Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli
Alibolandi, Mona; Mirzahoseini, Hasan
2011-01-01
This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8 M urea. The adsorption was made in expanded bed without clarification steps such as centrifugation. Column refolding was done by elimination of urea and elution with NaCl. The human basic fibroblast growth factor was obtained as a highly purified soluble monomer form with similar behavior in circular dichroism and fluorescence spectroscopy as native protein. A total of 92.52% of the available human basic fibroblast growth factor was recovered as biologically active and purified protein using the mentioned purification and refolding process. This resulted in the first procedure describing high-throughput purification and refolding of human basic fibroblast growth factor in one step and is likely to have the greatest benefit for proteins that tend to aggregate when refolded by dilution. PMID:21837279
Potential role of fibroblast growth factor in enhancement of fracture healing.
Radomsky, M L; Thompson, A Y; Spiro, R C; Poser, J W
1998-10-01
Fibroblast growth factors are present in significant amounts in bone and several studies have suggested that they may be involved in normal fracture healing. It is well established that fibroblast growth factors have mitogenic and angiogenic activity on mesoderm and neuroectoderm derived cells. Of particular interest as a member of the fibroblast growth factor family, basic fibroblast growth factor stimulates mitogenesis, chemotaxis, differentiation, and angiogenesis. It also plays an important role in the development of vascular, nervous, and skeletal systems, promotes the maintenance and survival of certain tissues, and stimulates wound healing and tissue repair. Animal studies have shown that the direct injection of fibroblast growth factor into fresh fractures stimulates callus formation, which provides mechanical stability to the fracture, accelerates healing, and restores competence. The matrix used to present the fibroblast growth factor at the fracture site plays a critical role in the effectiveness of the treatment. The evaluation of injectable basic fibroblast growth factor in a sodium hyaluronate gel for its effectiveness in stimulating fracture healing is described. When applied directly into a freshly created fracture in the rabbit fibula, a single injection of the basic fibroblast growth factor and hyaluronan results in the stimulation of callus formation, increased bone formation, and earlier restoration of mechanical strength at the fracture site. The hyaluronan gel serves as a reservoir that sequesters the basic fibroblast growth factor at the injection site for the length of time necessary to create an environment conducive to fracture healing. It is concluded that basic fibroblast growth factor and sodium hyaluronate act synergistically to accelerate fracture healing and that the combination is suitable for clinical evaluation as a therapy in fracture treatment.
Huang, Weihui; Li, Yadan; Lin, Yufeng; Ye, Xue; Zang, Dawei
2012-07-05
The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion, and monitored the effect of 25 μg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor administration 2 hours after model establishment. Results showed that following administration, the number of endogenous neural stem cells in the infarct area significantly increased, malondialdehyde content in brain tissue homogenates significantly decreased, nitric oxide content, glutathione peroxidase and superoxide dismutase activity significantly elevated, and mouse motor function significantly improved as confirmed by the rotarod and bar grab tests. In particular, the effect of leukemia inhibitory factor in combination with basic fibroblast growth factor was the most significant. Results indicate that leukemia inhibitory factor and basic fibroblast growth factor can improve the microenvironment after cerebral infarction by altering free radical levels, improving the quantity of endogenous neural stem cells, and promoting neurological function of mice with cerebral infarction.
Yang, Lujun; Zhang, Dangui; Wu, Hongjuan; Xie, Sitian; Zhang, Mingjun; Zhang, Bingna; Tang, Shijie
2018-05-30
To elucidate the possible mechanisms of how basic fibroblast growth factor (bFGF) influences epidermal homeostasis in a living skin equivalent (LSE) model. Several wound healing-related growth factors were analyzed at protein and mRNA levels for dermal fibroblasts of induced alpha-smooth muscle actin (α-SMA)-positive or α-SMA-negative phenotypes. During culturing an LSE model by seeding normal human keratinocytes on a fibroblast-populated type I collagen gel, bFGF or neutralizing antibody for keratinocyte growth factor (KGF) was added to investigate its effects on fibroblast phenotypes and, subsequently, epidermal homeostasis by histology and immunohistochemistry. The α-SMA-positive phenotype of fibroblasts induced by transforming growth factor beta-1 (TGF-β1) markedly suppressed the expression of KGF and hepatocyte growth factor (HGF), and slightly upregulated vascular endothelial growth factor (VEGF) and TGF-β1 at mRNA and protein levels, compared with α-SMA-negative fibroblasts treated with bFGF. α-SMA expression of fibroblasts at the epidermal-mesenchymal junction of the LSEs was suppressed by the addition of bFGF, and a better-differentiated epidermis was presented. The abrogation of KGF from fibroblasts by the addition of the KGF neutralizing antibody disenabled the LSE culturing system to develop an epidermis. bFGF, through affecting the phenotypes and functions of fibroblasts, especially KGF expression, influenced epidermal homeostasis in an LSE model. © 2018 S. Karger AG, Basel.
Efficacy of a Single Dose of Basic Fibroblast Growth Factor: Clinical Observation for 1 Year.
Suzuki, Hirotaka; Makiyama, Kiyoshi; Hirai, Ryoji; Matsuzaki, Hiroumi; Furusaka, Toru; Oshima, Takeshi
2016-11-01
Basic fibroblast growth factor promotes wound healing by accelerating healthy granulation and epithelialization. However, the duration of the effects of a single intracordal injection of basic fibroblast growth factor has not been established, and administration intervals and timing have yet to be standardized. Here, we administered a single injection to patients with insufficient glottic closure and conducted follow-up examinations with high-speed digital imaging to determine the duration of the treatment response. Case series. For treatment, 20 µg/mL recombinant human basic fibroblast growth factor was injected into two vocal cords. The following examinations were performed before the procedure and at 3-month intervals for 12 months starting at 1 month postinjection: Grade, Roughness, Breathiness, Asthenia, and Strain (GRBAS) scale assessment, maximum phonation time, acoustic analysis, high-speed digital imaging, glottal wave analysis, and kymographic analysis. Postinjection, the GRBAS scale score decreased, and the maximum phonation time was prolonged. In addition, the mean minimum glottal area and mean minimum glottal distance decreased. These changes were significant at 12 months postinjection compared with preinjection. However, there were no significant changes in the vibrations of the vocal cord margins. The intracordal injection of basic fibroblast growth factor improved insufficient glottic closure without reducing the vibrations of the vocal cord margins. This effect remained evident at 12 months postinjection. A single injection can be expected to yield a sufficient and persistent long-term effect. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Nakanishi, Asako; Hakamada, Arata; Isoda, Ken-ichi; Mizutani, Hitoshi
2005-05-01
Recent advances in bioengineering have introduced materials that enhance wound healing. Even with such new tools, some deep ulcers surrounded by avascular tissues, including bone, tendon, and fascia, are resistant to various therapies and easily form deep cavities with loss of subcutaneous tissue. Atelocollagen sponges have been used as an artificial dermis to cover full-thickness skin defects. Topical recombinant human basic fibroblast growth factor has been introduced as a growth factor to induce fibroblast proliferation in skin ulcers. We applied these materials in combination in two patients with deep resistant wounds: one with a cavity reaching the mediastinum through a divided sternum and one with deep necrotic wounds caused by electric burns. These wounds did not respond to the topical basic fibroblast growth factor alone. In contrast, the combination therapy closed the wounds rapidly without further surgical treatment. This combination therapy is a potent treatment for resistant wounds with deep cavities.
You, Hi-Jin; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung
2015-11-01
Our previous studies demonstrated that human bone marrow-derived mesenchymal stromal cells have great potential for wound healing. However, it is difficult to clinically utilize cultured stem cells. Recently, human umbilical cord blood-derived mesenchymal stromal cells (hUCB-MSCs) have been commercialized for cartilage repair as a first cell therapy product that uses allogeneic stem cells. Should hUCB-MSCs have a superior effect on wound healing as compared with fibroblasts, which are the main cell source in current cell therapy products for wound healing, they may possibly replace fibroblasts. The purpose of this in vitro study was to compare the wound-healing activity of hUCB-MSCs with that of fibroblasts. This study was particularly designed to compare the effect of hUCB-MSCs on diabetic wound healing with those of allogeneic and autologous fibroblasts. Healthy (n = 5) and diabetic (n = 5) fibroblasts were used as the representatives of allogeneic and autologous fibroblasts for diabetic patients in the control group. Human UCB-MSCs (n = 5) were used in the experimental group. Cell proliferation, collagen synthesis and growth factor (basic fibroblast growth factor, vascular endothelial growth factor and transforming growth factor-β) production were compared among the three cell groups. Human UCB-MSCs produced significantly higher amounts of vascular endothelial growth factor and basic fibroblast growth factor when compared with both fibroblast groups. Human UCB-MSCs were superior to diabetic fibroblasts but not to healthy fibroblasts in collagen synthesis. There were no significant differences in cell proliferation and transforming growth factor-β production. Human UCB-MSCs may have greater capacity for diabetic wound healing than allogeneic or autologous fibroblasts, especially in angiogenesis. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppley, B.L.; Connolly, D.T.; Winkelmann, T.
1991-07-01
A study was undertaken to evaluate the potential utility of basic fibroblast growth factor in the induction of angiogenesis and osseous healing in bone previously exposed to high doses of irradiation. Thirty New Zealand rabbits were evaluated by introducing basic fibroblast growth factor into irradiated mandibular resection sites either prior to or simultaneous with reconstruction by corticocancellous autografts harvested from the ilium. The fate of the free bone grafts was then evaluated at 90 days postoperatively by microangiographic, histologic, and fluorochrome bone-labeling techniques. Sequestration, necrosis, and failure to heal to recipient osseous margins was observed both clinically and histologically inmore » all nontreated irradiated graft sites as well as those receiving simultaneous angiogenic stimulation at the time of graft placement. No fluorescent activity was seen in these graft groups. In the recipient sites pretreated with basic fibroblast growth factor prior to placement of the graft, healing and reestablishment of mandibular contour occurred in nearly 50 percent of the animals. Active bone formation was evident at cortical margins adjacent to the recipient sites but was absent in the more central cancellous regions of the grafts.« less
Qian, J; Jiayuan, W; Wenkai, J; Peina, W; Ansheng, Z; Shukai, S; Shafei, Z; Jun, L; Longxing, N
2015-07-01
To determine how basic fibroblastic growth factor (bFGF) affected the osteogenic differentiation of human dental pulp stem cells (DPSCs) in vitro and in vivo. Basic fibroblastic growth factor stimulation of DPSCs was divided into a pre-treatment period and an osteogenic differentiation period. Alizarin red quantification experiments and alkaline phosphatase activity quantification assay were performed to examine the osteogenic differentiation of DPSCs after different bFGF stimulation. Quantification reverse transcription polymerase chain reaction was used to analyze the osteogenic gene expression of DPSCs after different bFGF stimulation. In addition, DPSCs that received the 1 and 2 weeks bFGF pre-treatments as in the in vitro experiments were mineralized for 1 week and seeded into hydroxyapatite/tricalcium phosphate (HA/TCP) pills and subcutaneously transplanted into naked mice for 2 or 3 months. The transplants were removed, sliced and stained using Modified Ponceau Trichrome Stain to observe the formation of mineralized tissue. Basic fibroblastic growth factor stimulation in the osteogenic differentiation period decreased the in vitro osteogenic differentiation ability of DPSCs. One week pre-treatment with bFGF increased the in vitro osteogenic differentiation ability of DPSCs, whereas 2 weeks pre-treatment with bFGF decreased the in vitro osteogenic differentiation ability of DPSCs. The pre-treatment period was vital for the osteogenic differentiation of DPSCs in vitro. The in vivo results were similar to the in vitro results. Basic fibroblastic growth factor affected the osteogenic differentiation of DPSCs in a treatment-dependent manner both in vitro and in vivo. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Mydlo, J H; Michaeli, J; Heston, W D; Fair, W R
1988-01-01
In our previous work we demonstrated that prostate-derived growth factor (PrGF) is homologous to basic fibroblast growth factor (bFGF), not acidic fibroblast growth factor (aFGF). Using Northern blot analysis we now show that the messenger RNA for bFGF but not aFGF is expressed in benign prostatic hyperplastic (BPH) tissue as well as in carcinoma of the prostate (CAP). This not only corroborates our previous results, but suggests that PrGF is produced locally and not merely stored in the prostate. The demonstration of local production of bFGF by prostate tissue may indicate that this growth factor plays a role, either alone or in conjunction with other factors, in the etiology of benign hyperplasia or prostatic cancer.
Laplante, Patrick; Brillant-Marquis, Frédéric; Brissette, Marie-Joëlle; Joannette-Pilon, Benjamin; Cayrol, Romain; Kokta, Victor; Cailhier, Jean-François
2017-09-01
Macrophages are essential for tissue repair. They have a crucial role in cutaneous wound healing, participating actively in the inflammation phase of the process. Unregulated macrophage activation may, however, represent a source of excessive inflammation, leading to abnormal wound healing and hypertrophic scars. Our research group has shown that apoptotic endothelial and epithelial cells secrete MFG-E8, which has the ability to reprogram macrophages from an M1 (proinflammatory) to an M2 (anti-inflammatory, pro-repair) phenotype. Hence, we tested whether modulation of macrophage reprogramming would promote tissue repair. Using a mouse model of wound healing, we showed that the presence and/or addition of MFG-E8 favors wound closure associated with an increase in CD206-positive cells and basic fibroblast growth factor production in healing tissues. More importantly, adoptive transfer of ex vivo MFG-E8-treated macrophages promoted wound closure. We also observed that MFG-E8-treated macrophages produced basic fibroblast growth factor that is responsible for fibroblast migration and proliferation. Taken together, our results strongly suggest that MFG-E8 plays a key role in macrophage reprogramming in tissue healing through induction of an anti-inflammatory M2 phenotype and basic fibroblast growth factor production, leading to fibroblast migration and wound closure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Waki, Michinori; Ohno, Motonori; Kuwano, Michihiko; Sakata, Toshiie
1993-01-01
Platelet factor 4 (PF‐4) blocks the binding of basic fibroblast growth factor (bFGF) to its receptor. In the present study, we constructed carboxyl‐terminal fragments, which represent the heparin‐binding region of the PF‐4 molecule, and examined whether these synthetic peptides retain the blocking effects on the receptor binding of bFGF. Synthetic peptides inhibited the receptor binding of bFGF. Furthermore, they inhibited the migration and tube formation of bovine capillary endothelial cells in culture (these phenomena are dependent on endogenous bFGF). PMID:8320164
Bioglass Activated Skin Tissue Engineering Constructs for Wound Healing.
Yu, Hongfei; Peng, Jinliang; Xu, Yuhong; Chang, Jiang; Li, Haiyan
2016-01-13
Wound healing is a complicated process, and fibroblast is a major cell type that participates in the process. Recent studies have shown that bioglass (BG) can stimulate fibroblasts to secrete a multitude of growth factors that are critical for wound healing. Therefore, we hypothesize that BG can stimulate fibroblasts to have a higher bioactivity by secreting more bioactive growth factors and proteins as compared to untreated fibroblasts, and we aim to construct a bioactive skin tissue engineering graft for wound healing by using BG activated fibroblast sheet. Thus, the effects of BG on fibroblast behaviors were studied, and the bioactive skin tissue engineering grafts containing BG activated fibroblasts were applied to repair the full skin lesions on nude mouse. Results showed that BG stimulated fibroblasts to express some critical growth factors and important proteins including vascular endothelial growth factor, basic fibroblast growth factor, epidermal growth factor, collagen I, and fibronectin. In vivo results revealed that fibroblasts in the bioactive skin tissue engineering grafts migrated into wound bed, and the migration ability of fibroblasts was stimulated by BG. In addition, the bioactive BG activated fibroblast skin tissue engineering grafts could largely increase the blood vessel formation, enhance the production of collagen I, and stimulate the differentiation of fibroblasts into myofibroblasts in the wound site, which would finally accelerate wound healing. This study demonstrates that the BG activated skin tissue engineering grafts contain more critical growth factors and extracellular matrix proteins that are beneficial for wound healing as compared to untreated fibroblast cell sheets.
Metzler, Veronika Maria; Pritz, Christian; Riml, Anna; Romani, Angela; Tuertscher, Raphaela; Steinbichler, Teresa; Dejaco, Daniel; Riechelmann, Herbert; Dudás, József
2017-11-01
Fibroblasts play a central role in tumor invasion, recurrence, and metastasis in head and neck squamous cell carcinoma. The aim of this study was to investigate the influence of tumor cell self-produced factors and paracrine fibroblast-secreted factors in comparison to indirect co-culture on cancer cell survival, growth, migration, and epithelial-mesenchymal transition using the cell lines SCC-25 and human gingival fibroblasts. Thereby, we particularly focused on the participation of the fibroblast-secreted transforming growth factor beta-1.Tumor cell self-produced factors were sufficient to ensure tumor cell survival and basic cell growth, but fibroblast-secreted paracrine factors significantly increased cell proliferation, migration, and epithelial-mesenchymal transition-related phenotype changes in tumor cells. Transforming growth factor beta-1 generated individually migrating disseminating tumor cell groups or single cells separated from the tumor cell nest, which were characterized by reduced E-cadherin expression. At the same time, transforming growth factor beta-1 inhibited tumor cell proliferation under serum-starved conditions. Neutralizing transforming growth factor beta antibody reduced the cell migration support of fibroblast-conditioned medium. Transforming growth factor beta-1 as a single factor was sufficient for generation of disseminating tumor cells from epithelial tumor cell nests, while other fibroblast paracrine factors supported tumor nest outgrowth. Different fibroblast-released factors might support tumor cell proliferation and invasion, as two separate effects.
Mydlo, J H; Zajac, J; Macchia, R J
1993-09-01
In a previous report, we demonstrated the isolation and purification of a heparin binding growth factor from human renal carcinoma, and suggested that this growth factor may play a role in the neovascularity and growth of the tumor. In this report, we demonstrate that the growth of the renal cell carcinoma cell line RC29 is stimulated by the addition of exogenous fibroblast growth factor (FGF), epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha). Also, media conditioned by this cell line was able to stimulate growth of the A431 vulvar tumor cell line, known for its high concentration of EGF receptors, 3T3 fibroblasts, human umbilical vein (HUV) cells and RC29 cells. Using heparin-sepharose chromatography and then SDS polyacrylamide gel electrophoresis (PAGE), we were able to demonstrate several proteins in the conditioned media of the RC29 cell line. Using Western blot analysis, we detected that at least one of the proteins expressed in this conditioned media was FGF and that it belongs to the basic, not acidic, family of fibroblast growth factors. These findings suggest that renal tumors may express growth factors that may play a direct role in maintaining their unrestricted proliferation.
Wang, Xu; Zhu, Yuting; Sun, Congcong; Wang, Tao; Shen, Yingjie; Cai, Wanhui; Sun, Jia; Chi, Lisha; Wang, Haijun; Song, Na; Niu, Chao; Shen, Jiayi; Cong, Weitao; Zhu, Zhongxin; Xuan, Yuanhu; Li, Xiaokun; Jin, Litai
2017-01-01
Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine9 (pGSK3β Ser9) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts. PMID:28217097
Anan, K; Morisaki, T; Katano, M; Ikubo, A; Kitsuki, H; Uchiyama, A; Kuroki, S; Tanaka, M; Torisu, M
1996-03-01
Angiogenesis is a prerequisite for tumor growth and metastasis. Tumor angiogenesis may be mediated by several angiogenic factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), transforming growth factor-alpha, and basic fibroblast growth factor. Differential mRNA expressions of VEGF, PDGF (A chain), transforming growth factor-alpha and basic fibroblast growth factor in 32 primary invasive breast tumors were examined by reverse transcriptase-polymerase chain reaction. We analyzed relationships between mRNA expressions of these angiogenic factors and the degree of angiogenesis, tumor size, and metastasis. Quantification of angiogenesis was achieved by the immunohistochemical staining of endothelial cells with antibody to CD31. VEGF and PDGF-A mRNAs were expressed more frequently in breast tumors than in nontumor breast tissues, whereas no difference was found in expression frequency of either transforming growth factor-alpha or basic fibroblast growth factor mRNA. Vascular counts in tumors correlated with each expression frequency of VEGF and PDGF-A mRNA. PDGF-A mRNA was expressed more frequently in tumors with lymph node metastasis than in those without metastasis. Expression of VEGF and PDGF mRNAs detected by reverse transcriptase-polymerase chain reaction in breast tumors correlates with tumor-related characteristics of angiogenesis and metastatic potential. Analysis of these mRNAs by reverse transcriptase-polymerase chain reaction may be useful for assessing the biologic behavior of a breast tumor before surgical treatment.
Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury
Akita, Sadanori; Akino, Kozo; Hirano, Akiyoshi; Ohtsuru, Akira; Yamashita, Shunichi
2010-01-01
Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs) with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years. PMID:21151652
Upadhyay, Aadesh; Chattopadhyay, Pronobesh; Goyary, Danswrang; Mitra Mazumder, Papiya; Veer, Vijay
2014-01-01
Background. Ixora coccinea L. (Rubiaceae) has been documented for traditional use in hypertension, menstrual irregularities, sprain, chronic ulcer, and skin diseases. In the present study, I. coccinea was subjected to in vitro and in vivo wound healing investigation. Methods. Petroleum ether, chloroform, methanol, and water sequential I. coccinea leaves extracts were evaluated for in vitro antioxidant, antimicrobial, and fibroblast proliferation activities. The promising I. coccinea methanol extract (IxME) was screened for in vivo wound healing activity in Wistar rat using circular excision model. Wound contraction measurement, hydroxyproline quantification, and western blot for collagen type III (COL3A1), basic fibroblast growth factor (bFGF), and Smad-2, -3, -4, and -7 was performed with 7-day postoperative wound granulation tissue. Gentamicin sulfate (0.01% w/w) hydrogel was used as reference standard. Results. IxME showed the potent antimicrobial, antioxidant activities, with significant fibroblast proliferation inducing activity, as compared to all other extracts. In vivo study confirmed the wound healing accelerating potential of IxME, as evidenced by faster wound contraction, higher hydroxyproline content, and improved histopathology of granulation tissue. Western blot analysis revealed that the topical application of I. coccinea methanol extract stimulates the fibroblast growth factor and Smad mediated collagen production in wound tissue. PMID:24624303
Jung, Gyung Ah; Shin, Bong Shik; Jang, Yeon Sue; Sohn, Jae Bum; Woo, Seon Rang; Kim, Jung Eun; Choi, Go; Lee, Kyung Mi; Min, Bon Hong; Lee, Kee Ho; Park, Gil Hong
2011-10-31
Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)- p21Cip/WAF1 activation, and suppressed by the mitogenactivated protein kinase (MAPK) inhibitor PD98059 and p21Cip/WAF1 short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway.
Jung, Gyung Ah; Shin, Bong Shik; Jang, Yeon Sue; Sohn, Jae Bum; Woo, Seon Rang; Kim, Jung Eun; Choi, Go; Lee, Kyung-Mi; Min, Bon Hong
2011-01-01
Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)-p21Cip/WAF1 activation, and suppressed by the mitogen-activated protein kinase (MAPK) inhibitor PD98059 and p21Cip/WAF1 short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway. PMID:21778808
Effect of growth factors on hyaluronan production by canine vocal fold fibroblasts.
