transports nutrients, heavy metals, and other pollutants from terrestrial to aquatic systems and is used as a measure of water quality. To investigate how the source and composition of CDOM changes in both space and time, we used chemical, spectroscopic, and fluorescence analyses to characterize CDOM in Lake Tianmuhu (a drinking water source) and its catchment in China. Parallel factor analysis (PARAFAC) identified three individual fluorophore moieties that were attributed to humic-like and protein-like materials in 224 water samples collected between December 2008 and September 2009. The upstream rivers contained significantly higher concentrations of CDOM than did the lake water (a(350) of 4.27±2.51 and 2.32±0.59 m(-1), respectively), indicating that the rivers carried a substantial load of organic matter to the lake. Of the three main rivers that flow into Lake Tianmuhu, the Pingqiao River brought in the most CDOM from the catchment to the lake. CDOM absorption and the microbial and terrestrial humic-like components, but not the protein-like component, were significantly higher in the wet season than in other seasons, indicating that the frequency of rainfall and runoff could significantly impact the quantity and quality of CDOM collected from the catchment. The different relationships between the maximum fluorescence intensities of the three PARAFAC components, CDOM absorption, and chemical oxygen demand (COD) concentration in riverine and lake water indicated the difference in the composition of CDOM between Lake Tianmuhu and the rivers that feed it. This study demonstrates the utility of combining excitation-emission matrix fluorescence and PARAFAC to study CDOM dynamics in inland waters. Copyright © 2011 Elsevier Ltd. All rights reserved.
Oloibiri, Violet; De Coninck, Sam; Chys, Michael; Demeestere, Kristof; Van Hulle, Stijn W H
2017-11-01
The combination of fluorescence excitation-emission matrices (EEM), parallel factor analysis (PARAFAC) and self-organizing maps (SOM) is shown to be a powerful tool in the follow up of dissolved organic matter (DOM) removal from landfill leachate by physical-chemical treatment consisting of coagulation, granular activated carbon (GAC) and ion exchange. Using PARAFAC, three DOM components were identified: C1 representing humic/fulvic-like compounds; C2 representing tryptophan-like compounds; and C3 representing humic-like compounds. Coagulation with ferric chloride (FeCl 3 ) at a dose of 7 g/L reduced the maximum fluorescence of C1, C2 and C3 by 52%, 17% and 15% respectively, while polyaluminium chloride (PACl) reduced C1 only by 7% at the same dose. DOM removal during GAC and ion exchange treatment of raw and coagulated leachate exhibited different profiles. At less than 2 bed volumes (BV) of treatment, the humic components C1 and C3 were rapidly removed, whereas at BV ≥ 2 the tryptophan-like component C2 was preferentially removed. Overall, leachate treated with coagulation +10.6 BV GAC +10.6 BV ion exchange showed the highest removal of C1 (39% - FeCl 3 , 8% - PACl), C2 (74% - FeCl 3 , 68% - PACl) and no C3 removal; whereas only 52% C2 and no C1 and C3 removal was observed in raw leachate treated with 10.6 BV GAC + 10.6 BV ion exchange only. Analysis of PARAFAC-derived components with SOM revealed that coagulation, GAC and ion exchange can treat leachate at least 50% longer than only GAC and ion exchange before the fluorescence composition of leachate remains unchanged. Copyright © 2017 Elsevier Ltd. All rights reserved.
Du, Yingxun; Zhang, Yuanyuan; Chen, Feizhou; Chang, Yuguang; Liu, Zhengwen
2016-10-15
Due to climate change, tree line advance is occurring in many alpine regions. Within the next 50 to 100years, alpine lake catchments are expected to develop increased vegetation cover similar to that of sub-alpine lake catchments which currently exist below the tree line. Such changes in vegetation could trigger increased allochthonous DOM inputs to alpine lakes. To understand the fate of allochthonous DOM in alpine lakes impacted by climate change, the photochemical reactivity of DOM in sub-alpine Lake Tiancai (located 200m below the tree line) was investigated by excitation emission matrix fluorescence combined with parallel factor analysis (EEM-PARAFAC) and UV-Vis spectra analysis. With photo-exposure, a decrease in apparent DOM molecular weight was observed and 32% DOM was photomineralized to CO2. Interestingly, the aromaticity of DOM increased after photodegradation, as evidenced by increases in both the specific UV absorbance at 254nm (SUVA254) and the humification index (HIX). Five EEM-PARAFAC components were identified, including four terrestrially-derived substances (C1, C2, C3 and C4; allochthonous) and one tryptophan-like substance (C5; autochthonous). Generally, allochthonous DOM represented by C2 and C3 exhibited greater photoreactivity than autochthonous DOM represented by C5. C4 was identified as a possible photoproduct with relatively high aromaticity and photorefractive tendencies and contributed to the observed increase in SUVA254 and HIX. UV light facilitated the photodegradation of DOM and had the greatest effect on the removal of C3. This study provides information on the transformation of EEM-PARAFAC components in a sub-alpine lake, which is important in understanding the fate of increased allochthonous DOM inputs to alpine lakes impacted by climate change. Copyright © 2016 Elsevier B.V. All rights reserved.
He, Wei; Lee, Jong-Hyun; Hur, Jin
2016-05-01
Sediment organic matter (SOM) was extracted in an alkaline solution from 43 stream sediments in order to explore the anthropogenic signatures. The SOM spectroscopic characteristics including excitation-emission matrix (EEM)-parallel factor analysis (PARAFAC) were compared for five sampling site groups classified by the anthropogenic variables of land use, population density, the loadings of organics and nutrients, and metal enrichment. The conventional spectroscopic characteristics including specific UV absorbance, absorbance ratio, and humification index did not properly discriminate among the different cluster groups except in the case of metal enrichment. Of the four decomposed PARAFAC components, humic-like and tryptophan-like fluorescence responded negatively and positively, respectively, to increasing degrees of the anthropogenic variables except for land use. The anthropogenic enrichment of heavy metals was positively associated with the abundance of tryptophan-like component. In contrast, humic-like component, known to be mostly responsible for metal binding, exhibited a decreasing trend corresponding with metal enrichment. These conflicting trends can be attributed to the overwhelmed effects of the coupled discharges of heavy metals and organic pollutants into sediments. Our study suggests that the PARAFAC components can be used as functional signatures to probe the anthropogenic influences on sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mohler, Rachel E; Dombek, Kenneth M; Hoggard, Jamin C; Pierce, Karisa M; Young, Elton T; Synovec, Robert E
2007-08-01
The first extensive study of yeast metabolite GC x GC-TOFMS data from cells grown under fermenting, R, and respiring, DR, conditions is reported. In this study, recently developed chemometric software for use with three-dimensional instrumentation data was implemented, using a statistically-based Fisher ratio method. The Fisher ratio method is fully automated and will rapidly reduce the data to pinpoint two-dimensional chromatographic peaks differentiating sample types while utilizing all the mass channels. The effect of lowering the Fisher ratio threshold on peak identification was studied. At the lowest threshold (just above the noise level), 73 metabolite peaks were identified, nearly three-fold greater than the number of previously reported metabolite peaks identified (26). In addition to the 73 identified metabolites, 81 unknown metabolites were also located. A Parallel Factor Analysis graphical user interface (PARAFAC GUI) was applied to selected mass channels to obtain a concentration ratio, for each metabolite under the two growth conditions. Of the 73 known metabolites identified by the Fisher ratio method, 54 were statistically changing to the 95% confidence limit between the DR and R conditions according to the rigorous Student's t-test. PARAFAC determined the concentration ratio and provided a fully-deconvoluted (i.e. mathematically resolved) mass spectrum for each of the metabolites. The combination of the Fisher ratio method with the PARAFAC GUI provides high-throughput software for discovery-based metabolomics research, and is novel for GC x GC-TOFMS data due to the use of the entire data set in the analysis (640 MB x 70 runs, double precision floating point).
Liu, Chen; Li, Penghui; Tang, Xiangyu; Korshin, Gregory V
2016-10-01
The degradation of effluent organic matter (EfOM) in a municipal wastewater treated by ozonation was characterized using the methods of high-performance size-exclusion chromatography (HP-SEC) and excitation/emission matrix (EEM) fluorescence combined with parallel factor analysis (PARAFAC). The removal of 40 diverse trace-level contaminants of emerging concern (CEC) present in the wastewater was determined as well. Ozonation caused a rapid decrease of the absorbance and fluorescence of the wastewater, which was associated primarily with the oxidation of high and low apparent molecular weight (AMW) EfOM fractions. PARAFAC analysis also showed that components C1 and C2 decreased prominently in these conditions. The EfOM fraction of intermediate molecular weight ascribable to a terrestrial humic-like component (C3) tended to be less reactive toward ozone. Relative changes of EEM fluorescence were quantified using F max values of PARAFAC-identified components (∆F/F 0 max ). Unambiguous relationships between ∆F/F 0 max values and the extent of the degradation of the examined CECs (∆C/C 0 ) were established. This allowed correlating main parameters of the ∆C/C 0 vs. ∆F/F 0 max relationships with the rates of oxidation of these CECs. The results demonstrate the potential of online measurements of EEM fluorescence for quantitating effects of ozonation on EfOM and micropollutants in wastewater effluents.
Mendoza, Wilson G; Riemer, Daniel D; Zika, Rod G
2013-05-01
We evaluated the use of excitation and emission matrix (EEM) fluorescence and parallel factorial analysis (PARAFAC) modeling techniques for monitoring crude oil components in the water column. Four of the seven derived PARAFAC loadings were associated with the Macondo crude oil components. The other three components were associated with the dispersant, an unresolved component and colored dissolved organic matter (CDOM). The fluorescence of the associated benzene and naphthalene-like components of crude oil exhibited a maximum at ∼1200 m. The maximum fluorescence of the component associated with the dispersant (i.e., Corexit EC9500A) was observed at the same depth. The plume observed at this depth was attributed to the dispersed crude oil from the Deepwater Horizon oil spill. Results demonstrate the application of EEM and PARAFAC to simultaneously monitor selected PAH, dispersant-containing and humic-like fluorescence components in the oil spill region in the Gulf of Mexico.
NASA Astrophysics Data System (ADS)
Wheeler, K. I.; Levia, D. F., Jr.; Hudson, J. E.
2017-12-01
As trees undergo autumnal processes such as resorption, senescence, and leaf abscission, the dissolved organic matter (DOM) contribution of leaf litter leachate to streams changes. However, little research has investigated how the fluorescent DOM (FDOM) changes throughout the autumn and how this differs inter- and intraspecifically. Two of the major impacts of global climate change on forested ecosystems include altering phenology and causing forest community species and subspecies composition restructuring. We examined changes in FDOM in leachate from American beech (Fagus grandifolia Ehrh.) leaves in Maryland, Rhode Island, Vermont, and North Carolina and yellow poplar (Liriodendron tulipifera L.) leaves from Maryland throughout three different phenophases: green, senescing, and freshly abscissed. Beech leaves from Maryland and Rhode Island have previously been identified as belonging to the same distinct genetic cluster and beech trees from Vermont and the study site in North Carolina from the other. FDOM in samples was characterized using excitation-emission matrices (EEMs) and a six-component parallel factor analysis (PARAFAC) model was created to identify components. Self-organizing maps (SOMs) were used to visualize variation and patterns in the PARAFAC component proportions of the leachate samples. Phenophase and species had the greatest influence on determining where a sample mapped on the SOM when compared to genetic clusters and geographic origin. Throughout senescence, FDOM from all the trees transitioned from more protein-like components to more humic-like ones. Percent greenness of the sampled leaves and the proportion of the tyrosine-like component 1 were found to significantly differ between the two genetic beech clusters. This suggests possible differences in photosynthesis and resorption between the two genetic clusters of beech. The use of SOMs to visualize differences in patterns of senescence between the different species and genetic populations proved to be useful in ways that other multivariate analysis techniques lack.
Chen, Meilian; Jaffé, Rudolf
2014-09-15
Dissolved organic carbon (DOC) measurements and optical properties were applied to assess the photo- and bio-reactivity of dissolved organic matter (DOM) from different sources, including biomass leaching, soil leaching and surface waters in a subtropical wetland ecosystem. Samples were exposed to light and/or dark incubated through controlled laboratory experiments. Changes in DOC, ultraviolet (UV-Vis) visible absorbance, and excitation-emission matrix (EEM) fluorescence combined with parallel factor analysis (PARAFAC) were performed to assess sample degradation. Degradation experiments showed that while significant amounts of DOC were consumed during bio-incubation for biomass leachates, a higher degree of bio-recalcitrance for soil leachate and particularly surface waters was displayed. Photo- and bio-humification transformations were suggested for sawgrass, mangrove, and seagrass leachates, as compared to substantial photo-degradation and very little to almost no change after bio-incubation for the other samples. During photo-degradation in most cases the EEM-PARAFAC components displayed photo-decay as compared to a few cases which featured photo-production. In contrast during bio-incubation most EEM-PARAFAC components proved to be mostly bio-refractory although some increases and decreases in abundance were also observed. Furthermore, the sequential photo- followed by bio-degradation showed, with some exceptions, a "priming effect" of light exposure on the bio-degradation of DOM, and the combination of these two processes resulted in a DOM composition more similar to that of the natural surface water for the different sub-environments. In addition, for leachate samples there was a general enrichment of one of the EEM-PARAFAC humic-like component (Ex/Em: <260(305)/416 nm) during photo-degradation and an enrichment of a microbial humc-like component (Ex/Em: <260(325)/406 nm and of a tryptophan-like component (Ex/Em: 300/342 nm) during the bio-degradation process. This study exemplifies the effectiveness of optical property and EEM-PARAFAC in the assessment of DOM reactivity and highlights the importance of the coupling of photo- and bio-degradation processes in DOM degradation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nie, Zeyu; Wu, Xiaodong; Huang, Haomin; Fang, Xiaomin; Xu, Chen; Wu, Jianyu; Liang, Xinqiang; Shi, Jiyan
2016-05-01
Profound understanding of behaviors of organic matter from sources to multistage rivers assists watershed management for improving water quality of river networks in rural areas. Ninety-one water samples were collected from the three orders of receiving rivers in a typical combined polluted subcatchment (diffuse agricultural pollutants and domestic sewage) located in China. Then, the fluorescent dissolved organic matter (FDOM) information for these samples was determined by the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Consequently, two typical humic-like (C1 and C2) and other two protein-like (C3 and C4) components were separated. Their fluorescence peaks were located at λ ex/em = 255(360)/455, <250(320)/395, 275/335, and <250/305 nm, which resembled the traditional peaks of A + C, A + M, T, and B, respectively. In addition, C1 and C2 accounted for the dominant contributions to FDOM (>60 %). Principal component analysis (PCA) further demonstrated that, except for the autochthonous produced C4, the allochthonous components (C1 and C2) had the same terrestrial origins, but C3 might possess the separate anthropogenic and biological sources. Moreover, the spatial heterogeneity of contamination levels was noticeable in multistage rivers, and the allochthonous FDOM was gradually homogenized along the migration directions. Interestingly, the average content of the first three PARAFAC components in secondary tributaries and source pollutants had significantly higher levels than that in subsequent receiving rivers, thus suggesting that the supervision and remediation for secondary tributaries would play a prominent role in watershed management works.
NASA Astrophysics Data System (ADS)
Zhao, Ying; Song, Kaishan; Wen, Zhidan; Fang, Chong; Shang, Yingxin; Lv, Lili
2017-07-01
The spatial distributions of the fluorescence intensities Fmax for chromophoric dissolved organic matter (CDOM) components, the fluorescence indices (FI370 and FI310) and their correlations with water quality of 19 lakes in the Songhua River Basin (SHRB) across semiarid regions of Northeast China were examined with the data collected in September 2012 and 2015. The 19 lakes were divided into two groups according to EC (threshold value = 800 μS cm-1): fresh water (N = 13) and brackish water lakes (N = 6). The fluorescent characteristics of CDOM in the 19 lakes were investigated using excitation-emission matrix fluorescence spectroscopy (EEM) coupled with parallel factor (PARAFAC) and multivariate analysis. Two humic-like components (C1 and C3), one tryptophan-like component (C2), and one tyrosine-like component (C4) were identified by PARAFAC. The component C4 was not included in subsequent analyses due to the strong scatter in some colloidal water samples from brackish water lakes. The correlations between Fmax for the three EEM-PARAFAC extracted CDOM components C1-C3, the fluorescence indices (FI370 and FI310) and the water quality parameters (i.e., TN, TP, Chl-a, pH, EC, turbidity (Turb) and dissolved organic carbon (DOC)) were determined by redundancy analysis (RDA). The results of RDA analysis showed that spatial variation in land cover, pollution sources, and salinity/EC gradients in water quality affected Fmax for the fluorescent components C1-C3 and the fluorescence indices (FI370 and FI310). Further examination indicated that the CDOM fluorescent components and the fluorescence indices (FI370 and FI310) did not significantly differ (t-test, p > 0.05) in fresh water (N = 13) and brackish water lakes (N = 6). There was a difference in the distribution of the average Fmax for the CDOM fluorescent components between C1 to C3 from agricultural sources and urban wastewater sources in hypereutrophic brackish water lakes. The Fmax for humic-like components C1 and C3 spatially varied with land cover among the 19 lakes. Our results indicated that the spatial distributions of Fmax for CDOM fluorescent components and their correlations with water quality can be evaluated by EEM-PARAFAC and multivariate analysis among the 19 lakes across semiarid regions of Northeast China, which has potential implication for lakes with similar genesis.
NASA Astrophysics Data System (ADS)
D'Sa, E. J.; Kim, H. C.; Ha, S. Y.
2016-12-01
Colored dissolved organic matter (CDOM) spectral absorption and excitation-emission matrix (EEMs) fluorescence with parallel factor analysis (PARAFAC) were examined in the Ross Sea during a survey conducted on board the R/V Araon in the austral summer of 14/15. CDOM absorption at 355 nm ranged from 0.06 to 1.14 m-1 while spectral slope S calculated between 275-295 nm wavelength ranged from 18.83 to 33.32 µm-1 with water masses playing an important role in its variability. Spectral slope S decreased with increasing CDOM absorption indicating the strong role of photo-oxidation on CDOM abundance during the summer. PARAFAC analysis of EEM data identified two humic-like (terrestrial and marine-like) and a protein-like (tryptophan-like) component. The two humic-like components were well correlated with little variability spatially and across the water column ( 0-100 m) likely indicating more refractory material. The protein-like fluorescent component was relatively quite variable supporting the autochthonous production of this fluorescent component in the highly productive Ross Sea waters.
Effects of iron on optical properties of dissolved organic matter.
Poulin, Brett A; Ryan, Joseph N; Aiken, George R
2014-09-02
Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV-vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron(II) and iron(III) on the UV-vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV-vis absorption increased linearly with increasing iron(III). Correction factors were derived using iron(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E2:E3) and spectral slope ratios (SR) of DOM samples. Both iron(II) and iron(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation-emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.
NASA Astrophysics Data System (ADS)
Beggs, Katherine M. H.; Summers, R. Scott; McKnight, Diane M.
2009-12-01
Relationships between chlorine demand and disinfection by-product (DBP) formation during chlorination and fluorescence of dissolved organic matter (DOM) were developed. Fluorescence excitation and emission (EEM) spectroscopy was employed, and parameters including fluorescence index, redox index, and overall fluorescence intensity (OFI) were correlated to chlorine demand and DBP formation. The EEMs were also analyzed using a well established global parallel factor analysis (PARAFAC) model which resolves the fluorescence signal into 13 components, including quinone-like and protein-like components. Over an 8-day chlorination period the OFI and sum of the 13 PARAFAC loadings decreased by more than 70%. The remaining identified quinone-like compounds within the DOM were shifted to a more oxidized state. Quinone fluorescence was strongly correlated to both reduced fluorescence intensity and to chlorine demand which indicates that fluorescence may be used to track the chlorine oxidation of DOM. Quinone fluorescence was also correlated strongly with both classes of regulated DBPs: total trihalomethanes and haloacetic acids. Quinone-like components were found to be strongly correlated to overall, short-term, and long-term specific DBP formation. The results of this study show that fluorescence is a useful tool in tracking both DOM oxidation and DBP formation during chlorination.
Effects of iron on optical properties of dissolved organic matter
Poulin, Brett; Ryan, Joseph N.; Aiken, George R.
2014-01-01
Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV–vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron(II) and iron(III) on the UV–vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV–vis absorption increased linearly with increasing iron(III). Correction factors were derived using iron(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E2:E3) and spectral slope ratios (SR) of DOM samples. Both iron(II) and iron(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation–emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.
Analytical Determinations of the Phenolic Content of Dissolved Organic Matter
NASA Astrophysics Data System (ADS)
Pagano, T.; Kenny, J. E.
2010-12-01
Indicators suggest that the amount of dissolved organic matter (DOM) in natural waters is increasing. Climate Change has been proposed as a potential contributor to the trend, and under this mechanism, the phenolic content of DOM may also be increasing. We have explored the possibility of assessing the phenolic character of DOM using fluorescence spectroscopy as a more convenient alternative to wet chemistry methods. In this work, parallel factor analysis (PARAFAC) was applied to fluorescence excitation emission matrices (EEMs) of humic samples in an attempt to analyze their phenolic content. The PARAFAC results were correlated with phenol concentrations derived from the Folin-Ciocalteau reagent-based method. The reagent-based method showed that the phenolic content of five International Humic Substance Society (IHSS) DOM samples vary from approximately 5 to 22 ppm Tannic Acid Equivalents (TAE) in phenol concentration. A five-component PARAFAC fit was applied to the EEMs of the IHSS sample dataset and it was determined by PARAFAC score correlations with phenol concentrations from the reagent-based method that components C1 (R2=0.78), C4 (R2=0.82), and C5 (R2=0.88) have the highest probability of containing phenolic groups. Furthermore, when the scores of components C4 and C5 were summed, the correlation improved (R2=0.99). Likewise, when the scores of C1, C4, and C5 were summed, their correlations were stronger than their individual parts (R2=0.89). Since the reagent-based method is providing an indicator of “total phenol” amount, regardless of the exact molecular structure of C1, C4, and C5, it seems reasonable that each of these components individually contributes a portion to the summed “total phenol” profile, and that the sum of their phenol-related spectral parts represents a larger portion of the “total phenol” index. However, when the sum of all five components were plotted against the reagent-based phenol concentrations, due to the considerable impact of largely non-phenolic components C2 (R2=0.23) and C3 (R2=0.35), the correlation was quite poor (or no correlation at all with R2=0.10). The results show the potential for PARAFAC analysis of multidimensional fluorescence data to be a tool for monitoring the phenolic content of DOM. Applications include assessing the potential for formation of disinfection byproducts in the treatment of drinking water and monitoring the impact of Climate Change on the phenolic character of DOM.
Guo, Wei-Dong; Huang, Jian-Ping; Hong, Hua-Sheng; Xu, Jing; Deng, Xun
2010-06-01
The distribution and estuarine behavior of fluorescent components of chromophoric dissolved organic matter (CDOM) from Jiulong Estuary were determined by fluorescence excitation emission matrix spectroscopy (EEMs) combined with parallel factor analysis (PARAFAC). The feasibility of these components as tracers for organic pollution in estuarine environments was also evaluated. Four separate fluorescent components were identified by PARAFAC, including three humic-like components (C1: 240, 310/382 nm; C2: 230, 250, 340/422 nm; C4: 260, 390/482 nm) and one protein-like components (C3: 225, 275/342 nm). These results indicated that UV humic-like peak A area designated by traditional "peak-picking method" was not a single peak but actually a combination of several fluorescent components, and it also had inherent links to so-called marine humic-like peak M or terrestrial humic-like peak C. Component C2 which include peak M decreased with increase of salinity in Jiulong Estuary, demonstrating that peak M can not be thought as the specific indicator of the "marine" humic-like component. Two humic-like components C1 and C2 showed additional behavior in the turbidity maximum region (salinity < 6) and then conservative mixing behavior for the rest estuarine region, while humic-like components C4 showed conservative mixing behavior for the whole estuarine region. However, the protein-like component C3 showed nonconservative mixing behavior, suggesting it had autochthonous estuarine origin. EEMs-PARAFAC can provide fluorescent fingerprint to differentiate the DOM features for three tributaries of Jiulong River. The observed linear relationships between humic-like components and absorption coefficient a (280) with chemical oxygen demand (COD) and biological oxygen demand (BOD5) suggest that the optical properties of CDOM may provide a fast in-situ way to monitor the variation of the degree of organic pollution in estuarine environments.
NASA Astrophysics Data System (ADS)
Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.
2007-09-01
This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it improves not only the interpretation, but also the quantification.
New robust bilinear least squares method for the analysis of spectral-pH matrix data.
Goicoechea, Héctor C; Olivieri, Alejandro C
2005-07-01
A new second-order multivariate method has been developed for the analysis of spectral-pH matrix data, based on a bilinear least-squares (BLLS) model achieving the second-order advantage and handling multiple calibration standards. A simulated Monte Carlo study of synthetic absorbance-pH data allowed comparison of the newly proposed BLLS methodology with constrained parallel factor analysis (PARAFAC) and with the combination multivariate curve resolution-alternating least-squares (MCR-ALS) technique under different conditions of sample-to-sample pH mismatch and analyte-background ratio. The results indicate an improved prediction ability for the new method. Experimental data generated by measuring absorption spectra of several calibration standards of ascorbic acid and samples of orange juice were subjected to second-order calibration analysis with PARAFAC, MCR-ALS, and the new BLLS method. The results indicate that the latter method provides the best analytical results in regard to analyte recovery in samples of complex composition requiring strict adherence to the second-order advantage. Linear dependencies appear when multivariate data are produced by using the pH or a reaction time as one of the data dimensions, posing a challenge to classical multivariate calibration models. The presently discussed algorithm is useful for these latter systems.
NASA Astrophysics Data System (ADS)
Osburn, Christopher L.; Mikan, Molly P.; Etheridge, J. Randall; Burchell, Michael R.; Birgand, François
2015-07-01
Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components (C) modeled, C3 represented recalcitrant DOM and C4 represented fresher soil-derived source DOM. Component 1 represented detrital POM, and C6 represented planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1; no planktonic DOC was exported. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Assuming the exported organic matter was oxidized to CO2 and scaled up to global salt marsh area, respiration of salt marsh DOC and POC transported to estuaries could amount to a global CO2 flux of 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.
Khani, Rouhollah; Ghasemi, Jahan B; Shemirani, Farzaneh
2014-10-01
This research reports the first application of β-cyclodextrin (β-CD) complexes as a new method for generation of three way data, combined with second-order calibration methods for quantification of a binary mixture of caffeic (CA) and vanillic (VA) acids, as model compounds in fruit juices samples. At first, the basic experimental parameters affecting the formation of inclusion complexes between target analytes and β-CD were investigated and optimized. Then under the optimum conditions, parallel factor analysis (PARAFAC) and bilinear least squares/residual bilinearization (BLLS/RBL) were applied for deconvolution of trilinear data to get spectral and concentration profiles of CA and VA as a function of β-CD concentrations. Due to severe concentration profile overlapping between CA and VA in β-CD concentration dimension, PARAFAC could not be successfully applied to the studied samples. So, BLLS/RBL performed better than PARAFAC. The resolution of the model compounds was possible due to differences in the spectral absorbance changes of the β-CD complexes signals of the investigated analytes, opening a new approach for second-order data generation. The proposed method was validated by comparison with a reference method based on high-performance liquid chromatography photodiode array detection (HPLC-PDA), and no significant differences were found between the reference values and the ones obtained with the proposed method. Such a chemometrics-based protocol may be a very promising tool for more analytical applications in real samples monitoring, due to its advantages of simplicity, rapidity, accuracy, sufficient spectral resolution and concentration prediction even in the presence of unknown interferents. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamashita, Youhei; Boyer, Joseph N.; Jaffé, Rudolf
2013-09-01
The coastal zone of the Florida Keys features the only living coral reef in the continental United States and as such represents a unique regional environmental resource. Anthropogenic pressures combined with climate disturbances such as hurricanes can affect the biogeochemistry of the region and threaten the health of this unique ecosystem. As such, water quality monitoring has historically been implemented in the Florida Keys, and six spatially distinct zones have been identified. In these studies however, dissolved organic matter (DOM) has only been studied as a quantitative parameter, and DOM composition can be a valuable biogeochemical parameter in assessing environmental change in coastal regions. Here we report the first data of its kind on the application of optical properties of DOM, in particular excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC), throughout these six Florida Keys regions in an attempt to assess spatial differences in DOM sources. Our data suggests that while DOM in the Florida Keys can be influenced by distant terrestrial environments such as the Everglades, spatial differences in DOM distribution were also controlled in part by local surface runoff/fringe mangroves, contributions from seasgrass communities, as well as the reefs and waters from the Florida Current. Application of principal component analysis (PCA) of the relative abundance of EEM-PARAFAC components allowed for a clear distinction between the sources of DOM (allochthonous vs. autochthonous), between different autochthonous sources and/or the diagenetic status of DOM, and further clarified contribution of terrestrial DOM in zones where levels of DOM were low in abundance. The combination between EEM-PARAFAC and PCA proved to be ideally suited to discern DOM composition and source differences in coastal zones with complex hydrology and multiple DOM sources.
Beggs, Katherine M H; Summers, R Scott
2011-07-01
Lodgepole pine needle leachates from trees killed by the mountain pine beetle epidemic in Colorado were evaluated for dissolved organic matter (DOM) character, biodegradation, treatability by coagulation and disinfection byproduct (DBP) formation. An average of 8.0 (±0.62) mg-DOC/g-dry weight of litter was leached from three sets of needle samples representing different levels of forest floor degradation. Fluorescence analysis included collection of excitation and emission matrices, examination of peak intensities and development of a 4-component parallel factor (PARAFAC) analysis model. Peak intensity and PARAFAC analyses provided complementary results showing that fresh leachates were initially dominated by polyphenolic/protein-like components (60-70%) and humic-like fluorescence increased (40-70%) after biodegradation. Humic-like components were removed by coagulation (20-64%), while polyphenolic/protein-like components were not, which may create challenges for utilities required to meet OM removal regulations. DBP formation yields after 24 h chlorination were 20.5-26.4 μg/mg-DOC for trihalomethanes and 9.0-14.5 μg/mg-DOC for haloacetic acids for fresh leachates; increased after biodegradation to 19.2-64.2 and 7.1-30.9 μg/mg-DOC, respectively; and decreased after coagulation (fresh: 11.3-17.7;5.7-7.6 μg/mg-DOC, respectively; biodegraded: 12.0-27.3 and 2.9-7.2 μg/mg-DOC, respectively), reflective of changes in concentration of humic material. Humic-like PARAFAC components and peak intensities were positively correlated (R(2) ≥ 0.45) to DBP concentrations, while polyphenolic/protein-like components were not (R(2) ≤ 0.17).
Tensor-driven extraction of developmental features from varying paediatric EEG datasets.
Kinney-Lang, Eli; Spyrou, Loukianos; Ebied, Ahmed; Chin, Richard Fm; Escudero, Javier
2018-05-21
Constant changes in developing children's brains can pose a challenge in EEG dependant technologies. Advancing signal processing methods to identify developmental differences in paediatric populations could help improve function and usability of such technologies. Taking advantage of the multi-dimensional structure of EEG data through tensor analysis may offer a framework for extracting relevant developmental features of paediatric datasets. A proof of concept is demonstrated through identifying latent developmental features in resting-state EEG. Approach. Three paediatric datasets (n = 50, 17, 44) were analyzed using a two-step constrained parallel factor (PARAFAC) tensor decomposition. Subject age was used as a proxy measure of development. Classification used support vector machines (SVM) to test if PARAFAC identified features could predict subject age. The results were cross-validated within each dataset. Classification analysis was complemented by visualization of the high-dimensional feature structures using t-distributed Stochastic Neighbour Embedding (t-SNE) maps. Main Results. Development-related features were successfully identified for the developmental conditions of each dataset. SVM classification showed the identified features could accurately predict subject at a significant level above chance for both healthy and impaired populations. t-SNE maps revealed suitable tensor factorization was key in extracting the developmental features. Significance. The described methods are a promising tool for identifying latent developmental features occurring throughout childhood EEG. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
El Fallah, Rawa
2017-04-01
Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon arising mainly from the incomplete combustion of organic material. It is toxic and has mutagenic and carcinogenic properties. It is classified as a priority pollutant by The United States Environmental Protection Agency (US-EPA). After it's emission in the atmosphere, and due to its physico-chemical properties, BaP will be deposited in the soil. Its aromaticity gives it the capacity to be studied by fluorescence spectroscopy so that of the Natural Organic Matter (NOM). In this study we used fluorescence excitation-emission-matrix (FEEM) with Parallel Factor analysis (PARAFAC) to study the interaction between NOM of soil and BaP. Soil sample was treated with Tetrasodium pyrophosphate along with Sodium hydroxide to obtain the Humic Substances, which afterwards were physically fractioned under acidic pH into solid Humic Acid and liquid Fulvic Acid. Three concentrations of BaP solution were added to each soil fraction. We compared the results of PARAFAC analysis of the samples containing BaP and the original NOM fractions. In the samples containing BaP, four fluorophores (components) were found, the fourth identified as BaP. Out of the three other fluorophores characteristic of NOM, two were found similar in all NOM fractions whereas only one fluorophore had some variations in its spectral characteristics. The presence of BaP changed the fluorescence of NOM. These modifications were depending on the type of soil fraction.
Source analysis of organic matter in swine wastewater after anaerobic digestion with EEM-PARAFAC.
Zeng, Zhuo; Zheng, Ping; Ding, Aqiang; Zhang, Meng; Abbas, Ghulam; Li, Wei
2017-03-01
Swine wastewater is one of the most serious pollution sources, and it has attracted a great public concern in China. Anaerobic digestion technology is extensively used in swine wastewater treatment. However, the anaerobic digestion effluents are difficult to meet the discharge standard. The results from batch experiments showed that plenty of refractory organic matter remained in the effluents after mesophilic anaerobic digestion for 30 days. The effluent total COD (tCOD) and soluble COD (sCOD) were 483 and 324 mg/L, respectively, with the sCOD/tCOD ratio of 0.671. Fluorescence excitation-emission matrix (EEM) coupled with parallel factor analysis (PARAFAC) revealed that the dissolved organic matter in the effluents was tryptophan-like substance, humic acid substance, and fulvic acid substance. Based on the appearance time during anaerobic digestion, tryptophan-like substance and humic acid substance were inferred to originate from the raw swine wastewater, and the fulvic acid substance was inferred to be formed in the anaerobic digestion. This work has revealed the source of residual organic matter in anaerobic digestion of swine wastewater and has provided some valuable information for the post-treatment.
NASA Astrophysics Data System (ADS)
Horochowska, Martyna; Cieślik-Boczula, Katarzyna; Rospenk, Maria
2018-03-01
It has been shown that Prodan emission-excitation fluorescence spectroscopy supported by Parallel Factor (PARAFAC) analysis is a fast, simple and sensitive method used in the study of the phase transition from the noninterdigitated gel (Lβ‧) state to the interdigitated gel (LβI) phase, triggered by ethanol and 2,2,2-trifluoroethanol (TFE) molecules in dipalmitoylphosphatidylcholines (DPPC) membranes. The relative contribution of lipid phases with spectral characteristics of each pure phase component has been presented as a function of an increase in alcohol concentration. It has been stated that both alcohol molecules can induce a formation of the LβI phase, but TFE is over six times stronger inducer of the interdigitated phase in DPPC membranes than ethanol molecules. Moreover, in the TFE-mixed DPPC membranes, the transition from the Lβ‧ to LβI phase is accompanied by a formation of the fluid phase, which most probably serves as a boundary phase between the Lβ‧ and LβI regions. Contrary to the three phase-state model of TFE-mixed DPPC membranes, in ethanol-mixed DPPC membranes only the two phase-state model has been detected.
NASA Astrophysics Data System (ADS)
Su, Rongguo; Chen, Xiaona; Wu, Zhenzhen; Yao, Peng; Shi, Xiaoyong
2015-07-01
The feasibility of using fluorescence excitation-emission matrix (EEM) along with parallel factor analysis (PARAFAC) and nonnegative least squares (NNLS) method for the differentiation of phytoplankton taxonomic groups was investigated. Forty-one phytoplankton species belonging to 28 genera of five divisions were studied. First, the PARAFAC model was applied to EEMs, and 15 fluorescence components were generated. Second, 15 fluorescence components were found to have a strong discriminating capability based on Bayesian discriminant analysis (BDA). Third, all spectra of the fluorescence component compositions for the 41 phytoplankton species were spectrographically sorted into 61 reference spectra using hierarchical cluster analysis (HCA), and then, the reference spectra were used to establish a database. Finally, the phytoplankton taxonomic groups was differentiated by the reference spectra database using the NNLS method. The five phytoplankton groups were differentiated with the correct discrimination ratios (CDRs) of 100% for single-species samples at the division level. The CDRs for the mixtures were above 91% for the dominant phytoplankton species and above 73% for the subdominant phytoplankton species. Sixteen of the 85 field samples collected from the Changjiang River estuary were analyzed by both HPLC-CHEMTAX and the fluorometric technique developed. The results of both methods reveal that Bacillariophyta was the dominant algal group in these 16 samples and that the subdominant algal groups comprised Dinophyta, Chlorophyta and Cryptophyta. The differentiation results by the fluorometric technique were in good agreement with those from HPLC-CHEMTAX. The results indicate that the fluorometric technique could differentiate algal taxonomic groups accurately at the division level.
Zhao, Ying; Song, Kaishan; Li, Sijia; Ma, Jianhang; Wen, Zhidan
2016-08-01
Chromophoric dissolved organic matter (CDOM) plays an important role in aquatic systems, but high concentrations of organic materials are considered pollutants. The fluorescent component characteristics of CDOM in urban waters sampled from Northern and Northeastern China were examined by excitation-emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) to investigate the source and compositional changes of CDOM on both space and pollution levels. One humic-like (C1), one tryptophan-like component (C2), and one tyrosine-like component (C3) were identified by PARAFAC. Mean fluorescence intensities of the three CDOM components varied spatially and by pollution level in cities of Northern and Northeastern China during July-August, 2013 and 2014. Principal components analysis (PCA) was conducted to identify the relative distribution of all water samples. Cluster analysis (CA) was also used to categorize the samples into groups of similar pollution levels within a study area. Strong positive linear relationships were revealed between the CDOM absorption coefficients a(254) (R (2) = 0.89, p < 0.01); a(355) (R (2) = 0.94, p < 0.01); and the fluorescence intensity (F max) for the humic-like C1 component. A positive linear relationship (R (2) = 0.77) was also exhibited between dissolved organic carbon (DOC) and the F max for the humic-like C1 component, but a relatively weak correlation (R (2) = 0.56) was detected between DOC and the F max for the tryptophan-like component (C2). A strong positive correlation was observed between the F max for the tryptophan-like component (C2) and total nitrogen (TN) (R (2) = 0.78), but moderate correlations were observed with ammonium-N (NH4-N) (R (2) = 0.68), and chemical oxygen demand (CODMn) (R (2) = 0.52). Therefore, the fluorescence intensities of CDOM components can be applied to monitor water quality in real time compared to that of traditional approaches. These results demonstrate that EEM-PARAFAC is useful to evaluate the dynamics of CDOM fluorescent components in urban waters from Northern and Northeastern China and this method has potential applications for monitoring urban water quality in different regions with various hydrological conditions and pollution levels.
Tensorial extensions of independent component analysis for multisubject FMRI analysis.
Beckmann, C F; Smith, S M
2005-03-01
We discuss model-free analysis of multisubject or multisession FMRI data by extending the single-session probabilistic independent component analysis model (PICA; Beckmann and Smith, 2004. IEEE Trans. on Medical Imaging, 23 (2) 137-152) to higher dimensions. This results in a three-way decomposition that represents the different signals and artefacts present in the data in terms of their temporal, spatial, and subject-dependent variations. The technique is derived from and compared with parallel factor analysis (PARAFAC; Harshman and Lundy, 1984. In Research methods for multimode data analysis, chapter 5, pages 122-215. Praeger, New York). Using simulated data as well as data from multisession and multisubject FMRI studies we demonstrate that the tensor PICA approach is able to efficiently and accurately extract signals of interest in the spatial, temporal, and subject/session domain. The final decompositions improve upon PARAFAC results in terms of greater accuracy, reduced interference between the different estimated sources (reduced cross-talk), robustness (against deviations of the data from modeling assumptions and against overfitting), and computational speed. On real FMRI 'activation' data, the tensor PICA approach is able to extract plausible activation maps, time courses, and session/subject modes as well as provide a rich description of additional processes of interest such as image artefacts or secondary activation patterns. The resulting data decomposition gives simple and useful representations of multisubject/multisession FMRI data that can aid the interpretation and optimization of group FMRI studies beyond what can be achieved using model-based analysis techniques.
Peleato, Nicolás M; Sidhu, Balsher Singh; Legge, Raymond L; Andrews, Robert C
2017-04-01
Impacts of ozonation alone as well as an advanced oxidation process of ozone plus hydrogen peroxide (H 2 O 2 + O 3 ) on organic matter prior to and following biofiltration were studied at pilot-scale. Three biofilters were operated in parallel to assess the effects of varying pre-treatment types and dosages. Conventionally treated water (coagulation/flocculation/sedimentation) was fed to one control biofilter, while the remaining two received water with varying applied doses of O 3 or H 2 O 2 + O 3 . Changes in organic matter were characterized using parallel factors analysis (PARAFAC) and fluorescence peak shifts. Intensities of all PARAFAC components were reduced by pre-oxidation, however, individual humic-like components were observed to be impacted to varying degrees upon exposure to O 3 or H 2 O 2 + O 3 . While the control biofilter uniformly reduced fluorescence of all PARAFAC components, three of the humic-like components were produced by biofiltration only when pre-oxidation was applied. A fluorescence red shift, which occurred with the application of O 3 or H 2 O 2 + O 3 , was attributed to a relative increase in carbonyl-containing components based on previously reported results. A subsequent blue shift in fluorescence caused by biofiltration which received pre-oxidized water indicated that biological treatment readily utilized organics produced by pre-oxidation. The results provide an understanding as to the impacts of organic matter character and pre-oxidation on biofiltration efficiency for organic matter removal. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wünsch, Urban; Murphy, Kathleen; Stedmon, Colin
2017-04-01
Absorbance and fluorescence spectroscopy are efficient tools for tracing the supply, turnover and fate of dissolved organic matter (DOM). The fluorescent fraction of DOM (FDOM) can be characterized by measuring excitation-emission matrices and decomposing the combined fluorescence signal into independent underlying fraction using Parallel Factor Analysis (PARAFAC). Comparisons between studies, facilitated by the OpenFluor database, reveal highly similar components across different aquatic systems and between studies. To obtain PARAFAC models in sufficient quality, scientists traditionally rely on analyzing dozens to hundreds of samples spanning environmental gradients. A cross-validation of this approach using different analytical tools has not yet been accomplished. In this study, we applied high-performance size-exclusion chromatography (HPSEC) to characterize the size-dependent optical properties of dissolved organic matter of samples from contrasting aquatic environments with online absorbance and fluorescence detectors. Each sample produced hundreds of absorbance spectra of colored DOM (CDOM) and hundreds of matrices of FDOM intensities. This approach facilitated the detailed study of CDOM spectral slopes and further allowed the reliable implementation of PARAFAC on individual samples. This revealed a high degree of overlap in the spectral properties of components identified from different sites. Moreover, many of the model components showed significant spectral congruence with spectra in the OpenFluor database. Our results provide evidence of the presence of ubiquitous FDOM components and additionally provide further evidence for the supramolecular assembly hypothesis. They demonstrate the potential for HPSEC to provide a wealth of new insights into the relationship between optical and chemical properties of DOM.
Zhou, Yong-Qiang; Zhang, Yun-Lin; Niu, Cheng; Wang, Ming-Zhu
2013-12-01
Little is known about DOM characteristics in medium to large sized lakes located in the middle and lower reaches of Yangtze River, like Lake Honghu, Lake Donghu and Lake Liangzihu. Absorption, fluorescence and composition characteristics of chromophoric dissolved organic matter (CDOM) are presented using the absorption spectroscopy, the excitation-emission ma trices (EEMs) fluorescence and parallel factor analysis (PARAFAC) model based on the data collected in Sep-Oct. 2007 including 15, 9 and 10 samplings in Lake Honghu, Lake Donghu and Lake Liangzihu, respectively. CDOM absorption coefficient at 350 nm a(350) coefficient in Lake Honghu was significantly higher than those in Lake Donghu and Lake Liangzihu (t-test, p< 0. 001). A significant negative correlation was found between CDOM spectral slope in the wavelength range of 280-500 nm (S280-500) and a(350) (R2 =0. 781, p<0. 001). The mean value of S280-500 in Lake Honghu was significantly lower than those in Lake Donghu (t-test, p
Yang, Liyang; Shin, Hyun-Sang; Hur, Jin
2014-01-01
This study aimed at monitoring the changes of fluorescent components in wastewater samples from 22 Korean biological wastewater treatment plants and exploring their prediction capabilities for total organic carbon (TOC), dissolved organic carbon (DOC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), and the biodegradability of the wastewater using an optical sensing technique based on fluorescence excitation emission matrices and parallel factor analysis (EEM-PARAFAC). Three fluorescent components were identified from the samples by using EEM-PARAFAC, including protein-like (C1), fulvic-like (C2) and humic-like (C3) components. C1 showed the highest removal efficiencies for all the treatment types investigated here (69% ± 26%–81% ± 8%), followed by C2 (37% ± 27%–65% ± 35%), while humic-like component (i.e., C3) tended to be accumulated during the biological treatment processes. The percentage of C1 in total fluorescence (%C1) decreased from 54% ± 8% in the influents to 28% ± 8% in the effluents, while those of C2 and C3 (%C2 and %C3) increased from 43% ± 6% to 62% ± 9% and from 3% ± 7% to 10% ± 8%, respectively. The concentrations of TOC, DOC, BOD, and COD were the most correlated with the fluorescence intensity (Fmax) of C1 (r = 0.790–0.817), as compared with the other two fluorescent components. The prediction capability of C1 for TOC, BOD, and COD were improved by using multiple regression based on Fmax of C1 and suspended solids (SS) (r = 0.856–0.865), both of which can be easily monitored in situ. The biodegradability of organic matter in BOD/COD were significantly correlated with each PARAFAC component and their combinations (r = −0.598–0.613, p < 0.001), with the highest correlation coefficient shown for %C1. The estimation capability was further enhanced by using multiple regressions based on %C1, %C2 and C3/C2 (r = −0.691). PMID:24448170
Cross-language information retrieval using PARAFAC2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bader, Brett William; Chew, Peter; Abdelali, Ahmed
A standard approach to cross-language information retrieval (CLIR) uses Latent Semantic Analysis (LSA) in conjunction with a multilingual parallel aligned corpus. This approach has been shown to be successful in identifying similar documents across languages - or more precisely, retrieving the most similar document in one language to a query in another language. However, the approach has severe drawbacks when applied to a related task, that of clustering documents 'language-independently', so that documents about similar topics end up closest to one another in the semantic space regardless of their language. The problem is that documents are generally more similar tomore » other documents in the same language than they are to documents in a different language, but on the same topic. As a result, when using multilingual LSA, documents will in practice cluster by language, not by topic. We propose a novel application of PARAFAC2 (which is a variant of PARAFAC, a multi-way generalization of the singular value decomposition [SVD]) to overcome this problem. Instead of forming a single multilingual term-by-document matrix which, under LSA, is subjected to SVD, we form an irregular three-way array, each slice of which is a separate term-by-document matrix for a single language in the parallel corpus. The goal is to compute an SVD for each language such that V (the matrix of right singular vectors) is the same across all languages. Effectively, PARAFAC2 imposes the constraint, not present in standard LSA, that the 'concepts' in all documents in the parallel corpus are the same regardless of language. Intuitively, this constraint makes sense, since the whole purpose of using a parallel corpus is that exactly the same concepts are expressed in the translations. We tested this approach by comparing the performance of PARAFAC2 with standard LSA in solving a particular CLIR problem. From our results, we conclude that PARAFAC2 offers a very promising alternative to LSA not only for multilingual document clustering, but also for solving other problems in cross-language information retrieval.« less
Zhu, Guocheng; Wang, Chuang; Dong, Xingwei
2017-06-01
Landfill leachate contains a variety of organic matters, some of which can be excited and emit fluorescence signal. In order to degrade these organic matters, the pretreatment of the leachate is needed, which can improve the degradation performance of post-treatment process. Coagulation-flocculation is one of the important pretreatment processes to treat landfill leachate. Assessing the chemical compositions of landfill leachate is helpful in the understanding of their sources and fates as well as the mechanistic behaviors in the water environment. The present work aimed to use fluorescence excitation-emission matrix spectroscopy (EEMs) to characterize the chemical fractions of landfill leachate dissolved organic matter (DOM) in conjunction with parallel factor analysis (PARAFAC). Results showed that the DOM of landfill leachate tested in this study was identified resulting from microbial input, which included five typical characteristic peaks and four kinds of PARAFAC fractions. These fractions were mainly composed of hydrophobic macromolecule humic acid-like (HM-HA), hydrophilic intermediate molecular fulvic acid-like (HIM-FA), and hydrophilic small molecule protein-like substances (HSM-PS). HM-HA and HIM-FA were found to be easier to remove than HSM-PS. Further research on HSM-PS removal by coagulation-flocculation still needs to be improved.
NASA Astrophysics Data System (ADS)
Saraceno, J.; Shanley, J. B.; Pellerin, B. A.; Hansen, A. M.
2016-12-01
Changes in dissolved organic matter (DOM) quality may result from unusual and extreme precipitation patterns such as floods and droughts. In order to study DOM quality changes, we collected several hundred surface water samples during the past eight years from the W-9 watershed of the Sleepers River Research Watershed in Danville, Vermont for optical analysis of dissolved organic matter. We present the results of parallel factor (PARAFAC) and principal component analysis (PCA) on excitation emission matrices (EEMs). This analysis revealed that peaks T, C and M as identified by PARAFAC were the most prominent EEM features. The intensity of these peaks varied on inter-annual, seasonal and event time periods and these shifts reflect changes in DOM quality. Likely drivers of this variability in DOM chemistry are seasonal shifts in flow paths, antecedent moisture conditions, and precipitation duration and intensity. For example, during events, the relative proportion of protein-like, peak T fluorophores increased, likely from flushing of fresh polyphenols from surficial and shallow flow paths. During the winter, when groundwater dominates flow, EEMs were strong in humic-like peak C and peak M fluorophores, reflecting deeper soil sources and longer flow paths. Our analyses will reveal how DOM quality responds to climatic drivers, and thus how we can expect DOM quality to evolve under projected climate change scenarios.
Yan, Ge; Kim, Guebuem
2017-10-17
Brown carbon (BrC) plays a significant role in the Earth's radiative balance, yet its sources and chemical composition remain poorly understood. In this work, we investigated BrC in the atmospheric environment of Seoul by characterizing dissolved organic matter in precipitation using excitation-emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC). The two independent fluorescent components identified by PARAFAC were attributed to humic-like substance (HULIS) and biologically derived material based on their significant correlations with measured HULIS isolated using solid-phase extraction and total hydrolyzable tyrosine. The year-long observation shows that HULIS contributes to 66 ± 13% of total fluorescence intensity of our samples on average. By using dual carbon ( 13 C and 14 C) isotopic analysis conducted on isolated HULIS, the HULIS fraction of BrC was found to be primarily derived from biomass burning and emission of terrestrial biogenic gases and particles (>70%), with minor contributions from fossil-fuel combustion. The knowledge derived from this study could contribute to the establishment of a characterizing system of BrC components identified by EEM spectroscopy. Our work demonstrates that, EEM fluorescence spectroscopy is a powerful tool in BrC study, on the basis of its chromophore resolving power, allowing investigation into individual components of BrC by other organic matter characterization techniques.
NASA Astrophysics Data System (ADS)
Kong, Xianyu; Liu, Yanfang; Jian, Huimin; Su, Rongguo; Yao, Qingzhen; Shi, Xiaoyong
2017-10-01
To realize potential cost savings in coastal monitoring programs and provide timely advice for marine management, there is an urgent need for efficient evaluation tools based on easily measured variables for the rapid and timely assessment of estuarine and offshore eutrophication. In this study, using parallel factor analysis (PARAFAC), principal component analysis (PCA), and discriminant function analysis (DFA) with the trophic index (TRIX) for reference, we developed an approach for rapidly assessing the eutrophication status of coastal waters using easy-to-measure parameters, including chromophoric dissolved organic matter (CDOM), fluorescence excitation-emission matrices, CDOM UV-Vis absorbance, and other water-quality parameters (turbidity, chlorophyll a, and dissolved oxygen). First, we decomposed CDOM excitation-emission matrices (EEMs) by PARAFAC to identify three components. Then, we applied PCA to simplify the complexity of the relationships between the water-quality parameters. Finally, we used the PCA score values as independent variables in DFA to develop a eutrophication assessment model. The developed model yielded classification accuracy rates of 97.1%, 80.5%, 90.3%, and 89.1% for good, moderate, and poor water qualities, and for the overall data sets, respectively. Our results suggest that these easy-to-measure parameters could be used to develop a simple approach for rapid in-situ assessment and monitoring of the eutrophication of estuarine and offshore areas.
NASA Astrophysics Data System (ADS)
Osburn, C. L.; Mikan, M.; Etheridge, J. R.; Burchell, M. R.; Birgand, F.
2015-12-01
Salt marshes are transitional ecosystems between terrestrial and marine environments. Along with mangroves and other vegetated coastal habitats, salt marshes rank among the most productive ecosystems on Earth, with critical global importance for the planet's carbon cycle. Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October of 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components modeled, we used multiple linear regression to identify tracers for recalcitrant DOM; labile soil-derived source DOM; detrital POM; and planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Using the DOM and POM quality results obtained via fluorescence measurements and scaling up to global salt marsh area, we estimated that the potential release of CO2 from the respiration of salt marsh DOC and POC transported to estuaries could be 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.
What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study
NASA Astrophysics Data System (ADS)
Marecek, R.; Lamos, M.; Mikl, M.; Barton, M.; Fajkus, J.; I, Rektor; Brazdil, M.
2016-08-01
Objective. The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. Approach. We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. Main results. Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. Significance. These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the relationships between EEG activity and brain hemodynamics.
Wang, Ying; Zhang, Di; Shen, Zhenyao; Feng, Chenghong; Chen, Jing
2013-01-01
Dissolved organic matter (DOM) in sediment pore waters from Yangtze estuary of China based on abundance, UV absorbance, molecular weight distribution and fluorescence were investigated using a combination of various parameters of DOM as well as 3D fluorescence excitation emission matrix spectra (F-EEMS) with the parallel factor and principal component analysis (PARAFAC-PCA). The results indicated that DOM in pore water of Yangtze estuary was very variable which mainly composed of low aromaticity and molecular weight materials. Three humic-like substances (C1, C2, C4) and one protein-like substance (C3) were identified by PARAFAC model. C1, C2 and C4 exhibited same trends and were very similar. The separation of samples on both axes of the PCA showed the difference in DOM properties. C1, C2 and C4 concurrently showed higher positive factor 1 loadings, while C3 showed highly positive factor 2 loadings. The PCA analysis showed a combination contribution of microbial DOM signal and terrestrial DOM signal in the Yangtze estuary. Higher and more variable DOM abundance, aromaticity and molecular weight of surface sediment pore water DOM can be found in the southern nearshore than the other regions primarily due to the influence of frequent and intensive human activities and tributaries inflow in this area. The DOM abundance, aromaticity, molecular weight and fluorescence intensity in core of different depth were relative constant and increased gradually with depth. DOM in core was mainly composed of humic-like material, which was due to higher release of the sedimentary organic material into the porewater during early diagenesis. PMID:24155904
NASA Astrophysics Data System (ADS)
Kanniyappan, Udayakumar; Gnanatheepaminstein, Einstein; Prakasarao, Aruna; Dornadula, Koteeswaran; Singaravelu, Ganesan
2017-02-01
Cancer is one of the most common human threats around the world and diagnosis based on optical spectroscopy especially fluorescence technique has been established as the standard approach among scientist to explore the biochemical and morphological changes in tissues. In this regard, the present work aims to extract spectral signatures of the various fluorophores present in oral tissues using parallel factor analysis (PARAFAC). Subsequently, the statistical analysis also to be performed to show its diagnostic potential in distinguishing malignant, premalignant from normal oral tissues. Hence, the present study may lead to the possible and/or alternative tool for oral cancer diagnosis.
Ou, Hua-Se; Wei, Chao-Hai; Mo, Ce-Hui; Wu, Hai-Zhen; Ren, Yuan; Feng, Chun-Hua
2014-10-01
Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) was applied to investigate the contaminant removal efficiency and fluorescent characteristic variations in a full scale coke wastewater (CWW) treatment plant with a novel anoxic/aerobic(1)/aerobic(2) (A/O(1)/O(2)) process, which combined with internal-loop fluidized-bed reactor. Routine monitoring results indicated that primary contaminants in CWW, such as phenols and free cyanide, were removed efficiently in A/O(1)/O(2) process (removal efficiency reached 99% and 95%, respectively). Three-dimensional excitation-emission matrix fluorescence spectroscopy and PARAFAC identified three fluorescent components, including two humic-like fluorescence components (C1 and C3) and one protein-like component (C2). Principal component analysis revealed that C1 and C2 correlated with COD (correlation coefficient (r)=0.782, p<0.01 and r=0.921, p<0.01), respectively) and phenols (r=0.796, p<0.01 and r=0.914, p<0.01, respectively), suggesting that C1 and C2 might be associated with the predominating aromatic contaminants in CWW. C3 correlated with mixed liquor suspended solids (r=0.863, p<0.01) in fluidized-bed reactors, suggesting that it might represent the biological dissolved organic matter. In A/O(1)/O(2) process, the fluorescence intensities of C1 and C2 consecutively decreased, indicating the degradation of aromatic contaminants. Correspondingly, the fluorescence intensity of C3 increased in aerobic(1) stage, suggesting an increase of biological dissolved organic matter. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pifer, Ashley D; Miskin, Daniel R; Cousins, Sarah L; Fairey, Julian L
2011-07-08
Using asymmetrical flow field-flow fractionation (AF4) and fluorescence parallel factor analysis (PARAFAC), we showed physicochemical properties of chromophoric dissolved organic matter (CDOM) in the Beaver Lake Reservoir (Lowell, AR) were stratified by depth. Sampling was performed at a drinking water intake structure from May to July 2010 at three depths (3-, 10-, and 18-m) below the water surface. AF4-fractograms showed that the CDOM had diffusion coefficient peak maximums between 3.5 and 2.8 x 10⁻⁶ cm² s⁻¹, which corresponded to a molecular weight range of 680-1950 Da and a size of 1.6-2.5 nm. Fluorescence excitation-emission matrices of whole water samples and AF4-generated fractions were decomposed with a PARAFAC model into five principal components. For the whole water samples, the average total maximum fluorescence was highest for the 10-m depth samples and lowest (about 40% less) for 18-m depth samples. While humic-like fluorophores comprised the majority of the total fluorescence at each depth, a protein-like fluorophore was in the least abundance at the 10-m depth, indicating stratification of both total fluorescence and the type of fluorophores. The results present a powerful approach to investigate CDOM properties and can be extended to investigate CDOM reactivity, with particular applications in areas such as disinfection byproduct formation and control and evaluating changes in drinking water source quality driven by climate change. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-01-05
SandiaMCR was developed to identify pure components and their concentrations from spectral data. This software efficiently implements the multivariate calibration regression alternating least squares (MCR-ALS), principal component analysis (PCA), and singular value decomposition (SVD). Version 3.37 also includes the PARAFAC-ALS Tucker-1 (for trilinear analysis) algorithms. The alternating least squares methods can be used to determine the composition without or with incomplete prior information on the constituents and their concentrations. It allows the specification of numerous preprocessing, initialization and data selection and compression options for the efficient processing of large data sets. The software includes numerous options including the definition ofmore » equality and non-negativety constraints to realistically restrict the solution set, various normalization or weighting options based on the statistics of the data, several initialization choices and data compression. The software has been designed to provide a practicing spectroscopist the tools required to routinely analysis data in a reasonable time and without requiring expert intervention.« less
Fluorescence quenching effects of antibiotics on the main components of dissolved organic matter.
Yan, Peng-Fei; Hu, Zhen-Hu; Yu, Han-Qing; Li, Wei-Hua; Liu, Li
2016-03-01
Dissolved organic matter (DOM) in wastewater can be characterized using fluorescence excitation-emission matrix and parallel factor (EEM-PARAFAC) analysis. Wastewater from animal farms or pharmaceutical plants usually contains high concentration of antibiotics. In this study, the quenching effect of antibiotics on the typical components of DOM was explored using fluorescence EEM-PARAFAC analysis. Four antibiotics (roxarsone, sulfaquinoxaline sodium, oxytetracycline, and erythromycin) at the concentration of 0.5∼4.0 mg/L and three typical components of DOM (tyrosine, tryptophan, and humic acid) were selected. Fluorescence quenching effects were observed with the addition of antibiotics. Among these four antibiotics, roxarsone (2.9∼20.2 %), sulfaquinoxaline sodium (0∼32.0 %), and oxytetracycline (0∼41.8 %) led to a stronger quenching effect than erythromycin (0∼8.0 %). From the side of DOM, tyrosine and tryptophan (0.5∼41.8 %) exhibited a similar quenching effect, but they were higher than humic acids (0∼20.2 %) at the same concentration of antibiotics. For humic acid, a significant quenching effect was observed only with the addition of roxarsone. This might be the first report about the fluorescence quenching effect caused by antibiotics. The results from this study confirmed the interference of antibiotics on the fluorescence intensity of the main components of DOM and highlighted the importance of correcting fluorescence data in the wastewater containing antibiotics.
Spagnuolo, M L; Marini, F; Sarabia, L A; Ortiz, M C
2017-05-15
Bisphenol A (BPA) is one of the most largely produced chemical in the world; it is used to make plastics and epoxy resins. The endocrine disruptor potential of BPA is well known, but recent researches suggest a relationship between chronic exposure to BPA, genotoxic activity and epigenetic modifications. The main source of exposure to BPA includes food contact materials (FCM). Thus simple and robust test methods are needed to improve the migration test of BPA. In this work, a non-separative, easy, fast and inexpensive spectrofluorimetric method based on the second order calibration of excitation-emission fluorescence matrices (EEMs) was proposed for the determination of BPA. For the first time, molecular fluorescence was used to identify unequivocally and quantify BPA. Trilinearity of the data tensor guarantees the uniqueness of the solution obtained through parallel factor analysis (PARAFAC), so one factor of the decomposition matches up with BPA even if other fluorophores are in the test sample. The effect of four experimental factors of the procedure on the figures of merit and the unequivocally identification was investigated by means of a D-optimal design and PARAFAC calibration. The method is linear and accurate in the range 0-720µgL -1 . The decision limit CCα and detection capability CCβ are 6.63µgL -1 and 18.85µgL -1 respectively (with probabilities of false positive and false negative fixed at 0.05). Finally the proposed method was applied to carry out a migration test from two polycarbonate cups, using 3% (w/v) acetic acid in aqueous solution as food simulant. The migrated amount of BPA was found to be 688.7µgL -1 (n=5) for the first cup and 710.5µgL -1 (n=4) for the second one, above the specific migration limit set by EFSA (European Food Safety Authority). Copyright © 2017 Elsevier B.V. All rights reserved.
Ghasemi-Varnamkhasti, Mahdi; Amiri, Zahra Safari; Tohidi, Mojtaba; Dowlati, Majid; Mohtasebi, Seyed Saeid; Silva, Adenilton C; Fernandes, David D S; Araujo, Mário C U
2018-01-01
Cumin is a plant of the Apiaceae family (umbelliferae) which has been used since ancient times as a medicinal plant and as a spice. The difference in the percentage of aromatic compounds in cumin obtained from different locations has led to differentiation of some species of cumin from other species. The quality and price of cumin vary according to the specie and may be an incentive for the adulteration of high value samples with low quality cultivars. An electronic nose simulates the human olfactory sense by using an array of sensors to distinguish complex smells. This makes it an alternative for the identification and classification of cumin species. The data, however, may have a complex structure, difficult to interpret. Given this, chemometric tools can be used to manipulate data with two-dimensional structure (sensor responses in time) obtained by using electronic nose sensors. In this study, an electronic nose based on eight metal oxide semiconductor sensors (MOS) and 2D-LDA (two-dimensional linear discriminant analysis), U-PLS-DA (Partial least square discriminant analysis applied to the unfolded data) and PARAFAC-LDA (Parallel factor analysis with linear discriminant analysis) algorithms were used in order to identify and classify different varieties of both cultivated and wild black caraway and cumin. The proposed methodology presented a correct classification rate of 87.1% for PARAFAC-LDA and 100% for 2D-LDA and U-PLS-DA, indicating a promising strategy for the classification different varieties of cumin, caraway and other seeds. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Ying; Zhang, Di; Shen, Zhenyao; Chen, Jing; Feng, Chenghong
2014-01-01
The spatial characteristics and the quantity and quality of the chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary, based on the abundance, degree of humification and sources, were studied using 3D fluorescence excitation emission matrix spectra (F-EEMs) with parallel factor and principal component analysis (PARAFAC-PCA). The results indicated that the CDOM abundance decreased and the aromaticity increased from the upstream to the downstream areas of the estuary. Higher CDOM abundance and degrees of humification were observed in the pore water than that in the surface and bottom waters. Two humic-like components (C1 and C3) and one tryptophan-like component (C2) were identified using the PARAFAC model. The separation of the samples by PCA highlighted the differences in the DOM properties. Components C1 and C3 concurrently displayed positive factor 1 loadings with nearly zero factor 2 loadings, while C2 showed highly positive factor 2 loadings. The C1 and C3 were very similar and exhibited a direct relationship with A355 and DOC. The CDOM in the pore water increased along the river to the coastal area, which was mainly influenced by C1 and C3 and was significantly derived from sediment remineralization and deposition from the inflow of the Yangtze River. The CDOM in the surface and bottom waters was dominated by C2, especially in the inflows of multiple tributaries that were affected by intensive anthropogenic activities. The microbial degradation of exogenous wastes from the tributary inputs and shoreside discharges were dominant sources of the CDOM in the surface and bottom waters. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yu, Huarong; Qu, Fangshu; Sun, Lianpeng; Liang, Heng; Han, Zhengshuang; Chang, Haiqing; Shao, Senlin; Li, Guibai
2015-02-01
Effluent organic matter (EfOM) originating from wastewater treatment plant (WWTP) is of significant concern, as it not only influences the discharge quality of WWTP but also exerts a significant effect on the efficiency of the downstream advanced treatment facilities. Soluble microbial products (SMP) is a major part of EfOM. In order to further understand the relationship between soluble microbial products (SMP) and EfOM, and in turn, to propose measures for EfOM control, the formation of SMP and EfOM in identical activated sludge sequencing batch reactors (SBR) with different feed water was investigated using fluorescence excitation and emission spectroscopy matrix coupled with parallel factor analysis (EEM-PARAFAC) as well as other organic matter quantification tools. Results showed that EfOM contained not only SMP but also a considerable amount of allochthonous organic matter that derived not merely from natural organic matter (NOM). Four components in EfOM/SMP were identified by EEM-PARAFAC. Tyrosine-like substances in EfOM (Component 3, λex/em=270/316 nm) were mainly originated from utilization associated products (UAP) of SMP. Tryptophan-like substances (Component 2, λex/em=280/336 nm) as well as fulvic-like and humic-like substances in EfOM (Component 1, λex/em=240(290)/392 nm and Component 4, λex/em=260(365)/444 nm) were majorly derived from the refractory substances introduced along with the influent, among which Component 2 was stemmed from sources other than NOM. As solid retention time (SRT) increased, Component 2 and polysaccharides in SMP/EfOM decreased, while Component 4 in SMP increased. Copyright © 2014 Elsevier Ltd. All rights reserved.
Toward understanding the role of individual fluorescent components in DOM-metal binding.