Hirano, Shigeru; Bless, Diane M; Heisey, Dennis; Ford, Charles N
2003-07-01
Hyaluronan (HYA) is considered to be a crucial factor in scarless wound healing and in maintaining tissue viscosity of the vocal fold lamina propria. In this study focusing on the effects of growth factors, we examined how HYA is produced and controlled in canine cultured vocal fold fibroblasts. Fibroblasts were taken from the lamina propria of the vocal folds of 8 dogs and cultured with and without growth factors. The production of HYA in the supernatant culture was quantitatively examined by enzyme-linked immunosorbent assay. Hepatocyte growth factor, epidermal growth factor, basic fibroblast growth factor, and transforming growth factor beta1 all stimulated HYA synthesis from vocal fold fibroblasts. These effects differed with the concentration of growth factors and the incubation period. We also examined how frequently the growth factors had to be administered in order to maintain appropriate levels of HYA. A single administration was sufficient to maintain appropriate HYA levels for at least 7 days. The present studies have demonstrated positive effects of growth factors in stimulating HYA production. Further in vivo study is needed to clarify the usefulness of these growth factors in the management of vocal fold scarring.
Togami, Kohei; Miyao, Aki; Miyakoshi, Kei; Kanehira, Yukimune; Tada, Hitoshi; Chono, Sumio
2015-01-01
In the present in vitro study, we assessed the delivery of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor (tbFGF) to lung fibroblasts and investigated the anti-fibrotic effect of the drug. The tbFGF peptide, KRTGQYKLC, was used to modify the surface of liposomes (tbFGF-liposomes). We used the thin-layer evaporation method, followed by sonication, to prepare tbFGF-liposomes containing pirfenidone. The cellular accumulation of tbFGF-liposomes was 1.7-fold greater than that of non-modified liposomes in WI-38 cells used as a model of lung fibroblasts. Confocal laser scanning microscopy showed that tbFGF-liposomes were widely localized in WI-38 cells. The inhibitory effects of pirfenidone incorporated into tbFGF-liposomes on transforming growth factor-β1 (TGF-β1)-induced collagen synthesis in WI-38 cells were evaluated by measuring the level of intracellular hydroxyproline, a major component of the protein collagen. Pirfenidone incorporated into tbFGF-liposomes at concentrations of 10, 30, and 100 µM significantly decreased the TGF-β1-induced hydroxyproline content in WI-38 cells. The anti-fibrotic effect of pirfenidone incorporated into tbFGF-liposomes was enhanced compared with that of pirfenidone solution. These results indicate that tbFGF-liposomes are a useful drug delivery system of anti-fibrotic drugs to lung fibroblasts for the treatment of idiopathic pulmonary fibrosis.
Kaji, T; Hiraga, S; Ohkawara, S; Inada, M; Yamamoto, C; Kozuka, H; Koizumi, F
1995-05-01
The alteration of glycosaminoglycans (GAGs) in cultured bovine aortic endothelial cells after exposure to basic fibroblast growth factor (bFGF) was investigated. It was found that the incorporation of [3H]glucosamine into GAGs was markedly increased by bFGF in both the cell layer and the conditioned medium; however, that of [35S]sulfate was not changed by the growth factor. These results indicated that bFGF enhanced the sugar-chain formation but did not affect their sulfation in endothelial GAG production. Similar changes were observed in either bovine aortic smooth-muscle cells and human fibroblastic IMR-90 cells to greater and lesser degrees, respectively. Characterization of GAGs in the endothelial cell layer and the conditioned medium revealed that bFGF enhanced both heparan sulfate and the other GAGs to a similar degree. The present data suggest that bFGF may be involved in the regulation of the blood coagulation system via altering GAGs of the vascular tissue when the endothelium was damaged.
NASA Astrophysics Data System (ADS)
Sevostyanova, V. V.; Matveeva, V. G.; Antonova, L. V.; Velikanova, E. A.; Shabaev, A. R.; Senokosova, E. A.; Krivkina, E. O.; Vasyukov, G. Yu.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.
2016-11-01
Incorporation of the growth factors into biodegradable polymers is a promising approach for the fabrication of tissue-engineered vascular grafts. Here we blended poly(ɛ-caprolactone) (PCL) with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) following incorporation of either vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) and then fabricated electrospun 2 mm diameter vascular grafts. Grafts without the growth factors were used as a control group. Structure of the grafts was assessed utilizing scanning electron microscopy. We further implanted our grafts into rat abdominal aorta for 1 and 3 months with the aim to test endothelialization, cell infiltration, and patency in vivo. Histological and immunofluorescence examination demonstrated enhanced endothelialization and cell infiltration of the grafts with either VEGF or bFGF compared to those without the growth factors. Grafts with VEGF showed higher patency compared to those with bFGF; however, bFGF promoted migration of smooth muscle cells and fibroblasts into the graft. Therefore, we conclude that incorporation of VEGF and bFGF into the inner and medial/outer layer, respectively, can be a promising option for the fabrication of tissue-engineered vascular grafts.
Fibroblast Growth Factors Stimulate Hair Growth through β-Catenin and Shh Expression in C57BL/6 Mice
Lin, Wei-hong; Xiang, Li-Jun; Shi, Hong-Xue; Zhang, Jian; Jiang, Li-ping; Cai, Ping-tao; Lin, Zhen-Lang; Lin, Bei-Bei; Huang, Yan; Zhang, Hai-Lin; Fu, Xiao-Bing; Guo, Ding-Jiong; Li, Xiao-Kun; Wang, Xiao-Jie; Xiao, Jian
2015-01-01
Growth factors are involved in the regulation of hair morphogenesis and cycle hair growth. The present study sought to investigate the hair growth promoting activities of three approved growth factor drugs, fibroblast growth factor 10 (FGF-10), acidic fibroblast growth factor (FGF-1), and basic fibroblast growth factor (FGF-2), and the mechanism of action. We observed that FGFs promoted hair growth by inducing the anagen phase in telogenic C57BL/6 mice. Specifically, the histomorphometric analysis data indicates that topical application of FGFs induced an earlier anagen phase and prolonged the mature anagen phase, in contrast to the control group. Moreover, the immunohistochemical analysis reveals earlier induction of β-catenin and Sonic hedgehog (Shh) in hair follicles of the FGFs-treated group. These results suggest that FGFs promote hair growth by inducing the anagen phase in resting hair follicles and might be a potential hair growth-promoting agent. PMID:25685806
Xiang, Yun; Liu, Huihua; Yan, Tiebin; Zhuang, Zhiqiang; Jin, Dongmei; Peng, Yuan
2014-01-01
Previous studies have shown that proliferation of endogenous neural precursor cells cannot alone compensate for the damage to neurons and axons. From the perspective of neural plasticity, we observed the effects of functional electrical stimulation treatment on endogenous neural precursor cell proliferation and expression of basic fibroblast growth factor and epidermal growth factor in the rat brain on the infarct side. Functional electrical stimulation was performed in rat models of acute middle cerebral artery occlusion. Simultaneously, we set up a placebo stimulation group and a sham-operated group. Immunohistochemical staining showed that, at 7 and 14 days, compared with the placebo group, the numbers of nestin (a neural precursor cell marker)-positive cells in the subgranular zone and subventricular zone were increased in the functional electrical stimulation treatment group. Western blot assays and reverse-transcription PCR showed that total protein levels and gene expression of epidermal growth factor and basic fibroblast growth factor were also upregulated on the infarct side. Prehensile traction test results showed that, at 14 days, prehension function of rats in the functional electrical stimulation group was significantly better than in the placebo group. These results suggest that functional electrical stimulation can promote endogenous neural precursor cell proliferation in the brains of acute cerebral infarction rats, enhance expression of basic fibroblast growth factor and epidermal growth factor, and improve the motor function of rats. PMID:25206808
Casey-Sawicki, Kate; Zhang, Mei; Kim, Sunghee; Zhang, Amy; Zhang, Steven B; Zhang, Zhenhuan; Singh, Ravi; Yang, Shanmin; Swarts, Steven; Vidyasagar, Sadasivan; Zhang, Lurong; Zhang, Aiguo; Okunieff, Paul
2014-06-01
The effects of fibroblast growth factors and their potential as broad-spectrum agents to treat and mitigate radiation injury have been studied extensively over the past two decades. This report shows that a peptide mimetic of basic fibroblast growth factor (FGF-P) protects and mitigates against acute radiation syndromes. FGF-P attenuates both sepsis and bleeding in a radiation-induced bone marrow syndrome model and reduces the severity of gastrointestinal and cutaneous syndromes; it should also mitigate combined injuries. FGF-2 and FGF-P induce little or no deleterious inflammation or vascular leakage, which distinguishes them from most other growth factors, angiogenic factors, and cytokines. Although recombinant FGFs have proven safe in several ongoing clinical trials, they are expensive to synthesize, can only be produced in limited quantity, and have limited shelf life. FGF-P mimics the advantageous features of FGF-2 without these disadvantages. This paper shows that FGF-P not only has the potential to be a potent yet safe broad-spectrum medical countermeasure that mitigates acute radiotoxicity but also holds promise for thermal burns, ischemic wound healing, tissue engineering, and stem-cell regeneration.
Ma, Fukai; Xiao, Zhifeng; Chen, Bing; Hou, Xianglin; Dai, Jianwu; Xu, Ruxiang
2014-04-01
Natural biological functional scaffolds, consisting of biological materials filled with promoting elements, provide a promising strategy for the regeneration of peripheral nerve defects. Collagen conduits have been used widely due to their excellent biological properties. Linear ordered collagen scaffold (LOCS) fibers are good lumen fillers that can guide nerve regeneration in an ordered direction. In addition, basic fibroblast growth factor (bFGF) is important in the recovery of nerve injury. However, the traditional method for delivering bFGF to the lesion site has no long-term effect because of its short half-life and rapid diffusion. Therefore, we fused a specific collagen-binding domain (CBD) peptide to the N-terminal of native basic fibroblast growth factor (NAT-bFGF) to retain bFGF on the collagen scaffolds. In this study, a natural biological functional scaffold was constructed using collagen tubes filled with collagen-binding bFGF (CBD-bFGF)-loaded LOCS to promote regeneration in a 5-mm rat sciatic nerve transection model. Functional evaluation, histological investigation, and morphometric analysis indicated that the natural biological functional scaffold retained more bFGF at the injury site, guided axon growth, and promoted nerve regeneration as well as functional restoration.
The Influence of Primary Microenvironment on Prostate Cancer Osteoblastic Bone Lesion Development
2015-09-01
for inhibiting PCa bone lesion development: 3a. Basic fibroblast growth factor (bFGF) in PC3 bone metastasis: bFGF was identified by cytokine...II receptor (TβRII) knockout (Tgfbr2 KO) mouse models. Col1creERT/Tgfbr2 KO (Col/Tgfbr2 KO), which have TGF-β signaling specific KO in fibroblasts ... fibroblasts and osteoblasts in the bone by Colcre/Tgfbr2 KO, or in the myeloid lineage cells, including osteoclasts in the bone by LysMcre/Tgfbr2 KO
Koide, J; Takada, K; Sugiura, M; Sekine, H; Ito, T; Saito, K; Mori, S; Takeuchi, T; Uchida, S; Abe, T
1997-01-01
An Epstein-Barr virus (EBV)-infected fibroblast line, designated DSEK, was spontaneously established from synovial tissue of a patient with rheumatoid arthritis (RA). DSEK cells expressed EBV nuclear antigens EBNA-1 and EBNA-2 and latent membrane protein LMP-1. Cell surface markers of DSEK cells were similar to those of EBV-negative fibroblast clones derived from synoviocytes and were negative for lymphocyte and macrophage markers. DSEK cells expressed CD44, CD58, and HLA-DR antigens and spontaneously produced interleukin-10 basic fibroblast growth factor and transforming growth factor beta1. These results indicate that rheumatoid synoviocytes can be a target for EBV infection and suggest that EBV may play a role in the pathogenesis of RA. PMID:9032386
Teotia, Pooja; Sharma, Shilpa; Airan, Balram; Mohanty, Sujata
2016-12-01
Human embryonic stem cell (hESC) lines are commonly maintained on inactivated feeder cells, in the medium supplemented with basic fibroblast growth factor (bFGF). However, limited availability of feeder cells in culture, and the high cost of growth factors limit their use in scalable expansion of hESC cultures for clinical application. Here, we describe an efficient and cost-effective feeder and bFGF-free culture of hESCs using conditioned medium (CM) from immortalized feeder cells. KIND-1 hESC cell line was cultured in CM, collected from primary mouse embryonic fibroblast, human foreskin fibroblast (HFF) and immortalized HFF (I-HFF). Pluripotency of KIND-1 hESC cell line was confirmed by expression of genes, proteins and cell surface markers. In culture, these cells retained normal morphology, expressed all cell surface markers, could differentiate to embryoid bodies upon culture in vitro. Furthermore, I-HFF feeder cells without supplementation of bFGF released ample amount of endogenous bFGF to maintain stemness of hESC cells. The study results described the use of CM from immortalized feeder cells as a consistent source and an efficient, inexpensive feeder-free culture system for the maintenance of hESCs. Moreover, it was possible to maintain hESCs without exogenous supplementation of bFGF. Thus, the study could be extended to scalable expansion of hESC cultures for therapeutic purposes.
Kitadai, Y.; Ellis, L. M.; Tucker, S. L.; Greene, G. F.; Bucana, C. D.; Cleary, K. R.; Takahashi, Y.; Tahara, E.; Fidler, I. J.
1996-01-01
We examined the expression level of several genes that regulate different steps of metastasis in formalin-fixed, paraffin-embedded archival specimens of primary human colon carcinomas from patients with at least 5 years of follow-up. The expression of epidermal growth factor receptor, basic fibroblast growth factor, type IV collagenase, E-cadherin, and multidrug resistance (mdr-1) was examined by a colorimetric in situ mRNA hybridization technique concentrating on reactivity at the periphery of the neoplasms. The in situ hybridization technique revealed inter- and intratumor heterogeneity for expression of the metastasis-related genes. The expression of basic fibroblast growth factor, collagenase type IV, epidermal growth factor receptor, and mdr-1 mRNA was higher in Dukes's stage D than in Dukes' stage B tumors. Among the 22 Dukes' stage B neoplasms, 5 specimens exhibited a high expression level of epidermal growth factor receptor, basic fibroblast growth factor, and collagenase type IV. Clinical outcome data (5-year follow-up) revealed that all 5 patients with Dukes' stage B tumors developed distant metastasis (recurrent disease), whereas the other 17 patients with Dukes' stage B tumors expressing low levels of the metastasis-related genes were disease-free. Multivariate analysis identified high levels of expression of collagenase type IV and low levels of expression of E-cadherin as independent factors significantly associated with metastasis or recurrent disease. More specifically, metastatic or recurrent disease was associated with a high ratio (> 1.35) of expression of collagenase type IV to E-cadherin (specificity of 95%). Collectively, the data show that multiparametric in situ hybridization analysis for several metastasis-related genes may predict the metastatic potential, and hence the clinical outcome, of individual lymph-node-negative human colon cancers. Images Figure 1 Figure 2 PMID:8909244
Im, Hee-Jeong; Li, Xin; Muddasani, Prasuna; Kim, Gun-Hee; Davis, Francesca; Rangan, Jayanthi; Forsyth, Christopher B; Ellman, Michael; Thonar, Eugene J M A
2008-05-01
Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK(1)-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1beta accelerate matrix degradation via a neural pathway upregulation of substance P and NK(1)-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK(1)-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK(1)-R is, in part, through an IL-1beta-dependent pathway. (c) 2007 Wiley-Liss, Inc.
IM, HEE-JEONG; LI, XIN; MUDDASANI, PRASUNA; KIM, GUN-HEE; DAVIS, FRANCESCA; RANGAN, JAYANTHI; FORSYTH, CHRISTOPHER B.; ELLMAN, MICHAEL; THONAR, EUGENE JMA
2010-01-01
Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK1-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1β accelerate matrix degradation via a neural pathway upregulation of substance P and NK1-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK1-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK1-R is, in part, through an IL-1β-dependent pathway. PMID:17960584
Acidic fibroblast growth factor (FGF) but not basic FGF induces sleep and fever in rabbits.
Knefati, M; Somogyi, C; Kapás, L; Bourcier, T; Krueger, J M
1995-07-01
Acidic fibroblast growth factor (FGF) and basic FGF belong to a growth factor family. Interleukin-1, another member of that family, is involved in sleep regulation. FGFs and interleukin-1 share structural and functional features. We therefore determined whether acidic FGF and basic FGF were somnogenic. Male New Zealand White rabbits were provided with electroencephalographic (EEG) electrodes, a brain thermistor, and a lateral intracerebroventricular (icv) cannula. The animals were injected icv with isotonic NaCl (control) and on separate days with one of three doses of acidic or basic FGF (0.01, 0.1, or 1.0 micrograms) or with heat-treated acidic FGF (1.0 micrograms). The EEG, brain temperature, and motor activity were recorded for 23 h. The biological activity of basic FGF was determined in vitro by its ability to induce DNA synthesis in rat aortic smooth muscle cells. Acidic FGF induced prolonged dose-related increases in non-rapid eye movement sleep beginning in the 1st postinjection h and continuing for 12-23 h after the treatment. Acidic FGF also induced fevers of approximately 1 degree C after the 1.0 micrograms dose. Both activities of acidic FGF were lost after heat treatment. In contrast, basic FGF lacked somnogenic and pyrogenic activity, although it did induce DNA synthesis. Current results suggest that acidic FGF is part of the complex cytokine network in brain involved in sleep regulation.
Schreier, T; Degen, E; Baschong, W
1993-01-01
During the formation of granulation tissue in a dermal wound, platelets, monocytes and other cellular blood constituents release various peptide growth factors to stimulate fibroblasts to migrate into the wound site and proliferate, in order to reconstitute the various connective tissue components. The effect on fibroblast migration and proliferation of these growth factors, and of Solcoseryl (HD), a deproteinized fraction of calf blood used to normalize wound granulation and scar tissue formation, was quantified in vitro. The presence of basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-beta) and hemodialysate (HD) increased the number of cells in the denuded area, i.e., in the "wound space" of an artificially ruptured monolayer of LM-fibroblasts (mouse lung fibroblasts). When cell proliferation was blocked with Mitomycin C, in the first 24 h all factors, i.e., bFGF, PDGF, TGF-beta and HD, promoted cell migration, whereas after 48 h it became obvious that each factor stimulated both migration and proliferation, each in a characteristic way. The effects were significant and more distinct after 48 h, following the order: PDGF (46%) approximately bFGF (87%) > HD (45%) approximately TGF-beta (40%) > control (62%). The relative contributions of migration after inhibiting proliferation are given in brackets. The modulatory activity of HD was localized in its hydrophilic fraction. It was destroyed by acid hydrolysis. Furthermore, this activity could be blocked by protamine sulfate, an inhibitor blocking peptide growth factor receptor binding.
Heparin-binding growth factor isolated from human prostatic extracts.
Mydlo, J H; Bulbul, M A; Richon, V M; Heston, W D; Fair, W R
1988-01-01
Prostatic tissue extracts from patients with benign prostatic hyperplasia (BPH) and prostatic carcinoma were fractionated using heparin-Sepharose chromatography. The mitogenic activity of eluted fractions on quiescent subconfluent Swiss Albino 3T3 fibroblasts was tested employing a tritiated-thymidine-incorporation assay. Two peaks of activity were consistently noted--one in the void volume and a second fraction which eluted with 1.3-1.6 M NaCl and contained the majority of the mitogenic activity. Both non-heparin- and heparin-binding fractions increased tritiated incorporation into a mouse osteoblast cell line (MC3T3), while only the heparin-binding fractions stimulated a human umbilical vein endothelial cell line (HUV). No increased uptake of thymidine was seen using a human prostatic carcinoma cell line (PC-3). Sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) of lyophilized active fractions showed a persistent band at 17,500 daltons. The purified protein demonstrated angiogenic properties using the chick embryo chorioallantoic membrane (CAM) assay. Western blot analysis using antibodies specific to basic fibroblast growth factor (bFGF) or acidic FGF (aFGF) demonstrated that the former, but not the latter, bound to prostatic growth factor (PrGF), and inhibited its mitogenic activity as well. It appears that PrGF shares homology with basic fibroblast growth factors.
Fibroblast Growth Factor 23 in Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Bokhari, R.; Zwart, S. R.; Fields, E.; Heer, M.; Sibonga, J.; Smith, S. M.
2015-01-01
Many nutritional factors influence bone, from the basics of calcium and vitamin D, to factors which influence bone through acid/base balance, including protein, sodium, and more. Fibroblast growth factor 23 (FGF23) is a recently identified factor, secreted from osteocytes, which is involved in classic (albeit complex) feedback loops controlling phosphorus homeostasis through both vitamin D and parathyroid hormone (PTH) (1, 2). As osteocytes are gravity sensing cells, it is important to determine if there are changes in FGF23 during spaceflight. In extreme cases, such as chronic kidney disease, FGF23 levels are highly elevated. FGF23 imbalances, secondary to dietary influences, may contribute to skeletal demineralization and kidney stone risk during spaceflight.
NASA Astrophysics Data System (ADS)
Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng
2003-12-01
Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.
Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Zhong Xin; Sun, Cong Cong; Wenzhou People's Hospital, Wenzhou, Zhejiang
Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Westernmore » blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.« less
Kono, Kiyomi; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Monnouchi, Satoshi; Teramatsu, Yoko; Hamano, Sayuri; Koori, Katsuaki; Akamine, Akifumi
2013-05-01
Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-β1 (TGFβ1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGFβ1 after bFGF (bFGF/TGFβ1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGFβ1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGFβ1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGFβ1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGFβ1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium.
Xiao, Zhibo; Zhang, Fengmin; Lin, Weibin; Zhang, Miaobo; Liu, Ying
2010-08-01
Hypertrophic scar is a common dermal disease. Numerous treatments are currently available but they do not always yield excellent therapeutic results. Hence, alternatives are needed. Recent basic and clinical research has shown that botulinum toxin type A (BTXA) has antihypertrophic scar properties but the molecular mechanism for this action is unknown. The aim of this study was to explore the effect of BTXA on transforming growth factor beta1 (TGF-beta1) in fibroblasts derived from hypertrophic scar and further elucidate its actual mechanism. Fibroblasts were isolated from tissue specimens of hypertrophic scar. Fibroblasts were treated with BTXA and the difference in proliferation between treated and nontreated cells was analyzed through the MTT method from the first to the fifth day after treatment. Proteins of TGF-beta1 were checked using ELISA in fibroblasts with BTXA and without BTXA from the first to the fifth day. The growth of the fibroblast treated with BTXA was obviously slower than that of the fibroblast without BTXA treatment (p < 0.01), which showed that BTXA effectively inhibited the growth of fibroblasts. Proteins of TGF-beta1 between fibroblasts with BTXA and fibroblasts without BTXA are statistically significant (p < 0.01). These results suggest that BTXA effectively inhibited the growth of fibroblasts derived from hypertrophic scar and in turn caused a decrease in TGF-beta1 protein, indicating that BTXA-based therapies for hypertrophic scar are promising and worth investigating further.
Effects of mitomycin-C on normal dermal fibroblasts.
Chen, Theodore; Kunnavatana, Shaun S; Koch, R James
2006-04-01
To evaluate the effects of mitomycin-C on the growth and autocrine growth factor production of human dermal fibroblasts from the face. In vitro study using normal adult dermal fibroblast cell lines in a serum-free model. Cell cultures were exposed to 4 mg/mL, 0.4 mg/mL, 0.04 mg/mL, 0.004 mg/mL, and 0.0004 mg/mL concentrations of mitomycin-C solution. Cell counts were performed, and the cell-free supernatants were collected at 0, 1, 3, and 5 days after the initial exposure. Population doubling times were calculated and supernatants were quantitatively assayed for basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta1. Continuous exposure to mitomycin-C caused fibroblast cell death by day 7 at all tested concentrations. A 4 minute exposure to mitomycin-C at 4 mg/mL caused rapid fibroblast cell death. A 4-minute exposure to mitomycin-C at either 0.4 mg/mL or 0.04 mg/mL resulted in decreased fibroblast proliferation. A 4 minute exposure to mitomycin-C at 0.4 mg/mL resulted in a marked increase in the production of both bFGF and TGF-beta1. A clinically ideal concentration of mitomycin-C would slow fibroblast proliferation yet not cause cell death to allow for a wound healing response. Mitomycin-C 0.4 mg/mL for 4 minutes satisfies the above criteria in vitro.
c-erbA and v-erbA modulate growth and gene expression of a mouse glial precursor cell line.
Iglesias, T; Llanos, S; López-Barahona, M; Pérez-Aranda, A; Rodríguez-Peña, A; Bernal, J; Höhne, A; Seliger, B; Muñoz, A
1994-07-01
The c-erbA alpha protooncogene coding for the thyroid hormone (T3) receptor (TR alpha 1) and the viral, mutated v-erbA oncogene were expressed in an immortal mouse glial cell line (B3.1) using retroviral vectors. c-erbA alpha expression led to a decrease in cell proliferation in high and low serum conditions, both in the presence and in the absence of T3. In serum-free medium, c-erbA-expressing cells (B3.1 + TR alpha 1) were completely arrested, whereas cells expressing v-erbA (B3.1 + v-erbA) showed a higher DNA synthesis rate than normal B3.1 cells. Although proliferation of all three cell types was stimulated by platelet-derived growth factor and basic fibroblast growth factor, differences were also observed in the response to these agents. B3.1 + TR alpha 1 cells were more sensitive to platelet-derived growth factor than B3.1 and B3.1 + v-erbA cells. In contrast, B3.1 cells responded to basic fibroblast growth factor better than B3.1 + TR alpha 1 or B3.1 + v-erbA cells. Insulin-like growth factor I potentiated the action of platelet-derived growth factor and basic fibroblast growth factor. Again, different responses to treatment with insulin-like growth factor I alone were observed; B3.1 + TR alpha 1 cells did not respond to it, whereas B3.1 + v-erbA cells showed a dramatic stimulation by this agent. Interestingly, in the presence of T3, the blockade in B3.1 + TR alpha 1 cell proliferation was accompanied by the down-regulation of the typical astrocytic genes, glial fibrillary acidic protein and vimentin. These hormone effects were not found in v-erbA-expressing cells. In addition, v-erbA inhibited the basal expression of the cyclic nucleotide phosphodiesterase gene, an oligodendrocytic marker.(ABSTRACT TRUNCATED AT 250 WORDS)
Kabir, Nima; Arshi, Armin; Nazemi, Azadeh; Wu, Ben; Petrigliano, Frank A.; McAllister, David R.
2015-01-01
Anterior cruciate ligament (ACL) rupture is a common ligamentous injury often necessitating surgery. Current surgical treatment options include ligament reconstruction with autograft or allograft, which have their inherent limitations. Thus, there is interest in a tissue-engineered substitute for use in ACL regeneration. However, there have been relatively few in vivo studies to date. In this study, an athymic rat model of ACL reconstruction was used to evaluate electrospun polycaprolactone (PCL) grafts, with and without the addition of basic fibroblast growth factor (bFGF) and human foreskin fibroblasts. We examined the regenerative potential of tissue-engineered ACL grafts using histology, immunohistochemistry, and mechanical testing up to 16 weeks postoperatively. Histology showed infiltration of the grafts with cells, and immunohistochemistry demonstrated aligned collagen deposition with minimal inflammatory reaction. Mechanical testing of the grafts demonstrated significantly higher mechanical properties than immediately postimplantation. Acellular grafts loaded with bFGF achieved 58.8% of the stiffness and 40.7% of the peak load of healthy native ACL. Grafts without bFGF achieved 31.3% of the stiffness and 28.2% of the peak load of healthy native ACL. In this in vivo rodent model study for ACL reconstruction, the histological and mechanical evaluation demonstrated excellent healing and regenerative potential of our electrospun PCL ligament graft. PMID:25744933
Ververis, J; Ku, L; Delafontaine, P
1994-02-01
Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.
Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena
2015-01-01
To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins. © 2015 S. Karger AG, Basel.
Myostatin downregulates the expression of basic fibroblast growth factor gene in HeLa cells.
Liu, H Z; Luo, P; Chen, S H; Shang, J H
2012-01-01
Basic fibroblast growth factor (bFGF or FGF-2), a potent tumorigenic cytokine, improves cells proliferation and angiogenesis in tumor and also plays vital roles in tumor growth, metastasis as well as prognosis. Screening and application of effective cytokines against bFGF tumorigenic activity would be helpful to oncologic therapy. Myostatin, a member of transforming growth factor β superfamily, recently showed an antitumor activity and was reported to induce HeLa cells apoptosis through mitochondrion pathway. The above data raised our assumption that expression level of endogenous bFGF gene may be suppressed by exogenous myostatin in myostatin-treated HeLa cells. To test the hypothesis, myostatin was employed to stimulate HeLa cells and expressional level of endogenous bFGF gene in HeLa cells was detected with real-time RT-PCR and ELISA. Results of the suppressed expression level of bFGF gene in Hela cells implied that myostatin may be regarded as an effective cytokine against bFGF to treat certain cancers (Fig. 3, Ref. 26).
Vinnik, Iu S; Salmina, A B; Tepliakova, O V; Drobushevskaia, A I; Pozhilenkova, E A; Morgun, A V; Shapran, M V; Kovalenko, A O
2015-01-01
Levels of interleukins-6, 8, 10, TNF-alpha and basic fibroblast growth factor (bFGF) were examined in peripheral blood of 60 patients with diabetes mellitus type II and soft tissues infections. It was revealed the elevated levels of proinflammatory (IL-6, 8), anti-inflammatory (IL-10) cytokines and basic fibroblast growth factor at the time of admission. Application of combined ozone therapy including ozonated autohemotherapy and superficial management of wounds with ozone-oxygen mixture resulted in significant decrease of IL-6, 8, 10 production and high level of bFGF on blood serum. Thus effective local bactericidal impact of ozone in combination with normalization of proinflammatory cytokines levels and preserved high level of bFGF in peripheral blood provide better results of wound healing process in patients with diabetes mellitus type II.
Shirakata, Yoshinori; Takeuchi, Naoshi; Yoshimoto, Takehiko; Taniyama, Katsuyoshi; Noguchi, Kazuyuki
2013-01-01
This study evaluated the effects of enamel matrix derivative (EMD) and basic fibroblast growth factor (bFGF) with μ-tricalcium phosphate (μ-TCP) on periodontal healing in intrabony defects in dogs. One-wall intrabony defects created in dogs were treated with μ-TCP alone (μ-TCP), EMD with μ-TCP (EMD/μ-TCP), bFGF with μ-TCP (bFGF/μ-TCP), and a combination of each (EMD/bFGF/μ-TCP). The amount of new bone formation was not significant for any group. The EMD/bFGF/μ-TCP group induced significantly greater new cementum formation than the μ-TCP and bFGF/μ-TCP groups and, although not significantly, formed more new cementum than the EMD/μ-TCP group. These findings indicate that EMD/bFGF/μ-TCP treatment is effective for cementum regeneration.
She, Zhen; Wang, Chunxia; Li, Jun; Sukhorukov, Gleb B; Antipina, Maria N
2012-07-09
Basic fibroblast growth factor (FGF2) is an important protein for cellular activity and highly vulnerable to environmental conditions. FGF2 protected by heparin and bovine serum albumin was loaded into the microcapsules by a coprecipitation-based layer-by-layer encapsulation method. Low cytotoxic and biodegradable polyelectrolytes dextran sulfate and poly-L-arginine were used for capsule shell assembly. The shell thickness-dependent encapsulation efficiency was measured by enzyme-linked immunosorbent assay. A maximum encapsulation efficiency of 42% could be achieved by microcapsules with a shell thickness of 14 layers. The effects of microcapsule concentration and shell thickness on cytotoxicity, FGF2 release kinetics, and L929 cell proliferation were evaluated in vitro. The advantage of using microcapsules as the carrier for FGF2 controlled release for enhancing L929 cell proliferation was analyzed.
Nagaoka, Aya; Yoshida, Hiroyuki; Nakamura, Sachiko; Morikawa, Tomohiko; Kawabata, Keigo; Kobayashi, Masaki; Sakai, Shingo; Takahashi, Yoshito; Okada, Yasunori; Inoue, Shintaro
2015-12-25
Regulation of hyaluronan (HA) synthesis and degradation is essential to maintenance of extracellular matrix homeostasis. We recently reported that HYBID (HYaluronan-Binding protein Involved in hyaluronan Depolymerization), also called KIAA1199, plays a key role in HA depolymerization in skin and arthritic synovial fibroblasts. However, regulation of HA metabolism mediated by HYBID and HA synthases (HASs) under stimulation with growth factors remains obscure. Here we report that TGF-β1, basic FGF, EGF, and PDGF-BB commonly enhance total amount of HA in skin fibroblasts through up-regulation of HAS expression, but molecular size of newly produced HA is dependent on HYBID expression levels. Stimulation of HAS1/2 expression and suppression of HYBID expression by TGF-β1 were abrogated by blockade of the MAPK and/or Smad signaling and the PI3K-Akt signaling, respectively. In normal human skin, expression of the TGF-β1 receptors correlated positively with HAS2 expression and inversely with HYBID expression. On the other hand, TGF-β1 up-regulated HAS1/2 expression but exerted only a slight suppressive effect on HYBID expression in synovial fibroblasts from the patients with osteoarthritis or rheumatoid arthritis, resulting in the production of lower molecular weight HA compared with normal skin and synovial fibroblasts. These data demonstrate that although TGF-β1, basic FGF, EGF, and PDGF-BB enhance HA production in skin fibroblasts, TGF-β1 most efficiently contributes to production of high molecular weight HA by HAS up-regulation and HYBID down-regulation and suggests that inefficient down-regulation of HYBID by TGF-β1 in arthritic synovial fibroblasts may be linked to accumulation of depolymerized HA in synovial fluids in arthritis patients. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Zhou, Qing-Jun; Huang, Yan-Dan; Xiang, Li-Xin; Shao, Jian-Zhong; Zhou, Guo-Shun; Yao, Hang; Dai, Li-Cheng; Lu, Yong-Liang
2007-01-01
The feasibility of transforming embryonic endoderm into different cell types is tightly controlled by mesodermal and septum transversumal signalings during early embryonic development. Here, an induction protocol tracing embryonic liver development was designed, in which, three growth factors, acid fibroblast growth factor, basic fibroblast growth factor and bone morphological protein-4 that secreted from pre-cardiac mesoderm and septum transversum mesenchyme, respectively, were employed to investigate their specific potency of modulating the mature hepatocyte proportion during the differentiation process. Results showed that hepatic differentiation took place spontaneously at a low level, however, supplements of the three growth factors gave rise to a significant up-regulation of mature hepatocytes. Bone morphological protein-4 highlighted the differentiation ratio to 40-55%, showing the most effective promotion, and also exhibited a synergistic effect with the other two fibroblast factors, whereas no similar phenomenon was observed between the other two factors, which was reported for the first time. Our study not only provides a high-performance system of embryonic stem cells differentiating into hepatocytes, which would supply a sufficient hepatic population for related studies, but also make it clear of the inductive effects of three important growth factors, which could support for further investigation on the mechanisms of mesodermal and septumal derived signalings that regulate hepatic differentiation.
Characterization of a heparin-binding growth factor from adenocarcinoma of the kidney.
Mydlo, J H; Heston, W D; Fair, W R
1988-12-01
A polypeptide isolated from tissue extracts of renal adenocarcinoma was mitogenic for BALB/c 3T3 cells and human umbilical vein (HUV) cells in culture. It also demonstrated angiogenic ability using the chorioallantoic membrane bioassay. Using heparin-sepharose affinity chromatography the purified protein eluted with a NaCl concentration between 1.4 and 1.8 M and demonstrated a molecular weight of approximately 17,000 daltons based on SDS polyacrylamide gel electrophoresis. Half maximal stimulation of tritiated thymidine incorporation into BALB/c 3T3 cells was achieved by 1.6 ng./ml. of the heparin binding material. Western blot analysis using antibodies specific to basic fibroblast growth factor (bFGF) only or acidic FGF (aFGF) only demonstrated that the purified protein binds to the former and not the latter. The characteristics of this material, in effect the elution profile off heparin-Sepharose, the molecular weight, angiogenic activity and the results of western blot analysis, suggest that this growth factor is similar to the family of basic fibroblast growth factors.
Butt, Hira; Mehmood, Azra; Ali, Muhammad; Tasneem, Saba; Anjum, Muhammad Sohail; Tarar, Moazzam N; Khan, Shaheen N; Riazuddin, Sheikh
2017-09-01
Oxidative microenvironment of burnt skin restricts the outcome of cell based therapies of thermal skin injuries. The aim of this study was to precondition human dermal fibroblasts with an antioxidant such as vitamin E to improve their survival and therapeutic abilities in heat induced oxidative in vitro environment. Fibroblasts were treated with 100μM vitamin E for 24h at 37°C followed by heat shock for 10min at 51°C in fresh serum free medium. Preconditioning with vitamin E reduced cell injury as demonstrated by decreased expression of annexin-V, cytochrome p450 (CYP450) mediated oxidative reactions, senescence and release of lactate dehydrogenase (LDH) accomplished by down-regulated expression of pro-apoptotic BAX gene. Vitamin E preconditioned cells exhibited remarkable improvement in cell viability, release of paracrine factors such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), stromal derived factor-1alpha (SDF-1α) and also showed significantly up-regulated levels of PCNA, VEGF, BCL-XL, FGF7, FGF23, FLNβ and Col7α genes presumably through activation of phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. The results suggest that pretreatment of fibroblasts with vitamin E prior to transplantation in burnt skin speeds up the wound healing process by improving the antioxidant scavenging responses in oxidative environment of transplanted burn wounds. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of mitomycin on normal dermal fibroblast and HaCat cell: an in vitro study
Wang, Yao-wen; Ren, Ji-hao; Xia, Kun; Wang, Shu-hui; Yin, Tuan-fang; Xie, Ding-hua; Li, Li-hua
2012-01-01
Objective: To evaluate the effects of mitomycin on the growth of human dermal fibroblast and immortalized human keratinocyte line (HaCat cell), particularly the effect of mitomycin on intracellular messenger RNA (mRNA) synthesis of collagen and growth factors of fibroblast. Methods: The normal dermal fibroblast and HaCat cell were cultured in vitro. Cell cultures were exposed to 0.4 and 0.04 mg/ml of mitomycin solution, and serum-free culture medium was used as control. The cellular morphology change, growth characteristics, cell proliferation, and apoptosis were observed at different intervals. For the fibroblasts, the mRNA expression changes of transforming growth factor (TGF)-β1, basic fibroblast growth factor (bFGF), procollagen I, and III were detected by reverse transcription polymerase chain reaction (RT-PCR). Results: The cultured normal human skin fibroblast and HaCat cell grew exponentially. A 5-min exposure to mitomycin at either 0.4 or 0.04 mg/ml caused marked dose-dependent cell proliferation inhibition on both fibroblasts and HaCat cells. Cell morphology changed, cell density decreased, and the growth curves were without an exponential phase. The fibroblast proliferated on the 5th day after the 5-min exposure of mitomycin at 0.04 mg/ml. Meanwhile, 5-min application of mitomycin at either 0.04 or 0.4 mg/ml induced fibroblast apoptosis but not necrosis. The apoptosis rate of the fibroblast increased with a higher concentration of mytomycin (p<0.05). A 5-min exposure to mitomycin at 0.4 mg/ml resulted in a marked decrease in the mRNA production of TGF-β1, procollagen I and III, and a marked increase in the mRNA production of bFGF. Conclusions: Mitomycin can inhibit fibroblast proliferation, induce fibroblast apoptosis, and regulate intracellular protein expression on mRNA levels. In additon, mitomycin can inhibit HaCat cell proliferation, so epithelial cell needs more protecting to avoid mitomycin’s side effect when it is applied clinically. PMID:23225855
Anti-Angiogenic Action of Neutral Endopeptidase
2005-11-30
side of hydrophobic amino acids and inactivates a variety of physiologically active peptides, including atrial natriuretic factor, substance P ...follows. 15. SUBJECT TERMS Angiogenesis, Cell surface peptidase , Neutral endopeptidase, Basic fibroblast growth factor, Prostate cancer Proteolysis 16...patients with prostate cancer. Cell-surface peptidases are the guardians of the cell against small stimulatory peptides, functioning to control growth
Bernardini, N.; Giannessi, F.; Bianchi, F.; Dolfi, A.; Lupetti, M.; Citti, L.; Danesi, R.; Del Tacca, M.
1993-01-01
The V79/AP4 Chinese hamster fibroblasts were densely stained with the anti-basic fibroblast growth factor (bFGF) antibody demonstrating an endogenous production of the peptide. The in vitro proliferation of these cells was stimulated by exogenous bFGF and the maximum growth (259% increase in 3H-thymidine incorporation into DNA) was reached with bFGF 10 ng ml-1. Inhibition of bFGF-mediated mitogenic pathway was obtained with a 15-mer antisense oligodeoxynucleotide targeted against bFGF mRNA and with suramin, a drug which blocks the biological activity of heparin-binding growth factors. bFGF antisense oligomer reduced the synthesis of DNA by 79.5 and 89.5% at 20 and 60 microM, respectively; this effect was reversed by the addition of exogenous bFGF to the culture medium. A short-term exposure to suramin 300 micrograms ml-1 produced a modest reduction in 3H-thymidine incorporation but suppressed the mitogenic effect of bFGF on V79/AP4 cells. In cells treated with suramin 300 micrograms ml-1 the drug concentration increased linearly over 3 days, reaching 13.15 micrograms mg-1 of protein; cell proliferation was inhibited in a dose-related manner as evaluated by the colony formation assay (IC50: 344.22 micrograms ml-1) and by the number of mitoses observed in culture. Furthermore, the drug induced ultrastructural alterations, consisting of perinuclear cisternae swelling, chromatin condensation, nucleolar segregation and cytoplasmic vacuolations. These findings demonstrated that the endogenous production of bFGF plays an important role in V79/AP4 fibroblasts proliferation, and the inhibition of bFGF-mediated mitogenic signalling with bFGF antisense oligomer or suramin is an effective mean of reducing cell growth. Images Figure 1 Figure 5 Figure 6 PMID:7685616
In vitro propagation of male germline stem cells from piglets.
Zheng, Yi; Tian, Xiue; Zhang, Yaqing; Qin, Jinzhou; An, Junhui; Zeng, Wenxian
2013-07-01
To study the effects of serum and growth factors on propagation of porcine male germline stem cells (MGSCs) in vitro and develop a culture system for these stem cells. Fresh testicular cells from neonatal piglets were obtained by mechanical dissociation and collagenase-trypsin digestion. After differential plating, non-adhering cells were cultured in media supplemented with different concentrations of serum (0, 1 %, 2 %, 5 %, 10 %). After 10 days of primary culture, the cells were maintained in media supplemented with different concentrations of growth factors (basic fibroblast growth factor and epidermal growth factor at 1, 5, 10 ng/ml). The number of MGSC-derived colonies with different sizes was determined in each treatment to assess the effects of serum concentrations and growth factors. The number of MGSC-derived colonies was significantly higher in the presence of 1 % rather than 10 % fetal bovine serum (FBS). Basic fibroblast growth factor (bFGF) at 1, 5 ng/ml and epidermal growth factor (EGF) at 5, 10 ng/ml significantly promoted colony formation. Immunocytochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and xenotransplantation assays demonstrated the presence of functional stem cells in cultured cell population. In vitro propagation of porcine MGSCs could be maintained in the presence of 1 % FBS and supplementation of growth factors for 1 month.
Ding, Xiao-bang; Cheng, Ning-xin; Chen, Bing; Xia, Wan-yao; Cui, Lei; Liu, Wei; Cao, Yi-lin
2004-05-01
To investigate the effect of the basic fibroblast growth factor (b-FGF) to regenerate an autologous tissue-engineered cartilage in vitro. The Cells were harvested from the elastic auricular cartilage of swine,and were plated at the concentration of 1 x 10(4) cells/cm2 , studied in vitro at two different media enviroments: Group I contained Ham's F-12 with supplements and b-FGF, Group II contained Ham's F-12 only with supplements. The passage 2 cells (after 12.75 +/- 1.26 days) were harvested and mixed with 30% pluronic F-127/Ham's F-12 at the concentration of 50 x 10(6) cells/ml. It was injected subcutaneously at 0.5 ml per implant. The implants were harvested 8 weeks after the vivo culture and examined with the histological stains. The chondrocytes displayed morphologically similar to the fibroblasts in the media containing basic-FGF. The number of cell doublings (after 12.75 +/- 1.26 days) in vitro culture was as the following: Group I, 70; Group II, 5.4. Eight 8 weeks after the vivo autologous implantation, the average weight (g) and volume (cm3) in each group was as the following: Group I, 0.371 g/0.370 cm3 Group II, 0.179 g/0.173 cm3 (P < 0.01). With the b-FGF in vitro culture, the cells were expanded by 70 times after 2 weeks. Histologically, all of the engineered cartilage in the two groups were similar to the native elastic cartilage. These results indicate that the basic-FGF could be used positively to enhance the quality and quantity of the seeding cells for the generation of the well-engineered cartilage.
Targeting Microvascular Pericytes in Angiogenic Vessels of Prostate Cancer
2006-04-01
Schlingemann RO. 2004. In vivo angiogenic phenotype of endothelial cells and pericytes induced by vascular endothelial growth factor -a. J Histochem Cytochem...R, McDonald DM. Age-related changes in vascular endothelial growth factor dependency and angiopoietin-1-induced plasti- city of adult blood vessels...hematopoietic progenitor cells and their progeny in vivo . We used the basic fibroblast growth factor (bFGF)- induced mouse corneal neovascularization
Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh
2015-12-01
Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p < 0.05). The findings of the present study demonstrate that appropriate supplementation of culture media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast division stimulation. It also suggests that the effects of bFGF on different cell types with/or without production of bFGF or other regulation factors be investigated in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa
2011-05-20
Highlights: {yields} Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. {yields} These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. {yields} The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. Thesemore » antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.« less
Kamakura, Tatsuro; Kataoka, Jiro; Maeda, Kazuhiko; Teramachi, Hideaki; Mihara, Hisayuki; Miyata, Kazuhiro; Ooi, Kouichi; Sasaki, Naomi; Kobayashi, Miyuki; Ito, Kouhei
2015-11-01
There are several treatments for wrinkles and depressed areas of the face, hands, and body. Hyaluronic acid is effective, but only for 6 months to 1 year. Autologous fat grafting may cause damage during tissue harvest. In this study, patients were injected with platelet-rich plasma plus basic fibroblast growth factor (bFGF). Platelet-rich plasma was prepared by collecting blood and extracting platelets using double centrifugation. Basic fibroblast growth factor diluted with normal saline was added to platelet-rich plasma. There were 2005 patients who received platelet-rich plasma plus bFGF therapy. Of the 2005 patients treated, 1889 were female and 116 were male patients; patients had a mean age of 48.2 years. Treated areas inlcuded 1461 nasolabial folds, 437 marionette lines, 1413 nasojugal grooves, 148 supraorbital grooves, 253 midcheek grooves, 304 foreheads, 49 temples, and 282 glabellae. Results on the Global Aesthetic Improvement Scale indicated that the level of patient satisfaction was 97.3 percent and the level of investigator satisfaction was 98.4 percent. The period for the therapy's effectiveness to become apparent was an average of 65.4 days. Platelet-rich plasma plus bFGF therapy resulted in an improved grade on the Wrinkle Severity Rating Scale. Improvement was 0.55 for a Wrinkle Severity Rating Scale grade of 2, 1.13 for a Wrinkle Severity Rating Scale grade of 3, 1.82 for a Wrinkle Severity Rating Scale grade of 4, and 2.23 for a Wrinkle Severity Rating Scale grade of 5. Platelet-rich plasma plus bFGF is effective in treating wrinkles and depressed areas of the skin of the face and body. The study revealed that platelet-rich plasma plus bFGF is an innovative therapy that causes minimal complications. Therapeutic, IV.