Wu, Jun; Zhang, Hua; Yao, Qi-Sheng; Shao, Li-Ming; He, Pin-Jing
2012-05-15
Knowledge on the function of individual fractions in dissolved organic matter (DOM) is essential for understanding the impact of DOM on metal speciation and migration. Herein, fluorescence excitation-emission matrix quenching and parallel factor (PARAFAC) analysis were adopted for bulk DOM and chemically isolated fractions from landfill leachate, i.e., humic acids (HA), fulvic acids and hydrophilic (HyI) fraction, to elucidate the role of individual fluorescent components in metal binding (Cu(II) and Cd(II)). Three components were identified by PARAFAC model, including one humic substance (HS)-like, one protein-like and one component highly correlated with the HyI fraction. Among them, the HS-like and protein-like components were responsible for Cu(II) binding, while the protein-like component was the only fraction involved in Cd(II) complexation. It was further identified that the slight quenching effect of HA fraction by Cd(II) was induced by the presence of proteinaceous materials in HA. Fluorescent substances in the HyI fraction of landfill leachate did not play as important a role as HS did. Therefore, it was suggested that the potential risk of aged leachate (more humified) as a carrier of heavy metal should not be overlooked. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nouhi, A.; Hajjoul, H.; Redon, R.; Gagné, J. P.; Mounier, S.
2018-03-01
Time-resolved Laser Fluorescence Spectroscopy (TRLFS) has proved its usefulness in the fields of biophysics, life science and geochemistry to characterize the fluorescence probe molecule with its chemical environment. The purpose of this study is to demonstrate the applicability of this powerful technique combined with Steady-State (S-S) measurements. A multi-mode factor analysis, in particular CP/PARAFAC, was used to analyze the interaction between Europium (Eu) and Humic substances (HSs) extracted from Saint Lawrence Estuary in Canada. The Saint Lawrence system is a semi-enclosed water stream with connections to the Atlantic Ocean and is an excellent natural laboratory. CP/PARAFAC applied to fluorescence S-S data allows introspecting ligands-metal interactions and the one-site 1:1 modeling gives information about the stability constants. From the spectral signatures and decay lifetimes data given by TRLFS, one can deduce the fluorescence quenching which modifies the fluorescence and discuss its mechanisms. Results indicated a relatively strong binding ability between europium and humic substances samples (Log K value varies from 3.38 to 5.08 at pH 7.00). Using the Stern-Volmer plot, it has been concluded that static and dynamic quenching takes places in the case of salicylic acid and europium interaction while for HSs interaction only a static quenching is observed.
García Ballesteros, S; Costante, M; Vicente, R; Mora, M; Amat, A M; Arques, A; Carlos, L; García Einschlag, F S
2018-06-13
Correction for 'Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study' by S. García Ballesteros et al., Photochem. Photobiol. Sci., 2017, 16, 38-45.
Peleato, Nicolas M; Legge, Raymond L; Andrews, Robert C
2018-06-01
The use of fluorescence data coupled with neural networks for improved predictability of drinking water disinfection by-products (DBPs) was investigated. Novel application of autoencoders to process high-dimensional fluorescence data was related to common dimensionality reduction techniques of parallel factors analysis (PARAFAC) and principal component analysis (PCA). The proposed method was assessed based on component interpretability as well as for prediction of organic matter reactivity to formation of DBPs. Optimal prediction accuracies on a validation dataset were observed with an autoencoder-neural network approach or by utilizing the full spectrum without pre-processing. Latent representation by an autoencoder appeared to mitigate overfitting when compared to other methods. Although DBP prediction error was minimized by other pre-processing techniques, PARAFAC yielded interpretable components which resemble fluorescence expected from individual organic fluorophores. Through analysis of the network weights, fluorescence regions associated with DBP formation can be identified, representing a potential method to distinguish reactivity between fluorophore groupings. However, distinct results due to the applied dimensionality reduction approaches were observed, dictating a need for considering the role of data pre-processing in the interpretability of the results. In comparison to common organic measures currently used for DBP formation prediction, fluorescence was shown to improve prediction accuracies, with improvements to DBP prediction best realized when appropriate pre-processing and regression techniques were applied. The results of this study show promise for the potential application of neural networks to best utilize fluorescence EEM data for prediction of organic matter reactivity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xu, Ronghua; Ou, Huase; Yu, Xubiao; He, Runsheng; Lin, Chong; Wei, Chaohai
2015-01-01
This paper taking a full-scale coking wastewater (CWW) treatment plant as a case study aimed to characterize removal behaviors of dissolved organic matter (DOM) by UV spectra and fluorescence excitation-emission matrix-parallel factor analysis (PARAFAC), and investigate the correlations between spectroscopic indices and water quality parameters. Efficient removal rates of chemical oxygen demand (COD), dissolved organic carbon (DOC) and total nitrogen (TN) after the bio-treatment were 91.3%, 87.3% and 69.1%, respectively. UV270 was proven to be a stable UV absorption peak of CWW that could reflect the mixture of phenols, heterocyclics, polynuclear aromatic hydrocarbons and their derivatives. Molecular weight and aromaticity were increased, and also the content of polar functional groups was greatly reduced after bio-treatment. Three fluorescent components were identified by PARAFAC: C1 (tyrosine-like), C2 (tryptophan-like) and C3 (humic-like). The removal rate of protein-like was higher than that of humic-like and C1 was identified as biodegradable substance. Correlation analysis showed UV270 had an excellent correlation with COD (r=0.921, n=60, P<0.01) and DOC (r=0.959, n=60, P<0.01) and significant correlation (r=0.875, n=60, P<0.01) was also found between C2 and TN. Therefore, spectroscopic characterization could provide novel insights into removal behaviors of DOM and potential to monitor water quality real-time during CWW bio-treatment.
Xu, Huacheng; Jiang, Helong
2013-11-01
Cyanobacterial blooms represent a significant ecological and human health problem worldwide. In aquatic environments, cyanobacterial blooms are actually surrounded by dissolved organic matter (DOM) and attached organic matter (AOM) that bind with algal cells. In this study, DOM and AOM fractionated from blooming cyanobacteria in a eutrophic freshwater lake (Lake Taihu, China) were irradiated with a polychromatic UV lamp, and the photochemical heterogeneity was investigated using fluorescence excitation-emission matrix (EEM)-parallel factor (PARAFAC) analysis and synchronous fluorescence (SF)-two dimensional correlation spectroscopy (2DCOS). It was shown that a 6-day UV irradiation caused more pronounced mineralization for DOM than AOM (59.7% vs. 41.9%). The EEM-PARAFAC analysis identified one tyrosine-, one humic-, and two tryptophan-like components in both DOM and AOM, and high component photodegradation rates were observed for DOM versus AOM (k > 0.554 vs. <0.519). Moreover, SF-2DCOS found that the photodegradation of organic matters followed the sequence of tyrosine-like > humic-like > tryptophan-like substances. Humic-like substances promoted the indirect photochemical reactions, and were responsible for the higher photochemical rate for DOM. The lower photodegradation of AOM benefited the integrality of cells in cyanobacterial blooms against the negative impact of UV irradiation. Therefore, the photochemical behavior of organic matter was related to the adaptation of enhanced-duration cyanobacterial blooms in aquatic environments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Trace Norm Regularized CANDECOMP/PARAFAC Decomposition With Missing Data.
Liu, Yuanyuan; Shang, Fanhua; Jiao, Licheng; Cheng, James; Cheng, Hong
2015-11-01
In recent years, low-rank tensor completion (LRTC) problems have received a significant amount of attention in computer vision, data mining, and signal processing. The existing trace norm minimization algorithms for iteratively solving LRTC problems involve multiple singular value decompositions of very large matrices at each iteration. Therefore, they suffer from high computational cost. In this paper, we propose a novel trace norm regularized CANDECOMP/PARAFAC decomposition (TNCP) method for simultaneous tensor decomposition and completion. We first formulate a factor matrix rank minimization model by deducing the relation between the rank of each factor matrix and the mode- n rank of a tensor. Then, we introduce a tractable relaxation of our rank function, and then achieve a convex combination problem of much smaller-scale matrix trace norm minimization. Finally, we develop an efficient algorithm based on alternating direction method of multipliers to solve our problem. The promising experimental results on synthetic and real-world data validate the effectiveness of our TNCP method. Moreover, TNCP is significantly faster than the state-of-the-art methods and scales to larger problems.
Olivieri, Alejandro C
2005-08-01
Sensitivity and selectivity are important figures of merit in multiway analysis, regularly employed for comparison of the analytical performance of methods and for experimental design and planning. They are especially interesting in the second-order advantage scenario, where the latter property allows for the analysis of samples with a complex background, permitting analyte determination even in the presence of unsuspected interferences. Since no general theory exists for estimating the multiway sensitivity, Monte Carlo numerical calculations have been developed for estimating variance inflation factors, as a convenient way of assessing both sensitivity and selectivity parameters for the popular parallel factor (PARAFAC) analysis and also for related multiway techniques. When the second-order advantage is achieved, the existing expressions derived from net analyte signal theory are only able to adequately cover cases where a single analyte is calibrated using second-order instrumental data. However, they fail for certain multianalyte cases, or when third-order data are employed, calling for an extension of net analyte theory. The results have strong implications in the planning of multiway analytical experiments.
Pifer, Ashley D.; Fairey, Julian L.
2014-01-01
Abstract Broadly applicable disinfection by-product (DBP) precursor surrogate parameters could be leveraged at drinking water treatment plants (DWTPs) to curb formation of regulated DBPs, such as trihalomethanes (THMs). In this study, dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UV254), fluorescence excitation/emission wavelength pairs (IEx/Em), and the maximum fluorescence intensities (FMAX) of components from parallel factor (PARAFAC) analysis were evaluated as total THM formation potential (TTHMFP) precursor surrogate parameters. A diverse set of source waters from eleven DWTPs located within watersheds underlain by six different soil orders were coagulated with alum at pH 6, 7, and 8, resulting in 44 sample waters. DOC, UV254, IEx/Em, and FMAX values were measured to characterize dissolved organic matter in raw and treated waters and THMs were quantified following formation potential tests with free chlorine. For the 44 sample waters, the linear TTHMFP correlation with UV254 was stronger (r2=0.89) than I240/562 (r2=0.81, the strongest surrogate parameter from excitation/emission matrix pair picking), FMAX from a humic/fulvic acid-like PARAFAC component (r2=0.78), and DOC (r2=0.75). Results indicate that UV254 was the most accurate TTHMFP precursor surrogate parameter assessed for a diverse group of raw and alum-coagulated waters. PMID:24669183
Huang, Shuang-bing; Wang, Yan-xin; Ma, Teng; Tong, Lei; Wang, Yan-yan; Liu, Chang-rong; Zhao, Long
2015-10-01
The sources of dissolved organic matter (DOM) in groundwater are important to groundwater chemistry and quality. This study examined similarities in the nature of DOM and investigated the link between groundwater DOM (GDOM) and sedimentary organic matter (SOM) from a lacustrine-alluvial aquifer at Jianghan Plain. Sediment, groundwater and surface water samples were employed for SOM extraction, optical and/or chemical characterization, and subsequent fluorescence excitation-emission matrix (EEM) and parallel factor analyses (PARAFAC). Spectroscopic properties of bulk DOM pools showed that indices indicative of GDOM (e.g., biological source properties, humification level, aromaticity and molecule mobility) varied within the ranges of those of two extracted end-members of SOM: humic-like materials and microbe-associated materials. The coexistence of PARAFAC compositions and the sustaining internal relationship between GDOM and extracted SOM indicate a similar source. The results from principal component analyses with selected spectroscopic indices showed that GDOM exhibited a transition trend regarding its nature: from refractory high-humification DOM to intermediate humification DOM and then to microbe-associated DOM, with decreasing molecular weight. Correlations of spectroscopic indices with physicochemical parameters of the groundwater suggested that GDOM was released from SOM and was modified by microbial diagenetic processes. The current study demonstrated the associations of GDOM with SOM from a spectroscopic viewpoint and provided new evidence supporting SOM as the source of GDOM. Copyright © 2015 Elsevier B.V. All rights reserved.
Spatial Variations of DOM Compositions in the River with Multi-functional Weir
NASA Astrophysics Data System (ADS)
Yoon, S. M.; Choi, J. H.
2017-12-01
With the global trend to construct artificial impoundments over the last decades, there was a Large River Restoration Project conducted in South Korea from 2010 to 2011. The project included enlargement of river channel capacity and construction of multi-functional weirs, which can alter the hydrological flow of the river and cause spatial variations of water quality indicators, especially DOM (Dissolved Organic Matter) compositions. In order to analyze the spatial variations of organic matter, water samples were collected longitudinally (5 points upstream from the weir), horizontally (left, center, right at each point) and vertically (1m interval at each point). The specific UV-visible absorbance (SUVA) and fluorescence excitation-emission matrices (EEMs) have been used as rapid and non-destructive analytical methods for DOM compositions. In addition, parallel factor analysis (PARAFAC) has adopted for extracting a set of representative fluorescence components from EEMs. It was assumed that autochthonous DOM would be dominant near the weir due to the stagnation of hydrological flow. However, the results showed that the values of fluorescence index (FI) were 1.29-1.47, less than 2, indicating DOM of allochthonous origin dominated in the water near the weir. PARAFAC analysis also showed the peak at 450 nm of emission and < 250 nm of excitation which represented the humic substances group with terrestrial origins. There was no significant difference in the values of Biological index (BIX), however, values of humification index (HIX) spatially increased toward the weir. From the results of the water sample analysis, the river with multi-functional weir is influenced by the allochthonous DOM instead of autochthonous DOM and seems to accumulate humic substances near the weir.
TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS
Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.
2017-01-01
Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971
NASA Astrophysics Data System (ADS)
Gu, Hui-Wen; Zhang, Shan-Hui; Wu, Bai-Chun; Chen, Wu; Wang, Jing-Bo; Liu, Yang
2018-07-01
Oil-field wastewaters contain high level of polycyclic aromatic hydrocarbons (PAHs), which have to be analyzed to assess the environmental effects before discharge. In this work, a green fluorimetric detection method that combines excitation-emission matrix (EEM) fluorescence with parallel factor analysis (PARAFAC) algorithm was firstly developed to achieve the direct and simultaneous determination of six U.S. EPA PAHs in two different kinds of complex oil-field wastewaters. Due to the distinctive "second-order advantage", neither time-consuming sample pretreatments nor toxic organic reagents were involved in the determination. By using the environment-friendly "mathematical separation" of PARAFAC, satisfactory quantitative results and reasonable spectral profiles for six PAHs were successfully extracted from the total EEM signals of oil-field wastewaters without need of chromatographic separation. The limits of detection of six PAHs were in the range of 0.09-0.72 ng mL-1, and the average spiked recoveries were between (89.4 ± 4.8)% and (109.1 ± 5.8)%, with average relative predictive errors <2.93%. In order to further confirm the accuracy of the proposed method, the same batch oil-field wastewater samples were analyzed by the recognized GC-MS method. t-test demonstrated that no significant differences exist between the quantitative results of the two methods. Given the advantages of green, fast, low-cost and high-sensitivity, the proposed method is expected to be broadened as an appealing alternative method for multi-residue analysis of overlapped PAHs in complex wastewater samples.
Cuss, C W; Guéguen, C
2013-09-01
Dissolved organic matter (DOM) was leached from eight distinct samples of leaves taken from six distinct trees (red maple, bur oak at three times of the year, two sugar maple and two white spruce trees from disparate soil types). Multiple samples were taken over 72-96h of leaching. The size and optical properties of leachates were assessed using asymmetrical flow field-flow fractionation (AF4) coupled to diode-array ultraviolet/visible absorbance and excitation-emission matrix fluorescence detectors (EEM). The fluorescence of unfractionated samples was also analyzed. EEMs were analyzed using parallel factor analysis (PARAFAC) and principal component analysis (PCA) of proportional component loadings. Both the unfractionated and AF4-fractionated leachates had distinct size and optical properties. The 95% confidence ranges for molecular weight distributions were determined as: 210-440Da for spruce, 540-920Da for sugar maple, 630-800Da for spring oak leaves, 930-950Da for senescent oak, 1490-1670 for senescent red maple, and 3430-4270Da for oak leaves that were collected from the ground after spring thaw. In most cases the fluorescence properties of leachates were different for individuals from different soil types and across seasons; however, PCA of PARAFAC loadings revealed that the observed distinctiveness was chiefly species-based. Strong correlations were found between the molecular weight distribution of both unfractionated and fractionated leachates and their principal component loadings (R(2)=0.85 and 0.95, respectively). It is concluded that results support a species-based origin for differences in optical properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jason B. Fellman; Eran Hood; Richard T. Edwards; Jeremy B. Jones
2009-01-01
Dissolved organic matter (DOM) is an important component of aquatic food webs. We compare the uptake kinetics for NH4-N and different fractions of DOM during soil and salmon leachate additions by evaluating the uptake of organic forms of carbon (DOC) and nitrogen (DON), and proteinaceous DOM, as measured by parallel factor (PARAFAC) modeling of...
Jason B. Fellman; Mathew P. Miller; Rose M. Cory; David V. D' Amore; Dan White
2009-01-01
We evaluated whether fitting fluorescence excitation-emission matrices (EEMs) to a previously validated PARAFAC model is an acceptable alternative to building an original model. To do this, we built a l0-component model using 307 EEMscollected from southeast Alaskan soil and streamwater. All 307 EEMs were then fit to the existing model (CM) presented in Cory and...
Assessing factorial invariance of two-way rating designs using three-way methods
Kroonenberg, Pieter M.
2015-01-01
Assessing the factorial invariance of two-way rating designs such as ratings of concepts on several scales by different groups can be carried out with three-way models such as the Parafac and Tucker models. By their definitions these models are double-metric factorially invariant. The differences between these models lie in their handling of the links between the concept and scale spaces. These links may consist of unrestricted linking (Tucker2 model), invariant component covariances but variable variances per group and per component (Parafac model), zero covariances and variances different per group but not per component (Replicated Tucker3 model) and strict invariance (Component analysis on the average matrix). This hierarchy of invariant models, and the procedures by which to evaluate the models against each other, is illustrated in some detail with an international data set from attachment theory. PMID:25620936
A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core
NASA Astrophysics Data System (ADS)
D'Andrilli, Juliana; Foreman, Christine M.; Sigl, Michael; Priscu, John C.; McConnell, Joseph R.
2017-05-01
Englacial ice contains a significant reservoir of organic material (OM), preserving a chronological record of materials from Earth's past. Here, we investigate if OM composition surveys in ice core research can provide paleoecological information on the dynamic nature of our Earth through time. Temporal trends in OM composition from the early Holocene extending back to the Last Glacial Maximum (LGM) of the West Antarctic Ice Sheet Divide (WD) ice core were measured by fluorescence spectroscopy. Multivariate parallel factor (PARAFAC) analysis is widely used to isolate the chemical components that best describe the observed variation across three-dimensional fluorescence spectroscopy (excitation-emission matrices; EEMs) assays. Fluorescent OM markers identified by PARAFAC modeling of the EEMs from the LGM (27.0-18.0 kyr BP; before present 1950) through the last deglaciation (LD; 18.0-11.5 kyr BP), to the mid-Holocene (11.5-6.0 kyr BP) provided evidence of different types of fluorescent OM composition and origin in the WD ice core over 21.0 kyr. Low excitation-emission wavelength fluorescent PARAFAC component one (C1), associated with chemical species similar to simple lignin phenols was the greatest contributor throughout the ice core, suggesting a strong signature of terrestrial OM in all climate periods. The component two (C2) OM marker, encompassed distinct variability in the ice core describing chemical species similar to tannin- and phenylalanine-like material. Component three (C3), associated with humic-like terrestrial material further resistant to biodegradation, was only characteristic of the Holocene, suggesting that more complex organic polymers such as lignins or tannins may be an ecological marker of warmer climates. We suggest that fluorescent OM markers observed during the LGM were the result of greater continental dust loading of lignin precursor (monolignol) material in a drier climate, with lower marine influences when sea ice extent was higher and continents had more expansive tundra cover. As the climate warmed, the record of OM markers in the WD ice core changed, reflecting shifts in carbon productivity as a result of global ecosystem response.
Peng, Mingguo; Li, Huajie; Li, Dongdong; Du, Erdeng; Li, Zhihong
2017-06-01
Carbon nanotubes (CNTs) were utilized to adsorb DOM in micro-polluted water. The characteristics of DOM adsorption on CNTs were investigated based on UV 254 , TOC, and fluorescence spectrum measurements. Based on PARAFAC (parallel factor) analysis, four fluorescent components were extracted, including one protein-like component (C4) and three humic acid-like components (C1, C2, and C3). The adsorption isotherms, kinetics, and thermodynamics of DOM adsorption on CNTs were further investigated. A Freundlich isotherm model fit the adsorption data well with high values of correlation. As a type of macro-porous and meso-porous adsorbent, CNTs preferably adsorb humic acid-like substances rather than protein-like substances. The increasing temperature will speed up the adsorption process. The self-organizing map (SOM) analysis further explains the fluorescent properties of water samples. The results provide a new insight into the adsorption behaviour of DOM fluorescent components on CNTs.
Zhou, Qian-qian; Su, Rong-guo; Bai, Ying; Zhang, Chuan-song; Shi, Xiao-yong
2015-01-01
The composition, distribution characteristics and sources of chromophoric dissolved organic matter(CDOM) in Zhoushan Fishery in spring were evaluated by fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (EEMs-PARAFAC). Three humic-like components [C1 (330/420 nm)], C2 [(290) 365/440 nm] and C3 [(260) 370/490 nm)] and two protein-like components [C4(285/340 nm) and C5 (270/310 nm)] were identified by EEMs-PARAFAC. The horizontal distribution patterns of the five components were almost the same with only slight differences, showing decreasing trends with increasing distance from shore. In the surface and middle layers, the high value areas were located in the north of Hangzhou Bay estuary and the outlet of Xiazhimen channel, and the former's was higher in the surface layer while the latter's was higher in the middle layer. In the bottom layer, CDOM decreased gradiently from the inshore to offshore, with higher CDOM near Zhoushan Island. The distributions of fluorescence components showed an opposite trend with salinity, and no significant linear relationship with Chl-a concentration was found, which indicated that CDOM in the surface and middle layers were dominated by terrestrial input and human activities of Zhoushan Island and that of the bottom layer was attribute to human activities of Zhoushan Island. The vertical distribution of five fluorescent components along 30.5 degrees N transect showed a decreasing trend from the surface and middle layers to bottom layer with high values in inshore and offshore areas, which were correlated with the lower salinity and higher Chl-a concentration, respectively. On this transect, CDOM was mainly affected by Yangtze River input in coastal area but by bioactivities in offshore waters. Along the 30 degrees N transect, the vertical distribution patterns of CDOM were similar to those of 30.5 degrees N transect but there was a high value area in the bottom layer near the shore, attributing to the CDOM release from the marine sediment pore water to the water body because of physical force role like tidal, the underlying upwelling and so on. A strong correlation occurred between C1 and C3, C4, indicating that they had similar sources; a weak correlation was found between C1 and C2, C5, reflecting some differences among their sources. CDOM in Zhoushan Fishery in spring had low humification index (HIX) values, which reflected a low degree of humification, poor stability and a short resident time in the environment. For biological index (BIX), its higher values appeared in the offshore waters and the lower values occurred in the inshore area, reflecting a greater influence of human and biological activities, respectively.
Rubio, L; Ortiz, M C; Sarabia, L A
2014-04-11
A non-separative, fast and inexpensive spectrofluorimetric method based on the second order calibration of excitation-emission fluorescence matrices (EEMs) was proposed for the determination of carbaryl, carbendazim and 1-naphthol in dried lime tree flowers. The trilinearity property of three-way data was used to handle the intrinsic fluorescence of lime flowers and the difference in the fluorescence intensity of each analyte. It also made possible to identify unequivocally each analyte. Trilinearity of the data tensor guarantees the uniqueness of the solution obtained through parallel factor analysis (PARAFAC), so the factors of the decomposition match up with the analytes. In addition, an experimental procedure was proposed to identify, with three-way data, the quenching effect produced by the fluorophores of the lime flowers. This procedure also enabled the selection of the adequate dilution of the lime flowers extract to minimize the quenching effect so the three analytes can be quantified. Finally, the analytes were determined using the standard addition method for a calibration whose standards were chosen with a D-optimal design. The three analytes were unequivocally identified by the correlation between the pure spectra and the PARAFAC excitation and emission spectral loadings. The trueness was established by the accuracy line "calculated concentration versus added concentration" in all cases. Better decision limit values (CCα), in x0=0 with the probability of false positive fixed at 0.05, were obtained for the calibration performed in pure solvent: 2.97 μg L(-1) for 1-naphthol, 3.74 μg L(-1) for carbaryl and 23.25 μg L(-1) for carbendazim. The CCα values for the second calibration carried out in matrix were 1.61, 4.34 and 51.75 μg L(-1) respectively; while the values obtained considering only the pure samples as calibration set were: 2.65, 8.61 and 28.7 μg L(-1), respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Meilian; Lee, Jong-Hyeon; Hur, Jin
2015-10-01
Despite literature evidence suggesting the importance of sampling methods on the properties of sediment pore waters, their effects on the dissolved organic matter (PW-DOM) have been unexplored to date. Here, we compared the effects of two commonly used sampling methods (i.e., centrifuge and Rhizon sampler) on the characteristics of PW-DOM for the first time. The bulk dissolved organic carbon (DOC), ultraviolet-visible (UV-Vis) absorption, and excitation-emission matrixes coupled with parallel factor analysis (EEM-PARAFAC) of the PW-DOM samples were compared for the two sampling methods with the sediments from minimal to severely contaminated sites. The centrifuged samples were found to have higher average values of DOC, UV absorption, and protein-like EEM-PARAFAC components. The samples collected with the Rhizon sampler, however, exhibited generally more humified characteristics than the centrifuged ones, implying a preferential collection of PW-DOM with respect to the sampling methods. Furthermore, the differences between the two sampling methods seem more pronounced in relatively more polluted sites. Our observations were possibly explained by either the filtration effect resulting from the smaller pore size of the Rhizon sampler or the desorption of DOM molecules loosely bound to minerals during centrifugation, or both. Our study suggests that consistent use of one sampling method is crucial for PW-DOM studies and also that caution should be taken in the comparison of data collected with different sampling methods.
Harun, Sahana; Baker, Andy; Bradley, Chris; Pinay, Gilles
2016-01-01
Dissolved organic matter (DOM) was characterised in water samples sampled in the Lower Kinabatangan River Catchment, Sabah, Malaysia between October 2009 and May 2010. This study aims at: (i) distinguishing between the quality of DOM in waters draining palm oil plantations (OP), secondary forests (SF) and coastal swamps (CS) and, (ii) identifying the seasonal variability of DOM quantity and quality. Surface waters were sampled during fieldwork campaigns that spanned the wet and dry seasons. DOM was characterised optically by using the fluorescence Excitation Emission Matrix (EEM), the absorption coefficient at 340 nm and the spectral slope coefficient (S). Parallel Factor Analysis (PARAFAC) was undertaken to assess the DOM composition from EEM spectra and five terrestrial derived components were identified: (C1, C2, C3, C4 and C5). Components C1 and C4 contributed the most to DOM fluorescence in all study areas during both the wet and dry seasons. The results suggest that component C4 could be a significant (and common) PARAFAC signal found in similar catchments. Peak M (C2 and C3) was dominant in all samples collected during wet and dry seasons, which could be anthropogenic in origin given the active land use change in the study area. In conclusion, there were significant seasonal and spatial variations in DOM which demonstrated the effects of land use cover and precipitation amounts in the Kinabatangan catchment.
NASA Astrophysics Data System (ADS)
Lajtha, K.; Strid, A.; Lee, B. S.
2015-12-01
Soil dissolved organic carbon (DOC) is a small but crucial part of the forest carbon cycle. Characterizing the relationship between organic matter inputs to soil and DOC chemistry is crucial to understanding the ultimate fate of root carbon, fallen wood and needles. Chemical differences in the DOC pool may help to explain whether fractions are sorbed to mineral surfaces and contribute to accumulation of soil organic carbon, respired as CO2, or exported. Soil solution DOC was sampled from the detrital input and removal treatment (DIRT) plots located in the H.J. Andrews Experimental Forest, OR to determine whether detrital inputs impart a detectable signal on DOC in mineral soil. Multiple types of fresh litter extracts, along with lysimeter and soil extracts from DIRT treatment plots were characterized using UV-Vis and fluorescence spectroscopy coupled with the Cory and McKnight (2005) parallel factor analysis (PARAFAC) model. Principal component analysis of 13 unique fluorophores distinguished using PARAFAC show that litter and soil extracts (needles, wood of decomposition Class 1, Class 3 and Class 5, O-horizon, and A-horizon) each have distinct fluorescence signatures. However, while litter-leached DOC chemistry varies by litter type, neither lysimeter-collected DOC or soil extracts show statistically significant differences in fluorescence signatures among treatments, even after 17 years of litter manipulations. The lack of observed differences among DIRT treatments suggests a "Soil Blender" hypothesis whereby both abiotic and biotic mechanisms effectively homogenize organic carbon constituents within the dissolved pool. The results of this work emphasize the ability of sorption and biodegradation to homogenize soil DOC and demonstrate that fluorescence can be an effective fingerprinting technique for soil DOC composition.
Omrani, Hengameh; Barnes, Jack A; Dudelzak, Alexander E; Loock, Hans-Peter; Waechter, Helen
2012-06-21
Excitation emission matrix (EEM) and cavity ring-down (CRD) spectral signatures have been used to detect and quantitatively assess contamination of jet fuels with aero-turbine lubricating oil. The EEM spectrometer has been fiber-coupled to permit in situ measurements of jet turbine oil contamination of jet fuel. Parallel Factor (PARAFAC) analysis as well as Principal Component Analysis and Regression (PCA/PCR) were used to quantify oil contamination in a range from the limit of detection (10 ppm) to 1000 ppm. Fiber-loop cavity ring-down spectroscopy using a pulsed 355 nm laser was used to quantify the oil contamination in the range of 400 ppm to 100,000 ppm. Both methods in combination therefore permit the detection of oil contamination with a linear dynamic range of about 10,000.
Exploring the potential of DOC fluorescence as proxy for groundwater contamination by pesticides
NASA Astrophysics Data System (ADS)
Farlin, Julien; Gallé, Tom; Bayerle, Michael; Pittois, Denis; Huck, viola
2017-04-01
Of the different water quality surrogates the fluorescence of dissolved organic content (FDOC) appears particularly promising due to its sensitivity and specificity. A complete spectrum of FDOC can be obtained using bench top instruments scanning a spectral space going from short wavelength UV to visible blue, yielding a so-called an excitation-emission matrix (EEM). The raw EEM can be either used directly for correlation analysis with the variable of interest, or first decomposed into underlying elements corresponding to different groups of organic compounds displaying similar properties using multiway techniques such as Parallel factor analysis (PARAFAC). Fluorescence spectroscopy has up to now only rarely been applied specifically to groundwater environments. The objective of the project was to explore systematically the possibilities offered by FDOC and PARAFAC for the assessment of groundwater contamination by pesticides, taking into account the transit time from the pesticide source to the groundwater outlet. Three sites corresponding to different transit times were sampled: -one spring regularly contaminated by surface water from a nearby stream (sub-daily to daily response to fast-flow generating storm events) -one spring displaying a weekly to monthly response to interflow -sampling along a flowline consisting of a series of springs and an observation well situated upgradient with mean transit times difference of several years Preliminary results show that a three component PARAFAC model is sufficient to decompose the raw EEMs, which is less than the seven or eight component models often encountered in surface water studies. For the first site, one component in the protein-like region 275(excitation)/310 (emission) nm measured in the stream samples was filtrered completely by the aquifer and did not appear in the spring samples. The other two components followed roughly the trend of the DOC and pesticide breakthrough. For the second site, soil sampling of the agricultural plots and DOC extraction also allowed to characterise the spectral signature of the pollution source. A humic-like component (250/450 nm) was correlated with the breakthrough of recent soil water and pesticide concentration. Lastly, the fluorescence intensity of the different components for the third sampling site showed a decrease proportional to the decrease in DOC concentration between the observation well and the springs caused either by dilution, degradation or both. This lack of change in the spectral pattern along a flow line seems to indicate that labile soil DOC fractions have already been degraded by the time water reaches the observation well.
Tensor hypercontraction. II. Least-squares renormalization
NASA Astrophysics Data System (ADS)
Parrish, Robert M.; Hohenstein, Edward G.; Martínez, Todd J.; Sherrill, C. David
2012-12-01
The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)], 10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N^5) effort if exact integrals are decomposed, or O(N^4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N^4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
Tensor hypercontraction. II. Least-squares renormalization.
Parrish, Robert M; Hohenstein, Edward G; Martínez, Todd J; Sherrill, C David
2012-12-14
The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1∕r(12) operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N(5)) effort if exact integrals are decomposed, or O(N(4)) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N(4)) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
NASA Astrophysics Data System (ADS)
Perdrial, J. N.; Perdrial, N.; Harpold, A. A.; Peterson, A. M.; Vasquez, A.; Chorover, J.
2011-12-01
Analyzing dissolved organic matter (DOM) of soil solution constitutes an integral activity in critical zone science as important insights to nutrient and carbon cycling and mineral weathering processes can be gained. Soil solution can be obtained by a variety of approaches such as by in situ zero-tension and tension samplers or by performing soil extracts in the lab. It is generally preferred to obtain soil solution in situ with the least amount of disturbance. However, in water limited environments, such as in southwestern US, in situ sampling is only possible during few hydrologic events and soil extracts are often employed. In order to evaluate the performance of different sampling approaches for OM analysis, results from aqueous soil extracts were compared with in situ samples obtained from suction cups and passive capillary wick samplers (PCAP's). Soil from an OA-horizon of mixed conifer forest Jemez River Basin Critical Zone Observatory (JRB-CZO) in NM was sampled twice and in situ samples from co-located suction cups and PCAPs were collected 7 times during the 2011 snowmelt period. Dissolved organic carbon and nitrogen concentrations (DOC and DN) as well as OM quality (FTIR, fluorescence spectroscopy and PARAFAC) were analyzed. The aqueous soil extracts (solid:solution = 1:5 mass basis) showed highest DOC and lowest DN concentrations whereas samples collected in-situ had lower DOC and higher DN concentrations. PARAFAC analysis using a four component model showed a dominance of fluorescence in region I and II (protein-like fluorescence) for samples collected in situ indicating the presence of more bio-molecules (proteins). In contrast, the dominant PARAFAC component of the soil extract was found in region 3 (fulvic acid-like fluorescence). FTIR analysis showed high intensity band at 1600 cm-1 in the case of the aqueous soil extract that correspond to asymmetric stretching of carboxyl groups. These preliminary results indicate that aqueous soil extracts likely lead to the underestimation of the amount of biomolecules and the overestimation of fulvic acid contents of soil solutions.
Characterising Event-Based DOM Inputs to an Urban Watershed
NASA Astrophysics Data System (ADS)
Croghan, D.; Bradley, C.; Hannah, D. M.; Van Loon, A.; Sadler, J. P.
2017-12-01
Dissolved Organic Matter (DOM) composition in urban streams is dominated by terrestrial inputs after rainfall events. Urban streams have particularly strong terrestrial-riverine connections due to direct input from terrestrial drainage systems. Event driven DOM inputs can have substantial adverse effects on water quality. Despite this, DOM from important catchment sources such as road drains and Combined Sewage Overflows (CSO's) remains poorly characterised within urban watersheds. We studied DOM sources within an urbanised, headwater watershed in Birmingham, UK. Samples from terrestrial sources (roads, roofs and a CSO), were collected manually after the onset of rainfall events of varying magnitude, and again within 24-hrs of the event ending. Terrestrial samples were analysed for fluorescence, absorbance and Dissolved Organic Carbon (DOC) concentration. Fluorescence and absorbance indices were calculated, and Parallel Factor Analysis (PARAFAC) was undertaken to aid sample characterization. Substantial differences in fluorescence, absorbance, and DOC were observed between source types. PARAFAC-derived components linked to organic pollutants were generally highest within road derived samples, whilst humic-like components tended to be highest within roof samples. Samples taken from the CSO generally contained low fluorescence, however this likely represents a dilution effect. Variation within source groups was particularly high, and local land use seemed to be the driving factor for road and roof drain DOM character and DOC quantity. Furthermore, high variation in fluorescence, absorbance and DOC was apparent between all sources depending on event type. Drier antecedent conditions in particular were linked to greater presence of terrestrially-derived components and higher DOC content. Our study indicates that high variations in DOM character occur between source types, and over small spatial scales. Road drains located on main roads appear to contain the poorest quality DOM of the sources studied due to the presence of hydrocarbons. In order to prevent storm-derived DOM degradation of water quality of urban streams, greater knowledge of links between these drainage sources, and their pathways to streams is required.
Estuarial fingerprinting through multidimensional fluorescence and multivariate analysis.
Hall, Gregory J; Clow, Kerin E; Kenny, Jonathan E
2005-10-01
As part of a strategy for preventing the introduction of aquatic nuisance species (ANS) to U.S. estuaries, ballast water exchange (BWE) regulations have been imposed. Enforcing these regulations requires a reliable method for determining the port of origin of water in the ballast tanks of ships entering U.S. waters. This study shows that a three-dimensional fluorescence fingerprinting technique, excitation emission matrix (EEM) spectroscopy, holds great promise as a ballast water analysis tool. In our technique, EEMs are analyzed by multivariate classification and curve resolution methods, such as N-way partial least squares Regression-discriminant analysis (NPLS-DA) and parallel factor analysis (PARAFAC). We demonstrate that classification techniques can be used to discriminate among sampling sites less than 10 miles apart, encompassing Boston Harbor and two tributaries in the Mystic River Watershed. To our knowledge, this work is the first to use multivariate analysis to classify water as to location of origin. Furthermore, it is shown that curve resolution can show seasonal features within the multidimensional fluorescence data sets, which correlate with difficulty in classification.
Ye, Yusen; Gao, Lin; Zhang, Shihua
2017-01-01
Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions. PMID:29033978
Ye, Yusen; Gao, Lin; Zhang, Shihua
2017-01-01
Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions.
Song, Fanhao; Wu, Fengchang; Guo, Fei; Wang, Hao; Feng, Weiying; Zhou, Min; Deng, Yanghui; Bai, Yingchen; Xing, Baoshan; Giesy, John P
2017-12-15
In aquatic environments, pH can control environmental behaviors of fulvic acid (FA) via regulating hydrolysis of functional groups. Sub-fractions of FA, eluted using pyrophosphate buffers with initial pHs of 3.0 (FA 3 ), 5.0 (FA 5 ), 7.0 (FA 7 ), 9.0 (FA 9 ) and 13.0 (FA 13 ), were used to explore interactions between the various, operationally defined, FA fractions and protons, by use of EEM-PARAFAC analysis. Splitting of peaks (FA 3 and FA 13 ), merging of peaks (FA 7 ), disappearance of peaks (FA 9 and FA 13 ), and red/blue-shifting of peaks were observed during fluorescence titration. Fulvic-like components were identified from FA 3 -FA 13 , and protein-like components were observed in fractions FA 9 and FA 13 . There primary compounds (carboxylic-like, phenolic-like, and protein-like chromophores) in PARAFAC components were distinguished based on acid-base properties. Dissociation constants (pK a ) for fulvic-like components with proton ranged from 2.43 to 4.13 in an acidic pH and from 9.95 to 11.27 at basic pH. These results might be due to protonation of di-carboxylate and phenolic functional groups. At basic pH, pK a values of protein-like components (9.77-10.13) were similar to those of amino acids. However, at acidic pH, pK a values of protein-like components, which ranged from 3.33 to 4.22, were 1-2units greater than those of amino acids. Results presented here, will benefit understanding of environmental behaviors of FA, as well as interactions of FA with environmental contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.
Joint estimation of 2D-DOA and frequency based on space-time matrix and conformal array.
Wan, Liang-Tian; Liu, Lu-Tao; Si, Wei-Jian; Tian, Zuo-Xi
2013-01-01
Each element in the conformal array has a different pattern, which leads to the performance deterioration of the conventional high resolution direction-of-arrival (DOA) algorithms. In this paper, a joint frequency and two-dimension DOA (2D-DOA) estimation algorithm for conformal array are proposed. The delay correlation function is used to suppress noise. Both spatial and time sampling are utilized to construct the spatial-time matrix. The frequency and 2D-DOA estimation are accomplished based on parallel factor (PARAFAC) analysis without spectral peak searching and parameter pairing. The proposed algorithm needs only four guiding elements with precise positions to estimate frequency and 2D-DOA. Other instrumental elements can be arranged flexibly on the surface of the carrier. Simulation results demonstrate the effectiveness of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Gonnelli, M.; Galletti, Y.; Marchetti, E.; Mercadante, L.; Retelletti Brogi, S.; Ribotti, A.; Sorgente, R.; Vestri, S.; Santinelli, C.
2016-11-01
Dissolved organic carbon (DOC), chromophoric and fluorescent dissolved organic matter (CDOM and FDOM, respectively) surface distribution was studied during the Serious Game exercise carried out in the Eastern Ligurian Sea, where an oil spill was localized by using satellite images and models. This paper reports the first DOC, CDOM and FDOM data for this area together with an evaluation of fluorescence as a fast and inexpensive tool for early oil spill detection in marine waters. The samples collected in the oil spill showed a fluorescence intensity markedly higher ( 5 fold) than all the other samples. The excitation-emission matrixes, coupled with parallel factor analysis (PARAFAC), allowed for the identification in the FDOM pool of a mixture of polycyclic aromatic hydrocarbons, humic-like and protein-like fluorophores.
Morales, Rocío; Sarabia, Luis A; Sánchez, M Sagrario; Ortiz, M Cruz
2013-06-28
The paper shows some tools (its interpretation and usefulness) to optimize a derivatization reaction and to more easily interpret and visualize the effect that some experimental factors exert on several analytical responses of interest when these responses are in conflict. The entire proposed procedure has been applied in the optimization of equilibrium/extraction temperature and extraction time in the acetylation reaction of 2,4,6-trichlorophenol; 2,3,4,6-tetrachlorophenol, pentachlorophenol and 2,4,6-tribromophenol as internal standard (IS) in presence of 2,4,6-trichloroanisole, 2,3,5,6-tetrachloroanisole, pentachloroanisole and 2,4,6-trichloroanisole-d5 as IS. The procedure relies on the second order advantage of PARAFAC (parallel factor analysis) that allows the unequivocal identification and quantification, mandatory according international regulations (in this paper the EU document SANCO/12495/2011), of the acetyl-chlorophenols and chloroanisoles that are determined by means of a HS-SPME-GC/MS automated device. The joint use of a PARAFAC decomposition and a Doehlert design provides the data to fit a response surface for each analyte. With the fitted surfaces, the overall desirability function and the Pareto-optimal front are used to describe the relation between the conditions of the derivatization reaction and the quantity extracted of each analyte. The visualization by using a parallel coordinates plot allows a deeper knowledge about the problem at hand as well as the wise selection of the conditions of the experimental factors for achieving specific goals about the responses. In the optimal experimental conditions (45°C and 25min) the determination by means of an automated HS-SPME-GC/MS system is carried out. By using the regression line fitted between calculated and true concentrations, it has been checked that the procedure has neither proportional nor constant bias. The decision limits, CCa, for probability a of false positive set to 0.05, vary between 0.221 and 0.420µgL(-1). Copyright © 2013 Elsevier B.V. All rights reserved.
de Carvalho Rocha, Werickson Fortunato; Schantz, Michele M.; Sheen, David A.; Chu, Pamela M.; Lippa, Katrice A.
2017-01-01
As feedstocks transition from conventional oil to unconventional petroleum sources and biomass, it will be necessary to determine whether a particular fuel or fuel blend is suitable for use in engines. Certifying a fuel as safe for use is time-consuming and expensive and must be performed for each new fuel. In principle, suitability of a fuel should be completely determined by its chemical composition. This composition can be probed through use of detailed analytical techniques such as gas chromatography-mass spectroscopy (GC-MS). In traditional analysis, chromatograms would be used to determine the details of the composition. In the approach taken in this paper, the chromatogram is assumed to be entirely representative of the composition of a fuel, and is used directly as the input to an algorithm in order to develop a model that is predictive of a fuel's suitability. When a new fuel is proposed for service, its suitability for any application could then be ascertained by using this model to compare its chromatogram with those of the fuels already known to be suitable for that application. In this paper, we lay the mathematical and informatics groundwork for a predictive model of hydrocarbon properties. The objective of this work was to develop a reliable model for unsupervised classification of the hydrocarbons as a prelude to developing a predictive model of their engine-relevant physical and chemical properties. A set of hydrocarbons including biodiesel fuels, gasoline, highway and marine diesel fuels, and crude oils was collected and GC-MS profiles obtained. These profiles were then analyzed using multi-way principal components analysis (MPCA), principal factors analysis (PARAFAC), and a self-organizing map (SOM), which is a kind of artificial neural network. It was found that, while MPCA and PARAFAC were able to recover descriptive models of the fuels, their linear nature obscured some of the finer physical details due to the widely varying composition of the fuels. The SOM was able to find a descriptive classification model which has the potential for practical recognition and perhaps prediction of fuel properties. PMID:28603295
Caracterisation of anthropogenic contribution to the coastal fluorescent organic matter
NASA Astrophysics Data System (ADS)
El Nahhal, Ibrahim; Nouhi, Ayoub; Mounier, Stéphane
2015-04-01
It is known that most of the coastal fluorescent organic matter is of a terrestrial origin (Parlanti, 2000; Tedetti, Guigue, & Goutx, 2010). However, the contribution of the anthropogenic organic matter to this pool is not well defined and evaluated. In this work the monitoring of little bay (Toulon Bay, France) was done in the way to determine the organic fluorescent response during a winter period. The sampling campaign consisted of different days during the month of December, 2014 ( 12th, 15th, 17th, 19th) on 21 different sampling sites for the fluorescence measurements (without any filtering of the samples) and the whole month of December for the bacterial and the turbidity measurements. Excitation Emission Matrices (EEMs) of fluorescence (from 200 to 400 nm and 220 to 420 nm excitation and emission range) were treated by parallel factor analysis (PARAFAC).The parafac analysis of the EEM datasets was conducted using PROGMEEF software in Matlab langage. On the same time that the turbidity and bacterial measurement (particularly the E.Coli concentration) were determined. The results gives in a short time range, information on the the contribution of the anthropogenic inputs to the coastal fluorescent organic matter. In addition, the effect of salinity on the photochemical degradation of the anthropogenic organic matter (especially those from wastewater treatment plants) will be studied to investigate their fate in the water end member by the way of laboratory experiments. Parlanti, E. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 31(12), 1765-1781. doi:10.1016/S0146-6380(00)00124-8 Tedetti, M., Guigue, C., & Goutx, M. (2010). Utilization of a submersible UV fluorometer for monitoring anthropogenic inputs in the Mediterranean coastal waters. Marine Pollution Bulletin, 60(3), 350-62. doi:10.1016/j.marpolbul.2009.10.018
Xu, Huacheng; Guo, Laodong; Jiang, Helong
2016-02-01
Dissolved organic matter (DOM) plays a significant role in regulating nutrients and carbon cycling and the reactivity of trace metals and other contaminants in the environment. However, the environmental/ecological role of sedimentary DOM is highly dependent on organic composition. In this study, fluorescence excitation emission matrix-parallel factor (EEM-PARAFAC) analysis, two dimensional correlation spectroscopy (2D-COS), and ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) were applied to investigate the depth-dependent variations of sediment-leached DOM components in a eutrophic lake. Results of EEM-PARAFAC and 2D-COS showed that fluorescent humic-like component was preferentially degraded microbially over fulvic-like component at greater sediment depths, and the relative abundance of non-fluorescent components decreased with increasing depth, leaving the removal rate of carbohydrates > lignins. The predominant sedimentary DOM components derived from FT-ICR-MS were lipids (>50%), followed by lignins (∼15%) and proteins (∼15%). The relative abundance of carbohydrates, lignins, and condensed aromatics decreased significantly at greater depths, whereas that of lipids increased in general with depth. There existed a significant negative correlation between the short-range ordered (SRO) minerals and the total dissolved organic carbon concentration or the relative contents of lignins and condensed aromatics (p < 0.05), suggesting that SRO mineral sorption plays a significant role in controlling the composition heterogeneity and releasing of DOM in lake sediments. Higher metal binding potential observed for DOM at deeper sediment depth (e.g., 25-30 cm) supported the ecological safety of sediment dredging technique from the viewpoint of heavy metal de-toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Characteristics and fate of natural organic matter during UV oxidation processes.
Ahn, Yongtae; Lee, Doorae; Kwon, Minhwan; Choi, Il-Hwan; Nam, Seong-Nam; Kang, Joon-Wun
2017-10-01
Advanced oxidation processes (AOPs) are widely used in water treatments. During oxidation processes, natural organic matter (NOM) is modified and broken down into smaller compounds that affect the characteristics of the oxidized NOM by AOPs. In this study, NOM was characterized and monitored in the UV/hydrogen peroxide (H 2 O 2 ) and UV/persulfate (PS) processes using a liquid chromatography-organic carbon detector (LC-OCD) technique, and a combination of excitation-emission matrices (EEM) and parallel factor analysis (PARAFAC). The percentages of mineralization of NOM in the UV/H 2 O 2 and UV/PS processes were 20.5 and 83.3%, respectively, with a 10 mM oxidant dose and a contact time of 174 s (UV dose: approximately 30,000 mJ). Low-pressure, Hg UV lamp (254 nm) was applied in this experiment. The steady-state concentration of SO 4 - was 38-fold higher than that of OH at an oxidant dose of 10 mM. With para-chlorobenzoic acid (pCBA) as a radical probe compound, we experimentally determined the rate constants of Suwannee River NOM (SRNOM) with OH (k OH/NOM = 3.3 × 10 8 M -1 s -1 ) and SO 4 - (k SO4-/NOM = 4.55 × 10 6 M -1 s -1 ). The hydroxyl radical and sulfate radical showed different mineralization pathways of NOM, which have been verified by the use of LC-OCD and EEM/PARAFAC. Consequently, higher steady-state concentrations of SO 4 - , and different reaction preferences of OH and SO 4 - with the NOM constituent had an effect on the mineralization efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Shasha; Zhu, Yuanrong; Liu, Leizhen; He, Zhongqi; Giesy, John P; Bai, Yingchen; Sun, Fuhong; Wu, Fengchang
2018-03-01
Complexation and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in aquatic systems. Thus, coagulation and fractionation of DOM derived from aquatic plants by Ca(II), Al(III), and Fe(III) ions were investigated. Metal ion-induced removal of DOM was determined by analyzing dissolved organic carbon in supernatants after addition of these metal cations individually. After additions of metal ions, both dissolved and coagulated organic fractions were characterized by use of fluorescence excitation emission matrix-parallel factor (EEM-PARAFAC) analysis and Fourier transform infrared (FT-IR) spectroscopy. Addition of Ca(II), Fe(III) or Al(III) resulted in net removal of aquatic plant-derived DOM. Efficiencies of removal of DOM by Fe(III) or Al(III) were greater than that by Ca(II). However, capacities to remove plant-derived DOM by the three metals were less than which had been previously reported for humic materials. Molecular and structural features of plant-derived DOM fractions in associations with metal cations were characterized by changes in fluorescent components and infrared absorption peaks. Both aromatic and carboxylic-like organic matters could be removed by Ca(II), Al(III) or Fe(III) ions. Whereas organic matters containing amides were preferentially removed by Ca(II), and phenolic materials were selectively removed by Fe(III) or Al(III). These observations indicated that plant-derived DOM might have a long-lasting effect on water quality and organisms due to its poor coagulation with metal cations in aquatic ecosystems. Plant-derived DOM is of different character than natural organic matter and it is not advisable to attempt removal through addition of metal salts during treatment of sewage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemodiversity of dissolved organic matter in the Amazon Basin
NASA Astrophysics Data System (ADS)
Gonsior, Michael; Valle, Juliana; Schmitt-Kopplin, Philippe; Hertkorn, Norbert; Bastviken, David; Luek, Jenna; Harir, Mourad; Bastos, Wanderley; Enrich-Prast, Alex
2016-07-01
Regions in the Amazon Basin have been associated with specific biogeochemical processes, but a detailed chemical classification of the abundant and ubiquitous dissolved organic matter (DOM), beyond specific indicator compounds and bulk measurements, has not yet been established. We sampled water from different locations in the Negro, Madeira/Jamari and Tapajós River areas to characterize the molecular DOM composition and distribution. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC) revealed a large proportion of ubiquitous DOM but also unique area-specific molecular signatures. Unique to the DOM of the Rio Negro area was the large abundance of high molecular weight, diverse hydrogen-deficient and highly oxidized molecular ions deviating from known lignin or tannin compositions, indicating substantial oxidative processing of these ultimately plant-derived polyphenols indicative of these black waters. In contrast, unique signatures in the Madeira/Jamari area were defined by presumably labile sulfur- and nitrogen-containing molecules in this white water river system. Waters from the Tapajós main stem did not show any substantial unique molecular signatures relative to those present in the Rio Madeira and Rio Negro, which implied a lower organic molecular complexity in this clear water tributary, even after mixing with the main stem of the Amazon River. Beside ubiquitous DOM at average H / C and O / C elemental ratios, a distinct and significant unique DOM pool prevailed in the black, white and clear water areas that were also highly correlated with EEM-PARAFAC components and define the frameworks for primary production and other aspects of aquatic life.
Yang, Ruifang; Zhao, Nanjing; Xiao, Xue; Yu, Shaohui; Liu, Jianguo; Liu, Wenqing
2016-01-05
There is not effective method to solve the quenching effect of quencher in fluorescence spectra measurement and recognition of polycyclic aromatic hydrocarbons in aquatic environment. In this work, a four-way dataset combined with four-way parallel factor analysis is used to identify and quantify polycyclic aromatic hydrocarbons in the presence of humic acid, a fluorescent quencher and an ubiquitous substance in aquatic system, through modeling the quenching effect of humic acid by decomposing the four-way dataset into four loading matrices corresponding to relative concentration, excitation spectra, emission spectra and fluorescence quantum yield, respectively. It is found that Phenanthrene, pyrene, anthracene and fluorene can be recognized simultaneously with the similarities all above 0.980 between resolved spectra and reference spectra. Moreover, the concentrations of them ranging from 0 to 8μgL(-1) in the test samples prepared with river water could also be predicted successfully with recovery rate of each polycyclic aromatic hydrocarbon between 100% and 120%, which were higher than those of three-way PARAFAC. These results demonstrate that the combination of four-way dataset with four-way parallel factor analysis could be a promising method to recognize the fluorescence spectra of polycyclic aromatic hydrocarbons in the presence of fluorescent quencher from both qualitative and quantitative perspective. Copyright © 2015 Elsevier B.V. All rights reserved.
Humic like substances for the treatment of scarcely soluble pollutants by mild photo-Fenton process.
Caram, Bruno; García-Ballesteros, Sara; Santos-Juanes, Lucas; Arques, Antonio; García-Einschlag, Fernando S
2018-05-01
Humic-like substances (HLS) extracted from urban wastes have been tested as auxiliaries for the photo-Fenton removal of thiabendazole (TBZ) under simulated sunlight. Experimental design methodology based on Doehlert matrices was employed to check the effects of hydrogen peroxide concentration, HLS amount as well as TBZ loading; this last parameter was studied in the range 25-100 mg/L, to include values below and above the limit of solubility at pH = 5. Very satisfactory results were reached when TBZ was above solubility if HLS and H 2 O 2 amounts were high. This could be attributed to an interaction of HLS-TBZ that enhances the solubility of the pollutant. Additional evidence supporting the latter interaction was obtained by fluorescence measurements (excitation emission matrices) and parallel factor analysis (PARAFAC). Copyright © 2018 Elsevier Ltd. All rights reserved.
Dissolved Organic Carbon Degradation in Response to Nutrient Amendments in Southwest Greenland Lakes
NASA Astrophysics Data System (ADS)
Burpee, B. T.; Northington, R.; Simon, K. S.; Saros, J. E.
2014-12-01
Aquatic ecosystems across the Arctic are currently experiencing rapid shifts in biotic, chemical, and physical factors in response to climate change. Preliminary data from multiple lakes in southwestern Greenland indicate decreasing dissolved organic carbon (DOC) concentrations over the past decade. Though several factors may be contributing to this phenomenon, this study attempts to elucidate the potential of heterotrophic bacteria to degrade DOC in the presence of increasing nutrient concentrations. In certain Arctic regions, nutrient subsidies have been released into lakes due to permafrost thaw. If this is occurring in southwestern Greenland, we hypothesized that increased nutrient concentrations will relieve nutrient limitation, thereby allowing heterotrophic bacteria to utilize DOC as an energy source. This prediction was tested using experimental DOC degradation assays from four sample lakes. Four nutrient amendment treatments (control, N, P, and N + P) were used to simulate in situ subsidies. Five time points were sampled during the incubation: days 0, 3, 6, 14, and 60. Total organic carbon (TOC) and parallel factor (PARAFAC) analysis were used to monitor the relative concentrations of different DOC fractions over time. In addition, samples for extracellular enzyme activity (EEA) analysis were collected at every time point. Early analysis of fulvic and humic pools of DOC do not indicate any significant change from days 0 to 14. This could be due to the fact that these DOC fractions are relatively recalcitrant. This study will be important in determining whether bacterial degradation could be a contributing factor to DOC decline in arctic lakes.
3D tensor-based blind multispectral image decomposition for tumor demarcation
NASA Astrophysics Data System (ADS)
Kopriva, Ivica; Peršin, Antun
2010-03-01
Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based decomposition methods (such as non-negative matrix factorization and independent component analysis) are used. Superior performance of the tensor-based image decomposition over matrix factorization-based decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).
Alarcón, Francis; Báez, María E; Bravo, Manuel; Richter, Pablo; Escandar, Graciela M; Olivieri, Alejandro C; Fuentes, Edwar
2013-01-15
The possibility of simultaneously determining seven concerned heavy polycyclic aromatic hydrocarbons (PAHs) of the US-EPA priority pollutant list, in extra virgin olive and sunflower oils was examined using unfolded partial least-squares with residual bilinearization (U-PLS/RBL) and parallel factor analysis (PARAFAC). Both of these methods were applied to fluorescence excitation emission matrices. The compounds studied were benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene and indeno[1,2,3-c,d]-pyrene. The analysis was performed using fluorescence spectroscopy after a microwave assisted liquid-liquid extraction and solid-phase extraction on silica. The U-PLS/RBL algorithm exhibited the best performance for resolving the heavy PAH mixture in the presence of both the highly complex oil matrix and other unpredicted PAHs of the US-EPA list. The obtained limit of detection for the proposed method ranged from 0.07 to 2 μg kg(-1). The predicted U-PLS/RBL concentrations were satisfactorily compared with those obtained using high-performance liquid chromatography with fluorescence detection. A simple analysis with a considerable reduction in time and solvent consumption in comparison with chromatography are the principal advantages of the proposed method. Copyright © 2012 Elsevier B.V. All rights reserved.
Mirnaghi, Fatemeh S; Soucy, Nicholas; Hollebone, Bruce P; Brown, Carl E
2018-05-19
The characterization of spilled petroleum products in an oil spill is necessary for identifying the spill source, selection of clean-up strategies, and evaluating potential environmental and ecological impacts. Existing standard methods for the chemical characterization of spilled oils are time-consuming due to the lengthy sample preparation for analysis. The main objective of this study is the development of a rapid screening method for the fingerprinting of spilled petroleum products using excitation/emission matrix (EEM) fluorescence spectroscopy, thereby delivering a preliminary evaluation of the petroleum products within hours after a spill. In addition, the developed model can be used for monitoring the changes of aromatic compositions of known spilled oils over time. This study involves establishing a fingerprinting model based on the composition of polycyclic and heterocyclic aromatic hydrocarbons (PAH and HAHs, respectively) of 130 petroleum products at different states of evaporative weathering. The screening model was developed using parallel factor analysis (PARAFAC) of a large EEM dataset. The significant fluorescing components for each sample class were determined. After which, through principal component analysis (PCA), the variation of scores of their modeled factors was discriminated based on the different classes of petroleum products. This model was then validated using gas chromatography-mass spectrometry (GC-MS) analysis. The rapid fingerprinting and the identification of unknown and new spilled oils occurs through matching the spilled product with the products of the developed model. Finally, it was shown that HAH compounds in asphaltene and resins contribute to ≥4-ring PAHs compounds in petroleum products. Copyright © 2018. Published by Elsevier Ltd.
Influence of intermittent stream connectivity on water quality and salmonid survivorship.
NASA Astrophysics Data System (ADS)
Hildebrand, J.; Woelfle-Erskine, C. A.; Larsen, L.
2014-12-01
Anthropogenic stress and climate change are causing an increasing number of California streams to become intermittent and are driving earlier and more severe summertime drying. The extent to which emerging water conservation alternatives impact flows or habitat quality (e.g. temperature, DO) for salmonids remains poorly understood. Here, we investigate the proximal drivers of salmonid mortality over a range of connectivity conditions during summertime intermittency in Salmon Creek watershed, Sonoma County, CA. Through extensive sampling in paired subwatersheds over a period of two years, we tested the hypothesis that accumulation of readily bioavailable DOC in poorly flushed pools drives DO decline associated with loss of salmonids. We then traced the origin and flow pathways of DOC throughout the watershed using Parallel Factor Analysis (PARAFAC). We obtained samples for DOC and stable isotope analyses at monthly intervals from 20 piezometers and surface water in the study reaches and from private wells and springs distributed throughout the watersheds. We also obtained in situ DO, conductivity and pH readings within stream study reaches. We determined DOC quality by SUVA (specific UV absorbance) and fluorescence index. We calculated stream metabolism rates using the single station method. In pools instrumented with DO sensors, we compared changing DOC quality during the summer months to changes in DO concentrations and stream metabolism. Our results show that the duration of complete disconnection of pools during the summer months and stream metabolic rates are positively correlated with salmonid mortality. Furthermore, our results indicate that salmonid mortality is greatest in disconnected pools with low DOC fluorescence indices and high SUVA values, indicative of terrestrially derived DOC and little or no groundwater inflow. Conversely low salmonid mortality was found in disconnected pools with high fluorescence index and low SUVA, indicative of microbially derived DOC. These pools showed clear signs of hyporheic inflow during summertime drying despite complete surficial disconnection. PARAFAC analysis pinpointed groundwater sources of hyporheic flow in the watershed, suggesting that targeted aquifer recharge may contribute to salmonid recovery by augmenting flow in summer refugia.
NASA Astrophysics Data System (ADS)
Lavonen, Elin; Kothawala, Dolly; Tranvik, Lars; Köhler, Stephan
2014-05-01
Fluorescence spectroscopy has been widely used to characterize fluorescent dissolved organic matter (FDOM) in various waters including during drinking water production. Commonly used techniques for data treatment include peak picking, indexes calculated from 2D emission spectra and modelling of fluorescence components using parallel factor analysis (PARAFAC). However, peak picking and indexes only use limited information from the fluorescence EEMs and PARAFAC requires a larger dataset and experience to perform. Because DOM is a major issue in drinking water production, and personnel at water treatment plants usually have limited time for advanced analysis we have developed a simple way of assessing the treatability of DOM in different waters using differential fluorescence. With this approach the removed fraction of FDOM is calculated from samples taken before and after a particular treatment process and the percentage of removed material assessed. Samples have been collected from four large water treatment plants in Sweden and analyzed for 3Dfluorescence, absorbance and DOC. The selective removal of DOM during e.g. flocculation and slow sand filtration as well as differences in experienced treatability between the treatment plants was described with differential fluorescence. Chemical flocculation is selective towards FDOM with red-shifted emission across the entire EEM. Red-shift has earlier been connected to condensation (i.e. decrease in H/C) and positively correlated to molecular size indicating that larger, humified molecules are being preferentially removed. During the biological process of slow sand filtration compounds with blue-shifted emission are targeted demonstrating selective removal of more freshly produced, microbial material. Disinfection with UV/NH2Cl and NaOCl was found to only target material with protein-like fluorescence suggesting that FDOM of this nature could be responsible for unwanted consumption of disinfection agent. Targeted removal of this fraction prior to disinfection should optimize the process. Furthermore, the main process at all studied WTPs is flocculation and their experienced treatability could easily be explained through the percentage of FDOM with emission above 450 nm (p<0.0001).
Wang, Ying; Zhang, Manman; Fu, Jun; Li, Tingting; Wang, Jinggang; Fu, Yingyu
2016-10-01
The interaction between carbamazepine (CBZ) and dissolved organic matter (DOM) from three zones (the nearshore, the river channel, and the coastal areas) in the Yangtze Estuary was investigated using fluorescence quenching titration combined with excitation emission matrix spectra and parallel factor analysis (PARAFAC). The complexation between CBZ and DOM was demonstrated by the increase in hydrogen bonding and the disappearance of the C=O stretch obtained from the Fourier transform infrared spectroscopy analysis. The results indicated that two protein-like substances (component 2 and component3) and two humic-like substances (component 1 and 4) were identified in the DOM from the Yangtze Estuary. The fluorescence quenching curves of each component with the addition of CBZ and the Ryan and Weber model calculation results both demonstrated that the different components exhibited different complexation activities with CBZ. The protein-like components had a stronger affinity with CBZ than did the humic-like substances. On the other hand, the autochthonous tyrosine-like C2 played an important role in the complexation with DOM from the river channel and coastal areas, while C3 influenced by anthropogenic activities showed an obvious effect in the nearshore area. DOMs from the river channel have the highest binding capacity for CBZ, which may ascribe to the relatively high phenol content group in the DOM.
Yu, Min-Da; He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Zhao, Xian-Wei; Zhang, Hui; Huang, Cai-Hong; Tan, Wenbing
2018-03-01
Fluorescence excitation-emission matrix (EEM) spectroscopy combined with principal component analysis (PCA) and parallel factor analysis (PARAFAC) were used to investigate the compositional characteristics of dissolved and particulate/colloidal organic matter and its correlations with nitrogen, phosphorus, and heavy metals in an effluent-dominated stream, Northern China. The results showed that dissolved organic matter (DOM) was comprised of fulvic-like, humic-like, and protein-like components in the water samples, and fulvic-like substances were the main fraction of DOM among them. Particulate/colloidal organic matter (PcOM) consisted of fulvic-like and protein-like matter. Fulvic-like substances existed in the larger molecular form in PcOM, and they comprised a large amount of nitrogen and polar functional groups. On the other hand, protein-like components in PcOM were low in benzene ring and bound to heavy metals. It could be concluded that nitrogen, phosphorus, and heavy metals in effluent had an effect on the compositional characteristics of natural DOM and PcOM, which may deepen our understanding about the environmental behaviors of organic matter in effluent.
Dissolved organic matter dynamics in the oligo/meso-haline zone of wetland-influenced coastal rivers
NASA Astrophysics Data System (ADS)
Maie, Nagamitsu; Sekiguchi, Satoshi; Watanabe, Akira; Tsutsuki, Kiyoshi; Yamashita, Youhei; Melling, Lulie; Cawley, Kaelin M.; Shima, Eikichi; Jaffé, Rudolf
2014-08-01
Wetlands are key components in the global carbon cycle and export significant amounts of terrestrial carbon to the coastal oceans in the form of dissolved organic carbon (DOC). Conservative behavior along the salinity gradient of DOC and chromophoric dissolved organic matter (CDOM) has often been observed in estuaries from their freshwater end-member (salinity = 0) to the ocean (salinity = 35). While the oligo/meso-haline (salinity < 10) tidal zone of upper estuaries has been suggested to be more complex and locally influenced by geomorphological and hydrological features, the environmental dynamics of dissolved organic matter (DOM) and the environmental drivers controlling its source, transport, and fate have scarcely been evaluated. Here, we investigated the distribution patterns of DOC and CDOM optical properties determined by UV absorbance at 254 nm (A254) and excitation-emission matrix (EEM) fluorescence coupled with parallel factor analysis (PARAFAC) along the lower salinity range (salinity < 10) of the oligo/meso-haline zone for three distinct wetland-influenced rivers; namely the Bekanbeushi River, a cool-temperate river with estuarine lake in Hokkaido, Japan, the Harney River, a subtropical river with tidally-submerged mangrove fringe in Florida, USA, and the Judan River, a small, acidic, tropical rainforest river in Borneo, Malaysia. For the first two rivers, a clear decoupling between DOC and A254 was observed, while these parameters showed similar conservative behavior for the third. Three distinct EEM-PARAFAC models established for each of the rivers provided similar spectroscopic characteristics except for some unique fluorescence features observed for the Judan River. The distribution patterns of PARAFAC components suggested that the inputs from plankton and/or submerged aquatic vegetation can be important in the Bekanbeushi River. Further, DOM photo-products formed in the estuarine lake were also found to be transported upstream. In the Harney River, whereas upriver-derived terrestrial humic-like components were mostly distributed conservatively, some of these components were also derived from mangrove inputs in the oligo/meso-haline zone. Interestingly, fluorescence intensities of some terrestrial humic-like components increased with salinity for the Judan River possibly due to changes in the dissociation state of acidic functional groups and/or increase in the fluorescence quantum yield along the salinity gradient. The protein-like and microbial humic-like components were distributed differently between three wetland rivers, implying that interplay between loss to microbial degradation and inputs from diverse sources are different for the three wetland-influenced rivers. The results presented here indicate that upper estuarine oligo/meso-haline regions of coastal wetland rivers are highly dynamic with regard to the biogeochemical behavior of DOM.