Shi, Hongxue; Cheng, Yi; Ye, Jingjing; Cai, Pingtao; Zhang, Jinjing; Li, Rui; Yang, Ying; Wang, Zhouguang; Zhang, Hongyu; Lin, Cai; Lu, Xianghong; Jiang, Liping; Hu, Aiping; Zhu, Xinbo; Zeng, Qiqiang; Fu, Xiaobing; Li, Xiaokun; Xiao, Jian
2015-01-01
Fibroblasts play a pivotal role in the process of cutaneous wound repair, whereas their migratory ability under diabetic conditions is markedly reduced. In this study, we investigated the effect of basic fibroblast growth factor (bFGF) on human dermal fibroblast migration in a high-glucose environment. bFGF significantly increased dermal fibroblast migration by increasing the percentage of fibroblasts with a high polarity index and reorganizing F-actin. A significant increase in intracellular reactive oxygen species (ROS) was observed in dermal fibroblasts under diabetic conditions following bFGF treatment. The blockage of bFGF-induced ROS production by either the ROS scavenger N-acetyl-L-cysteine (NAC) or the NADPH oxidase inhibitor diphenylene iodonium chloride (DPI) almost completely neutralized the increased migration rate of dermal fibroblasts promoted by bFGF. Akt, Rac1 and JNK were rapidly activated by bFGF in dermal fibroblasts, and bFGF-induced ROS production and promoted dermal fibroblast migration were significantly attenuated when suppressed respectively. In addition, bFGF-induced increase in ROS production was indispensable for the activation of focal adhesion kinase (FAK) and paxillin. Therefore, our data suggested that bFGF promotes the migration of human dermal fibroblasts under diabetic conditions through increased ROS production via the PI3K/Akt-Rac1-JNK pathways. PMID:26078726
Zhao, Wenxue; Han, Qianqian; Lin, Hang; Sun, Wenjie; Gao, Yuan; Zhao, Yannan; Wang, Bin; Wang, Xia; Chen, Bing; Xiao, Zhifeng; Dai, Jianwu
2009-05-01
Appropriate three-dimensional (3D) scaffolds and signal molecules could accelerate tissue regeneration and wound repair. In this work, we targeted human basic fibroblast growth factor (bFGF), a potent angiogenic factor, to a fibrin scaffold to improve therapeutic angiogenesis. We fused bFGF to the Kringle4 domain (K4), a fibrin-binding peptide from human plasminogen, to endow bFGF with specific fibrin-binding ability. The recombinant K4bFGF bound specifically to the fibrin scaffold so that K4bFGF was delivered in a site-specific manner, and the fibrin scaffold provided 3D support for cell migration and proliferation. Subcutaneous implantation of the fibrin scaffolds bound with K4bFGF but not with bFGF induced neovascularization. Immunohistochemical analysis showed significantly more proliferation cells in the fibrin scaffolds incorporated with K4bFGF than in those with bFGF. Moreover, the regenerative tissues were integrated well with the fibrin scaffolds, suggesting its good biocompatibility. In summary, targeted delivery of K4bFGF could potentially improve therapeutic angiogenesis.
Wu, Zhenxu; Zhou, Yulai; Chen, Li; Hu, Mingxin; Wang, Yu; Li, Linlong; Wang, Zongliang; Zhang, Peibiao
2018-03-01
The recombinant basic fibroblast growth factor (bFGF) containing collagen-binding domain (CBD) has been found to be a potential therapeutic factor in tissue regeneration. However, its binding efficiency and quantification remain uncertain. In this research, massive recombinant bFGFs with good bioactivity for enhancing the proliferation of NIH-3T3 cells were achieved. An ELISA-based quantitative method was set up to investigate the binding efficiency of CBD-bFGFs on collagen films. It indicated that the CBDs significantly increased the collagen-binding ability of bFGF (P < .05), with the optimum binding condition first determined to be in the pH range of 7.5-9.5 (P < .05). Then, the relevant equations to calculate the binding density of bFGF, C-bFGF, and V-bFGF were acquired. Analysis confirmed that the bioactivity of immobilized bFGFs was well correlated with the density of growth factor on collagen films. Based on this research, the density of growth factor is a logical and applicable dosage unit for quantification of binding efficiency of growth factors, rather than traditional concentration of soluble growth factors in tissue engineering applications. © 2018 Wiley Periodicals, Inc.
Mikami, Taro; Kaida, Eriko; Yabuki, Yuichiro; Kitamura, Sho; Kokubo, Ken'ichi; Maegawa, Jiro
2018-03-28
The distally based sural flap is regarded as the first choice for reconstruction in the distal part of the lower leg because the flap is easy to raise, reliable in its blood supply, and prone to only a few complications. Limited data have investigated the details of treatment in cases of failure of distally based sural flaps. We report a case of calcaneal osteomyelitis in which a successful outcome was finally obtained with a partially necrosed, distally based sural flap using negative pressure wound therapy with basic fibroblast growth factor spray. The 2-year follow-up examination was uneventful. Moreover, the patient was able to walk freely with an ankle-foot orthosis in her house. This technique can be considered as a useful and effective option to recover unfavorable results of distally based sural flaps. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Meloche, S; Seuwen, K; Pagès, G; Pouysségur, J
1992-05-01
We have examined the phosphorylation and protein kinase activity of p44 mitogen-activated protein kinase (p44mapk) in growth factor-stimulated hamster fibroblasts using a specific antiserum. The activity of p44mapk was stimulated both by receptor tyrosine kinases and G protein-coupled receptors. Detailed kinetics revealed that alpha-thrombin induces a biphasic activation of p44mapk in CCL39 cells: a rapid phase appearing at 5-10 min was followed by a late and sustained phase still elevated after 4 h. Inactivation of alpha-thrombin with hirudin after 30 sec, which prevented DNA synthesis, did not alter the early p44mapk response but completely abolished the late phase. Pretreatment of the cells with pertussis toxin, which inhibits by more than 95% alpha-thrombin-induced mitogenicity, resulted in the complete loss of late phase activity, while the early peak was partially attenuated. Treatment of CCL39 cells with basic fibroblast growth factor also induced a strong activation of p44mapk. Serotonin, which is not a mitogen by its own, had no effect on late phase p44mapk activity, but synergized with basic fibroblast growth factor to induce late kinase response and DNA synthesis. Both early and late phase activation of p44mapk were accompanied by tyrosine phosphorylation of the enzyme. Together, the results indicate that there is a very close correlation between the ability of a growth factor to induce late and sustained p44mapk activation and its mitogenic potential. Therefore, we propose that sustained p44mapk activation is an obligatory event for growth factor-induced cell cycle progression.
Effect of COX-2 (PGE2) and IL-6 on Prostate Cancer Bone Metastases
2008-02-02
to stimulate both bone targeting and bone reaction (4). Several factors, such as basic fibroblast growth factor (4), osteocalcin, bone sialoprotein (8...Proc Natl Acad Sci U S A 1990;87:75–9. 8. Huang WC, Xie Z, Konaka H, Sodek J, Zhau HE, Chung LWK. Human osteocalcin and bone sialoprotein medi- ating
Choi, Sungjin; Lee, Jongil; Igawa, Kazuyo; Suzuki, Shigeki; Mochizuki, Manabu; Nishimura, Ryohei; Chung, Ung-il; Sasaki, Nobuo
2011-12-01
Artificial bone implants are often incorporated with osteoinductive factors to facilitate early bone regeneration. Calcium phosphate, the main component in artificial bone implants, strongly binds these factors, and in a few cases, the incorporated proteins are not released from the implant under conditions of physiological pH, thereby leading to reduction in their osteoinductivity. In this study, we coated tailor-made bone implants with trehalose to facilitate the release of basic fibroblast growth factor (bFGF). In an in vitro study, mouse osteoblastic cells were separately cultured for 48 hr in a medium with a untreated implant (T-), trehalose-coated implant (T+), bFGF-incorporated implant (FT-), and bFGF-incorporated implant with trehalose coating (FT+). In the FT+ group, cell viability was significantly higher than that in the other groups (P<0.05). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed that trehalose effectively covered the surface of the artificial bone implant without affecting the crystallinity or the mechanical strength of the artificial bone implant. These results suggest that coating artificial bone implants with trehalose could limit the binding of bFGF to calcium phosphate.
[Pathogenetic and Prognostic Role of Growth Factors in the Development of Chronic Heart Failure].
Teplyakov, A T; Berezikova, E N; Shilov, S N; Efremova, A V; Pustovetova, M G; Popova, A A; Grakova, E V; Torim, Y Y; Safronov, I D; Andriyanova, A V
2017-10-01
To study the role of growth factors ((vascular endothelial growth factor (VEGF), platelet derived growth factor AB (PDGF-AB) and basic fibroblast growth factor (FGF-basic)) in the development and progression of chronic heart failure (CHF) in patients with ishcemic heart disease (IHD). We included in this study 94 patients with CHF. The control group comprised 32 persons. Blood serum levels of growth factors were determined at baseline and after 12 months of observation by enzyme-linked immunosorbent assay. VEGF, PDGF-AB and FGF-basic play an important role in the pathogenesis and progression of heart failure in patients with IHD, determining the increased risk of adverse cardiovascular events in this pathology. Serum activity of growth factors characterizes the severity and course of CHF: with disease progression levels of VEGF and FGF-basic decrease and PDGF-AB concentration increases. Initial low level of VEGF expression regardless of the sex of the patient's sex, significantly low level of FGF-basic and significantly high PDGF-AB in men characterizes unfavorable course of CHF. A correlation has been established between blood serum levels of VEGF, PDGF-AB and FGF-basic and severity and course of CHF.
2018-04-30
Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Fibroblast Growth Factor Basic Form Measurement; FLT3 Internal Tandem Duplication; Recurrent Adult Acute Myeloid Leukemia; Refractory Acute Myeloid Leukemia
Too, C K; Murphy, P R; Hamel, A M; Friesen, H G
1987-05-14
The previously described human pituitary-derived chondrocyte growth factor (CGF), mitogenic for rabbit fetal chondrocytes, was found to bind to heparin-Sepharose and was eluted with 1.5M NaCl. Further characterization of CGF demonstrated a molecular weight of 18-20 kD and cross-reactivity with antiserum to synthetic bovine basic fibroblast growth factor (FGF1-24). When human pituitaries were homogenized in 0.15 ammonium sulfate (pH 5.5) and the extract chromatographed on heparin-Sepharose, 98% of the mitogenic activity was adsorbed to heparin and eluted with 3M NaCl. These findings indicate that CGF is closely related or identical to basic FGF and that the bulk of mitogenic activity in the human pituitary extracts binds to heparin.
Comparison of fibrin clots derived from peripheral blood and bone marrow.
Shoji, Takeshi; Nakasa, Tomoyuki; Yoshizuka, Masaaki; Yamasaki, Takuma; Yasunaga, Yuji; Adachi, Nobuo; Ochi, Mitsuo
2017-03-01
Autologous fibrin clots derived from peripheral blood (pb-fibrin clot) and bone marrow (bm-fibrin clot) are thought to be effective for tissue regeneration. However, there is no report detailing the amount of growth factors in pb-/bm-fibrin clot. In this study we evaluated the amount of growth factors in human pb-/bm-fibrin clot, and prove the validity of fibrin clot for clinical use. Human pb-/bm-fibrin clots were obtained during surgery. In the first experiment, enzyme-linked immunosorbent assay (ELISA) was performed for detecting the amount of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), fibroblast growth factor basic (bFGF), hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-β), platelet derived-growth factors-AB (PDGF-AB), and stromal cell-derived factor-1 (SDF-1). In the second experiment, the efficacy of fibrin clot on the osteogenic differentiation and fibroblast proliferation was evaluated. Pb-/bm-fibrin clots were incubated in human osteoblast derived from mesenchymal stromal cells (MSCs) or human skin fibroblast. Alizarin red staining and real-time PCR (COL1A1, RUNX2) were performed for the detection of osteogenic potential. Cell-growth assay (WST-8) and real-time PCR (COL1A1) were also performed for the detection of the potential of fibroblast proliferation. ELISA analysis revealed that the amount of VEGF, HGF, bFGF, IGF-1, and SDF-1 of bm-fibrin clot group is higher than that of pb-fibrin clot group with statistical differences. Besides, we confirmed that bm-fibrin clot has much potential for the osteogenic differentiation and fibroblast proliferation. The positive outcomes confirm the efficacy of pb-/bm-fibrin clot, and bm-fibrin clot was proved to have much potential for tissue regeneration compared with pb-fibrin clot. The current study showed the potential of a strategy for regenerative medicine using bm-fibrin clot.
Moncion, Alexander; Lin, Melissa; O'Neill, Eric G; Franceschi, Renny T; Kripfgans, Oliver D; Putnam, Andrew J; Fabiilli, Mario L
2017-09-01
The clinical translation of pro-angiogenic growth factors for treatment of vascular disease has remained a challenge due to safety and efficacy concerns. Various approaches have been used to design spatiotemporally-controlled delivery systems for growth factors in order to recapitulate aspects of endogenous signaling and thus assist in translation. We have developed acoustically-responsive scaffolds (ARSs), which are fibrin scaffolds doped with a payload-containing, sonosensitive emulsion. Payload release can be controlled non-invasively and in an on-demand manner using focused, megahertz-range ultrasound (US). In this study, we investigate the in vitro and in vivo release from ARSs containing basic fibroblast growth factor (bFGF) encapsulated in monodispersed emulsions. Emulsions were generated in a two-step process utilizing a microfluidic device with a flow focusing geometry. At 2.5 MHz, controlled release of bFGF was observed for US pressures above 2.2 ± 0.2 MPa peak rarefactional pressure. Superthreshold US yielded a 12.6-fold increase in bFGF release in vitro. The bioactivity of the released bFGF was also characterized. When implanted subcutaneously in mice, ARSs exposed to superthreshold US displayed up to 3.3-fold and 1.7-fold greater perfusion and blood vessel density, respectively, than ARSs without US exposure. Scaffold degradation was not impacted by US. These results highlight the utility of ARSs in both basic and applied studies of therapeutic angiogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Atiba, Ayman; Nishimura, Mayumi; Kakinuma, Shizuko; Hiraoka, Takeshi; Goryo, Masanobu; Shimada, Yoshiya; Ueno, Hiroshi; Uzuka, Yuji
2011-06-01
Delayed wound healing is a significant clinical problem in patients who have had previous irradiation. This study investigated the effectiveness of Aloe vera (Av) on acute radiation-delayed wound healing. The effect of Av was studied in radiation-exposed rats compared with radiation-only and control rats. Skin wounds were excised on the back of rats after 3 days of local radiation. Wound size was measured on days 0, 3, 6, 9, and 12 after wounding. Wound tissues were examined histologically and the expressions of transforming growth factor β-1 (TGF-β-1) and basic fibroblast growth factor (bFGF) were examined by immunohistochemistry and reverse-transcription polymerase chain reaction. Wound contraction was accelerated significantly by Av on days 6 and 12 after wounding. Furthermore, the inflammatory cell infiltration, fibroblast proliferation, collagen deposition, angiogenesis, and the expression levels of TGF-β-1 and bFGF were significantly higher in the radiation plus Av group compared with the radiation-only group. These data showed the potential application of Av to improve the acute radiation-delayed wound healing by increasing TGF-β-1 and bFGF production. Copyright © 2011 Elsevier Inc. All rights reserved.
Niu, Ting-Ting; Zhang, Dong-Sheng; Chen, Hai-Min; Yan, Xiao-Jun
2015-07-10
Inhibitors of angiogenesis and tumor metastasis are increasingly emerging as promising agents for cancer therapy. Here, we report λ-carrageenan oligosaccharides (λ-COs), highly-sulfated oligosaccharides acting as a basic fibroblast growth factor (bFGF) antagonist and heparanase inhibitor. λ-COs with degree of polymerization (DP) from 2 to 8 degraded by λ-carrageenase were separated and purified. The structures were identified by mass spectrometry. The activities of λ-COs are closely related with DP. λ-COs showed no cytotoxicity, but inactivated bFGF-induced cell proliferation; among them, λ-carraheptaose showed highest capability. Only λ-carraheptaose can effectively bind to bFGF. Binding kinetics showed that λ-carraheptaose and suramin had different binding modes, i.e., suramin displayed a fast association and fast dissociation, but λ-carraheptaose exhibited a slow association and slow dissociation. In addition, λ-COs showed the highest heparanase inhibitory ability and abolished the endothelial cell invasion. Thus, λ-COs may provide a tool to develop of new carbohydrate-based therapeutics against cancer and angiogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Koob, Thomas J; Lim, Jeremy J; Massee, Michelle; Zabek, Nicole; Denozière, Guilhem
2014-08-01
PURION(®) processed dehydrated human amnion/chorion membrane (dHACM; MiMedx Group, Marietta, GA) tissue products were analyzed for the effectiveness of the PURION(®) process in retaining the native composition of the amniotic membrane and preserving bioactivity in the resulting products. dHACM was analyzed for extracellular matrix (ECM) composition through histological staining and for growth factor content via multiplex ELISA arrays. Bioactivity was assessed by evaluating endogenous growth factor production by human dermal fibroblasts in response to dHACM and for thermal stability by mechanical tests and in vitro cell proliferation assays. Histology of dHACM demonstrated preservation of the native amnion and chorion layers with intact, nonviable cells, collagen, proteoglycan, and elastic fibers distributed in the individual layers. An array of 36 cytokines known to regulate processes involved in inflammation and wound healing were identified in dHACM. When treated with dHACM extracts, bioactivity was demonstrated through an upregulation of basic fibroblast growth factor, granulocyte colony-stimulating factor, and placental growth factor biosynthesis, three growth factors involved in wound healing, by dermal fibroblasts in vitro. After conditioning at temperatures ranging from -78.7 to +73.5°C, dHACM retained its tensile strength and ability to promote proliferation of dermal fibroblasts in vitro. Elution experiments demonstrated a soluble fraction of growth factors that eluted from the tissue and another fraction sequestered within the matrix. The PURION(®) process retains the native composition of ECM and signaling molecules and preserves bioactivity. The array of cytokines preserved in dHACM are in part responsible for its therapeutic efficacy in treating chronic wounds by orchestrating a "symphony of signals" to promote healing. © 2014 Wiley Periodicals, Inc.
Murakami, S; Takayama, S; Kitamura, M; Shimabukuro, Y; Yanagi, K; Ikezawa, K; Saho, T; Nozaki, T; Okada, H
2003-02-01
Several growth factors (or cytokines) have been recently investigated for their use as potential therapeutics for periodontal tissue regeneration. The objective of this study was to evaluate periodontal tissue regeneration, including new bone and cementum formation, following topical application of recombinant basic fibroblast growth factor (bFGF, FGF-2) to furcation class II defects. Twelve furcation class II bone defects were surgically created in six beagle dogs, then recombinant bFGF (30 micro g/site) + gelatinous carrier was topically applied to the bony defects. Six weeks after application, periodontal regeneration was analyzed. In all sites where bFGF was applied, periodontal ligament formation with new cementum deposits and new bone formation was observed histomorphometrically, in amounts greater than in the control sites. Basic FGF-applied sites exhibited significant regeneration as represented by the new bone formation rate (NBR) (83.6 +/- 14.3%), new trabecular bone formation rate (NTBR) (44.1 +/- 9.5%), and new cementum formation rate (NCR) (97.0 +/- 7.5%). In contrast, in the carrier-only sites, the NBR, NTBR, and NCR were 35.4 +/- 8.9%, 16.6 +/- 6.2%, and 37.2 +/- 15.1%, respectively. Moreover, no instances of epithelial down growth, ankylosis, or root resorption were observed in the bFGF-applied sites examined. The present results indicate that topical application of bFGF can enhance considerable periodontal regeneration in artificially created furcation class II bone defects of beagle dogs.
Anti-Angiogenic Action of Neutral Endopeptidase
2006-11-01
natriuretic factor, substance P , bradykinin, oxytocin, Leu- and Met-enkephalins, neurotensin, bombesin, endothelin-1 (ET-1), and beta amyloid. Loss...NOTES 14. ABSTRACT: Please see attached. 15. SUBJECT TERMS Angiogenesis, Cell surface peptidase , Neutral endopeptidase, Basic fibroblast growth...effective therapies for patients with prostate cancer. Cell-surface peptidases are the guardians of the cell against small stimulatory peptides
Sahoo, Sambit; Ang, Lay-Teng; Cho-Hong Goh, James; Toh, Siew-Lok
2010-02-01
Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications. 2009 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Kumar, Dhruv; New, Jacob; Vishwakarma, Vikalp; Joshi, Radhika; Enders, Jonathan; Lin, Fangchen; Dasari, Sumana; Gutierrez, Wade R; Leef, George; Ponnurangam, Sivapriya; Chavan, Hemantkumar; Ganaden, Lydia; Thornton, Mackenzie M; Dai, Hongying; Tawfik, Ossama; Straub, Jeffrey; Shnayder, Yelizaveta; Kakarala, Kiran; Tsue, Terance Ted; Girod, Douglas A; Van Houten, Bennett; Anant, Shrikant; Krishnamurthy, Partha; Thomas, Sufi Mary
2018-05-16
Despite aggressive therapies, head and neck squamous cell carcinoma (HNSCC) is associated with a less than 50% 5-year survival rate. Late stage HNSCC frequently consists of up to 80% cancer-associated fibroblasts (CAF). We previously reported that CAF-secreted hepatocyte growth factor (HGF) facilitates HNSCC progression, however very little is known about the role of CAFs in HNSCC metabolism. Here we demonstrate that CAF-secreted HGF increases extracellular lactate levels in HNSCC via upregulation of glycolysis. CAF-secreted HGF induced basic fibroblast growth factor (bFGF) secretion from HNSCC. CAFs were more efficient than HNSCC in using lactate as a carbon source. HNSCC-secreted bFGF increased mitochondrial oxidative phosphorylation (OXPHOS) and HGF secretion from CAFs. Combined inhibition of c-Met and FGFR significantly inhibited CAF-induced HNSCC growth in vitro and in vivo (p<0.001). Our cumulative findings underscore reciprocal signaling between CAF and HNSCC involving bFGF and HGF. This contributes to metabolic symbiosis and a targetable therapeutic axis involving c-Met and FGFR. Copyright ©2018, American Association for Cancer Research.