NASA Astrophysics Data System (ADS)
Ianiri, H. L.; Timko, S.; Gonsior, M.
2016-02-01
Marine dissolved organic matter (DOM) is one of the largest reduced carbon reservoirs on Earth, yet we only have a limited understanding of its production, cycling, degradation, and overall structure. It was previously believed that a significant portion of refractory dissolved organic carbon (RDOC) in the ocean was derived from terrestrial sources, however recent studies indicated that the majority of marine DOM might be produced in situ by marine biota. Previous research has found that terrestrial and microbial DOM fluorescent signatures are similar, complicating the identification of the origins of marine fluorescent DOM (FDOM). However, photodegradation kinetics of terrestrial and microbial-derived DOM are expected to be different due to their assumed different chemical compositions. In this study we analyzed for the first time the photodegradation kinetics of microbial-derived DOM originating from different cyanobacteria strains. Cyanobacterial-derived DOM were exposed to simulated sunlight for a total of 20 hours while recording excitation emission matrix (EEM) fluorescence every twenty minutes to observe the photodegradation of this specific FDOM. Parallel Factor Analysis (PARAFAC) was applied to deconvolute the EEM matrices into six separate components. The photodegradation kinetics was then calculated for each component and compared with previously obtained photodegradation data of marine and terrestrial FDOM. This six component PARAFAC model was similar to those generated from open ocean data and global DOM data sets. The "humic-like" FDOM was also found in cyanobacteria FDOM and showed similar fluorescence intensities and percent fluorescence loss when compared to marine DOM. The degradation kinetics of the "humic-like" component of microbial-derived DOM was faster than that of terrestrial-derived DOM, and marine FDOM samples showed degradation kinetics more similar to microbial-derived FDOM. This indicates marine FDOM is more similar in chemical composition to microbial-derived FDOM than terrestrial-derived FDOM, supporting the hypothesis that the majority of marine FDOM is produced in situ.
NASA Astrophysics Data System (ADS)
Bhattacharya, R.; Osburn, C. L.
2017-12-01
Dissolved organic matter (DOM) exported from river catchments can influence the biogeochemical processes in coastal environments with implications for water quality and carbon budget. High flow conditions are responsible for most DOM export ("pulses") from watersheds, and these events reduce DOM transformation and production by "shunting" DOM from river networks into coastal waters: the Pulse-Shunt Concept (PSC). Subsequently, the source and quality of DOM is also expected to change as a function of river flow. Here, we used stream dissolved organic carbon concentrations ([DOC]) along with DOM optical properties, such as absorbance at 350 nm (a350) and fluorescence excitation and emission matrices modeled by parallel factor analysis (PARAFAC), to characterize DOM source, quality and fluxes under variable flow conditions for the Neuse River, a coastal river system in the southeastern US. Observations were made at a flow gauged station above head of tide periodically between Aug 2011 and Feb 2013, which captured low flow periods in summer and several high flow events including Hurricane Irene. [DOC] and a350 were correlated and varied positively with river flow, implying that a large portion of the DOM was colored, humic and flow-mobilized. During high flow conditions, PARAFAC results demonstrated the higher influx of terrestrial humic DOM, and lower in-stream phytoplankton production or microbial degradation. However, during low flow, DOM transformation and production increased in response to higher residence times and elevated productivity. Further, 70% of the DOC was exported by above average flows, where 3-4 fold increases in DOC fluxes were observed during episodic events, consistent with PSC. These results imply that storms dramatically affects DOM export to coastal waters, whereby high river flow caused by episodic events primarily shunt terrestrial DOM to coastal waters, whereas low flow promotes in-stream DOM transformation and amendment with microbial DOM.
NASA Astrophysics Data System (ADS)
Shi, Guoliang; Peng, Xing; Huangfu, Yanqi; Wang, Wei; Xu, Jiao; Tian, Yingze; Feng, Yinchang; Ivey, Cesunica E.; Russell, Armistead G.
2017-07-01
Source apportionment technologies are used to understand the impacts of important sources of particulate matter (PM) air quality, and are widely used for both scientific studies and air quality management. Generally, receptor models apportion speciated PM data from a single sampling site. With the development of large scale monitoring networks, PM speciation are observed at multiple sites in an urban area. For these situations, the models should account for three factors, or dimensions, of the PM, including the chemical species concentrations, sampling periods and sampling site information, suggesting the potential power of a three-dimensional source apportionment approach. However, the principle of three-dimensional Parallel Factor Analysis (Ordinary PARAFAC) model does not always work well in real environmental situations for multi-site receptor datasets. In this work, a new three-way receptor model, called "multi-site three way factor analysis" model is proposed to deal with the multi-site receptor datasets. Synthetic datasets were developed and introduced into the new model to test its performance. Average absolute error (AAE, between estimated and true contributions) for extracted sources were all less than 50%. Additionally, three-dimensional ambient datasets from a Chinese mega-city, Chengdu, were analyzed using this new model to assess the application. Four factors are extracted by the multi-site WFA3 model: secondary source have the highest contributions (64.73 and 56.24 μg/m3), followed by vehicular exhaust (30.13 and 33.60 μg/m3), crustal dust (26.12 and 29.99 μg/m3) and coal combustion (10.73 and 14.83 μg/m3). The model was also compared to PMF, with general agreement, though PMF suggested a lower crustal contribution.
Sulfites and the wine metabolome.
Roullier-Gall, Chloé; Hemmler, Daniel; Gonsior, Michael; Li, Yan; Nikolantonaki, Maria; Aron, Alissa; Coelho, Christian; Gougeon, Régis D; Schmitt-Kopplin, Philippe
2017-12-15
In a context of societal concern about food preservation, the reduction of sulfite input plays a major role in the wine industry. To improve the understanding of the chemistry involved in the SO 2 protection, a series of bottle aged Chardonnay wines made from the same must, but with different concentrations of SO 2 added at pressing were analyzed by ultrahigh resolution mass spectrometry (FT-ICR-MS) and excitation emission matrix fluorescence (EEMF). Metabolic fingerprints from FT-ICR-MS data could discriminate wines according to the added concentration to the must but they also revealed chemistry-related differences according to the type of stopper, providing a wine metabolomics picture of the impact of distinct stopping strategies. Spearman rank correlation was applied to link the statistically modeled EEMF components (parallel factor analysis (PARAFAC)) and the exact mass information from FT-ICR-MS, and thus revealing the extent of sulfur-containing compounds which could show some correlation with fluorescence fingerprints. Copyright © 2017 Elsevier Ltd. All rights reserved.
Piccirilli, Gisela N; Escandar, Graciela M
2006-09-01
This paper demonstrates for the first time the power of a chemometric second-order algorithm for predicting, in a simple way and using spectrofluorimetric data, the concentration of analytes in the presence of both the inner-filter effect and unsuspected species. The simultaneous determination of the systemic fungicides carbendazim and thiabendazole was achieved and employed for the discussion of the scopes of the applied second-order chemometric tools: parallel factor analysis (PARAFAC) and partial least-squares with residual bilinearization (PLS/RBL). The chemometric study was performed using fluorescence excitation-emission matrices obtained after the extraction of the analytes over a C18-membrane surface. The ability of PLS/RBL to recognize and overcome the significant changes produced by thiabendazole in both the excitation and emission spectra of carbendazim is demonstrated. The high performance of the selected PLS/RBL method was established with the determination of both pesticides in artificial and real samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolda, Tamara Gibson
We propose two new multilinear operators for expressing the matrix compositions that are needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator, which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplication for every mode of a given tensor and can be employed to concisely express the Tucker decomposition. The second operator, which we call the Kruskal operator, is shorthand for the sum of the outer-products of the columns of N matrices and allows a divorce from a matricized representation and a very concise expression of the PARAFAC decomposition. We explore the properties ofmore » the Tucker and Kruskal operators independently of the related decompositions. Additionally, we provide a review of the matrix and tensor operations that are frequently used in the context of tensor decompositions.« less
Sgroi, Massimiliano; Roccaro, Paolo; Korshin, Gregory V; Greco, Valentina; Sciuto, Sebastiano; Anumol, Tarun; Snyder, Shane A; Vagliasindi, Federico G A
2017-02-05
This study investigated the applicability of different techniques for fluorescence excitation/emission matrices data interpretations, including peak-picking method, fluorescence regional integration and PARAFAC modelling, to act as surrogates in predicting emerging trace organic compounds (ETOrCs) removal during conventional wastewater treatments that usually comprise primary and secondary treatments. Results showed that fluorescence indexes developed using alternative methodologies but indicative of a same dissolved organic matter component resulted in similar predictions of the removal of the target compounds. The peak index defined by the excitation/emission wavelength positions (λ ex/ λ em ) 225/290nm and related to aromatic proteins and tyrosine-like fluorescence was determined to be a particularly suitable surrogate for monitoring ETOrCs that had very high removal rates (average removal >70%) (i.e., triclosan, caffeine and ibuprofen). The peak index defined by λ ex/ λ em =245/440nm and the PARAFAC component with wavelength of the maxima λ ex/ λ em =245, 350/450, both identified as humic-like fluorescence, were found remarkably well correlated with ETOrCs such as atenolol, naproxen and gemfibrozil that were moderately removed (51-70% average removal). Finally, the PARAFAC component with wavelength of the maxima λ ex/ λ em =<240, 315/380 identified as microbial humic-like fluorescence was the only index correlated with the removal of the antibiotic trimethoprim (average removal 68%). Copyright © 2016 Elsevier B.V. All rights reserved.
Andrews, N L P; Fan, J Z; Forward, R L; Chen, M C; Loock, H-P
2016-12-21
The thermal, oxidative and photochemical stability of the scintillator liquid proposed for the SNO+ experiment has been tested experimentally using accelerated aging methods. The stability of the scintillator constituents was determined through fluorescence excitation emission matrix (EEM) spectroscopy and absorption spectroscopy, using parallel factor analysis (PARAFAC) as an multivariate analysis tool. By exposing the scintillator liquid to a well-known photon flux at 365 nm and by measuring the decay rate of the fluorescence shifters and the formation rate of their photochemical degradation products, we can place an upper limit on the acceptable photon flux as 1.38 ± 0.09 × 10 -11 photon mol L -1 . Similarly, the oxidative stability of the scintillator liquid was determined by exposure to air at several elevated temperatures. Through measurement of the corresponding activation energy it was determined that the average oxygen concentration would have to be kept below 4.3-7.1 ppb w (headspace partial pressure below 24 ppm v ). On the other hand, the thermal stability of the scintillator cocktail in the absence of light and oxygen was remarkable and poses no concern to the SNO+ experiment.
Lozano, Valeria A; Ibañez, Gabriela A; Olivieri, Alejandro C
2009-10-05
In the presence of analyte-background interactions and a significant background signal, both second-order multivariate calibration and standard addition are required for successful analyte quantitation achieving the second-order advantage. This report discusses a modified second-order standard addition method, in which the test data matrix is subtracted from the standard addition matrices, and quantitation proceeds via the classical external calibration procedure. It is shown that this novel data processing method allows one to apply not only parallel factor analysis (PARAFAC) and multivariate curve resolution-alternating least-squares (MCR-ALS), but also the recently introduced and more flexible partial least-squares (PLS) models coupled to residual bilinearization (RBL). In particular, the multidimensional variant N-PLS/RBL is shown to produce the best analytical results. The comparison is carried out with the aid of a set of simulated data, as well as two experimental data sets: one aimed at the determination of salicylate in human serum in the presence of naproxen as an additional interferent, and the second one devoted to the analysis of danofloxacin in human serum in the presence of salicylate.
Tadini, Amanda Maria; Nicolodelli, Gustavo; Mounier, Stephane; Montes, Célia Regina; Milori, Débora Marcondes Bastos Pereira
2015-12-15
Soil organic matter (SOM) is a complex mixture of molecules with different physicochemical properties, with humic substances (HS) being the main component as it represents around 20-50% of SOM structure. Soil of the Amazon region is considered one of the larger carbon pools of the world; thus, studies of the humic fractions are important for understanding the dynamics of organic matter (OM) in these soils. The aim of this study was to use laser-induced fluorescence spectroscopy (LIFS) and a combination of excitation-emission matrix (EEM) fluorescence with Parallel Factor Analysis (CP/PARAFAC) to assess the characteristics of humin (HU) extracted from Amazonian soils. The results obtained using LIFS showed that there was an increasing gradient of humification degree with depth, the deeper horizon presenting a higher amount of aromatic groups in the structure of HU. From the EEM, the contribution of two fluorophores with similar behaviour in the structures of HU and whole soil was assessed. Additionally, the results showed that the HU fraction might represent a larger fraction of SOM than previously thought: about 80-93% of some Amazon soils. Therefore, HU is an important humic fraction, thus indicating its role in environmental analysis, mainly in soil analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Structure-seeking multilinear methods for the analysis of fMRI data.
Andersen, Anders H; Rayens, William S
2004-06-01
In comprehensive fMRI studies of brain function, the data structures often contain higher-order ways such as trial, task condition, subject, and group in addition to the intrinsic dimensions of time and space. While multivariate bilinear methods such as principal component analysis (PCA) have been used successfully for extracting information about spatial and temporal features in data from a single fMRI run, the need to unfold higher-order data sets into bilinear arrays has led to decompositions that are nonunique and to the loss of multiway linkages and interactions present in the data. These additional dimensions or ways can be retained in multilinear models to produce structures that are unique and which admit interpretations that are neurophysiologically meaningful. Multiway analysis of fMRI data from multiple runs of a bilateral finger-tapping paradigm was performed using the parallel factor (PARAFAC) model. A trilinear model was fitted to a data cube of dimensions voxels by time by run. Similarly, a quadrilinear model was fitted to a higher-way structure of dimensions voxels by time by trial by run. The spatial and temporal response components were extracted and validated by comparison to results from traditional SVD/PCA analyses based on scenarios of unfolding into lower-order bilinear structures.
NASA Astrophysics Data System (ADS)
Bai, Xue-Mei; Liu, Tie; Liu, De-Long; Wei, Yong-Ju
2018-02-01
A chemometrics-assisted excitation-emission matrix (EEM) fluorescence method was proposed for simultaneous determination of α-asarone and β-asarone in Acorus tatarinowii. Using the strategy of combining EEM data with chemometrics methods, the simultaneous determination of α-asarone and β-asarone in the complex Traditional Chinese medicine system was achieved successfully, even in the presence of unexpected interferents. The physical or chemical separation step was avoided due to the use of ;mathematical separation;. Six second-order calibration methods were used including parallel factor analysis (PARAFAC), alternating trilinear decomposition (ATLD), alternating penalty trilinear decomposition (APTLD), self-weighted alternating trilinear decomposition (SWATLD), the unfolded partial least-squares (U-PLS) and multidimensional partial least-squares (N-PLS) with residual bilinearization (RBL). In addition, HPLC method was developed to further validate the presented strategy. Consequently, for the validation samples, the analytical results obtained by six second-order calibration methods were almost accurate. But for the Acorus tatarinowii samples, the results indicated a slightly better predictive ability of N-PLS/RBL procedure over other methods.
The nature of colored dissolved organic matter in the southern Canada Basin and East Siberian Sea
NASA Astrophysics Data System (ADS)
Guéguen, C.; McLaughlin, F. A.; Carmack, E. C.; Itoh, M.; Narita, H.; Nishino, S.
2012-12-01
Distributions of colored dissolved organic matter (CDOM) in the upper 400 m of the southern Canada Basin and East Siberian Sea were determined using an in situ WETStar fluorometer and fluorescence spectroscopy during cruises in 2008 as part of the Canada/US Joint Ocean Ice Study and Japan's International Polar Year program. Despite the low CDOM range (0.009-0.069 r.u.) observed in the upper 400 m of the study area, our results show that CDOM can be quantified from in situ DOM fluorescence sensor measurements. Unlike DOC concentrations, which are known to decrease with increasing depth, a pronounced mid-depth CDOM maximum was associated with the Pacific-derived winter water throughout our study area. Using parallel factor analysis (PARAFAC) to resolve dominant fluorophore components in fluorescence excitation-emission matrices (EEM), we identified three humic-like and two proteinaceous components. The nature and origin of these five fluorophores were investigated based on their fluorescent characteristics as well as their vertical and geographical distributions. The lowest terrestrial humic-like signals in the surface waters were mostly due to photochemical processes, whereas the highest microbial/marine humic-like signal revealed interactions with sediment during the formation of Pacific-origin haloclines over the Arctic shelves. The humic-like fluorophores dominated DOM fluorescence in the Westernmost region in the East Siberian Sea whereas the contribution of protein-like fluorophores was predominant elsewhere. The significant difference in CDOM composition between East and West of the 180° meridian suggests the presence of a front that divides our study area into the Eastern Chukchi—Beaufort and East Siberian sides. This indicates a change in water circulation, and that more than one DOM source affects our study area. Unlike proteinaceous material, the humic-like compounds varied significantly in the halocline. Ten to 20 percent enrichment was observed in terrestrially-derived DOM in the two Pacific-derived haloclines relative to the Atlantic-derived lower halocline. The application of PARAFAC modeling on fluorescent DOM is shown to be an important tool to investigate the dynamics and transport of allochthonous DOM in the Arctic Ocean.
Wang, Yayi; Qin, Jian; Zhou, Shuai; Lin, Ximao; Ye, Liu; Song, Chengkang; Yan, Yuan
2015-04-15
Industrial wastewater containing heavy metals that enters municipal wastewater treatment plants inevitably has a toxic impact on biological treatment processes. In this study, the impact of Cu(II) (0, 1.5, 2, 2.5, 3 mg/L) on the performance of denitrifying phosphorus removal (DPR) and microbial community structures was investigated. Particularly, the dynamic change in the amount and composition of extracellular polymeric substances (EPS), and the role of EPS in P removal, were assessed using three-dimensional excitation-emission matrix fluorescence spectroscopy combined with parallel factor (PARAFAC) analysis. The results showed that, after long-term adjustment, the P removal efficiency was maintained at 95 ± 2.7% at Cu(II) addition up to 2.5 mg/L, but deteriorated when the Cu(II) addition was 3 mg/L. The EPS content, including proteins and humic substances, increased with increasing Cu(II) additions at concentrations ≤2.5 mg/L. This property of EPS was beneficial for protecting phosphate-accumulating organisms (PAOs) against heavy metals, as both proteins and humic substances are strong ligands for Cu(II). Therefore, the PAOs abundance was still relatively high (67 ± 3%) when Cu(II) accumulation in sludge was up to 10 mg/g SS. PARAFAC confirmed that aromatic proteins could be transformed into soluble microbial byproduct-like material when microorganisms were subjected to Cu(II) stress, owing to their strong metal ion complexing capacity. The increase in the percentage of humic-like substances enhanced the detoxification function of the sludge EPS. EPS accounted for approximately 26-47% of P removed by adsorption when Cu(II) additions were between 0 and 2.5 mg/L. The EPS function, including binding toxic heavy metals and P storage, enhanced the operating stability of DPR systems. This study provides us with a better understanding of (1) the tolerance of DPR sludge to copper toxicity and (2) the function of sludge EPS in the presence of heavy metals in biological P removal systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
El Fallah, Rawa; Rouillon, Régis; Vouvé, Florence
2018-06-15
The fate of benzo(a)pyrene (BaP), a ubiquitous contaminant reported to be persistent in the environment, is largely controlled by its interactions with the soil organic matter. In the present study, the spectral characteristics of fluorophores present in the physical fractions of the soil organic matter were investigated in the presence of pure BaP solution. After extraction of humic substances (HSs), and their fractionation into fluvic acid (FA) and humic acid (HA), two fluorescent compounds (C 1 and C 2 ) were identified and characterized in each physical soil fraction, by means of fluorescence excitation-emission matrices (FEEMs) and Parallel Factor Analysis (PARAFAC). Then, to each type of fraction having similar DOC content, was added an increasing volume of pure BaP solution in attempt to assess the behavior of BaP with the fluorophores present in each one. The application of FEEMs-PARAFAC method validated a three-component model that consisted of the two resulted fluorophores from HSs, FA and HA (C 1 and C 2 ) and a BaP-like fluorophore (C 3 ). Spectral modifications were noted for components C 2 HSs (C 2 in humic substances fraction) (λex/λem: 420/490-520 nm), C 2 FA (C 2 in fulvic acid fraction) (λex/λem: 400/487(517) nm) and C 1 HA (C 1 in humic acid fraction) (λex/λem: 350/452(520) nm). We explored the impact of increasing the volume of the added pure BaP solution on the scores of the fluorophores present in the soil fractions. It was found that the scores of C 2 HSs, C 2 FA, and C 1 HA increased when the volume of the added pure BaP solution increased. Superposition of the excitation spectra of these fluorophores with the emission spectrum of BaP showed significant overlaps that might explain the observed interactions between BaP and the fluorescent compounds present in SOM physical fractions. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
El Fallah, Rawa; Rouillon, Régis; Vouvé, Florence
2018-06-01
The fate of benzo(a)pyrene (BaP), a ubiquitous contaminant reported to be persistent in the environment, is largely controlled by its interactions with the soil organic matter. In the present study, the spectral characteristics of fluorophores present in the physical fractions of the soil organic matter were investigated in the presence of pure BaP solution. After extraction of humic substances (HSs), and their fractionation into fluvic acid (FA) and humic acid (HA), two fluorescent compounds (C1 and C2) were identified and characterized in each physical soil fraction, by means of fluorescence excitation-emission matrices (FEEMs) and Parallel Factor Analysis (PARAFAC). Then, to each type of fraction having similar DOC content, was added an increasing volume of pure BaP solution in attempt to assess the behavior of BaP with the fluorophores present in each one. The application of FEEMs-PARAFAC method validated a three-component model that consisted of the two resulted fluorophores from HSs, FA and HA (C1 and C2) and a BaP-like fluorophore (C3). Spectral modifications were noted for components C2HSs (C2 in humic substances fraction) (λex/λem: 420/490-520 nm), C2FA (C2 in fulvic acid fraction) (λex/λem: 400/487(517) nm) and C1HA (C1 in humic acid fraction) (λex/λem: 350/452(520) nm). We explored the impact of increasing the volume of the added pure BaP solution on the scores of the fluorophores present in the soil fractions. It was found that the scores of C2HSs, C2FA, and C1HA increased when the volume of the added pure BaP solution increased. Superposition of the excitation spectra of these fluorophores with the emission spectrum of BaP showed significant overlaps that might explain the observed interactions between BaP and the fluorescent compounds present in SOM physical fractions.
Li, Penghui; Chen, Ling; Zhang, Wen; Huang, Qinghui
2015-01-01
To investigate the seasonal and interannual dynamics of dissolved organic matter (DOM) in the Yangtze Estuary, surface and bottom water samples in the Yangtze Estuary and its adjacent sea were collected and characterized using fluorescence excitation-emission matrices (EEMs) and parallel factor analysis (PARAFAC) in both dry and wet seasons in 2012 and 2013. Two protein-like components and three humic-like components were identified. Three humic-like components decreased linearly with increasing salinity (r>0.90, p<0.001), suggesting their distribution could primarily be controlled by physical mixing. By contrast, two protein-like components fell below the theoretical mixing line, largely due to microbial degradation and removal during mixing. Higher concentrations of humic-like components found in 2012 could be attributed to higher freshwater discharge relative to 2013. There was a lack of systematic patterns for three humic-like components between seasons and years, probably due to variations of other factors such as sources and characteristics. Highest concentrations of fluorescent components, observed in estuarine turbidity maximum (ETM) region, could be attributed to sediment resuspension and subsequent release of DOM, supported by higher concentrations of fluorescent components in bottom water than in surface water at two stations where sediments probably resuspended. Meanwhile, photobleaching could be reflected from the changes in the ratios between fluorescence intensity (Fmax) of humic-like components and chromophoric DOM (CDOM) absorption coefficient (a355) along the salinity gradient. This study demonstrates the abundance and composition of DOM in estuaries are controlled not only by hydrological conditions, but also by its sources, characteristics and related estuarine biogeochemical processes. PMID:26107640
An Exact Model-Based Method for Near-Field Sources Localization with Bistatic MIMO System.
Singh, Parth Raj; Wang, Yide; Chargé, Pascal
2017-03-30
In this paper, we propose an exact model-based method for near-field sources localization with a bistatic multiple input, multiple output (MIMO) radar system, and compare it with an approximated model-based method. The aim of this paper is to propose an efficient way to use the exact model of the received signals of near-field sources in order to eliminate the systematic error introduced by the use of approximated model in most existing near-field sources localization techniques. The proposed method uses parallel factor (PARAFAC) decomposition to deal with the exact model. Thanks to the exact model, the proposed method has better precision and resolution than the compared approximated model-based method. The simulation results show the performance of the proposed method.
Garcia-Hernandez, Celia; Medina-Plaza, Cristina; Garcia-Cabezon, Cristina; Martin-Pedrosa, Fernando; del Valle, Isabel; de Saja, Jose Antonio; Rodríguez-Méndez, Maria Luz
2015-01-01
An array of electrochemical quartz crystal electrodes (EQCM) modified with nanostructured films based on phthalocyanines was developed and used to discriminate musts prepared from different varieties of grapes. Nanostructured films of iron, nickel and copper phthalocyanines were deposited on Pt/quartz crystals through the Layer by Layer technique by alternating layers of the corresponding phthalocyanine and poly-allylamine hydrochloride. Simultaneous electrochemical and mass measurements were used to study the mass changes accompanying the oxidation of electroactive species present in must samples obtained from six Spanish varieties of grapes (Juan García, Prieto Picudo, Mencía Regadío, Cabernet Sauvignon, Garnacha and Tempranillo). The mass and voltammetric outputs were processed using three-way models. Parallel Factor Analysis (PARAFAC) was successfully used to discriminate the must samples according to their variety. Multi-way partial least squares (N-PLS) evidenced the correlations existing between the voltammetric data and the polyphenolic content measured by chemical methods. Similarly, N-PLS showed a correlation between mass outputs and parameters related to the sugar content. These results demonstrated that electronic tongues based on arrays of EQCM sensors can offer advantages over arrays of mass or voltammetric sensors used separately. PMID:26610494
Impacts of beaver ponds on dissolved organic matter cycling in small temperate streams.
NASA Astrophysics Data System (ADS)
Larsen, J.; Lambert, T.; Larsen, A.; Lane, S.
2017-12-01
Beavers are engineers that modify the structure of river reaches and their hydrological functioning. By building dams, they modify the travel time of running waters and can lead to the flooding of surrounding soils and terrestrial vegetation, with potentially significant impact on biogeochemical cycles. Contradictory effects of beaver ponds on dissolved organic matter (DOM) concentration and composition have however been reported, and the underlying reasons are still unclear. In this study, we aimed to investigate the role of the landscape morphology as an important driver determining how a beaver population can affect stream DOM cycling. Four streams localized in Switzerland and Germany were visited during different seasons (spring, summer, winter) and monitored at upstream and downstream locations of beaver ponds across a hydrological cycle. The sites differed in terms of river channel morphology, presence or absence of floodplain, and vegetation cover. DOM composition was investigated through absorbance and fluorescence measurements coupled with parallel factor analysis (PARAFAC) along with stream water quality (nutrients, pH, dissolved oxygen and water temperature). The results show that the effects of beaver dams were variable, and emphasizes the importance of the geomorphological context.
Yang, Chenghu; Liu, Yangzhi; Cen, Qiulin; Zhu, Yaxian; Zhang, Yong
2018-02-01
The heterogeneous adsorption behavior of commercial humic acid (HA) on pristine and functionalized multi-walled carbon nanotubes (MWCNTs) was investigated by fluorescence excitation-emission matrix and parallel factor (EEM- PARAFAC) analysis. The kinetics, isotherms, thermodynamics and mechanisms of adsorption of HA fluorescent components onto MWCNTs were the focus of the present study. Three humic-like fluorescent components were distinguished, including one carboxylic-like fluorophore C1 (λ ex /λ em = (250, 310) nm/428nm), and two phenolic-like fluorophores, C2 (λ ex /λ em = (300, 460) nm/552nm) and C3 (λ ex /λ em = (270, 375) nm/520nm). The Lagergren pseudo-second-order model can be used to describe the adsorption kinetics of the HA fluorescent components. In addition, both the Freundlich and Langmuir models can be suitably employed to describe the adsorption of the HA fluorescent components onto MWCNTs with significantly high correlation coefficients (R 2 > 0.94, P< 0.05). The dissimilarity in the adsorption affinity (K d ) and nonlinear adsorption degree from the HA fluorescent components to MWCNTs was clearly observed. The adsorption mechanism suggested that the π-π electron donor-acceptor (EDA) interaction played an important role in the interaction between HA fluorescent components and the three MWCNTs. Furthermore, the values of the thermodynamic parameters, including the Gibbs free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°), showed that the adsorption of the HA fluorescent components on MWCNTs was spontaneous and exothermic. Copyright © 2017 Elsevier Inc. All rights reserved.
Baum, Andreas; Hansen, Per Waaben; Meyer, Anne S; Mikkelsen, Jørn Dalgaard
2013-08-06
Enzymes are used in many processes to release fermentable sugars for green production of biofuel, or the refinery of biomass for extraction of functional food ingredients such as pectin or prebiotic oligosaccharides. The complex biomasses may, however, require a multitude of specific enzymes which are active on specific substrates generating a multitude of products. In this paper we use the plant polymer, pectin, to present a method to quantify enzyme activity of two pectolytic enzymes by monitoring their superimposed spectral evolutions simultaneously. The data is analyzed by three chemometric multiway methods, namely PARAFAC, TUCKER3 and N-PLS, to establish simultaneous enzyme activity assays for pectin lyase and pectin methyl esterase. Correlation coefficients Rpred(2) for prediction test sets are 0.48, 0.96 and 0.96 for pectin lyase and 0.70, 0.89 and 0.89 for pectin methyl esterase, respectively. The retrieved models are compared and prediction test sets show that especially TUCKER3 performs well, even in comparison to the supervised regression method N-PLS. Copyright © 2013 Elsevier B.V. All rights reserved.
He, Wei; Yang, Chen; Liu, Wenxiu; He, Qishuang; Wang, Qingmei; Li, Yilong; Kong, Xiangzhen; Lan, Xinyu; Xu, Fuliu
2016-12-01
In the shallow lakes, the partitioning of organic contaminants into the water phase from the solid phase might pose a potential hazard to both benthic and planktonic organisms, which would further damage aquatic ecosystems. This study determined the concentrations of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), and phthalate esters (PAEs) in both the sediment and the pore water from Lake Chaohu and calculated the sediment - pore water partition coefficient (K D ) and the organic carbon normalized sediment - pore water partition coefficient (K OC ), and explored the effects of particle size, organic matter content, and parallel factor fluorescent organic matter (PARAFAC-FOM) on K D . The results showed that log K D values of PAHs (2.61-3.94) and OCPs (1.75-3.05) were significantly lower than that of PAEs (4.13-5.05) (p < 0.05). The chemicals were ranked by log K OC as follows: PAEs (6.05-6.94) > PAHs (4.61-5.86) > OCPs (3.62-4.97). A modified MCI model can predict K OC values in a range of log 1.5 at a higher frequency, especially for PAEs. The significantly positive correlation between K OC and the octanol - water partition coefficient (K OW ) were observed for PAHs and OCPs. However, significant correlation was found for PAEs only when excluding PAEs with lower K OW . Sediments with smaller particle sizes (clay and silt) and their organic matter would affect distributions of PAHs and OCPs between the sediment and the pore water. Protein-like fluorescent organic matter (C2) was associated with the K D of PAEs. Furthermore, the partitioning of PARAFAC-FOM between the sediment and the pore water could potentially affect the distribution of organic pollutants. The partitioning mechanism of PAEs between the sediment and the pore water might be different from that of PAHs and OCPs, as indicated by their associations with influencing factors and K OW . Copyright © 2016 Elsevier Ltd. All rights reserved.
DeVilbiss, Stephen E; Zhou, Zhengzhen; Klump, J Val; Guo, Laodong
2016-09-15
Green Bay, Lake Michigan, USA, is the largest freshwater estuary in the Laurentian Great Lakes and receives disproportional terrestrial inputs as a result of a high watershed to bay surface area ratio. While seasonal hypoxia and the formation of "dead zones" in Green Bay have received increasing attention, there are no systematic studies on the dynamics of dissolved organic matter (DOM) and its linkage to the development of hypoxia. During summer 2014, bulk dissolved organic carbon (DOC) analysis, UV-vis spectroscopy, and fluorescence excitation-emission matrices (EEMs) coupled with PARAFAC analysis were used to quantify the abundance, composition and source of DOM and their spatiotemporal variations in Green Bay, Lake Michigan. Concentrations of DOC ranged from 202 to 571μM-C (average=361±73μM-C) in June and from 279 to 610μM-C (average=349±64μM-C) in August. In both months, absorption coefficient at 254nm (a254) was strongly correlated to bulk DOC and was most abundant in the Fox River, attesting a dominant terrestrial input. Non-chromophoric DOC comprised, on average, ~32% of bulk DOC in June with higher terrestrial DOM and ~47% in August with higher aquagenic DOM, indicating that autochthonous and more degraded DOM is of lower optical activity. PARAFAC modeling on EEM data resulted in four major fluorescent DOM components, including two terrestrial humic-like, one aquagenic humic-like, and one protein-like component. Variations in the abundance of DOM components further supported changes in DOM sources. Mixing behavior of DOM components also indicated that while bulk DOM behaved quasi-conservatively, significant compositional changes occurred during transport from the Fox River to the open bay. Copyright © 2016 Elsevier B.V. All rights reserved.
Potential linkage between sediment oxygen demand and pore water chemistry in weir-impounded rivers.
Lee, Mi-Hee; Jung, Heon-Jae; Kim, Sung-Han; An, Sung-Uk; Choi, Jung Hyun; Lee, Hyo-Jin; Huh, In-Ae; Hur, Jin
2018-04-01
Due to recent weir construction on four major rivers in South Korea, sediment has accumulated in the river bottom near the weirs, which has in turn raised concerns over the quality of overlying water. In this study, the seasonal and spatial variations of sediment oxygen demand (SOD) and the influencing factors were explored using pore water chemistry for the weir-impounded rivers. Muddy and sandy sediment samples were taken from 24 different sites along the four major rivers in summer and autumn, 2016. The SOD was measured in a laboratory based on 10-hour incubation at in situ temperature. The measured pore water chemistry included the concentrations of dissolved organic carbon (DOC), total dissolved nitrogen (TDN), inorganic nitrogen (NH 3 -N, NO 3 -N, NO 2 -N), and phosphate phosphorous (PO 4 -P), and the optical properties from UV absorption spectra and fluorescence excitation-emission matrixes coupled with parallel factor analysis (EEM-PARAFAC). Significant differences in SOD values between muddy and sandy sediments were found only in summer (p=0.047). The higher SOD in summer versus autumn (p=0.015) was attributed to seasonal temperature differences. The higher NH 3 -N and the lower NO 3 -N of the pore water samples in summer versus autumn suggested that organic nitrogen decomposition via an ammonification and nitrification process could operate as an important factor for the SOD variations in summer and autumn, respectively. Principal component analysis revealed the mutual contributions of nitrogen-associated processes and the organic composition in pore water to increasing SOD levels. NH 3 -N in sediment pore water alone could be a good predictor for SOD. However, multiple regression analysis using NH 3 -N, fluorescence index and terrestrial humic-like components improved the estimation capability for SOD variations. Copyright © 2017 Elsevier B.V. All rights reserved.
Laamiri, Imen; Khouaja, Anis; Messaoud, Hassani
2015-03-01
In this paper we provide a convergence analysis of the alternating RGLS (Recursive Generalized Least Square) algorithm used for the identification of the reduced complexity Volterra model describing stochastic non-linear systems. The reduced Volterra model used is the 3rd order SVD-PARAFC-Volterra model provided using the Singular Value Decomposition (SVD) and the Parallel Factor (PARAFAC) tensor decomposition of the quadratic and the cubic kernels respectively of the classical Volterra model. The Alternating RGLS (ARGLS) algorithm consists on the execution of the classical RGLS algorithm in alternating way. The ARGLS convergence was proved using the Ordinary Differential Equation (ODE) method. It is noted that the algorithm convergence canno׳t be ensured when the disturbance acting on the system to be identified has specific features. The ARGLS algorithm is tested in simulations on a numerical example by satisfying the determined convergence conditions. To raise the elegies of the proposed algorithm, we proceed to its comparison with the classical Alternating Recursive Least Squares (ARLS) presented in the literature. The comparison has been built on a non-linear satellite channel and a benchmark system CSTR (Continuous Stirred Tank Reactor). Moreover the efficiency of the proposed identification approach is proved on an experimental Communicating Two Tank system (CTTS). Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Nguyen, Hang Vo-Minh; Choi, Jung Hyun
2015-06-01
In this study, we conducted growth chamber experiments using three types of soil (wetland, rice paddy, and forest) under the conditions of a severe increase in the temperature and N-deposition in order to investigate how extreme weather influences the characteristics of the dissolved organic matter (DOM) leaching from different soil types. This leachate controls the quantity and quality of DOM in surface water systems. After 5 months of incubation, the dissolved organic carbon (DOC) concentrations decreased in the range of 21.1 to 88.9 %, while the specific UV absorption (SUVA) values increased substantially in the range of 19.9 to 319.9 % for all of the samples. Higher increases in the SUVA values were observed at higher temperatures, whereas the opposite trend was observed for samples with N-addition. The parallel factor analysis (PARAFAC) results showed that four fluorescence components: terrestrial humic-like (component 1 (C1)), microbial humic-like (component 2 (C2)), protein-like (component 3 (C3)), and anthropogenic humic-like (component 4 (C4)) constituted the fluorescence matrices of soil samples. During the experiment, labile DOM from the soils was consumed and transformed into resistant aromatic carbon structures and less biodegradable components via microbial processes. The principle component analysis (PCA) results indicated that severe temperatures and N-deposition could enhance the contribution of the aromatic carbon compounds and humic-like components in the soil samples.
NASA Astrophysics Data System (ADS)
Sajjadi, S. Maryam; Abdollahi, Hamid; Rahmanian, Reza; Bagheri, Leila
2016-03-01
A rapid, simple and inexpensive method using fluorescence spectroscopy coupled with multi-way methods for the determination of aflatoxins B1 and B2 in peanuts has been developed. In this method, aflatoxins are extracted with a mixture of water and methanol (90:10), and then monitored by fluorescence spectroscopy producing EEMs. Although the combination of EEMs and multi-way methods is commonly used to determine analytes in complex chemical systems with unknown interference(s), rank overlap problem in excitation and emission profiles may restrain the application of this strategy. If there is rank overlap in one mode, there are several three-way algorithms such as PARAFAC under some constraints that can resolve this kind of data successfully. However, the analysis of EEM data is impossible when some species have rank overlap in both modes because the information of the data matrix is equivalent to a zero-order data for that species, which is the case in our study. Aflatoxins B1 and B2 have the same shape of spectral profiles in both excitation and emission modes and we propose creating a third order data for each sample using solvent as a new additional selectivity mode. This third order data, in turn, converted to the second order data by augmentation, a fact which resurrects the second order advantage in original EEMs. The three-way data is constructed by stacking augmented data in the third way, and then analyzed by two powerful second order calibration methods (BLLS-RBL and PARAFAC) to quantify the analytes in four kinds of peanut samples. The results of both methods are in good agreement and reasonable recoveries are obtained.
USDA-ARS?s Scientific Manuscript database
Interaction and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in lake systems. Thus, coagulation and fractionation of plant-derived DOM by di- and tri-valent Ca, Al, and Fe ions were investigated. Metal ion-induc...
Jason B. Fellman; David V. D' Amore; Eran Hood; Richard D. Boone
2008-01-01
Understanding how the concentration and chemical quality of dissolved organic matter (DOM) varies in soils is critical because DOM influences an array of biological, chemical, and physical processes. We used PARAFAC modeling of excitation-emission fluorescence spectroscopy, specific UV absorbance (SUVA254) and biodegradable dissolved organic...
Differences in chewing sounds of dry-crisp snacks by multivariate data analysis
NASA Astrophysics Data System (ADS)
De Belie, N.; Sivertsvik, M.; De Baerdemaeker, J.
2003-09-01
Chewing sounds of different types of dry-crisp snacks (two types of potato chips, prawn crackers, cornflakes and low calorie snacks from extruded starch) were analysed to assess differences in sound emission patterns. The emitted sounds were recorded by a microphone placed over the ear canal. The first bite and the first subsequent chew were selected from the time signal and a fast Fourier transformation provided the power spectra. Different multivariate analysis techniques were used for classification of the snack groups. This included principal component analysis (PCA) and unfold partial least-squares (PLS) algorithms, as well as multi-way techniques such as three-way PLS, three-way PCA (Tucker3), and parallel factor analysis (PARAFAC) on the first bite and subsequent chew. The models were evaluated by calculating the classification errors and the root mean square error of prediction (RMSEP) for independent validation sets. It appeared that the logarithm of the power spectra obtained from the chewing sounds could be used successfully to distinguish the different snack groups. When different chewers were used, recalibration of the models was necessary. Multi-way models distinguished better between chewing sounds of different snack groups than PCA on bite or chew separately and than unfold PLS. From all three-way models applied, N-PLS with three components showed the best classification capabilities, resulting in classification errors of 14-18%. The major amount of incorrect classifications was due to one type of potato chips that had a very irregular shape, resulting in a wide variation of the emitted sounds.
Bayesian CP Factorization of Incomplete Tensors with Automatic Rank Determination.
Zhao, Qibin; Zhang, Liqing; Cichocki, Andrzej
2015-09-01
CANDECOMP/PARAFAC (CP) tensor factorization of incomplete data is a powerful technique for tensor completion through explicitly capturing the multilinear latent factors. The existing CP algorithms require the tensor rank to be manually specified, however, the determination of tensor rank remains a challenging problem especially for CP rank . In addition, existing approaches do not take into account uncertainty information of latent factors, as well as missing entries. To address these issues, we formulate CP factorization using a hierarchical probabilistic model and employ a fully Bayesian treatment by incorporating a sparsity-inducing prior over multiple latent factors and the appropriate hyperpriors over all hyperparameters, resulting in automatic rank determination. To learn the model, we develop an efficient deterministic Bayesian inference algorithm, which scales linearly with data size. Our method is characterized as a tuning parameter-free approach, which can effectively infer underlying multilinear factors with a low-rank constraint, while also providing predictive distributions over missing entries. Extensive simulations on synthetic data illustrate the intrinsic capability of our method to recover the ground-truth of CP rank and prevent the overfitting problem, even when a large amount of entries are missing. Moreover, the results from real-world applications, including image inpainting and facial image synthesis, demonstrate that our method outperforms state-of-the-art approaches for both tensor factorization and tensor completion in terms of predictive performance.
NASA Astrophysics Data System (ADS)
Višňák, Jakub; Steudtner, Robin; Kassahun, Andrea; Hoth, Nils
2017-09-01
Natural waters' uranium level monitoring is of great importance for health and environmental protection. One possible detection method is the Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), which offers the possibility to distinguish different uranium species. The analytical identification of aqueous uranium species in natural water samples is of distinct importance since individual species differ significantly in sorption properties and mobility in the environment. Samples originate from former uranium mine sites and have been provided by Wismut GmbH, Germany. They have been characterized by total elemental concentrations and TRLFS spectra. Uranium in the samples is supposed to be in form of uranyl(VI) complexes mostly with carbonate (CO32- ) and bicarbonate (HCO3- ) and to lesser extend with sulphate (SO42- ), arsenate (AsO43- ), hydroxo (OH- ), nitrate (NO3- ) and other ligands. Presence of alkaline earth metal dications (M = Ca2+ , Mg2+ , Sr2+ ) will cause most of uranyl to prefer ternary complex species, e.g. Mn(UO2)(CO3)32n-4 (n ɛ {1; 2}). From species quenching the luminescence, Cl- and Fe2+ should be mentioned. Measurement has been done under cryogenic conditions to increase the luminescence signal. Data analysis has been based on Singular Value Decomposition and monoexponential fit of corresponding loadings (for separate TRLFS spectra, the "Factor analysis of Time Series" (FATS) method) and Parallel Factor Analysis (PARAFAC, all data analysed simultaneously). From individual component spectra, excitation energies T00, uranyl symmetric mode vibrational frequencies ωgs and excitation driven U-Oyl bond elongation ΔR have been determined and compared with quasirelativistic (TD)DFT/B3LYP theoretical predictions to cross -check experimental data interpretation. Note to the reader: Several errors have been produced in the initial version of this article. This new version published on 23 October 2017 contains all the corrections.
Jason B. Fellman; Eran Hood; David V. D' Amore; Richard T. Edwards; Dan White
2009-01-01
The composition and biodegradability of streamwater dissolved organic matter (DOM) varies with source material and degree of transformation. We combined PARAFAC modeling of fluorescence excitation-emission spectroscopy and biodegradable dissolved organic carbon (BDOC) incubations to investigate seasonal changes in the lability of DOM along a soil-stream continuum in...
The GNAT: A new tool for processing NMR data.
Castañar, Laura; Poggetto, Guilherme Dal; Colbourne, Adam A; Morris, Gareth A; Nilsson, Mathias
2018-06-01
The GNAT (General NMR Analysis Toolbox) is a free and open-source software package for processing, visualising, and analysing NMR data. It supersedes the popular DOSY Toolbox, which has a narrower focus on diffusion NMR. Data import of most common formats from the major NMR platforms is supported, as well as a GNAT generic format. Key basic processing of NMR data (e.g., Fourier transformation, baseline correction, and phasing) is catered for within the program, as well as more advanced techniques (e.g., reference deconvolution and pure shift FID reconstruction). Analysis tools include DOSY and SCORE for diffusion data, ROSY T 1 /T 2 estimation for relaxation data, and PARAFAC for multilinear analysis. The GNAT is written for the MATLAB® language and comes with a user-friendly graphical user interface. The standard version is intended to run with a MATLAB installation, but completely free-standing compiled versions for Windows, Mac, and Linux are also freely available. © 2018 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons Ltd.
Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery.
Xie, Qi; Zhao, Qian; Meng, Deyu; Xu, Zongben
2017-08-02
It is well known that the sparsity/low-rank of a vector/matrix can be rationally measured by nonzero-entries-number ($l_0$ norm)/nonzero- singular-values-number (rank), respectively. However, data from real applications are often generated by the interaction of multiple factors, which obviously cannot be sufficiently represented by a vector/matrix, while a high order tensor is expected to provide more faithful representation to deliver the intrinsic structure underlying such data ensembles. Unlike the vector/matrix case, constructing a rational high order sparsity measure for tensor is a relatively harder task. To this aim, in this paper we propose a measure for tensor sparsity, called Kronecker-basis-representation based tensor sparsity measure (KBR briefly), which encodes both sparsity insights delivered by Tucker and CANDECOMP/PARAFAC (CP) low-rank decompositions for a general tensor. Then we study the KBR regularization minimization (KBRM) problem, and design an effective ADMM algorithm for solving it, where each involved parameter can be updated with closed-form equations. Such an efficient solver makes it possible to extend KBR to various tasks like tensor completion and tensor robust principal component analysis. A series of experiments, including multispectral image (MSI) denoising, MSI completion and background subtraction, substantiate the superiority of the proposed methods beyond state-of-the-arts.
Dvorski, Sabine E-M; Gonsior, Michael; Hertkorn, Norbert; Uhl, Jenny; Müller, Hubert; Griebler, Christian; Schmitt-Kopplin, Philippe
2016-06-07
At numerous groundwater sites worldwide, natural dissolved organic matter (DOM) is quantitatively complemented with petroleum hydrocarbons. To date, research has been focused almost exclusively on the contaminants, but detailed insights of the interaction of contaminant biodegradation, dominant redox processes, and interactions with natural DOM are missing. This study linked on-site high resolution spatial sampling of groundwater with high resolution molecular characterization of DOM and its relation to groundwater geochemistry across a petroleum hydrocarbon plume cross-section. Electrospray- and atmospheric pressure photoionization (ESI, APPI) ultrahigh resolution mass spectrometry (FT-ICR-MS) revealed a strong interaction between DOM and reactive sulfur species linked to microbial sulfate reduction, i.e., the key redox process involved in contaminant biodegradation. Excitation emission matrix (EEM) fluorescence spectroscopy in combination with Parallel Factor Analysis (PARAFAC) modeling attributed DOM samples to specific contamination traits. Nuclear magnetic resonance (NMR) spectroscopy evaluated the aromatic compounds and their degradation products in samples influenced by the petroleum contamination and its biodegradation. Our orthogonal high resolution analytical approach enabled a comprehensive molecular level understanding of the DOM with respect to in situ petroleum hydrocarbon biodegradation and microbial sulfate reduction. The role of natural DOM as potential cosubstrate and detoxification reactant may improve future bioremediation strategies.
Zhou, Yongqiang; Jeppesen, Erik; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Zhu, Guangwei
2016-02-01
Surface drinking water sources have been threatened globally and there have been few attempts to detect point-source contamination in these waters using chromophoric dissolved organic matter (CDOM) fluorescence. To determine the optimal wavelength derived from CDOM fluorescence as an indicator of point-source contamination in drinking waters, a combination of field campaigns in Lake Qiandao and a laboratory wastewater addition experiment was used. Parallel factor (PARAFAC) analysis identified six components, including three humic-like, two tryptophan-like, and one tyrosine-like component. All metrics showed strong correlation with wastewater addition (r(2) > 0.90, p < 0.0001). Both the field campaigns and the laboratory contamination experiment revealed that CDOM fluorescence at 275/342 nm was the most responsive wavelength to the point-source contamination in the lake. Our results suggest that pollutants in Lake Qiandao had the highest concentrations in the river mouths of upstream inflow tributaries and the single wavelength at 275/342 nm may be adapted for online or in situ fluorescence measurements as an early warning of contamination events. This study demonstrates the potential utility of CDOM fluorescence to monitor water quality in surface drinking water sources. Copyright © 2015 Elsevier Ltd. All rights reserved.
Freye, Chris E; Moore, Nicholas R; Synovec, Robert E
2018-02-16
The complementary information provided by tandem ionization time-of-flight mass spectrometry (TI-TOFMS) is investigated for comparative discovery-based analysis, when coupled with comprehensive two-dimensional gas chromatography (GC × GC). The TI conditions implemented were a hard ionization energy (70 eV) concurrently collected with a soft ionization energy (14 eV). Tile-based Fisher ratio (F-ratio) analysis is used to analyze diesel fuel spiked with twelve analytes at a nominal concentration of 50 ppm. F-ratio analysis is a supervised discovery-based technique that compares two different sample classes, in this case spiked and unspiked diesel, to reduce the complex GC × GC-TI-TOFMS data into a hit list of class distinguishing analyte features. Hit lists of the 70 eV and 14 eV data sets, and the single hit list produced when the two data sets are fused together, are all investigated. For the 70 eV hit list, eleven of the twelve analytes were found in the top thirteen hits. For the 14 eV hit list, nine of the twelve analytes were found in the top nine hits, with the other three analytes either not found or well down the hit list. As expected, the F-ratios per m/z used to calculate each average F-ratio per hit were generally smaller fragment ions for the 70 eV data set, while the larger fragment ions were emphasized in the 14 eV data set, supporting the notion that complementary information was provided. The discovery rate was improved when F-ratio analysis was performed on the fused data sets resulted in eleven of the twelve analytes being at the top of the single hit list. Using PARAFAC, analytes that were "discovered" were deconvoluted in order to obtain their identification via match values (MV). Location of the analytes and the "F-ratio spectra" obtained from F-ratio analysis were used to guide the deconvolution. Eight of the twelve analytes where successfully deconvoluted and identified using the in-house library for the 70 eV data set. PARAFAC deconvolution of the two separate data sets provided increased confidence in identification of "discovered" analytes. Herein, we explore the limit of analyte discovery and limit of analyte identification, and demonstrate a general workflow for the investigation of key chemical features in complex samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Mortera, Pablo; Zuljan, Federico A; Magni, Christian; Bortolato, Santiago A; Alarcón, Sergio H
2018-02-01
Multivariate calibration coupled to RP-HPLC with diode array detection (HPLC-DAD) was applied to the identification and the quantitative evaluation of the short chain organic acids (malic, oxalic, formic, lactic, acetic, citric, pyruvic, succinic, tartaric, propionic and α-cetoglutaric) in fermented food. The goal of the present study was to get the successful resolution of a system in the combined occurrence of strongly coeluting peaks, of distortions in the time sensors among chromatograms, and of the presence of unexpected compounds not included in the calibration step. Second-order HPLC-DAD data matrices were obtained in a short time (10min) on a C18 column with a chromatographic system operating in isocratic mode (mobile phase was 20mmolL -1 phosphate buffer at pH 2.20) and a flow-rate of 1.0mLmin -1 at room temperature. Parallel factor analysis (PARAFAC) and unfolded partial least-squares combined with residual bilinearization (U-PLS/RBL) were the second-order calibration algorithms select for data processing. The performance of the analytical parameters was good with an outstanding limit of detection (LODs) for acids ranging from 0.15 to 10.0mmolL -1 in the validation samples. The improved method was applied to the analysis of many dairy products (yoghurt, cultured milk and cheese) and wine. The method was shown as an effective means for determining and following acid contents in fermented food and was characterized by reducibility with simple, high resolution and rapid procedure without derivatization of analytes. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Yihan; Yu, Kaifeng; Zhou, Yongqiang; Ren, Longfei; Kirumba, George; Zhang, Bo; He, Yiliang
2017-12-01
Natural surface drinking water sources with the increasing chromophoric dissolved organic matter (CDOM) have profound influences on the aquatic environment and drinking water safety. Here, this study investigated the spatiotemporal variations of CDOM in Fengshuba Reservoir and its catchments in China. Twenty-four surface water samples, 45 water samples (including surface water, middle water, and bottom water), and 15 pore water samples were collected from rivers, reservoir, and sediment of the reservoir, respectively. Then, three fluorescent components, namely two humic-like components (C1 and C2) and a tryptophan-like component (C3), were identified from the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) for all samples. For spatial distributions, the levels of CDOM and two humic-like components in the reservoir were significantly lower than those in the upstream rivers (p < 0.01), indicating that the reservoir may act as a reactor to partly reduce the levels of exogenous input including CDOM and humic-like matters from the surrounding catchment. For temporal variations, the mean levels of CDOM and three fluorescent components did not significantly change in rivers, suggesting that perennial anthropic activity maybe an important factor impacting the concentration and composition of river CDOM but not the precipitation and runoff. However, these mean values of CDOM for the bulk waters of the reservoir changed markedly along with seasonal variations, indicating that the hydrological processes in the reservoir could control the quality and quantity of CDOM. The different correlations between the fluorescent components and primary water parameters in the river, reservoir, and pore water samples further suggest that the reservoir is an important factor regulating the migration and transformation of FDOM along with the variations of different environmental gradients.
Chen, Juan; Chen, Hao; Zhang, Xing-wen; Lei, Kun; Kenny, Jonathan E
2015-11-01
A fluorescence quenching model using copper(II) ion (Cu(2+)) ion selective electrode (Cu-ISE) is developed. It uses parallel factor analysis (PARAFAC) to model fluorescence excitation-emission matrices (EEMs) of humic acid (HA) samples titrated with Cu(2+) to resolve fluorescence response of fluorescent components to Cu(2+) titration. Meanwhile, Cu-ISE is employed to monitor free Cu(2+) concentration ([Cu]) at each titration step. The fluorescence response of each component is fit individually to a nonlinear function of [Cu] to find the Cu(2+) conditional stability constant for that component. This approach differs from other fluorescence quenching models, including the most up-to-date multi-response model that has a problematic assumption on Cu(2+) speciation, i.e., an assumption that total Cu(2+) present in samples is a sum of [Cu] and those bound by fluorescent components without taking into consideration the contribution of non-fluorescent organic ligands and inorganic ligands to speciation of Cu(2+). This paper employs the new approach to investigate Cu(2+) binding by Pahokee peat HA (PPHA) at pH values of 6.0, 7.0, and 8.0 buffered by phosphate or without buffer. Two fluorescent components (C1 and C2) were identified by PARAFAC. For the new quenching model, the conditional stability constants (logK1 and logK2) of the two components all increased with increasing pH. In buffered solutions, the new quenching model reported logK1 = 7.11, 7.89, 8.04 for C1 and logK2 = 7.04, 7.64, 8.11 for C2 at pH 6.0, 7.0, and 8.0, respectively, nearly two log units higher than the results of the multi-response model. Without buffer, logK1 and logK2 decreased but were still high (>7) at pH 8.0 (logK1 = 7.54, logK2 = 7.95), and all the values were at least 0.5 log unit higher than those (4.83 ~ 5.55) of the multi-response model. These observations indicate that the new quenching model is more intrinsically sensitive than the multi-response model in revealing strong fluorescent binding sites of PPHA in different experimental conditions. The new model was validated by testing it with a mixture of two fluorescing Cu(2+) chelating organic compounds, i.e., l-tryptophan and salicylic acid mixed with one non-fluorescent binding compound oxalic acid titrated with Cu(2+) at pH 5.0.
Singh, Shatrughan; Dash, Padmanava; Silwal, Saurav; Feng, Gary; Adeli, Ardeshir; Moorhead, Robert J
2017-06-01
Water quality of lakes, estuaries, and coastal areas serves as an indicator of the overall health of aquatic ecosystems as well as the health of the terrestrial ecosystem that drains to the water body. Land use and land cover plays not only a significant role in controlling the quantity of the exported dissolved organic matter (DOM) but also influences the quality of DOM via various biogeochemical and biodegradation processes. We examined the characteristics and spatial distribution of DOM in five major lakes, in an estuary, and in the coastal waters of the Mississippi, USA, and investigated the influence of the land use and land cover of their watersheds on the DOM composition. We employed absorption and fluorescence spectroscopy including excitation-emission matrix (EEM) combined with parallel factor (PARAFAC) analysis modeling techniques to determine optical properties of DOM and its characteristics in this study. We developed a site-specific PARAFAC model to evaluate DOM characteristics resulting in five diverse DOM compositions that included two terrestrial humic-like (C1 and C3), two microbial humic-like (C2 and C5), and one protein-like (C4) DOM. Our results showed elevated fluorescence levels of microbial humic-like or protein-like DOM in the lakes and coastal waters, while the estuarine waters showed relatively high fluorescence levels of terrestrial humic-like DOM. The results also showed that percent forest and wetland coverage explained 68 and 82% variability, respectively, in terrestrial humic-like DOM exports, while 87% variability in microbially derived humiclike DOM was explained by percent agricultural lands. Strong correlations between microbial humic-like DOM and fluorescence-derived DOM indices such as biological index (BIX) and fluorescence index (FI) indicated autochthonous characteristics in the lakes, while the estuary showed largely allochthonous DOM of terrestrial origin. We also observed higher concentrations of total dissolved phosphorous (TDP) and ammonium nitrogen (NH 4 -N) in coastal waters potentially due to photodegradation of refractory DOM derived from the sediment-bound organic matter in the coastal wetlands. This study highlights the relationships between the DOM compositions in the water and the land use and land cover in the watershed. The spatial variability of DOM in three different types of aquatic environments enhances the understanding of the role of land use and land cover in carbon cycling through export of organic matter to the aquatic ecosystems..
Bianchi, Thomas S; Osburn, Christopher; Shields, Michael R; Yvon-Lewis, Shari; Young, Jordan; Guo, Laodong; Zhou, Zhengzhen
2014-08-19
Recent work has shown the presence of anomalous dissolved organic matter (DOM), with high optical yields, in deep waters 15 months after the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GOM). Here, we continue to use the fluorescence excitation-emission matrix (EEM) technique coupled with parallel factor analysis (PARAFAC) modeling, measurements of bulk organic carbon, dissolved inorganic carbon (DIC), oil indices, and other optical properties to examine the chemical evolution and transformation of oil components derived from the DWH in the water column of the GOM. Seawater samples were collected from the GOM during July 2012, 2 years after the oil spill. This study shows that, while dissolved organic carbon (DOC) values have decreased since just after the DWH spill, they remain higher at some stations than typical deep-water values for the GOM. Moreover, we continue to observe fluorescent DOM components in deep waters, similar to those of degraded oil observed in lab and field experiments, which suggest that oil-related fluorescence signatures, as part of the DOM pool, have persisted for 2 years in the deep waters. This supports the notion that some oil-derived chromophoric dissolved organic matter (CDOM) components could still be identified in deep waters after 2 years of degradation, which is further supported by the lower DIC and partial pressure of carbon dioxide (pCO2) associated with greater amounts of these oil-derived components in deep waters, assuming microbial activity on DOM in the current water masses is only the controlling factor of DIC and pCO2 concentrations.
Chromophoric Dissolved Organic Matter in Southwestern Greenland Lakes
NASA Astrophysics Data System (ADS)
Osburn, C. L.; Giles, M. E.; Underwood, G. J. C.
2014-12-01
Dissolved organic matter (DOM) is an important property of Arctic lake ecosystems, originating from allochthonous inputs from catchments and autochthonous production by plankton in the water column. Little is known about the quality of DOM in Arctic lakes that lack substantial inputs from catchments and such lakes are abundant in southwestern Greenland. Colored dissolved organic matter (CDOM), the fraction that absorbs ultraviolet (UV) and visible light, is the controlling factor for the optical properties of many surface waters and as well informs on the quality of DOM. We examined the quality of CDOM in 21 lakes in southwestern Greenland, from the ice sheet to the coast, as part of a larger study examining the role of DOM in regulating microbial communities in these lakes. DOM was size fractioned and absorbance and fluorescence was measured on each size fraction, as well as on bulk DOM. The specific ultraviolet absorbance (SUVA) at 254 nm (SUVA254), computed by normalizing absorption (a254) to dissolved organic carbon (DOC) concentration, provided an estimate of the aromatic carbon content of DOM. SUVA values were generally <2, indicating low aromatic content. Parallel factor analysis (PARAFAC) of CDOM fluorescence was used to determine the relative abundance of allochthonous and autochthonous DOM in all size fractions. Younger lakes near the ice sheet and lakes near the coast had lower amounts of CDOM and appeared more microbial in quality. However, lakes centrally located between the ice sheet and the coast had the highest CDOM concentrations and exhibited strong humic fluorescence. Overall distinct differences in CDOM quality were observed between lake locations and among DOM size fractions.
Shi, Yong Xiang; Mangal, Vaughn; Guéguen, Céline
2016-07-01
Diffusive gradients in thin films (DGT) devices were used to investigate the temporal and spatial changes in vanadium (V) speciation in the Churchill estuary system (Manitoba). Thirty-six DGT sets and 95 discrete water samples were collected at 8 river and 3 estuary sites during spring freshet and summer base flow. Dissolved V concentration in the Churchill River at summer base flow was approximately 5 times higher than those during the spring high flow (27.3 ± 18.9 nM vs 4.8 ± 3.5 nM). DGT-labile V showed an opposite trend with greater values found during the spring high flow (2.6 ± 1.8 nM vs 1.4 ± 0.3 nM). Parallel factor analysis (PARAFAC) conducted on 95 excitation-emission matrix spectra validated four humic-like (C1C4) and one protein-like (C5) fluorescent components. Significant positive relationship was found between protein-like DOM and DGT-labile V (r = 0.53, p < 0.05), indicating that protein-like DOM possibly affected the DGT-labile V concentration in Churchill River. Sediment leachates were enriched in DGT-labile V and protein-like DOM, which can be readily released when river sediment began to thaw during spring freshet. Copyright © 2016 Elsevier Ltd. All rights reserved.
Light emitting diode excitation emission matrix fluorescence spectroscopy.
Hart, Sean J; JiJi, Renée D
2002-12-01
An excitation emission matrix (EEM) fluorescence instrument has been developed using a linear array of light emitting diodes (LED). The wavelengths covered extend from the upper UV through the visible spectrum: 370-640 nm. Using an LED array to excite fluorescence emission at multiple excitation wavelengths is a low-cost alternative to an expensive high power lamp and imaging spectrograph. The LED-EEM system is a departure from other EEM spectroscopy systems in that LEDs often have broad excitation ranges which may overlap with neighboring channels. The LED array can be considered a hybrid between a spectroscopic and sensor system, as the broad LED excitation range produces a partially selective optical measurement. The instrument has been tested and characterized using fluorescent dyes: limits of detection (LOD) for 9,10-bis(phenylethynyl)-anthracene and rhodamine B were in the mid parts-per-trillion range; detection limits for the other compounds were in the low parts-per-billion range (< 5 ppb). The LED-EEMs were analyzed using parallel factor analysis (PARAFAC), which allowed the mathematical resolution of the individual contributions of the mono- and dianion fluorescein tautomers a priori. Correct identification and quantitation of six fluorescent dyes in two to six component mixtures (concentrations between 12.5 and 500 ppb) has been achieved with root mean squared errors of prediction (RMSEP) of less than 4.0 ppb for all components.
Allen, Robert C; Rutan, Sarah C
2011-10-31
Simulated and experimental data were used to measure the effectiveness of common interpolation techniques during chromatographic alignment of comprehensive two-dimensional liquid chromatography-diode array detector (LC×LC-DAD) data. Interpolation was used to generate a sufficient number of data points in the sampled first chromatographic dimension to allow for alignment of retention times from different injections. Five different interpolation methods, linear interpolation followed by cross correlation, piecewise cubic Hermite interpolating polynomial, cubic spline, Fourier zero-filling, and Gaussian fitting, were investigated. The fully aligned chromatograms, in both the first and second chromatographic dimensions, were analyzed by parallel factor analysis to determine the relative area for each peak in each injection. A calibration curve was generated for the simulated data set. The standard error of prediction and percent relative standard deviation were calculated for the simulated peak for each technique. The Gaussian fitting interpolation technique resulted in the lowest standard error of prediction and average relative standard deviation for the simulated data. However, upon applying the interpolation techniques to the experimental data, most of the interpolation methods were not found to produce statistically different relative peak areas from each other. While most of the techniques were not statistically different, the performance was improved relative to the PARAFAC results obtained when analyzing the unaligned data. Copyright © 2011 Elsevier B.V. All rights reserved.
Characterization and Fate of Dissolved Organic Matter in the Lena Delta Region, Siberia
NASA Astrophysics Data System (ADS)
Goncalves-Araujo, R.; Stedmon, C. A.; Heim, B.; Dubinenkov, I.; Kraberg, A.; Moiseev, D.; Bracher, A.
2016-02-01
Connectivity between the terrestrial and marine environment in the Artic is changing as a result of climate change, influencing both freshwater budgets and the supply of carbon to the sea. This study characterizes the optical properties of dissolved organic matter (DOM) within the Lena Delta region and evaluates the behavior of DOM across the fresh water-marine gradient. Six fluorescent components (four humic-like; one marine humic-like; one protein-like) were identified by Parallel Factor Analysis (PARAFAC) with a clear dominance of allochthonous humic-like signals. Colored DOM (CDOM) and dissolved organic carbon (DOC) were highly correlated and had their distribution coupled with hydrographical conditions. Higher DOM concentration and degree of humification were associated with the low salinity waters of the Lena River. Values decreased towards the higher salinity Laptev Sea shelf waters. Results demonstrate different responses of DOM mixing in relation to the vertical structure of the water column, as reflecting the hydrographical dynamics in the region. Two mixing curves for DOM were apparent. In surface waters above the pycnocline there was a sharper decrease in DOM concentration in relation to salinity indicating removal. In the bottom water layer the DOM decrease within salinity was less. We propose there is a removal of DOM occurring primarily at the surface layer, which is likely driven by photodegradation and flocculation.
Chen, Meilian; Kim, Sunghwan; Park, Jae-Eun; Kim, Hyun Sik; Hur, Jin
2016-07-01
Noting the source-dependent properties of dissolved organic matter (DOM), this study explored the recoverable compounds by solid phase extraction (SPE) of two common sorbents (C18 and PPL) eluted with methanol solvent for contrasting DOM sources via fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Fresh algae and leaf litter extracts DOM, one riverine DOM, and one upstream lacustrine DOM were selected for the comparison. C18 sorbent was generally found to extract more diverse molecular formula, relatively higher molecular weight, and more heteroatomic DOM compounds within the studied mass range than PPL sorbent except for the leaf litter extract. Even with the same sorbent, the main molecular features of the two end member DOM were distributed on different sides of the axes of a multivariate ordination, indicating the source-dependent characteristics of the recoverable compounds by the sorbents. In addition, further examination of the molecular formula uniquely present in the two end members and the upstream lake DOM suggested that proteinaceous, tannin-like, and heteroatomic DOM constituents might be potential compound groups which are labile and easily degraded during their mobilization into downstream watershed. This study provides new insights into the sorbent selectivity of DOM from diverse sources and potential lability of various compound groups.
NASA Astrophysics Data System (ADS)
Kwon, Hyeong Kyu; Kim, Guebuem; Lim, Weol Ae; Park, Jong Woo
2018-04-01
We investigated phytoplankton pigments, dissolved organic carbon (DOC), and fluorescent dissolved organic matter (FDOM) during the summers of 2013 and 2016 in the coastal area of Tongyeong, Korea, where Cochlodinium polykrikoides blooms often occur. The density of red tides was evaluated using a dinoflagellate pigment, peridinin. The concentrations of peridinin and DOC in the patch areas were 15- and 4-fold higher than those in the non-patch areas. The parallel factor analysis (PARAFAC) model identified one protein-like FDOM (FDOMT) and two humic-like FDOM, classically classified as marine FDOM (FDOMM) and terrestrial FDOM (FDOMC). The concentrations of FDOMT in the patch areas were 5-fold higher than those in the non-patch areas, likely associated with biological production. In general, FDOMM and FDOMC are known to be dependent exclusively on salinity in any surface waters of the coastal ocean. However, in this study, we observed strikingly enhanced FDOMC concentration over that expected from the salinity mixing, whereas FDOMM increases were not clear. These FDOMC concentrations showed a significant positive correlation against peridinin, indicating that the production of FDOMC is associated with the red tide blooms. Our results suggest that FDOMC can be naturally enriched by some phytoplankton species, without FDOMM enrichment. Such naturally produced FDOM may play a critical role in biological production as well as biogeochemical cycle in red tide regions.
Wang, Yong; Zhu, Ruirui; Ni, Yongnian; Kokot, Serge
2014-04-05
Interactions between the anti-carcinogens, bendamustine (BDM) and dexamethasone (DXM), with bovine serum albumin (BSA) were investigated with the use of fluorescence and UV-vis spectroscopies under pseudo-physiological conditions (Tris-HCl buffer, pH 7.4). The static mechanism was responsible for the fluorescence quenching during the interactions; the binding formation constant of the BSA-BDM complex and the binding number were 5.14×10(5)Lmol(-1) and 1.0, respectively. Spectroscopic studies for the formation of BDM-BSA complex were interpreted with the use of multivariate curve resolution - alternating least squares (MCR-ALS), which supported the complex formation. The BSA samples treated with site markers (warfarin - site I and ibuprofen - site II) were reacted separately with BDM and DXM; while both anti-carcinogens bound to site I, the binding constants suggested that DXM formed a more stable complex. Relative concentration profiles and the fluorescence spectra associated with BDM, DXM and BSA, were recovered simultaneously from the full fluorescence excitation-emission data with the use of the parallel factor analysis (PARAFAC) method. The results confirmed that on addition of DXM to the BDM-BSA complex, the BDM was replaced and the DXM-BSA complex formed; free BDM was released. This finding may have consequences for the transport of these drugs during any anti-cancer treatment. Copyright © 2013 Elsevier B.V. All rights reserved.
Stream Dissolved Organic Matter Quantity and Quality Along a Wetland-Cropland Catchment Gradient
NASA Astrophysics Data System (ADS)
McDonough, O.; Hosen, J. D.; Lang, M. W.; Oesterling, R.; Palmer, M.
2012-12-01
Wetlands may be critical sources of dissolved organic matter (DOM) to stream networks. Yet, more than half of wetlands in the continental United States have been lost since European settlement, with the majority of loss attributed to agriculture. The degree to which agricultural loss of wetlands impacts stream DOM is largely unknown and may have important ecological implications. Using twenty headwater catchments on the Delmarva Peninsula (Maryland, USA), we investigated the seasonal influence of wetland and cropland coverage on downstream DOM quantity and quality. In addition to quantifying bulk downstream dissolved organic carbon (DOC) concentration, we used a suite of DOM UV-absorbance metrics and parallel factor analysis (PARAFAC) modeling of excitation-emission fluorescence spectra (EEMs) to characterize DOM composition. Percent bioavailable DOC (%BDOC) was measured during the Spring sampling using a 28-day incubation. Percent wetland coverage and % cropland within the watersheds were significantly negatively correlated (r = -0.93, p < 0.001). Results show that % wetland coverage was positively correlated with stream DOM concentration, molecular weight, aromaticity, humic-like fluorescence, and allochthonous origin. Conversely, increased wetland coverage was negatively correlated with stream DOM protein-like fluorescence. Percent BDOC decreased with DOM humic-like fluorescence and increased with protein-like fluorescence. We observed minimal seasonal interaction between % wetland coverage and DOM concentration and composition across Spring, Fall, and Winter sampling seasons. However, principal component analysis suggested more pronounced seasonal differences exist in stream DOM. This study highlights the influence of wetlands on downstream DOM in agriculturally impacted landscapes where loss of wetlands to cultivation may significantly alter stream DOM quantity and quality.
NASA Astrophysics Data System (ADS)
Lajtha, K.; Lee, B. S.
2015-12-01
Dissolved organic matter (DOM) is a critical component of the carbon cycle linking terrestrial and aquatic ecosystems, yet DOM composition representative of DOM sources at headwater catchments in the western U.S is poorly understood. This study examined the effect of forest management history and hydrologic patterns on DOM chemistry at nine experimental watersheds located in the H.J. Andrews Long Term Ecological Research Experimental Forest of the Oregon Cascades. Stream water samples representing a three-week composite of each watershed were collected between May 2013 and February 2015 (32 events). DOM chemistry was characterized by examining UV and fluorescent properties of stream samples. Specific UV absorbance at 254 nm (SUVA254; Weishaar et al. 2003), generally indicative of aromaticity, showed the lowest value at the high elevation clear-cut site (watershed 6, 1,030 m) and the highest value at the low elevation clear-cut site (watershed 10, 680 m) throughout the study period. DOM fluorescent components, identified by this study using a multivariate statistical model, Parallel Factor Analysis (PARAFAC), did not differ significantly among experimental watersheds with varying forest management history. However, a protein-like DOM component exhibited temporal variations. Correlation analysis between the protein-like DOM and hydrologic patterns indicate that stream water during dry seasons come from protein-rich groundwater sources. This study shows UV and fluorescent spectroscopy DOM characterization is a viable finger printing method to detect DOM sources in pristine headwater streams at the western Cascades of Oregon where characterization of the stream water source with low DOC and DON concentrations is difficult.
Teglia, Carla M; Azcarate, Silvana M; Alcaráz, Mirta R; Goicoechea, Héctor C; Culzoni, María J
2018-08-15
A low-level data fusion strategy was developed and implemented for data processing of second-order liquid chromatographic data with dual detection, i.e. absorbance and fluorescence monitoring. The synergistic effect of coupling individual information provided by two different detectors was evaluated by analyzing the results gathered after the application of a series of data preprocessing steps and chemometric resolution. The chemometric modeling involved data analysis by MCR-ALS, PARAFAC and N-PLS. Their ability to handle the new data block was assessed through the estimation of the analytical figures of merits achieved in the prediction of a validation set containing fifteen fluorescent and non-fluorescent veterinary active ingredients that can be found in poultry litter. Eventually, the feasibility of the application of the fusion strategy to real poultry litter samples containing the studied compounds was verified. Copyright © 2018 Elsevier B.V. All rights reserved.
Wagner, Sasha; Jaffé, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron
2015-01-01
Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source, and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial, and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275−295, S350−400, SR, FI, freshness index, and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman's rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance, and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands. PMID:26636070
NASA Astrophysics Data System (ADS)
Gilmore, A. M.
2015-12-01
This study describes a method based on simultaneous absorbance and fluorescence excitation-emission mapping for rapidly and accurately monitoring dissolved organic carbon concentration and disinfection by-product formation potential for surface water sourced drinking water treatment. The method enables real-time monitoring of the Dissolved Organic Carbon (DOC), absorbance at 254 nm (UVA), the Specific UV Absorbance (SUVA) as well as the Simulated Distribution System Trihalomethane (THM) Formation Potential (SDS-THMFP) for the source and treated water among other component parameters. The method primarily involves Parallel Factor Analysis (PARAFAC) decomposition of the high and lower molecular weight humic and fulvic organic component concentrations. The DOC calibration method involves calculating a single slope factor (with the intercept fixed at 0 mg/l) by linear regression for the UVA divided by the ratio of the high and low molecular weight component concentrations. This method thus corrects for the changes in the molecular weight component composition as a function of the source water composition and coagulation treatment effects. The SDS-THMFP calibration involves a multiple linear regression of the DOC, organic component ratio, chlorine residual, pH and alkalinity. Both the DOC and SDS-THMFP correlations over a period of 18 months exhibited adjusted correlation coefficients with r2 > 0.969. The parameters can be reported as a function of compliance rules associated with required % removals of DOC (as a function of alkalinity) and predicted maximum contaminant levels (MCL) of THMs. The single instrument method, which is compatible with continuous flow monitoring or grab sampling, provides a rapid (2-3 minute) and precise indicator of drinking water disinfectant treatability without the need for separate UV photometric and DOC meter measurements or independent THM determinations.
NASA Astrophysics Data System (ADS)
Fujiu, Manna; Plante, Alain; Ohno, Tsutomu; Solomon, Dawit; Lehmann, Johannes; Fraser, James; Leach, Melissa; Fairhead, James
2014-05-01
Anthropogenic Dark Earths are soils generated through long-term human inputs of organic and pyrogenic materials. These soils were originally discovered in the Amazon, and have since been found in Australia and in this case in Africa. African Dark Earths (AfDE) are black, highly fertile and carbon-rich soils that were formed from the original highly-weathered infertile yellowish to red Oxisols and Ultisols through an extant but hitherto overlooked climate-smart sustainable soil management system that has long been an important feature of the indigenous West African agricultural repertoire. Studies have demonstrated that ADE soils in general have significantly different organic matter properties compared to adjacent non-DE soils, largely attributable to the presence of high concentrations of ash-derived carbon. Quantification and characterization of bulk soil organic matter of several (n=11) AfDE and non-AfDE pairs of surface (0-15 cm) soils using thermal analysis techniques (TG-DSC-EGA) confirmed substantial differences in SOM composition and the presence of pyrogenic C. Such pyrogenic organic matter is generally considered recalcitrant or relatively stable, but the goal of the current study was to characterize the presumably labile, more rapidly cycling, pools of C in AfDEs through the characterization of hot water- and pyrophosphate-extractable fractions, referred to as HWEOC and PyroC respectively. Extracts were analyzed for carbon content, as well as composition using fluorescence (EEM/PARAFAC) and high resolution mass spectrometry (FTICR-MS). The amount of extractable C as a proportion of total soil C was relatively low: less than ~0.8% for HWEOC and 2.8% for PyroC. The proportion of HWEOC did not differ (P = 0.18, paired t-test) between the AfDE and the non-AfDE soils, while the proportions of PyroC were significantly larger (P = 0.001) in the AfDE soils compared to the non-AfDE soils. Preliminary analysis of the EEM/PARAFAC data suggests that AfDE samples had a greater fraction of their DOM that was more humic-like than the paired non-AfDE samples, though differences were small. Similarly, FTICR-MS analysis of hot water extracts suggests that differences among the three sites analyzed were larger than between the paired AfDE and non-AfDE extracts. Overall, in spite of substantial differences in the composition of bulk SOM, the extractable fractions appear to be relatively similar between the AfDE and non-AfDE soils.
An optimization approach for fitting canonical tensor decompositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunlavy, Daniel M.; Acar, Evrim; Kolda, Tamara Gibson
Tensor decompositions are higher-order analogues of matrix decompositions and have proven to be powerful tools for data analysis. In particular, we are interested in the canonical tensor decomposition, otherwise known as the CANDECOMP/PARAFAC decomposition (CPD), which expresses a tensor as the sum of component rank-one tensors and is used in a multitude of applications such as chemometrics, signal processing, neuroscience, and web analysis. The task of computing the CPD, however, can be difficult. The typical approach is based on alternating least squares (ALS) optimization, which can be remarkably fast but is not very accurate. Previously, nonlinear least squares (NLS) methodsmore » have also been recommended; existing NLS methods are accurate but slow. In this paper, we propose the use of gradient-based optimization methods. We discuss the mathematical calculation of the derivatives and further show that they can be computed efficiently, at the same cost as one iteration of ALS. Computational experiments demonstrate that the gradient-based optimization methods are much more accurate than ALS and orders of magnitude faster than NLS.« less
Zhang, Afeng; Zhou, Xu; Li, Ming; Wu, Haiming
2017-11-01
Biochar amendment in soil has the potential to sequester carbon, improve soil quality and mitigate greenhouse gas (GHG) emission in agriculture, but the impact of biochar amendments on dissolved organic matter (DOM) properties of soils in the fertilized agro-ecosystem has received little research attention. This study performed a long-term field experiment to assess the influence of biochar amendments (different addition rate: 4 t ha -1 and 8 t ha -1 ) on DOM characteristics in soils in wheat-maize rotation system in Loess Plateau of China by exploiting fluorescence excitation-emission spectrophotometry and parallel factor analysis (EEM-PARAFAC). Our results showed that the content of soil DOM was significantly influenced by the addition of biochar, and the higher biochar addition markedly increased the mean concentration of dissolved organic carbon (DOC) (from 83.99 mg kg -1 to 144.27 mg kg -1 ) in soils under the same fertilizer application. Three identified fluorescent components (fulvic acid-like, humic acid-like and tryptophan-like) were found, and fluorescence intensity of those components (especially humic-like material) was enhanced with the increasing DOC in the biochar treatments but the composition of DOM was not changed. These findings would be beneficial to understand the biochar's effects and processes in decreasing GHG emissions from soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic functional connectivity and individual differences in emotions during social stress.
Tobia, Michael J; Hayashi, Koby; Ballard, Grey; Gotlib, Ian H; Waugh, Christian E
2017-12-01
Exposure to acute stress induces multiple emotional responses, each with their own unique temporal dynamics. Dynamic functional connectivity (dFC) measures the temporal variability of network synchrony and captures individual differences in network neurodynamics. This study investigated the relationship between dFC and individual differences in emotions induced by an acute psychosocial stressor. Sixteen healthy adult women underwent fMRI scanning during a social evaluative threat (SET) task, and retrospectively completed questionnaires that assessed individual differences in subjectively experienced positive and negative emotions about stress and stress relief during the task. Group dFC was decomposed with parallel factor analysis (PARAFAC) into 10 components, each with a temporal signature, spatial network of functionally connected regions, and vector of participant loadings that captures individual differences in dFC. Participant loadings of two networks were positively correlated with stress-related emotions, indicating the existence of networks for positive and negative emotions. The emotion-related networks involved the ventromedial prefrontal cortex, cingulate cortex, anterior insula, and amygdala, among other distributed brain regions, and time signatures for these emotion-related networks were uncorrelated. These findings demonstrate that individual differences in stress-induced positive and negative emotions are each uniquely associated with large-scale brain networks, and suggest that dFC is a mechanism that generates individual differences in the emotional components of the stress response. Hum Brain Mapp 38:6185-6205, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
D'Sa, E. J.; Goes, J. I.; Mouw, C. B.
2016-02-01
Flow through the Aleutian Passes connects the North Pacific to the Bering Sea with the Unimak Pass forming an important conduit for the flow of Gulf of Alaska water to the southeastern Bering shelf. While the biophysical properties have been studied for this region, little is known about the dissolved organic matter (DOM) and its optically active chromophoric component (CDOM) which play key roles in ocean color and several biogeochemical and photochemical processes. Dissolved organic carbon (DOC), and CDOM absorption and fluorescence properties were measured at locations in the western Gulf of Alaska, Unimak Pass and the southeastern Bering Sea in spring 2012, a relatively cold year as indicated by hydrographic field and satellite sea surface temperature data. DOC concentrations were on average higher in the western Gulf of Alaska (112.21 ± 20.05 µM) and Unimak Pass (106.14 ± 16.10 µM), than the southeastern Bering Sea shelf (73.28 ± 11.71 µM) suggesting Gulf of Alaska shelf water to be an important source of DOM to the eastern Bering Sea. Overall, CDOM absorption was relatively low while parallel factor (PARAFAC) analysis of DOM fluorescence identified two humic-like (terrestrial and marine) and one protein-like (tryptophan-like) component in the DOM pool. Relationships between the DOM optical properties and the physical regime will be further examined in this study.
Yang, Liyang; Choi, Jung Hyun; Hur, Jin
2014-09-15
The benthic fluxes of dissolved organic carbon (DOC), chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) were studied for the sediment from an artificial lake, based on laboratory benthic chamber experiments. Conservative estimates for the benthic flux of DOC were 71 ± 142 and 51 ± 101 mg m(-2) day(-1) at hypoxic and oxic conditions, respectively. Two humic-like (C1 and C2), one tryptophan-like (C3), and one microbial humic-like (C4) components were identified from the samples using fluorescence excitation emission matrices and parallel factor analysis (EEM-PARAFAC). During the incubation period, C3 was removed while C4 was accumulated in the overlying water with no significant difference in the trends between the redox conditions. The humification index (HIX) increased with time. The combined results for C3, C4 and HIX suggested that microbial transformation may be an important process affecting the flux behaviors of DOM. In contrast, the overall accumulations of CDOM, C1, and C2 in the overlying water occurred only for the hypoxic condition, which was possibly explained by their enhanced photo-degradation and sorption to redox-sensitive minerals under the oxic condition. Our study demonstrated significant benthic flux of DOM in lake sediment and also the possible involvement of biogeochemical transformation in the processes, providing insight into carbon cycling in inland waters. Copyright © 2014 Elsevier Ltd. All rights reserved.
Speratti, Alicia B; Johnson, Mark S; Sousa, Heiriane Martins; Dalmagro, Higo J; Couto, Eduardo Guimarães
2018-04-01
Dissolved organic carbon (DOC) leached from Brazilian Cerrado Arenosols can lead to carbon (C) losses and lower soil fertility, while excessive nutrient, e.g. nitrate (NO 3 - ), leaching can potentially cause water contamination. As biochar has been shown to stabilize C and retain soil nutrients, a greenhouse experiment was conducted to test different biochars' contributions to DOC and NO 3 - leaching from a sandy soil. Biochars were made from four local agricultural waste feedstocks (cotton residue, swine manure, eucalyptus sawmill residue, sugarcane filtercake) pyrolysed at 400, 500 and 600 °C. Biochar was mixed with soil at 5% weight in pots and maize seeds planted. Leachate was collected weekly for six weeks and analyzed for DOC and NO 3 - concentrations, while fluorescence spectroscopy with parallel factor analysis (PARAFAC) was used to interpret DOC characteristics. Cotton and swine manure biochar treatments had higher DOC and NO 3 - losses than eucalyptus biochar, filtercake biochar, and control treatments. Cotton and swine manure biochar treatments at high temperatures lost mostly terrestrial, humified DOC, while swine manure, filtercake, and eucalyptus biochars at low temperatures lost mostly labile, microbially-derived DOC. Through the practical use of fluorescence spectroscopy, our study identified filtercake and eucalyptus biochars as most promising for retaining DOC and NO 3 - in a Cerrado Arenosol, potentially reducing stable C and nutrient losses. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shift in the chemical composition of dissolved organic matter in the Congo River network
NASA Astrophysics Data System (ADS)
Lambert, Thibault; Bouillon, Steven; Darchambeau, François; Massicotte, Philippe; Borges, Alberto V.
2016-09-01
The processing of terrestrially derived dissolved organic matter (DOM) during downstream transport in fluvial networks is poorly understood. Here, we report a dataset of dissolved organic carbon (DOC) concentrations and DOM composition (stable carbon isotope ratios, absorption and fluorescence properties) acquired along a 1700 km transect in the middle reach of the Congo River basin. Samples were collected in the mainstem and its tributaries during high-water (HW) and falling-water (FW) periods. DOC concentrations and DOM composition along the mainstem were found to differ between the two periods because of a reduced lateral mixing between the central water masses of the Congo River and DOM-rich waters from tributaries and also likely because of a greater photodegradation during FW as water residence time (WRT) increased. Although the Cuvette Centrale wetland (one of the world's largest flooded forests) continuously releases highly aromatic DOM in streams and rivers of the Congo Basin, the downstream transport of DOM was found to result in an along-stream gradient from aromatic to aliphatic compounds. The characterization of DOM through parallel factor analysis (PARAFAC) suggests that this transition results from (1) the losses of aromatic compounds by photodegradation and (2) the production of aliphatic compounds by biological reworking of terrestrial DOM. Finally, this study highlights the critical importance of the river-floodplain connectivity in tropical rivers in controlling DOM biogeochemistry at a large spatial scale and suggests that the degree of DOM processing during downstream transport is a function of landscape characteristics and WRT.
Sui, Xueyan; Wu, Zhipeng; Lin, Chen; Zhou, Shenglu
2017-07-01
Glomalin, which sequesters substantial amounts of carbon, plays a critical role in sustaining terrestrial biome functions and contributes to the fate of many pollutants from terrestrial to aquatic ecosystems. Despite having focused on the amount of glomalin produced, very few attempts have been made to understand how landscapes and environmental conditions influence glomalin composition and characteristics. This study focused on glomalin-related soil protein (GRSP) exported as storm runoff including eroded sediment and water that was collected before flowing to surface waters in a peri-urban watershed. GRSP characteristics were assessed by Bradford protein analysis, fluorescence spectroscopy combined with parallel factor analysis (PARAFAC), and the determination of aromaticity based on the specific ultraviolet absorption value (280 nm) and molecular weight. General linear models (GLMs) was established by integrating microbial activity, land cover, water temperature, precipitation, and other solution chemical properties to explain the variations in GRSP characteristics. Results showed that a higher GRSP concentration in agricultural reference sites was produced in the form of specific materials with low molecular weight and aromaticity, as well as high percentage of C1 and C5 components which indicate microbial-processed sources, relative to urbanized and forested sites. Compared with forested land, urbanized land clearly produced runoff GRSP with low molecular weight and aromaticity, as well as more degradation of humic-like materials (C3 component). The highest GLM explaining 89% of the variables, including significant variables (p < 0.05) such as microbial activity, water temperature, and water conductivity, was observed for GRSP characteristics. Therefore, changes in eroded soil GRSP quality can serve as an indicator for improving watershed management and thus protecting aquatic ecosystems.
Distribution, Source and Fate of Dissolved Organic Matter in Shelf Seas
NASA Astrophysics Data System (ADS)
Carr, N.; Mahaffey, C.; Hopkins, J.; Sharples, J.; Williams, R. G.; Davis, C. E.
2016-02-01
Dissolved organic matter (DOM) is a complex array of molecules containing carbon (DOC), nitrogen (DON) and phosphorous (DOP), and represents the largest pool of organic matter in the marine environment. DOM in the sea originates from a variety of sources, including allochthonous inputs of terrestrial DOM from land via rivers, and autochthonous inputs through in-situ biotic processes that include phytoplankton exudation, grazing and cell lysis. Marine DOM is a substrate for bacterial growth and can act as a source of nutrients for autotrophs. However, a large component of DOM is biologically refractory. This pool is carbon-rich and nutrient-poor, and can transport and store its compositional elements over large areas and on long time scales. The role of DOM in the shelf seas is currently unclear, despite these regions acting as conduits between the land and open ocean, and also being highly productive ecosystems. Using samples collected across the Northwest European Shelf Sea, we studied the distribution, source, seasonality and potential fate of DOM using a combination of analytical tools, including analysis of amino acids, DOM absorbance spectra and excitation emission matrices, in conjunction with parallel factor analysis (PARAFAC). Strong cross shelf and seasonal gradients in DOM source and lability were found. We observed a strong seasonally dependent significant correlation between salinity and terrestrial DOM in the bottom mixed layer, an enrichment of DOM at the shelf edge in winter and a three-fold increase in fresh marine DOM coinciding with the timing of a spring bloom. Together, our findings illustrate the dynamic nature of DOM in shelf seas over a seasonal cycle and, highlight the potential for DOM to play a key role in the carbon cycle in these regions.
Understanding aquatic microbial processes using EEM's and in-situ fluorescence sensors
NASA Astrophysics Data System (ADS)
Fox, Bethany; Attridge, John; Rushworth, Cathy; Cox, Tim; Anesio, Alexandre; Reynolds, Darren
2015-04-01
The diverse origin of dissolved organic matter (DOM) in aquatic systems is well documented within the literature. Previous literature indicates that coloured dissolved organic matter (CDOM) is, in part, transformed by aquatic microbial processes, and that dissolved organic material derived from a microbial origin exhibits tryptophan-like fluorescence. However, this phenomenon is not fully understood and very little data is available within the current literature. The overall aim of our work is to reveal the microbial-CDOM interactions that give rise to the observed tryptophan-like fluorescence. The work reported here investigates the microbial processes that occur within freshwater aquatic samples, as defined by the biochemical oxygen demand (BOD) test, as a function of the T1 peak (λex/em 280/330-370 nm). A series of standard water samples were prepared using glucose, glutamic acid, BOD dilution water and a bacterial seed (Cole-Parmer BOD microbe capsules). Samples were spiked with CDOM (derived from an environmental water body) and subjected to time resolved BOD analysis and as excitation-emission fluorescence spectroscopy. All EEM spectral data was interrogated using parallel factor analysis (PARAFAC) in an attempt to determine the presence and dominance (relative intensities) of the CDOM-related and T1-related fluorophores within the samples. In-situ fluorescence sensors (Chelsea Technologies Group Ltd.) were also used to monitor the T1 fluorescence peak (UviLux Tryptophan) and the CDOM fluorescence peak (UviLux CDOM) during experiments. Tryptophan-like fluorescence was observed (albeit transient) in both spiked and un-spiked standard water samples. By furthering our understanding of aquatic organic matter fluorescence, its origin, transformation, fate and interaction with aquatic microbiological processes, we aim to inform the design of a new generation in-situ fluorescence sensor for the monitoring of aquatic ecosystem health.
Yao, Xin; Zhang, Yunlin; Zhu, Guangwei; Qin, Boqiang; Feng, Longqing; Cai, Linlin; Gao, Guang
2011-01-01
Taihu Basin is the most developed area in China, which economic development has resulted in pollutants being produced and discharged into rivers and the lake. Lake Taihu is located in the center of the basin, which is characterized by a complex network of rivers and channels. To assess the sources and fate of dissolved organic matter (DOM) in surface waters, we determined the components and abundance of chromophoric dissolved organic matter (CDOM) within Lake Taihu and 66 of its tributaries, and 22 sites along transects from two main rivers. In Lake Taihu, there was a relative less spatial variation in CDOM absorption a(CDOM)(355) with a mean of 2.46 ± 0.69 m⁻¹ compared to the mean of 3.36 ± 1.77 m⁻¹ in the rivers. Two autochthonous tryptophan-like components (C1 and C5), two humic-like components (C2 and C3), and one autochthonous tyrosine-like component (C4) were identified using the parallel factor analysis (PARAFAC) model. The C2 and C3 had a direct relationship with a(CDOM)(355), dissolved organic carbon (DOC), and chemical oxygen demand (COD). The separation of lake samples from river samples, on both axes of the Principal Component Analysis (PCA), showed the difference in DOM fluorophores between these various environments. Components C1 and C5 concurrently showed positive factor 1 loadings, while C4 was close to the negative factor 1 axis. Components C2 and C3 showed positive second factor loadings. The major contribution of autochthonous tryptophan-like components to lake samples is due to the autochthonous production of CDOM in the lake ecosystems. The results also showed that the differences in geology and associated land use control CDOM dynamics, such as the high levels of CDOM with terrestrial characteristics in the northwestern upstream rivers and low levels of CDOM with increased microbial characteristics in the southwestern upstream rivers. Most of river samples from the downstream regions in the eastern and southeastern plains had a similar relative abundance of humic-like fluorescence, with less of the tryptophan-like and more of the tyrosine-like contributions than did samples from upstream regions. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
D'Sa, E. J.; Goes, J. I.; Gomes, H.; Mouw, C.
2013-12-01
The absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) are reported for the inner shelf, slope waters and outer shelf regions of the eastern Bering Sea during the summer of 2008, when a warm, thermally stratified surface mixed layer lay over a Cold Pool (< 2 °C) that occupied the entire middle shelf. CDOM absorption at 355 nm (ag355) and its spectral slope (S) in conjunction with excitation emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC) revealed large variability in the characteristics of CDOM in different regions of the Bering Sea. PARAFAC analysis aided in the identification of three humic-like (components 1, 2 and 5) and two protein-like (a tyrosine-like component 3, and a tryptophan-like component 4) components. In the extensive shelf region, average absorption coefficients at 355 nm (ag355 m-1) and DOC concentrations (μM) were highest in the inner shelf (0.342 ± 0.11 m-1, 92.67 ± 14.60 μM) and lower in the middle (0.226 ± 0.05 m-1, 78.38 ± 10.64 μM) and outer (0.176 ± 0.05 m-1, 80.73 ± 18.11 μM) shelves, respectively. Mean spectral slopes S were elevated in the middle shelf (24.38 ± 2.25 μm-1) especially in the surface waters (26.87 ± 2.39 μm-1) indicating high rates of photodegradation in the highly stratified surface mixed layer, which intensified northwards in the northern middle shelf likely contributing to greater light penetration and to phytoplankton blooms at deeper depths. The fluorescent humic-like components 1, 2, and 5 were most elevated in the inner shelf most likely from riverine inputs. Measurements at depth in slope waters (> 250 m) revealed low values of ag355 (0.155 ± 0.03 m-1) and S (15.45 ± 1.78 μm-1) indicative of microbial degradation of CDOM in deep waters. DOC concentrations, however were not significantly different suggesting CDOM sources and sinks to be uncoupled from DOC. Along the productive "green belt" in the outer shelf/slope region, absorption and fluorescence properties indicated the presence of fresh and degraded autochthonous DOM. Near the Unimak Pass region of the Aleutian Islands, low DOC and ag355 (mean 66.99 ± 7.94 μM; 0.182 ± 0.05 m-1) and a high S (mean 25.95 ± 1.58 μm-1) suggested substantial photobleaching of the Alaska Coastal Waters, but high intensities of humic-like and protein-like fluorescence suggested sources of fluorescent DOM from coastal runoff and glacier melt waters during the summer. Although our data show that the CDOM photochemical environment of the Bering Sea is complex, our current information on its optical properties will aid in better understanding of the biogeochemical role of CDOM in carbon budgets in relation to the annual sea ice and phytoplankton dynamics, and to improved algorithms of ocean color remote sensing for this region.
NASA Astrophysics Data System (ADS)
Shank, G. C.; Liu, Q.; Patterson, L.; Kowalczuk, P.
2012-12-01
DOC, CDOM, and EEM PARAFAC analyses were used to examine DOM distribution along the Louisiana (LA) and Texas (TX) continental shelves in the northern Gulf of Mexico during cruises in May and August of the 2011 Mississippi basin flood year, and May, June, and August of the 2012 Mississippi basin drought year. For both 2011 and 2012, CDOM and DOC levels were well-correlated with salinity on the LA shelf. However, the mixing curves for each parameter were markedly different between 2011 and 2012 and CDOM:DOC ratios, indicative of terrestrial organic matter inputs, were much higher during 2011 than during 2012. EEM PARAFAC results confirmed a much higher terrestrial DOM signature in LA shelf waters for 2011, but also a higher terrestrial DOM signature for TX waters in 2012 as the drought in the western Gulf region subsided. CDOM:DOC ratios were anomalously high offshore of Atchafalaya Bay and the Breton-Chandeleur Sound complex indicating coastal wetlands augment the terrestrial DOM discharged through the Mississippi and Atchafalaya Rivers. At several sites along the LA and TX shelves during both 2011 and 2012, CDOM was higher near bottom than at mid-depth without concomitant DOC increases, possibly due to microbial processing of settling phytoplankton cells, sedimentary fluxes, and benthic algal activity which was especially prevalent along the TX shelf. Results from simulated solar radiation experiments indicate that shelf water CDOM readily photobleaches with losses of >50% likely in surface waters over the summer, while DOC photooxidation is at least an order of magnitude slower than CDOM photobleaching.;
Optical Proxies for Dissolved Organic Matter in Estuaries and Coastal Waters
NASA Astrophysics Data System (ADS)
Osburn, C. L.; Montgomery, M. T.; Boyd, T. J.; Bianchi, T. S.; Coffin, R. B.; Paerl, H. W.
2016-02-01
The flux of terrestrial dissolved organic carbon (DOC) into the coastal ocean from rivers and estuaries is a major part of the ocean's carbon cycle. Absorbing and fluorescing properties of chromophoric dissolved organic matter (CDOM) often are used to fingerprint its sources and to track fluxes of terrestrial DOM into the ocean. They also are used as proxies for organic matter to calibrate remote sensing observations from air and space and from in situ platforms. In general, strong relationships hold for large river dominated estuaries (e.g., the Mississippi River) but little is known about how widely such relationships can be developed in estuaries that have relatively small or multiple riverine inputs. Results are presented from a comparison of six diverse estuarine systems: the Atchafalaya River (ARE), the Mackenzie River (MRE), the Chesapeake Bay (CBE), Charleston Harbor (CHE), Puget Sound (PUG), and the Neuse River (NRE). Mean DOM concentrations ranged from 100 to 700 µM and dissolved lignin concentrations ranged from ca. 3-30 µg L-1. Overall trends were linear between CDOM measured at 350 nm (a350) and DOC concentration (R2=0.77) and between a350 and lignin (R2=0.87). Intercepts of a350 vs lignin were not significantly different from zero (P=0.43) suggesting that most of the CDOM was terrestrial in nature. Deviations from these regressions were strongest in the Neuse River Estuary, the most eutrophic of the six estuaries studied. After this calibration procedure, fluorescence modeling via parallel factor analysis (PARAFAC) was used to make estimates of terrigenous and planktonic DOC in these estuaries.
Chen, Meilian; Hur, Jin
2015-08-01
Dissolved organic matter (DOM) in sediments, termed here sediment DOM, plays a variety of important roles in global biogeochemical cycling of carbon and nutrients as well as in the fate and transport of xenobiotics. Here we reviewed sediment DOM, including pore waters and water extractable organic matter from inland and coastal sediments, based on recent literature (from 1996 to 2014). Sampling, pre-treatment, and characterization methods for sediment DOM were summarized. The characteristics of sediment DOM have been compared along an inland to coastal ecosystems gradient and also with the overlying DOM in water column to distinguish the unique nature of it. Dissolved organic carbon (DOC) from inland sediment DOM was generally higher than coastal areas, while no notable differences were found for their aromaticity and apparent molecular weight. Fluorescence index (FI) revealed that mixed sources are dominant for inland sediment DOM, but marine end-member prevails for coastal sediment DOM. Many reports showed that sediments operate as a net source of DOC and chromophoric DOM (CDOM) to the water column. Sediment DOM has shown more enrichment of nitrogen- and sulfur-containing compounds in the elemental signature than the overlying DOM. Fluorescent fingerprint investigated by excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) further demonstrated the characteristics of sediment DOM lacking in the photo-oxidized and the intermediate components, which are typically present in the overlying surface water. In addition, the biogeochemical changes in sediment DOM and the subsequent environmental implications were discussed with the focus on the binding and the complexation properties with pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Su, Yaling; Chen, Feizhou; Liu, Zhengwen
2015-05-01
Here we investigated absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in 15 alpine lakes located below or above the tree line to determine its source and composition. The results indicate that the concentrations of CDOM in below-tree-line lakes are significantly higher than in above-tree-line lakes, as evidenced from the absorption coefficients of a250 and a365. The intensities of the protein-like and humic-like fluorescence in below-tree-line lakes are higher than in above-tree-line lakes as well. Three fluorescent components were identified using parallel factor analysis (PARAFAC) modelling. Component 1 is probably associated with biological degradation of terrestrial humic component. The terrestrial humic-like component 2 is only found in below-tree-line lakes. The protein-like or phenolic component 3 is dominant in above-tree-line lakes, which is probably more derived from autochthonous origin. In this study, (1) higher a250/a365 and S275-295 values indicate smaller molecular weights of CDOM in above-tree-line lakes than in below-tree-line lakes, and smaller molecular weights at the surface than at 2.0 m depth; (2) SUVA254 and FI255 results provide evidence of lower percent aromaticity of CDOM in above-tree-line lakes; and (3) FI310 and FI370 suggest a strong allochthonous origin at the surface in below-tree-line lakes, and more contribution from autochthonous biological and aquatic bacterial origin in above-tree-line lakes.
Zhuo, Jian-Fu; Guo, Wei-Dong; Deng, Xun; Zhang, Zhi-Ying; Xu, Jing; Huang, Ling-Feng
2010-06-01
Fluorescence excitation-emission matrix spectroscopy (EEMs) combined with absorption spectroscopy were applied to study the optical properties of CDOM samples from highly-polluted Yundang Lagoon in Xiamen in order to demonstrate the feasibility of using these spectral properties as a tracer of the degree of organic pollution in similar polluted coastal waters. Surface water samples were collected from 13 stations 4 times during April and May, 2008. Parallel factor analysis (PARAFAC) model was used to resolve the EEMs of CDOM. Five separate fluorescent components were identified, including two humic-like components (C1: 240, 325/422 nm; C5: 260, 380/474 nm), two protein-like components (C2: 225, 275/350 nm; C4: 240, 300/354 nm) and one xenobiotic-like component (C3: 225/342 nm), which could be used as a good tracer for the input of the anthropogenic organic, pollutants. The concentrations of component C3 and dissolved organic carbon (DOC) are much higher near the inlet of sewage discharge, demonstrating that the discharge of surrounding sewage is a major source of organic pollutants in Yundang Lagoon. CDOM absorption coefficient alpha (280) and the score of humic-like component C1 showed significant linear relationships with COD(Mn), and a strong positive correlation was also found between the score of protein-like component C2 and BOD5. This suggested that the optical properties of CDOM may provide a fast in-situ way to monitor the variation of the water quality in Yundang Lagoon and that of similar polluted coastal waters.
Seasonal Changes of DOC Composition of Rivers in Temperate Monsoon Climates
NASA Astrophysics Data System (ADS)
Oh, N. H.; Shin, Y.; Lee, E. J.; Hur, J.
2014-12-01
The spatial and seasonal dynamics of dissolved organic carbon (DOC) composition and biodegradability were investigated for the five largest rivers in the Republic of Korea during the years 2012 - 2013 using dark incubation experiments and spectroscopic measurements, including parallel factor analysis (PARAFAC). The DOC concentrations of the rivers in relatively steep and forest-dominated basins were <~2 mg L-1, and remained relatively constant over the seasons. In contrast, those of the rivers influenced by urban and agricultural activities rose up to 5.4 mg L-1, which was decreased to ~2 mg L-1 during the summer monsoon period, indicating that increased precipitation had the effect of dilution. Among the fluorescence components, terrestrial humic-like components were dominant in all the rivers except for one, where tyrosine- or tryptophan-like compounds were the major component. However, terrestrial humic-like components became dominant in all five of the rivers after high precipitation which occurred during the monsoon season, during which ~76% of the annual precipitation was received. Considering that 64% of South Korea is forested, our results suggest that the forests could be a large source of riverine DOC, elevating the DOC loads during monsoon rainfall. Although more DOC could be degraded when DOC input increased, regardless of its sources, the percent biodegradability was reduced with increased proportions of terrestrially derived and aromatic compounds. These results suggest that the relatively stable and terrestrial humic-like compounds released during the monsoon rainfall could reduce the potential of microbial respiration of riverine DOC and evasion of river CO2 to the atmosphere, despite of the increase in the DOC load.
NASA Astrophysics Data System (ADS)
Pitta, Elli; Zeri, Christina; Tzortziou, Maria; Mousdis, George; Scoullos, Michael
2017-10-01
The Dardanelles Straits - North Aegean Sea mixing zone is the area where the less saline waters of Black Sea origin supply organic material to the oligotrophic Mediterranean Sea. The objective of this work was to assess the seasonal dynamics of dissolved organic matter (DOM) in this region based on the optical properties (absorbance and fluorescence). By combining excitation-emission fluorescence with parallel factor analysis (EEM-PARAFAC), four fluorescent components were identified corresponding to three humic - like components and one amino acid - like. The latter was dominant during all seasons. Chromophoric DOM (CDOM) and dissolved organic carbon (DOC) were found to be strongly coupled only in early spring when conservative conditions prevailed and the two water masses present (Black Sea Waters - BSW and Levantine Waters - LW) could be identified by their absorption coefficients (a300) and spectral slopes S275-295. In summer and autumn the relationships collapsed. During summer two features appear to dominate the dynamics of CDOM: i) photodegradation that acts as an important sink for both the absorbing DOM and the terrestrially derived fluorescent humic substances and ii) the release of marine humic like fluorescent substances from bacterial transformation of DOM. Autumn results revealed a source of fluorescent CDOM of high molecular weight, which was independent of water mass sources and related to particle and sedimentary processes. The removal of the amino acid-like fluorescence during autumn provided evidence that although DOC was found to accumulate under low inorganic nutrient conditions, dissolved organic nitrogenous compounds could serve as bacterial substrate.
Multiway modeling and analysis in stem cell systems biology
2008-01-01
Background Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.). A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models) can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. Results We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC) models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a collagen I substrate accelerated the osteogenic differentiation induced by a static collagen I substrate. Conclusion Our results suggest gene- and protein-level models whereby stem cells undergo transdifferentiation to osteoblasts, and lay the foundation for mechanistic, hypothesis-driven studies. Our analysis methods are applicable to a wide range of stem cell differentiation models. PMID:18625054
Yan, Li-Hong; Chen, Xue-Jun; Su, Rong-Guo; Han, Xiu-Rong; Zhang, Chuan-Song; Shi, Xiao-Yong
2013-01-01
The distribution and estuarine behavior of fluorescent components of chromophoric dissolved organic matter in the seawater of outer Yangtze Estuary were determined by fluorescence excitation emission matrix spectra combined with parallel factor analysis. Six individual fluorescent components were identified by PARAFAC models, including three terrestrial humic-like components C1 [330 nm/390(430) nm], C2 (390 nm/480 nm), C3 (360 nm/440 nm), marine biological production component C5 (300 nm/400 nm) and protein-like components C4 (290 nm/350 nm) and C6 (275 nm/300 nm). The results indicated that C1, C2, and C3 showed a conservative mixing behavior in the whole estuarine region, especially in high-salinity region. And the fluorescence intensity proportion of C1 and C3 decreased with increase of salinity and fluorescence intensity proportion of C2 kept constant with increase of salinity in the whole estuarine region. While C4 showed conservative mixing behavior in low-salinity region and non-conservative mixing behavior in high-salinity region, and fluorescence intensity proportion of C4 increased with increase of salinity. However, C5 and C6 showed a non-conservative mixing behavior and fluorescence intensity proportion increased with increase of salinity in high-salinity region. Significantly spatial difference was recorded for CDOM absorption coefficient in the coastal region and in the open water areas with the highest value in coastal region and the lowest value in the open water areas. The scope of absorption coefficient and absorption slope was higher in coastal region than that in the open water areas. Significantly positive correlations were found between CDOM absorption coefficient and the fluorescence intensities of C1, C2, C3, and C4, but no significant correlation was found between C5 and C6, suggesting that the river inputs contributed to the coastal areas, while CDOM in the open water areas was affected by terrestrial inputs and phytoplankton degradation.
Bai, Ying; Cui, Zhengguo; Su, Rongguo; Qu, Keming
2018-04-18
The indirect photodegradation behaviors of acetaminophen (APAP) were investigated in the presence of four kinds of dissolved organic matter (DOM) and were also assessed in the presence of seawater components and conditions such as salinity, pH, nitrate and bicarbonate. The results showed three important findings: firstly, in the indirect photolysis of APAP, the contributions of 3 DOM*, ·OH and 1 O 2 were >85.0%, 2.3-9.9% and 0.8-2.6% at pH 8.0. Secondly, DOM was divided into four terrestrial humic-like components by Excitation-emission matrix spectroscopy (EEMs) combined with parallel factor analysis (PARAFAC). This study showed a good linearity between DOM fluorescence components and the indirect photodegradation of APAP (R 2 = 0.92) and the differences in photodegradation rates of APAP among various DOM solutions were due to the diverse compositions of DOM. Finally, salinity was an important factor influencing the removal of APAP, and the APAP photodegradation rate constants increased from (3.33 ± 0.07) × 10 -5 s -1 to (1.25 ± 0.05) × 10 -4 s -1 with increasing salinity. The increased pseudo-first-order rate constants for photolysis of APAP with increasing salinity, pH and nitrate were attributed to the enhanced generation of reactive intermediates (RI) and easier reactions between RI and APAP. The increased APAP removal rate constant with increasing bicarbonate was likely ascribed to the yield of ∙CO 3 - . This is the first report of the roles of DOM components and salinity on the indirect photolysis of APAP. These findings would be essential to predict the photochemical fate of APAP and would also allow for a better understanding of the environmental fate of other phenolic contaminants. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
D'Sa, E. J.; Goes, J. I.; Gomes, H.; Mouw, C.
2014-06-01
The absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) are reported for the inner shelf, slope waters and outer shelf regions of the eastern Bering Sea during the summer of 2008, when a warm, thermally stratified surface mixed layer lay over a cold pool (< 2 °C) that occupied the entire middle shelf. CDOM absorption at 355 nm (ag355) and its spectral slope (S) in conjunction with excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC) revealed large variability in the characteristics of CDOM in different regions of the Bering Sea. PARAFAC analysis aided in the identification of three humic-like (components one, two and five) and two protein-like (a tyrosine-like component three, and a tryptophan-like component four) components. In the extensive shelf region, average absorption coefficients at 355 nm (ag355, m-1) and DOC concentrations (μM) were highest in the inner shelf (0.342 ± 0.11 m-1, 92.67 ± 14.60 μM) and lower in the middle (0.226 ± 0.05 m-1, 78.38 ± 10.64 μM) and outer (0.185 ± 0.05 m-1, 79.24 ± 18.01 μM) shelves, respectively. DOC concentrations, however were not significantly different, suggesting CDOM sources and sinks to be uncoupled from DOC. Mean spectral slopes S were elevated in the middle shelf (24.38 ± 2.25 μm-1) especially in the surface waters (26.87 ± 2.39 μm-1) indicating high rates of photodegradation in the highly stratified surface mixed layer, which intensified northwards in the northern middle shelf likely contributing to greater light penetration and to phytoplankton blooms at deeper depths. The fluorescent humic-like components one, two, and five were most elevated in the inner shelf most likely from riverine inputs. Along the productive "green belt" in the outer shelf/slope region, absorption and fluorescence properties indicated the presence of fresh and degraded autochthonous DOM. Near the Unimak Pass region of the Aleutian Islands, low DOC and ag355 (mean 66.99 ± 7.94 μM; 0.182 ± 0.05 m-1) and a high S (mean 25.95 ± 1.58 μm-1) suggested substantial photobleaching of the Alaska Coastal Water, but high intensities of humic-like and protein-like fluorescence suggested sources of fluorescent DOM from coastal runoff and glacier meltwaters during the summer. The spectral slope S vs. ag355 relationship revealed terrestrial and oceanic end members along with intermediate water masses that were modeled using nonlinear regression equations that could allow water mass differentiation based on CDOM optical properties. Spectral slope S was negatively correlated (r2 = 0.79) with apparent oxygen utilization (AOU) for waters extending from the middle shelf into the deep Bering Sea indicating increasing microbial alteration of CDOM with depth. Although our data show that the CDOM photochemical environment of the Bering Sea is complex, our current information on its optical properties will aid in better understanding of the biogeochemical role of CDOM in carbon budgets in relation to the annual sea ice and phytoplankton dynamics, and to improved algorithms of ocean color remote sensing for this region.
Size distribution of absorbing and fluorescing DOM in Beaufort Sea, Canada Basin
NASA Astrophysics Data System (ADS)
Gao, Zhiyuan; Guéguen, Céline
2017-03-01
The molecular weight (MW) of dissolved organic matter (DOM) is considered as an important factor affecting the bioavailability of organic matter and associated chemical species. Colored DOM (CDOM) MW distribution was determined, for the first time, in the Beaufort Sea (Canada Basin) by asymmetrical flow field-flow fractionation (AF4) coupled with online diode array ultra violet-visible photometer and offline fluorescence detectors. The apparent MW ranged from 1.07 to 1.45 kDa, congruent with previous studies using high performance size exclusion chromatography and tangential flow filtration. Interestingly, a minimum in MW was associated with the Pacific Summer Waters (PSW), while higher MW was associated with the Pacific Winter Waters (PWW). The Arctic Intermediate Waters (AIW) did not show any significant change in MW and fluorescence intensities distribution between stations, suggesting homogeneous DOM composition in deep waters. Three fluorescence components including two humic-like components and one protein-like component were PARAFAC-validated. With the increase of MW, protein-like fluorescence component became more dominant while the majority remained as marine/microbially derived humic-like components. Overall, it is concluded that water mass origin influenced DOM MW distribution in the Arctic Ocean.
Terrestrial dissolved organic matter distribution in the North Sea.
Painter, Stuart C; Lapworth, Dan J; Woodward, E Malcolm S; Kroeger, Silke; Evans, Chris D; Mayor, Daniel J; Sanders, Richard J
2018-07-15
The flow of terrestrial carbon to rivers and inland waters is a major term in the global carbon cycle. The organic fraction of this flux may be buried, remineralized or ultimately stored in the deep ocean. The latter can only occur if terrestrial organic carbon can pass through the coastal and estuarine filter, a process of unknown efficiency. Here, data are presented on the spatial distribution of terrestrial fluorescent and chromophoric dissolved organic matter (FDOM and CDOM, respectively) throughout the North Sea, which receives organic matter from multiple distinct sources. We use FDOM and CDOM as proxies for terrestrial dissolved organic matter (tDOM) to test the hypothesis that tDOM is quantitatively transferred through the North Sea to the open North Atlantic Ocean. Excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) revealed a single terrestrial humic-like class of compounds whose distribution was restricted to the coastal margins and, via an inverse salinity relationship, to major riverine inputs. Two distinct sources of fluorescent humic-like material were observed associated with the combined outflows of the Rhine, Weser and Elbe rivers in the south-eastern North Sea and the Baltic Sea outflow to the eastern central North Sea. The flux of tDOM from the North Sea to the Atlantic Ocean appears insignificant, although tDOM export may occur through Norwegian coastal waters unsampled in our study. Our analysis suggests that the bulk of tDOM exported from the Northwest European and Scandinavian landmasses is buried or remineralized internally, with potential losses to the atmosphere. This interpretation implies that the residence time in estuarine and coastal systems exerts an important control over the fate of tDOM and needs to be considered when evaluating the role of terrestrial carbon losses in the global carbon cycle. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
Schizophrenia patients differentiation based on MR vascular perfusion and volumetric imaging
NASA Astrophysics Data System (ADS)
Spanier, A. B.; Joskowicz, L.; Moshel, S.; Israeli, D.
2015-03-01
Candecomp/Parafac Decomposition (CPD) has emerged as a framework for modeling N-way arrays (higher-order matrices). CPD is naturally well suited for the analysis of data sets comprised of observations of a function of multiple discrete indices. In this study we evaluate the prospects of using CPD for modeling MRI brain properties (i.e. brain volume and gray-level) for schizophrenia diagnosis. Taking into account that 3D imaging data consists of millions of pixels per patient, the diagnosis of a schizophrenia patient based on pixel analysis constitutes a methodological challenge (e.g. multiple comparison problem). We show that the CPD could potentially be used as a dimensionality redaction method and as a discriminator between schizophrenia patients and match control, using the gradient of pre- and post Gd-T1-weighted MRI data, which is strongly correlated with cerebral blood perfusion. Our approach was tested on 68 MRI scans: 40 first-episode schizophrenia patients and 28 matched controls. The CPD subject's scores exhibit statistically significant result (P < 0.001). In the context of diagnosing schizophrenia with MRI, the results suggest that the CPD could potentially be used to discriminate between schizophrenia patients and matched control. In addition, the CPD model suggests for brain regions that might exhibit abnormalities in schizophrenia patients for future research.
Ye, Zhihong; Zhang, Hui; Yang, Lin; Wu, Luxue; Qian, Yue; Geng, Jinyao; Chen, Mengmeng
2016-12-05
The effects of electrochemical oxidation (EO), Fered-Fenton and solar Fered-Fenton processes using a recirculation flow system containing an electrochemical cell and a solar photo-reactor on biochemically treated landfill leachate were investigated. The most successful method was solar Fered-Fenton which achieved 66.5% COD removal after 120min treatment utilizing the optimum operating conditions of 47mM H2O2, 0.29mM Fe(2+), pH0 of 3.0 and a current density of 60mA/cm(2). The generation of hydroxyl radicals (OH) are mainly from Fered-Fenton process, which is enhanced by the introduction of renewable solar energy. Moreover, Fe(2+)/chlorine and UV/chlorine processes taking place in this system also result in additional production of OH due to the relatively high concentration of chloride ions contained in the leachate. The energy consumption was 74.5kWh/kg COD and the current efficiency was 36.4% for 2h treatment. In addition, the molecular weight (MW) distribution analysis and PARAFAC analysis of excitation emission matrix (EEM) fluorescence spectroscopy for different leachate samples indicated that the organics in the leachate were significantly degraded into either small molecular weight species or inorganics. Copyright © 2016 Elsevier B.V. All rights reserved.
Guo, Dong-Hui; Yi, Yue-Yuan; Zhao, Lei; Guo, Wei-Dong
2012-06-01
The metabolic processes of jellyfish can produce dissolved organic matter (DOM) which will influence the functioning of the aquatic ecosystems, yet the optical properties of DOM released by jellyfish are unknown. Here we report the absorption and fluorescence properties of DOM released by a medusa species Black fordia virginica during a 24 h incubation experiment. Compared with the control group, an obvious increase in the concentrations of dissolved organic carbon (DOC), absorption coefficient (a280) and total dissolved nitrogen (TDN) was observed in incubation group. This clearly demonstrated the release of DOM, chromophoric DOM (CDOM) and dissolved nutrients by B. virginica which feed on enough of Artemia sp. before the experiment. The increase in spectral slope ratio (SR) and decrease in humification index (HIX) indicated that the released DOM was less-humified and had relatively lower molecular weight. Parallel factor analysis (PARAFAC) decomposed the fluorescence matrices of DOM into three humic-like components (C1-C3) and one protein-like component (C4). The Fmax of two components (C2: < 250, 295/386 nm; C4: 275/334 nm) with the emission wavelength < 400 nm increased significantly during the metabolic process of B. virginica. However, the Fmax of the other two components with the emission wavelength > 400 nm showed little changes. Thus, we suggested a zooplankton index (ZIX) to trace and characterize the DOM excreted by metabolic activity of zooplankton, which is calculated as the ratio of the sum of Fmax of all fluorescence components with the emission wavelength < 400 nm to the sum of Fmax of the other components with the emission wavelength > 400 nm.
Limitations of fluorescence spectroscopy to characterize organic matter in engineered systems
NASA Astrophysics Data System (ADS)
Korak, J.
2017-12-01
Fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in engineered systems, such as drinking water, municipal wastewater and industrial water treatment. While fluorescence data collected in water treatment applications has led to the development of strong empirical relationships between fluorescence responses and process performance, the use of fluorescence to infer changes in the underlying organic matter chemistry is often oversimplified and applied out of context. Fluorescence only measures a small fraction of DOM as fluorescence quantum yields are less than 5% for many DOM sources. Relying on fluorescence as a surrogate for DOM presence, character or reactivity may not be appropriate for systems where small molecular weight, hydrophilic constituents unlikely to fluoresce are important. In addition, some methods rely on interpreting fluorescence signals at different excitation wavelengths as a surrogate for operationally-defined humic- and fulvic-acids in lieu of traditional XAD fractionation techniques, but these approaches cannot be supported by other lines of evidence considering natural abundance and fluorescence quantum yields of these fractions. These approaches also conflict with parallel factor analysis (PARAFAC), a statistical approach that routinely identifies fluorescence components with dual excitation behavior. Lastly, methods developed for natural systems are often applied out of context to engineered systems. Fluorescence signals characteristic of phenols or indoles are often interpreted as indicators for biological activity in natural systems due to fluorescent amino acids and peptides, but this interpretation is may not be appropriate in engineering applications where non-biological sources of phenolic functional groups may be present. This presentation explores common fluorescence interpretation approaches, discusses the limitations and provides recommendations related to engineered systems.
NASA Astrophysics Data System (ADS)
Feng, L.; An, Y.; Xu, J.; Kang, S.; Xiaofei, L.
2017-12-01
The physical evolution (metamorphism) of snow is known to affect the chemical composition of dissolved organic matter (DOM) within it. Here we present a comprehensive study on the Dongkemadi glacier in the central Tibetan Plateau by collecting surface snow/ice samples from May to October 2015. The samples were grouped into four categories based on their physical descriptions, representing the different stages of the snowmelt (i.e., fresh snow, fine firn, coarse firn, and glacier ice). The concentrations of dissolved organic carbon (DOC) decreased from fresh snow (26.8 μmol L-1) to fine firn (15.0 μmol L-1) and enriched from fine firn to coarse firn (26.1 μmol L-1) and glacier ice (34.4 μmol L-1). This reflected the dynamic variation of DOC during the snowmelt. Excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC) identified three protein-like components (C1, C2 and C4) and one microbial humic-like component (C3), which indicated a significant microbially derived DOM in the surface snow/ice. Molecular level composition of DOM identified by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) also shown newly produced molecular during the snowmelt. These results suggest that the snowmelt could not only induce a loss of DOM but also intensified the in situ microbial activities that enriched and modified it. These findings are important in understanding the evolution of the physical and chemical characteristics of the DOM during the ablation season and shed some light on the nature of the biogeochemical cycles in cryospheric regions.
Jung, Chanil; Deng, Yang; Zhao, Renzun; Torrens, Kevin
2017-01-01
UV-quenching substance (UVQS), as an emerging municipal solid waste (MSW)-derived leachate contaminant, has a potential to interfere with UV disinfection when leachate is disposed of at publicly owned treatment works (POTWs). The objective of this study was to evaluate and compare two chemical oxidation processes under different operational conditions, i.e. Fenton process and ozonation, for alleviation of UV 254 absorbance of a biologically pre-treated landfill leachate. Results showed that leachate UV 254 absorbance was reduced due to the UVQS decomposition by hydroxyl radicals (·OH) during Fenton treatment, or by ozone (O 3 ) and ·OH during ozonation. Fenton process exhibited a better treatment performance than ozonation under their respective optimal conditions, because ·OH could effectively decompose both hydrophobic and hydrophilic dissolved organic matter (DOM), but O 3 tended to selectively oxidize hydrophobic compounds alone. Different analytical techniques, including molecular weight (MW) fractionation, hydrophobic/hydrophilic isolation, UV spectra scanning, parallel factor (PARAFAC) analysis, and fluorescence excitation-emission matrix spectrophotometry, were used to characterize UVQS. After either oxidation treatment, residual UVQS was more hydrophilic with a higher fraction of low MW molecules. It should be noted that the removed UV 254 absorbance (ΔUV 254 ) was directly proportional to the removed COD (ΔCOD) for the both treatments (Fenton process: ΔUV 254 = 0.011ΔCOD; ozonation: ΔUV 254 = 0.016ΔCOD). A greater ΔUV 254 /ΔCOD was observed for ozonation, suggesting that oxidant was more efficiently utilized during ozonation than in Fenton treatment for mitigation of the UV absorbance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Yunlin; van Dijk, Mark A; Liu, Mingliang; Zhu, Guangwei; Qin, Boqiang
2009-10-01
Eight field campaigns in the eutrophic, shallow, Lake Taihu in the summers from 2005 to 2007, and a phytoplankton degradation experiment of 33 days, were carried out to determine the contribution of phytoplankton degradation to CDOM. Significant and positive correlations were found between the CDOM absorption coefficient at 355 nm [a(CDOM)(355)], normalized fluorescence emission (QSU) at 450 nm from excitation at 355 nm [F(n)(355)], and the chlorophyll a (Chla) concentration for all eight field campaigns, which indicates that the decomposition and degradation of phytoplankton is an important source of CDOM. In the degradation experiment, the CDOM absorption coefficient increased as phytoplankton broke down during the first 12 days, showing the production of CDOM from phytoplankton. After 12 days, a(CDOM)(355) had increased from the initial value 0.41+/-0.03 m(-1) to 1.37+/-0.03 m(-1) (a 234% increase), and the Chla concentration decreased from the initial value of 349.1+/-11.2 microg/L to 30.4+/-13.2 microg/L (a 91.3% decrease). The mean daily production rate of CDOM from phytoplankton was 0.08 m(-1) for a(CDOM)(355). Parallel Factor Analysis (PARAFAC) was used to assess CDOM composition from EEM spectra, and four components were identified: a terrestrial-like humic component, two marine-like humic components, and a protein-like component. The rapid increase in marine-like humic fluorophores (C3 and C4) during the degradation experiment suggests that in situ production of CDOM plays an important role in the dynamics of CDOM. The field campaigns and experimental data in the present study show that phytoplankton can be one of the important CDOM producers in eutrophic shallow lakes.
Jiang, De-gang; Huang, Qing-hui; Li, Jian-hua
2010-07-01
As an important component of dissolved organic matter (DOM), chromophoric dissolved organic matter (CDOM) plays a central role in the global biogeochemical carbon cycle. Macroalgae are essential producers in aquatic ecosystems. They can release a considerable part of photosynthetic products as CDOM. So changes in optical properties of CDOM are studied on filamentous green macroalgae-Chadophorasle found in tidal flats of a brackish Lake Beihu in natural field condition by using spectrometry. Humic-like fluorescence peaks and protein-like fluorescence peaks detected by fluorescence excitation-emission matrix spectrum (EEMS) change little in control experiment but increase dramatically in incubation experiment. Applying parallel factor analysis (PARAFAC) together with fluorescence excitation-emission matrix can get four components of CDOM (C1, C2, C3 and C4) which are relative to humic-like fluorescence peak A(C), M and protein-like fluorescence peak B, T respectively. In incubation experiment four components increase by 211.5%, 255.8%, 75.3% and 129.3% respectively while in control experiment components have little changes except C1 decreasing by 34.3%. Absorption coefficient alpha (355) increases by 92.9% and has positive significant correlation (P < 0.01) with the four components in incubation-experiment while alpha (355) decreases by 59.8% and only has correlation (P < 0.05) with C1 in control experiment. As the parameters representing CDOM molecular weight and composition, M and S values in incubation experiment are smaller than in control experiment, which illustrate that aromatic and macromolecular CDOM is produced in growth of Chadophorasle. All results indicate that growth of Chadophorasle can change the content and composition of CDOM.
NASA Astrophysics Data System (ADS)
Gonsior, M.; Timko, S.; Conte, M. H.; Schmitt-Kopplin, P.
2016-02-01
Ten liter water samples were collected at the Bermuda Atlantic Time Series Station (BATS) at 200 m intervals down to a maximum depth of 4530 m and solid-phase extracted. The methanol extracts were dried and re-dissolved in pure water and then used to determine the time-resolved photo-degradation of marine dissolved organic matter to be able to determine kinetic data. Excitation Emission Matrix (EEM) fluorescence spectra were recorded every 20 minutes using a custom-built flow-through photo-degradation system during 20 h of solar simulated light exposure. The resulting EEM spectra were modeled using Parallel Factor Analysis (PARAFAC) and results revealed reproducible and significant changes in the photo-degradation of marine FDOM originating from different depths. A five component model was fitted and the terrestrial-like components showed the expected high photo-reactivity, but surprisingly, the traditional marine-like peak showed slight photo-production in the surface layer, which might be the reason for its prevalence in the open ocean. Surface ocean waters were depleted in the highly photo-degradable components while protein-like fluorescent components were enriched, which was in agreement with previous studies. Ultrahigh resolution mass spectrometry confirmed unique aliphatic molecular ions in the Surface Ocean and hydrogen-deficient molecules at depth. Multivariate statistical analyses revealed strong correlations between unsaturated/aromatic molecular ions and depth, where aliphatic molecular ions were more prevalent in the Surface Ocean and aromatic molecular ions at depth. Strong correlations were also found between hydrogen-deficient molecular ions and the humic-like fluorescent components. The rapid photo-degradation of the deep-sea FDOM and the surface oceans relative depletion of aromatic molecular ions suggested that deep-ocean FDOM may be too photochemically labile to survive meridional overturning circulation.
NASA Astrophysics Data System (ADS)
Guerard, J.; Osborne, R.
2015-12-01
Dissolved organic matter (DOM) is a complex heterogeneous mixture, ubiquitous to all natural surface waters, uniquely composed of source inputs specific to spatial, temporal, and ecological circumstances. In arctic and sub-arctic regions, elucidating DOM composition and reactivity is complicated by seasonal variations. These include changes in productivity and source inputs to the water column, as well as winter overflow events that may contribute allochthonous organic material. DOM from a small boreal stream in a watershed of discontinuous permafrost in the Goldstream Valley of interior Alaska was isolated by solid-phase extraction (PPL) at multiple points during the year - late spring, late summer, and in the winter during an active overflow event. Compositional characteristics of each of the isolates were characterized by SPR-W5-WATERGATE 1H NMR spectroscopy, specific UV-Vis absorbance, and excitation emission matrix (EEM) fluorescence spectroscopy and compared against end-member reference DOM isolates. Kinetics of photobleaching experiments reveal the influence of compositional differences among the isolated DOMs on their chemical reactivity, and offer insight into potential differences in their source materials and ecological function throughout the year. Photobleaching studies were conducted using a variety of reactive species quenchers or sensitizers in order to assess susceptibility of oxidative transformation mechanisms on the different DOM isolates, which were then analyzed by 1H NMR, UV-Vis degradation kinetics, and parallel factor analysis (PARAFAC) of fluorescence EEMs. Better understanding of the seasonal variations of boreal DOM character and function on a molecular level is critical to assessing alterations in its ecological role and cycling in the face of current and future ecosystem perturbations in arctic and sub-arctic regions.