Bilato, C; Pauly, R R; Melillo, G; Monticone, R; Gorelick-Feldman, D; Gluzband, Y A; Sollott, S J; Ziman, B; Lakatta, E G; Crow, M T
1995-01-01
Intracellular signaling pathways activated by both PDGF and basic fibroblast growth factor (bFGF) have been implicated in the migration of vascular smooth muscle cells (VSMC), a key step in the pathogenesis of many vascular diseases. We demonstrate here that, while bFGF is a weak chemoattractant for VSMCs, it is required for the PDGF-directed migration of VSMCs and the activation of calcium/calmodulin-dependent protein kinase II (CamKinase II), an intracellular event that we have previously shown to be important in the regulation of VSMC migration. Neutralizing antibodies to bFGF caused a dramatic reduction in the size of the intracellular calcium transient normally seen after PDGF stimulation and inhibited both PDGF-directed VSMC migration and CamKinase II activation. Partially restoring the calcium transient with ionomycin restored migration and CamKinase II activation as did the forced expression of a mutant CamKinase II that had been "locked" in the active state by site-directed mutagenesis. These results suggest that bFGF links PDGF receptor stimulation to changes in intracellular calcium and CamKinase II activation, reinforcing the central role played by CamKinase II in regulating VSMC migration. Images PMID:7560082
Choi, Jaehoon; Lee, Eun Hee; Park, Sang Woo; Chang, Hak
2015-01-01
Hypertrophic scars and keloids are associated with abnormal levels of growth factors. Silicone gel sheets are effective in treating and preventing hypertrophic scars and keloids. There has been no report on the change in growth factors in the scar tissue following the use of silicone gel sheeting for scar prevention. A prospective controlled trial was performed to evaluate whether growth factors are altered by the application of a silicone gel sheet on a fresh surgical scar. Four of seven enrolled patients completed the study. Transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF) were investigated immunohistochemically in biopsies taken from five scars at 4 months following surgery. In both the epidermis and the dermis, the expression of TGF-β1 (P=0.042 and P=0.042) and PDGF (P=0.043 and P=0.042) was significantly lower in the case of silicone gel sheet-treated scars than in the case of untreated scars. The expression of bFGF in the dermis was significantly higher in the case of silicone gel sheet-treated scars than in the case of untreated scars (P=0.042), but in the epidermis, the expression of bFGF showed no significant difference between the groups (P=0.655). The levels of TGF-β1, PDGF, and bFGF are altered by the silicone gel sheet treatment, which might be one of the mechanisms of action in scar prevention.
Fibroblast growth factor receptors in breast cancer.
Wang, Shuwei; Ding, Zhongyang
2017-05-01
Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.
1994-06-13
MARYLAND 20814-4799 TEACHING HOSPITALS WALTER REED ARMY MEDtCA L CENTER APPROVAL SHEET NAVAL HOSPITAL. BETHESDA MALCOLM GROW AIR FORCE MEDICAL ...CENTER WILFORD HALL "IR FORCE MEDICAL CENTER Title of Dissertation: "Platelet-derived growth factor-BB stimulates fibronectin gene expression in...fascinating world of basic medical science. His dedication and pursuit of excellence in all facets of his work are standards by which I will guide my own
How does the motor relearning program improve neurological function of brain ischemia monkeys?☆
Yin, Yong; Gu, Zhen; Pan, Lei; Gan, Lu; Qin, Dongdong; Yang, Bo; Guo, Jin; Hu, Xintian; Wang, Tinghua; Feng, Zhongtang
2013-01-01
The motor relearning program can significantly improve various functional disturbance induced by ischemic cerebrovascular diseases. However, its mechanism of action remains poorly understood. In injured brain tissues, glial fibrillary acidic protein and neurofilament protein changes can reflect the condition of injured neurons and astrocytes, while vascular endothelial growth factor and basic fibroblast growth factor changes can indicate angiogenesis. In the present study, we induced ischemic brain injury in the rhesus macaque by electrocoagulation of the M1 segment of the right middle cerebral artery. The motor relearning program was conducted for 60 days from the third day after model establishment. Immunohistochemistry and single-photon emission CT showed that the numbers of glial fibrillary acidic protein-, neurofilament protein-, vascular endothelial growth factor- and basic fibroblast growth factor-positive cells were significantly increased in the infarcted side compared with the contralateral hemisphere following the motor relearning program. Moreover, cerebral blood flow in the infarcted side was significantly improved. The clinical rating scale for stroke was used to assess neurological function changes in the rhesus macaque following the motor relearning program. Results showed that motor function was improved, and problems with consciousness, self-care ability and balance function were significantly ameliorated. These findings indicate that the motor relearning program significantly promoted neuronal regeneration, repair and angiogenesis in the surroundings of the infarcted hemisphere, and improve neurological function in the rhesus macaque following brain ischemia. PMID:25206440
Combined use of bFGF and GDF-5 enhances the healing of medial collateral ligament injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saiga, Kenta; Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp; Yoshida, Aki
Research highlights: {yields} bFGF/GDF-5 treatment increases cellular proliferation and migration of MCL fibroblasts. {yields} bFGF/GDF-5 hydrogels stimulate the healing of MCL injury in vivo. {yields} bFGF/GDF-5 hydrogels stimulate Col1a1 expression and type I collagen synthesis. {yields} Combined use of bFGF/GDF-5 enhances MCL healing. -- Abstract: Basic fibroblast growth factor (bFGF) and growth and differentiation factor (GDF)-5 stimulate the healing of medial collateral ligament (MCL) injury. However, the effect of isolated and combined use of bFGF/GDF-5 remains still unclear. We investigated cellular proliferation and migration responding to bFGF/GDF-5 using rabbit MCL fibroblasts. Rabbit MCL injury was treated by bFGF and/or GDF-5more » with peptide hydrogels. Gene expression and deposition of collagens in healing tissues were evaluated. bFGF/GDF-5 treatment additively enhanced cell proliferation and migration. bFGF/GDF-5 hydrogels stimulated Col1a1 expression without increasing Col3a1 expression. Combined use of bFGF/GDF-5 stimulated type I collagen deposition and the reorganization of fiber alignment, and induced better morphology of fibroblasts in healing MCLs. Our study indicates that combined use of bFGF/GDF-5 might enhance MCL healing by increasing proliferation and migration of MCL fibroblasts, and by regulating collagen synthesis and connective fiber alignment.« less
An, Na; Ou, Jiquan; Jiang, Daiming; Zhang, Liping; Liu, Jingru; Fu, Kai; Dai, Ying; Yang, Daichang
2013-02-07
Basic fibroblast growth factor (FGF-2) is an important member of the FGF gene family. It is widely used in clinical applications for scald and wound healing in order to stimulate cell proliferation. Further it is applied for inhibiting stem cell differentiation in cultures. Due to a shortage of plasma and low expression levels of recombinant rbFGF in conventional gene expression systems, we explored the production of recombinant rbFGF in rice grains (Oryza sativa bFGF, OsrbFGF). An expression level of up to 185.66 mg/kg in brown rice was obtained. A simple purification protocol was established with final recovery of 4.49% and resulting in a yield of OsrbFGF reaching up to 8.33 mg/kg OsrbFGF. The functional assay of OsrbFGF indicated that the stimulating cell proliferation activity on NIH/3T3 was the same as with commercialized rbFGF. Wound healing in vivo of OsrbFGF is equivalent to commercialized rbFGF. Our results indicate that rice endosperm is capable of expressing small molecular mass proteins, such as bFGF. This again demonstrates that rice endosperm is a promising system to express various biopharmaceutical proteins.
Angiogenic factors in chronic lymphocytic leukaemia (CLL): Where do we stand?
Aguirre Palma, Luis Mario; Gehrke, Iris; Kreuzer, Karl-Anton
2015-03-01
The role of angiogenesis in haematological malignancies such as chronic lymphocytic leukaemia (CLL) is difficult to envision, because leukaemia cells are not dependent on a network of blood vessels to support basic physiological requirements. Regardless, CLL cells secrete high levels of major angiogenic factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF). Nonetheless, it remains unclear how most angiogenic factors regulate accumulation and delayed apoptosis of CLL cells. Angiogenic factors such as leptin, granulocyte colony-stimulating factor (G-CSF), follistatin, angiopoietin-1 (Ang1), angiogenin (ANG), midkine (MK), pleiotrophin (PTN), progranulin (PGRN), proliferin (PLF), placental growth factor (PIGF), and endothelial locus-1 (Del-1), represent novel therapeutic targets of future CLL research but have remained widely overlooked. This review aims to outline our current understanding of angiogenic growth factors and their relationship with CLL, a still uncured haematopoietic malignancy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Synthesis and structural study of two new heparin-like hexasaccharides.
Lucas, Ricardo; Angulo, Jesús; Nieto, Pedro M; Martín-Lomas, Manuel
2003-07-07
Two new heparin-like hexasaccharides, 5 and 6, have been synthesised using a convergent block strategy and their solution conformations have been determined by NMR spectroscopy and molecular modelling. Both hexasaccharides contain the basic structural motif of the regular region of heparin but with negative charge distributions which have been designed to get insight into the mechanism of fibroblast growth factors (FGFs) activation.
Tang, Qian-Li; Han, Shan-Shan; Feng, Jing; Di, Jia-Qi; Qin, Wen-Xi; Fu, Jun; Jiang, Qiu-Yan
2014-04-01
Cutaneous delayed wounds are a challenging clinical problem, and vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) exhibit key roles in wound healing. Moist exposed burn ointment (MEBO), a Chinese burn ointment with a USA patented formulation, has been reported to promote chronic ischemic and neurogenic ulcer healing in patients; however, the underlying mechanisms remain unclear. In the present study, MEBO significantly promoted the formation of granulation tissue in cutaneous excisional wounds, shortened the time of wound healing, and increased neovascularization and the number of fibroblasts. Furthermore, as well as enhancing the protein expression, MEBO application also increased the gene expression of VEGF and bFGF. The results indicate that MEBO promotes cutaneous excisional wound healing by at least partially enhancing VEGF and bFGF production, implicating the potential uses of MEBO for delayed cutaneous wound healing.
Monsuur, Hanneke N.; van den Broek, Lenie J.; Jhingoerie, Renushka L.; Vloemans, Adrianus F. P. M.
2017-01-01
The majority of full-thickness burn wounds heal with hypertrophic scar formation. Burn eschar most probably influences early burn wound healing, since granulation tissue only forms after escharotomy. In order to investigate the effect of burn eschar on delayed granulation tissue formation, burn wound extract (BWE) was isolated from the interface between non-viable eschar and viable tissue. The influence of BWE on the activity of endothelial cells derived from dermis and adipose tissue, dermal fibroblasts and adipose tissue-derived mesenchymal stromal cells (ASC) was determined. It was found that BWE stimulated endothelial cell inflammatory cytokine (CXCL8, IL-6 and CCL2) secretion and migration. However, BWE had no effect on endothelial cell proliferation or angiogenic sprouting. Indeed, BWE inhibited basic Fibroblast Growth Factor (bFGF) induced endothelial cell proliferation and sprouting. In contrast, BWE stimulated fibroblast and ASC proliferation and migration. No difference was observed between cells isolated from dermis or adipose tissue. The inhibitory effect of BWE on bFGF-induced endothelial proliferation and sprouting would explain why excessive granulation tissue formation is prevented in full-thickness burn wounds as long as the eschar is still present. Identifying the eschar factors responsible for this might give indications for therapeutic targets aimed at reducing hypertrophic scar formation which is initiated by excessive granulation tissue formation once eschar is removed. PMID:28820426
Subramony, Siddarth D.; Su, Amanda; Yeager, Keith; Lu, Helen H.
2014-01-01
Functional tissue engineering of connective tissues such as the anterior cruciate ligament (ACL) remains a significant clinical challenge, largely due to the need for mechanically competent scaffold systems for grafting, as well as a reliable cell source for tissue formation. We have designed an aligned, polylactide-co-glycolide (PLGA) nanofiber-based scaffold with physiologically relevant mechanical properties for ligament regeneration. The objective of this study is to identify optimal tissue engineering strategies for fibroblastic induction of human mesenchymal stem cells (hMSC), testing the hypothesis that basic fibroblast growth factor (bFGF) priming coupled with tensile loading will enhance hMSC-mediated ligament regeneration. It was observed that compared to the unloaded, as well as growth factor-primed but unloaded controls, bFGF stimulation followed by physiologically relevant tensile loading enhanced hMSC proliferation, collagen production and subsequent differentiation into ligament fibroblast-like cells, upregulating the expression of types I and III collagen, as well as tenasin-C and tenomodulin. The results of this study suggest that bFGF priming increases cell proliferation, while mechanical stimulation of the hMSCs on the aligned nanofiber scaffold promotes fibroblastic induction of these cells. In addition to demonstrating the potential of nanofiber scaffolds for hMSC-mediated functional ligament tissue engineering, this study yields new insights into the interactive effects of chemical and mechanical stimuli on stem cell differentiation. PMID:24267271
Yang, Guang-Wei; Jiang, Jin-Song; Lu, Wei-Qin
2015-10-12
Most anti-angiogenic therapies currently being evaluated target the vascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here, we identified ferulic acid as a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor and a novel agent with potential anti-angiogenic and anti-cancer activities. Ferulic acid demonstrated inhibition of endothelial cell proliferation, migration and tube formation in response to basic fibroblast growth factor 1 (FGF1). In ex vivo and in vivo angiogenesis assays, ferulic acid suppressed FGF1-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of ferulic acid on different molecular components and found that ferulic acid suppressed FGF1-triggered activation of FGFR1 and phosphatidyl inositol 3-kinase (PI3K)-protein kinase B (Akt) signaling. Moreover, ferulic acid directly inhibited proliferation and blocked the PI3K-Akt pathway in melanoma cell. In vivo, using a melanoma xenograft model, ferulic acid showed growth-inhibitory activity associated with inhibition of angiogenesis. Taken together, our results indicate that ferulic acid targets the FGFR1-mediated PI3K-Akt signaling pathway, leading to the suppression of melanoma growth and angiogenesis.
Zammit, C; Coope, R; Gomm, J J; Shousha, S; Johnston, C L; Coombes, R C
2002-04-08
Fibroblast growth factor 8 can transform NIH3T3 cells and its expression has been found to be associated with breast and prostate cancer. Following our finding that fibroblast growth factor 8 mRNA expression is increased in breast cancer, we have undertaken an immunohistochemistry study of fibroblast growth factor 8 expression in a series of human breast tissues and other normal tissues. Our findings confirm increased expression of fibroblast growth factor 8 in malignant breast tissue but also show significant fibroblast growth factor 8 expression in non-malignant breast epithelial cells. No significant difference in fibroblast growth factor 8 expression was found between different grades of ductal carcinoma, lobular carcinoma and ductal carcinoma in-situ or cancer of different oestrogen receptor, progesterone receptor or nodal status. The highest levels of fibroblast growth factor 8 expression were found in lactating breast tissues and fibroblast growth factor 8 was also detected in human milk. A survey of other normal tissues showed that fibroblast growth factor 8 is expressed in the proliferative cells of the dermis and epithelial cells in colon, ovary fallopian tube and uterus. Fibroblast growth factor 8 appears to be expressed in several organs in man and appears to have an importance in lactation.
Zhao, Ya-Juan; Li, Qiang; Cheng, Bai-Xiang; Zhang, Min; Chen, Yong-Jin
2012-01-01
Objective. To evaluate the effects of psychological stress on periodontitis healing in rats and the contribution of basic fibroblast growth factor (bFGF) expression to the healing process. Methods. Ninety-six rats were randomly distributed into control group, periodontitis group, and periodontitis plus stress group. Then, the rats were sacrificed at baseline and week(s) 1, 2, and 4. The periodontitis healing condition was assessed, and the expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and bFGF were tested by immunohistochemistry. Results. The stressed rats showed reduced body weight gain, behavioral changes, and increased serum corticosterone and ACTH levels (P < 0.05). The surface of inflammatory infiltrate, alveolar bone loss, attachment loss, and expression of IL-1β and TNF-α in the stress group were higher than those in the periodontitis group at weeks 2 and 4 (P < 0.05). Rats with experimental periodontitis showed decreased bFGF expression (P < 0.05), and the recovery of bFGF expression in the stress group was slower than that in the periodontitis group (P < 0.05). Negative correlations between inflammatory cytokines and bFGF were detected. Conclusion. Psychological stress could delay periodontitis healing in rats, which may be partly mediated by downregulation of the expression of bFGF in the periodontal ligament. PMID:23326020
Targeted Disruption of the Basic Krüppel-Like Factor Gene (Klf3) Reveals a Role in Adipogenesis ▿ †
Sue, Nancy; Jack, Briony H. A.; Eaton, Sally A.; Pearson, Richard C. M.; Funnell, Alister P. W.; Turner, Jeremy; Czolij, Robert; Denyer, Gareth; Bao, Shisan; Molero-Navajas, Juan Carlos; Perkins, Andrew; Fujiwara, Yuko; Orkin, Stuart H.; Bell-Anderson, Kim; Crossley, Merlin
2008-01-01
Krüppel-like factors (KLFs) recognize CACCC and GC-rich sequences in gene regulatory elements. Here, we describe the disruption of the murine basic Krüppel-like factor gene (Bklf or Klf3). Klf3 knockout mice have less white adipose tissue, and their fat pads contain smaller and fewer cells. Adipocyte differentiation is altered in murine embryonic fibroblasts from Klf3 knockouts. Klf3 expression was studied in the 3T3-L1 cellular system. Adipocyte differentiation is accompanied by a decline in Klf3 expression, and forced overexpression of Klf3 blocks 3T3-L1 differentiation. Klf3 represses transcription by recruiting C-terminal binding protein (CtBP) corepressors. CtBPs bind NADH and may function as metabolic sensors. A Klf3 mutant that does not bind CtBP cannot block adipogenesis. Other KLFs, Klf2, Klf5, and Klf15, also regulate adipogenesis, and functional CACCC elements occur in key adipogenic genes, including in the C/ebpα promoter. We find that C/ebpα is derepressed in Klf3 and Ctbp knockout fibroblasts and adipocytes from Klf3 knockout mice. Chromatin immunoprecipitations confirm that Klf3 binds the C/ebpα promoter in vivo. These results implicate Klf3 and CtBP in controlling adipogenesis. PMID:18391014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurita, Masakazu, E-mail: masakazukurita@gmail.com; Okazaki, Mutsumi; Fujino, Takashi
2011-05-27
Highlights: {yields} Influence of cyclic stretch on melanogenetic paracrine cytokines was investigated. {yields} Keratinocyte-derived endothelin-1 was upregulated with cyclic stretch. {yields} Degree of upregulation increases dose-dependently. {yields} This upregulation possibly plays a role in the pathogenesis of pigmented disorders. -- Abstract: The aim of this study was to investigate the possible pathological relation between mechanical stress and hyperpigmentation. We did this by investigating the influence of cyclic stretch on the expression of keratinocyte- and fibroblast-derived melanogenetic paracrine cytokines in vitro. Using primary human keratinocytes and fibroblasts, alterations of mRNA expression of melanogenetic paracrine cytokines due to cyclic stretch were investigatedmore » using a real-time polymerase chain reaction (PCR). The cytokines included basic fibroblast growth factor (bFGF), stem cell factor (SCF), granulocyte/macrophage colony-stimulating factor, interleukin-1{alpha}, and endothelin-1 (ET-1) for keratinocytes and bFGF, SCF, and hepatocyte growth factor for fibroblasts. The dose dependence of keratinocyte-derived ET-1 upregulation was further investigated using real-time PCR and an enzyme-linked immunosorbent assay. We also investigated the effects of cyclic stretch on the proliferation and differentiation of keratinocytes. Among the melanogenetic paracrine cytokines investigated, keratinocyte-derived ET-1 was consistently upregulated in all four cell lines. The degree of upregulation increased with the degree of the length and frequency of the stretch; in contrast, cell number and differentiation markers showed no obvious alterations with cyclic stretch. Keratinocyte-derived ET-1 upregulation possibly plays a significant role in the pathogenesis of pigmented disorders, such as friction melanosis, caused by mechanical stress.« less
Induced pluripotent stem cells from goat fibroblasts.
Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Gu, Chenghao; Wang, Ziyu; Dong, Fulu; Wang, Feng
2013-12-01
Embryonic stem cells (ESCs) are a powerful model for genetic engineering, studying developmental biology, and modeling disease. To date, ESCs have been established from the mouse (Evans and Kaufman, 1981, Nature 292:154-156), non-human primates (Thomson et al., , Proc Nat Acad Sci USA 92:7844-7848), humans (Thomson et al., 1998, Science 282:1145-1147), and rats (Buehr et al., , Cell 135:1287-1298); however, the derivation of ESCs from domesticated ungulates such as goats, sheep, cattle, and pigs have not been successful. Alternatively, induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with several combinations of genes encoding transcription factors (OCT3/4, SOX2, KLF4, cMYC, LIN28, and NANOG). To date, iPSCs have been isolated from various species, but only limited information is available regarding goat iPSCs (Ren et al., 2011, Cell Res 21:849-853). The objectives of this study were to generate goat iPSCs from fetal goat primary ear fibroblasts using lentiviral transduction of four human transcription factors: OCT4, SOX2, KLF4, and cMYC. The goat iPSCs were successfully generated by co-culture with mitomycin C-treated mouse embryonic fibroblasts using medium supplemented with knockout serum replacement and human basic fibroblast growth factor. The goat iPSCs colonies are flat, compact, and closely resemble human iPSCs. They have a normal karyotype; stain positive for alkaline phosphatase, OCT4, and NANOG; express endogenous pluripotency genes (OCT4, SOX2, cMYC, and NANOG); and can spontaneously differentiate into three germ layers in vitro and in vivo. © 2013 Wiley Periodicals, Inc.
Wang, Keyu; Lai, Chengcai; Li, Tieling; Wang, Cheng; Wang, Wei; Ni, Bing; Bai, Changqing; Zhang, Shaogeng; Han, Lina; Gu, Hongjing; Zhao, Zhongpeng; Duan, Yueqiang; Yang, Xiaolan; Xing, Li; Zhao, Lingna; Zhou, Shanshan; Xia, Min; Jiang, Chengyu; Wang, Xiliang; Yang, Penghui
2017-11-07
Influenza virus (IAV) infection is a major cause of severe respiratory illness that affects almost every country in the world. IAV infections result in respiratory illness and even acute lung injury and death, but the underlying mechanisms responsible for IAV pathogenesis have not yet been fully elucidated. In this study, the basic fibroblast growth factor 2 (FGF2) level was markedly increased in H1N1 virus-infected humans and mice. FGF2, which is predominately derived from epithelial cells, recruits and activates neutrophils via the FGFR2-PI3K-AKT-NFκB signaling pathway. FGF2 depletion or knockout exacerbated influenza-associated disease by impairing neutrophil recruitment and activation. More importantly, administration of the recombinant FGF2 protein significantly alleviated the severity of IAV-induced lung injury and promoted the survival of IAV-infected mice. Based on the results from experiments in which neutrophils were depleted and adoptively transferred, FGF2 protected mice against IAV infection by recruiting neutrophils. Thus, FGF2 plays a critical role in preventing IAV-induced lung injury, and FGF2 is a promising potential therapeutic target during IAV infection. © The Author (2017). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.