Ly, Quang Viet; Hur, Jin
2018-06-01
This study assessed the relative contributions of different constitutes in dissolved organic matter (DOM) with two different sources (i.e., urban river and effluent) to membrane fouling on three types of ultrafiltration (UF) membranes via excitation emission matrix - parallel factor analysis (EEM-PARAFAC), size exclusion chromatography (SEC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Two polyethersulfone membranes with different pore sizes and one regenerated cellulose membrane were used as representative hydrophobic (HPO) and hydrophilic (HPI) UF membranes, respectively. Although size exclusion effect was found to be the most prevailing rejection mechanism, the behaviors of individual fluorescent components (one tryptophan-like, one microbial-humic-like, and terrestrial humic-like) and different size fractions upon the UF filtration revealed that chemical interactions (e.g., hydrophobic interactions and hydrogen bonding) between DOM and membrane might play important roles in UF membrane fouling, especially for small sized DOM molecules. Based on the molecular level composition determined by FT-ICR-MS, the CHOS formula group showed a greater removal tendency toward the HPO membrane, while the CHONS group was prone to be removed by the HPI membrane. The changes in the overall molecular composition of DOM upon UF filtration were highly dependent on the sources of DOM. The molecules of more acidic nature tended to remain in the permeate of effluent DOM, while the river DOM was shifted into more nitrogen-enriched composition after filtration. Regardless of the DOM sources, the HPO membrane with a smaller pore size led to the most pronounced changes in the molecular composition of DOM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stedmon, Colin A; Seredyńska-Sobecka, Bożena; Boe-Hansen, Rasmus; Le Tallec, Nicolas; Waul, Christopher K; Arvin, Erik
2011-11-15
The fluorescence characteristics of natural organic matter in a groundwater based drinking water supply plant were studied with the aim of applying it as a technique to identify contamination of the water supply. Excitation-emission matrices were measured and modeled using parallel factor analysis (PARAFAC) and used to identify which wavelengths provide the optimal signal for monitoring contamination events. The fluorescence was characterized by four components: three humic-like and one amino acid-like. The results revealed that the relative amounts of two of the humic-like components were very stable within the supply plant and distribution net and changed in a predictable fashion depending on which wells were supplying the water. A third humic-like component and an amino acid-like component did not differ between wells. Laboratory contamination experiments with wastewater revealed that combined they could be used as an indicator of microbial contamination. Their fluorescence spectra did not overlap with the other components and therefore the raw broadband fluorescence at the wavelengths specific to their fluorescence could be used to detect contamination. Contamination could be detected at levels equivalent to the addition of 60 μg C/L in drinking water with a TOC concentration of 3.3 mg C/L. The results of this study suggest that these types of drinking water systems, which are vulnerable to microbial contamination due to the lack of disinfectant treatment, can be easily monitored using online organic matter fluorescence as an early warning system to prompt further intensive sampling and appropriate corrective measures. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chen, Zhiqiang; Li, Mo; Wen, Qinxue; Ren, Nanqi
2017-11-01
Effluent organic matter (EfOM) is an emerging concern to receiving aquatic environment due to its refractory property. The degradation of EfOM in ozonation and other two advanced oxidation processes (AOPs), UV/H 2 O 2 and UV/persulfate (PS), was investigated in this study. Fluorescence spectra coupled with parallel factor analysis (PARAFAC) and two-dimensional correlation gel permeation chromatography (2D-GPC) were used to track the evolution of EfOM during each oxidation process. Results showed that the degradation of EfOM indicated by dissolved organic carbon (DOC), UV 254 and fluorescence components, fitted well with pseudo-first-order kinetic model during the oxidation processes. Ozonation showed higher degradation efficiency than AOPs, while UV/PS was more effective than UV/H 2 O 2 with equimolar oxidants dosage. Ozone and SO· 4 - were more reactive with terrestrial humic-like substances, while hydroxyl radical preferentially reacted with protein-like substances. Organic molecules with higher molecular weight (MW) were susceptible to ozone or radicals. Ozonation could transform higher MW (MW of 3510 and 575) organic matters into lower MW organic matters (MW of 294), while reductions of all the organics were observed in both AOPs. Due to the higher reaction rates between ozone and EfOM, ozonation maybe serve as a pre-treatment for AOPs to reduce the radical and energy consumption and improve mineralization of EfOM by AOPs. The decline in DOC, UV 254 , fluorescence and reduction in oxidants increased with the increase of oxidants dosage, and linear correlations among them were found during the ozonation and AOPs. Copyright © 2017. Published by Elsevier Ltd.
Hydrological changes of DOM composition and biodegradability of rivers in temperate monsoon climates
NASA Astrophysics Data System (ADS)
Shin, Yera; Lee, Eun-Ju; Jeon, Young-Joon; Hur, Jin; Oh, Neung-Hwan
2016-09-01
The spatial and hydrological dynamics of dissolved organic matter (DOM) composition and biodegradability were investigated for the five largest rivers in the Republic of Korea (South Korea) during the years 2012-2013 using incubation experiments and spectroscopic measurements, which included parallel factor analysis (PARAFAC). The lower reaches of the five rivers were selected as windows showing the integrated effects of basin biogeochemistry of different land use under Asian monsoon climates, providing an insight on consistency of DOM dynamics across multiple sites which could be difficult to obtain from a study on an individual river. The mean dissolved organic carbon (DOC) concentrations of the five rivers were relatively low, ranging from 1.4 to 3.4 mg L-1, due to the high slope and low percentage of wetland cover in the basin. Terrestrial humic- and fulvic-like components were dominant in all the rivers except for one, where protein-like compounds were up to ∼80%. However, terrestrial components became dominant in all five of the rivers after high precipitation during the summer monsoon season, indicating the strong role of hydrology on riverine DOM compositions for the basins under Asian monsoon climates. Considering that 64% of South Korea is forested, our results suggest that the forests could be a large source of riverine DOM, elevating the DOM loads during monsoon rainfall. Although more DOM was degraded when DOM input increased, regardless of its sources, the percent biodegradability was reduced with increased proportions of terrestrially derived aromatic compounds. The shift in DOM quality towards higher percentages of aromatic terrestrial compounds may alter the balance of the carbon cycle of coastal ecosystems by changing microbial metabolic processes if climate extremes such as heavy storms and typhoons become more frequent due to climate change.
Al-Reasi, Hassan A; Smith, D Scott; Wood, Chris M
2012-03-01
Various quality predictors of seven different natural dissolved organic matter (DOM) and humic substances were evaluated for their influence on protection of Daphnia magna neonates against copper (Cu) toxicity. Protection was examined at 3 and 6 mg l(-1) of dissolved organic carbon (DOC) of each DOM isolate added to moderately hard, dechlorinated water. Other water chemistry parameters (pH, concentrations of DOC, calcium, magnesium and sodium) were kept relatively constant. Predictors included absorbance ratios Abs(254/365) (index of molecular weight) and Abs-octanol(254)/Abs-water(254) (index of lipophilicity), specific absorption coefficient (SAC(340); index of aromaticity), and fluorescence index (FI; index of source). In addition, the fluorescent components (humic-like, fulvic-like, tryptophan-like, and tyrosine-like) of the isolates were quantified by parallel factor analysis (PARAFAC). Up to 4-fold source-dependent differences in protection were observed amongst the different DOMs. Significant correlations in toxicity amelioration were found with Abs(254/365), Abs-octanol(254)/Abs-water(254), SAC(340), and with the humic-like fluorescent component. The relationships with FI were not significant and there were no relationships with the tryptophan-like or tyrosine-like fluorescent components at 3 mg C l(-1), whereas a negative correlation was seen with the fulvic-like component. In general, the results indicate that larger, optically dark, more lipophilic, more aromatic DOMs of terrigenous origin, with higher humic-like content, are more protective against Cu toxicity. A method for incorporating SAC(340) as a DOM quality indicator into the Biotic Ligand Model is presented; this may increase the accuracy for predicting Cu toxicity in natural waters.
NASA Astrophysics Data System (ADS)
Para, J.; Charrière, B.; Matsuoka, A.; Miller, W. L.; Rontani, J. F.; Sempéré, R.
2013-04-01
Surface waters from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC), and optical characteristics including UV (ultraviolet) radiation and PAR (photosynthetically active radiation) diffuse attenuation (Kd), and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) as part of the MALINA field campaign (30 July to 27 August). Spectral absorption coefficients (aCDOM (350 nm) (m-1)) were significantly correlated to both diffuse attenuation coefficients (Kd) in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of both UV and PAR solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. While the Mackenzie input is the main driver of CDOM dynamics in low salinity waters, locally, primary production can create significant increases in CDOM. Extrapolating CDOM to DOC relationships, we estimate that ∼16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. The discharges of DOC and its chromophoric subset (CDOM) by the Mackenzie River during the MALINA cruise are estimated as ∼0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1-C3) were identified by fluorescence excitation/emission matrix spectroscopy (EEMS) and parallel factor (PARAFAC) analysis. Our results showed an aquatic dissolved organic matter (DOM) component (C1), probably produced in the numerous lakes of the watershed, that co-dominated with a terrestrial humic-like component (C2) in the Mackenzie Delta Sector. This aquatic DOM could partially explain the high CDOM spectral slopes observed in the Beaufort Sea.
National scale assessment of total trihalomethanes in Irish drinking water.
O'Driscoll, Connie; Sheahan, Jerome; Renou-Wilson, Florence; Croot, Peter; Pilla, Francesco; Misstear, Bruce; Xiao, Liwen
2018-04-15
Ireland reported the highest non-compliance with respect to total trihalomethanes (TTHMs) in drinking water across the 27 European Union Member States for the year 2010. We carried out a GIS-based investigation of the links between geographical parameters and catchment land-uses with TTHMs concentrations in Irish drinking water. A high risk catchment map was created using peat presence, rainfall (>1400 mm) and slope (<5%) and overlain with a map comprising the national dataset of routinely monitored TTHM concentrations. It appeared evident from the map that the presence of peat, rainfall and slope could be used to identify catchments at high risk to TTHM exceedances. Furthermore, statistical analyses highlighted that the presence of peat soil with agricultural land was a significant driver of TTHM exceedances for all treatment types. PARAFAC analysis from three case studies identified a fluorophore indicative of reprocessed humic natural organic matter as the dominant component following treatment at the three sites. Case studies also indicated that (1) chloroform contributed to the majority of the TTHMs in the drinking water supplies and (2) the supply networks contributed to about 30 μg L -1 of TTHMs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Montemurro, Milagros; Pinto, Licarion; Véras, Germano; de Araújo Gomes, Adriano; Culzoni, María J; Ugulino de Araújo, Mário C; Goicoechea, Héctor C
2016-07-01
A study regarding the acquisition and analytical utilization of four-way data acquired by monitoring excitation-emission fluorescence matrices at different elution time points in a fast HPLC procedure is presented. The data were modeled with three well-known algorithms: PARAFAC, U-PLS/RTL and MCR-ALS, the latter conveniently adapted to model third-order data. The second-order advantage was exploited when analyzing samples containing uncalibrated components. The best results were furnished with the algorithm U-PLS/RTL. This fact is indicative of both no peak time shifts occurrence among samples and high colinearity among spectra. Besides, this latent-variable structured algorithm is capable of better handle the need of achieving high sensitivity for the analysis of one of the analytes. In addition, a significant enhancement in both predictions and analytical figures of merit was observed for carbendazim, thiabendazole, fuberidazole, carbofuran, carbaryl and 1-naphtol, when going from second- to third-order data. LODs obtained were ranged between 0.02 and 2.4μgL(-1). Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
xiaona, W.; Bao, H.; Wu, Y.
2013-12-01
As one of the largest river in the world, studying the properties of dissolved organic matter in Changjiang can help us reveal the change of terrestrial organic matter in typical large subtropical river system. Samples collected from mid-lower reaches of Changjiang and its main tributaries/lakes in July 2010 and August 2012 were analysed for dissolved organic carbon (DOC), dissolved lignin phenols and chromophoric dissolved organic carbon (CDOM). Based on the hydrological condition, both of the two cruises are in flood season, while the latter is extremely flood season. The hydrological condition can impact the signal of dissolved lignin phenols as well as DOC. The DOC concentration is similar for both the cruises, with an average of 139×21 μM in 2010 and 130×36 μM in 2012. But the dissolved lignin phenols show obvious difference, the concentration is 13.6×3.4 μg/L and 12.7×5.2 μg/L for the main stream and tributaries/lakes in 2010 respectively, but it decreases to 8.7×2.5 μg/L and 6.5×3.5 μg/L in 2012.The dissolved lignin phenols show positive correlation with DOC in August 2012, but no similar trend is observed in 2010. Excitation-emission matrix fluorescence spectroscopy combined with parallel factor analysis (EEMs-PARAFAC) decomposes the fluorescence matrices of CDOM into three humic-like (H1: 315(250)/400 nm, H2: 350(280)/460 nm, H3: 250/450~485 nm) and two protein-like (P1: 270/315 nm, P2: 285/350 nm) components. Good linear correlations are observed within three humic-like components and two protein-like components, indicating that the same types of components (humic-like or protein-like) have similar origin and geochemical behaviors. However, these two kinds of components show different tendency. The total content of dissolved lignin phenols is correlated with the absorption in 280 nm, indicating the optical property of CDOM is related to its structure. There are many factors impacting the composition of dissolved organic matter in large river system like Changjiang. We find the biomarkers have mutative geochemical behaviors in different hydrological conditions. The variation of biomarkers can reveal the alternation in hydrological factor.
Zhang, Shurong; Bai, Yijuan; Wen, Xin; Ding, Aizhong; Zhi, Jianhui
2018-04-22
Human activities impose important disturbances on both organic and inorganic chemistry in fluvial systems. In this study, we investigated the intra-annual and downstream variations of dissolved organic carbon (DOC), dissolved organic matter (DOM) excitation-emission matrix fluorescence (EEM) with parallel factor analysis (PARAFAC), major ions, and dissolved inorganic nitrogen (DIN) species in a mountainous tributary of the Yellow River, China. Both DOM quantity and quality, as represented by DOC and DOM fluorescence respectively, changed spatially and seasonally in the studied region. Fluorescence intensity of tryptophan-like components (C3) were found much higher at the populated downstream regions than in the undisturbed forested upstream regions. Seasonally, stronger fluorescence intensity of protein-like components (C3 and C4) was observed in the low-flow period (December) and in the medium-flow period (March) than in the high-flow period (May), particularly for the downstream reaches, reflecting the dominant impacts of wastewater pollution in the downstream regions. In contrast to the protein-like fluorescence, humic-like fluorescence components C1 and C2 exhibited distinctly higher intensity in the high-flow period with smaller spatial variation indicating strong flushing effect of increasing water discharge on terrestrial-sourced humic-like materials in the high-flow period. Pollution-affected dissolved inorganic ions, particularly Na + , Cl - , and NH 4 + -N, showed similar spatial and seasonal variations with protein-like fluorescence of DOM. The significant positive correlations between protein-like fluorescence of DOM and pollution-affected ions, particularly Na + , Cl - , and NH 4 + -N, suggested that there were similar pollution sources and transportation pathways of both inorganic and organic pollutants in the region. The combination of DOM fluorescence properties and inorganic ions could provide an important reference for the pollution source characterization and river basin management.
NASA Astrophysics Data System (ADS)
Goffin, Angélique; Guérin, Sabrina; Rocher, Vincent; Varrault, Gilles
2016-04-01
Dissolved organic matter (DOM) influences wastewater treatment plants efficiency (WTTP): variations in its quality and quantity can induce a foaming phenomenon and a fouling event inside biofiltration processes. Moreover, in order to manage denitrification step (control and optimization of the nitrate recirculation), it is important to be able to estimate biodegradable organic matter quantity before biological treatment. But the current methods used to characterize organic matter quality, like biological oxygen demand are laborious, time consuming and sometimes not applicable to directly monitor organic matter in situ. In the context of MOCOPEE research program (www.mocopee.com), this study aims to assess the use of optical techniques, such as UV-Visible absorbance and more specifically fluorescence spectroscopy in order to monitor and to optimize process efficiency in WWTP. Fluorescence excitation-emission matrix (EEM) spectroscopy was employed to prospect the possibility of using this technology online and in real time to characterize dissolved organic matter in different effluents of the WWTP Seine Centre (240,000 m3/day) in Paris, France. 35 sewage water influent samples were collected on 10 days at different hours. Data treatment were performed by two methods: peak picking and parallel factor analysis (PARAFAC). An evolution of DOM quality (position of excitation - emission peaks) and quantity (intensity of fluorescence) was observed between the different treatment steps (influent, primary treatment, biological treatment, effluent). Correlations were found between fluorescence indicators and different water quality key parameters in the sewage influents. We developed different multivariate linear regression models in order to predict a variety of water quality parameters by fluorescence intensity at specific excitation-emission wavelengths. For example dissolved biological oxygen demand (r2=0,900; p<0,0001) and ammonium concentration (r2=0,898; p<0,0001) present good correlation with specific fluorescence peaks and indicators. These indicators derived from 3D spectrofluorescence could be used in order to characterize DOM online and thus to optimize process efficiency in WWTP.
NASA Astrophysics Data System (ADS)
Zhu, Wen-Zhuo; Zhang, Hong-Hai; Zhang, Jing; Yang, Gui-Peng
2018-04-01
The absorption coefficient and fluorescent components of chromophoric dissolved organic matter (CDOM) in the Bohai Sea (BS), Yellow Sea (YS), and East China Sea (ECS) in spring and autumn were analyzed in this study. Excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC) identified three components, namely, humic-like C1, tyrosine-like C2 and tryptophan-like C3. The seasonal variations in the vertical patterns of the CDOM absorption coefficient (aCDOM(355)) and fluorescent components were influenced by the seasonal water mass except for the terrestrial input. The relationship between aCDOM(355) and dissolved organic matter (DOC) was attributed to their own mixing behavior. The correlation of the fluorescent components with DOC was disturbed by other non-conservative processes during the export of CDOM to the open ocean. The different chemical compositions and origins of DOC and CDOM led to variability in carbon-specific CDOM absorption (a*CDOM(355)) and fluorescent component ratios (ICn/IC1). The relationship between a*CDOM(355) and aCDOM(355) demonstrated that dissolved organic matter (DOM) in the BS, but not in the ECS, highly contributed non-absorbing DOC to the total DOC concentration. The photodegradation of dominant terrestrially derived CDOM in the ECS contributed to the positive relationship between a*CDOM(355) and ICn/IC1. By contrast, the abundant autochthonous CDOM in the YS was negatively correlated with ICn/IC1 in autumn. Our established box models showed that water exchange is a potentially important source of the aromatic components in the BS, YS, and ECS. Hence, the seasonal variations in water exchange might contribute to the variability of CDOM chemical composition in the BS, YS, and ECS, and significantly influence the structure and function of their ecosystems.
Understanding microbial/DOM interactions using fluorescence and flow cytometry
NASA Astrophysics Data System (ADS)
Fox, Bethany; Rushworth, Cathy; Attridge, John; Anesio, Alexandre; Cox, Tim; Reynolds, Darren
2015-04-01
The transformation and movement of dissolved organic carbon (DOC) within freshwater aquatic systems is an important factor in the global cycling of carbon. DOC within aquatic systems is known to underpin the microbial food web and therefore plays an essential role in supporting and maintaining the aquatic ecosystem. Despite this the interactions between bacteria and dissolved organic matter (DOM) are not well understood, although the literature indicates that the microbial processing of bioavailable DOM is essential during the production of autochthonous, labile, DOM. DOM can be broadly characterised by its fluorescing properties and Coble et al. (2014) define terrestrially derived DOM as exhibiting "peak C" fluorescence, whilst labile microbially derived DOM is defined as showing "peak T" fluorescence. Our work explores the microbial/DOM interactions by analysing aquatic samples using fluorescence excitation and emission matrices (EEMs) in conjunction with microbial consumption of dissolved oxygen. Environmental and synthetic water samples were subjected to fluorescence characterisation using both fluorescence spectroscopy and in situ fluorescence sensors (Chelsea Technologies Group Ltd.). PARAFAC analysis and peak picking were performed on EEMs and compared with flow cytometry data, used to quantify bacterial numbers present within samples. Synthetic samples were created using glucose, glutamic acid, nutrient-rich water and a standard bacterial seed. Synthetic samples were provided with terrestrially derived DOM via the addition of an aliquot of environmental water. Using a closed system approach, samples were incubated over time (up to a maximum of 20 days) and analysed at pre-defined intervals. The main focus of our work is to improve our understanding of microbial/DOM interactions and how these interactions affect both the DOM characteristics and microbial food web in freshwater aquatic systems. The information gained, in relation to the origin, microbial processing and subsequent production of DOM, will inform the development of a new generation of in situ fluorescence sensors. Ultimately, our aim is develop a novel technology that enables the monitoring of ecosystem health in freshwater aquatic systems.
NASA Astrophysics Data System (ADS)
Oliver, Allison A.; Tank, Suzanne E.; Giesbrecht, Ian; Korver, Maartje C.; Floyd, William C.; Sanborn, Paul; Bulmer, Chuck; Lertzman, Ken P.
2017-08-01
The perhumid region of the coastal temperate rainforest (CTR) of Pacific North America is one of the wettest places on Earth and contains numerous small catchments that discharge freshwater and high concentrations of dissolved organic carbon (DOC) directly to the coastal ocean. However, empirical data on the flux and composition of DOC exported from these watersheds are scarce. We established monitoring stations at the outlets of seven catchments on Calvert and Hecate islands, British Columbia, which represent the rain-dominated hypermaritime region of the perhumid CTR. Over several years, we measured stream discharge, stream water DOC concentration, and stream water dissolved organic-matter (DOM) composition. Discharge and DOC concentrations were used to calculate DOC fluxes and yields, and DOM composition was characterized using absorbance and fluorescence spectroscopy with parallel factor analysis (PARAFAC). The areal estimate of annual DOC yield in water year 2015 was 33.3 Mg C km-2 yr-1, with individual watersheds ranging from an average of 24.1 to 37.7 Mg C km-2 yr-1. This represents some of the highest DOC yields to be measured at the coastal margin. We observed seasonality in the quantity and composition of exports, with the majority of DOC export occurring during the extended wet period (September-April). Stream flow from catchments reacted quickly to rain inputs, resulting in rapid export of relatively fresh, highly terrestrial-like DOM. DOC concentration and measures of DOM composition were related to stream discharge and stream temperature and correlated with watershed attributes, including the extent of lakes and wetlands, and the thickness of organic and mineral soil horizons. Our discovery of high DOC yields from these small catchments in the CTR is especially compelling as they deliver relatively fresh, highly terrestrial organic matter directly to the coastal ocean. Hypermaritime landscapes are common on the British Columbia coast, suggesting that this coastal margin may play an important role in the regional processing of carbon and in linking terrestrial carbon to marine ecosystems.
Molecular characterization of dissolved organic matter (DOM): a critical review.
Nebbioso, Antonio; Piccolo, Alessandro
2013-01-01
Advances in water chemistry in the last decade have improved our knowledge about the genesis, composition, and structure of dissolved organic matter, and its effect on the environment. Improvements in analytical technology, for example Fourier-transform ion cyclotron (FT-ICR) mass spectrometry (MS), homo and hetero-correlated multidimensional nuclear magnetic resonance (NMR) spectroscopy, and excitation emission matrix fluorimetry (EEMF) with parallel factor (PARAFAC) analysis for UV-fluorescence spectroscopy have resulted in these advances. Improved purification methods, for example ultrafiltration and reverse osmosis, have enabled facile desalting and concentration of freshly collected DOM samples, thereby complementing the analytical process. Although its molecular weight (MW) remains undefined, DOM is described as a complex mixture of low-MW substances and larger-MW biomolecules, for example proteins, polysaccharides, and exocellular macromolecules. There is a general consensus that marine DOM originates from terrestrial and marine sources. A combination of diagenetic and microbial processes contributes to its origin, resulting in refractory organic matter which acts as carbon sink in the ocean. Ocean DOM is derived partially from humified products of plants decay dissolved in fresh water and transported to the ocean, and partially from proteinaceous and polysaccharide material from phytoplankton metabolism, which undergoes in-situ microbial processes, becoming refractory. Some of the DOM interacts with radiation and is, therefore, defined as chromophoric DOM (CDOM). CDOM is classified as terrestrial, marine, anthropogenic, or mixed, depending on its origin. Terrestrial CDOM reaches the oceans via estuaries, whereas autochthonous CDOM is formed in sea water by microbial activity; anthropogenic CDOM is a result of human activity. CDOM also affects the quality of water, by shielding it from solar radiation, and constitutes a carbon sink pool. Evidence in support of the hypothesis that part of marine DOM is of terrestrial origin, being the result of a long-term carbon sedimentation, has been obtained from several studies discussed herein.
Liu, Xiaohan; Zhang, Yunlin; Shi, Kun; Zhu, Guangwei; Xu, Hai; Zhu, Mengyuan
2014-12-01
The development of techniques for real-time monitoring of water quality is of great importance for effectively managing inland water resources. In this study, we first analyzed the absorption and fluorescence properties in a large subtropical reservoir and then used a chromophoric dissolved organic matter (CDOM) fluorescence monitoring sensor to predict several water quality parameters including the total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), dissolved organic carbon (DOC), and CDOM fluorescence parallel factor analysis (PARAFAC) components in the reservoir. The CDOM absorption coefficient at 254 nm (a(254)), the humic-like component (C1), and the tryptophan-like component (C3) decreased significantly along a gradient from the northwest to the lake center, northeast, southwest, and southeast region in the reservoir. However, no significant spatial difference was found for the tyrosine-like component (C2), which contributed only four marked peaks. A highly significant linear correlation was found between the a(254) and CDOM concentration measured using the CDOM fluorescence sensor (r(2) = 0.865, n = 76, p < 0.001), indicating that CDOM concentrations could act as a proxy for the CDOM absorption coefficient measured in the laboratory. Significant correlations were also found between the CDOM concentration and TN, TP, COD, DOC, and the maximum fluorescence intensity of C1, suggesting that the real-time monitoring of CDOM concentrations could be used to predict these water quality parameters and trace the humic-like fluorescence substance in clear aquatic ecosystems with DOC <2 mg/L and total suspended matter (TSM) concentrations <15 mg/L. These results demonstrate that the CDOM fluorescence sensor is a useful tool for on-line water quality monitoring if the empirical relationship between the CDOM concentration measured using the CDOM fluorescence sensor and the water quality parameters is calibrated and validated.
NASA Astrophysics Data System (ADS)
Smith, J. P.; Reed, A. H.; Boyd, T. J.
2016-12-01
Changes in hydrodynamic shear, variations in ionic strength (salinity), and to a lesser degree pH, along the salinity gradient influences clay-organic matter (OM) flocculation, disaggregation and particle size distributions with depth in natural river-estuarine waters. The scale and rate of aggregation and disaggregation of specific clay-OM flocs assemblages under different hydrodynamic and physiochemical conditions in estuaries or coastal river systems is an area of ongoing research. Chromophoric dissolved organic matter (CDOM) is the fraction of the DOM pool that absorbs and/or emits light at discrete wavelengths when excited. The CDOM absorbance and Excitation Emission Matrix (EEM) fluorescence spectra in natural waters can potentially be used to investigate clay-OM interactions and implications for formation kinetics, size, strength, and settling velocities of cohesive particulate aggregates (flocs and suspended sediments) as they respond to hydrodynamic shear under different physiochemical conditions. Size characteristics of particulate matter and sediment samples collected from the Misa River in Italy in 2014 were compared to the optical properties of the water column to identify potential OM components/constituents influencing flocculation processes in riverine-estuarine systems. The EEMs results were coupled with a parallel factor analysis (PARAFAC) model to associate previously identified EEMS regions of CDOM components to those found in the waters of this study and identify the main OM components/constituents influencing the multi-way variance of the EEMS data. Initial results from the Misa River and subsequent studies show a difference in dominant DOM types by salinity, clay-OM composition, and flow conditions that may be indicative of system specific particle flocculation and disaggregation under different hydrodynamic regimes. These results suggest that the CDOM absorbance and EEMS fluorescence spectra in natural waters can potentially be used to qualify the influence of OM on the flocculation and sedimentation of clay particulates in river-estuarine systems under different physiochemical and hydrodynamic conditions.
Zhou, Yongqiang; Yao, Xiaolong; Zhang, Yibo; Shi, Kun; Zhang, Yunlin; Jeppesen, Erik; Gao, Guang; Zhu, Guangwei; Qin, Boqiang
2017-05-01
Perturbations of rainwater chromophoric dissolved organic matter (CDOM) fluorescence induced by changes in rainfall intensity and pH were investigated by field observations and laboratory pH titrations. Microbial humic-like fluorophores dominated the rainwater CDOM pool, followed by tryptophan-like and tyrosine-like substances. Increased rainfall intensity had notable dilution effects on all six fluorescent components (C1-C6) identified using parallel factor (PARAFAC) analysis, the effect being especially pronounced for the microbial humic-like C1, tryptophan-like C3, and tyrosine-like C5. The results also indicated that increasing pH from 7 to 9 led to decreased fluorescence intensity (F max ) of all the six components, while a pH increase from 5 to 7, resulted in increasing F max of terrestrial humic-like C2, tyrosine-like C5, and tryptophan-like C6 and decreasing microbial humic-like C1, tryptophan-like C3, and fulvic-like C4. Two-dimensional correlation spectroscopy (2D-COS) demonstrated that synchronous fluorescence responded first to pH modifications at fulvic-like wavelength (λ Ex /λ Em = ∼316/416 nm), followed by tyrosine-like wavelength (λ Ex /λ Em = ∼204/304 nm), tryptophan-like wavelength (λ Ex /λ Em = ∼226/326 nm), microbial humic-like wavelength (∼295/395 nm), and finally terrestrial humic-like wavelength (∼360/460 nm). Our results suggest that a decrease in areas affected by acid rain in South China occurring at present may possibly result in apparent compositional changes of CDOM fluorescence. The decreased rainfall in South-West China and increased rainfall in North-West China during the past five decades may possibly accordingly result in increased and decreased F max of all the six components identified in South-West and North-West China, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nishimura, Satoshi; Maie, Nagamitsu; Baba, Mitsuhisa; Sudo, Takahiro; Sugiura, Toshihiro; Shima, Eikichi
2012-01-01
Chromophoric dissolved organic matter (CDOM) leached from leaf litter is a major source of humus in mineral soil of forest ecosystems. While their functions and refractoriness depend on the physicochemical structure, there is little information on the quality of CDOM, especially for that leached in the very early stages of litter decomposition when a large amount of dissolved organic matter (DOM) is leached. This study aimed to better understand the variations/changes in the composition of CDOM leached from senescent leaf litter from two tree species during the early stage of decomposition. Leaf litter from a conifer tree (Japanese cedar, D. Don) and a deciduous broad-leaved tree (Konara oak, Thunb.) were incubated in columns using simulated rainfall events periodically for a total of 300 d at 20°C. The quality of CDOM was investigated based on the fluorescence properties by using a combination of excitation-emission matrix fluorescence (EEM) and parallel factor analysis (PARAFAC). In addition, the phenolic composition of DOM was investigated at a molecular level by thermally assisted hydrolysis and methylation-gas chromatography-mass spectrometry (THM-GC-MS) in the presence of tetramethylammonium hydroxide (TMAH). The EEM was statistically decomposed into eight fluorescence components (two tannin/peptide-like peaks, one protein-like peak, and five humic-like peaks). A significant contribution of tannin/peptide-like peaks was observed at the beginning of incubation, but these peaks decreased quickly and humic-like peaks increased within 1 mo of incubation. The composition of humic-like peaks was different between tree species and changed over the incubation period. Since tannin-derived phenolic compounds were detected in the DOM collected after 254 d of incubation on THM-GC-MS, it was suggested that tannins partially changed its structure, forming various humic-like peaks during the early decomposition. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Manalilkada Sasidharan, S.; Dash, P.; Singh, S.; Lu, Y.
2017-12-01
The objective of this research was to quantify the effects of photodegradation and biodegradation on the dissolved organic matter (DOM) concentration and composition in five distinct waterbodies with diverse types of watershed land use and land cover in the southeastern United States. The water bodies included an agricultural pond, a lake in a predominantly forested watershed, a man-made reservoir, an estuary, and a bay. Two sets of samples were prepared from these water bodies by dispensing filtered water samples to unfiltered samples in 10:1 ratio. The first set was kept in the sunlight during the day (12 hours), and colored dissolved organic matter (CDOM) absorption and fluorescence were measured periodically over a 30-day period for examining the effects of combined photo- and biodegradation. The second set of samples was kept in the dark for examining the effects of biodegradation alone, and CDOM absorption and fluorescence were measured at the same time as the sunlight-exposed samples. Subsequently, spectrometric results in tandem with multivariate statistical analysis were used to interpret the lability vs. composition of DOM. Parallel factor analysis (PARAFAC) revealed the presence of four DOM components (C1-C4). C1 and C4 were microbial tryptophan-like, labile lighter components, while C2 and C3 were terrestrial humic like or fulvic acid type, larger aromatic refractory components. The principal component analysis (PCA) also revealed two distinct groups of DOM - C1 and C4 vs. C2 and C3. The negative PC1 loadings of C2, C3, HIX, a254 and SUVA indicated humic-like or fulvic-like structurally complex refractory aromatic DOM originated from higher plants in forested areas. C1, C4, SR, FI and BI had positive PC1 loadings, which indicated structurally simpler labile DOM were derived from agricultural areas or microbial activity. There was a decrease in dissolved organic carbon (DOC) due to combined photo- and biodegradation, and transformation of components C2, C3 into components C1, C4 was at a much faster rate than only biodegradation. This observation suggests that the presence of sunlight facilitated the degradation of larger, recalcitrant, terrestrial humic-like compounds into smaller, labile microbial components.
NASA Astrophysics Data System (ADS)
Hu, Yingtian; Liu, Chao; Wang, Xiaoping; Zhao, Dongdong
2018-06-01
At present the general scatter handling methods are unsatisfactory when scatter and fluorescence seriously overlap in excitation emission matrix. In this study, an adaptive method for scatter handling of fluorescence data is proposed. Firstly, the Raman scatter was corrected by subtracting the baseline of deionized water which was collected in each experiment to adapt to the intensity fluctuations. Then, the degrees of spectral overlap between Rayleigh scatter and fluorescence were classified into three categories based on the distance between the spectral peaks. The corresponding algorithms, including setting to zero, fitting on single or both sides, were implemented after the evaluation of the degree of overlap for individual emission spectra. The proposed method minimized the number of fitting and interpolation processes, which reduced complexity, saved time, avoided overfitting, and most importantly assured the authenticity of data. Furthermore, the effectiveness of this procedure on the subsequent PARAFAC analysis was assessed and compared to Delaunay interpolation by conducting experiments with four typical organic chemicals and real water samples. Using this method, we conducted long-term monitoring of tap water and river water near a dyeing and printing plant. This method can be used for improving adaptability and accuracy in the scatter handling of fluorescence data.
Chen, Qingcai; Ikemori, Fumikazu; Mochida, Michihiro
2016-10-18
The present study used a combination of solvent and solid-phase extractions to fractionate organic compounds with different polarities from total suspended particulates in Nagoya, Japan, and their optical characteristics were obtained on the basis of their UV-visible absorption spectra and excitation-emission matrices (EEMs). The relationship between their optical characteristics and chemical structures was investigated based on high-resolution aerosol mass spectra (HR-AMS spectra), soft ionization mass spectra and Fourier transform infrared (FT-IR) spectra. The major light-absorption organics were less polar organic fractions, which tended to have higher mass absorption efficiencies (MAEs) and lower wavelength dependent Ångström exponents (Å) than the more polar organic fractions. Correlation analyses indicate that organic compounds with O and N atoms may contribute largely to the total light absorption and fluorescence of the organic aerosol components. The extracts from the aerosol samples were further characterized by a classification of the EEM profiles using a PARAFAC model. Different fluorescence components in the aerosol organic EEMs were associated with specific AMS ions and with different functional groups from the FT-IR analysis. These results may be useful to determine and further classify the chromophores in atmospheric organic aerosols using EEM spectroscopy.
Zhou, Zhongbo; Meng, Fangang; Chae, So-Ryong; Huang, Guocheng; Fu, Wenjie; Jia, Xiaoshan; Li, Shiyu; Chen, Guang-Hao
2012-01-01
Background The complex characteristics and unclear biological fate of biomacromolecules (BMM), including colloidal and soluble microbial products (SMP), extracellular polymeric substances (EPS) and membrane surface foulants (MSF), are crucial factors that limit our understanding of membrane fouling in membrane bioreactors (MBRs). Findings In this study, the microbial transformation of BMM was investigated in a lab-scale MBR by well-controlled bioassay tests. The results of experimental measurements and mathematical modeling show that SMP, EPS, and MSF had different biodegradation behaviors and kinetic models. Based on the multi-exponential G models, SMP were mainly composed of slowly biodegradable polysaccharides (PS), proteins (PN), and non-biodegradable humic substances (HS). In contrast, EPS contained a large number of readily biodegradable PN, slowly biodegradable PS and HS. MSF were dominated by slowly biodegradable PS, which had a degradation rate constant similar to that of SMP-PS, while degradation behaviors of MSF-PN and MSF-HS were much more similar to those of EPS-PN and EPS-HS, respectively. In addition, the large-molecular weight (MW) compounds (>100 kDa) in BMM were found to have a faster microbial transformation rate compared to the small-MW compounds (<5 kDa). The parallel factor (PARAFAC) modeling of three-dimensional fluorescence excitation-emission matrix (EEM) spectra showed that the tryptophan-like PN were one of the major fractions in the BMM and they were more readily biodegradable than the HS. Besides microbial mineralization, humification and hydrolysis could be viewed as two important biotransformation mechanisms of large-MW compounds during the biodegradation process. Significance The results of this work can aid in tracking the origin of membrane foulants from the perspective of the biotransformation behaviors of SMP, EPS, and MSF. PMID:22912694
Characterization of Organic Matter Sources within a Matrix of Land Use in Northeast Utah
NASA Astrophysics Data System (ADS)
Kelso, J. E.; Baker, M. A.
2017-12-01
Dynamics of organic matter (OM) sources in natural aquatic systems have been studied for decades, but urban studies have revealed additional, less studied, OM sources such as stormwater, lawn clippings, and wastewater effluent. Traditionally the OM pool in freshwater systems has been defined as a homogenous pool of varying size classes: course particulate, fine particulate and dissolved OM. Our goal was to identify and quantify the composition of fine particulate OM (FPOM), and dissolved OM (DOM) as derived from autochthonous, terrestrial, and potential anthropogenic sources. We hypothesized anthropogenic changes in land use have increased the proportion of autochthonous sources of OM. We sampled OM at 33 sites in four watersheds in northeast Utah that encompass a range of land uses. Stable isotopes of carbon, nitrogen, and deuterium were collected for all size classes of OM, and DOM was analyzed with a spectrofluorometer. Stable isotopes were used to estimate the proportion of autochthonous and terrestrial sources of OM. Fluorescence indices and a PARAFAC model were created from DOM excitation emission matrices (EEMs). FPOM appeared to be a mixture of autochthonous and terrestrial sources but overlap in endmember isotope values made quantifying the proportion of each source difficult. Higher deuterium values (-120 to -80‰) were associated with sites receiving wastewater effluent, while sites with agriculture, forest, and urban land use had lower deuterium isotope values (-200 to -110). DOM Excitation Emission Matrices were resolved into a 5-component PARAFAC model. The percent of protein-like DOM components tended to be higher in urban versus non-urban sites (mean 35%, S.D. 12% versus mean 25%, S.D. 15%). We concluded deuterium isotopes may be used as a tracer or wastewater effluent and DOM is composed of more labile, protein-like DOM with increased wastewater input. A greater understanding of the sources of OM can inform management and policy decisions aimed at mitigating the effects of OM pollution. For example, evaluating tradeoffs between mitigating the effects of OM inputs from cattle grazing versus building or improving waste water treatment facilities can be further explored.
Study on fluorescence spectra of thiamine, riboflavin and pyridoxine
NASA Astrophysics Data System (ADS)
Yang, Hui; Xiao, Xue; Zhao, Xuesong; Hu, Lan; Lv, Caofang; Yin, Zhangkun
2016-01-01
This paper presents the intrinsic fluorescence characteristics of vitamin B1, B2 and B6 measured with 3D fluorescence Spectrophotometer. Three strong fluorescence areas of vitamin B2 locate at λex/λem=270/525nm, 370/525nm and 450/525nm, one fluorescence areas of vitamin B1 locates at λex/λem=370/460nm, two fluorescence areas of vitamin B6 locate at λex/λem=250/370nm and 325/370nm were found. The influence of pH of solution to the fluorescence profile was also discussed. Using the PARAFAC algorithm, 10 vitamin B1, B2 and B6 mixed solutions were successfully decomposed, and the emission profiles, excitation profiles, central wavelengths and the concentration of the three components were retrieved precisely through about 5 iteration times.
NASA Astrophysics Data System (ADS)
McKnight, D. M.
2017-12-01
Humic substances are an important class of reactive chemical species in natural waters, and one important role is their capacity to as an electron acceptor and/or electron shuttle to ferric iron present as solid phase ferric oxides. Several lines of evidence point to quinone-like moieties being the main redox active moieties that can be used by microbes in respiration. Concomitantly, the humic fraction of dissolved organic mater (DOM) contains the dominant fluorophores in many natural waters. Examination of excitation emission matrices (EEMs) across redox gradients in diverse aquatic systems show that the EEMs are generally red-shifted under reducing conditions, such as anoxic bottom waters in lakes and hypoxic waters in riparian wetlands. Furthermore, there is striking similarity between the humic fluorophores that are resolved by statistical analysis and the fluorescence spectra of model quinone compounds, with the more reduced species having red-shifted fluorescence spectra. This apparent red-shift can be quantified based on the distribution of apparently "quinone-like", "semi-quinone-like" and "hydroquinone-like" fluorophores determined by the PARAFAC statistical analysis. Because fluorescence spectroscopy can be applied at ambient DOM concentrations for samples that have been maintained in an anoxic condition, fluorescence spectroscopy can provide insight into the role of humic electron shuttling in natural systems. Examples are presented demosntrating the changing EEMs in anoxic bottomwaters in a lake in the McMurdo Dry Valleys following a major flood event and the role of organic material in the mobilization of arsenic in shallow groundwater in South East Asia.
Chromophoric and fluorescent dissolved organic matter in and above the oxygen minimum zone off Peru
NASA Astrophysics Data System (ADS)
Loginova, A. N.; Thomsen, S.; Engel, A.
2016-11-01
As a result of nutrient upwelling, the Peruvian coastal system is one of the most productive regions in the ocean. Sluggish ventilation of intermediate waters, characteristic for the Eastern Tropical South Pacific (ETSP) and microbial degradation of a high organic matter load promotes deoxygenation at depth. Dissolved organic matter (DOM) plays a key role in microbial respiration and carbon cycling, but little is known on DOM distribution and cycling in the ETSP. DOM optical properties give important insights on DOM sources, structure and biogeochemical reactivity. Here, we present data and a conceptual view on distribution and cycling of chromophoric (CDOM) and fluorescent (FDOM) DOM in and above the oxygen minimum zone (OMZ) off Peru. Five fluorescent components were identified during PARAFAC analysis. Highest intensities of CDOM and of the amino acid-like fluorescent component (C3) occurred above the OMZ and coincided with maximum chl a concentrations, suggesting phytoplankton productivity as major source. High intensities of a marine humic-like fluorescent component (C1), observed in subsurface waters, indicated in situ microbial reworking of DOM. FDOM release from inner shelf sediment was determined by seawater analysis and continuous glider sensor measurement and included a humic-like component (C2) with a signature typical for terrestrially derived humic acids. Upwelling supplied humic-like substances to the euphotic zone. Photo-reactions were likely involved in the production of a humic-like fluorescent component (C5). Our data show that variable biological and physical processes need to be considered for understanding DOM cycling in a highly dynamic coastal upwelling system like the ETSP off Peru.
Campos, Bruno B; Algarra, Manuel; Esteves da Silva, Joaquim C G
2010-01-01
A fluorescent hybrid cadmium sulphide quantum dots (QDs) dendrimer nanocomposite (DAB-CdS) synthesised in water and stable in aqueous solution is described. The dendrimer, DAB-G5 dendrimer (polypropylenimine tetrahexacontaamine) generation 5, a diaminobutene core with 64 amine terminal primary groups. The maximum of the excitation and emission spectra, Stokes' shift and the emission full width of half maximum of this nanocomposite are, respectively: 351, 535, 204 and 212 nm. The fluorescence time decay was complex and a four component decay time model originated a good fit (chi = 1.20) with the following lifetimes: tau (1) = 657 ps; tau (2) = 10.0 ns; tau (3) = 59.42 ns; and tau (4) = 265 ns. The fluorescence intensity of the nanocomposite is markedly quenched by the presence of nitromethane with a dynamic Stern-Volmer constant of 25 M(-1). The quenching profiles show that about 81% of the CdS QDs are located in the external layer of the dendrimer accessible to the quencher. PARAFAC analysis of the excitation emission matrices (EEM) acquired as function of the nitromethane concentration showed a trilinear data structure with only one linearly independent component describing the quenching which allows robust estimation of the excitation and emission spectra and of the quenching profiles. This water soluble and fluorescent nanocomposite shows a set of favourable properties to its use in sensor applications.
Intrinsic fluorescence spectra characteristics of vitamin B1, B2, and B6
NASA Astrophysics Data System (ADS)
Yang, Hui; Xiao, Xue; Zhao, Xuesong; Hu, Lan; Lv, Caofang; Yin, Zhangkun
2015-11-01
This paper presents the intrinsic fluorescence characteristics of vitamin B1, B2 and B6 measured with 3D fluorescence Spectrophotometer. Three strong fluorescence areas of vitamin B2 locate at λex/λem=270/525nm, 370/525nm and 450/525nm, one fluorescence areas of vitamin B1 locates at λex/λem=370/460nm, two fluorescence areas of vitamin B6 locates at λex/λem=250/370nm and 325/370nm were found. The influence of pH of solution to the fluorescence profile was also discussed. Using the PARAFAC algorithm, 10 vitamin B1, B2 and B6 mixed solutions were successfully decomposed, and the emission profiles, excitation profiles, central wavelengths and the concentration of the three components were retrieved precisely through about 5 iteration times.
Holland, Aleicia; Stauber, Jenny; Wood, Chris M; Trenfield, Melanie; Jolley, Dianne F
2018-06-15
Dissolved organic matter (DOM) plays important roles in both abiotic and biotic processes within aquatic ecosystems, and these in turn depend on the quality of the DOM. We collected and characterized chromophoric DOM (CDOM) from different Australian freshwater types (circumneutral, naturally acidic and groundwater-fed waterways), climatic regions and seasons. CDOM quality was characterized using absorbance and fluorescence spectroscopy. Excitation emission scans followed by parallel factor (PARAFAC) analysis showed that CDOM was characterized by three main components: protein-like, fulvic-like and humic-like components commonly associated with various waters globally in the Openfluor database. Principal component analysis showed that CDOM quality varied between naturally acidic, circumneutral and groundwater-fed waters, with unique CDOM quality signatures shown for each freshwater type. CDOM quality also differed significantly within some sites between seasons. Clear differences in dominant CDOM components were shown between freshwater types. Naturally acidic waters were dominated by highly aromatic (as indicated by the specific absorbance co-efficient (SAC 340 ) and the specific UV absorbance (SUVA 254 ) values which ranged between 31 and 50 cm 2 mg -1 and 3.9-5.7 mg C -1 m -1 respectively), humic-like CDOM of high molecular weight (as indicated by abs 254/365 which ranged from 3.8 to 4.3). In contrast, circumneutral waters were dominated by fulvic-like CDOM of lower aromaticity (SAC 340 : 7-21 cm 2 mg -1 and SUVA 254 : 1.5-3.0 mg C -1 m -1 ) and lower molecular weight (abs 254/365 5.1-9.3). The groundwater-fed site had a higher abundance of protein-like CDOM, which was the least aromatic (SAC 340 : 2-5 cm 2 mg -1 and SUVA 254 : 0.58-1.1 mg C -1 m -1 ). CDOM was generally less aromatic, of a lower molecular weight and more autochthonous in nature during the summer/autumn sampling compared to winter/spring. Significant relationships were shown between various CDOM quality parameters and pH. This is the first study to show that different freshwater types (circumneutral, naturally acidic and groundwater-fed) contain distinct CDOM quality signatures in Australia, a continent with unique flora and geology. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Logvinova, Christie L.; Frey, Karen E.; Mann, Paul J.; Stubbins, Aron; Spencer, Robert G. M.
2015-11-01
A warming and shifting climate in the Arctic has led to significant declines in sea ice over the last several decades. Although these changes in sea ice cover are well documented, large uncertainties remain in how associated increases in solar radiation transmitted to the underlying ocean water column will impact heating, biological, and biogeochemical processes in the Arctic Ocean. In this study, six under-ice marine, two ice-free marine, and two ice-free terrestrially influenced water samples were irradiated using a solar simulator for 72 h (representing ~10 days of ambient sunlight) to investigate dissolved organic matter (DOM) dynamics from the Chukchi and Beaufort Seas. Solar irradiation caused chromophoric DOM (CDOM) light absorption at 254 nm to decrease by 48 to 63%. An overall loss in total DOM fluorescence intensity was also observed at the end of all experiments, and each of six components identified by parallel factor (PARAFAC) analysis was shown to be photoreactive in at least one experiment. Fluorescent DOM (FDOM) also indicated that the majority of DOM in under-ice and ice-free marine waters was likely algal-derived. Measurable changes in dissolved organic carbon (DOC) were only observed for sites influenced by riverine runoff. Losses of CDOM absorbance at shorter wavelengths suggest that the beneficial UV protection currently received by marine organisms may decline with the increased light transmittance associated with sea ice melt ponding and overall reductions of sea ice. Our FDOM analyses demonstrate that DOM irrespective of source was susceptible to photobleaching. Additionally, our findings suggest that photodegradation of CDOM in under-ice waters is not currently a significant source of carbon dioxide (CO2) (i.e., we did not observe systematic DOC loss). However, increases in primary production and terrestrial freshwater export expected under future climate change scenarios may cause an increase in CDOM quantity and shift in quality throughout Arctic Ocean surface waters. As Arctic temperatures continue to warm and summer sea ice further declines, examination of the resulting enhanced photodegradation processes and their impacts on the interplay between primary production, carbon cycling, and surface ocean heating processes will be paramount.
Yamin, G; Borisover, M; Cohen, E; van Rijn, J
2017-01-01
Recirculating aquaculture systems (RAS), offering many economic and fish husbandry benefits, are characterized by an accumulation of dissolved organic matter (DOM) and, specifically, humic substances (HS). As reported in a number of studies, HS may affect biological activity in both invertebrates and vertebrates. Given the accumulation of HS in RAS, it is therefore of great interest to characterize DOM and, specifically, its HS fraction in the RAS. The present study was aimed at characterizing long-term changes in fluorescent DOM composition in the culture water of RAS systems, which were operated in a novel, zero water exchange mode. Two such zero-discharge recirculating systems (ZDS) were examined: a freshwater system, stocked with hybrid tilapia (Oreochromis aureus x Oreochromis niloticus) and a marine system, stocked with gilthead seabream (Sparus aurata). Excitation-emission matrices (EEMs) of fluorescence, coupled with parallel factor analysis (PARAFAC), were used to characterize and quantify the different DOM components in the ZDS. In the culture water, one tryptophan-like and four HS-like components were identified. The fluorescence intensities of three of the HS-like components as well as the tryptophan-like component increased at comparable rates during ZDS operation while a much slower accumulation of these compounds was observed in a parallel operated, flow-through, freshwater aquarium. The ZDS examined in this study comprised a sludge digestion stage where a considerable accumulation of all fluorescent components was detected. A HS-like components and a tryptophan-like component in blood of tilapia from the freshwater ZDS were similar to components found in the culture water. Blood levels of both components were higher in fish cultured in the DOM-rich ZDS than in fish raised in the control, flow-through freshwater aquarium. Fluorescence of the HS-like component found in the fish blood increased also with time of ZDS operation. The finding that fish blood contains a HS-like fluorescent component may have important implications for the understanding of the physiological effects of HS in fish and the possible benefits of these substances in aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Martias, Chloé; Tedetti, Marc; Lantoine, François; Jamet, Léocadie; Dupouy, Cécile
2018-03-01
The eastern lagoon of New Caledonia (NC, Southwest Pacific), listed as a UNESCO World Heritage site, hosts the world's second longest double-barrier coral reef. This lagoon receives river inputs, oceanic water arrivals, and erosion pressure from ultramafic rocks, enriched in nickel (Ni) and cobalt (Co). The aim of this study was to characterize colored dissolved organic matter (CDOM), as well as to determine its main sources and its possible relationships (through the use of Pearson correlation coefficients, r) with biogeochemical parameters, plankton communities and trace metals in the NC eastern lagoon. Water samples were collected in March 2016 along a series of river/lagoon/open-ocean transects. The absorption coefficient at 350nm (a 350 ) revealed the influence of river inputs on the CDOM distribution. The high values of spectral slope (S 275-295 , >0.03m -1 ) and the low values of specific ultraviolet absorbance (SUVA 254 , <4Lmg-C -1 m -1 ) highlighted the photodegradation of CDOM in surface waters. The application of parallel factor analysis (PARAFAC) on excitation-emission matrices (EEMs) allowed the identification of four CDOM components: (1) one humic- and one tyrosine-like fluorophores. They had terrestrial origin, exported through rivers and undergoing photo- and bio-degradation in the lagoon. These two fluorophores were linked to manganese (Mn) in southern rivers (r=0.46-0.50, n=21, p<0.05). (2) A tryptophan-like fluorophore, which exhibited higher levels offshore. It would be potentially released from the coral reef. (3) A second tyrosine-like ("tyrosine 2-like") fluorophore. Linked to Prochlorococcus cyanobacteria (r=0.39, n=47, p<0.05), this fluorophore would have an oceanic origin and enter in the lagoon through its southern and northern extremities. It also displayed relationships with Ni and Co content (r=0.53-0.54, n=21, p<0.05). This work underlines the diversity of CDOM sources in the NC eastern lagoon. Copyright © 2017 Elsevier B.V. All rights reserved.
Mostofa, Khan M G; Li, Wen; Wu, Fengchang; Liu, Cong-Qiang; Liao, Haiqing; Zeng, Li; Xiao, Min
2018-01-01
Sediment pore waters were examined in four Chinese lakes (Bosten, Qinghai, Chenghai and Dianchi) to characterise the sources of dissolved organic matter (DOM) and their microbial changes in the sediment depth profiles. Parallel factor (PARAFAC) modelling on the sample fluorescence spectra confirmed that the pore water DOM was mostly composed of two components with a mixture of both allochthonous and autochthonous fulvic acid-like substances in three lakes, except Lake Dianchi, and protein-like components in Lake Bosten. However, DOM in Lake Dianchi was composed of three components, including a fulvic acid-like, and two unidentified components, which could originate from mixed sources of either sewerage-impacted allochthonous or autochthonous organic matter (OM). Dissolved organic carbon (DOC) concentrations were typically high (583-7410 μM C) and fluctuated and increased vertically in the depth profile. The fluorescence intensity of the fulvic acid-like substance and absorbance at 254 nm increased vertically in the sediment pore waters of three lakes. A significant relationship between DOC and the fluorescence intensity of the fulvic acid-like component in the sediment pore waters of three lakes, except Lake Dianchi, suggested that the fulvic acid-like component could significantly contribute to total DOM and could originate via complex microbial processes in early diagenesis on OM (ca. phytoplankton, terrestrial plant material) in these lakes. Pore water DOM components could therefore be a useful indicator to assess the DOM sources of the lake sediment during sedimentation over the past several decades, which have been heavily affected by ambient terrestrial vegetation and human activities.
NASA Astrophysics Data System (ADS)
Parot, Jérémie; Susperregui, Nicolas; Rouaud, Vanessa; Dubois, Laurent; Anglade, Nathalie; Parlanti, Edith
2014-05-01
Marine mucilage is present in all oceans over the world, and in particular in the Mediterranean Sea and in the Pacific Ocean. Surface water warming and hydrodynamic processes can favor the coalescence of marine mucilage, large marine aggregates representing an ephemeral and extreme habitat for biota. DOM is a heterogeneous, complex mixture of compounds, including extracellular polymeric substances (EPS), with wide ranging chemical properties and it is well known to interact with pollutants and to affect their transport and their fate in aquatic environment. The LIGA French research program focuses on tracing colloidal dissolved organic matter (DOM) sources and cycling in the Bay of Biscay (South Western French coast). This ephemeral phenomenon (called "LIGA" in the South West of France) has been observed more than 750 times since 2010. It presents a great ecological impact on marine ecosystems and has been shown to be concomitant with the development of pathogen organisms. A one-year intensive survey of fluorescent DOM was undertaken. From April 2013 until May 2014, water samples were monthly collected from the Adour River (main fresh water inputs) and from 2 sites in the Bay of Biscay at 3 depths of the water column (surface water, at the maximum of chlorophyll-a, and deep water). Moreover, intensified samplings took place from the appearance of the phenomenon twice a week during 4 weeks. UV/visible absorbance and excitation emission matrix (EEM) fluorescence spectroscopy combined with PARAFAC and PCA analyses have been used to characterize colloidal DOM in the Bay of Biscay in order to estimate DOM sources as well as spatial and temporal variability of DOM properties. The preliminary results, obtained for about 70 samples of this survey, have already highlighted spatial and temporal variations of DOM optical properties and a peculiar fluorescent component (exc300nm/em338nm) was detected while the LIGA phenomenon arises. The appearance of this specific fluorescence signal seems to be correlated with high freshwater and terrestrial DOM inputs combined with physical forcing (flows, swell) as well as a rise in temperature and sunshine. This work already allowed us to identify different sources of colloidal DOM in the Bay of Biscay and highlighted a specific fingerprint of the LIGA phenomenon. The combination of EEM fluorescence spectroscopy with PARAFAC and PCA analyses appears thus to be a very powerful tool for the long term monitoring of such a phenomenon and would be very useful for a better understanding of the biogeochemical processes in marine environments and of the marine colloidal DOM ecodynamics.
Xian, Qingsong; Li, Penghui; Liu, Chen; Cui, Junfang; Guan, Zhuo; Tang, Xiangyu
2018-05-01
Being crucial for predicting the impact of source inputs on a watershed in rainfall events, an understanding of the dynamics and characteristics of dissolved organic matter (DOM) export from the soil under particular land use types, particularly those associated with underground flows is still largely lacking. A field study was carried out using a 1500m 2 slope farmland plot in the hilly area of Sichuan Basin, Southwest China. The discharge of surface runoff and fracture flow was recorded and samples were collected in four representative rainfall events. For DOM characterization, concentration of dissolved organic carbon (DOC) and absorbance/excitation-emission matrix (EEM) fluorescence were analyzed. Soil water potential was also determined using tensiometers for understanding the runoff generation mechanisms. The DOC values for both surface and fracture flow showed significant responses to rainfall, with hydrological path being the primary factor in determining DOM dynamics. EEM-PARAFAC analyses indicated that the soil DOM mainly consisted of two terrestrial humic-like components with peaks located at Ex/Em 270(380)/480nm (C1) and 250(320)/410nm (C2), respectively. Concentrations of these components also responded strongly to rainfall, fluctuating in good agreement with the corresponding DOCs. Although there was no change in the presence of the components themselves, their relative distributions varied during precipitation, with the C1/C2 ratio increasing with the proportion of soil pre-event water. As the dynamic changes of soil DOM characteristics can be successfully captured using spectroscopic techniques, they may serve as a tracer for understanding hydrological paths based on their potential correlations with water source differences during rains. Copyright © 2017 Elsevier B.V. All rights reserved.
Using Citizen Science for Water Quality Monitoring: Preaching the Message Beyond the Choir
NASA Astrophysics Data System (ADS)
Jollymore, A. J.
2015-12-01
Citizen science has emerged a means for augmenting the scope of research while educating the community. Environmental research has a particularly strong motivation for engagement, given its often-local context. We implemented a citizen science campaign to investigate relationships between land use and dissolved organic matter (DOM) in surface water environments proximal to Vancouver, British Columbia, Canada. Citizen science was intended to increase sampling breadth, and engage the community about human activities and water quality effects. Participants were given a sample kit and a simple sampling protocol; we then used fast and economic absorbance and fluorescence spectrophotometry to determine DOM concentration and composition. Participants, including individuals from over 10 municipalities and community organizations, submitted over 200 samples; these were compared to investigator-led sampling, as well as data mining existing sources, to verify results. Analyzing the fluorescence excitation-emission matrices (EEMs) with a five-component parallel factor (PARAFAC) model showed that samples from watersheds with increased urbanization had unique microbial-like peaks, suggesting variances in DOM lability and origins compared to more pristine watersheds. Community engagement was extended by making data available online in an interactive map, as well as by presenting the project to the public. Despite this, engagement occurred most with community organizations; these participants tended to have scientific training, with a higher knowledge baseline regarding their specific watershed and water quality issues generally. While this served scientific goals, our campaign was less successful at engaging citizens with less-developed scientific backgrounds. In this presentation we will discuss the merits and scientific milestones enabled by citizen science, and lessons learned about how to get beyond 'preaching to the choir' in crafting and implementing such projects.
NASA Astrophysics Data System (ADS)
Walker, S. A.; Amon, R. M.; Stedmon, C. A.
2011-12-01
The majority of high latitude soil organic carbon is stored within vast permafrost regions surrounding the Arctic, which are highly susceptible to climate change. As global warming persists increased river discharge combined with permafrost erosion and extended ice free periods will increase the supply of soil organic carbon to the Arctic Ocean. Increased river discharge to the Arctic will also have a significant impact its hydrological cycle and could potentially be critical to sea ice formation. This impact is due to freshwater discharge to the Arctic which has been shown to help sustain halocline formation, a critical water mass that acts as an insulator trapping heat from inflowing Atlantic waters from ice at the surface. As the climate warms it is therefore important to identify halocline source waters and to determine fluctuations in their contribution to this critical water mass. To better understand dissolved organic matter (DOM) quality and its fate within the Arctic as well as runoff distributions across the basin the optical properties of chromophoric dissolved organic carbon (CDOM) were evaluated during a trans-Arctic expedition, AOS 2005. This cruise is unique because it is the first time fluorescence data have been obtained from all basins in the Arctic. Excitation/Emission Matrix Spectroscopy (EEM's) coupled to Parallel Factor Analysis (PARAFAC) was used to decompose the combined CDOM fluorescence signal into six independent components that can be traced to a source. Three humic-like CDOM components were isolated and linked to runoff waters using Principal Component Analysis (PCA). Inherent differences were observed between Eurasian (EB) and Canadian (CB) basin surface waters in terms of DOM quality and freshwater distributions. In EB surface waters (0-50m) the humic-like CDOM components explained roughly half of the variance in the DOC pool and were strongly related to lignin phenol concentrations. These results indicate CDOM in Trans-Polar Drift waters are dominated by terrestrial inputs and suggest this water mass likely originated from Eurasian runoff. In CB surface waters (0-50m) the humic-like CDOM signal was depleted and unrelated to lignin phenol concentrations. These results were unexpected given the significant inputs of runoff predicted in CB surface waters during AOS 2005 using alkalinity/salinity relationships by Jones et al., 2008. In CB halocline waters (50-300m), a significant relationship was observed between the humic-like CDOM components and apparent oxygen utilization, CO2, and nutrient concentrations suggesting degradation and marine secondary production has a significant effect on the quality of DOM in these waters. Overall, the ability to differentiate and qualitatively trace the different sources of fluorescent components and determine the underlying factors controlling CDOM speciation during transport and mixing opens new possibilities for the use of CDOM as a more specific tracer in oceanography.
Bertacchini, Lucia; Durante, Caterina; Marchetti, Andrea; Sighinolfi, Simona; Silvestri, Michele; Cocchi, Marina
2012-08-30
Aim of this work is to assess the potentialities of the X-ray powder diffraction technique as fingerprinting technique, i.e. as a preliminary tool to assess soil samples variability, in terms of geochemical features, in the context of food geographical traceability. A correct approach to sampling procedure is always a critical issue in scientific investigation. In particular, in food geographical traceability studies, where the cause-effect relations between the soil of origin and the final foodstuff is sought, a representative sampling of the territory under investigation is certainly an imperative. This research concerns a pilot study to investigate the field homogeneity with respect to both field extension and sampling depth, taking also into account the seasonal variability. Four Lambrusco production sites of the Modena district were considered. The X-Ray diffraction spectra, collected on the powder of each soil sample, were treated as fingerprint profiles to be deciphered by multivariate and multi-way data analysis, namely PCA and PARAFAC. The differentiation pattern observed in soil samples, as obtained by this fast and non-destructive analytical approach, well matches with the results obtained by characterization with other costly analytical techniques, such as ICP/MS, GFAAS, FAAS, etc. Thus, the proposed approach furnishes a rational basis to reduce the number of soil samples to be collected for further analytical characterization, i.e. metals content, isotopic ratio of radiogenic element, etc., while maintaining an exhaustive description of the investigated production areas. Copyright © 2012 Elsevier B.V. All rights reserved.
Cai, Weiwei; Liu, Yu
2018-02-01
Although on-line chemical cleaning has been extensively employed for maintaining the MBR permeability, little attention has been given to the negative impacts of such prevalent membrane cleaning practice. This study thus comparatively investigated the potential release of dissolved organic matter (DOM) from activated sludge upon the exposure to different kinds of frequently-used cleaning reagents, i.e. NaClO, H 2 O 2 , HCl and NaOH. It was found that NaClO at 50 and 80 mg L -1 triggered significant release of DOM, while NaOH strongly promoted soluble nitrogen release. However, the DOM generation induced by H 2 O 2 in the range of 0-80 mg L -1 was nearly negligible. The combined analysis by EEM-PARAFAC and LC-OCD-OND further revealed that NaClO-triggered DOM mainly originated from the breakdown of humic substances and other small humics with molecular weight (MW) less than 500 Da. In contrast, proteins and other biopolymers with higher MW highly contributed to DOM induced by NaOH. Most of DOM detected in this study belonged to low molecular weight (LMW) substances, which were not considered readily biodegradable or physically retainable by microfiltration membrane. It appears from this study that DOM generated from suspended activated sludge during membrane cleaning with different chemicals should be taken into serious consideration when water recycle and reuse are concerned. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fan, Dong; Ding, Lili; Huang, Hui; Chen, Mengtian; Ren, Hongqiang
2017-10-15
Fluidized-bed Fenton coupled with ceramic membrane separation to treat the flax secondary effluent was investigated. The operating variables, including initial pH, dosage of H 2 O 2 and Fe 0 , air flow rate, TMP and pore size, were optimized. The distributions of DOMs in the treatment process were analyzed. Under the optimum condition (600mgL -1 H 2 O 2 , 1.4gL -1 Fe 0 , pH=3, 300Lh -1 air flow rate and 15psi TMP), the highest TOC and color removal efficiencies were 84% and 94% in the coupled reactor with 100nm ceramic membrane, reducing 39% of total iron with similar removal efficiency compared with Fluidized-bed Fenton. Experimental results showed that the ceramic membrane could intercept catalyst particles (average particle size >100nm), 10.4% macromolecules organic matter (AMW>20000Da) and 12.53% hydrophobic humic-like component. EEM-PARAFAC identified four humic-like (M1-M4) and one protein-like components (M5), and the fluorescence intensities of M1-M5 in the secondary effluent were 63.27, 63.05, 33.41, 16.71 and 0.72 QSE, respectively. After the coupled treatment, the removal efficiencies of M1(81%), M2(86%) were higher than M3, M4(63%, 61%). Pearson correlation analysis suggested that M1, M2 and M3 were the major contributors to the cake layer, and M4, M5 might more easily lead to pore blockages. Copyright © 2017 Elsevier B.V. All rights reserved.
Fluorescence spectroscopy of soil pellets : The use of CP/PARAFAC.
NASA Astrophysics Data System (ADS)
Mounier, Stéphane; Nicolodeli, Gustavo; Redon, Roland; Hacherouf, Kalhed; Milori, Debora M. B. P.
2014-05-01
Fluorescence spectroscopy is one of the most sensitive techniques available for analytical purposes. It is relatively easy to implement, phenomenologically straightforward and well investigated. Largely non-invasive and fast, so that it can be useful for environmental applications. Fluorescence phenomenon is highly probable in molecular systems containing atoms with lone pairs of electrons such as C=O, aromatic, phenolic, quinone and more rigid unsaturated conjugated systems. These functional groups are present in humic substances (HS) from soils (Senesi, 1990; N. Senesi et al., 1991) and represent the main fluorophors of Soil Organic Matter (SOM). The extension of the conjugated electronic system, the level of heteroatom substitution and type and number of substituting groups under the aromatic rings strongly affect the intensity and wavelength of molecular fluorescence. However, to analyse the SOM it is generally done a chemical extraction that allows measuring the fluorescence response of the liquid extract. To avoid this fractionation of the SOM, Milori et al. (2006) proposed the application of laser induced fluorescence spectroscopy (LIFS) in whole soil. This work intends to assess the technical feasibility of 3D fluorescence spectroscopy using lamp for excitation to analyse solids opaque samples prepared with different substances. Seventy four (74) solid samples were prepared from different mixtures of boric acid (BA), humic substance acid and tryptophan (TRP) powder. The compounds were mixture and a pellet was done by using pressure (8 ton). The pellets were measured using a spectrofluorimeter HITACHI F4500, and a 3D fluorescence tensor was done from emission spectra (200-600 nm) with excitation range from 200 to 500 nm. The acquisition parameters were: step at 5 nm, scan speed at 2400 nm.min-1, response time at 0.1 s, excitation and emission slits at 5 nm and photomultiplier voltage at 700 V. Furthermore, measures of Laser-induced Fluorescence were performed in pellets (boric and humic acids mixture) using a portable system built by Embrapa Instrumentation. It comprises a diode laser (Coherent - CUBE) emitting at 405 nm (50 mW), and the detection of emission by a high sensitivity mini-spectrometer (USB4000 - Ocean Optics) using a range from 440 to 800 nm. In first step, the 3D tensors were then treated by the CP/PARAFAC algorithm to decompose the signal response after removing the diffusion signal : three components were extracted with a CORCONDIA over 60%. The first component can be associate an artefact of the measurement or boric acid fluorescence, the second and third component could the related to the two different fluorescence contributions of tryptophan molecule, one with central excitation/emission in 290/360 nm and other in 350/465 nm. The presence of a small quantity (i.e. few percent in mass) of humic acid (HA) is quenching drastically the TRP fluorescence. Complementary, measurements will be performed to understand this behaviour taking in account the absorption wavelength by the surface (colour) and by measuring the time life fluorescence of the samples. Humic acid fluorescence in pellets (BA and HA) cannot be observed using lamp + monochromator excitation due to low intensity of source. The same pellets were measure using LIFS system, and fluorescence intensity increased as a function of concentration of HA until occur the inner filter effect from 300 ppm, similar to the behaviour of HA in solution. Even whether solid surface measurements are easier, understanding is not yet clear. More investigation needs to be done. Moreover, it should be important to know if the use of CP/PARAFAC decomposition for such data is relevant with the trilinear model. References Milori, D.M.B.P., Galeti, H.V.A., Martin-Neto, L., Dieckow, J., González-Pérez, M., Bayer, C., Salton, J., 2006. Organic Matter Study of Whole Soil Samples Using Laser-Induced Fluorescence Spectroscopy. Soil Science Society of America Journal 70, 57. N. Senesi, TM, M., MR, P., Brunetti., G., 1991. Characterization, differentiation and classification of humic substances by fluorescence spectroscopy. Soil Science 152, 259-271. Senesi, N., 1990. Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals. Analytica Chimica Acta 232, 77-106.
NASA Astrophysics Data System (ADS)
Gilmore, A. M.
2013-05-01
Recently, the issue of waste water effuse from oil and gas mining, especially that including hydraulic fracturing, has resurfaced on the news and the political atmosphere as an area of concern. One of the key concerns is drinking water contamination from the hydraulic fracturing chemicals and chemicals contained in the water introduced into the well at high-pressure and the flowback and produced water associate with the petroleum product extraction. The key to successfully meeting drinking water safety requirements lies in the drinking water treatment plant's ability to deal with often dramatic source-water variations in natural organic matter (NOM) content that can react during disinfection with high levels of chloride and bromide found in hydraulic facture waste water to form toxc disinfection by-products (DBPs). Importantly, the brominated DBP species are particularly dangerous. Whereas the regulated levels of NOM can roughly determined by measuring total organic carbon (TOC), often this parameter does not provide rapid or cost-effective qualitative or quantitative assessment of the various humic, fulvic and other aromatic NOM components associated with DBP formation. However, two main optical techniques namely UV absorbance and fluorescence excitation-emission mapping can be used for rapid assessment with precise identification of humic and fulvic components that cause DBPs. This study presents data from a new type of instrument which simultaneously measures the UV-VIS absorbance spectrum and EEM. The rapid absorbance-EEM is facilitated by a single system that is more than 100 time faster than conventional scanning absorbance and fluorescence optical benches. The new system can continuously collect EEMs and absorbance spectra at a rate often greater than 1 per min with the extra capacity to monitor the UV254 absorbance and fluorescence emission spectrum excited at 254 nm in 4 ms intervals (an equivalent scan rate of 5.5 million nm/min). The EEM spectral data is corrected for all instrumental response factors including concentration dependent inner-filter effects. The accumulated EEM data sets can be modeled using conventional peak identification, PARAFAC and or PCA analysis of the fractionated samples to predict the trihalomethane forming potential (THMFP). Moreover, the instrument and methods can be used to identify and quantify hundreds of chemicals including oils, PAHs and other key chemicals of concern from hydraulic fracturing practices.
Absorption and Fluorescence Properties of Chromophoric Dissolved Organic Matter Produced by Algae.
Peng, Tong; Lu, Xiao-lan; Su, Rong-guo; Zhang, Dong-mei
2015-09-01
Four kinds of diatom (Chaetoceros curvisetus, Phaeodactylum tricornutum, Nitzschia closterium f. minutissima and Navicula halophile) and two kinds of dinoflagellates (Prorocentrum donghaiense and Gymnodinium) were cultured under laboratory conditions. Variations of optical properties of chromophoric dissolved organic matter (CDOM) were studied with absorption and fluorescence excitation-emission matrix spectroscopy(EEM) during growth of marine microalgae in incubation experiment. Absorption spectrum revealed absorption coefficient a(355) (CDOM absorption coefficients at 355 nm) of 6 kinds of marine microalgae above increased by 64.8%, 242.3%, 535.1%, 903.2%, 836% and 196.4%, respectively. Simultaneously, the absorption spectral slope (Sg), determined between 270 and 350 nm, representing the size of molecular weight of CDOM and humic-like composition, decreased by 8.7%, 34.6%, 39.4%, 53.1%, 46.7%, and 35.7%, respectively. Applying parallel factor analysis (PARAFAC) together with EEM got four components of CDOM: C1(Ex/Em=350(260) nm/450 nm), C2 (Ex/Em=260(430) nm/525 nm), C3 (Ex/Em=325 nm/400 nm) and C4(Ex/Em=275 nm/325 nm), which were relative to three humic-like and one protein-like fluorescent components of Nitzschia closterium f. minutissima and Navicula halophile. In incubation experiment, fluorescence intensity of these four components during growth of Nitzschia closterium f. minutissima increased by, respectively, 8.68, 24.9, 7.19 and 39.8 times, and those of Navicula halophile increased by 2.64, 0.07, 4.39 and 12.4 times, respectively. Significant relationships were found between the fluorescence intensity of four components of CDOM, a(355) and Sg. All results demonstrated that both content and molecular weight of CDOM produced by diatom and dinoflagellate studied in incubation experiment increased, but these two parameters changed more obviously of the diatom than those of dinoflagellate; the proportion of humic-like components in the composition of CDOM also increased clearly with the growth of marine microalgae, but protein-like fluorescent component had only a slow growth. Furthermore, the absorption spectrum of CDOM produced by different species of algae changed obviously and the relative composition fluorescence intensity of CDOM produced by different microalgae were found to vary among different composition from EEM, which suggested CDOM produced by different microalgae make quite different contributions to CDOM in natural seawater.
Zhou, Zhengzhen; Liu, Zhanfei; Guo, Laodong
2013-01-15
The fluorescence EEM technique, PARAFAC modeling, and hydrocarbon composition were used to characterize oil components and to examine the chemical evolution and degradation pathways of Macondo crude oil under controlled laboratory conditions. Three major fluorescent oil components were identified, with Ex/Em maxima at 226/328, 262/315, and 244/366 nm, respectively. An average degradation half-life of ∼20 d was determined for the oil components based on fluorescence EEM and hydrocarbon composition measurements, showing a dynamic chemical evolution and transformation of the oil during degradation. Dispersants appeared to change the chemical characteristics of oil, to shift the fluorescence EEM spectra, and to enhance the degradation of low-molecular-weight hydrocarbons. Photochemical degradation played a dominant role in the transformation of oil components, likely an effective degradation pathway of oil in the water column. Results from laboratory experiments should facilitate the interpretation of field-data and provide insights for understanding the fate and transport of oil components in the Gulf of Mexico. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tensor-based Dictionary Learning for Spectral CT Reconstruction
Zhang, Yanbo; Wang, Ge
2016-01-01
Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628
Wood, Chris M; Al-Reasi, H A; Smith, D Scott
2011-10-01
Dissolved organic carbon (DOC), through its ability to complex metals and thereby reduce their bioavailability, plays a major role in ameliorating metal toxicity in natural waters. Indeed DOC is a key variable in the Biotic Ligand Model (BLM) for predicting metal toxicity on a site-specific basis. However, recent evidence indicates that all DOCs are not alike, but rather heterogeneous in their ability to protect organisms against metal toxicity, at least in fresh water. The degree of protection appears to correlate with optical properties, such that dark, aromatic-rich compounds of allochthonous origin, with greater humic acid content, are more effective in this regard, particularly against Cu, Ag, and Pb toxicity. The specific absorption coefficient of the DOC in the 300-350nm range (SAC(300-350)) has proven to be a simple and effective index of this protective ability. PARAFAC, a multivariate statistical technique for analysis of excitation-emission fluorescence spectroscopy data, also holds promise for quantifying the humic-like and fulvic-like fluorophores, which tend to be positively and negatively correlated with protective ability, respectively. However, what has been largely missing in the toxicological realm is any appreciation that DOC may also affect the physiology of target organisms, such that part of the protection may occur by a mechanism other than metal complexation. Recently published evidence demonstrates that DOC has effects on Na(+) transport, diffusive permeability, and electrical properties of the gills in fish and crustaceans in a manner which will promote Na(+) homeostasis. These actions could thereby protect against metal toxicity by physiological mechanisms. Future research should investigate potential direct interactions of DOC molecules with the branchial epithelium. Incorporation of optical properties of DOC could be used to improve the predictive capabilities of the BLM. 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hertkorn, Norbert; Harir, Mourad; Cawley, Kaelin M.; Schmitt-Kopplin, Philippe; Jaffé, Rudolf
2016-04-01
Wetlands provide quintessential ecosystem services such as maintenance of water quality, water supply and biodiversity, among others; however, wetlands are also among the most threatened ecosystems worldwide. Natural dissolved organic matter (DOM) is an abundant and critical component in wetland biogeochemistry. This study describes the first detailed, comparative, molecular characterization of DOM in subtropical, pulsed, wetlands, namely the Everglades (USA), the Pantanal (Brazil) and the Okavango Delta (Botswana), using optical properties, high-field nuclear magnetic resonance (NMR) and ultrahigh-resolution mass spectrometry (FT-ICRMS), and compares compositional features to variations in organic matter sources and flooding characteristics (i.e., differences in hydroperiod). While optical properties showed a high degree of variability within and between the three wetlands, analogies in DOM fluorescence properties were such that an established excitation emission matrix fluorescence parallel factor analysis (EEM-PARAFAC) model for the Everglades was perfectly applicable to the other two wetlands. Area-normalized 1H NMR spectra of selected samples revealed clear distinctions of samples while a pronounced congruence within the three pairs of wetland DOM readily suggested the presence of an individual wetland-specific molecular signature. Within sample pairs (long- vs. short-hydroperiod sites), internal differences mainly referred to intensity variations (denoting variable abundance) rather than to alterations of NMR resonances positioning (denoting diversity of molecules). The relative disparity was largest between the Everglades long- and short-hydroperiod samples, whereas Pantanal and Okavango samples were more alike among themselves. Otherwise, molecular divergence was most obvious in the case of unsaturated protons (δH > 5 ppm). 2-D NMR spectroscopy for a particular sample revealed a large richness of aliphatic and unsaturated substructures, likely derived from microbial sources such as periphyton in the Everglades. In contrast, the chemical diversity of aromatic wetland DOM likely originates from a combination of higher plant sources, progressive microbial and photochemical oxidation, and contributions from combustion-derived products (e.g., black carbon). FT-ICRMS spectra of both Okavango and Pantanal showed near 57 ± 2 % CHO, 8 ± 2 % CHOS, 33 ± 2 % CHNO and < 1 % CHNOS molecules, whereas those of Everglades samples were markedly enriched in CHOS and CHNOS at the expense of CHO and CHNO compounds. In particular, the Everglades short-hydroperiod site showed a large set of aromatic and oxygen-deficient "black sulfur" compounds whereas the long-hydroperiod site contained oxygenated sulfur attached to fused-ring polyphenols. The elevated abundance of CHOS compounds for the Everglades samples likely results from higher inputs of agriculture-derived and sea-spray-derived sulfate. Although wetland DOM samples were found to share many molecular features, each sample was unique in its composition, which reflected specific environmental drivers and/or specific biogeochemical processes.
Hoggard, Jamin C; Wahl, Jon H; Synovec, Robert E; Mong, Gary M; Fraga, Carlos G
2010-01-15
In this report we present the feasibility of using analytical and chemometric methodologies to reveal and exploit the chemical impurity profiles from commercial dimethyl methylphosphonate (DMMP) samples to illustrate the type of forensic information that may be obtained from chemical-attack evidence. Using DMMP as a model compound of a toxicant that may be used in a chemical attack, we used comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC/TOF-MS) to detect and identify trace organic impurities in six samples of commercially acquired DMMP. The GC x GC/TOF-MS data was analyzed to produce impurity profiles for all six DMMP samples using 29 analyte impurities. The use of PARAFAC for the mathematical resolution of overlapped GC x GC peaks ensured clean spectra for the identification of many of the detected analytes by spectral library matching. The use of statistical pairwise comparison revealed that there were trace impurities that were quantitatively similar and different among five of the six DMMP samples. Two of the DMMP samples were revealed to have identical impurity profiles by this approach. The use of nonnegative matrix factorization indicated that there were five distinct DMMP sample types as illustrated by the clustering of the multiple DMMP analyses into five distinct clusters in the scores plots. The two indistinguishable DMMP samples were confirmed by their chemical supplier to be from the same bulk source. Sample information from the other chemical suppliers supported the idea that the other four DMMP samples were likely from different bulk sources. These results demonstrate that the matching of synthesized products from the same source is possible using impurity profiling. In addition, the identified impurities common to all six DMMP samples provide strong evidence that basic route information can be obtained from impurity profiles. Finally, impurities that may be unique to the sole bulk manufacturer of DMMP were found in some of the DMMP samples.
The Case Against Charge Transfer Interactions in Dissolved Organic Matter Optical Properties
NASA Astrophysics Data System (ADS)
McKay, G.; Korak, J.; Erickson, P. R.; Latch, D. E.; McNeill, K.; Rosario-Ortiz, F.
2017-12-01
The optical properties of dissolved organic matter influence chemical and biological processes in all aquatic ecosystems. Organic matter optical properties have been used by scientists and engineers for decades for remote sensing, in situ monitoring, and characterizing laboratory samples to track dissolved organic carbon concentration and character. However, there is still a lack of understanding of the origin of organic matter optical properties, which could conflict with other empirical fluorescence interpretation methods (e.g. PARAFAC). Organic matter optical properties have been attributed to a charge-transfer model in which donor-acceptor complexes play a primary role. This model was evaluated by measuring the absorbance and fluorescence response of organic matter isolates to perturbations in solvent temperature, viscosity, and polarity, which affect the position and intensity of spectra for known donor-acceptor complexes of organic molecules. Absorbance and fluorescence spectral shape were unaffected by these perturbations, indicating that the distribution of absorbing and emitting species was unchanged. These results call into question the wide applicability of the charge-transfer model for explaining organic matter optical properties and suggest that future research should explore other models for organic matter photophysics.
NASA Astrophysics Data System (ADS)
Xenopoulos, M. A.; Vogt, R. J.
2014-12-01
There is now increasing evidence that non-linearity is a common response in ecological systems to pressures caused by human activities. There is also increasing evidence that exogenous environmental drivers, such as climate, induce spatial and temporal synchrony in a wide range of ecological variables. Using Moran's I and Pearson's correlation, we quantified the synchrony of dissolved organic carbon concentration (DOC) and quality (DOM; e.g., specific UV absorbance, Fluorescence Index, PARAFAC), nutrients, discharge and temperature in 40 streams that span an agriculture gradient (0 to >70% cropland), over 10 years. We then used breakpoint regression, 2D-Kolmogorov-Smirnov test and significant zero crossings (SiZer) analyses to quantify the prevalence of nonlinearity and ecological thresholds (breakpoints) where applicable. There was a high degree of synchrony in DOM quality (r > 0.7) but not DOC (r < 0.4). The degree of synchrony was driven in part by the catchment's land use. With respect to the nonlinear analyses we found non-linearity in ~50% of bivariate datasets analyzed. Non-linearity was also driven in part by the catchment's land use. Breakpoints defined different DOM properties. Nonlinearity and synchronous behaviour in DOM are intimately linked to land use.
NASA Astrophysics Data System (ADS)
Woelfle-Erskine, C. A.; Larsen, L.; Gomez-Velez, J. D.
2016-12-01
Intermittent streams provide important habitat for aquatic species, including endangered salmonid fishes, but during prolonged dry periods may become depleted in dissolved oxygen (DO). The rate of depletion and the consequent length of time a pool remains habitable depend on DO and carbon concentrations in groundwater and hyporheic flow, and within-pool metabolic rates. We performed repeat surveys, habitat characterization, and ecohydrologic sampling on two intermittent tributaries of Salmon Creek (Sonoma Co., CA) to elucidate controls on salmonid over-summer survival at the pool scale. Pools exhibited heterogeneity within and across stream reaches in salmonid recruitment and survival during the summer dry period. In classification tree analysis, high conductivity (>310 mS/cm) and low DO (<2 ppm) were negatively associated with salmonid survival, with high pool conductivity resulting from either groundwater inflow or evapo-concentration. To distinguish between surface, hyporheic, and groundwater contributions, we measured dissolved organic carbon (DOC) concentration and fluorescence excitation-emission matrices (EEMs), radon (222Rn), and stable isotopes (18O and D) in pools, hyporheic flow, and wells and springs in local aquifers. Radon concentrations in pools ranged from 1.5-2.3 Bq/l, 3-4 orders of magnitude higher than expected for water in equilibrium with air, suggesting substantial groundwater inflow. We developed a five-component PARAFAC model from the EEMs and used with the isotope data to perform an end-member mixing analysis to track water sources and flowpaths. These analyses suggested high separability among groundwaters from aquifers separated by faults and between groundwater and surface water, with groundwater of different age and flowpath length discharging to different pools. Pools with shallow groundwater or hyporheic flow sustained DO concentrations above the threshold for salmonid survival, with shallow groundwater unexpectedly acting as a source of DO to the stream. These inflows were further essential for inhibiting stagnation and promoting reaeration across the air-water interface. These results suggest that conservation measures to promote aquifer recharge and sustain summer baseflow may be essential for maintaining salmonid populations during drought.
Characterization Of Dissolved Organic Mattter In The Florida Keys Ecosystem
NASA Astrophysics Data System (ADS)
Adams, D. G.; Shank, G. C.
2009-12-01
Over the past few decades, Scleractinian coral populations in the Florida Keys have increasingly experienced mortality due to bleaching events as well as microbial mediated illnesses such as black band and white band disease. Such pathologies seem to be most correlated with elevated sea surface temperatures, increased UV exposures, and shifts in the microbial community living on the coral itself. Recent studies indicate that corals’ exposure to UV in the Florida Keys is primarily controlled by the concentration of CDOM (Chromophoric Dissolved Organic Matter) in the water column. Further, microbial community alterations may be linked to changes in concentration and chemical composition of the larger DOM (Dissolved Organic Matter) pool. Our research characterized the spatial and temporal properties of DOM in Florida Bay and along the Keys ecosystems using DOC analyses, in-situ water column optical measurements, and spectral analyses including absorbance and fluorescence measurements. We analyzed DOM characteristics along transects running from the mouth of the Shark River at the southwest base of the Everglades, through Florida Bay, and along near-shore Keys coastal waters. Two 12 hour time-series samplings were also performed at the Seven-Mile Bridge, the primary Florida Bay discharge channel to the lower Keys region. Photo-bleaching experiments showed that the chemical characteristics of the DOM pool are altered by exposure to solar radiation. Results also show that DOC (~0.8-5.8 mg C/L) and CDOM (~0.5-16.5 absorbance coefficient at 305nm) concentrations exhibit seasonal fluctuations in our study region. EEM analyses suggest seasonal transitions between primarily marine (summer) and terrestrial (winter) sources along the Keys. We are currently combining EEM-PARAFAC analysis with in-situ optical measurements to model changes in the spectral properties of DOM in the water column. Additionally, we are using stable δ13C isotopic analysis to further characterize DOM sources. Information generated by our study will provide a valuable data set for better understanding DOM bio-geochemical dynamics along the Florida Keys ecosystem and information for future studies linking DOM and the coral community.
NASA Astrophysics Data System (ADS)
Kristensen, Emil; Madsen-Østerbye, Mikkel; Massicotte, Philippe; Pedersen, Ole; Markager, Stiig; Kragh, Theis
2018-02-01
Groundwater-borne contaminants such as nutrients, dissolved organic carbon (DOC), coloured dissolved organic matter (CDOM) and pesticides can have an impact the biological quality of lakes. The sources of pollutants can, however, be difficult to identify due to high heterogeneity in groundwater flow patterns. This study presents a novel approach for fast hydrological surveys of small groundwater-fed lakes using multiple groundwater-borne tracers. Water samples were collected from the lake and temporary groundwater wells, installed every 50 m within a distance of 5-45 m to the shore, were analysed for tracer concentrations of CDOM, DOC, total dissolved nitrogen (TDN, groundwater only), total nitrogen (TN, lake only), total dissolved phosphorus (TDP, groundwater only), total phosphorus (TP, lake only), δ18O / δ16O isotope ratios and fluorescent dissolved organic matter (FDOM) components derived from parallel factor analysis (PARAFAC). The isolation of groundwater recharge areas was based on δ18O measurements and areas with a high groundwater recharge rate were identified using a microbially influenced FDOM component. Groundwater discharge sites and the fractions of water delivered from the individual sites were isolated with the Community Assembly via Trait Selection model (CATS). The CATS model utilized tracer measurements of TDP, TDN, DOC and CDOM from the groundwater samples and related these to the tracer measurements of TN, TP, DOC and CDOM in the lake. A direct comparison between the lake and the inflowing groundwater was possible as degradation rates of the tracers in the lake were taken into account and related to a range of water retention times (WRTs) of the lake (0.25-3.5 years in 0.25-year increments). These estimations showed that WRTs above 2 years required a higher tracer concentration of inflowing water than found in any of the groundwater wells around the lake. From the estimations of inflowing tracer concentration, the CATS model isolated groundwater discharge sites located mainly in the eastern part of the lake with a single site in the southern part. Observations from the eastern part of the lake revealed an impermeable clay layer that promotes discharge during heavy precipitation events, which would otherwise be difficult to identify using traditional hydrological methods. In comparison to the lake concentrations, high tracer concentrations in the southern part showed that only a smaller fraction of water could originate from this area, thereby confirming the model results. A Euclidean cluster analysis of δ18O isotopes identified recharge sites corresponding to areas adjacent to drainage channels, and a cluster analysis of the microbially influenced FDOM component C4 further identified five sites that showed a tendency towards high groundwater recharge rate. In conclusion, it was found that this methodology can be applied to smaller lakes within a short time frame, providing useful information regarding the WRT of the lake and more importantly the groundwater recharge and discharge sites around the lake. Thus, it is a tool for specific management of the catchment.
NASA Astrophysics Data System (ADS)
Osburn, C. L.; Boyd, T. J.; Anastasiou, C. J.; Thao, P. T. P.; Reid, J. S.
2016-02-01
Optical measurements (absorbance, EEM fluorescence, remote sensing reflectance) and concurrently-collected sensor-based data (CDOM, chlorophyll-a, salinity, turbidity, and temperature) were used to link optical properties to water mass characteristics. Data and samples were collected during four field events in the Philippines (SEP2011, SEP2012 - transects from Manila to Palawan Island), Thailand (MAR2012 - Pattaya Beach area) and Vietnam (MAR2012 - Nha Trang and Ha Long Bay). EEM fluorescence spectra from each site were modeled using PARAFAC to identify representative fluorophores. Remote sensing reflectance was modeled using PCA, determining spectral loadings showing variation in samples from each site. These synthesized model data and sensor-based measurements were collated and ordinated using PCA to determine if optical properties could be linked to water quality and biogeochemical measures. PCA models at each site showed stations nearest to the coastline falling near or outside 95% confidence regions. Initial results indicate protein-like fluorophores were found in lower salinity waters and more heavily-impacted regions (Manila Bay - Philippines, Nha Trang River - Vietnam, Bang Pakong River - Thailand). Spectral slope and an component loading from remote sensing reflectance appeared to co-vary with sensor-derived CDOM fluorescence. Results from intra- and inter-site comparisons and linkages to biogeochemical parameters will be presented.
Dissolved Organic Matter Land-Ocean Linkages in the Arctic
NASA Astrophysics Data System (ADS)
Mann, P. J.; Spencer, R. M.; Hernes, P. J.; Tank, S. E.; Striegl, R.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.
2012-04-01
Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC), and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is important for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the NSF funded Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric and fluorescent dissolved organic matter (CDOM & FDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Lignin composition was also successfully modeled using FDOM measurements decomposed using PARAFAC analysis. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in-situ CDOM sensors.
Sgroi, Massimiliano; Roccaro, Paolo; Korshin, Gregory V; Vagliasindi, Federico G A
2017-04-18
This study investigated the applicability of fluorescence indexes based on the interpretation of excitation emission matrices (EEMs) by PARAFAC analysis and by selecting fluorescence intensities at a priori defined excitation/emission pairs as surrogates for monitoring the behavior of emerging organic compounds (EOCs) in two catchment basins impacted by wastewater discharges. Relevant EOC and EEM data were obtained for a 90 km stretch of the Simeto River, the main river in Sicily, and the smaller San Leonardo River, which was investigated for a 17 km stretch. The use of fluorescence indexes developed by these two different approaches resulted in similar observations. Changes of the fluorescence indexes that correspond to a group of humic-like fluorescing species were determined to be highly correlated with the concentrations of recalcitrant contaminants such as sucralose, sulfamethoxazole and carbamazepine, which are typical wastewater markers in river water. Changes of the fluorescence indexes related to tyrosine-like substances were well correlated with the concentrations of ibuprofen and caffeine, anthropogenic indicators of untreated wastewater discharges. Chemical oxygen demand and dissolved organic carbon concentrations were correlated with humic-like fluorescence indexes. The observed correlations were site-specific and characterized by different regression parameters for every collection event. Caffeine and carbamazepine showed correlations with florescence indexes in the San Leonardo River and in the alluvial plain stretch of the Simeto River, whereas sucralose, sulfamethoxazole and ibuprofen have always been well correlated in all the investigated river stretches. However, when data of different collection events from river stretches where correlations were observed were combined, good linear correlations were obtained for data sets generated via the normalization of the measured concentrations by the average value for the corresponding collection event. These results show that fluorescence based indexes can be used to monitor the behavior of some trace organic contaminants in wastewater impacted rivers and to track wastewater discharges in streams and rivers.
NASA Astrophysics Data System (ADS)
Kelly, Tara; Rocha, Carlos
2014-05-01
Submarine Groundwater Discharge (SGD) constitutes an "invisible" link between land and sea, transporting allochthonous and autochthonous dissolved organic matter (DOM), nutrients and metals to the ocean via the subterranean estuary. The latter acts as a powerful bioreactor where groundwater, in transit from land to sea, mixes with seawater leading to active modulation of both DOM content and chemical makeup of SGD. DOM in freshwater systems is a key component of the global carbon cycle. Climate change may hence increase the concentration of allochthonous carbon entering the oceans as terrestrial DOC is released from soils at higher temperatures, and transported via SGD. Presently, little is known about the effects of SGD-borne DOM on coastal carbon cycling. SGD therefore represents a dynamic reservoir and analysis is critical to forecast future environmental management programmes, both on a local and global scale. Labile DOM plays a crucial role in microbial remineralisation processes, and as it breaks down it contributes to the groundwater nutrient pool. Locally, this could add to eutrophication. However, if refractory carbon is present, it will be recalcitrant to mineralisation in transit and at the subterranean estuary. This putative additional input will thus imply the contribution of SGD to oceanic carbon storage. This study is focused on Kinvara Bay (Galway, western Ireland), the focal point for waters discharging from the Gort-Kinvara karstic aquifer. This aquifer represents the ideal study location for evaluation of SGD contribution to the coastal DOM pool, as SGD is focused in the bay, surface drainage is very limited, and groundwater travels across a large catchment area with a short residence time, minimising DOM modification in transit. DOM samples collected in the field have been analysed using Three-Dimensional Excitation Emission Matrix Fluorescence (3D-EEMF) and High Temperature Catalytic Oxidation. PARAFAC is subsequently used as a tool to elucidate the types, sources (marine vs terrigeneous) and fractional composition of DOM, both in SGD plumes and in surface waters.
After the flood: consistency in DOM response to the 2010/2011 Australian floods
NASA Astrophysics Data System (ADS)
Shutova, Y.; Baker, A.; Bridgeman, J.; Henderson, R.
2014-12-01
The 2010/2011 floods in Eastern Australia were one of the worst on record, causing more than one billion AUD of damages and killing 35 people. This field campaign, monitoring raw water DOM concentration and character on three contrasting rivers across the region captured the late recession curve (October 2011- September 2012). DOM was characterized using fluorescence excitation-emission matrix (EEM) spectra with PARAFAC analysis; δ 13C-DOC; and molecular size using liquid chromatography with organic carbon, UV254 and nitrogen detection (LC-OCD) to identify DOC fractions: biopolymers, humic substance (HS), building blocks (BB), low molecular weight acids, and low molecular weight neutrals. Despite the difference in catchment and climatic zones, similar trends were observed in all three rivers, where DOC concentrations gradually decreased in river streams over a year from 8-11 mgCL-1 to 3-4 mgCL-1, followed by similar changes of HS, BB and fluorescent terrestrially delivered DOM components (C1-C3). In Allyn and Patterson rivers the proportion of HS, fluorescent terrestrially delivered DOM components (C1, C2) in DOC have decreased, in contrast to Logan River, where the ratio of HS/DOC was highly variable and showed no particular trends. The proportion of other DOC components remained almost the same. Molecular weight of the HS declined from 700 gmol-1 to 610 gmol-1 in all sites. δ 13C-DOC increased during monitoring, this could be linked to general decrease of DOM proportion delivered from C4 type plants after the flood. Overall, although DOC concentration decreased over the year post flood at all sites, most importantly the composition of DOM changed, with major changes occurring in proportion of humic-like and fluorescent terrestrially delivered DOM. Therefore it is important to monitor DOM character to be able to assess the impact of climate change and extreme weather events on the DOM transport and transformation.
NASA Astrophysics Data System (ADS)
Para, J.; Charrière, B.; Matsuoka, A.; Miller, W. L.; Rontani, J. F.; Sempéré, R.
2012-11-01
Water masses from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC), and optical characteristics including UV and PAR diffuse attenuation (Kd), and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) as part of the MALINA field campaign (30 July to 27 August). Even with relatively low mean daily solar radiation incident on the sea surface (0.12 ± 0.03, 8.46 ± 1.64 and 18.09 ± 4.20 kJ m-2 for UV-B (305 nm), UV-A (380 nm) and PAR, respectively), we report significant light penetration with 10% irradiance depths (Z10% (λ)) reaching 9.5 m for 340 nm (UV-A) radiation in the Eastern sector and 4.5 m in the Mackenzie River influenced area (Western sector). Spectral absorption coefficients (aCDOM (350 nm) (m-1)) were significantly correlated to both diffuse attenuation coefficients (Kd) in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of UV solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. Extrapolating CDOM to DOC relationships, we estimate that ~ 16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. DOC and CDOM discharges by the Mackenzie River during the MALINA Cruise are estimated as ~ 0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1-C3) were identified by fluorescence Excitation/Emission Matrix Spectroscopy (EEMS) and PARAFAC analysis. Our results showed an in-situ biological component (C1) that co-dominated with a terrestrial humic-like component (C2) in the Mackenzie Delta sector, whereas the protein-like (C3) component dominated in the saltiest waters of the North East sector.
NASA Astrophysics Data System (ADS)
Arellano, Ana Rosa
Optical parameters measured via absorption spectroscopy and high-resolution fluorescence spectroscopy were used to characterize dissolved organic matter (DOM) in the springshed of Kings Bay, a spring-fed estuary located on Florida's Springs Coast. Over the past 40 years, springs supplying groundwater to Kings Bay have shown an increase in nitrate concentration. The overall goal of this project was to fingerprint wells and spring sites with elevated nitrogen concentrations using CDOM optical properties and establish relationships between nutrient and optical parameters. Samples were obtained from various sites: springs, Kings Bay surface (KBS), wells, coastal waters in and at the mouth of Crystal River (Coast) and lakes and rivers (LNR), during dry and wet seasons. The relationships between the environmental parameters and traditional optical parameters which provide insight into source characteristics were analyzed. Excitation emission matrix spectroscopy (EEMS) provided information about the concentration and chemical nature of organic matter in the study area. CDOM optical properties combined with salinity clearly separated the sources of fixed nitrogen in the Bay. Northern springs with elevated dissolved inorganic nitrogen (DIN) concentration had lower salinities and showed a presence of protein peaks. CDOM concentration was negatively correlated with total nitrogen (TN) and DIN, which suggests that these are subjected to anthropogenic influences. Humic peaks dominated the composition of the southern springs. CDOM concentrations were much higher than in the northern springs and there was a positive correlation between CDOM and both TN and DIN. These findings suggest that the fixed nitrogen in the southern springs is naturally occurring organic matter and the low concentrations may partially be a result of subsurface mixing of saltwater and freshwater in the aquifer. Thus, hypothesis testing showed that there was a significant difference between northern and southern springs Hypothesis testing also showed that there is a significant and unexpected positive relationship between CDOM and salinity studying Kings Bay, which is due to the low CDOM concentration in the springs discharging fresh water. This unique dataset also determined that the intercept of the mixing line was significantly different form zero. This indicates that CDOM is present and detectable at very low concentrations. Parallel Factor Analysis (PARAFAC) was used to evaluate CDOM composition from excitation emission matrix spectra (EEMs) and five components were identified: two humic, two marine humic, and one protein-like. The marine-like components, peak M, were produced in the marine environment and in meteoric groundwater. The study found a unique groundwater marker for coastal regions. Northern Kings Bay sites were characterized by a protein-like component, which has been associated with wastewater. Additional optical and environmental parameters were used in discriminate analysis, which successfully identified the CDOM markers for both natural and anthropogenic sources of nutrients in the environment. It is vital to improve the analysis of water, nutrients, and carbon from groundwater discharge into the coastal zone. Elevated DIN concentrations in groundwater are a widespread problem in Florida and over the past 30 years many spring waters have shown an increase in DIN concentrations. Nutrient discharge into delicate coastal areas can lead to ecological concerns. Investigating CDOM and nutrient distribution together can be a beneficial tool that can help differentiate sources from riverine/lacustrine, estuarine, marine, groundwater, and sewage impacted categories.
Visualizing DOM super-spectrum covariance in vanKrevelen space
NASA Astrophysics Data System (ADS)
Fatland, D. R.; Kalawe, J.; Stubbins, A.; Spencer, R. G.; Sleighter, R. L.; Abdulla, H. A.; Dittmar, T.
2011-12-01
We investigate the fate of terrigenous organic matter, DOM exported to the coastal marine environ. Many methods (fluor., FT-ICR-MS, NMR, 13C, lignin, etc) help characterize this DOM. We define a 'super spectrum' as amalgamation of analyses to a data stack and we search for physically significant patterns therein beginning with covariance across 31 samples from six circum-Arctic rivers: The Ob, Kolyma, Mackenzie, Yukon, Lena, and Yenisey sampled five times throughout the year. A vanKrevelen diagram is convenient to view distributions of molecules provided by Fourier Transform Ion Cyclotron Resonance Mass Spectometry (FT-ICR-MS). We augment this distribution space in the vertical dimension, for example to show peak height, molecular mass, principle component weighting or covariance. We use Worldwide Telescope, a virtual globe with strong data support from Microsoft Research to explore covariance results along 3+ dimensions (adding brightness, color and a parameter slide). The results show interesting covariance e.g. between molecules and PARAFAC peaks, a step towards fluorophore and cohort identification in the terrigenous DOM spectrum. Given the geoscience explosion in data volume and data complexity we feel these results should survive beyond the end point of a journal article. We are building a cloud-based Library on the Microsoft Azure platform to support this and subsequent analyses to enable data and methods to carry over and benefit other research groups and objectives.
NASA Astrophysics Data System (ADS)
Mounier, S.; Nicolodelli, G.; Redon, R.; Milori, D. M. B. P.
2017-04-01
The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model.
Rasse-Suriani, Federico A O; García-Einschlag, Fernando S; Rafti, Matías; Schmidt De León, Tobías; David Gara, Pedro M; Erra-Balsells, Rosa; Cabrerizo, Franco M
2018-01-01
In the present work, we have synthesized and fully characterized the photophysical and photochemical properties of a selected group of N-methyl-β-carboline derivatives (9-methyl-β-carbolines and iodine salts of 2-methyl- and 2,9-dimethyl-β-carbolinium) in aqueous solutions, in the pH range 4.0-14.5. Moreover, despite the quite extensive studies reported in the literature regarding the overall photophysical behavior of N-unsubstituted βCs, this work constitutes the first full and unambiguous characterization of anionic species of N-unsubstituted βCs (norharmane, harmane and harmine), present in aqueous solution under highly alkaline conditions (pH > 13.0). Acid dissociation constants (K a ), thermal stabilities, room temperature UV-visible absorption and fluorescence emission and excitation spectra, fluorescence quantum yields (Ф F ) and fluorescence lifetimes (τ F ), as well as quantum yields of singlet oxygen production (Ф Δ ) have been measured for all the studied compounds. Furthermore, for the first time to our knowledge, chemometric techniques (MCR-ALS and PARAFAC) were applied on these systems, providing relevant information about the equilibria and species involved. The impact of all the foregoing observations on the biological role, as well as the potential biotechnological applications of these compounds, is discussed. © 2017 The American Society of Photobiology.
Uncertainty propagation in orbital mechanics via tensor decomposition
NASA Astrophysics Data System (ADS)
Sun, Yifei; Kumar, Mrinal
2016-03-01
Uncertainty forecasting in orbital mechanics is an essential but difficult task, primarily because the underlying Fokker-Planck equation (FPE) is defined on a relatively high dimensional (6-D) state-space and is driven by the nonlinear perturbed Keplerian dynamics. In addition, an enormously large solution domain is required for numerical solution of this FPE (e.g. encompassing the entire orbit in the x-y-z subspace), of which the state probability density function (pdf) occupies a tiny fraction at any given time. This coupling of large size, high dimensionality and nonlinearity makes for a formidable computational task, and has caused the FPE for orbital uncertainty propagation to remain an unsolved problem. To the best of the authors' knowledge, this paper presents the first successful direct solution of the FPE for perturbed Keplerian mechanics. To tackle the dimensionality issue, the time-varying state pdf is approximated in the CANDECOMP/PARAFAC decomposition tensor form where all the six spatial dimensions as well as the time dimension are separated from one other. The pdf approximation for all times is obtained simultaneously via the alternating least squares algorithm. Chebyshev spectral differentiation is employed for discretization on account of its spectral ("super-fast") convergence rate. To facilitate the tensor decomposition and control the solution domain size, system dynamics is expressed using spherical coordinates in a noninertial reference frame. Numerical results obtained on a regular personal computer are compared with Monte Carlo simulations.
Identifying key nodes in multilayer networks based on tensor decomposition.
Wang, Dingjie; Wang, Haitao; Zou, Xiufen
2017-06-01
The identification of essential agents in multilayer networks characterized by different types of interactions is a crucial and challenging topic, one that is essential for understanding the topological structure and dynamic processes of multilayer networks. In this paper, we use the fourth-order tensor to represent multilayer networks and propose a novel method to identify essential nodes based on CANDECOMP/PARAFAC (CP) tensor decomposition, referred to as the EDCPTD centrality. This method is based on the perspective of multilayer networked structures, which integrate the information of edges among nodes and links between different layers to quantify the importance of nodes in multilayer networks. Three real-world multilayer biological networks are used to evaluate the performance of the EDCPTD centrality. The bar chart and ROC curves of these multilayer networks indicate that the proposed approach is a good alternative index to identify real important nodes. Meanwhile, by comparing the behavior of both the proposed method and the aggregated single-layer methods, we demonstrate that neglecting the multiple relationships between nodes may lead to incorrect identification of the most versatile nodes. Furthermore, the Gene Ontology functional annotation demonstrates that the identified top nodes based on the proposed approach play a significant role in many vital biological processes. Finally, we have implemented many centrality methods of multilayer networks (including our method and the published methods) and created a visual software based on the MATLAB GUI, called ENMNFinder, which can be used by other researchers.
Identifying key nodes in multilayer networks based on tensor decomposition
NASA Astrophysics Data System (ADS)
Wang, Dingjie; Wang, Haitao; Zou, Xiufen
2017-06-01
The identification of essential agents in multilayer networks characterized by different types of interactions is a crucial and challenging topic, one that is essential for understanding the topological structure and dynamic processes of multilayer networks. In this paper, we use the fourth-order tensor to represent multilayer networks and propose a novel method to identify essential nodes based on CANDECOMP/PARAFAC (CP) tensor decomposition, referred to as the EDCPTD centrality. This method is based on the perspective of multilayer networked structures, which integrate the information of edges among nodes and links between different layers to quantify the importance of nodes in multilayer networks. Three real-world multilayer biological networks are used to evaluate the performance of the EDCPTD centrality. The bar chart and ROC curves of these multilayer networks indicate that the proposed approach is a good alternative index to identify real important nodes. Meanwhile, by comparing the behavior of both the proposed method and the aggregated single-layer methods, we demonstrate that neglecting the multiple relationships between nodes may lead to incorrect identification of the most versatile nodes. Furthermore, the Gene Ontology functional annotation demonstrates that the identified top nodes based on the proposed approach play a significant role in many vital biological processes. Finally, we have implemented many centrality methods of multilayer networks (including our method and the published methods) and created a visual software based on the MATLAB GUI, called ENMNFinder, which can be used by other researchers.
NASA Astrophysics Data System (ADS)
Du, Yong; Zhang, Xiaoyu; Jiang, Binbin; Huang, Dasong; Yao, Lingling
2015-04-01
In this paper, a total of 28 water samples were collected mainly from three sections(C section in the Yangtze river inner estuary, PN section and F section on the spindle of Changjiang diluted water influenced by different hydrodynamic processes),which taken on two cruises in spring and summer of 2011. Absorption and fluorescence spectroscopy were measured along with dissolved organic carbon(DOC) concentrations and temperature, salinity and another environmental parameters to characterize the material sources and environmental implications of dissolved organic matter(DOM). Two protein-like components(tyrosine-like peak B and tryptophan-like peak T1), and two humic-like components(marine humic-like peak M and ultraviolet region humic-like peak A ) were identified by PARAFAC. We discussed CDOM distribution characteristic, material composition, and influence factors during the slowly dilution process of Changjiang diluted water into the east China sea by comparing the correlation of the CDOM absorption, fluorescence intensity, and fluorescence peak with DOC, in order to provide the based biogeochemistry theory basis for building DOC implications using CDOM fluorescence properties. The results revealed that:1) the Yangtze river and its inner estuary (upstream of the river mouth) were detected a higher amount of humic-like components. With the rapid dilution (or settlement) at the inner estuary, the humic-like components would further spread and dilute slowly on PN section and F section. On PN section, the terrigenous material is the main source material, and the main mechanism of CDOM distribution characteristics is controlled by dilution diffusion. Affected by the water mass convergence, marine dissolved organic matter in local waters had obvious input. However, due to the complexed hydrodynamic environment on F section, the input of terrigenous material has many ways. The influence of marine dissolved organic matter increased with the offshore distance increases.2) Although the absorption coefficient of DOC has good instruction significance, CDOM fluorescence intensity can more accurately express the amount of DOC in water than that of absorption coefficient with the source of dissolved organic matter enhanced.3) In general, CDOM fluorescence intensity and DOC show good linear relationship in the study region. But the correlation would change in different sea, and may ignore the rapidly dilution(or possibly sedimentation process) of estuarine waters, which need to be further depth study. Keywords: CDOM; F section; PN section; sources tracing; hydrodynamic environment
NASA Astrophysics Data System (ADS)
Hertkorn, N.; Harir, M.; Cawley, K. M.; Schmitt-Kopplin, P.; Jaffé, R.
2015-08-01
Wetlands provide quintessential ecosystem services such as maintenance of water quality, water supply and biodiversity, among others; however, wetlands are also among the most threatened ecosystems worldwide. They are usually characterized by high levels of natural dissolved organic matter (DOM), representing a critical component in wetland biogeochemistry. This study describes the first detailed, comparative, molecular characterization of DOM in sub-tropical, pulsed, wetlands, namely the Everglades (USA), the Pantanal (Brazil) and the Okavango Delta (Botswana), using optical properties, high field nuclear magnetic resonance (NMR) and ultrahigh resolution mass spectrometry (FT-ICRMS), and compares compositional features to variations in organic matter sources and flooding characteristics (i.e. differences in hydroperiod). While optical properties showed both similarities and differences between these ecosystems, these differences were mainly based on the degree of aromaticity of the DOM. Analogies were such that an established excitation emission matrix fluorescence parallel factor analysis (EEM-PARAFAC) model for the Everglades was perfectly applicable to the other two wetlands. High-field (500 and 800 MHz) NMR spectra with cryogenic detection provided exceptional coverage and chemical description of wetland solid phase extracted (SPE) DOM. Area-normalized 1H NMR spectra of selected samples revealed clear distinctions of samples along with pronounced congruence within the three pairs of wetland DOM. Within sample pairs (long vs. short hydroperiod sites), internal differences mainly referred to intensity variations (denoting variable abundance) rather than to alterations of NMR resonances positioning (denoting diversity of molecules). The relative disparity was largest between the Everglades long and short hydroperiod samples, whereas Pantanal and Okavango samples were more alike among themselves. Otherwise, molecular divergence was most obvious in the case of unsaturated protons (δH > 5 ppm). The larger discrimination observed between 1H NMR spectra of DOM from different wetlands in comparison with the intrinsic variance among DOM within each wetland readily suggests the presence of an individual molecular signature, characteristic of each particular wetland. 2-D NMR spectroscopy for a particular sample revealed a large richness of aliphatic and unsaturated substructures, likely derived from microbial sources such as periphyton in the Everglades. In contrast, the chemical diversity of aromatic wetland DOM likely originates from a combination of higher plant sources, progressive microbial and photochemical oxidation, and contributions from combustion-derived products (e.g. black carbon). In addition, FT-ICRMS spectra allowed far-reaching classifications of wetland DOM. While DOM of both Okavango and Pantanal showed near 57 ± 2 % CHO, 8 ± 2 % CHOS, 33 ± 2 CHNO, and < 1 % CHNOS molecules, the mass spectra of Everglades samples were fundamentally different compared to those as well as among long and short hydroperiod samples, as they were markedly enriched in CHOS and CHNOS at the expense of CHO and CHNO compounds. Here, four groups of CHOS molecules were differentiated as (a) saturated sulfolipids, (b) unsaturated sulfolipids, (c) molecularly diverse DOM-type CHOS molecules, (d) and particularly enriched in the Everglades short hydroperiod site, a large set of aromatic and oxygen-deficient "black sulphur" compounds. The significantly higher proportion of CHOS compounds in general for the Everglades samples is likely the result of higher inputs of agriculture-derived and sea spray derived sulphate to this wetland compared to the others. Although wetland DOM samples were found to share many molecular features, each sample was unique in its composition, which reflected specific environmental drivers and/or specific biogeochemical processes.
Influence of solar radiation on DOM release from resuspended Florida Bay sediments
NASA Astrophysics Data System (ADS)
Shank, G. C.; Evans, A.; Jaffé, R.; Yamashita, Y.
2009-12-01
This study investigated dissolved organic matter (DOM) release from resuspended Florida Bay sediments under dark and sunlit conditions. Much of Florida Bay (located between Everglades and Florida Keys) is very shallow (< 2 m) so sediment resuspension events have the potential to substantially impact the concentration and composition of DOM in the water column. For our study, sediments were collected at several sites across Florida Bay and ranged from 3-11 percent organic carbon (by weight). Sediments were resuspended in oligotrophic seawater for 48 hours in 1 L quartz flasks in the dark and under simulated solar radiation (SunTest XLS+) at concentrations of 100 mg L-1 and 1 g L-1 (wet weight). Final solutions were analyzed for DOC, chromophoric dissolved organic matter (CDOM), and Excitation Emission Matrix (EEM) fluorescence. Results showed little to no DOC increases in the resuspensions performed under dark conditions, but substantial release of DOM in irradiated resuspensions, especially at high sediment concentrations where DOC increases ranged from 100-500%. The sediments also released substantial quantities of CDOM to solution under irradiated conditions. The magnitude of DOC increases in irradiated resuspensions were well-correlated with the amount of particulate organic carbon (POC) added. Data from EEM-PARAFAC analyses suggests the photochemically produced DOM was comprised of desorbed humic material with a smaller fraction from microbial mediated processes. Our study provides evidence that sediment resuspension episodes in shallow sunlit waters such as Florida Bay have the potential to provide an important source of organic carbon to overlying waters.
Gas chromatography - mass spectrometry data processing made easy.
Johnsen, Lea G; Skou, Peter B; Khakimov, Bekzod; Bro, Rasmus
2017-06-23
Evaluation of GC-MS data may be challenging due to the high complexity of data including overlapped, embedded, retention time shifted and low S/N ratio peaks. In this work, we demonstrate a new approach, PARAFAC2 based Deconvolution and Identification System (PARADISe), for processing raw GC-MS data. PARADISe is a computer platform independent freely available software incorporating a number of newly developed algorithms in a coherent framework. It offers a solution for analysts dealing with complex chromatographic data. It allows extraction of chemical/metabolite information directly from the raw data. Using PARADISe requires only few inputs from the analyst to process GC-MS data and subsequently converts raw netCDF data files into a compiled peak table. Furthermore, the method is generally robust towards minor variations in the input parameters. The method automatically performs peak identification based on deconvoluted mass spectra using integrated NIST search engine and generates an identification report. In this paper, we compare PARADISe with AMDIS and ChromaTOF in terms of peak quantification and show that PARADISe is more robust to user-defined settings and that these are easier (and much fewer) to set. PARADISe is based on non-proprietary scientifically evaluated approaches and we here show that PARADISe can handle more overlapping signals, lower signal-to-noise peaks and do so in a manner that requires only about an hours worth of work regardless of the number of samples. We also show that there are no non-detects in PARADISe, meaning that all compounds are detected in all samples. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Factor Analysis and Counseling Research
ERIC Educational Resources Information Center
Weiss, David J.
1970-01-01
Topics discussed include factor analysis versus cluster analysis, analysis of Q correlation matrices, ipsativity and factor analysis, and tests for the significance of a correlation matrix prior to application of factor analytic techniques. Techniques for factor extraction discussed include principal components, canonical factor analysis, alpha…
The biogeochemical fingerprint of urbanization: increasing carbon quality in Maine headwater streams
NASA Astrophysics Data System (ADS)
Parr, T.; Cronan, C.; Ohno, T.; Simon, K. S.
2012-12-01
Conversion of land cover to urban use is an accelerating global phenomenon. Physical landscape change manifests as the replacement of forests, grasslands, and wetlands with buildings, novel vegetation, and infrastructure. This physical change also brings with it a change in the human management of the landscape for aesthetic and practical purposes (i.e. road salt applications). Although urbanization's effects on inorganic nutrients have been well studied, far less is known about the interactive influences of urbanization and urban landscape management practices on dissolved organic matter (DOM), a key energy source essential to ecosystem function. We examined the seasonal abundance and composition of DOM, nutrients, and common cations in 116 small streams along a gradient of urbanization (0-60% total watershed imperviousness, TWI), in Maine, USA. Dissolved organic carbon concentration ranged from 0.5 to 20 ppm with no clear relationship to watershed urbanization. In contrast, DOM composition, quantified with specific ultra violet absorbance at 254 nm (SUVA_{254}), fluorescence indices, and parallel factor analysis (PARAFAC), changed considerably with increasing urbanization. SUVA_{254} indicated a shift from higher molecular weight humic compounds (SUVA_{254}>4) toward lower molecular weight compounds (SUVA_{254}<2.5) with increasing urbanization. Fluorescence indices (Fluorescence Index, Humification Index, and α:β) indicated DOM source shifted from allochthonous sources (e.g. plant and soil carbon) toward autochthonously derived compounds (e.g. derivatives of in-stream algal and microbial production). Humic acid-like compounds decreased from 40% to 10% of the fluorescent DOM pool, while fluorescence of more labile compounds increased from 10 to 25% with increasing urbanization. Laboratory bioassays of DOM degradation rates showed that increasing urbanization doubled the bioavailability of DOM. Ratios of DOC:DON declined from 20-50 at TWI<8% to <20 above 8% TWI. Changes in the DOM pool were unrelated to inorganic nutrient concentrations, but were related to base cation concentrations. Concentrations of base cations (Ca^{2+}, Mg^{2+}, K^+, Na^+) increased 3-100 fold with increasing impervious cover. The stoichiometric relationships among Na^+, Cl^- and other base cations suggest road salt application may mobilize base cations into streams draining urbanized watersheds. There was a strong negative relationship between humic-like DOM components and Ca^{2+} (R^2=0.3-0.5, p<0.01) across streams. Bottle incubations of ^1+ and ^{2+} base cation salts over a natural range (0 - 6 mM) showed that ^{2+} cations (esp. Ca^{2+}) preferentially flocculated the humic fraction of DOM (R^2=0.6-0.9, p<0.01). These results indicate that the carbon composition change observed with urbanization in Maine may be controlled by multiple concurrent processes linked to the creation and maintenance of urban landscapes. Our data suggest that a key biogeochemical consequence of urbanization may be an increase in abundance of labile carbon which may have important consequences for ecosystem function in urban systems. This process may be driven by a combination of altered landscape C sources reducing terrestrial C inputs, enhancement of in-stream C production, and base cation enrichment that removing terrestrial C from the aquatic DOM pool in urban landscapes.
Carvajal, Guido; Branch, Amos; Michel, Philipp; Sisson, Scott A; Roser, David J; Drewes, Jörg E; Khan, Stuart J
2017-11-01
Ozonation of wastewater has gained popularity because of its effectiveness in removing colour, UV absorbance, trace organic chemicals, and pathogens. Due to the rapid reaction of ozone with organic compounds, dissolved ozone is often not measurable and therefore, the common disinfection controlling parameter, concentration integrated over contact time (CT) cannot be obtained. In such cases, alternative parameters have been shown to be useful as surrogate measures for microbial removal including change in UV 254 absorbance (ΔUVA), change in total fluorescence (ΔTF), or O 3 :TOC (or O 3 :DOC). Although these measures have shown promise, a number of caveats remain. These include uncertainties in the associations between these measurements and microbial inactivation. Furthermore, previous use of seeded microorganisms with higher disinfection sensitivity compared to autochthonous microorganisms could lead to overestimation of appropriate log credits. In our study, secondary treated wastewater from a full-scale plant was ozonated in a bench-scale reactor using five increasing ozone doses. During the experiments, removal of four indigenous microbial indicators representing viruses, bacteria and protozoa were monitored concurrent with ΔUVA, ΔTF, O 3 :DOC and PARAFAC derived components. Bayesian methods were used to fit linear regression models, and the uncertainty in the posterior predictive distributions and slopes provided a comparison between previously reported results and those reported here. Combined results indicated that all surrogate parameters were useful in predicting the removal of microorganisms, with a better fit to the models using ΔUVA, ΔTF in most cases. Average adjusted determination coefficients for fitted models were high (R 2 adjusted >0.47). With ΔUVA, one unit decrease in LRV corresponded with a UVA mean reduction of 15-20% for coliforms, 59% for C. perfringens spores, and 11% for somatic coliphages. With ΔTF, a one unit decrease in LRV corresponded with a TF mean reduction of 18-23% for coliforms, 71% for C. perfringens spores, and 14% for somatic coliphages. Compared to previous studies also analysed, our results suggest that microbial reductions were more conservative for autochthonous than for seeded microorganisms. The findings of our study suggested that site-specific analyses should be conducted to generate models with lower uncertainty and that indigenous microorganisms are useful for the measurement of system performance even when censored observations are obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khamis, Kieran; Bradley, Chris; Hannah, David; Stevens, Rob
2014-05-01
Due to the recent development of field-deployable optical sensor technology, continuous quantification and characterization of surface water dissolved organic matter (DOM) is possible now. Tryptophan-like (T1) fluorescence has the potential to be a particularly useful indicator of human influence on water quality as T1 peaks are associated with the input of labial organic carbon (e.g. sewage or farm waste) and its microbial breakdown. Hence, real-time recording of T1 fluorescence could be particular useful for monitoring waste water infrastructure, treatment efficiency and the identification of contamination events at higher temporal resolution than available hitherto. However, an understanding of sensor measurement repeatability/transferability and interaction with environmental parameters (e.g. turbidity) is required. Here, to address this practical knowledge gap, we present results from a rigorous test of a commercially available submersible tryptophan fluorometer (λex 285, λem 350). Sensor performance was first examined in the laboratory by incrementally increasing turbidity under controlled conditions. Further to this the sensor was integrated into a multi-parameter sonde and field tests were undertaken involving: (i) a spatial sampling campaign across a range of surface water sites in the West Midlands, UK; and (ii) collection of high resolution (sub-hourly) samples from an urban stream (Bournbrook, Birmingham, U.K). To determine the ability of the sensor to capture spatiotemporal dynamics of urban waters DOM was characterized for each site or discrete time step using Excitation Emission Matrix spectroscopy and PARAFAC. In both field and laboratory settings fluorescence intensity was attenuated at high turbidity due to suspended particles increasing absorption and light scattering. For the spatial survey, instrument readings were compared to those obtained by a laboratory grade fluorometer (Varian Cary Eclipse) and a strong, linear relationship was apparent (R2 > 0.7). Parallel water sampling and laboratory analysis identified the potential for correction of T1 fluorescence intensity based on turbidity readings. These findings highlight the potential utility of real time monitoring of T1 fluorescence for a range of environmental applications (e.g. monitoring sewage treatment processes and tracing polluting DOM sources). However, if high/variable suspended sediment loads are anticipated concurrent monitoring of turbidity is required for accurate readings.
ERIC Educational Resources Information Center
Çokluk, Ömay; Koçak, Duygu
2016-01-01
In this study, the number of factors obtained from parallel analysis, a method used for determining the number of factors in exploratory factor analysis, was compared to that of the factors obtained from eigenvalue and scree plot--two traditional methods for determining the number of factors--in terms of consistency. Parallel analysis is based on…
Dissolved Organic Carbon Cycling and Transformation Dynamics in A Northern Forested Peatland
NASA Astrophysics Data System (ADS)
Tfaily, M. M.; Lin, X.; Chanton, P. R.; Steinweg, J.; Esson, K.; Kostka, J. E.; Cooper, W. T.; Schadt, C. W.; Hanson, P. J.; Chanton, J.
2013-12-01
Peatlands sequester one-third of all soil carbon and currently act as major sinks of atmospheric carbon dioxide. The ability to predict or simulate the fate of stored carbon in response to climatic disruption remains hampered by our limited understanding of the controls of carbon turnover and the composition and functioning of peatland microbial communities. A combination of advanced analytical chemistry and microbiology approaches revealed that organic matter reactivity and microbial community dynamics were closely coupled in an extensive field dataset compiled at the S1 bog site established for the SPRUCE program, Marcell Experimental Forest (MEF). The molecular composition and decomposition pathways of dissolved organic carbon (DOC) were contrasted using parallel factor (PARAFAC)-modeled excitation emission fluorescence spectroscopy (EEMS) and FT-ICR MS. The specific UV absorbance (SUVA) at 254 nm was calculated as an indicator of aromaticity. Fluorescence intensity ratios (BIX and FI) were used to infer the relative contributions from solid phase decomposition and microbial production. Distributions of bulk DOC, its stable (δ13C) and radioactive (Δ14C) isotopic composition were also utilized to infer information on its dynamics and transformation processes. Strong vertical stratification was observed in organic matter composition, the distribution of mineralization products (CO2, CH4), respiration rates, and decomposition pathways, whereas smaller variations were observed between sites. A decline in the aromaticity of pore water DOC was accompanied by an increase in microbially-produced DOC. Solid phase peat, on the other hand, became more humified and highly aromatic with depth. These observations were consistent with radiocarbon data that showed that the radiocarbon signatures of microbial respiration products in peat porewaters more closely resemble those of DOC rather than solid peat, indicating that carbon from recent photosynthesis is fueling the majority of the decomposition, even in the subsurface. Stable isotope geochemistry paralleled with vertical changes in methanogen community composition to reveal a mid-depth maximum in acetoclastic methanogenesis, while hydrogenotrophic methanogenesis appears to dominate deeper peat layers. Archaea increased in relative abundance with depth, comprising up to 60 % of the microbial community in the deep peat below 75 cm depth. The Crenarchaeota, Archaea that are not known to produce methane, are suggested to play a critical role in the carbon cycle of deeper peat layers. This is corroborated by evidence from a C isotope mass balance, which indicates that processes other than methanogenesis (fermentation, anaerobic respiration) predominate in the deep peat leading to dominance of CO2 production at depth.
NASA Astrophysics Data System (ADS)
Mounier, Stéphane; Abaker, Madi; Domeizel, Mariane; Rapetti, Nicola
2014-05-01
The maturity process of compost goes through several phases that have to be monitored in order to optimize the production process which in turn assure a good quality product and less time consumption. In order to estimate rapidly the phase where the compost is present and to measure the cellulose, the ratio C:N and the Stability Index Organic Matter (ISMO) a crucial parameter that needs to be monitored and controlled is the temperature. However, the temperature is not really a good indicator for the maturity of the compost because it is not constant and it depends on the mixing and environmental processes. The final measurements are performed at the end of the production process after certain time period that is subjectively determined by the producer. The work presented here is based on the optical properties of the organic matter that are observed each month for a period of six months. The organic matter of 5 composts was extracted by water and analyzed by UV-VIS spectroscopic technique [1] and 3D fluorescence emission technique [2]. The usual indexes were calculated (E2/E3, E4/E6, EBZ/EET, SUVA254), but also the PARAFAC decomposition of the 3D fluorescence response by Milori [3] and the Hx indexes [4]. The comparison of these results and the cellulose composition with the corresponding ISMO index indicates that the maturity process occurs more rapidly then the expectation of the producers. Further, the combination of the indicators gives useful information about different processes that take place during the maturity of the compost such as aromatization, the condensation and the stabilization of the parameters.
NASA Astrophysics Data System (ADS)
Dupouy, Cécile; Röttgers, Rüdiger; Tedetti, Marc; Martias, Chloe; Murakami, Hiroshi; Doxaran, David; Lantoine, Francois; Rodier, Martine; Favareto, Luciane; Kampel, Milton; Goutx, Madeleine; Frouin, Robert J.
2014-11-01
Ocean color of tropical lagoons is dependent on bathymetry and bottom type, as well as input of coastal living and mineral particles and chromophoric dissolved organic matter (CDOM). The New Caledonia lagoon lies in the Southwestern Tropical Pacific around 21° 30'S and 166° 30'E, with a great marine biodiversity in UNESCO Heritage coral reefs, benthic sea grass, and benthic communities. They are largely connected to the open ocean in the southern and eastern parts, but only by narrow passes in the southwest part. The trophic state is linked to spatial variations in flushing times. High run offs due to rain carrying abundant chromophoric dissolved organic matter (CDOM) and particle loads may greatly impact the functioning of ecosystems while rivers and sewage effluents may induce localized impacts. Two oceanographic cruises (CALIOPE 1 in 2011 and CALIOPE 2 in 2014) were carried out off the Eastern Coast of New Caledonia during a calm dry period and during high winds, respectively. Multi- and hyper-spectral marine reflectance was measured with a SIMBADA instrument and a TRIOS radiometer system, together with inherent optical properties (total and CDOM absorption coefficients with a PSICAM, in situ absorption and scattering with an AC9, backscattering with a Hydroscat-6). Fluorescence of CDOM (EEM/PARAFAC) was measured on collected 0.2 μm filtered samples. In 2014, Satlantic and FieldSpec hyper-spectral radiometers were available for in-water profiling of upwelling radiance and downwelling irradiance and above-water reflectance measurements, respectively. Inherent and apparent optical data from the two cruises are compared and used to estimate ocean color algorithms performance and evaluate a Linear Matrix Inversion method, providing tools for remote sensing on this highly under-sampled coastal region of New Caledonia.
NASA Astrophysics Data System (ADS)
Reed, E.; Armstrong, A.
2016-12-01
The optical properties and lability of fresh leaf and litter leachates obtained from Delmarva wetlands were analyzed to gain a further understanding of the carbon inputs and outputs of that wetland system. Carbon entering the wetland system may be digested by microbes and then given off as either carbon dioxide or methane, both of which enter the atmosphere as greenhouse gases. Delmarva Bays are often considered geographically isolated and only have surface water present in certain times of year. The vegetation around the wetlands are assumed to be a major input of the dissolved organic matter (DOM) in the wetland surface water. An understanding of the sources and lability of wetland water DOM can lead to further insight into the connections between vegetation, wetland management, and carbon cycling. Two paired wetland sites were sampled in this study, each included a forested catchment and a prior-converted agricultural wetland that had undergone hydrological ecosystem restoration. Leaf samples of Liquidambar styraciflua, Acer rubrum, Nyssa sylvatica, Polygonum, and Typha were taken directly from the living plant or from surrounding ground as litter. Spectral properties of the leachates were determined from fluorescence and absorbance, including PARAFAC components, fluorescence index (FI), humification index (HI), and the specific ultraviolet absorbance (SUVA). Leachates were also incubated with microbes taken from Tuckahoe Creek, a stream to which all sampled sites eventually drain, to determine the bioavailability of the carbon. There were measurable differences found between samples obtained from leaves and litter, as well as a difference between the herbaceous and tree samples. The results obtained from this study can help create more accurate models of how carbon cycles through these wetlands, both in forested and restored environments.
Determining the Number of Factors in P-Technique Factor Analysis
ERIC Educational Resources Information Center
Lo, Lawrence L.; Molenaar, Peter C. M.; Rovine, Michael
2017-01-01
Determining the number of factors is a critical first step in exploratory factor analysis. Although various criteria and methods for determining the number of factors have been evaluated in the usual between-subjects R-technique factor analysis, there is still question of how these methods perform in within-subjects P-technique factor analysis. A…
On the Relations among Regular, Equal Unique Variances, and Image Factor Analysis Models.
ERIC Educational Resources Information Center
Hayashi, Kentaro; Bentler, Peter M.
2000-01-01
Investigated the conditions under which the matrix of factor loadings from the factor analysis model with equal unique variances will give a good approximation to the matrix of factor loadings from the regular factor analysis model. Extends the results to the image factor analysis model. Discusses implications for practice. (SLD)
NASA Astrophysics Data System (ADS)
De, Anupam; Bandyopadhyay, Gautam; Chakraborty, B. N.
2010-10-01
Financial ratio analysis is an important and commonly used tool in analyzing financial health of a firm. Quite a large number of financial ratios, which can be categorized in different groups, are used for this analysis. However, to reduce number of ratios to be used for financial analysis and regrouping them into different groups on basis of empirical evidence, Factor Analysis technique is being used successfully by different researches during the last three decades. In this study Factor Analysis has been applied over audited financial data of Indian cement companies for a period of 10 years. The sample companies are listed on the Stock Exchange India (BSE and NSE). Factor Analysis, conducted over 44 variables (financial ratios) grouped in 7 categories, resulted in 11 underlying categories (factors). Each factor is named in an appropriate manner considering the factor loads and constituent variables (ratios). Representative ratios are identified for each such factor. To validate the results of Factor Analysis and to reach final conclusion regarding the representative ratios, Cluster Analysis had been performed.
A Review of CEFA Software: Comprehensive Exploratory Factor Analysis Program
ERIC Educational Resources Information Center
Lee, Soon-Mook
2010-01-01
CEFA 3.02(Browne, Cudeck, Tateneni, & Mels, 2008) is a factor analysis computer program designed to perform exploratory factor analysis. It provides the main properties that are needed for exploratory factor analysis, namely a variety of factoring methods employing eight different discrepancy functions to be minimized to yield initial…
Factor analysis of an instrument to measure the impact of disease on daily life.