Qiu-Yan, Jiang; Jin-Ling, Song; Hai-Xia, Mo
2012-01-01
To study the molecular biological effects of Guilin Watermelon Frost (GWF) on the mRNA expressions of basic fibroblast growth factor (bFGF) in patients with uterine uterine cervical columnar ectopy. One hundred and sixty patients with uterine cervical columnar ectopy were assigned to two groups by the random digit table. Patients in the treatment group were treated with local spray of GWF, while those in the control group were local applied with bFGF-collagen sponge. The mRNA expressions of bFGF of the uterine tissue were detected in the two groups before and after treatment using RT-PCR. Before treatment the mRNA expression of bFGF in the uterine cervical columnar ectopy was 0.55 +/- 0.10 in the treatment group and 0.58 +/- 0.13 in the control group, without insignificant difference (P > 0.05). After treatment it significantly increased in the two groups, being 0.82 +/- 0.17 and 0.78 +/- 0.15 respectively, showing statistical difference from before treatment (P < 0.01). But no statistical difference existed between the two groups after treatment (P > 0.05). GWF showed enhancement on the mRNA expressions of bFGF in patients with uterine cervical columnar ectopy.
A novel bFGF-GH injection therapy for two patients with severe ischemic limb pain.
Ito, Naomi; Saito, Shigeru; Yamada, Makiko Hardy; Koizuka, Shiro; Obata, Hideaki; Nishikawa, Koichi; Tabata, Yasuhiko
2008-01-01
Severe ischemic pain is difficult to treat with a single therapy. Although modern angiogenic therapies have been used in patients with peripheral arterial occlusive diseases, a regimen combining novel angiogenic therapy and classic nerve blocks, including sympathectomy, has not been discussed to date. In this case report, we present two patients with peripheral arterial occlusive disease who were first treated with medication and lumbar sympathectomy, and then with a novel gelatin hydrogel drug-delivery system loaded with basic fibroblast growth factor. The gelatin hydrogel combined with recombinant basic fibroblast growth factor was injected intramuscularly into the ischemic limbs. In the first patient, with arteriosclerosis obliterans, a foot ulcer was healed, and the original score for resting pain (visual analogue scale, 5/10) was decreased to 0/10. In the second patient, with Buerger's disease, a large toe ulcer was healed, and his resting pain (visual analogue scale, 8/10) was decreased to 1/10. Some other parameters, such as skin surface temperature, transcutaneous oxygen partial pressure, and pain-free walking distance, were also improved in both patients after the combined therapy. A multimodal approach is necessary to treat severe ischemic pain. Novel angiogenic therapy combined with nerve blocks seems to be a promising option in patients with severe pain.
Gu, Yun; Xue, Chenbin; Zhu, Jianbin; Sun, Hualin; Ding, Fei; Cao, Zheng; Gu, Xiaosong
2014-04-01
Considerable research has been devoted to unraveling the regulation of neural stem cell (NSC) differentiation. The responses of NSCs to various differentiation-inducing stimuli, however, are still difficult to estimate. In this study, we aimed to search for a potent growth factor that was able to effectively induce differentiation of NSCs toward Schwann cells. NSCs were isolated from dorsal root ganglia (DRGs) of adult rats and identified by immunostaining. Three different growth factors were used to stimulate the differentiation of DRG-derived NSCs (DRG-NSCs). We found that among these three growth factors, bFGF was the strongest inducer for the glial differentiation of DRG-NSCs, and bFGF induced the generation of an increased number of Schwann cell-like cells as compared to nerve growth factor (NGF) and neuregulin1-β (NRG). These Schwann cell-like cells demonstrated the same characteristics as those of primary Schwann cells. Furthermore, we noted that bFGF-induced differentiation of DRG-NSCs toward Schwann cells might be mediated by binding to fibroblast growth factor receptor-1 (FGFR-1) through activation of MAPK/ERK signal pathway.
Zbinden, Aline; Browne, Shane; Altiok, Eda I; Svedlund, Felicia L; Jackson, Wesley M; Healy, Kevin E
2018-05-01
Growth factors hold great promise for regenerative therapies. However, their clinical use has been halted by poor efficacy and rapid clearance from tissue, necessitating the delivery of extremely high doses to achieve clinical effectiveness which has raised safety concerns. Thus, strategies to either enhance growth factor activity at low doses or to increase their residence time within target tissues are necessary for clinical success. In this study, we generated multivalent conjugates (MVCs) of basic fibroblast growth factor (bFGF), a key growth factor involved in angiogenesis and wound healing, to hyaluronic acid (HyA) polymer chains. Multivalent bFGF conjugates (mvbFGF) were fabricated with minimal non-specific interaction observed between bFGF and the HyA chain. The hydrodynamic radii of mvbFGF ranged from ∼50 to ∼75 nm for conjugation ratios of bFGF to HyA chains at low (10 : 1) and high (30 : 1) feed ratios, respectively. The mvbFGF demonstrated enhanced bioactivity compared to unconjugated bFGF in assays of cell proliferation and migration, processes critical to angiogenesis and tissue regeneration. The 30 : 1 mvbFGF outperformed the 10 : 1 conjugate, which could be due to either FGF receptor clustering or interference with receptor mediated internalization and signal deactivation. This study simultaneously investigated the role of both protein to polymer ratio and multivalent conjugate size on their bioactivity, and determined that increasing the protein-to-polymer ratio and conjugate size resulted in greater cell bioactivity.
Mesenchymal stem cell therapy for cutaneous radiation syndrome.
Akita, Sadanori; Akino, Kozo; Hirano, Akiyoshi; Ohtsuru, Akira; Yamashita, Shunichi
2010-06-01
Systemic and local radiation injuries caused by nuclear power reactor accidents, therapeutic irradiation, or nuclear terrorism should be prevented or properly treated in order to improve wound management and save lives. Currently, regenerative surgical modalities should be attempted with temporal artificial dermis impregnated and sprayed with a local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Human mesenchymal stem cells and adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and were tested for differentiation and local stimulation effects in the radiation-exposed wounds. The perforator flap and artificial dermal template with growth factor were successful for reconstruction in patients who were suffering from complex underlying disease. Patients were uneventfully treated with minimal morbidities. In the experiments, the hMSCs are strongly proliferative even after 20 Gy irradiation in vitro. In vivo, 4 Gy rat whole body irradiation demonstrated that sustained marrow stromal (mesenchymal stem) cells survived in the bone marrow. Immediate artificial dermis application impregnated with cells and the cytokine over the 20 Gy irradiated skin and soft tissues demonstrated the significantly improved fat angiogenesis, architected dermal reconstitution, and less inflammatory epidermal recovery. Detailed understanding of underlying diseases and rational reconstructive procedures brings about good outcomes for difficult irradiated wound healing. Adipose-derived stem cells are also implicated in the limited local injuries for short cell harvesting and processing time in the same subject.
Lopez-Casillas, Fernando; Riquelme, Cecilia; Perez-Kato, Yoshiaki; Ponce-Castaneda, M Veronica; Osses, Nelson; Esparza-Lopez, Jose; Gonzalez-Nunez, Gerardo; Cabello-Verrugio, Claudio; Mendoza, Valentin; Troncoso, Victor; Brandan, Enrique
2003-01-03
Betaglycan is a membrane-anchored proteoglycan co-receptor that binds transforming growth factor beta (TGF-beta) via its core protein and basic fibroblast growth factor through its glycosaminoglycan chains. In this study we evaluated the expression of betaglycan during the C(2)C(12) skeletal muscle differentiation. Betaglycan expression, as determined by Northern and Western blot, was up-regulated during the conversion of myoblasts to myotubes. The mouse betaglycan gene promoter was cloned, and its sequence showed putative binding sites for SP1, Smad3, Smad4, muscle regulatory factor elements such as MyoD and MEF2, and retinoic acid receptor. Transcriptional activity of the mouse betaglycan promoter reporter was also up-regulated in differentiating C(2)C(12) cells. We found that MyoD, but not myogenin, stimulated this transcriptional activity even in the presence of high serum. Betaglycan promoter activity was increased by RA and inhibited by the three isoforms of TGF-beta. On the other hand, basic fibroblast growth factor, BMP-2, and hepatocyte growth factor/scatter factor, which are inhibitors of myogenesis, had little effect. In myotubes, up-regulated betaglycan was also detectable by TGF-beta affinity labeling and immunofluorescence microscopy studies. The latter indicated that betaglycan was localized both on the cell surface and in the ECM. Forced expression of betaglycan in C(2)C(12) myoblasts increases their responsiveness to TGF-beta2, suggesting that it performs a TGF-beta presentation function in this cell lineage. These results indicate that betaglycan expression is up-regulated during myogenesis and that MyoD and RA modulate its expression by a mechanism that is independent of myogenin.
Approaches to improve angiogenesis in tissue-engineered skin.
Sahota, Parbinder S; Burn, J Lance; Brown, Nicola J; MacNeil, Sheila
2004-01-01
A problem with tissue-engineered skin is clinical failure due to delays in vascularization. The aim of this study was to explore a number of simple strategies to improve angiogenesis/vascularization using a tissue-engineered model of skin to which small vessel human dermal microvascular endothelial cells were added. For the majority of these studies, a modified Guirguis chamber was used, which allowed the investigation of several variables within the same experiment using the same human dermis; cell type, angiogenic growth factors, the influence of keratinocytes and fibroblasts, mechanical penetration of the human dermis, the site of endothelial cell addition, and the influence of hypoxia were all examined. A qualitative scoring system was used to assess the impact of these factors on the penetration of endothelial cells throughout the dermis. Similar results were achieved using freshly isolated small vessel human dermal microvascular endothelial cells or an endothelial cell line and a minimum cell seeding density was identified. Cell penetration was not influenced by the addition of angiogenic growth factors (vascular endothelial growth factor and basic fibroblast growth factor); similarly, including epidermal keratinocytes or dermal fibroblasts did not encourage endothelial cell entry, and neither did mechanical introduction of holes throughout the dermis. Two factors were identified that significantly enhanced endothelial cell penetration into the dermis: hypoxia and the site of endothelial cell addition. Endothelial cells added from the papillary surface entered into the dermis much more effectively than when cells were added to the reticular surface of the dermis. We conclude that this model is valuable in improving our understanding of how to enhance vascularization of tissue-engineered grafts.
Hirai, Kenjiro; Tabata, Yasuhiko; Hasegawa, Suguru; Sakai, Yoshiharu
2016-10-01
Anastomotic leakage is a common complication of intestinal surgery. In an attempt to resolve this issue, a promising approach is enhancement of anastomotic wound healing. A method for controlled release of basic fibroblast growth factor (bFGF) using a gelatin hydrogel was developed with the objective of investigating the effects of this technology on intestinal anastomotic healing. The small intestine of Wistar rats was cut, end-to-end anastomosis was performed and rats were divided into three groups: bFGF group (anastomosis wrapped with a hydrogel sheet incorporating bFGF), PBS group (wrapped with a sheet incorporating phosphate-buffered saline solution) and NT group (no additional treatment). Degradation profiles of gelatin hydrogels in vivo and histological examinations were performed using gelatin hydrogels with various water contents and bFGF concentrations to define the optimal bFGF dose and hydrogel biodegradability. The anastomotic wound healing process was evaluated by histological examinations, adhesion-related score and bursting pressure. The optimal water content of the hydrogel and bFGF dose was determined as 96% and 30 µg per sheet, respectively. Application of bFGF significantly enhanced neovascularization, fibroblast infiltration and collagen production around the anastomotic site when compared with the other groups. Bursting pressure was significantly increased in the bFGF group. No significant difference was observed in the adhesion-related score among the groups and no anastomotic obstruction and leakage were observed. Therefore controlled release of bFGF enhanced healing of an intestinal anastomosis during the early postoperative period and is a promising method to suppress anastomotic leakage. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.
Lu, Jiang; Lu, Kehuan; Li, Dongsheng
2012-01-01
In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells. PMID:25624789
Ha, Jang-Ho; Kim, Ha-Neul; Moon, Ki-Beom; Jeon, Jae-Heung; Jung, Dai-Hyun; Kim, Su-Jung; Mason, Hugh S; Shin, Seo-Yeon; Kim, Hyun-Soon; Park, Kyung-Mok
2017-07-01
Responding to the need for recombinant acidic fibroblast growth factor in the pharmaceutical and cosmetic industries, we established a scalable expression system for recombinant human aFGF using transient and a DNA replicon vector expression in Nicotiana benthamiana . Recombinant human-acidic fibroblast growth factor was recovered following Agrobacterium infiltration of N. benthamiana . The optimal time point at which to harvest recombinant human acidic fibroblast growth factor expressing leaves was found to be 4 days post-infiltration, before necrosis was evident. Commassie-stained SDS-PAGE gels of His-tag column eluates, concentrated using a 10 000 molecular weight cut-off column, showed an intense band at the expected molecular weight for recombinant human acidic fibroblast growth factor. An immunoblot confirmed that this band was recombinant human acidic fibroblast growth factor. Up to 10 µg recombinant human-acidic fibroblast growth factor/g of fresh leaves were achieved by a simple affinity purification protocol using protein extract from the leaves of agroinfiltrated N. benthamiana . The purified recombinant human acidic fibroblast growth factor improved the survival rate of UVB-irradiated HaCaT and CCD-986sk cells approximately 89 and 81 %, respectively. N. benthamiana -derived recombinant human acidic fibroblast growth factor showed similar effects on skin cell proliferation and UVB protection compared to those of Escherichia coli -derived recombinant human acidic fibroblast growth factor. Additionally, N. benthamiana- derived recombinant human acidic fibroblast growth factor increased type 1 procollagen synthesis up to 30 % as well as reduced UVB-induced intracellular reactive oxygen species generation in fibroblast (CCD-986sk) cells.UVB is a well-known factor that causes various types of skin damage and premature aging. Therefore, the present study demonstrated that N. benthamiana -derived recombinant human acidic fibroblast growth factor effectively protects skin cell from UVB, suggesting its potential use as a cosmetic or therapeutic agent against skin photoaging. Georg Thieme Verlag KG Stuttgart · New York.
David, Manu S; Kelly, Elizabeth; Zoellner, Hans
2013-04-01
We recently reported exchange of membrane and cytoplasm during contact co-culture between human Gingival Fibroblasts (h-GF) and SAOS-2 osteosarcoma cells, a process we termed 'cellular sipping' to reflect the manner in which cells become morphologically diverse through uptake of material from the opposing cell type, independent of genetic change. Cellular sipping is increased by Tumor Necrosis Factor-α (TNF-α), and we here show for the first time altered cytokine synthesis in contact co-culture supporting cellular sipping compared with co-culture where h-GF and SAOS-2 were separated in transwells. SAOS-2 had often undetectably low cytokine levels, while Interleukin-6 (IL-6), Granulocyte Colony Stimulating Factor (G-CSF) and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) were secreted primarily by TNF-α stimulated h-GF and basic Fibroblast Growth Factor (FGF) was prominent in h-GF lysates (p < 0.001). Contact co-cultures permitting cellular sipping had lower IL-6, G-CSF and GM-CSF levels, as well as higher lysate FGF levels compared with TNF-α treated h-GF alone (p < 0.05). The opposite was the case for co-cultures in transwells, with increased IL-6, G-CSF and GM-CSF levels (p < 0.03) and no clear difference in FGF. We thus demonstrate significant phenotypic change in cultures where cellular sipping occurs, potentially contributing to tumor inflammatory responses. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Spencer, Jeffrey A.; Major, Michael L.; Misra, Ravi P.
1999-01-01
Serum response factor (SRF) plays a central role in the transcriptional response of mammalian cells to a variety of extracellular signals. It is a key regulator of many cellular early response genes which are believed to be involved in cell growth and differentiation. The mechanism by which SRF activates transcription in response to mitogenic agents has been extensively studied; however, significantly less is known about regulation of the SRF gene itself. Previously, we identified distinct regulatory elements in the SRF promoter that play a role in activation, including a consensus ETS domain binding site, a consensus overlapping Sp/Egr-1 binding site, and two SRF binding sites. We further showed that serum induces SRF by a mechanism that requires an intact SRF binding site, also termed a CArG box. In the present study we demonstrate that in response to stimulation of cells by a purified growth factor, basic fibroblast growth factor (bFGF), the SRF promoter is upregulated by a complex pathway that involves at least two independent mechanisms: a CArG box-independent mechanism that is mediated by an ETS binding site, and a novel CArG box-dependent mechanism that requires both an Sp factor binding site and the CArG motifs for maximal stimulation. Our analysis indicates that the CArG/Sp element activation mechanism is mediated by distinct signaling pathways. The CArG box-dependent component is targeted by a Rho-mediated pathway, and the Sp binding site-dependent component is targeted by a Ras-mediated pathway. Both SRF and bFGF have been implicated in playing an important role in mediating cardiogenesis during development. The implications of our findings for SRF expression during development are discussed. PMID:10330138
Ciarmela, Pasquapina; Islam, Md. Soriful; Reis, Fernando M.; Gray, Peter C.; Bloise, Enrrico; Petraglia, Felice; Vale, Wylie; Castellucci, Mario
2011-01-01
BACKGROUND Growth factors are proteins secreted by a number of cell types that are capable of modulating cellular growth, proliferation and cellular differentiation. It is well accepted that uterine cellular events such as proliferation and differentiation are regulated by sex steroids and their actions in target tissues are mediated by local production of growth factors acting through paracrine and/or autocrine mechanisms. Myometrial mass is ultimately modified in pregnancy as well as in tumour conditions such as leiomyoma and leiomyosarcoma. Leiomyomas, also known as fibroids, are benign tumours of the uterus, considered to be one of the most frequent causes of infertility in reproductive years in women. METHODS For this review, we searched the database MEDLINE and Google Scholar for articles with content related to growth factors acting on myometrium; the findings are hereby reviewed and discussed. RESULTS Different growth factors such as epidermal growth factor (EGF), transforming growth factor-α (TGF-α), heparin-binding EGF (HB-EGF), acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF) and TGF-β perform actions in myometrium and in leiomyomas. In addition to these growth factors, activin and myostatin have been recently identified in myometrium and leiomyoma. CONCLUSIONS Growth factors play an important role in the mechanisms involved in myometrial patho-physiology. PMID:21788281
Localization of basic fibroblast growth factor binding sites in the chick embryonic neural retina.
Cirillo, A; Arruti, C; Courtois, Y; Jeanny, J C
1990-12-01
We have investigated the localization of basic fibroblast growth factor (bFGF) binding sites during the development of the neural retina in the chick embryo. The specificity of the affinity of bFGF for its receptors was assessed by competition experiments with unlabelled growth factor or with heparin, as well as by heparitinase treatment of the samples. Two different types of binding sites were observed in the neural retina by light-microscopic autoradiography. The first type, localized mainly to basement membranes, was highly sensitive to heparitinase digestion and to competition with heparin. It was not developmentally regulated. The second type of binding site, resistant to heparin competition, appeared to be associated with retinal cells from the earliest stages studied (3-day-old embryo, stages 21-22 of Hamburger and Hamilton). Its distribution was found to vary during embryonic development, paralleling layering of the neural retina. Binding of bFGF to the latter sites was observed throughout the retinal neuroepithelium at early stages but displayed a distinct pattern at the time when the inner and outer plexiform layers were formed. During the development of the inner plexiform layer, a banded pattern of bFGF binding was observed. These bands, lying parallel to the vitreal surface, seemed to codistribute with the synaptic bands existing in the inner plexiform layer. The presence of intra-retinal bFGF binding sites whose distribution varies with embryonic development suggests a regulatory mechanism involving differential actions of bFGF on neural retinal cells.
Hafenbreidel, Madalyn; Twining, Robert C; Rafa Todd, Carolynn; Mueller, Devin
2015-12-01
Drug exposure results in structural and functional changes in brain regions that regulate reward and these changes may underlie the persistence of compulsive drug seeking and relapse. Neurotrophic factors, such as basic fibroblast growth factor (bFGF or FGF2), are necessary for neuronal survival, growth, and differentiation, and may contribute to these drug-induced changes. Following cocaine exposure, bFGF is increased in addiction-related brain regions, including the infralimbic medial prefrontal cortex (IL-mPFC). The IL-mPFC is necessary for extinction, but whether drug-induced overexpression of bFGF in this region affects extinction of drug seeking is unknown. Thus, we determined whether blocking bFGF in IL-mPFC would facilitate extinction following cocaine self-administration. Rats were trained to lever press for intravenous infusions of cocaine before extinction. Blocking bFGF in IL-mPFC before four extinction sessions resulted in facilitated extinction. In contrast, blocking bFGF alone was not sufficient to facilitate extinction, as blocking bFGF and returning rats to their home cage had no effect on subsequent extinction. Furthermore, bFGF protein expression increased in IL-mPFC following cocaine self-administration, an effect reversed by extinction. These results suggest that cocaine-induced overexpression of bFGF inhibits extinction, as blocking bFGF during extinction permits rapid extinction. Therefore, targeted reductions in bFGF during therapeutic interventions could enhance treatment outcomes for addiction.
Shirakata, Yoshinori; Taniyama, Katsuyoshi; Yoshimoto, Takehiko; Miyamoto, Motoharu; Takeuchi, Naoshi; Matsuyama, Takashi; Noguchi, Kazuyuki
2010-04-01
The aim of the present study was to evaluate the effect of a basic fibroblast growth factor (bFGF) candidate treatment on periodontal healing in two-wall intrabony defects in dogs. Two-wall intrabony defects (5 x 5 x 5 mm) were created surgically on the distal and mesial sides of bilateral mandibular second and fourth premolars in four Beagle dogs. bFGF, enamel matrix derivative (EMD) and platelet-derived growth factor with beta-tricalcium phosphate (PDGF/beta-TCP) treatments, and sham-surgery (OFD) were rotated among the four defects in each animal, EMD and PDGF/beta-TCP serving as benchmark controls. The animals were euthanized for radiographic and histologic evaluation at 8 weeks. Bone formation was significantly greater in the bFGF group (4.11 +/- 0.77 mm) than in the EMD (3.32 +/- 0.71 mm; p<0.05) and OFD (3.09 +/- 0.52 mm; p<0.01) groups. The EMD (4.59 +/- 1.19 mm) and PDGF/beta-TCP (4.66 +/- 0.7 mm) groups exhibited significantly greater cementum regeneration with periodontal ligament-like tissue than the OFD group (2.96 +/- 0.69 mm; p<0.01). No significant differences were observed between the bFGF and the PDGF/beta-TCP groups in any of the histometric parameters. The candidate bFGF treatment supported periodontal regeneration comparable with that of established benchmarks: EMD and PDGF/beta-TCP.
Cushing, Melinda C.; Mariner, Peter D.; Liao, Jo-Tsu; Sims, Evan A.; Anseth, Kristi S.