Pedrosa, Rafaela Batista Dos Santos; Rodrigues, Roberta Cunha Matheus; Padilha, Kátia Melissa; Gallani, Maria Cecília Bueno Jayme; Alexandre, Neusa Maria Costa
2016-01-01
to verify the structure of factors of an instrument to measure the Heart Valve Disease Impact on Daily Life (IDCV) when applied to coronary artery disease patients. the study included 153 coronary artery disease patients undergoing outpatient follow-up care. The IDCV structure of factors was initially assessed by means of confirmatory factor analysis and, subsequently, by exploratory factor analysis. The Varimax rotation method was used to estimate the main components of analysis, eigenvalues greater than one for extraction of factors, and factor loading greater than 0.40 for selection of items. Internal consistency was estimated using Cronbach's alpha coefficient. confirmatory factor analysis did not confirm the original structure of factors of the IDCV. Exploratory factor analysis showed three dimensions, which together explained 78% of the measurement variance. future studies with expansion of case selection are necessary to confirm the IDCV new structure of factors.
NASA Astrophysics Data System (ADS)
Hoseinzade, Zohre; Mokhtari, Ahmad Reza
2017-10-01
Large numbers of variables have been measured to explain different phenomena. Factor analysis has widely been used in order to reduce the dimension of datasets. Additionally, the technique has been employed to highlight underlying factors hidden in a complex system. As geochemical studies benefit from multivariate assays, application of this method is widespread in geochemistry. However, the conventional protocols in implementing factor analysis have some drawbacks in spite of their advantages. In the present study, a geochemical dataset including 804 soil samples collected from a mining area in central Iran in order to search for MVT type Pb-Zn deposits was considered to outline geochemical analysis through various fractal methods. Routine factor analysis, sequential factor analysis, and staged factor analysis were applied to the dataset after opening the data with (additive logratio) alr-transformation to extract mineralization factor in the dataset. A comparison between these methods indicated that sequential factor analysis has more clearly revealed MVT paragenesis elements in surface samples with nearly 50% variation in F1. In addition, staged factor analysis has given acceptable results while it is easy to practice. It could detect mineralization related elements while larger factor loadings are given to these elements resulting in better pronunciation of mineralization.
Exploratory Bi-factor Analysis: The Oblique Case.
Jennrich, Robert I; Bentler, Peter M
2012-07-01
Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger and Swineford (Psychometrika 47:41-54, 1937). The bi-factor model has a general factor, a number of group factors, and an explicit bi-factor structure. Jennrich and Bentler (Psychometrika 76:537-549, 2011) introduced an exploratory form of bi-factor analysis that does not require one to provide an explicit bi-factor structure a priori. They use exploratory factor analysis and a bifactor rotation criterion designed to produce a rotated loading matrix that has an approximate bi-factor structure. Among other things this can be used as an aid in finding an explicit bi-factor structure for use in a confirmatory bi-factor analysis. They considered only orthogonal rotation. The purpose of this paper is to consider oblique rotation and to compare it to orthogonal rotation. Because there are many more oblique rotations of an initial loading matrix than orthogonal rotations, one expects the oblique results to approximate a bi-factor structure better than orthogonal rotations and this is indeed the case. A surprising result arises when oblique bi-factor rotation methods are applied to ideal data.
A Brief History of the Philosophical Foundations of Exploratory Factor Analysis.
ERIC Educational Resources Information Center
Mulaik, Stanley A.
1987-01-01
Exploratory factor analysis derives its key ideas from many sources, including Aristotle, Francis Bacon, Descartes, Pearson and Yule, and Kant. The conclusions of exploratory factor analysis are never complete without subsequent confirmatory factor analysis. (Author/GDC)
Exploratory Bi-Factor Analysis: The Oblique Case
ERIC Educational Resources Information Center
Jennrich, Robert I.; Bentler, Peter M.
2012-01-01
Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger and Swineford ("Psychometrika" 47:41-54, 1937). The bi-factor model has a general factor, a number of group factors, and an explicit bi-factor structure. Jennrich and Bentler ("Psychometrika" 76:537-549, 2011) introduced an exploratory form of bi-factor…
Extension Procedures for Confirmatory Factor Analysis
ERIC Educational Resources Information Center
Nagy, Gabriel; Brunner, Martin; Lüdtke, Oliver; Greiff, Samuel
2017-01-01
We present factor extension procedures for confirmatory factor analysis that provide estimates of the relations of common and unique factors with external variables that do not undergo factor analysis. We present identification strategies that build upon restrictions of the pattern of correlations between unique factors and external variables. The…
Flora, David B.; LaBrish, Cathy; Chalmers, R. Philip
2011-01-01
We provide a basic review of the data screening and assumption testing issues relevant to exploratory and confirmatory factor analysis along with practical advice for conducting analyses that are sensitive to these concerns. Historically, factor analysis was developed for explaining the relationships among many continuous test scores, which led to the expression of the common factor model as a multivariate linear regression model with observed, continuous variables serving as dependent variables, and unobserved factors as the independent, explanatory variables. Thus, we begin our paper with a review of the assumptions for the common factor model and data screening issues as they pertain to the factor analysis of continuous observed variables. In particular, we describe how principles from regression diagnostics also apply to factor analysis. Next, because modern applications of factor analysis frequently involve the analysis of the individual items from a single test or questionnaire, an important focus of this paper is the factor analysis of items. Although the traditional linear factor model is well-suited to the analysis of continuously distributed variables, commonly used item types, including Likert-type items, almost always produce dichotomous or ordered categorical variables. We describe how relationships among such items are often not well described by product-moment correlations, which has clear ramifications for the traditional linear factor analysis. An alternative, non-linear factor analysis using polychoric correlations has become more readily available to applied researchers and thus more popular. Consequently, we also review the assumptions and data-screening issues involved in this method. Throughout the paper, we demonstrate these procedures using an historic data set of nine cognitive ability variables. PMID:22403561
Factor Structure of the Social Appearance Anxiety Scale in Turkish Early Adolescents
ERIC Educational Resources Information Center
Sahin, Ertugrul; Topkaya, Nursel
2015-01-01
Although the Social Appearance Anxiety Scale (SAAS) is most often validated with the use of confirmatory factor analysis (CFA) on undergraduate students, exploratory factor analysis and multiple factor retention decision criteria necessitate the analysis of underlying factor structure to prevent over and under factoring as well as to reveal…
Factor Analysis via Components Analysis
ERIC Educational Resources Information Center
Bentler, Peter M.; de Leeuw, Jan
2011-01-01
When the factor analysis model holds, component loadings are linear combinations of factor loadings, and vice versa. This interrelation permits us to define new optimization criteria and estimation methods for exploratory factor analysis. Although this article is primarily conceptual in nature, an illustrative example and a small simulation show…
NASA Astrophysics Data System (ADS)
Nouhi, Ayoub; Hajjoul, Houssam; Redon, Roland; Gagné, Jean-Pierre; Mounier, Stéphane
2017-04-01
Improved insight on the interactions between natural organic ligands and trace metals is of paramount importance for better understanding transport and toxicity pathways of metal ions in the environment. Fluorescence spectroscopy allows introspecting ligands-metals interactions. Time-resolved laser fluorescence spectroscopy (TRLFS) measures fluorophore lifetime probing the local molecular environment. Excitation Emission Fluorescence Matrices (EEFMs) and their statistical treatment : parallel factor analysis (PARAFAC) using PROGMEEF Matlab homemade program, can give insight on the number or nature of organic fluorophores involved in the interactions. Quenching of fluorescence by metals can occur following two processes: dynamic and static quenching (Lakowicz, 2013). In the first case, quenching is caused by physical collisions among molecules and in the second case fluorophores can form nonfluorescent complexes with quenchers. It is possible to identify the different mechanisms because each type of quenching corresponds to a different mathematical model (Lakowicz, 2013; Valeur and Berberan-Santos, 2012). In TRLFS, the study of fluorescence decay's laws induced by nanosecond pulsed laser will allow to exactly qualify the type of interaction. The crucial point of the temporal deconvolution will be the evaluation of the best fitting between the different physical models and the decays measured. From the most suitable time decay model, it will be possible to deduce the quenching which modifies the fluorescence. The aim of this study was to characterize interactions between natural organic ligands and trace metals using fluorescence tools to evaluate the fluorescence lifetime of the fluorophore, the occurrence of quenching in presence of metal, discuss its mechanism and estimate conditional stability constants if a complex organic ligand-metal is formed. This study has been done in two steps. First, we have examined the interactions between salicylic acid and copper in order to calibrate our assays and compare our results with literature. Several studies have shown that static quenching occurs in that case (Brun and Schröder, 1975; Lavrik and Mulloev, 2010; Ventry et al., 1991; Babko, 1968). Indeed, after processing the EEFMs and TRLFS data, we found a fluorescence intensity decay by about 50% and a constant lifetime for the fluorophore suggesting a static quenching, in agreement with the literature. In the second step, we have studied the interactions between metal and different types of natural organic matters. In this case, EEMFs and TRLFS experiments were done on samples prepared by dissolving copper in four different fractions of organic matter extracted from estuarine water (St. Lawrence Estuary, Canada). Organic matter was obtained using DAX-8 and XAD-4 resins in series. Humic and fulvic acids are obtained following the IHSS protocol. The results of interaction between humic substances and copper gathered after processing data on PROGMEEF have shown a fluorescence intensity decay by about 57% for the first component and 88% for the second component. The fluorescence lifetime for both components were close to 2 ns and 6 ns respectively and the pH range was stable and close to 6. This means that a static quenching takes place in this case in agreement with the literature. Our study also focused on the investigation of complexation of organic matter by other metals in particular Aluminum, Arsenic, Europium and Uranium.
ERIC Educational Resources Information Center
Wall, Melanie M.; Guo, Jia; Amemiya, Yasuo
2012-01-01
Mixture factor analysis is examined as a means of flexibly estimating nonnormally distributed continuous latent factors in the presence of both continuous and dichotomous observed variables. A simulation study compares mixture factor analysis with normal maximum likelihood (ML) latent factor modeling. Different results emerge for continuous versus…
Factor Analysis of Drawings: Application to College Student Models of the Greenhouse Effect
ERIC Educational Resources Information Center
Libarkin, Julie C.; Thomas, Stephen R.; Ording, Gabriel
2015-01-01
Exploratory factor analysis was used to identify models underlying drawings of the greenhouse effect made by over 200 entering university freshmen. Initial content analysis allowed deconstruction of drawings into salient features, with grouping of these features via factor analysis. A resulting 4-factor solution explains 62% of the data variance,…
Bai, Mei; Dixon, Jane K
2014-01-01
The purpose of this study was to reexamine the factor pattern of the 12-item Functional Assessment of Chronic Illness Therapy-Spiritual Well-Being Scale (FACIT-Sp-12) using exploratory factor analysis in people newly diagnosed with advanced cancer. Principal components analysis (PCA) and 3 common factor analysis methods were used to explore the factor pattern of the FACIT-Sp-12. Factorial validity was assessed in association with quality of life (QOL). Principal factor analysis (PFA), iterative PFA, and maximum likelihood suggested retrieving 3 factors: Peace, Meaning, and Faith. Both Peace and Meaning positively related to QOL, whereas only Peace uniquely contributed to QOL. This study supported the 3-factor model of the FACIT-Sp-12. Suggestions for revision of items and further validation of the identified factor pattern were provided.
Community factors to promote parents' quality of child-nurturing life.
Aoyama, Megumi; Wei, Chang Nian; Chang-nian, Wei; Harada, Koichi; Ueda, Kimiyo; Takano, Miyuki; Ueda, Atsushi
2013-01-01
The purpose of this study was to clarify the role of community factors in parents' quality of child-nurturing life (QCNL). We developed a questionnaire to evaluate the degree of QCNL and determine the structural factors related to QCNL as community factors related to parents' QCNL derived from focus group interviews and the Delphi technique. The questionnaire also included the battery of the self-rating depression scale and Tsumori-Inage Infant's Developmental Test. Using the questionnaire, we then conducted a quantitative survey of parents whose children attended nursery schools in Kumamoto Prefecture. Factor analysis, calculation of the mean score and/or ratio to each item, Pearson's correlation coefficient, t test, multiple regression analysis, and covariance structure analysis were performed. The questionnaire we developed consisted of seven items with 75 elements, involving ten elements as community factors. Subjects included 699 parents (mean age 33.6 ± 5.4 years) and 965 children (age range 0-6 years). Factor analysis revealed that community factors consisted of five factors, such as "lifestyle rooted in the ground," "balance of housekeeping and work," "community network," "amenity," and "regeneration of life". These factors may be dominant in a rural area. Finally, we developed a structural model with "community factors," QCNL, QOL, and "child growth" by covariance structural analysis. The analysis revealed that community factors had a positive relation to parents' QCNL (r = 0.81, p < 0.001) and that parental SDS score had a negative relation to parents' QCNL (r = -0.59, p < 0.001). The analysis did show that community factors were positively related to the sound growth of children. The covariance structure analysis revealed that community factors were associated with parents' QCNL, SDS, and "child growth."
ERIC Educational Resources Information Center
Benligiray, Serdar; Onay, Ahmet
2017-01-01
The objective of this study is to explore business courses performance factors with a focus on accounting and finance. Course score interrelations are assumed to represent interpretable constructs of these factors. Factor analysis is proposed to identify the constructs that explain the correlations. Factor analysis results identify three…
Monitoring Nitrate, Chlorophyll, and CDOM Cycling in a Reservoir using In Situ Mapping Techniques
NASA Astrophysics Data System (ADS)
OConnor, J.; Showers, W. J.; Osburn, C. L.; DeMaster, D. J.
2013-12-01
Degradation of surface waters due to increased nutrient loading and subsequent eutrophication is a persistent problem on a global scale. Expanding human populations and their associated development create increased pressure on local watersheds in terms of both point and non-point source pollution. In this study a suite of in situ sensors measuring nitrate concentration, chlorophyll a concentration (Chl a), and chromophoric dissolved organic material (CDOM) fluorescence were deployed from a rapidly moving boat (~32 km/h) in order to identify sources of nutrients and CDOM, and to determine their relationship to eutrophication symptoms in Falls Lake, North Carolina. In addition, water samples were collected throughout the lake and from tributaries of interest for laboratory analysis. Results indicated the three main tributaries at the north end of the lake were the important contributors of both nitrate and CDOM. While two of the three were degraded due to significant effluent discharge from Waste Water Treatment Plants, the third appeared to be impacted by diffuse nutrient sources. However, atmospheric deposition of nitrate and ammonium exceeded tributary input, and the net nutrient loading to the lake was dominated by sediment release of both ammonium and phosphate. No direct relationship between nitrate and Chl a concentrations was observed, but bays that sewage impacted rivers emptied into displayed elevated Chl a values. Water samples from both the lake and streams were analyzed for stable isotopic analysis of δ15N and δ18O composition and were consistent with waste as the primary source of nitrate. Samples were also analyzed for CDOM absorbance and fluorescence through the creation of Excitation and Emission Matrices (EEMs) and the development of a nine component PARAFAC model. Fluorescence values consistently declined from the north end of the lake to the southern end at the dam and water treatment plant intake. Absorbance values at 254 nm (a254) also showed a decreasing trend from north to south, while SR increased. The loss of absorption could have been caused by photobleaching, however, a hydrologic modeling experiment demonstrated that this change in optical character was actually due to mixing of un-polluted tributary and rain water with water from the main tributaries at the north end. At the southern end of the lake, adjacent to the water treatment plant intake, a series of depth profiles were made that revealed a stratified water column during summer months. There was evidence of production of CDOM in the anoxic hypolimnion that appeared to be linked to an increase in Chl a concentration. There was also a significant increase in a254 and a decrease in SR that suggested CDOM was released from the sediments in the hypolimnion. This study showed that the north end of the lake suffered from persistent eutrophication symptoms. However, as the water traveled south to the two exit points at the dam and the water treatment plant, water quality improved.
The Infinitesimal Jackknife with Exploratory Factor Analysis
ERIC Educational Resources Information Center
Zhang, Guangjian; Preacher, Kristopher J.; Jennrich, Robert I.
2012-01-01
The infinitesimal jackknife, a nonparametric method for estimating standard errors, has been used to obtain standard error estimates in covariance structure analysis. In this article, we adapt it for obtaining standard errors for rotated factor loadings and factor correlations in exploratory factor analysis with sample correlation matrices. Both…
2009-11-01
Equation Chapter 1 Section 1 A MAPPING FROM THE HUMAN FACTORS ANALYSIS AND CLASSIFICATION SYSTEM (DOD...OMB control number. 1. REPORT DATE NOV 2009 2. REPORT TYPE 3. DATES COVERED 4. TITLE AND SUBTITLE A Mapping from the Human Factors Analysis ...7 The Human Factors Analysis and Classification System .................................................. 7 Mapping of DoD
A new technique for ordering asymmetrical three-dimensional data sets in ecology.
Pavoine, Sandrine; Blondel, Jacques; Baguette, Michel; Chessel, Daniel
2007-02-01
The aim of this paper is to tackle the problem that arises from asymmetrical data cubes formed by two crossed factors fixed by the experimenter (factor A and factor B, e.g., sites and dates) and a factor which is not controlled for (the species). The entries of this cube are densities in species. We approach this kind of data by the comparison of patterns, that is to say by analyzing first the effect of factor B on the species-factor A pattern, and second the effect of factor A on the species-factor B pattern. The analysis of patterns instead of individual responses requires a correspondence analysis. We use a method we call Foucart's correspondence analysis to coordinate the correspondence analyses of several independent matrices of species x factor A (respectively B) type, corresponding to each modality of factor B (respectively A). Such coordination makes it possible to evaluate the effect of factor B (respectively A) on the species-factor A (respectively B) pattern. The results obtained by such a procedure are much more insightful than those resulting from a classical single correspondence analysis applied to the global matrix that is obtained by simply unrolling the data cube, juxtaposing for example the individual species x factor A matrices through modalities of factor B. This is because a single global correspondence analysis combines three effects of factors in a way that cannot be determined from factorial maps (factor A, factor B, and factor A x factor B interaction) whereas the applications of Foucart's correspondence analysis clearly discriminate two different issues. Using two data sets, we illustrate that this technique proves to be particularly powerful in the analyses of ecological convergence which include several distinct data sets and in the analyses of spatiotemporal variations of species distributions.
Inventory of File nam.t00z.awiphi00.tm00.grib2
Factor [non-dim] 041 50 mb HGT analysis Geopotential Height [gpm] 042 50 mb TMP analysis Temperature [K /kg] 052 50 mb RIME analysis Rime Factor [non-dim] 053 75 mb HGT analysis Geopotential Height [gpm SNMR analysis Snow Mixing Ratio [kg/kg] 064 75 mb RIME analysis Rime Factor [non-dim] 065 100 mb HGT
Using BMDP and SPSS for a Q factor analysis.
Tanner, B A; Koning, S M
1980-12-01
While Euclidean distances and Q factor analysis may sometimes be preferred to correlation coefficients and cluster analysis for developing a typology, commercially available software does not always facilitate their use. Commands are provided for using BMDP and SPSS in a Q factor analysis with Euclidean distances.
Text mining factor analysis (TFA) in green tea patent data
NASA Astrophysics Data System (ADS)
Rahmawati, Sela; Suprijadi, Jadi; Zulhanif
2017-03-01
Factor analysis has become one of the most widely used multivariate statistical procedures in applied research endeavors across a multitude of domains. There are two main types of analyses based on factor analysis: Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA). Both EFA and CFA aim to observed relationships among a group of indicators with a latent variable, but they differ fundamentally, a priori and restrictions made to the factor model. This method will be applied to patent data technology sector green tea to determine the development technology of green tea in the world. Patent analysis is useful in identifying the future technological trends in a specific field of technology. Database patent are obtained from agency European Patent Organization (EPO). In this paper, CFA model will be applied to the nominal data, which obtain from the presence absence matrix. While doing processing, analysis CFA for nominal data analysis was based on Tetrachoric matrix. Meanwhile, EFA model will be applied on a title from sector technology dominant. Title will be pre-processing first using text mining analysis.
Psychometric properties of Connor-Davidson Resilience Scale in a Spanish sample of entrepreneurs.
Manzano-García, Guadalupe; Ayala Calvo, Juan Carlos
2013-01-01
The literature regarding entrepreneurship suggests that the resilience of entrepreneurs may help to explain entrepreneurial success, but there is no resilience measure widely accepted by researchers. This study analyzes the psychometric properties of the Connor and Davidson Resilience Scale (CD-RISC) in a sample of Spanish entrepreneurs. A telephone survey research method was used. The participants were entrepreneurs operating in the business services sector. Interviewers telephoned a total of 900 entrepreneurs of whom 783 produced usable questionnaires. The CD-RISC was used as data collection instrument. We used principal component analysis factor and confirmatory factor analysis to determine the factor structure of the CD-RISC. Confirmatory factor analysis failed to verify the original five-factor structure of the CD-RISC, whereas principal component analysis factor yielded a 3-factor structure of resilience (hardiness, resourcefulness and optimism). In this research, 47.48% of the total variance was accounted for by three factors, and the obtained factor structure was verified through confirmatory factor analysis. The CD-RISC has been shown to be a reliable and valid tool for measuring entrepreneurs' resilience.
Bootstrap Standard Error Estimates in Dynamic Factor Analysis
ERIC Educational Resources Information Center
Zhang, Guangjian; Browne, Michael W.
2010-01-01
Dynamic factor analysis summarizes changes in scores on a battery of manifest variables over repeated measurements in terms of a time series in a substantially smaller number of latent factors. Algebraic formulae for standard errors of parameter estimates are more difficult to obtain than in the usual intersubject factor analysis because of the…
Factor Analysis of the Aberrant Behavior Checklist in Individuals with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Brinkley, Jason; Nations, Laura; Abramson, Ruth K.; Hall, Alicia; Wright, Harry H.; Gabriels, Robin; Gilbert, John R.; Pericak-Vance, Margaret A. O.; Cuccaro, Michael L.
2007-01-01
Exploratory factor analysis (varimax and promax rotations) of the aberrant behavior checklist-community version (ABC) in 275 individuals with Autism spectrum disorder (ASD) identified four- and five-factor solutions which accounted for greater than 70% of the variance. Confirmatory factor analysis (Lisrel 8.7) revealed indices of moderate fit for…
How Factor Analysis Can Be Used in Classification.
ERIC Educational Resources Information Center
Harman, Harry H.
This is a methodological study that suggests a taxometric technique for objective classification of yeasts. It makes use of the minres method of factor analysis and groups strains of yeast according to their factor profiles. The similarities are judged in the higher-dimensional space determined by the factor analysis, but otherwise rely on the…
A Factor Analysis of Learning Data and Selected Ability Test Scores
ERIC Educational Resources Information Center
Jones, Dorothy L.
1976-01-01
A verbal concept-learning task permitting the externalizing and quantifying of learning behavior and 16 ability tests were administered to female graduate students. Data were analyzed by alpha factor analysis and incomplete image analysis. Six alpha factors and 12 image factors were extracted and orthogonally rotated. Four areas of cognitive…
Snowden, Austyn; Watson, Roger; Stenhouse, Rosie; Hale, Claire
2015-12-01
To examine the construct validity of the Trait Emotional Intelligence Questionnaire Short form. Emotional intelligence involves the identification and regulation of our own emotions and the emotions of others. It is therefore a potentially useful construct in the investigation of recruitment and retention in nursing and many questionnaires have been constructed to measure it. Secondary analysis of existing dataset of responses to Trait Emotional Intelligence Questionnaire Short form using concurrent application of Rasch analysis and confirmatory factor analysis. First year undergraduate nursing and computing students completed Trait Emotional Intelligence Questionnaire-Short Form in September 2013. Responses were analysed by synthesising results of Rasch analysis and confirmatory factor analysis. Participants (N = 938) completed Trait Emotional Intelligence Questionnaire Short form. Rasch analysis showed the majority of the Trait Emotional Intelligence Questionnaire-Short Form items made a unique contribution to the latent trait of emotional intelligence. Five items did not fit the model and differential item functioning (gender) accounted for this misfit. Confirmatory factor analysis revealed a four-factor structure consisting of: self-confidence, empathy, uncertainty and social connection. All five misfitting items from the Rasch analysis belonged to the 'social connection' factor. The concurrent use of Rasch and factor analysis allowed for novel interpretation of Trait Emotional Intelligence Questionnaire Short form. Much of the response variation in Trait Emotional Intelligence Questionnaire Short form can be accounted for by the social connection factor. Implications for practice are discussed. © 2015 John Wiley & Sons Ltd.
The Relation between Factor Score Estimates, Image Scores, and Principal Component Scores
ERIC Educational Resources Information Center
Velicer, Wayne F.
1976-01-01
Investigates the relation between factor score estimates, principal component scores, and image scores. The three methods compared are maximum likelihood factor analysis, principal component analysis, and a variant of rescaled image analysis. (RC)
Exploring the Factor Structure of Neurocognitive Measures in Older Individuals
Santos, Nadine Correia; Costa, Patrício Soares; Amorim, Liliana; Moreira, Pedro Silva; Cunha, Pedro; Cotter, Jorge; Sousa, Nuno
2015-01-01
Here we focus on factor analysis from a best practices point of view, by investigating the factor structure of neuropsychological tests and using the results obtained to illustrate on choosing a reasonable solution. The sample (n=1051 individuals) was randomly divided into two groups: one for exploratory factor analysis (EFA) and principal component analysis (PCA), to investigate the number of factors underlying the neurocognitive variables; the second to test the “best fit” model via confirmatory factor analysis (CFA). For the exploratory step, three extraction (maximum likelihood, principal axis factoring and principal components) and two rotation (orthogonal and oblique) methods were used. The analysis methodology allowed exploring how different cognitive/psychological tests correlated/discriminated between dimensions, indicating that to capture latent structures in similar sample sizes and measures, with approximately normal data distribution, reflective models with oblimin rotation might prove the most adequate. PMID:25880732
Alkarkhi, Abbas F M; Ramli, Saifullah Bin; Easa, Azhar Mat
2009-01-01
Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.
Biomotor structures in elite female handball players according to performance.
Cavala, Marijana; Rogulj, Nenad; Srhoj, Vatromir; Srhoj, Ljerka; Katić, Ratko
2008-03-01
In order to identify biomotor structures in elite female handball players, factor structures of morphological characteristics and basic motor abilities, and of variables evaluating situation motor abilities of elite female handball players (n = 53) were determined first, followed by determination of differences and relations of the morphological, motor and specific motor space according to handball performance. Factor analysis of 16 morphological measures produced three morphological factors, i.e. factor of absolute voluminosity, i.e. mesoendomorphy, factor of longitudinal skeleton dimensionality, and factor of transverse hand dimensionality. Factor analysis of 15 motor variables yielded five basic motor dimensions, i.e. factor of agility, factor of throwing explosive strength, factor of running explosive strength (sprint), factor of jumping explosive strength and factor of movement frequency rate. Factor analysis of 5 situation motor variables produced two dimensions: factor of specific agility with explosiveness and factor of specific precision with ball manipulation. Analysis of variance yielded greatest differences relative to handball performance in the factor of specific agility and throwing strength, and the factor of basic motoricity that integrates the ability of coordination (agility) with upper extremity throwing explosiveness and lower extremity sprint (30-m sprint) and jumping (standing triple jump). Considering morphological factors, the factor of voluminosity, i.e. mesoendomorphy, which is defined by muscle mass rather than adipose tissue, was found to contribute significantly to the players'performance. Results of regression analysis indicated the handball performance to be predominantly determined by the general specific motor factor based on specific agility and explosiveness, and by the morphological factor based on body mass and volume, i.e. muscle mass. Concerning basic motor abilities, the factor of movement frequency rate, which is associated with the ability of ball manipulation, was observed to predict significantly the handball players' performance.
Bayesian Factor Analysis When Only a Sample Covariance Matrix Is Available
ERIC Educational Resources Information Center
Hayashi, Kentaro; Arav, Marina
2006-01-01
In traditional factor analysis, the variance-covariance matrix or the correlation matrix has often been a form of inputting data. In contrast, in Bayesian factor analysis, the entire data set is typically required to compute the posterior estimates, such as Bayes factor loadings and Bayes unique variances. We propose a simple method for computing…
Factor Retention in Exploratory Factor Analysis: A Comparison of Alternative Methods.
ERIC Educational Resources Information Center
Mumford, Karen R.; Ferron, John M.; Hines, Constance V.; Hogarty, Kristine Y.; Kromrey, Jeffery D.
This study compared the effectiveness of 10 methods of determining the number of factors to retain in exploratory common factor analysis. The 10 methods included the Kaiser rule and a modified Kaiser criterion, 3 variations of parallel analysis, 4 regression-based variations of the scree procedure, and the minimum average partial procedure. The…
What School Psychologists Need to Know about Factor Analysis
ERIC Educational Resources Information Center
McGill, Ryan J.; Dombrowski, Stefan C.
2017-01-01
Factor analysis is a versatile class of psychometric techniques used by researchers to provide insight into the psychological dimensions (factors) that may account for the relationships among variables in a given dataset. The primary goal of a factor analysis is to determine a more parsimonious set of variables (i.e., fewer than the number of…
Evaluation of Parallel Analysis Methods for Determining the Number of Factors
ERIC Educational Resources Information Center
Crawford, Aaron V.; Green, Samuel B.; Levy, Roy; Lo, Wen-Juo; Scott, Lietta; Svetina, Dubravka; Thompson, Marilyn S.
2010-01-01
Population and sample simulation approaches were used to compare the performance of parallel analysis using principal component analysis (PA-PCA) and parallel analysis using principal axis factoring (PA-PAF) to identify the number of underlying factors. Additionally, the accuracies of the mean eigenvalue and the 95th percentile eigenvalue criteria…
Gunn, Sarah; Burgess, Gerald H; Maltby, John
2018-04-30
To explore the factor structure of the UK Functional Independence Measure and Functional Assessment Measure (FIM+FAM) among focal and diffuse acquired brain injury patients. Criterion standard. A National Health Service acute acquired brain injury inpatient rehabilitation hospital. Referred sample of N=447 adults admitted for inpatient treatment following an acquired brain injury significant enough to justify intensive inpatient neurorehabilitation INTERVENTION: Not applicable. Functional Independence Measure and Functional Assessment Measure. Exploratory factor analysis suggested a 2-factor structure to FIM+FAM scores, among both focal-proximate and diffuse-proximate acquired brain injury aetiologies. Confirmatory factor analysis suggested a 3-factor bifactor structure presented the best fit of the FIM+FAM score data across both aetiologies. However, across both analyses, a convergence was found towards a general factor, demonstrated by high correlations between factors in the exploratory factor analysis, and by a general factor explaining the majority of the variance in scores on confirmatory factor analysis. Our findings suggested that although factors describing specific functional domains can be derived from FIM+FAM item scores, there is a convergence towards a single factor describing overall functioning. This single factor informs the specific group factors (eg, motor, psychosocial, and communication function) after brain injury. Further research into the comparative value of the general and group factors as evaluative/prognostic measures is indicated. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Psychometric analysis of the Brisbane Practice Environment Measure (B-PEM).
Flint, Anndrea; Farrugia, Charles; Courtney, Mary; Webster, Joan
2010-03-01
To undertake rigorous psychometric testing of the newly developed contemporary work environment measure (the Brisbane Practice Environment Measure [B-PEM]) using exploratory factor analysis and confirmatory factor analysis. Content validity of the 33-item measure was established by a panel of experts. Initial testing involved 195 nursing staff using principal component factor analysis with varimax rotation (orthogonal) and Cronbach's alpha coefficients. Confirmatory factor analysis was conducted using data from a further 983 nursing staff. Principal component factor analysis yielded a four-factor solution with eigenvalues greater than 1 that explained 52.53% of the variance. These factors were then verified using confirmatory factor analysis. Goodness-of-fit indices showed an acceptable fit overall with the full model, explaining 21% to 73% of the variance. Deletion of items took place throughout the evolution of the instrument, resulting in a 26-item, four-factor measure called the Brisbane Practice Environment Measure-Tested. The B-PEM has undergone rigorous psychometric testing, providing evidence of internal consistency and goodness-of-fit indices within acceptable ranges. The measure can be utilised as a subscale or total score reflective of a contemporary nursing work environment. An up-to-date instrument to measure practice environment may be useful for nursing leaders to monitor the workplace and to assist in identifying areas for improvement, facilitating greater job satisfaction and retention.
Likelihood-Based Confidence Intervals in Exploratory Factor Analysis
ERIC Educational Resources Information Center
Oort, Frans J.
2011-01-01
In exploratory or unrestricted factor analysis, all factor loadings are free to be estimated. In oblique solutions, the correlations between common factors are free to be estimated as well. The purpose of this article is to show how likelihood-based confidence intervals can be obtained for rotated factor loadings and factor correlations, by…
Comparisons of Exploratory and Confirmatory Factor Analysis.
ERIC Educational Resources Information Center
Daniel, Larry G.
Historically, most researchers conducting factor analysis have used exploratory methods. However, more recently, confirmatory factor analytic methods have been developed that can directly test theory either during factor rotation using "best fit" rotation methods or during factor extraction, as with the LISREL computer programs developed…
[Evolution of Dissolved Organic Matter Properties in a Constructed Wetland of Xiao River, Hebei].
Ma, Li-na; Zhang, Hui; Tan, Wen-bing; Yu, Min-da; Huang, Zhi-gang; Gao, Ru-tai; Xi, Bei-dou; He, Xiao-song
2016-01-01
The evolution of water DOC and COD, and the source, chemical structure, humification degree and redox of dissolved organic matter (DOM) in a constructed wetland of Xiao River, Hebei, was investigated by 3D excitation--emission matrix fluorescence spectroscopy coupled with ultraviolet spectroscopy and chemical reduction, in order to explore the geochemical processes and environmental effects of DOM. Although DOC contributes at least 60% to COD, its decrease in the constructed wetland is mainly caused by the more extensive degradation of elements N, H, S, and P than C in DOM, and 65% is contributed from the former. DOM is mainly consisted of microbial products based on proxies f470/520 and BIX, indicating that DOM in water is apparently affected by microbial degradation. The result based on PARAFAC model shows that DOM in the constructed wetland contains protein-like and humus-like components, and Fulvic- and humic-like components are relatively easier to degrade than protein-like components. Fulvic- and humic-like components undergo similar decomposition in the constructed wetland. A common source of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) exists; both CDOM and FDOM are mainly composed of a humus-like material and do not exhibit selective degradation in the constructed wetland. The proxies E2 /E3, A240-400, r(A, C) and HIX in water have no changes after flowing into the constructed wetland, implying that the humification degree of DOM in water is hardly affected by wet constructed wetland. However, the constructed wetland environment is not only beneficial in forming the reduced state of DOM, but also facilitates the reduction of ferric. It can also improve the capability of DOM to function as an electron shuttle. This result may be related to the condition that the aromatic carbon of DOM can be stabilized well in the constructed wetland.
Alteration of Chemical Composition of Soil-leached Dissolved Organic Matter under Cryogenic Cycles
NASA Astrophysics Data System (ADS)
Zhang, X.; Bianchi, T. S.; Schuur, E.
2016-02-01
Arctic permafrost thawing has drawn great attention because of the large amount of organic carbon (OC) storage in Arctic soils that are susceptible to increasing global temperatures. Due to microbial activities, some of the OC pool is converted in part to greenhouse gases, like CH4 and CO2 gas, which can result in a positive feedback on global warming. In Artic soils, a portion of OC can be mobilized by precipitation, drainage, and groundwater circulation which can in some cases be transported to rivers and eventually the coastal margins. To determine some of the mechanisms associated with the mobilization of OC from soils to aquatic ecosystems, we conducted a series of laboratory soil leaching experiments. Surface soil samples collected from Healy, Alaska were eluted with artificial rain at a constant rate. Leachates were collected over time and analyzed for dissolved organic carbon (DOC) concentrations. Concentrations began from 387-705 mg/L and then dropped to asymptote states to 25-219 mg/L. High-resolution spectroscopy was used to characterize colored dissolved organic matter (CDOM) and CDOM fluorescence intensity also dropped with time. Fluorescence maximum intensity (Fmax) for peak C ranged from 0.7-4.2 RU, with Exmax/Emmax = 310/450 nm. Fmax for peak T ranged from 0.5-3.2 RU, with Exmax/Emmax = 275/325 nm. Peak C: peak T values indicated preferential leaching of humic-like components over protein-like components. After reaching asymptotic levels, samples were stored frozen and then thawed to study the cryogenic impact on OC composition. CDOM intensity and DOC concentration increased after the freeze-thaw cycle. It was likely that cryogenic processes promoted the breakdown of OC and the releases of more DOC from soils. PARAFAC of CDOM excitation and emission matrices (EEMs) will be used to analyze CDOM composition of the soil leachates.
NASA Astrophysics Data System (ADS)
Boyd, Thomas J.; Barham, Bethany P.; Hall, Gregory J.; Osburn, Christopher L.
2010-09-01
Ultrafiltered and low molecular weight dissolved organic matter (UDOM and LMW-DOM, respectively) fluorescence was studied under simulated estuarine mixing using samples collected from Delaware, Chesapeake, and San Francisco Bays (USA) transects. UDOM was concentrated by tangential flow ultrafiltration (TFF) from the marine (>33 PSU), mid-estuarine (˜16 PSU), and freshwater (<1 PSU) members. TFF permeates (<1 kDa) from the three members were used to create artificial salinity transects ranging from ˜0 to ˜36, with 4 PSU increments. UDOM from the end- or mid-members was added in equal amounts to each salinity-mix. Three-dimensional fluorescence excitation-emission matrix (EEMs) spectra were generated for each end-member permeate and UDOM through the full estuarine mixing transect. Fluorescence components such as proteinaceous, terrigenous, and marine derived humic peaks, and certain fluorescent ratios were noticeably altered by simulated estuarine mixing, suggesting that LMW DOM and UDOM undergo physicochemical alteration as they move to or from the freshwater, mid-estuarine, or coastal ocean members. LMW fluorescence components fit a decreasing linear mixing model from mid salinities to the ocean end-member, but were more highly fluorescent than mixing alone would predict in lower salinities (<8). Significant shifts were also seen in UDOM peak emission wavelengths with blue-shifting toward the ocean end-member. Humic-type components in UDOM generally showed lower fluorescent intensities at low salinities, higher at mid-salinities, and lower again toward the ocean end-member. T (believed to be proteinaceous) and N (labile organic matter) peaks behaved similarly to each other, but not to B peak fluorescence, which showed virtually no variation in permeate or UDOM mixes with salinity. PCA and PARAFAC models showed similar results suggesting trends could be modeled for DOM end- and mid-member sources. Changes in fluorescence properties due to estuarine mixing may be important when using CDOM as a proxy for DOM cycling in coastal systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.
We characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and EEM-PARAFAC components within the peat column. In particular the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputs from surface vegetation. The intermediate-depthmore » zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds (PAC) that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate-depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table and redox oscillation and porewater advection.« less
NASA Astrophysics Data System (ADS)
Broder, Tanja; Knorr, Klaus-Holger; Biester, Harald
2017-04-01
Peatlands and peaty riparian zones are major sources of dissolved organic matter (DOM), but are poorly understood in terms of export dynamics and controls thereof. Thereby quality of DOM affects function and behavior of DOM in aquatic ecosystems, but DOM quality can also help to track DOM sources and their export dynamics under specific hydrologic preconditions. The objective of this study was to elucidate controls on temporal variability in DOM concentration and quality in stream water draining a bog and a forested peaty riparian zone, particularly considering drought and storm flow events. DOM quality was monitored using spectrofluorometric indices for aromaticity (SUVA254), apparent molecular size (SR) and precursor organic material (FI), as well as PARAFAC modeling of excitation emission matrices (EEMs). Indices for DOM quality exhibited major changes due to different hydrologic conditions, but patterns were also dependent on season. Stream water at the forested site with mineral, peaty soils generally exhibited higher variability in DOM concentrations and quality compared to the outflow of an ombrotrophic bog, where DOM was less susceptible to changes in hydrologic conditions. During snowmelt and spring events, near-surface protein-like DOM pools were exported. A microbial DOM fraction originating from groundwater and deep peat layers was increasing during drought, while a strongly microbially altered DOM fraction was also exported by discharge events with dry preconditions at the forested site. This might be due to accelerated microbial activity in the peaty riparian zone of the forested site under these preconditions. Our study demonstrated that DOM export dynamics are not only a passive mixing of different hydrological sources, but monitoring studies have to consider that DOM quality depends on hydrologic preconditions and season. Moreover, the forested peaty riparian zone generated the most variability in headwater DOM quantity and quality, as could be tracked by the used spectrofluorometric indices.
Strategic Analysis and Plan for Implementing Telemedicine at Fort Greely
2003-03-01
Analysis The Situational Analysis tool assessed the environmental, market , and organizational factors involved in a Fort Greely telemedicine... Factors ): Medicaid reimbursement is now approved for Alaska regardless of method of healthcare delivery. Market Factors (Customers): The influx of...arrive are Active National Guardsmen and Fort Greely Telemedicine 50 their families. Market Factors (Services): Fairbanks Memorial Hospital (FMH) can
ERIC Educational Resources Information Center
Knight, Jennifer L.
This paper considers some decisions that must be made by the researcher conducting an exploratory factor analysis. The primary purpose is to aid the researcher in making informed decisions during the factor analysis instead of relying on defaults in statistical programs or traditions of previous researchers. Three decision areas are addressed.…
Factor Analysis of the Brazilian Version of UPPS Impulsive Behavior Scale.
Sediyama, Cristina Y N; Moura, Ricardo; Garcia, Marina S; da Silva, Antonio G; Soraggi, Carolina; Neves, Fernando S; Albuquerque, Maicon R; Whiteside, Setephen P; Malloy-Diniz, Leandro F
2017-01-01
Objective: To examine the internal consistency and factor structure of the Brazilian adaptation of the UPPS Impulsive Behavior Scale. Methods: UPPS is a self-report scale composed by 40 items assessing four factors of impulsivity: (a) urgency, (b) lack of premeditation; (c) lack of perseverance; (d) sensation seeking. In the present study 384 participants (278 women and 106 men), who were recruited from schools, universities, leisure centers and workplaces fulfilled the UPPS scale. An exploratory factor analysis was performed by using Varimax factor rotation and Kaiser Normalization, and we also conducted two confirmatory analyses to test the independency of the UPPS components found in previous analysis. Results: Results showed a decrease in mean UPPS total scores with age and this analysis showed that the youngest participants (below 30 years) scored significantly higher than the other groups over 30 years. No difference in gender was found. Cronbach's alpha, results indicated satisfactory values for all subscales, with similar high values for the subscales and confirmatory factor analysis indexes also indicated a poor model fit. The results of two exploratory factor analysis were satisfactory. Conclusion: Our results showed that the Portuguese version has the same four-factor structure of the original and previous translations of the UPPS.
Using factor analysis to identify neuromuscular synergies during treadmill walking
NASA Technical Reports Server (NTRS)
Merkle, L. A.; Layne, C. S.; Bloomberg, J. J.; Zhang, J. J.
1998-01-01
Neuroscientists are often interested in grouping variables to facilitate understanding of a particular phenomenon. Factor analysis is a powerful statistical technique that groups variables into conceptually meaningful clusters, but remains underutilized by neuroscience researchers presumably due to its complicated concepts and procedures. This paper illustrates an application of factor analysis to identify coordinated patterns of whole-body muscle activation during treadmill walking. Ten male subjects walked on a treadmill (6.4 km/h) for 20 s during which surface electromyographic (EMG) activity was obtained from the left side sternocleidomastoid, neck extensors, erector spinae, and right side biceps femoris, rectus femoris, tibialis anterior, and medial gastrocnemius. Factor analysis revealed 65% of the variance of seven muscles sampled aligned with two orthogonal factors, labeled 'transition control' and 'loading'. These two factors describe coordinated patterns of muscular activity across body segments that would not be evident by evaluating individual muscle patterns. The results show that factor analysis can be effectively used to explore relationships among muscle patterns across all body segments to increase understanding of the complex coordination necessary for smooth and efficient locomotion. We encourage neuroscientists to consider using factor analysis to identify coordinated patterns of neuromuscular activation that would be obscured using more traditional EMG analyses.
Product competitiveness analysis for e-commerce platform of special agricultural products
NASA Astrophysics Data System (ADS)
Wan, Fucheng; Ma, Ning; Yang, Dongwei; Xiong, Zhangyuan
2017-09-01
On the basis of analyzing the influence factors of the product competitiveness of the e-commerce platform of the special agricultural products and the characteristics of the analytical methods for the competitiveness of the special agricultural products, the price, the sales volume, the postage included service, the store reputation, the popularity, etc. were selected in this paper as the dimensionality for analyzing the competitiveness of the agricultural products, and the principal component factor analysis was taken as the competitiveness analysis method. Specifically, the web crawler was adopted to capture the information of various special agricultural products in the e-commerce platform ---- chi.taobao.com. Then, the original data captured thereby were preprocessed and MYSQL database was adopted to establish the information library for the special agricultural products. Then, the principal component factor analysis method was adopted to establish the analysis model for the competitiveness of the special agricultural products, and SPSS was adopted in the principal component factor analysis process to obtain the competitiveness evaluation factor system (support degree factor, price factor, service factor and evaluation factor) of the special agricultural products. Then, the linear regression method was adopted to establish the competitiveness index equation of the special agricultural products for estimating the competitiveness of the special agricultural products.
An Evaluation of the Effects of Variable Sampling on Component, Image, and Factor Analysis.
ERIC Educational Resources Information Center
Velicer, Wayne F.; Fava, Joseph L.
1987-01-01
Principal component analysis, image component analysis, and maximum likelihood factor analysis were compared to assess the effects of variable sampling. Results with respect to degree of saturation and average number of variables per factor were clear and dramatic. Differential effects on boundary cases and nonconvergence problems were also found.…
A Comparison of Component and Factor Patterns: A Monte Carlo Approach.
ERIC Educational Resources Information Center
Velicer, Wayne F.; And Others
1982-01-01
Factor analysis, image analysis, and principal component analysis are compared with respect to the factor patterns they would produce under various conditions. The general conclusion that is reached is that the three methods produce results that are equivalent. (Author/JKS)
Inventory of File nam.t00z.awipak00.tm00.grib2
Rime Factor [non-dim] 009 1 hybrid level HGT analysis Geopotential Height [gpm] 010 1 hybrid level TMP [kg/kg] 040 30 mb SNMR analysis Snow Mixing Ratio [kg/kg] 041 30 mb RIME analysis Rime Factor [non-dim Factor [non-dim] 054 75 mb HGT analysis Geopotential Height [gpm] 055 75 mb TMP analysis Temperature [K
On the Likelihood Ratio Test for the Number of Factors in Exploratory Factor Analysis
ERIC Educational Resources Information Center
Hayashi, Kentaro; Bentler, Peter M.; Yuan, Ke-Hai
2007-01-01
In the exploratory factor analysis, when the number of factors exceeds the true number of factors, the likelihood ratio test statistic no longer follows the chi-square distribution due to a problem of rank deficiency and nonidentifiability of model parameters. As a result, decisions regarding the number of factors may be incorrect. Several…
ERIC Educational Resources Information Center
Mittag, Kathleen Cage
Most researchers using factor analysis extract factors from a matrix of Pearson product-moment correlation coefficients. A method is presented for extracting factors in a non-parametric way, by extracting factors from a matrix of Spearman rho (rank correlation) coefficients. It is possible to factor analyze a matrix of association such that…
Assessing suicide risk among callers to crisis hotlines: a confirmatory factor analysis.
Witte, Tracy K; Gould, Madelyn S; Munfakh, Jimmie Lou Harris; Kleinman, Marjorie; Joiner, Thomas E; Kalafat, John
2010-09-01
Our goal was to investigate the factor structure of a risk assessment tool utilized by suicide hotlines and to determine the predictive validity of the obtained factors in predicting subsequent suicidal behavior. We conducted an Exploratory Factor Analysis (EFA), an EFA in a Confirmatory Factor Analysis (EFA/CFA) framework, and a CFA on independent subsamples derived from a total sample of 1,085. Similar to previous studies, we found consistent evidence for a two-factor solution, with one factor representing a more pernicious form of suicide risk (i.e., Resolved Plans and Preparations; RPP) and one factor representing milder suicidal ideation (i.e., Suicidal Desire and Ideation; SDI). The RPP factor trended toward being more predictive of suicidal ideation at follow-up than the SDI factor. (c) 2010 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Zhang, Guangjian; Preacher, Kristopher J.; Luo, Shanhong
2010-01-01
This article is concerned with using the bootstrap to assign confidence intervals for rotated factor loadings and factor correlations in ordinary least squares exploratory factor analysis. Coverage performances of "SE"-based intervals, percentile intervals, bias-corrected percentile intervals, bias-corrected accelerated percentile…
Analysis of Factors Influencing Creative Personality of Elementary School Students
ERIC Educational Resources Information Center
Park, Jongman; Kim, Minkee; Jang, Shinho
2017-01-01
This quantitative research examined factors that affect elementary students' creativity and how those factors correlate. Aiming to identify significant factors that affect creativity and to clarify the relationship between these factors by path analysis, this research was designed to be a stepping stone for creativity enhancement studies. Data…
Confirmatory Factor Analysis of the Delirium Rating Scale Revised-98 (DRS-R98).
Thurber, Steven; Kishi, Yasuhiro; Trzepacz, Paula T; Franco, Jose G; Meagher, David J; Lee, Yanghyun; Kim, Jeong-Lan; Furlanetto, Leticia M; Negreiros, Daniel; Huang, Ming-Chyi; Chen, Chun-Hsin; Kean, Jacob; Leonard, Maeve
2015-01-01
Principal components analysis applied to the Delirium Rating Scale-Revised-98 contributes to understanding the delirium construct. Using a multisite pooled international delirium database, the authors applied confirmatory factor analysis to Delirium Rating Scale-Revised-98 scores from 859 adult patients evaluated by delirium experts (delirium, N=516; nondelirium, N=343). Confirmatory factor analysis found all diagnostic features and core symptoms (cognitive, language, thought process, sleep-wake cycle, motor retardation), except motor agitation, loaded onto factor 1. Motor agitation loaded onto factor 2 with noncore symptoms (delusions, affective lability, and perceptual disturbances). Factor 1 loading supports delirium as a single construct, but when accompanied by psychosis, motor agitation's role may not be solely as a circadian activity indicator.
A dynamic factor model of the evaluation of the financial crisis in Turkey.
Sezgin, F; Kinay, B
2010-01-01
Factor analysis has been widely used in economics and finance in situations where a relatively large number of variables are believed to be driven by few common causes of variation. Dynamic factor analysis (DFA) which is a combination of factor and time series analysis, involves autocorrelation matrices calculated from multivariate time series. Dynamic factor models were traditionally used to construct economic indicators, macroeconomic analysis, business cycles and forecasting. In recent years, dynamic factor models have become more popular in empirical macroeconomics. They have more advantages than other methods in various respects. Factor models can for instance cope with many variables without running into scarce degrees of freedom problems often faced in regression-based analysis. In this study, a model which determines the effect of the global crisis on Turkey is proposed. The main aim of the paper is to analyze how several macroeconomic quantities show an alteration before the evolution of the crisis and to decide if a crisis can be forecasted or not.
49 CFR Appendix D to Part 172 - Rail Risk Analysis Factors
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Rail Risk Analysis Factors D Appendix D to Part... REQUIREMENTS, AND SECURITY PLANS Pt. 172, App. D Appendix D to Part 172—Rail Risk Analysis Factors A. This... safety and security risk analyses required by § 172.820. The risk analysis to be performed may be...
49 CFR Appendix D to Part 172 - Rail Risk Analysis Factors
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Rail Risk Analysis Factors D Appendix D to Part... REQUIREMENTS, AND SECURITY PLANS Pt. 172, App. D Appendix D to Part 172—Rail Risk Analysis Factors A. This... safety and security risk analyses required by § 172.820. The risk analysis to be performed may be...
Critical Factors Analysis for Offshore Software Development Success by Structural Equation Modeling
NASA Astrophysics Data System (ADS)
Wada, Yoshihisa; Tsuji, Hiroshi
In order to analyze the success/failure factors in offshore software development service by the structural equation modeling, this paper proposes to follow two approaches together; domain knowledge based heuristic analysis and factor analysis based rational analysis. The former works for generating and verifying of hypothesis to find factors and causalities. The latter works for verifying factors introduced by theory to build the model without heuristics. Following the proposed combined approaches for the responses from skilled project managers of the questionnaire, this paper found that the vendor property has high causality for the success compared to software property and project property.
[Lake eutrophication modeling in considering climatic factors change: a review].
Su, Jie-Qiong; Wang, Xuan; Yang, Zhi-Feng
2012-11-01
Climatic factors are considered as the key factors affecting the trophic status and its process in most lakes. Under the background of global climate change, to incorporate the variations of climatic factors into lake eutrophication models could provide solid technical support for the analysis of the trophic evolution trend of lake and the decision-making of lake environment management. This paper analyzed the effects of climatic factors such as air temperature, precipitation, sunlight, and atmosphere on lake eutrophication, and summarized the research results about the lake eutrophication modeling in considering in considering climatic factors change, including the modeling based on statistical analysis, ecological dynamic analysis, system analysis, and intelligent algorithm. The prospective approaches to improve the accuracy of lake eutrophication modeling with the consideration of climatic factors change were put forward, including 1) to strengthen the analysis of the mechanisms related to the effects of climatic factors change on lake trophic status, 2) to identify the appropriate simulation models to generate several scenarios under proper temporal and spatial scales and resolutions, and 3) to integrate the climatic factors change simulation, hydrodynamic model, ecological simulation, and intelligent algorithm into a general modeling system to achieve an accurate prediction of lake eutrophication under climatic change.
Three Factors Are Critical in Order to Synthesize Intelligible Noise-Vocoded Japanese Speech
Kishida, Takuya; Nakajima, Yoshitaka; Ueda, Kazuo; Remijn, Gerard B.
2016-01-01
Factor analysis (principal component analysis followed by varimax rotation) had shown that 3 common factors appear across 20 critical-band power fluctuations derived from spoken sentences of eight different languages [Ueda et al. (2010). Fechner Day 2010, Padua]. The present study investigated the contributions of such power-fluctuation factors to speech intelligibility. The method of factor analysis was modified to obtain factors suitable for resynthesizing speech sounds as 20-critical-band noise-vocoded speech. The resynthesized speech sounds were used for an intelligibility test. The modification of factor analysis ensured that the resynthesized speech sounds were not accompanied by a steady background noise caused by the data reduction procedure. Spoken sentences of British English, Japanese, and Mandarin Chinese were subjected to this modified analysis. Confirming the earlier analysis, indeed 3–4 factors were common to these languages. The number of power-fluctuation factors needed to make noise-vocoded speech intelligible was then examined. Critical-band power fluctuations of the Japanese spoken sentences were resynthesized from the obtained factors, resulting in noise-vocoded-speech stimuli, and the intelligibility of these speech stimuli was tested by 12 native Japanese speakers. Japanese mora (syllable-like phonological unit) identification performances were measured when the number of factors was 1–9. Statistically significant improvement in intelligibility was observed when the number of factors was increased stepwise up to 6. The 12 listeners identified 92.1% of the morae correctly on average in the 6-factor condition. The intelligibility improved sharply when the number of factors changed from 2 to 3. In this step, the cumulative contribution ratio of factors improved only by 10.6%, from 37.3 to 47.9%, but the average mora identification leaped from 6.9 to 69.2%. The results indicated that, if the number of factors is 3 or more, elementary linguistic information is preserved in such noise-vocoded speech. PMID:27199790
Ai, Zi-Sheng; Gao, You-Shui; Sun, Yuan; Liu, Yue; Zhang, Chang-Qing; Jiang, Cheng-Hua
2013-03-01
Risk factors for femoral neck fracture-induced avascular necrosis of the femoral head have not been elucidated clearly in middle-aged and elderly patients. Moreover, the high incidence of screw removal in China and its effect on the fate of the involved femoral head require statistical methods to reflect their intrinsic relationship. Ninety-nine patients older than 45 years with femoral neck fracture were treated by internal fixation between May 1999 and April 2004. Descriptive analysis, interaction analysis between associated factors, single factor logistic regression, multivariate logistic regression, and detailed interaction analysis were employed to explore potential relationships among associated factors. Avascular necrosis of the femoral head was found in 15 cases (15.2 %). Age × the status of implants (removal vs. maintenance) and gender × the timing of reduction were interactive according to two-factor interactive analysis. Age, the displacement of fractures, the quality of reduction, and the status of implants were found to be significant factors in single factor logistic regression analysis. Age, age × the status of implants, and the quality of reduction were found to be significant factors in multivariate logistic regression analysis. In fine interaction analysis after multivariate logistic regression analysis, implant removal was the most important risk factor for avascular necrosis in 56-to-85-year-old patients, with a risk ratio of 26.00 (95 % CI = 3.076-219.747). The middle-aged and elderly have less incidence of avascular necrosis of the femoral head following femoral neck fractures treated by cannulated screws. The removal of cannulated screws can induce a significantly high incidence of avascular necrosis of the femoral head in elderly patients, while a high-quality reduction is helpful to reduce avascular necrosis.
A Factor Analysis of the BSRI and the PAQ.
ERIC Educational Resources Information Center
Edwards, Teresa A.; And Others
Factor analysis of the Bem Sex Role Inventory (BSRI) and the Personality Attributes Questionnaire (PAQ) was undertaken to study the independence of the masculine and feminine scales within each instrument. Both instruments were administered to undergraduate education majors. Analysis of primary first and second order factors of the BSRI indicated…
Cross-Validation of Levenson's Psychopathy Scale in a Sample of Federal Female Inmates
ERIC Educational Resources Information Center
Brinkley, Chad A.; Diamond, Pamela M.; Magaletta, Philip R.; Heigel, Caron P.
2008-01-01
Levenson, Kiehl, and Fitzpatrick's Self-Report Psychopathy Scale (LSRPS) is evaluated to determine the factor structure and concurrent validity of the instrument among 430 federal female inmates. Confirmatory factor analysis fails to validate the expected 2-factor structure. Subsequent exploratory factor analysis reveals a 3-factor structure…
Confirmatory Factor Analysis of the WISC-III with Child Psychiatric Inpatients.
ERIC Educational Resources Information Center
Tupa, David J.; Wright, Margaret O'Dougherty; Fristad, Mary A.
1997-01-01
Factor models of the Wechsler Intelligence Scale for Children-Third Edition (WISC-III) for one, two, three, and four factors were tested using confirmatory factor analysis with a sample of 177 child psychiatric inpatients. The four-factor model proposed in the WISC-III manual provided the best fit to the data. (SLD)
Spectral compression algorithms for the analysis of very large multivariate images
Keenan, Michael R.
2007-10-16
A method for spectrally compressing data sets enables the efficient analysis of very large multivariate images. The spectral compression algorithm uses a factored representation of the data that can be obtained from Principal Components Analysis or other factorization technique. Furthermore, a block algorithm can be used for performing common operations more efficiently. An image analysis can be performed on the factored representation of the data, using only the most significant factors. The spectral compression algorithm can be combined with a spatial compression algorithm to provide further computational efficiencies.
A replication of a factor analysis of motivations for trapping
Schroeder, Susan; Fulton, David C.
2015-01-01
Using a 2013 sample of Minnesota trappers, we employed confirmatory factor analysis to replicate an exploratory factor analysis of trapping motivations conducted by Daigle, Muth, Zwick, and Glass (1998). We employed the same 25 items used by Daigle et al. and tested the same five-factor structure using a recent sample of Minnesota trappers. We also compared motivations in our sample to those reported by Daigle et el.
Factor Analysis of the Brazilian Version of UPPS Impulsive Behavior Scale
Sediyama, Cristina Y. N.; Moura, Ricardo; Garcia, Marina S.; da Silva, Antonio G.; Soraggi, Carolina; Neves, Fernando S.; Albuquerque, Maicon R.; Whiteside, Setephen P.; Malloy-Diniz, Leandro F.
2017-01-01
Objective: To examine the internal consistency and factor structure of the Brazilian adaptation of the UPPS Impulsive Behavior Scale. Methods: UPPS is a self-report scale composed by 40 items assessing four factors of impulsivity: (a) urgency, (b) lack of premeditation; (c) lack of perseverance; (d) sensation seeking. In the present study 384 participants (278 women and 106 men), who were recruited from schools, universities, leisure centers and workplaces fulfilled the UPPS scale. An exploratory factor analysis was performed by using Varimax factor rotation and Kaiser Normalization, and we also conducted two confirmatory analyses to test the independency of the UPPS components found in previous analysis. Results: Results showed a decrease in mean UPPS total scores with age and this analysis showed that the youngest participants (below 30 years) scored significantly higher than the other groups over 30 years. No difference in gender was found. Cronbach’s alpha, results indicated satisfactory values for all subscales, with similar high values for the subscales and confirmatory factor analysis indexes also indicated a poor model fit. The results of two exploratory factor analysis were satisfactory. Conclusion: Our results showed that the Portuguese version has the same four-factor structure of the original and previous translations of the UPPS. PMID:28484414
Factors affecting job satisfaction in nurse faculty: a meta-analysis.
Gormley, Denise K
2003-04-01
Evidence in the literature suggests job satisfaction can make a difference in keeping qualified workers on the job, but little research has been conducted focusing specifically on nursing faculty. Several studies have examined nurse faculty satisfaction in relationship to one or two influencing factors. These factors include professional autonomy, leader role expectations, organizational climate, perceived role conflict and role ambiguity, leadership behaviors, and organizational characteristics. This meta-analysis attempts to synthesize the various studies conducted on job satisfaction in nursing faculty and analyze which influencing factors have the greatest effect. The procedure used for this meta-analysis consisted of reviewing studies to identify factors influencing job satisfaction, research questions, sample size reported, instruments used for measurement of job satisfaction and influencing factors, and results of statistical analysis.
Application of factor analysis to the water quality in reservoirs
NASA Astrophysics Data System (ADS)
Silva, Eliana Costa e.; Lopes, Isabel Cristina; Correia, Aldina; Gonçalves, A. Manuela
2017-06-01
In this work we present a Factor Analysis of chemical and environmental variables of the water column and hydro-morphological features of several Portuguese reservoirs. The objective is to reduce the initial number of variables, keeping their common characteristics. Using the Factor Analysis, the environmental variables measured in the epilimnion and in the hypolimnion, together with the hydromorphological characteristics of the dams were reduced from 63 variables to only 13 factors, which explained a total of 83.348% of the variance in the original data. After performing rotation using the Varimax method, the relations between the factors and the original variables got clearer and more explainable, which provided a Factor Analysis model for these environmental variables using 13 varifactors: Water quality and distance to the source, Hypolimnion chemical composition, Sulfite-reducing bacteria and nutrients, Coliforms and faecal streptococci, Reservoir depth, Temperature, Location, among other factors.
Donor retention in health care in Iran: a factor analysis
Aghababa, Sara; Nasiripour, Amir Ashkan; Maleki, Mohammadreza; Gohari, Mahmoodreza
2017-01-01
Background: Long-term financial support is essential for the survival of a charitable organization. Health charities need to identify the effective factors influencing donor retention. Methods: In the present study, the items of a questionnaire were derived from both literature review and semi-structured interviews related to donor retention. Using a purposive sampling, 300 academic and executive practitioners were selected. After the follow- up, a total of 243 usable questionnaires were prepared for factor analysis. The questionnaire was validated based on the face and content validity and reliability through Cronbach’s α-coefficient. Results: The results of exploratory factor analysis extracted 2 factors for retention: donor factor (variance = 33.841%; Cronbach’s α-coefficient = 90.2) and charity factor (variance = 29.038%; Cronbach’s α-coefficient = 82.8), respectively. Subsequently, confirmatory factor analysis was applied to support the overall reasonable fit. Conclusions: In this study, it was found that repeated monetary donations are supplied to the charitable organizations when both aspects of donor factor (retention factor and charity factor) for retention are taken into consideration. This model could provide a perspective for making sustainable donations and charitable giving PMID:28955663
Ultrasound-enhanced bioscouring of greige cotton: regression analysis of process factors
USDA-ARS?s Scientific Manuscript database
Process factors of enzyme concentration, time, power and frequency were investigated for ultrasound-enhanced bioscouring of greige cotton. A fractional factorial experimental design and subsequent regression analysis of the process factors were employed to determine the significance of each factor a...
NASA Astrophysics Data System (ADS)
Zhang, Chao; Qin, Ting Xin; Huang, Shuai; Wu, Jian Song; Meng, Xin Yan
2018-06-01
Some factors can affect the consequences of oil pipeline accident and their effects should be analyzed to improve emergency preparation and emergency response. Although there are some qualitative analysis models of risk factors' effects, the quantitative analysis model still should be researched. In this study, we introduce a Bayesian network (BN) model of risk factors' effects analysis in an oil pipeline accident case that happened in China. The incident evolution diagram is built to identify the risk factors. And the BN model is built based on the deployment rule for factor nodes in BN and the expert knowledge by Dempster-Shafer evidence theory. Then the probabilities of incident consequences and risk factors' effects can be calculated. The most likely consequences given by this model are consilient with the case. Meanwhile, the quantitative estimations of risk factors' effects may provide a theoretical basis to take optimal risk treatment measures for oil pipeline management, which can be used in emergency preparation and emergency response.
ERIC Educational Resources Information Center
Clemens, Elysia V.; Carey, John C.; Harrington, Karen M.
2010-01-01
This article details the initial development of the School Counseling Program Implementation Survey and psychometric results including reliability and factor structure. An exploratory factor analysis revealed a three-factor model that accounted for 54% of the variance of the intercorrelation matrix and a two-factor model that accounted for 47% of…
Affective Outcomes of Schooling: Full-Information Item Factor Analysis of a Student Questionnaire.
ERIC Educational Resources Information Center
Muraki, Eiji; Engelhard, George, Jr.
Recent developments in dichotomous factor analysis based on multidimensional item response models (Bock and Aitkin, 1981; Muthen, 1978) provide an effective method for exploring the dimensionality of questionnaire items. Implemented in the TESTFACT program, this "full information" item factor analysis accounts not only for the pairwise joint…
Item Factor Analysis: Current Approaches and Future Directions
ERIC Educational Resources Information Center
Wirth, R. J.; Edwards, Michael C.
2007-01-01
The rationale underlying factor analysis applies to continuous and categorical variables alike; however, the models and estimation methods for continuous (i.e., interval or ratio scale) data are not appropriate for item-level data that are categorical in nature. The authors provide a targeted review and synthesis of the item factor analysis (IFA)…
ERIC Educational Resources Information Center
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel
2012-01-01
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…
Q-Type Factor Analysis of Healthy Aged Men.
ERIC Educational Resources Information Center
Kleban, Morton H.
Q-type factor analysis was used to re-analyze baseline data collected in 1957, on 47 men aged 65-91. Q-type analysis is the use of factor methods to study persons rather than tests. Although 550 variables were originally studied involving psychiatry, medicine, cerebral metabolism and chemistry, personality, audiometry, dichotic and diotic memory,…
ERIC Educational Resources Information Center
McFarland, Dennis J.
2014-01-01
Purpose: Factor analysis is a useful technique to aid in organizing multivariate data characterizing speech, language, and auditory abilities. However, knowledge of the limitations of factor analysis is essential for proper interpretation of results. The present study used simulated test scores to illustrate some characteristics of factor…
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Ibraheem, S. O.
1993-01-01
The convergence characteristics of various approximate factorizations for the 3D Euler and Navier-Stokes equations are examined using the von-Neumann stability analysis method. Three upwind-difference based factorizations and several central-difference based factorizations are considered for the Euler equations. In the upwind factorizations both the flux-vector splitting methods of Steger and Warming and van Leer are considered. Analysis of the Navier-Stokes equations is performed only on the Beam and Warming central-difference scheme. The range of CFL numbers over which each factorization is stable is presented for one-, two-, and three-dimensional flow. Also presented for each factorization is the CFL number at which the maximum eigenvalue is minimized, for all Fourier components, as well as for the high frequency range only. The latter is useful for predicting the effectiveness of multigrid procedures with these schemes as smoothers. Further, local mode analysis is performed to test the suitability of using a uniform flow field in the stability analysis. Some inconsistencies in the results from previous analyses are resolved.