2008-01-01
This study aimed to identify signaling pathways that oppose connective tissue fibrosis in the aortic valve. Using valvular interstitial cells (VICs) isolated from porcine aortic valve leaflets, we show that basic fibroblast growth factor (FGF-2) effectively blocks transforming growth factor-β1 (TGF-β1)-mediated myofibroblast activation. FGF-2 prevents the induction of α-smooth muscle actin (αSMA) expression and the exit of VICs from the cell cycle, both of which are hallmarks of myofibroblast activation. By blocking the activity of the Smad transcription factors that serve as the downstream nuclear effectors of TGF-β1, FGF-2 treatment inhibits fibrosis in VICs. Using an exogenous Smad-responsive transcriptional promoter reporter, we show that Smad activity is repressed by FGF-2, likely an effect of the fact that FGF-2 treatment prevents the nuclear localization of Smads in these cells. This appears to be a direct effect of FGF signaling through mitogen-activated protein kinase (MAPK) cascades as the treatment of VICs with the MAPK/extracellular regulated kinase (MEK) inhibitor U0126 acted to induce fibrosis and blocked the ability of FGF-2 to inhibit TGF-β1 signaling. Furthermore, FGF-2 treatment of VICs blocks the development of pathological contractile and calcifying phenotypes, suggesting that these pathways may be utilized in the engineering of effective treatments for valvular disease.—Cushing, M. C., Mariner, P. D., Liao, J. T., Sims, E. A., Anseth, K. S. Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. PMID:18218921
Yamashita, Hiromichi; Kamada, Daichi; Shirasuna, Koumei; Matsui, Motozumi; Shimizu, Takashi; Kida, Katsuya; Berisha, Bajram; Schams, Dieter; Miyamoto, Akio
2008-09-01
Active angiogenesis and progesterone (P) synthesis occur in parallel during development of the corpus luteum (CL). Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) are known to stimulate angiogenesis and P synthesis in vitro. The aim of the present study was to investigate the impact of bFGF or VEGF on the CL development in the cow by using a specific antibody against bFGF or VEGF. bFGF antibody, VEGF antibody, or saline as a control (n = 4 cows/treatment) were injected directly into the CL immediately after ovulation (Day 1), and the treatment was continued for 3 times/day over 7 days. Luteal biopsies were applied on Day 8 of the estrous cycle to determine the expression of genes associated with P synthesis and angiogenesis. Intraluteal injections with the bFGF antibody or the VEGF antibody markedly decreased the CL volume, plasma P concentration and StAR mRNA expression. bFGF antibody treatment decreased the mRNA expression of bFGF, FGF receptor-1, VEGF120, and angiopoietin (ANPT)-1, and increased ANPT-2/ANPT-1 ratio. However, VEGF antibody treatment decreased ANPT-2 mRNA expression and ANPT-2/ANPT-1 ratio. These results indicate that local neutralization of bFGF or VEGF changes genes regulating angiogenesis and P synthesis, and remarkably suppresses the CL size and P secretion during the development of CL in the cow, supporting the concept that bFGF and VEGF control the CL formation and function.
Szubert, Sebastian; Szpurek, Dariusz; Moszynski, Rafal; Nowicki, Michal; Frankowski, Andrzej; Sajdak, Stefan; Michalak, Slawomir
2014-03-01
The primary aim of this paper was to evaluate the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and its relationship with proangiogenic factors and microvessel density (MVD) in ovarian cancer. The study group included 58 epithelial ovarian cancers (EOCs), 35 benign ovarian tumors, and 21 normal ovaries. The expression of EMMPRIN, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) was assessed by ELISA of tissue homogenates. Antibodies against CD105, CD31, and CD34 were used to immunohistochemically assess MVD. We have found significantly higher EMMPRIN expression in EOC than in benign ovarian tumors and normal ovaries. Similarly, the VEGF expression was higher in EOC than in benign ovarian tumors and normal ovaries. By contrast, bFGF expression was lower in EOC than in benign ovarian tumors and ovary samples. EMMPRIN expression in EOC was directly correlated with VEGF expression and CD105-MVD, but inversely correlated with bFGF expression. Grade 2/3 ovarian cancers had increased expression of EMMPRIN and VEGF, increased CD105-MVD, and lowered expression of bFGF compared to grade 1 ovarian cancers. Moreover, EMMPRIN expression was higher in advanced (FIGO III and IV) ovarian cancer. The upregulation of EMMPRIN and VEGF expression is correlated with increased CD105-MVD and silenced bFGF, which suggests early and/or reactivated angiogenesis in ovarian cancer. Aggressive EOC is characterized by the following: high expression of EMMPRIN and VEGF, high CD105-MVD, and low expression of bFGF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rong, Hui; Li, Yan; Lou, Xiao-hua
2007-02-01
A novel cardiotoxin-like basic protein from Naja naja atra was crystallized and diffraction data were collected to 2.35 Å resolution. A novel cardiotoxin-like basic protein was isolated from the venom of the Chinese cobra (Naja naja atra) from the south of Anhui in China. The protein inhibits the expression of vascular endothelial growth factor and basic fibroblast growth factor in human lung cancer cell line H1299 and induces the haemolysis of rabbit erythrocytes under low-lecithin conditions. After a two-step chromatographic purification, the resultant 7 kDa protein was crystallized by the hanging-drop vapour-diffusion method at room temperature. A complete data setmore » was collected to 2.35 Å resolution using an in-house X-ray diffraction system. The crystal belongs to space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 43.2, c = 147.9 Å. There are two molecules in the crystallographic asymmetric unit.« less
Abdullah, Kay M; Abdullah, Ahmed; Johnson, Mary Lynn; Bilski, Jerzy J; Petry, Kimberly; Redmer, Dale A; Reynolds, Lawrence P; Grazul-Bilska, Anna T
2003-10-01
To evaluate the effects of Aloe vera on gap junctional intercellular communication (GJIC) and proliferation of human skin fibroblasts in the presence or absence of basic fibroblast growth factor (FGF-2). In vitro study using human type II diabetic and nondiabetic skin fibroblast cell lines. Diabetic (n = 4) and nondiabetic (n = 4) human skin fibroblast cell lines were purchased from Coriell Institute for Medical Research (Camden, NJ). The cells were cultured with or without Aloe vera extract in increasing concentrations (0%, 0.625%, 1.25%, 2.5%, 5%, 10%, and 20%; v/v) in culture medium and with or without FGF-2 (30 ng/mL). GJIC was evaluated after 48-hour incubation with treatments by laser cytometry. Cells were counted after 72-hour incubation with treatments by using a Coulter counter. The rate of GJIC was greater (p < 0.01) for diabetic than for nondiabetic fibroblasts (3.5 +/- 0.1 versus 3.0 +/- 0.1% per minute during the first 4 minutes after photobleaching). GJIC was increased ( p < 0.05) for diabetic fibroblasts in the presence of 2.5% and 5% of Aloe vera extract (4.2 +/- 0.1 and 4.0 +/- 0.2 versus 3.5 +/- 0.1% per minute for control, respectively). FGF-2 stimulated (p < 0.01) GJIC for diabetic (4.0 +/- 0.1 versus 3.5 +/- 0.1% per minute for control) and nondiabetic (3.5 +/- 0.1 versus 3.0 +/- 0.1% per minute for control) fibroblasts. Aloe vera extract did not affect GJIC of nondiabetic fibroblast cultured without FGF-2. However, Aloe vera extract decreased (p < 0.05) FGF-2 stimulatory effects on GJIC of diabetic and nondiabetic fibroblasts. Proliferation of diabetic fibroblasts was increased (p < 0.05) by 1.25% and 2.5% Aloe vera extract in medium. Proliferation of nondiabetic fibroblasts was not affected by Aloe vera extract. FGF-2 increased (p < 0.05) proliferation of nondiabetic fibroblasts and FGF-2 did not affect proliferation of diabetic fibroblasts. Aloe vera extract decreased (p < 0.05) FGF-2 stimulatory effects on proliferation of nondiabetic fibroblasts. These data demonstrate that Aloe vera has the ability to stimulate GJIC and proliferation of human skin fibroblasts in diabetes mellitus. Furthermore, these results indicate that Aloe vera contains a compound(s) that neutralizes, binds with FGF-2 receptor, or otherwise alters signaling pathways for FGF-2. By affecting both GJIC and proliferation of diabetic fibroblasts, Aloe vera may improve wound healing in diabetes mellitus.
2011-10-01
fibroblast growth factor receptors and their prognostic...AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth
Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis
2009-10-01
AD_________________ Award Number: W81XWH-06-1-0763 TITLE: Role of Fibroblast Growth Factor ...2009 4. TITLE AND SUBTITLE Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development 5a. CONTRACT NUMBER and Tumorigenesis...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS Fibroblast Growth Factor Binding Protein-1
Brooks, R A; Burrin, J M; Kohner, E M
1991-01-01
Release of basic fibroblast growth factor (bFGF) was investigated in bovine retinal endothelial cells (BREC) maintained in monolayer culture. Confluent cells released bFGF into serum-free culture medium or medium containing 5% serum at rates of up to 105.2 and 61.3 pM/day respectively. bFGF release coincided with a decrease in monolayer cell number and increases in lactate dehydrogenase (LDH) concentration and cells and cell-debris particles in the medium, which suggested that cell damage and lysis were responsible for growth-factor release. Maximum bFGF release at 24 h (230 +/- 10 pM) occurred when the cells were treated with lipopolysaccharide (10 micrograms/ml), which also produced the greatest changes in parameters of cell damage. Sub-confluent cells showed little overt damage at 24 h, but released bFGF (78 +/- 20 pM) along with LDH, indicating that some cell lysis had occurred. Insulin-like growth factor 1 (IGF-1) was also released into serum-free culture medium at a rate of 0.34 nM/day, but not into medium containing serum or when the cells were treated with lipopolysaccharide. This implies that the mechanism of IGF-1 release is different from that of bFGF and is not related to cell damage. Culture medium conditioned by BREC stimulated the proliferation of these cells, as measured by an increase in their incorporation of [methyl-3H]thymidine from 7550 +/- 479 to 10467 +/- 924 d.p.m. These results demonstrate that bFGF is released from damaged BREC and that medium conditioned by these cells can stimulate retinal-endothelial-cell proliferation. This strengthens the case for an involvement of this growth factor in retinal neovascularization. Images Fig. 1. PMID:2039465
A study of the effects of physical dermabrasion combined with chemical peeling in porcine skin.
Kang, Boo Kyoung; Choi, Jeong Hwee; Jeong, Ki Heon; Park, Jong Min; Suh, Dong Hye; Lee, Sang Jun; Shin, Min Kyung
2015-02-01
Many comparative studies of chemical peeling and dermabrasion have been reported. However, rare basic scientific data about the immediate effects after combined treatment with chemical peeling and dermabrasion have been confirmed. The aim of this study is to evaluate the effect of the application of physical abrasion in combination with chemical peels. Three pigs were treated with physical abrasion using a water jet device in combination with an α-hydroxy acid solution, and the skin samples of the control received chemical peeling solution alone. The levels of growth factors and neuropeptides were measured with a multiplex immunoassay. Skin treated with physical dermabrasion combined with chemical peeling showed prominent detachment and swelling of the stratum corneum (SC), and fluid collection in the hair follicles. The mean cell count of CD34 positive fibroblasts and mast cells, levels of epidermal growth factor, fibroblast growth factor-2, vascular endothelial growth factor, and neurotensin, were significantly increased in the tissue treated with physical abrasion combined with a chemical peeling agent, compared to the skin in the control. We concluded that physical dermabrasion combined with chemical peeling can be more effective than chemical peeling alone, for the approach through transfollicular routes.
Lin, Xiaodong; Zhao, Liangcai; Tang, Shengli; Zhou, Qi; Lin, Qiuting; Li, Xiaokun; Zheng, Hong; Gao, Hongchang
2016-11-03
The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a 1 H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glucose, lipid and low density lipoprotein/very low density lipoprotein (LDL/VLDL) levels in serum of diabetic rats. Moreover, bFGF treatment corrected diabetes-induced reductions in citrate, lactate, choline, glycine, creatine, histidine, phenylalanine, tyrosine and glutamine in serum. Fecal propionate was significantly increased after bFGF treatment. Correlation analysis shows that glucose, lipid and LDL/VLDL were significantly negatively correlated with energy metabolites (citrate, creatine and lactate) and amino acids (alanine, glycine, histidine, phenylalanine, tyrosine and glutamine). In addition, a weak but significant correlation was observed between fecal propionate and serum lipid (R = -0.35, P = 0.046). Based on metabolic correlation and pathway analysis, therefore, we suggest that the glucose and lipid lowering effects of bFGF in the STZ-induced diabetic rats may be achieved by activating microbial metabolism, increasing energy metabolism and correcting amino acid metabolism.
Adase, Christopher A.; Borkowski, Andrew W.; Zhang, Ling-juan; Williams, Michael R.; Sato, Emi; Sanford, James A.
2016-01-01
A critical function for skin is that when damaged it must simultaneously identify the nature of the injury, repair barrier function, and limit the intrusion of pathogenic organisms. These needs are carried out through the detection of damage-associated molecular patterns (DAMPs) and a response that includes secretion of cytokines, chemokines, growth factors, and antimicrobial peptides (AMPs). In this study, we analyzed how non-coding double-stranded RNA (dsRNAs) act as a DAMP in the skin and how the human cathelicidin AMP LL-37 might influence growth factor production in response to this DAMP. dsRNA alone significantly increased the expression of multiple growth factors in keratinocytes, endothelial cells, and fibroblasts. Furthermore, RNA sequencing transcriptome analysis found that multiple growth factors increase when cells are exposed to both LL-37 and dsRNA, a condition that mimics normal wounding. Quantitative PCR and/or ELISA validated that growth factors expressed by keratinocytes in these conditions included, but were not limited to, basic fibroblast growth factor (FGF2), heparin-binding EGF-like growth factor (HBEGF), vascular endothelial growth factor C (VEGFC), betacellulin (BTC), EGF, epiregulin (EREG), and other members of the transforming growth factor β superfamily. These results identify a novel role for DAMPs and AMPs in the stimulation of repair and highlight the complex interactions involved in the wound environment. PMID:27048655
Fibroblast Senescence and Squamous Cell Carcinoma: How wounding therapies could be protective
Travers, Jeffrey B.; Spandau, Dan F; Lewis, Davina A.; Machado, Christiane; Kingsley, Melanie; Mousdicas, Nico; Somani, Ally-Khan
2014-01-01
Background Squamous cell carcinoma (SCC), which has one of the highest incidences of all cancers in the United States, is an age-dependent disease as the majority of these cancers are diagnosed in people over 70 years of age. Recent findings have led to a new hypothesis on the pathogenesis of SCC. Objectives To evaluate the potential of preventive therapies to reduce the incidence of SCC in at-risk geriatric patients. Materials and Methods Survey of current literature on wounding therapies to prevent SCCs. Results This new hypothesis of SCC photocarcinogenesis states that senescent fibroblasts accumulate in geriatric dermis resulting in a reduction in dermal insulin-like growth factor-1 (IGF-1) expression. This lack of IGF-1 expression sensitizes epidermal keratinocytes to fail to suppress UVB-induced mutations leading to increased proclivity to photocarcinogenesis. Recent evidence suggests that dermal wounding therapies, specifically dermabrasion and fractionated laser resurfacing, can decrease the proportion of senescent dermal fibroblasts, increase dermal IGF-1 expression, and correct the inappropriate UVB response found in geriatric skin, thus protecting geriatric keratinocytes from UVB-induced SCC initiation. Conclusions In this review, we will discuss the translation of pioneering basic science results implicating commonly used dermal fibroblast rejuvenation procedures as preventative treatments for SCC. PMID:23437969
NASA Technical Reports Server (NTRS)
Chen, Chu-Huang; Pellis, Neal R.
1997-01-01
The goal was to delineate mechanisms of genetic responses to angiogenic stimulation of human coronary arterial and dermal microvascular endothelial cells during exposure to microgravity. The NASA-designed rotating-wall vessel was used to create a three-dimensional culture environment with low shear-stress and microgravity simulating that in space. The primary specific aim was to determine whether simulated microgravity enhances endothelial cell growth and whether the growth enhancement is associated by augmented expression of Basic Fibroblast Growth Factor (BFGF) and c-fos, an immediate early gene and component of the transcription factor AP-1.
VEGF and Ki-67 Overexpression in Predicting Poor Overall Survival in Adenoid Cystic Carcinoma.
Park, Seongyeol; Nam, Soo Jeong; Keam, Bhumsuk; Kim, Tae Min; Jeon, Yoon Kyung; Lee, Se-Hoon; Hah, J Hun; Kwon, Tack-Kyun; Kim, Dong-Wan; Sung, Myung-Whun; Heo, Dae Seog; Bang, Yung-Jue
2016-04-01
The purpose of this study was to evaluate potential prognostic factors in patients with adenoid cystic carcinoma (ACC). A total of 68 patients who underwent curative surgery and had available tissue were enrolled in this study. Their medical records and pathologic slides were reviewed and immunohistochemistry for basic fibroblast growth factor, fibroblast growth factor receptor (FGFR) 2, FGFR3, c-kit, Myb proto-oncogene protein, platelet-derived growth factor receptor beta, vascular endothelial growth factor (VEGF), and Ki-67 was performed. Univariate and multivariate analysis was performed for determination of disease-free survival (DFS) and overall survival (OS). In univariate analyses, primary site of nasal cavity and paranasal sinus (p=0.022) and Ki-67 expression of more than 7% (p=0.001) were statistically significant factors for poor DFS. Regarding OS, perineural invasion (p=0.032), high expression of VEGF (p=0.033), and high expression of Ki-67 (p=0.007) were poor prognostic factors. In multivariate analyses, primary site of nasal cavity and paranasal sinus (p=0.028) and high expression of Ki-67 (p=0.004) were independent risk factors for poor DFS, and high expression of VEGF (p=0.011) and Ki-67 (p=0.011) showed independent association with poor OS. High expression of VEGF and Ki-67 were independent poor prognostic factors for OS in ACC.
Lim, Y P; Low, B C; Lim, J; Wong, E S; Guy, G R
1999-07-02
FRS2 is a docker protein that recruits signaling proteins to the plasma membrane in fibroblast growth factor signal transduction. We report here that FRS2 was associated with PKC lambda when Swiss 3T3 cells were stimulated with basic fibroblast growth factor. PKC zeta, the other member of the atypical PKC subfamily, could also bind FRS2. The association between FRS2 and PKC lambda is likely to be direct as shown by yeast two-hybrid analysis. The C-terminal fragments of FRS2 (amino acid residues 300-508) and SNT2 (amino acids 281-492), an isoform bearing 50% identity to FRS2, interacted with PKC lambda at a region (amino acids 240-562) that encompasses the catalytic domain. In vitro kinase assays revealed neither FRS2 nor SNT2 was a substrate of PKC lambda or zeta. Mutation of the alanine residue (Ala-120) to glutamate in the pseudo-substrate region of PKC lambda results in a constitutively active kinase that exhibited more than 2-fold greater binding to FRS2 in vitro than its "closed" wild-type counterpart. Tyrosine phosphorylation of FRS2 did not affect its binding to the constitutively active PKC lambda mutant, suggesting that the activation of PKC lambda is necessary and sufficient for its association with FRS2. It is likely that FRS2 serves as an anchoring protein for targeting activated atypical PKCs to the cell plasma membrane in signaling pathways.
Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis
2008-10-01
AD_________________ AWARD NUMBER: W81XWH-06-1-0763 TITLE: Role of Fibroblast Growth Factor ...Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis 5b. GRANT NUMBER W81XWH-06-1-0763 5c. PROGRAM...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fibroblast growth factors (FGFs) are vital modulators of development as well as
2009-10-01
AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth Inhibitor...9 Fibroblast Growth Factor -2: an Epithelial Ductal Cell Growth Inhibitor that Drops Out in Breast Cancer
Tanajak, Pongpan; Pongkan, Wanpitak; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2018-05-01
Propose: To investigate the temporal relationship between plasma fibroblast growth factor 21 levels, insulin resistance, metabolic dysfunction and cardiac fibroblast growth factor 21 resistance in long-term high-fat diet-induced obese rats. In total, 36 male Wistar rats were fed with either a normal diet or high-fat diet for 12 weeks. Blood was collected from the tail tip, and plasma was used to determine metabolic profiles and fibroblast growth factor 21 levels. Rats were sacrificed at weeks 4, 8 and 12, and the hearts were rapidly removed for the determination of cardiac fibroblast growth factor 21 signalling pathways. Body weight and plasma fibroblast growth factor 21 levels were increased after 4 weeks of consumption of a high-fat diet. At weeks 8 and 12, high-fat diet rats had significantly increased body weight and plasma fibroblast growth factor 21 levels, together with increased plasma insulin, HOMA index, area under the curve of glucose, plasma total cholesterol, plasma low-density lipoprotein cholesterol, serum malondialdehyde and cardiac malondialdehyde levels. However, plasma high-density lipoprotein cholesterol levels and cardiac fibroblast growth factor 21 signalling proteins (p-FGFR1 Tyr 154 , p-ERK1/2 Thr 202 /Tyr 204 and p-Akt Ser 473 ) were decreased, compared with normal diet rats. These findings suggest that plasma fibroblast growth factor 21 levels could be an early predictive biomarker prior to the development of insulin resistance, metabolic disturbance and cardiac fibroblast growth factor 21 resistance.
Li, Chung-Pin; Lee, Fa-Yauh; Hwang, Shinn-Jang; Lu, Rei-Hwa; Lee, Wei-Ping; Chao, Yee; Wang, Sung-Sang; Chang, Full-Young; Whang-Peng, Jacqueline; Lee, Shou-Dong
2003-01-01
AIM: To investigate whether vascular endothelial growth factor (VEGF) and basic fibroblastic growth factor (bFGF) are associated with spider angiomas in patients with liver cirrhosis. METHODS: Eighty-six patients with liver cirrhosis were enrolled and the number and size of the spider angiomas were recorded. Fifty-three healthy subjects were selected as controls. Plasma levels of VEGF and bFGF were measured in both the cirrhotics and the controls. RESULTS: Plasma VEGF and bFGF were increased in cirrhotics compared with controls (122 ± 13 vs. 71 ± 11 pg/mL, P = 0.003 for VEGF; 5.1 ± 0.5 vs. 3.4 ± 0.5 pg/mL, P = 0.022 for bFGF). In cirrhotics, plasma VEGF and bFGF were also higher in patients with spider angiomas compared with patients without spider angiomas (185 ± 28 vs. 90 ± 10 pg/mL, P = 0.003 for VEGF; 6.8 ± 1.0 vs. 4.1 ± 0.5 pg/mL, P = 0.017 for bFGF). Multivariate logistic regression showed that young age and increased plasma levels of VEGF and bFGF were the most significant predictors for the presence of spider angiomas in cirrhotic patients (odds ratio [OR] = 6.64, 95% confidence interval [CI] = 2.02-21.79, P = 0.002; OR = 4.35, 95%CI = 1.35-14.01, P = 0.014; OR = 5.66, 95%CI = 1.72-18.63, P = 0.004, respectively). CONCLUSION: Plasma VEGF and bFGF are elevated in patients with liver cirrhosis. Age as well as plasma levels of VEGF and bFGF are significant predictors for spider angiomas in cirrhotic patients. PMID:14669345
Wang, Jun-Jie; Liu, Yu-Liang; Sun, Yuan-Chao; Ge, Wei; Wang, Yong-Yong; Dyce, Paul W.; Hou, Rong; Shen, Wei
2015-01-01
It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro. PMID:26375397
Wang, Jun-Jie; Liu, Yu-Liang; Sun, Yuan-Chao; Ge, Wei; Wang, Yong-Yong; Dyce, Paul W; Hou, Rong; Shen, Wei
2015-01-01
It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro.
Human serum reduces mitomycin-C cytotoxicity in human tenon's fibroblasts.