Rodrigues, Johannes; Ulrich, Natalie; Mussel, Patrick; Carlo, Gustavo; Hewig, Johannes
2017-01-01
The prosocial tendencies measure (PTM; Carlo and Randall, 2002) is a widely used measurement for prosocial tendencies in English speaking participants. This instrument distinguishes between six different types of prosocial tendencies that partly share some common basis, but also can be opposed to each other. To examine these constructs in Germany, a study with 1067 participants was conducted. The study investigated the structure of this German version of the PTM-R via exploratory factor analysis, confirmatory factor analysis, correlations with similar constructs in subsamples as well as via measurement invariance test concerning the original English version. The German translation showed a similar factor structure to the English version in exploratory factor analysis and in confirmatory factor analysis. Measurement invariance was found between the English and German language versions of the PTM and support for the proposed six-factor structure (altruistic, anonymous, compliant, dire, emotional and public prosocial behavior) was also found in confirmatory factor analysis. Furthermore, the expected interrelations of these factors of prosocial behavior tendencies were obtained. Finally, correlations of the prosocial behavior tendencies with validating constructs and behaviors were found. Thus, the findings stress the importance of seeing prosocial behavior not as a single dimension construct, but as a factored construct which now can also be assessed in German speaking participants. PMID:29270144
Atkins, Rahshida
2014-01-01
Several compendiums of instruments that measure perceived racism and/or discrimination are present in the literature. Other works have reviewed the psychometric properties of these instruments in terms of validity and reliability and have indicated if the instrument was factor analyzed. However, little attention has been given to the quality of the factor analysis performed. The aim of this study was to evaluate the exploratory factor analyses done on instruments measuring perceived racism/racial discrimination using guidelines from experts in psychometric theory. The techniques used for factor analysis were reviewed and critiqued and the adequacy of reporting was evaluated. Internet search engines and four electronic abstract databases were used to identify 16 relevant instruments that met the inclusion/exclusion criteria. Principal component analysis was the most frequent method of extraction (81%). Sample sizes were adequate for factor analysis in 81 percent of studies. The majority of studies reported appropriate criteria for the acceptance of un-rotated factors (81%) and justified the rotation method (75%). Exactly 94 percent of studies reported partially acceptable criteria for the acceptance of rotated factors. The majority of articles (69%) reported adequate coefficient alphas for the resultant subscales. In 81 percent of the studies, the conceptualized dimensions were supported by factor analysis.
Atkins, Rahshida
2015-01-01
Several compendiums of instruments that measure perceived racism and/or discrimination are present in the literature. Other works have reviewed the psychometric properties of these instruments in terms of validity and reliability and have indicated if the instrument was factor analyzed. However, little attention has been given to the quality of the factor analysis performed. The aim of this study was to evaluate the exploratory factor analyses done on instruments measuring perceived racism/racial discrimination using guidelines from experts in psychometric theory. The techniques used for factor analysis were reviewed and critiqued and the adequacy of reporting was evaluated. Internet search engines and four electronic abstract databases were used to identify 16 relevant instruments that met the inclusion/exclusion criteria. Principal component analysis was the most frequent method of extraction (81%). Sample sizes were adequate for factor analysis in 81 percent of studies. The majority of studies reported appropriate criteria for the acceptance of un-rotated factors (81%) and justified the rotation method (75%). Exactly 94 percent of studies reported partially acceptable criteria for the acceptance of rotated factors. The majority of articles (69%) reported adequate coefficient alphas for the resultant subscales. In 81 percent of the studies, the conceptualized dimensions were supported by factor analysis. PMID:25626225
Factor Analysis of Intern Effectiveness
ERIC Educational Resources Information Center
Womack, Sid T.; Hannah, Shellie Louise; Bell, Columbus David
2012-01-01
Four factors in teaching intern effectiveness, as measured by a Praxis III-similar instrument, were found among observational data of teaching interns during the 2010 spring semester. Those factors were lesson planning, teacher/student reflection, fairness & safe environment, and professionalism/efficacy. This factor analysis was as much of a…
Applying Cognitive Work Analysis to Time Critical Targeting Functionality
2004-10-01
Cognitive Task Analysis , CTA, Cognitive Task Analysis , Human Factors, GUI, Graphical User Interface, Heuristic Evaluation... Cognitive Task Analysis MITRE Briefing January 2000 Dynamic Battle Management Functional Architecture 3-1 Section 3 Human Factors...clear distinction between Cognitive Work Analysis (CWA) and Cognitive Task Analysis (CTA), therefore this document will refer to these
Evaluating voice characteristics of first-year acting students in Israel: factor analysis.
Amir, Ofer; Primov-Fever, Adi; Kushnir, Tami; Kandelshine-Waldman, Osnat; Wolf, Michael
2013-01-01
Acting students require diverse, high-quality, and high-intensity vocal performance from early stages of their training. Demanding vocal activities, before developing the appropriate vocal skills, put them in high risk for developing vocal problems. A retrospective analysis of voice characteristics of first-year acting students using several voice evaluation tools. A total of 79 first-year acting students (55 women and 24 men) were assigned into two study groups: laryngeal findings (LFs) and no laryngeal findings, based on stroboscopic findings. Their voice characteristics were evaluated using acoustic analysis, aerodynamic examination, perceptual scales, and self-report questionnaires. Results obtained from each set of measures were examined using a factor analysis approach. Significant differences between the two groups were found for a single fundamental frequency (F(0))-Regularity factor; a single Grade, Roughness, Breathiness, Asthenia, Strain perceptual factor; and the three self-evaluation factors. Gender differences were found for two acoustic analysis factors, which were based on F(0) and its derivatives, namely an aerodynamic factor that represents expiratory volume measurements and a single self-evaluation factor that represents the tendency to seek therapy. Approximately 50% of the first-year acting students had LFs. These students differed from their peers in the control group in a single acoustic analysis factor, as well as perceptual and self-report factors. No group differences, however, were found for the aerodynamic factors. Early laryngeal examination and voice evaluation of future professional voice users could provide a valuable individual baseline, to which later examinations could be compared, and assist in providing personally tailored treatment. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
van der Eijk, Cees; Rose, Jonathan
2015-01-01
This paper undertakes a systematic assessment of the extent to which factor analysis the correct number of latent dimensions (factors) when applied to ordered-categorical survey items (so-called Likert items). We simulate 2400 data sets of uni-dimensional Likert items that vary systematically over a range of conditions such as the underlying population distribution, the number of items, the level of random error, and characteristics of items and item-sets. Each of these datasets is factor analysed in a variety of ways that are frequently used in the extant literature, or that are recommended in current methodological texts. These include exploratory factor retention heuristics such as Kaiser’s criterion, Parallel Analysis and a non-graphical scree test, and (for exploratory and confirmatory analyses) evaluations of model fit. These analyses are conducted on the basis of Pearson and polychoric correlations. We find that, irrespective of the particular mode of analysis, factor analysis applied to ordered-categorical survey data very often leads to over-dimensionalisation. The magnitude of this risk depends on the specific way in which factor analysis is conducted, the number of items, the properties of the set of items, and the underlying population distribution. The paper concludes with a discussion of the consequences of over-dimensionalisation, and a brief mention of alternative modes of analysis that are much less prone to such problems. PMID:25789992
An Analysis of Factors that Influence Enlistment Decisions in the U.S. Army
1998-03-01
NAVAL POSTGRADUATE SCHOOL Monterey, California CM THESIS AN ANALYSIS OF FACTORS THAT INFLUENCE ENLISTMENT DECISIONS IN THE U.S. ARMY by Young...TITLE AND SUBTITLE : AN ANALYSIS OF FACTORS THAT INFLUENCE ENLISTMENT DECISIONS IN THE U.S. ARMY 6. AUTHOR(S) Oh, Young Yeol 7...200 words) The purpose of this thesis is to analyze factors that influence decisions to enlist in the U.S. Army. This thesis uses 1997 New Recruit
Secondary School Burnout Scale (SSBS)
ERIC Educational Resources Information Center
Aypay, Ayse
2012-01-01
The purpose of this study is to develop "Secondary School Burnout Scale." Study group included 728 students out of 14 schools in four cities in Turkey. Both Exploratory Factor Analysis and Confirmatory Factor Analysis were conducted on the data. A seven-factor solution emerged. The seven factors explained 61% of the total variance. The…
ERIC Educational Resources Information Center
Lonchamp, F.
This is a presentation of the results of a factor analysis of a battery of tests intended to measure listening and reading comprehension in English as a second language. The analysis sought to answer the following questions: (1) whether the factor analysis method yields results when applied to tests which are not specifically designed for this…
ERIC Educational Resources Information Center
Smyth, Caroline L.; MacLachlan, Malcolm
2005-01-01
Numerous existing measures assess attitudes toward suicide yet fail to account for contextual factors. The Trinity Inventory of Precursors to Suicide (TIPS) is presented as an alternative, with implications for the development of prevention programs. Having previously reported exploratory analysis of the TIPS; confirmatory factor analysis and…
Examining Evolving Performance on the Force Concept Inventory Using Factor Analysis
ERIC Educational Resources Information Center
Semak, M. R.; Dietz, R. D.; Pearson, R. H.; Willis, C. W
2017-01-01
The application of factor analysis to the "Force Concept Inventory" (FCI) has proven to be problematic. Some studies have suggested that factor analysis of test results serves as a helpful tool in assessing the recognition of Newtonian concepts by students. Other work has produced at best ambiguous results. For the FCI administered as a…
USDA-ARS?s Scientific Manuscript database
Visible/near-infrared (Vis/NIR) spectroscopy with wavelength range between 400 and 2500 nm combined with factor analysis method was tested to predict quality attributes of chicken breast fillets. Quality attributes, including color (L*, a*, b*), pH, and drip loss were analyzed using factor analysis ...
ERIC Educational Resources Information Center
Wetzel, Angela Payne
2011-01-01
Previous systematic reviews indicate a lack of reporting of reliability and validity evidence in subsets of the medical education literature. Psychology and general education reviews of factor analysis also indicate gaps between current and best practices; yet, a comprehensive review of exploratory factor analysis in instrument development across…
Dimensions of temperament: an analysis.
Lorr, M; Stefic, E C
1976-01-01
The TDOT recast into a single stimulus format was administered to 150 college Ss. A factor analysis of the items followed by an analysis of item clusters that define each factor indicated the presence of 14 dimensions. Of the 10 bipolar scales of the TDOT, 3 were confirmed as independent dimensions, and 5 were confirmed in part or split into unipolar factors.
Assessing School Work Culture: A Higher-Order Analysis and Strategy.
ERIC Educational Resources Information Center
Johnson, William L.; Johnson, Annabel M.; Zimmerman, Kurt J.
This paper reviews a work culture productivity model and reports the development of a work culture instrument based on the culture productivity model. Higher order principal components analysis was used to assess work culture, and a third-order factor analysis shows how the first-order factors group into higher-order factors. The school work…
A Primer on Bootstrap Factor Analysis as Applied to Health Studies Research
ERIC Educational Resources Information Center
Lu, Wenhua; Miao, Jingang; McKyer, E. Lisako J.
2014-01-01
Objectives: To demonstrate how the bootstrap method could be conducted in exploratory factor analysis (EFA) with a syntax written in SPSS. Methods: The data obtained from the Texas Childhood Obesity Prevention Policy Evaluation project (T-COPPE project) were used for illustration. A 5-step procedure to conduct bootstrap factor analysis (BFA) was…
Exploratory Factor Analysis of a Force Concept Inventory Data Set
ERIC Educational Resources Information Center
Scott, Terry F.; Schumayer, Daniel; Gray, Andrew R.
2012-01-01
We perform a factor analysis on a "Force Concept Inventory" (FCI) data set collected from 2109 respondents. We address two questions: the appearance of conceptual coherence in student responses to the FCI and some consequences of this factor analysis on the teaching of Newtonian mechanics. We will highlight the apparent conflation of Newton's…
On the Extraction of Components and the Applicability of the Factor Model.
ERIC Educational Resources Information Center
Dziuban, Charles D.; Harris, Chester W.
A reanalysis of Shaycroft's matrix of intercorrelations of 10 test variables plus 4 random variables is discussed. Three different procedures were used in the reanalysis: (1) Image Component Analysis, (2) Uniqueness Rescaling Factor Analysis, and (3) Alpha Factor Analysis. The results of these analyses are presented in tables. It is concluded from…
A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis
ERIC Educational Resources Information Center
Edwards, Michael C.
2010-01-01
Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show…
Developing Multidimensional Likert Scales Using Item Factor Analysis: The Case of Four-Point Items
ERIC Educational Resources Information Center
Asún, Rodrigo A.; Rdz-Navarro, Karina; Alvarado, Jesús M.
2016-01-01
This study compares the performance of two approaches in analysing four-point Likert rating scales with a factorial model: the classical factor analysis (FA) and the item factor analysis (IFA). For FA, maximum likelihood and weighted least squares estimations using Pearson correlation matrices among items are compared. For IFA, diagonally weighted…
Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha
2012-05-01
Estimation of stature is an important parameter in identification of human remains in forensic examinations. The present study is aimed to compare the reliability and accuracy of stature estimation and to demonstrate the variability in estimated stature and actual stature using multiplication factor and regression analysis methods. The study is based on a sample of 246 subjects (123 males and 123 females) from North India aged between 17 and 20 years. Four anthropometric measurements; hand length, hand breadth, foot length and foot breadth taken on the left side in each subject were included in the study. Stature was measured using standard anthropometric techniques. Multiplication factors were calculated and linear regression models were derived for estimation of stature from hand and foot dimensions. Derived multiplication factors and regression formula were applied to the hand and foot measurements in the study sample. The estimated stature from the multiplication factors and regression analysis was compared with the actual stature to find the error in estimated stature. The results indicate that the range of error in estimation of stature from regression analysis method is less than that of multiplication factor method thus, confirming that the regression analysis method is better than multiplication factor analysis in stature estimation. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Success Probability Analysis for Shuttle Based Microgravity Experiments
NASA Technical Reports Server (NTRS)
Liou, Ying-Hsin Andrew
1996-01-01
Presented in this report are the results of data analysis of shuttle-based microgravity flight experiments. Potential factors were identified in the previous grant period, and in this period 26 factors were selected for data analysis. In this project, the degree of success was developed and used as the performance measure. 293 of the 391 experiments in Lewis Research Center Microgravity Database were assigned degrees of success. The frequency analysis and the analysis of variance were conducted to determine the significance of the factors that effect the experiment success.
Assessing Suicide Risk Among Callers to Crisis Hotlines: A Confirmatory Factor Analysis
Witte, Tracy K.; Gould, Madelyn S.; Munfakh, Jimmie Lou Harris; Kleinman, Marjorie; Joiner, Thomas E.; Kalafat, John
2012-01-01
Our goal was to investigate the factor structure of a risk assessment tool utilized by suicide hotlines and to determine the predictive validity of the obtained factors in predicting subsequent suicidal behavior. 1,085 suicidal callers to crisis hotlines were divided into three sub-samples, which allowed us to conduct an independent Exploratory Factor Analysis (EFA), EFA in a Confirmatory Factor Analysis (EFA/CFA) framework, and CFA. Similar to previous factor analytic studies (Beck et al., 1997; Holden & DeLisle, 2005; Joiner, Rudd, & Rajab, 1997; Witte et al., 2006), we found consistent evidence for a two-factor solution, with one factor representing a more pernicious form of suicide risk (i.e., Resolved Plans and Preparations) and one factor representing more mild suicidal ideation (i.e., Suicidal Desire and Ideation). Using structural equation modeling techniques, we found preliminary evidence that the Resolved Plans and Preparations factor trended toward being more predictive of suicidal ideation than the Suicidal Desire and Ideation factor. This factor analytic study is the first longitudinal study of the obtained factors. PMID:20578186
Henriques, Justin J; Louis, Garrick E
2011-01-01
Capacity Factor Analysis is a decision support system for selection of appropriate technologies for municipal sanitation services in developing communities. Developing communities are those that lack the capability to provide adequate access to one or more essential services, such as water and sanitation, to their residents. This research developed two elements of Capacity Factor Analysis: a capacity factor based classification for technologies using requirements analysis, and a matching policy for choosing technology options. First, requirements analysis is used to develop a ranking for drinking water supply and greywater reuse technologies. Second, using the Capacity Factor Analysis approach, a matching policy is developed to guide decision makers in selecting the appropriate drinking water supply or greywater reuse technology option for their community. Finally, a scenario-based informal hypothesis test is developed to assist in qualitative model validation through case study. Capacity Factor Analysis is then applied in Cimahi Indonesia as a form of validation. The completed Capacity Factor Analysis model will allow developing communities to select drinking water supply and greywater reuse systems that are safe, affordable, able to be built and managed by the community using local resources, and are amenable to expansion as the community's management capacity increases. Copyright © 2010 Elsevier Ltd. All rights reserved.
The School Counselor Leadership Survey: Instrument Development and Exploratory Factor Analysis
ERIC Educational Resources Information Center
Young, Anita; Bryan, Julia
2015-01-01
This study examined the factor structure of the School Counselor Leadership Survey (SCLS). Survey development was a threefold process that resulted in a 39-item survey of 801 school counselors and school counselor supervisors. The exploratory factor analysis indicated a five-factor structure that revealed five key dimensions of school counselor…
A Confirmatory Factor Analysis of the Academic Motivation Scale with Black College Students
ERIC Educational Resources Information Center
Cokley, Kevin
2015-01-01
The factor structure of the Academic Motivation Scale (AMS) was examined with a sample of 578 Black college students. A confirmatory factor analysis of the AMS was conducted. Results indicated that the hypothesized seven-factor model did not fit the data. Implications for future research with the AMS are discussed.
Hierarchical Factoring Based On Image Analysis And Orthoblique Rotations.
Stankov, L
1979-07-01
The procedure for hierarchical factoring suggested by Schmid and Leiman (1957) is applied within the framework of image analysis and orthoblique rotational procedures. It is shown that this approach necessarily leads to correlated higher order factors. Also, one can obtain a smaller number of factors than produced by typical hierarchical procedures.
The Factor Structure of the English Language Development Assessment: A Confirmatory Factor Analysis
ERIC Educational Resources Information Center
Kuriakose, Anju
2011-01-01
This study investigated the internal factor structure of the English language development Assessment (ELDA) using confirmatory factor analysis. ELDA is an English language proficiency test developed by a consortium of multiple states and is used to identify and reclassify English language learners in kindergarten to grade 12. Scores on item…
ERIC Educational Resources Information Center
Byrnes, James P.; Wasik, Barbara A.
2009-01-01
A secondary analysis of the Early Childhood Longitudinal Study-Kindergarten Sample (N = 17,401) was conducted to determine the factors that are most strongly associated with math achievement during kindergarten, first grade, and third grade. Factors from the following three categories were considered: antecedent factors (e.g., family…
A Comparison of Distribution Free and Non-Distribution Free Factor Analysis Methods
ERIC Educational Resources Information Center
Ritter, Nicola L.
2012-01-01
Many researchers recognize that factor analysis can be conducted on both correlation matrices and variance-covariance matrices. Although most researchers extract factors from non-distribution free or parametric methods, researchers can also extract factors from distribution free or non-parametric methods. The nature of the data dictates the method…
Psychometric analysis of the new ADHD DSM-V derived symptoms.
Ghanizadeh, Ahmad
2012-03-20
Following the agreements on the reformulating and revising of ADHD diagnostic criteria, recently, the proposed revision for ADHD added 4 new symptoms to the hyperactivity and Impulsivity aspect in DSM-V. This study investigates the psychometric properties of the proposed ADHD diagnostic criteria. ADHD diagnosis was made according to DSM-IV. The parents completed the screening test of ADHD checklist of Child Symptom Inventory-4 and the 4 items describing the new proposed symptoms in DSM-V. The confirmatory factor analysis of the ADHD DSM-V derived items supports the loading of two factors including inattentiveness and hyperactivity/impulsivity. There is a sufficient reliability for the items. However, confirmatory factor analysis showed that the three-factor model is better fitted than the two-factor one. Moreover, the results of the exploratory analysis raised some concerns about the factor loading of the four new items. The current results support the two-factor model of the DSM-V ADHD diagnostic criteria including inattentiveness and hyperactivity/impulsivity. However, the four new items can be considered as a third factor.
Sexual Harassment Retaliation Climate DEOCS 4.1 Construct Validity Summary
2017-08-01
exploratory factor analysis, and bivariate correlations (sample 1) 2) To determine the factor structure of the remaining (final) questions via...statistics, reliability analysis, exploratory factor analysis, and bivariate correlations of the prospective Sexual Harassment Retaliation Climate...reported by the survey requester). For information regarding the composition of sample, refer to Table 1. Table 1. Sample 1 Demographics n
A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network
NASA Astrophysics Data System (ADS)
Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.
2018-02-01
Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.
NASA Astrophysics Data System (ADS)
Vanrolleghem, Peter A.; Mannina, Giorgio; Cosenza, Alida; Neumann, Marc B.
2015-03-01
Sensitivity analysis represents an important step in improving the understanding and use of environmental models. Indeed, by means of global sensitivity analysis (GSA), modellers may identify both important (factor prioritisation) and non-influential (factor fixing) model factors. No general rule has yet been defined for verifying the convergence of the GSA methods. In order to fill this gap this paper presents a convergence analysis of three widely used GSA methods (SRC, Extended FAST and Morris screening) for an urban drainage stormwater quality-quantity model. After the convergence was achieved the results of each method were compared. In particular, a discussion on peculiarities, applicability, and reliability of the three methods is presented. Moreover, a graphical Venn diagram based classification scheme and a precise terminology for better identifying important, interacting and non-influential factors for each method is proposed. In terms of convergence, it was shown that sensitivity indices related to factors of the quantity model achieve convergence faster. Results for the Morris screening method deviated considerably from the other methods. Factors related to the quality model require a much higher number of simulations than the number suggested in literature for achieving convergence with this method. In fact, the results have shown that the term "screening" is improperly used as the method may exclude important factors from further analysis. Moreover, for the presented application the convergence analysis shows more stable sensitivity coefficients for the Extended-FAST method compared to SRC and Morris screening. Substantial agreement in terms of factor fixing was found between the Morris screening and Extended FAST methods. In general, the water quality related factors exhibited more important interactions than factors related to water quantity. Furthermore, in contrast to water quantity model outputs, water quality model outputs were found to be characterised by high non-linearity.
Proposal for a recovery prediction method for patients affected by acute mediastinitis
2012-01-01
Background An attempt to find a prediction method of death risk in patients affected by acute mediastinitis. There is not such a tool described in available literature for that serious disease. Methods The study comprised 44 consecutive cases of acute mediastinitis. General anamnesis and biochemical data were included. Factor analysis was used to extract the risk characteristic for the patients. The most valuable results were obtained for 8 parameters which were selected for further statistical analysis (all collected during few hours after admission). Three factors reached Eigenvalue >1. Clinical explanations of these combined statistical factors are: Factor1 - proteinic status (serum total protein, albumin, and hemoglobin level), Factor2 - inflammatory status (white blood cells, CRP, procalcitonin), and Factor3 - general risk (age, number of coexisting diseases). Threshold values of prediction factors were estimated by means of statistical analysis (factor analysis, Statgraphics Centurion XVI). Results The final prediction result for the patients is constructed as simultaneous evaluation of all factor scores. High probability of death should be predicted if factor 1 value decreases with simultaneous increase of factors 2 and 3. The diagnostic power of the proposed method was revealed to be high [sensitivity =90%, specificity =64%], for Factor1 [SNC = 87%, SPC = 79%]; for Factor2 [SNC = 87%, SPC = 50%] and for Factor3 [SNC = 73%, SPC = 71%]. Conclusion The proposed prediction method seems a useful emergency signal during acute mediastinitis control in affected patients. PMID:22574625
Independent Prognostic Factors for Acute Organophosphorus Pesticide Poisoning.
Tang, Weidong; Ruan, Feng; Chen, Qi; Chen, Suping; Shao, Xuebo; Gao, Jianbo; Zhang, Mao
2016-07-01
Acute organophosphorus pesticide poisoning (AOPP) is becoming a significant problem and a potential cause of human mortality because of the abuse of organophosphate compounds. This study aims to determine the independent prognostic factors of AOPP by using multivariate logistic regression analysis. The clinical data for 71 subjects with AOPP admitted to our hospital were retrospectively analyzed. This information included the Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, admission blood cholinesterase levels, 6-h post-admission blood cholinesterase levels, cholinesterase activity, blood pH, and other factors. Univariate analysis and multivariate logistic regression analyses were conducted to identify all prognostic factors and independent prognostic factors, respectively. A receiver operating characteristic curve was plotted to analyze the testing power of independent prognostic factors. Twelve of 71 subjects died. Admission blood lactate levels, 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, blood pH, and APACHE II scores were identified as prognostic factors for AOPP according to the univariate analysis, whereas only 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, and blood pH were independent prognostic factors identified by multivariate logistic regression analysis. The receiver operating characteristic analysis suggested that post-admission 6-h lactate clearance rates were of moderate diagnostic value. High 6-h post-admission blood lactate levels, low blood pH, and low post-admission 6-h lactate clearance rates were independent prognostic factors identified by multivariate logistic regression analysis. Copyright © 2016 by Daedalus Enterprises.
Estimation of the behavior factor of existing RC-MRF buildings
NASA Astrophysics Data System (ADS)
Vona, Marco; Mastroberti, Monica
2018-01-01
In recent years, several research groups have studied a new generation of analysis methods for seismic response assessment of existing buildings. Nevertheless, many important developments are still needed in order to define more reliable and effective assessment procedures. Moreover, regarding existing buildings, it should be highlighted that due to the low knowledge level, the linear elastic analysis is the only analysis method allowed. The same codes (such as NTC2008, EC8) consider the linear dynamic analysis with behavior factor as the reference method for the evaluation of seismic demand. This type of analysis is based on a linear-elastic structural model subject to a design spectrum, obtained by reducing the elastic spectrum through a behavior factor. The behavior factor (reduction factor or q factor in some codes) is used to reduce the elastic spectrum ordinate or the forces obtained from a linear analysis in order to take into account the non-linear structural capacities. The behavior factors should be defined based on several parameters that influence the seismic nonlinear capacity, such as mechanical materials characteristics, structural system, irregularity and design procedures. In practical applications, there is still an evident lack of detailed rules and accurate behavior factor values adequate for existing buildings. In this work, some investigations of the seismic capacity of the main existing RC-MRF building types have been carried out. In order to make a correct evaluation of the seismic force demand, actual behavior factor values coherent with force based seismic safety assessment procedure have been proposed and compared with the values reported in the Italian seismic code, NTC08.
Exploratory factor analysis of borderline personality disorder criteria in hospitalized adolescents.
Becker, Daniel F; McGlashan, Thomas H; Grilo, Carlos M
2006-01-01
The authors examined the factor structure of borderline personality disorder (BPD) in hospitalized adolescents and also sought to add to the theoretical and clinical understanding of any homogeneous components by determining whether they may be related to specific forms of Axis I pathology. Subjects were 123 adolescent inpatients, who were reliably assessed with structured diagnostic interviews for Diagnostic and Statistical Manual of Mental Disorders, Revised Third Edition Axes I and II disorders. Exploratory factor analysis identified BPD components, and logistic regression analyses tested whether these components were predictive of specific Axis I disorders. Factor analysis revealed a 4-factor solution that accounted for 67.0% of the variance. Factor 1 ("suicidal threats or gestures" and "emptiness or boredom") predicted depressive disorders and alcohol use disorders. Factor 2 ("affective instability," "uncontrolled anger," and "identity disturbance") predicted anxiety disorders and oppositional defiant disorder. Factor 3 ("unstable relationships" and "abandonment fears") predicted only anxiety disorders. Factor 4 ("impulsiveness" and "identity disturbance") predicted conduct disorder and substance use disorders. Exploratory factor analysis of BPD criteria in adolescent inpatients revealed 4 BPD factors that appear to differ from those reported for similar studies of adults. The factors represent components of self-negation, irritability, poorly modulated relationships, and impulsivity--each of which is associated with characteristic Axis I pathology. These findings shed light on the nature of BPD in adolescents and may also have implications for treatment.
Romera, Irene; Delgado-Cohen, Helena; Perez, Teresa; Caballero, Luis; Gilaberte, Immaculada
2008-01-14
The aim of this study was to examine the symptomatic dimensions of depression in a large sample of patients with major depressive disorder (MDD) in the primary care (PC) setting by means of a factor analysis of the Zung self-rating depression scale (ZSDS). A factor analysis was performed, based on the polychoric correlations matrix, between ZSDS items using promax oblique rotation in 1049 PC patients with a diagnosis of MDD (DSM-IV). A clinical interpretable four-factor solution consisting of a core depressive factor (I); a cognitive factor (II); an anxiety factor (III) and a somatic factor (IV) was extracted. These factors accounted for 36.9% of the variance on the ZSDS. The 4-factor structure was validated and high coefficients of congruence were obtained (0.98, 0.95, 0.92 and 0.87 for factors I, II, III and IV, respectively). The model seemed to fit the data well with fit indexes within recommended ranges (GFI = 0.9330, AGFI = 0.9112 and RMR = 0.0843). Our findings suggest that depressive symptoms in patients with MDD in the PC setting cluster into four dimensions: core depressive, cognitive, anxiety and somatic, by means of a factor analysis of the ZSDS. Further research is needed to identify possible diagnostic, therapeutic or prognostic implications of the different depressive symptomatic profiles.
Romera, Irene; Delgado-Cohen, Helena; Perez, Teresa; Caballero, Luis; Gilaberte, Immaculada
2008-01-01
Background The aim of this study was to examine the symptomatic dimensions of depression in a large sample of patients with major depressive disorder (MDD) in the primary care (PC) setting by means of a factor analysis of the Zung self-rating depression scale (ZSDS). Methods A factor analysis was performed, based on the polychoric correlations matrix, between ZSDS items using promax oblique rotation in 1049 PC patients with a diagnosis of MDD (DSM-IV). Results A clinical interpretable four-factor solution consisting of a core depressive factor (I); a cognitive factor (II); an anxiety factor (III) and a somatic factor (IV) was extracted. These factors accounted for 36.9% of the variance on the ZSDS. The 4-factor structure was validated and high coefficients of congruence were obtained (0.98, 0.95, 0.92 and 0.87 for factors I, II, III and IV, respectively). The model seemed to fit the data well with fit indexes within recommended ranges (GFI = 0.9330, AGFI = 0.9112 and RMR = 0.0843). Conclusion Our findings suggest that depressive symptoms in patients with MDD in the PC setting cluster into four dimensions: core depressive, cognitive, anxiety and somatic, by means of a factor analysis of the ZSDS. Further research is needed to identify possible diagnostic, therapeutic or prognostic implications of the different depressive symptomatic profiles. PMID:18194524
Kubota, Chika; Okada, Takashi; Aleksic, Branko; Nakamura, Yukako; Kunimoto, Shohko; Morikawa, Mako; Shiino, Tomoko; Tamaji, Ai; Ohoka, Harue; Banno, Naomi; Morita, Tokiko; Murase, Satomi; Goto, Setsuko; Kanai, Atsuko; Masuda, Tomoko; Ando, Masahiko; Ozaki, Norio
2014-01-01
The Edinburgh Postnatal Depression Scale (EPDS) is a widely used screening tool for postpartum depression (PPD). Although the reliability and validity of EPDS in Japanese has been confirmed and the prevalence of PPD is found to be about the same as Western countries, the factor structure of the Japanese version of EPDS has not been elucidated yet. 690 Japanese mothers completed all items of the EPDS at 1 month postpartum. We divided them randomly into two sample sets. The first sample set (n = 345) was used for exploratory factor analysis, and the second sample set was used (n = 345) for confirmatory factor analysis. The result of exploratory factor analysis indicated a three-factor model consisting of anxiety, depression and anhedonia. The results of confirmatory factor analysis suggested that the anxiety and anhedonia factors existed for EPDS in a sample of Japanese women at 1 month postpartum. The depression factor varies by the models of acceptable fit. We examined EPDS scores. As a result, "anxiety" and "anhedonia" exist for EPDS among postpartum women in Japan as already reported in Western countries. Cross-cultural research is needed for future research.
Factor analysis of serogroups botanica and aurisina of Leptospira biflexa.
Cinco, M
1977-11-01
Factor analysis is performed on serovars of Botanica and Aurisina serogroup of Leptospira biflexa. The results show the arrangement of main factors serovar and serogroup specific, as well as the antigens common with serovars of heterologous serogroups.
Identifying Items to Assess Methodological Quality in Physical Therapy Trials: A Factor Analysis
Cummings, Greta G.; Fuentes, Jorge; Saltaji, Humam; Ha, Christine; Chisholm, Annabritt; Pasichnyk, Dion; Rogers, Todd
2014-01-01
Background Numerous tools and individual items have been proposed to assess the methodological quality of randomized controlled trials (RCTs). The frequency of use of these items varies according to health area, which suggests a lack of agreement regarding their relevance to trial quality or risk of bias. Objective The objectives of this study were: (1) to identify the underlying component structure of items and (2) to determine relevant items to evaluate the quality and risk of bias of trials in physical therapy by using an exploratory factor analysis (EFA). Design A methodological research design was used, and an EFA was performed. Methods Randomized controlled trials used for this study were randomly selected from searches of the Cochrane Database of Systematic Reviews. Two reviewers used 45 items gathered from 7 different quality tools to assess the methodological quality of the RCTs. An exploratory factor analysis was conducted using the principal axis factoring (PAF) method followed by varimax rotation. Results Principal axis factoring identified 34 items loaded on 9 common factors: (1) selection bias; (2) performance and detection bias; (3) eligibility, intervention details, and description of outcome measures; (4) psychometric properties of the main outcome; (5) contamination and adherence to treatment; (6) attrition bias; (7) data analysis; (8) sample size; and (9) control and placebo adequacy. Limitation Because of the exploratory nature of the results, a confirmatory factor analysis is needed to validate this model. Conclusions To the authors' knowledge, this is the first factor analysis to explore the underlying component items used to evaluate the methodological quality or risk of bias of RCTs in physical therapy. The items and factors represent a starting point for evaluating the methodological quality and risk of bias in physical therapy trials. Empirical evidence of the association among these items with treatment effects and a confirmatory factor analysis of these results are needed to validate these items. PMID:24786942
Identifying items to assess methodological quality in physical therapy trials: a factor analysis.
Armijo-Olivo, Susan; Cummings, Greta G; Fuentes, Jorge; Saltaji, Humam; Ha, Christine; Chisholm, Annabritt; Pasichnyk, Dion; Rogers, Todd
2014-09-01
Numerous tools and individual items have been proposed to assess the methodological quality of randomized controlled trials (RCTs). The frequency of use of these items varies according to health area, which suggests a lack of agreement regarding their relevance to trial quality or risk of bias. The objectives of this study were: (1) to identify the underlying component structure of items and (2) to determine relevant items to evaluate the quality and risk of bias of trials in physical therapy by using an exploratory factor analysis (EFA). A methodological research design was used, and an EFA was performed. Randomized controlled trials used for this study were randomly selected from searches of the Cochrane Database of Systematic Reviews. Two reviewers used 45 items gathered from 7 different quality tools to assess the methodological quality of the RCTs. An exploratory factor analysis was conducted using the principal axis factoring (PAF) method followed by varimax rotation. Principal axis factoring identified 34 items loaded on 9 common factors: (1) selection bias; (2) performance and detection bias; (3) eligibility, intervention details, and description of outcome measures; (4) psychometric properties of the main outcome; (5) contamination and adherence to treatment; (6) attrition bias; (7) data analysis; (8) sample size; and (9) control and placebo adequacy. Because of the exploratory nature of the results, a confirmatory factor analysis is needed to validate this model. To the authors' knowledge, this is the first factor analysis to explore the underlying component items used to evaluate the methodological quality or risk of bias of RCTs in physical therapy. The items and factors represent a starting point for evaluating the methodological quality and risk of bias in physical therapy trials. Empirical evidence of the association among these items with treatment effects and a confirmatory factor analysis of these results are needed to validate these items. © 2014 American Physical Therapy Association.
Factor analysis and multiple regression between topography and precipitation on Jeju Island, Korea
NASA Astrophysics Data System (ADS)
Um, Myoung-Jin; Yun, Hyeseon; Jeong, Chang-Sam; Heo, Jun-Haeng
2011-11-01
SummaryIn this study, new factors that influence precipitation were extracted from geographic variables using factor analysis, which allow for an accurate estimation of orographic precipitation. Correlation analysis was also used to examine the relationship between nine topographic variables from digital elevation models (DEMs) and the precipitation in Jeju Island. In addition, a spatial analysis was performed in order to verify the validity of the regression model. From the results of the correlation analysis, it was found that all of the topographic variables had a positive correlation with the precipitation. The relations between the variables also changed in accordance with a change in the precipitation duration. However, upon examining the correlation matrix, no significant relationship between the latitude and the aspect was found. According to the factor analysis, eight topographic variables (latitude being the exception) were found to have a direct influence on the precipitation. Three factors were then extracted from the eight topographic variables. By directly comparing the multiple regression model with the factors (model 1) to the multiple regression model with the topographic variables (model 3), it was found that model 1 did not violate the limits of statistical significance and multicollinearity. As such, model 1 was considered to be appropriate for estimating the precipitation when taking into account the topography. In the study of model 1, the multiple regression model using factor analysis was found to be the best method for estimating the orographic precipitation on Jeju Island.
Examining evolving performance on the Force Concept Inventory using factor analysis
NASA Astrophysics Data System (ADS)
Semak, M. R.; Dietz, R. D.; Pearson, R. H.; Willis, C. W.
2017-06-01
The application of factor analysis to the Force Concept Inventory (FCI) has proven to be problematic. Some studies have suggested that factor analysis of test results serves as a helpful tool in assessing the recognition of Newtonian concepts by students. Other work has produced at best ambiguous results. For the FCI administered as a pre- and post-test, we see factor analysis as a tool by which the changes in conceptual associations made by our students may be gauged given the evolution of their response patterns. This analysis allows us to identify and track conceptual linkages, affording us insight as to how our students have matured due to instruction. We report on our analysis of 427 pre- and post-tests. The factor models for the pre- and post-tests are explored and compared along with the methodology by which these models were fit to the data. The post-test factor pattern is more aligned with an expert's interpretation of the questions' content, as it allows for a more readily identifiable relationship between factors and physical concepts. We discuss this evolution in the context of approaching the characteristics of an expert with force concepts. Also, we find that certain test items do not significantly contribute to the pre- or post-test factor models and attempt explanations as to why this is so. This may suggest that such questions may not be effective in probing the conceptual understanding of our students.
Exploratory factor analysis in Rehabilitation Psychology: a content analysis.
Roberson, Richard B; Elliott, Timothy R; Chang, Jessica E; Hill, Jessica N
2014-11-01
Our objective was to examine the use and quality of exploratory factor analysis (EFA) in articles published in Rehabilitation Psychology. Trained raters examined 66 separate exploratory factor analyses in 47 articles published between 1999 and April 2014. The raters recorded the aim of the EFAs, the distributional statistics, sample size, factor retention method(s), extraction and rotation method(s), and whether the pattern coefficients, structure coefficients, and the matrix of association were reported. The primary use of the EFAs was scale development, but the most widely used extraction and rotation method was principle component analysis, with varimax rotation. When determining how many factors to retain, multiple methods (e.g., scree plot, parallel analysis) were used most often. Many articles did not report enough information to allow for the duplication of their results. EFA relies on authors' choices (e.g., factor retention rules extraction, rotation methods), and few articles adhered to all of the best practices. The current findings are compared to other empirical investigations into the use of EFA in published research. Recommendations for improving EFA reporting practices in rehabilitation psychology research are provided.
ERIC Educational Resources Information Center
Drugli, May Britt; Hjemdal, Odin
2013-01-01
The validity of the Student-Teacher Relationship Scale (STRS) was examined in a national sample of 863 Norwegian schoolchildren in grades 1-7 (aged 6-13). The original factor structure of the STRS was tested by confirmatory factor analysis (CFA). The CFA results did not support the original three-factor structure of the STRS. Subsequent CFA of the…
Intrinsic disorder in transcription factors†
Liu, Jiangang; Perumal, Narayanan B.; Oldfield, Christopher J.; Su, Eric W.; Uversky, Vladimir N.; Dunker, A. Keith
2008-01-01
Intrinsic disorder (ID) is highly abundant in eukaryotes, which reflect the greater need for disorder-associated signaling and transcriptional regulation in nucleated cells. Although several well-characterized examples of intrinsically disordered proteins in transcriptional regulation have been reported, no systematic analysis has been reported so far. To test for a general prevalence of intrinsic disorder in transcriptional regulation, we used the Predictor Of Natural Disorder Regions (PONDR) to analyze the abundance of intrinsic disorder in three transcription factor datasets and two control sets. This analysis revealed that from 94.13% to 82.63% of transcription factors posses extended regions of intrinsic disorder, relative to 54.51% and 18.64% of the proteins in two control datasets, which indicates the significant prevalence of intrinsic disorder in transcription factors. This propensity of transcription factors for intrinsic disorder was confirmed by cumulative distribution function analysis and charge-hydropathy plots. The amino acid composition analysis showed that all three transcription factor datasets were substantially depleted in order-promoting residues, and significantly enriched in disorder-promoting residues. Our analysis of the distribution of disorder within the transcription factor datasets revealed that: (a) The AT-hooks and basic regions of transcription factor DNA-binding domains are highly disordered; (b) The degree of disorder in transcription factor activation regions is much higher than that in DNA-binding domains; (c) The degree of disorder is significantly higher in eukaryotic transcription factors than in prokaryotic transcription factors; (d) The level of α-MoRFs (molecular recognition feature) prediction is much higher in transcription factors. Overall, our data reflected the fact that the eukaryotes with well-developed gene transcription machinery require transcription factor flexibility to be more efficient. PMID:16734424
Logistic Regression and Path Analysis Method to Analyze Factors influencing Students’ Achievement
NASA Astrophysics Data System (ADS)
Noeryanti, N.; Suryowati, K.; Setyawan, Y.; Aulia, R. R.
2018-04-01
Students' academic achievement cannot be separated from the influence of two factors namely internal and external factors. The first factors of the student (internal factors) consist of intelligence (X1), health (X2), interest (X3), and motivation of students (X4). The external factors consist of family environment (X5), school environment (X6), and society environment (X7). The objects of this research are eighth grade students of the school year 2016/2017 at SMPN 1 Jiwan Madiun sampled by using simple random sampling. Primary data are obtained by distributing questionnaires. The method used in this study is binary logistic regression analysis that aims to identify internal and external factors that affect student’s achievement and how the trends of them. Path Analysis was used to determine the factors that influence directly, indirectly or totally on student’s achievement. Based on the results of binary logistic regression, variables that affect student’s achievement are interest and motivation. And based on the results obtained by path analysis, factors that have a direct impact on student’s achievement are students’ interest (59%) and students’ motivation (27%). While the factors that have indirect influences on students’ achievement, are family environment (97%) and school environment (37).
Statistical analysis of microgravity experiment performance using the degrees of success scale
NASA Technical Reports Server (NTRS)
Upshaw, Bernadette; Liou, Ying-Hsin Andrew; Morilak, Daniel P.
1994-01-01
This paper describes an approach to identify factors that significantly influence microgravity experiment performance. Investigators developed the 'degrees of success' scale to provide a numerical representation of success. A degree of success was assigned to 293 microgravity experiments. Experiment information including the degree of success rankings and factors for analysis was compiled into a database. Through an analysis of variance, nine significant factors in microgravity experiment performance were identified. The frequencies of these factors are presented along with the average degree of success at each level. A preliminary discussion of the relationship between the significant factors and the degree of success is presented.
On the Factor Structure of a Reading Comprehension Test
ERIC Educational Resources Information Center
Salehi, Mohammad
2011-01-01
To investigate the construct validly of a section of a high stakes test, an exploratory factor analysis using principal components analysis was employed. The rotation used was varimax with the suppression level of 0.30. Eleven factors were extracted out of 35 reading comprehension items. The fact that these factors emerged speak to the construct…
ERIC Educational Resources Information Center
Dedrick, Robert F.; Greenbaum, Paul E.
2011-01-01
Multilevel confirmatory factor analysis was used to evaluate the factor structure underlying the 12-item, three-factor "Interagency Collaboration Activities Scale" (ICAS) at the informant level and at the agency level. Results from 378 professionals (104 administrators, 201 service providers, and 73 case managers) from 32 children's mental health…
Understanding Older Adults' Perceptions of Internet Use: An Exploratory Factor Analysis
ERIC Educational Resources Information Center
Zheng, Robert; Spears, Jeffrey; Luptak, Marilyn; Wilby, Frances
2015-01-01
The current study examined factors related to older adults' perceptions of Internet use. Three hundred ninety five older adults participated in the study. The factor analysis revealed four factors perceived by older adults as critical to their Internet use: social connection, self-efficacy, the need to seek financial information, and the need to…
ERIC Educational Resources Information Center
Raykov, Tenko; Little, Todd D.
1999-01-01
Describes a method for evaluating results of Procrustean rotation to a target factor pattern matrix in exploratory factor analysis. The approach, based on the bootstrap method, yields empirical approximations of the sampling distributions of: (1) differences between target elements and rotated factor pattern matrices; and (2) the overall…
ERIC Educational Resources Information Center
Zinner, Ellen S.; And Others
1991-01-01
Administered Grief Experience Inventory (GEI) to 102 mothers of brain-injured adolescents and young adults across 3 years postinjury. Factor analysis of data was computed and compared to factors derived from original GEI General Reference Group (n=135). Found strikingly similar factor structures between modified nondeath form and original GEI.…
Exploratory and Confirmatory Factor Analyses of the WISC-IV with Gifted Students
ERIC Educational Resources Information Center
Rowe, Ellen W.; Dandridge, Jessica; Pawlush, Alexandra; Thompson, Dawna F.; Ferrier, David E.
2014-01-01
These 2 studies investigated the factor structure of the Wechsler Intelligence Scale for Children-4th edition (WISC-IV; Wechsler, 2003a) with exploratory factor analysis (EFA; Study 1) and confirmatory factor analysis (CFA; Study 2) among 2 independent samples of gifted students. The EFA sample consisted of 225 children who were referred for a…
ERIC Educational Resources Information Center
Lorenzo-Seva, Urbano; Ferrando, Pere J.
2013-01-01
FACTOR 9.2 was developed for three reasons. First, exploratory factor analysis (FA) is still an active field of research although most recent developments have not been incorporated into available programs. Second, there is now renewed interest in semiconfirmatory (SC) solutions as suitable approaches to the complex structures are commonly found…
ERIC Educational Resources Information Center
Willson, Victor L.; And Others
1985-01-01
Presents results of confirmatory factor analysis of the Kaufman Assessment Battery for children which is based on the underlying theoretical model of sequential, simultaneous, and achievement factors. Found support for the two-factor, simultaneous and sequential processing model. (MCF)
ERIC Educational Resources Information Center
Gaylord-Harden, Noni K.; Gipson, Polly; Mance, GiShawn; Grant, Kathryn E.
2008-01-01
The current study examined patterns of coping strategies in a sample of 497 low-income urban African American adolescents (mean age = 12.61 years). Results of confirmatory factor analysis indicated that the 4-factor structure of the Children's Coping Strategies Checklist (T. S. Ayers, I. N. Sandler, S. G. West, & M. W. Roosa, 1996) was not…
Source apportionment of groundwater pollution around landfill site in Nagpur, India.
Pujari, Paras R; Deshpande, Vijaya
2005-12-01
The present work attempts statistical analysis of groundwater quality near a Landfill site in Nagpur, India. The objective of the present work is to figure out the impact of different factors on the quality of groundwater in the study area. Statistical analysis of the data has been attempted by applying Factor Analysis concept. The analysis brings out the effect of five different factors governing the groundwater quality in the study area. Based on the contribution of the different parameters present in the extracted factors, the latter are linked to the geological setting, the leaching from the host rock, leachate of heavy metals from the landfill as well as the bacterial contamination from landfill site and other anthropogenic activities. The analysis brings out the vulnerability of the unconfined aquifer to contamination.
Della, Lindsay J.; DeJoy, David M.; Goetzel, Ron Z.; Ozminkowski, Ronald J.; Wilson, Mark G.
2009-01-01
Objective This paper describes the development of the Leading by Example (LBE) instrument. Methods Exploratory factor analysis was used to obtain an initial factor structure. Factor validity was evaluated using confirmatory factor analysis methods. Cronbach’s alpha and item-total correlations provided information on the reliability of the factor subscales. Results Four subscales were identified: business alignment with health promotion objectives; awareness of the health-productivity link; worksite support for health promotion; leadership support for health promotion. Factor by group comparisons revealed that the initial factor structure is effective in detecting differences in organizational support for health promotion across different employee groups Conclusions Management support for health promotion can be assessed using the LBE, a brief, self-report questionnaire. Researchers can use the LBE to diagnose, track, and evaluate worksite health promotion programs. PMID:18517097
Confirmatory factor analysis of the Child Oral Health Impact Profile (Korean version).
Cho, Young Il; Lee, Soonmook; Patton, Lauren L; Kim, Hae-Young
2016-04-01
Empirical support for the factor structure of the Child Oral Health Impact Profile (COHIP) has not been fully established. The purposes of this study were to evaluate the factor structure of the Korean version of the COHIP (COHIP-K) empirically using confirmatory factor analysis (CFA) based on the theoretical framework and then to assess whether any of the factors in the structure could be grouped into a simpler single second-order factor. Data were collected through self-reported COHIP-K responses from a representative community sample of 2,236 Korean children, 8-15 yr of age. Because a large inter-factor correlation of 0.92 was estimated in the original five-factor structure, the two strongly correlated factors were combined into one factor, resulting in a four-factor structure. The revised four-factor model showed a reasonable fit with appropriate inter-factor correlations. Additionally, the second-order model with four sub-factors was reasonable with sufficient fit and showed equal fit to the revised four-factor model. A cross-validation procedure confirmed the appropriateness of the findings. Our analysis empirically supported a four-factor structure of COHIP-K, a summarized second-order model, and the use of an integrated summary COHIP score. © 2016 Eur J Oral Sci.
Analysis of the regulation of viral transcription.
Gloss, Bernd; Kalantari, Mina; Bernard, Hans-Ulrich
2005-01-01
Despite the small genomes and number of genes of papillomaviruses, regulation of their transcription is very complex and governed by numerous transcription factors, cis-responsive elements, and epigenetic phenomena. This chapter describes the strategies of how one can approach a systematic analysis of these factors, elements, and mechanisms. From the numerous different techniques useful for studying transcription, we describe in detail three selected protocols of approaches that have been relevant in shaping our knowledge of human papillomavirus transcription. These are DNAse I protection ("footprinting") for location of transcription-factor binding sites, electrophoretic mobility shifts ("gelshifts") for analysis of bound transcription factors, and bisulfite sequencing for analysis of DNA methylation as a prerequisite for epigenetic transcriptional regulation.
[Factor Analysis: Principles to Evaluate Measurement Tools for Mental Health].
Campo-Arias, Adalberto; Herazo, Edwin; Oviedo, Heidi Celina
2012-09-01
The validation of a measurement tool in mental health is a complex process that usually starts by estimating reliability, to later approach its validity. Factor analysis is a way to know the number of dimensions, domains or factors of a measuring tool, generally related to the construct validity of the scale. The analysis could be exploratory or confirmatory, and helps in the selection of the items with better performance. For an acceptable factor analysis, it is necessary to follow some steps and recommendations, conduct some statistical tests, and rely on a proper sample of participants. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
[Quantitative surface analysis of Pt-Co, Cu-Au and Cu-Ag alloy films by XPS and AES].
Li, Lian-Zhong; Zhuo, Shang-Jun; Shen, Ru-Xiang; Qian, Rong; Gao, Jie
2013-11-01
In order to improve the quantitative analysis accuracy of AES, We associated XPS with AES and studied the method to reduce the error of AES quantitative analysis, selected Pt-Co, Cu-Au and Cu-Ag binary alloy thin-films as the samples, used XPS to correct AES quantitative analysis results by changing the auger sensitivity factors to make their quantitative analysis results more similar. Then we verified the accuracy of the quantitative analysis of AES when using the revised sensitivity factors by other samples with different composition ratio, and the results showed that the corrected relative sensitivity factors can reduce the error in quantitative analysis of AES to less than 10%. Peak defining is difficult in the form of the integral spectrum of AES analysis since choosing the starting point and ending point when determining the characteristic auger peak intensity area with great uncertainty, and to make analysis easier, we also processed data in the form of the differential spectrum, made quantitative analysis on the basis of peak to peak height instead of peak area, corrected the relative sensitivity factors, and verified the accuracy of quantitative analysis by the other samples with different composition ratio. The result showed that the analytical error in quantitative analysis of AES reduced to less than 9%. It showed that the accuracy of AES quantitative analysis can be highly improved by the way of associating XPS with AES to correct the auger sensitivity factors since the matrix effects are taken into account. Good consistency was presented, proving the feasibility of this method.
Factor analysis of the Hamilton Depression Rating Scale in Parkinson's disease.
Broen, M P G; Moonen, A J H; Kuijf, M L; Dujardin, K; Marsh, L; Richard, I H; Starkstein, S E; Martinez-Martin, P; Leentjens, A F G
2015-02-01
Several studies have validated the Hamilton Depression Rating Scale (HAMD) in patients with Parkinson's disease (PD), and reported adequate reliability and construct validity. However, the factorial validity of the HAMD has not yet been investigated. The aim of our analysis was to explore the factor structure of the HAMD in a large sample of PD patients. A principal component analysis of the 17-item HAMD was performed on data of 341 PD patients, available from a previous cross sectional study on anxiety. An eigenvalue ≥1 was used to determine the number of factors. Factor loadings ≥0.4 in combination with oblique rotations were used to identify which variables made up the factors. Kaiser-Meyer-Olkin measure (KMO), Cronbach's alpha, Bartlett's test, communality, percentage of non-redundant residuals and the component correlation matrix were computed to assess factor validity. KMO verified the sample's adequacy for factor analysis and Cronbach's alpha indicated a good internal consistency of the total scale. Six factors had eigenvalues ≥1 and together explained 59.19% of the variance. The number of items per factor varied from 1 to 6. Inter-item correlations within each component were low. There was a high percentage of non-redundant residuals and low communality. This analysis demonstrates that the factorial validity of the HAMD in PD is unsatisfactory. This implies that the scale is not appropriate for studying specific symptom domains of depression based on factorial structure in a PD population. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modelling and analysis of FMS productivity variables by ISM, SEM and GTMA approach
NASA Astrophysics Data System (ADS)
Jain, Vineet; Raj, Tilak
2014-09-01
Productivity has often been cited as a key factor in a flexible manufacturing system (FMS) performance, and actions to increase it are said to improve profitability and the wage earning capacity of employees. Improving productivity is seen as a key issue for survival and success in the long term of a manufacturing system. The purpose of this paper is to make a model and analysis of the productivity variables of FMS. This study was performed by different approaches viz. interpretive structural modelling (ISM), structural equation modelling (SEM), graph theory and matrix approach (GTMA) and a cross-sectional survey within manufacturing firms in India. ISM has been used to develop a model of productivity variables, and then it has been analyzed. Exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) are powerful statistical techniques. CFA is carried by SEM. EFA is applied to extract the factors in FMS by the statistical package for social sciences (SPSS 20) software and confirming these factors by CFA through analysis of moment structures (AMOS 20) software. The twenty productivity variables are identified through literature and four factors extracted, which involves the productivity of FMS. The four factors are people, quality, machine and flexibility. SEM using AMOS 20 was used to perform the first order four-factor structures. GTMA is a multiple attribute decision making (MADM) methodology used to find intensity/quantification of productivity variables in an organization. The FMS productivity index has purposed to intensify the factors which affect FMS.
Galyean, Anne A; Filliben, James J; Holbrook, R David; Vreeland, Wyatt N; Weinberg, Howard S
2016-11-18
Asymmetric flow field flow fractionation (AF 4 ) has several instrumental factors that may have a direct effect on separation performance. A sensitivity analysis was applied to ascertain the relative importance of AF 4 primary instrument factor settings for the separation of a complex environmental sample. The analysis evaluated the impact of instrumental factors namely, cross flow, ramp time, focus flow, injection volume, and run buffer concentration on the multi-angle light scattering measurement of natural organic matter (NOM) molar mass (MM). A 2 (5-1) orthogonal fractional factorial design was used to minimize analysis time while preserving the accuracy and robustness in the determination of the main effects and interactions between any two instrumental factors. By assuming that separations resulting in smaller MM measurements would be more accurate, the analysis produced a ranked list of effects estimates for factors and interactions of factors based on their relative importance in minimizing the MM. The most important and statistically significant AF 4 instrumental factors were buffer concentration and cross flow. The least important was ramp time. A parallel 2 (5-2) orthogonal fractional factorial design was also employed on five environmental factors for synthetic natural water samples containing silver nanoparticles (NPs), namely: NP concentration, NP size, NOM concentration, specific conductance, and pH. None of the water quality characteristic effects or interactions were found to be significant in minimizing the measured MM; however, the interaction between NP concentration and NP size was an important effect when considering NOM recovery. This work presents a structured approach for the rigorous assessment of AF 4 instrument factors and optimal settings for the separation of complex samples utilizing efficient orthogonal factional factorial design and appropriate graphical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Macpherson, Ignacio; Roqué-Sánchez, María V; Legget Bn, Finola O; Fuertes, Ferran; Segarra, Ignacio
2016-10-01
personalised support provided to women by health professionals is one of the prime factors attaining women's satisfaction during pregnancy and childbirth. However the multifactorial nature of 'satisfaction' makes difficult to assess it. Statistical multivariate analysis may be an effective technique to obtain in depth quantitative evidence of the importance of this factor and its interaction with the other factors involved. This technique allows us to estimate the importance of overall satisfaction in its context and suggest actions for healthcare services. systematic review of studies that quantitatively measure the personal relationship between women and healthcare professionals (gynecologists, obstetricians, nurse, midwifes, etc.) regarding maternity care satisfaction. The literature search focused on studies carried out between 1970 and 2014 that used multivariate analyses and included the woman-caregiver relationship as a factor of their analysis. twenty-four studies which applied various multivariate analysis tools to different periods of maternity care (antenatal, perinatal, post partum) were selected. The studies included discrete scale scores and questionnaires from women with low-risk pregnancies. The "personal relationship" factor appeared under various names: care received, personalised treatment, professional support, amongst others. The most common multivariate techniques used to assess the percentage of variance explained and the odds ratio of each factor were principal component analysis and logistic regression. the data, variables and factor analysis suggest that continuous, personalised care provided by the usual midwife and delivered within a family or a specialised setting, generates the highest level of satisfaction. In addition, these factors foster the woman's psychological and physiological recovery, often surpassing clinical action (e.g. medicalization and hospital organization) and/or physiological determinants (e.g. pain, pathologies, etc.). Copyright © 2016 Elsevier Ltd. All rights reserved.
Cui, Zhen; Tian, Ye; He, Bin; Li, Hongwei; Li, Duojie; Liu, Jingjing; Cai, Hanfei; Lou, Jianjun; Jiang, Hao; Shen, Xueming; Peng, Kaigui
2015-01-01
Radiation pneumonitis is one of the most severe complications of esophageal cancer. To explore the factors correlated to radiation pneumonitis induced by precise radiotherapy for elderly patients with esophageal cancer. The retrospective analysis was used to collect clinical data from 186 elderly patients with esophageal cancer. The incidence of radiation pneumonitis was observed, followed by statistical analysis through ANVON or multiple regression analysis. 27 in 186 cases of esophageal cancer suffered from radiation pneumonitis, with incidence of 14.52%. The single factor analysis showed that, Karnofsky performance status (KPS) score, chronic obstructive pulmonary disease, concurrent chemoradiotherapy, gross tumor volume (GTV) dose, lung V20, mean lung dose (MLD) and planning target volume (PTV) were associated with radiation pneumonitis. The logistic regression analysis indicated that, concurrent chemoradiotherapy, GTV dose, lung V20 and PTV were the independent factors of radiation pneumonitis. The concurrent chemoradiotherapy, GTV dose, lung V20, MLD and PTV are the major risk factors of radiation pneumonitis for elderly patients with esophageal cancer.
2018-01-01
Background To further understand the relationship between anxiety and depression, this study examined the factor structure of the combined items from two validated measures for anxiety and depression. Methods The participants were 406 patients with mixed psychiatric diagnoses including anxiety and depressive disorders from a psychiatric outpatient unit at a university-affiliated medical center. Responses of the Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI)-II, and Symptom Checklist-90-Revised (SCL-90-R) were analyzed. We conducted an exploratory factor analysis of 42 items from the BAI and BDI-II. Correlational analyses were performed between subscale scores of the SCL-90-R and factors derived from the factor analysis. Scores of individual items of the BAI and BDI-II were also compared between groups of anxiety disorder (n = 185) and depressive disorder (n = 123). Results Exploratory factor analysis revealed the following five factors explaining 56.2% of the total variance: somatic anxiety (factor 1), cognitive depression (factor 2), somatic depression (factor 3), subjective anxiety (factor 4), and autonomic anxiety (factor 5). The depression group had significantly higher scores for 12 items on the BDI while the anxiety group demonstrated higher scores for six items on the BAI. Conclusion Our results suggest that anxiety and depressive symptoms as measured by the BAI and BDI-II can be empirically differentiated and that particularly items of the cognitive domain in depression and those of physical domain in anxiety are noteworthy. PMID:29651821
ERIC Educational Resources Information Center
Areekkuzhiyil, Santhosh
2014-01-01
The study aims to explore the various factors that influence the organizational stress of teachers working in higher education sector in the state of Kerala. The data required for the study has been conveniently collected from 200 teachers working in higher education sector. Exploratory factor analysis revealed nine factors, which significantly…
ERIC Educational Resources Information Center
Edwards, Jeffrey R.; O'Neill, Regina M.
1998-01-01
Confirmatory factor analysis was used to evaluate alternative factor structures, based on previous exploratory factor analyses and coping dimensions derived from the theory of R. Lazarus, for the Ways of Coping Questionnaire (S. Folkman and R. Lazarus, 1988). Results from responses of 654 college graduates provide little support for the factor…
The Columbia Impairment Scale: Factor Analysis Using a Community Mental Health Sample
ERIC Educational Resources Information Center
Singer, Jonathan B.; Eack, Shaun M.; Greeno, Catherine M.
2011-01-01
Objective: The objective of this study was to test the factor structure of the parent version of the Columbia Impairment Scale (CIS) in a sample of mothers who brought their children for community mental health (CMH) services (n = 280). Method: Confirmatory factor analysis (CFA) was used to test the fit of the hypothesized four-factor structure…
Watson, Paul Barry; Seaton, Philippa; Sims, Deborah; Jamieson, Isabel; Mountier, Jane; Whittle, Rose; Saarikoski, Mikko
2014-01-01
The Clinical Learning Environment, Supervision and Nurse Teacher (CLES+T) scale measures student nurses' perceptions of clinical learning environments. This study evaluates the construct validity and internal reliability of the CLES+T in hospital settings in New Zealand. Comparisons are made between New Zealand and Finnish data. The CLES+T scale was completed by 416 Bachelor of Nursing students following hospital clinical placements between October 2008 and December 2009. Construct validity and internal reliability were assessed using exploratory factor analysis and Cronbach's alpha. Exploratory factor analysis supports 4 factors. Cronbach's alpha ranged from .82 to .93. All items except 1 loaded on the same factors found in unpublished Finnish data. The first factor combined 2 previous components from the published Finnish component analysis and was renamed: connecting with, and learning in, communities of clinical practice. The remaining 3 factors (Nurse teacher, Supervisory relationship, and Leadership style of the manager) corresponded to previous components and their conceptualizations. The CLES+T has good internal reliability and a consistent factor structure across samples. The consistency across international samples supports faculties and hospitals using the CLES+T to benchmark the quality of clinical learning environments provided to students.
A factor analysis of the SSQ (Speech, Spatial, and Qualities of Hearing Scale).
Akeroyd, Michael A; Guy, Fiona H; Harrison, Dawn L; Suller, Sharon L
2014-02-01
The speech, spatial, and qualities of hearing questionnaire (SSQ) is a self-report test of auditory disability. The 49 items ask how well a listener would do in many complex listening situations illustrative of real life. The scores on the items are often combined into the three main sections or into 10 pragmatic subscales. We report here a factor analysis of the SSQ that we conducted to further investigate its statistical properties and to determine its structure. Statistical factor analysis of questionnaire data, using parallel analysis to determine the number of factors to retain, oblique rotation of factors, and a bootstrap method to estimate the confidence intervals. 1220 people who have attended MRC IHR over the last decade. We found three clear factors, essentially corresponding to the three main sections of the SSQ. They are termed "speech understanding", "spatial perception", and "clarity, separation, and identification". Thirty-five of the SSQ questions were included in the three factors. There was partial evidence for a fourth factor, "effort and concentration", representing two more questions. These results aid in the interpretation and application of the SSQ and indicate potential methods for generating average scores.
Multivariate analysis of fears in dental phobic patients according to a reduced FSS-II scale.
Hakeberg, M; Gustafsson, J E; Berggren, U; Carlsson, S G
1995-10-01
This study analyzed and assessed dimensions of a questionnaire developed to measure general fears and phobias. A previous factor analysis among 109 dental phobics had revealed a five-factor structure with 22 items and an explained total variance of 54%. The present study analyzed the same material using a multivariate statistical procedure (LISREL) to reveal structural latent variables. The LISREL analysis, based on the correlation matrix, yielded a chi-square of 216.6 with 195 degrees of freedom (P = 0.138) and showed a model with seven latent variables. One was a general fear factor correlated to all 22 items. The other six factors concerned "Illness & Death" (5 items), "Failures & Embarrassment" (5 items), "Social situations" (5 items), "Physical injuries" (4 items), "Animals & Natural phenomena" (4 items). One item (opposite sex) was included in both "Failures & Embarrassment" and "Social situations". The last factor, "Social interaction", combined all the items in "Failures & Embarrassment" and "Social situations" (9 items). In conclusion, this multivariate statistical analysis (LISREL) revealed and confirmed a factor structure similar to our previous study, but added two important dimensions not shown with a traditional factor analysis. This reduced FSS-II version measures general fears and phobias and may be used on a routine clinical basis as well as in dental phobia research.
The Dispositions for Culturally Responsive Pedagogy Scale
ERIC Educational Resources Information Center
Whitaker, Manya C.; Valtierra, Kristina Marie
2018-01-01
Purpose: The purpose of this study is to develop and validate the dispositions for culturally responsive pedagogy scale (DCRPS). Design/methodology/approach: Scale development consisted of a six-step process including item development, expert review, exploratory factor analysis, factor interpretation, confirmatory factor analysis and convergent…
Human Factors Analysis of Pipeline Monitoring and Control Operations: Final Technical Report
DOT National Transportation Integrated Search
2008-11-26
The purpose of the Human Factors Analysis of Pipeline Monitoring and Control Operations project was to develop procedures that could be used by liquid pipeline operators to assess and manage the human factors risks in their control rooms that may adv...
To Identify the Important Soil Properties Affecting Dinoseb Adsorption with Statistical Analysis
Guan, Yiqing; Wei, Jianhui; Zhang, Danrong; Zu, Mingjuan; Zhang, Liru
2013-01-01
Investigating the influences of soil characteristic factors on dinoseb adsorption parameter with different statistical methods would be valuable to explicitly figure out the extent of these influences. The correlation coefficients and the direct, indirect effects of soil characteristic factors on dinoseb adsorption parameter were analyzed through bivariate correlation analysis, and path analysis. With stepwise regression analysis the factors which had little influence on the adsorption parameter were excluded. Results indicate that pH and CEC had moderate relationship and lower direct effect on dinoseb adsorption parameter due to the multicollinearity with other soil factors, and organic carbon and clay contents were found to be the most significant soil factors which affect the dinoseb adsorption process. A regression is thereby set up to explore the relationship between the dinoseb adsorption parameter and the two soil factors: the soil organic carbon and clay contents. A 92% of the variation of dinoseb sorption coefficient could be attributed to the variation of the soil organic carbon and clay contents. PMID:23737715