Crowston, Jonathan G; Wang, Xiao Y; Khaw, Peng T; Zoellner, Hans; Healey, Paul R
2006-03-01
To determine the effect of human serum factors on mitomycin-C (MMC) cytotoxicity in cultured human subconjunctival Tenon's capsule fibroblasts. Fibroblast monolayers were treated with 5-minute applications of mitomycin-C (0.4 mg/mL) and incubated in culture medium with or without additional human serum. Fibroblast apoptosis was quantified by direct cell counts based on nuclear morphology, flow cytometry with annexin-V/propidium iodide, and a lactate dehydrogenase release assay. The number of viable fibroblasts and fibroblast proliferation were measured with a colorimetric MTT assay and by bromodeoxyuridine (BrdU) labeling. Mitomycin-C induced significant levels of fibroblast apoptosis. The addition of human serum resulted in a 40% reduction in MMC-induced fibroblast apoptosis (range, 31.3%-55.3%; P = 0.021) as determined by nuclear morphology and a 32.4% reduction measured by annexin-V/PI. There was a corresponding dose-dependent increase in the number of viable fibroblasts. Serum did not restore proliferation in MMC-treated fibroblasts. Factors present in human serum reduce MMC cytotoxicity in cultured human Tenon's fibroblasts. Human serum increased the number of viable fibroblasts by inhibiting MMC-induced fibroblast apoptosis. Serum factors access aqueous humor after trabeculectomy and may therefore influence the clinical outcome of MMC treatment.
Middleton, Kellie K.; Barro, Victor; Muller, Bart; Terada, Satosha; Fu, Freddie H.
2012-01-01
Abstract Musculoskeletal injuries are the most common cause of severe long-term pain and physical disability, and affect hundreds of millions of people around the world. One of the most popular methods used to biologically enhance healing in the fields of orthopaedic surgery and sports medicine includes the use of autologous blood products, namely, platelet rich plasma (PRP). PRP is an autologous concentration of human platelets to supra-physiologic levels. At baseline levels, platelets function as a natural reservoir for growth factors including platelet-derived growth factor (PDGF), epidermal growth factor (EGF), transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF), hepatocyte growth factor (HGF), and insulin-like growth factor (IGF-I). PRP is commonly used in orthopaedic practice to augment healing in sports-related injuries of skeletal muscle, tendons, and ligaments. Despite its pervasive use, the clinical efficacy of PrP therapy and varying mechanisms of action have yet to be established. Basic science research has revealed that PRP exerts is effects through many downstream events secondary to release of growth factors and other bioactive factors from its alpha granules. These effects may vary depending on the location of injury and the concentration of important growth factors involved in various soft tissue healing responses. This review focuses on the effects of PrP and its associated bioactive factors as elucidated in basic science research. Current findings in PRP basic science research, which have shed light on its proposed mechanisms of action, have opened doors for future areas of PrP research. PMID:23576936
Cass, Wayne A; Peters, Laura E; Harned, Michael E; Seroogy, Kim B
2006-08-01
Repeated methamphetamine (METH) administration to animals can result in long-lasting decreases in striatal dopamine (DA) content. It has previously been shown that glial cell line-derived neurotrophic factor (GDNF) can reduce the DA-depleting effects of neurotoxic doses of METH. However, there are several other trophic factors that are protective against dopaminergic toxins. Thus, the present experiments further investigated the protective effect of GDNF as well as the protective effects of several other trophic factors. Male Fischer-344 rats were given an intracerebral injection of trophic factor (2-10 microg) 1 day before METH (5 mg/kg, s.c., 4 injections at 2-h intervals). Seven days later DA levels in the striatum were measured using high-performance liquid chromatography (HPLC). Initial experiments indicated that only intrastriatal GDNF, and not intranigral GDNF, was protective. Thereafter, all other trophic factors were administered into the striatum. Members of the GDNF family (GDNF, neurturin, and artemin) all provided significant protection against the DA-depleting effects of METH, with GDNF providing the greatest protection. Brain-derived neurotrophic factor, neurotrophin-3, acidic fibroblast growth factor, basic fibroblast growth factor, ciliary neurotrophic factor, transforming growth factor-alpha (TGF-alpha), heregulin beta1 (HRG-beta1), and amphiregulin (AR) provided no significant protection at the doses examined. These results suggest that the GDNF family of trophic factors can provide significant protection against the DA-depleting effects of neurotoxic doses of METH.
Machoń-Grecka, A; Dobrakowski, M; Boroń, M; Lisowska, G; Kasperczyk, A; Kasperczyk, S
2017-05-01
The aim of the study was to determine the effect of occupational exposure to lead on the blood levels of pro-inflammatory cytokines and selected factors that influence angiogenesis. The study population was divided into two groups. The first group consisted of 56 male workers chronically exposed to lead. The second group (control) was comprised of 24 male administrative workers. The serum levels of interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) were significantly higher in the group of workers chronically exposed to lead compared to control values by 38%, 68%, and 57%, respectively. Similarly, the values of soluble vascular endothelial growth factor receptor-1 (sVEGFR-1) and fibroblast growth factor-basic (FGF-basic) were higher by 19% and 63%, respectively. In the group of workers chronically exposed to lead, there were positive correlations between the levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and angiogenic factors (VEGF, FGF-basic, sVEGFR-1, and soluble angiopoietin receptor). In the control group, there were no correlations between the levels of the abovementioned parameters. Results of the present study indicate that chronic occupational lead exposure promotes inflammatory processes via induction of pro-inflammatory cytokines, modulates angiogenesis, and elicits interdependencies between the immune response and angiogenic factors.
Wang, Zhongshan; Wu, Guofeng; Bai, Shizhu; Feng, Zhihong; Dong, Yan; Zhou, Jian; Qin, Haiyan; Zhao, Yimin
2014-06-01
Infection and epithelial downgrowth are two major problems with maxillofacial transcutaneous implants, and both are mainly due to lack of stable closure of soft tissues at transcutaneous sites. Fibroblasts have been shown to play a key role in the formation of biological seals. In this work, titanium (Ti) model surfaces were coated with mussel adhesive proteins (MAPs) utilizing its unique adhesion ability on diverse inorganic and organic surfaces in wet environments. Prepared basic fibroblast growth factor (bFGF)-poly(lactic-co-glycolic acid) (PLGA) microspheres can be easily synthesized and combined onto MAPs-coated Ti surfaces, due to the negative surface charges of microspheres in aqueous solution, which is in contrast to the positive charges of MAPs. Titanium model surfaces were divided into three groups. Group A: MAPs/bFGF-PLGA microspheres composite-coated Ti surfaces. Group B: MAPs-coated Ti surfaces. Group C: uncoated Ti surfaces. The effects of coated Ti surfaces on adhesion of fibroblasts, cytoskeletal organization, proliferation, and extracellular matrix (ECM)-related gene expressions were examined. The results revealed increased adhesion (P < 0.05), enhanced actin cytoskeletal organization, and up-regulated ECM-related gene expressions in groups A and B compared with group C. Increased proliferation of fibroblasts during five days of incubation was observed in group A compared with groups B and C (P < 0.05). Collectively, the results from this in vitro study demonstrated that MAPs/bFGF-PLGA microspheres composite-coated Ti surfaces had the ability to increase fibroblast functionality. In addition, MAPs/bFGF-PLGA microsphere composite-coated Ti surfaces should be studied further as a method of promoting formation of stable biological seals around transcutaneous sites.
Bioactive factors for tissue regeneration: state of the art.
Ohba, Shinsuke; Hojo, Hironori; Chung, Ung-Il
2012-07-01
THERE ARE THREE COMPONENTS FOR THE CREATION OF NEW TISSUES: cell sources, scaffolds, and bioactive factors. Unlike conventional medical strategies, regenerative medicine requires not only analytical approaches but also integrative ones. Basic research has identified a number of bioactive factors that are necessary, but not sufficient, for organogenesis. In skeletal development, these factors include bone morphogenetic proteins (BMPs), transforming growth factor β TGF-β, Wnts, hedgehogs (Hh), fibroblast growth factors (FGFs), insulin-like growth factors (IGFs), SRY box-containing gene (Sox) 9, Sp7, and runt-related transcription factors (Runx). Clinical and preclinical studies have been extensively performed to apply the knowledge to bone and cartilage regeneration. Given the large number of findings obtained so far, it would be a good time for a multi-disciplinary, collaborative effort to optimize these known factors and develop appropriate drug delivery systems for delivering them.
Basic FGF Support of Human Embryonic Stem Cell Self-Renewal
Levenstein, Mark E.; Ludwig, Tenneille E.; Xu, Ren-He; Llanas, Rachel A.; VanDenHeuvel-Kramer, Kaitlyn; Manning, Daisy; Thomson, James A.
2015-01-01
Human embryonic stem (ES) cells have most commonly been cultured in the presence of basic FGF (FGF2) either on fibroblast feeder layers or in fibroblast-conditioned medium. Recently, it has been reported that elevated concentrations of FGF2 permit the culture of human ES cells in the absence of fibroblasts or fibroblast-conditioned medium. Here we compare the ability of unconditioned medium (UM) supplemented with 4, 24, 40, 80, 100 and 250 ng/ml FGF2 to sustain low-density human ES cell cultures through multiple passages. In these stringent culture conditions, 4, 24, and 40 ng/ml FGF2 failed to sustain human ES cells through three passages, but 100 ng/ml sustained human ES cells with an effectiveness comparable to conditioned medium (CM). Two human ES cell lines (H1 and H9) were maintained for up to 164 population doublings (7 and 4 months) in UM supplemented with 100 ng/ml FGF2. After prolonged culture the cells formed teratomas when injected into SCID-beige mice, and expressed markers characteristic of undifferentiated human ES cells. We also demonstrate that FGF2 is degraded more rapidly in UM than in CM, partly explaining the need for higher concentrations of FGF2 in UM. These results further facilitate the large-scale, routine culture of human ES cells, and suggest that fibroblasts and fibroblast-conditioned medium sustain human ES cells in part by stabilizing FGF signaling above a critical threshold. PMID:16282444
Zheng, Yuan; Wang, Na; Xie, Ming-Shu; Sha, Zhen-Xia; Chen, Song-Lin
2012-12-01
A new cell line (TSHKC) derived from half-smooth tongue sole (Cynoglossus semilaevis) head kidney was developed. The cell line was subcultured for 40 passages over a period of 360 days. The cell line was optimally maintained in minimum essential medium supplemented with HEPES, antibiotics, fetal bovine serum, 2-Mercaptoethanol (2-Me), sodium pyruvate and basic fibroblast growth factor. The suitable growth temperature for TSHKC cells was 24 °C, and microscopically, TSHKC cells were composed of fibroblast-like cells. Chromosome analysis revealed that the TSHKC cell line had a normal diploid karyotype with 2n = 42, contained the heterogametic W chromosome. The TSHKC cell line was found to be susceptible to lymphocystis disease virus. The fluorescent signals were observed in TSHKC when the cells were transfected with green fluorescent protein and red fluorescent protein reporter plasmids.
Han, Uiyoung; Hong, Jinkee
2018-03-05
In this study, we established the structure of a multilayer nanofilm that more efficiently encapsulates basic fibroblast growth factor (bFGF). First, a positively charged layer material was selected from biocompatible polymers such as collagen (Col), poly(beta-amino ester) (Poly2), and chitosan (Chi), while considering the film thickness. We then investigated the change in bFGF encapsulation efficiency when the multilayer structure was changed from a tetralayer to a trilayer. As a result, we obtained a highly improved bFGF encapsulation efficiency in the nanofilm using a positively charged layer formed by a blend of Col and Poly2 and a negatively charged poly(acrylic acid) (PAA) layer within a trilayered structure. In particular, we found that a significant amount of adsorbed bFGF was desorbed again during the film fabrication process of a tetralayered nanofilm. In the conventional nanofilm, bFGF was regarded as a polycation and formed a multilayer nanofilm that was composed of a tetralayered structure and was represented as (polycation/polyanion/bFGF/polyanion) n where n = number of repeated tetralayers. Here, we suggested that bFGF should not be considered a polycation, rather it should be considered as a small quantity of molecule that exists between the polyanion and polycation layers. In this case, the nanofilm is composed of repeating units of (polycation/polyanion/bFGF/polycation/polyanion), because the amount of adsorbed bFGF is considerably lower than that of other building blocks.
Chang, Sung Soo; Yokomise, Hiroyasu; Matsuura, Natsumi; Gotoh, Masashi; Tabata, Yasuhiko
2014-08-01
The prognosis of patients with emphysema is poor as there is no truly effective treatment. Our previous study showed that the alveolar space was smaller and the microvessel density was higher in a canine emphysema model after the intrapulmonary arterial administration of gelatin microspheres slowly releasing basic fibroblast growth factor (bFGF-GMS). In the present study, we evaluated the functional effect of injecting bFGF-GMS via the pulmonary artery in this canine pulmonary emphysema model. Using the porcine pancreatic elastase (PPE)-induced total emphysema model, we approximated the value of lung compliance with a Power Lab System, and performed blood gas analysis in a control group, a total emphysema group, and a bFGF group in which bFGF-GMS were injected toward the whole pulmonary artery via the femoral vein. Each group comprised five dogs. Lung compliance was higher in the total emphysema group than in the control group (p = 0.031), and the bFGF group showed no significant improvement of lung compliance vs. the total emphysema group (p = 0.112). PaO2 (partial pressure of oxygen in arterial blood) was improved by administering bFGF-GMS in the total emphysema model (p = 0.027). In the canine total emphysema model, blood gas parameters were improved by the whole pulmonary arterial administration of bFGF-GMS. This method has the potential to be an effective novel therapy for pulmonary emphysema.
Eleftheriadis, T; Liakopoulos, V; Lawson, B; Antoniadi, G; Stefanidis, I; Galaktidou, G
2011-07-01
Besides extracellular matrix production, fibroblasts are able to produce various cytokines. Their ubiquitous position makes fibroblasts appropriate cells for sensing various noxious stimuli and for attracting immune cells in the affected area. In the present study the effect of lipopolysaccharide (LPS) and cobalt chloride (CoCl(2)) on the above fibroblasts functions were evaluated in primary human skin fibroblasts cultures. Collagen, matrix metalloproteinase-1, tissue inhibitor of metalloproteinases-1, transforming growth factor-β1, interleukin-8 (IL-8) and macrophage chemoattractant protein-1 (MCP-1) were measured in fibroblasts culture supernatants. Fibroblasts proliferation and viability were assessed as well. Hypoxia inducible factor-1α and the phosphorylated p65 portion of NF-κB were assessed in fibroblasts protein extracts. LPS and CoCl(2) had a minor effect on fibrosis related factors in human primary fibroblasts, possibly due to the absence of interplay with other cell types in the used experimental system. On the contrary both LPS and CoCl(2) increased significantly IL-8. LPS also increased considerably MCP-1, but CoCl(2) decreased it. Thus LPS and CoCl(2) induce a sentinel, nevertheless not identical, phenotype in primary human fibroblasts. The last disparity could result in different body response to infectious or hypoxic noxious stimuli.
2013-01-01
Background Macrophages and fibroblasts are two major players in tissue repair and fibrosis. Despite the relevance of macrophages and fibroblasts in tissue homeostasis, remarkably little is known whether macrophages are able to influence the properties of fibroblasts. Here we investigated the role of paracrine factors secreted by classically activated (M1) and alternatively activated (M2) human macrophages on human dermal fibroblasts (HDFs). Results HDFs stimulated with paracrine factors from M1 macrophages showed a 10 to > 100-fold increase in the expression of the inflammatory cytokines IL6, CCL2 and CCL7 and the matrix metalloproteinases MMP1 and MMP3. This indicates that factors produced by M1 macrophages induce a fibroblast phenotype with pro-inflammatory and extracellular matrix (ECM) degrading properties. HDFs stimulated with paracrine factors secreted by M2 macrophages displayed an increased proliferation rate. Interestingly, the M1-activated pro-inflammatory fibroblasts downregulated, after exposure to paracrine factors produced by M2 macrophages or non-conditioned media, the inflammatory markers as well as MMPs and upregulated their collagen production. Conclusions Paracrine factors of M1 or M2 polarized macrophages induced different phenotypes of HDFs and the HDF phenotypes can in turn be reversed, pointing to a high dynamic plasticity of fibroblasts in the different phases of tissue repair. PMID:23601247
Cheng, Ming-Te; Liu, Chien-Lin; Chen, Tain-Hsiung; Lee, Oscar K
2014-01-01
Tissue engineering with stem cells is a fascinating approach for treating anterior cruciate ligament (ACL) injuries. In our previous study, stem cells isolated from the human anterior cruciate ligament were shown to possess extensive proliferation and differentiation capabilities when treated with specific growth factors. However, optimal culture conditions and the usefulness of fetal bovine serum (FBS) as a growth factor in in vitro culture systems are yet to be determined. In this study, we compared the effects of different culture media containing combinations of various concentrations of FBS and the growth factors basic fibroblastic growth factor (bFGF) and transforming growth factor-β1 (TGF-β1) on the proliferation and differentiation of ligament-derived stem cells (LSCs) and bone marrow mesenchymal stem cells (BMSCs). We found that α-MEM plus 10% FBS and bFGF was able to maintain both LSCs and BMSCs in a relatively undifferentiated state but with lower major extracellular matrix (ECM) component gene expression and protein production, which is beneficial for stem cell expansion. However, the differentiation and proliferation potentials of LSCs and BMSCs were increased when cultured in MesenPRO, a commercially available stem cell medium containing 2% FBS. MesenPRO in conjunction with TGF-β1 had the greatest ability to induce the differentiation of BMSCs and LSCs to ligament fibroblasts, which was evidenced by the highest ligamentous ECM gene expression and protein production. These results indicate that culture media and growth factors play a very important role in the success of tissue engineering. With α-MEM plus 10% FBS and bFGF, rapid proliferation of stem cells can be achieved. In this study, MesenPRO was able to promote differentiation of both LSCs and BMSCs to ligament fibroblasts. Differentiation was further increased by TGF-β1. With increasing understanding of the effects of different culture media and growth factors, manipulation of stem cells in the desired direction for ligament tissue engineering can be achieved.
An Alternative Method for Long-Term Culture of Chicken Embryonic Stem Cell In Vitro.
Zhang, Li; Wu, Yenan; Li, Xiang; Wei, Shao; Xing, Yiming; Lian, Zhengxing; Han, Hongbing
2018-01-01
Chicken embryonic stem cells (cESCs) obtained from stage X embryos provide a novel model for the study of avian embryonic development. A new way to maintain cESCs for a long period in vitro still remains unexplored. We found that the cESCs showed stem cell-like properties in vitro for a long term with the support of DF-1 feeder and basic culture medium supplemented with human basic fibroblast growth factor (hbFGF), mouse stem cell factor (mSCF), and human leukemia inhibitory factor (hLIF). During the long culture period, the cESCs showed typical ES cell morphology and expressed primitive stem cell markers with a relatively stable proliferation rate and high telomerase activity. These cells also exhibited the capability to differentiate into cardiac myocytes, smooth muscle cells, neural cells, osteoblast, and adipocyte in vitro . Chimera chickens were produced by cESCs cultured for 25 passages with this new culture system. The experiments showed that DF-1 was the optimal feeder and hbFGF was an important factor for maintaining the pluripotency of cESCs in vitro .
Kagami, Hideaki; Agata, Hideki; Inoue, Minoru; Asahina, Izumi; Tojo, Arinobu; Yamashita, Naohide; Imai, Kohzoh
2014-06-01
Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. Human bone marrow stromal cells (BMSCs) are the most commonly used cell source for bone tissue engineering. Although it is known that cell culture and induction protocols significantly affect the in vivo bone forming ability of BMSCs, the responsible factors of clinical outcome are poorly understood. The results from recent studies using human BMSCs have shown that factors such as passage number and length of osteogenic induction significantly affect ectopic bone formation, although such differences hardly affected the alkaline phosphatase activity or gene expression of osteogenic markers. Application of basic fibroblast growth factor helped to maintain the in vivo osteogenic ability of BMSCs. Importantly, responsiveness of those factors should be tested under clinical circumstances to improve the bone tissue engineering further. In this review, clinical application of bone tissue engineering was reviewed with putative underlying mechanisms.
Kaplan, A D; Kilkenny, D M; Hill, D J; Dixon, S J
1996-11-01
Extracellular nucleotides interact with specific cell surface receptors to mediate a variety of biological responses, including elevation of the cytosolic free Ca2+ concentration ([Ca2+]i) in a number of cell types. Although extracellular ATP has been shown to affect chondrocyte function, the underlying mechanisms are poorly understood. In the present study, we investigated whether Ca2+-mobilizing purinoceptors are present on sheep chondrocytes. Chondrocytes were isolated from the proximal tibial growth plate of day 120-130 sheep fetuses. Early passage cells were loaded with indo-1 or fluo-3, and [Ca2+]i was monitored by fluorescence spectrophotometry. ATP (0.3-100 microM) induced transient elevation of [Ca2+]i, lasting approximately 1 min. Half-maximal elevation of [Ca2+]i was observed at an ATP concentration of 5.0 +/- 0.2 microM. Responses were still observed in the absence of extracellular Ca2+, and were abolished by pretreatment with thapsigargin, consistent with the release of Ca2+ from intracellular stores. Several nucleotides were tested for their ability to elevate [Ca2+]i. In order of potency, these were UTP approximately ATP > ADP approximately 2-methylthio-ATP. No responses were elicited by benzoylbenzoic-ATP, a P2Z-selective agonist; alpha,beta-methylene-ATP, an agonist selective for certain P2X purinoceptors; AMP; adenosine; or pyrophosphate (all at 100 microM), demonstrating specificity. Taken together, these data indicate that nucleotides elevate [Ca2+]i in chondrocytes through interaction with the P2U purinoceptor subtype. Although pretreatment with pertussis toxin virtually abolished the Ca2+ response to lysophosphatidic acid, the response to UTP was relatively insensitive, suggesting that P2U purinoceptors are not linked to a pertussis toxin-sensitive G protein in chondrocytes. In contrast, the Ca2+ response to UTP was markedly inhibited by the biologically active phorbol ester 12-O-tetradecanoyl-beta-phorbol 13-acetate, but not by the inactive control compound 4 alpha-phorbol 12,13-didecanoate, suggesting that a 12-O-tetradecanoyl-beta-phorbol 13-acetate-sensitive isoform of protein kinase C regulates P2U purinoceptor signaling in these cells. UTP (10 microM) enhanced the proliferative response to basic fibroblast growth factor. The response to basic fibroblast growth factor was also enhanced by ATP, but not by 2-methylthio-ATP, consistent with involvement of P2U purinoceptors. Nucleotides released during trauma, inflammation, or cell death may act through P2U purinoceptors to regulate chondrocyte function in an autocrine or paracrine manner.
FGFR4 Downregulation of Cell Adhesion in Prostate Cancer
2008-09-01
Fibroblast Growth Factor Receptor 4, is a member of the FGFR family of RTK ( receptor tyrosine kinase) growth factor receptors . A common...work supported by this award: Cancer Research Coordinating Committee (CRCC) Intersection of NF- B and Fibroblast Growth Factor Receptor Signaling...disease. REFERENCES 1. Wang J, Stockton DW, Ittmann M. The fibroblast growth factor receptor -4
Zhang, Dongdong; Seo, Da Hea; Choi, Han Seok; Park, Hye Sun; Chung, Yoon Sok; Lim, Sung Kil
2017-12-01
Vitamin D deficiency remains common in all age groups and affects skeletal and non-skeletal health. Fibroblast growth factor 23 is a bone-derived hormone that regulates phosphate and 1,25-dihydroxyvitamin D homeostasis as a counter regulatory factor. 1,25-Dihydroxyvitamin D stimulates fibroblast growth factor 23 synthesis in bone, while fibroblast growth factor 23 suppresses 1,25-dihydroxyvitamin D production in the kidney. The aim of this study was to evaluate the effects of vitamin D₃ intramuscular injection therapy on serum fibroblast growth factor 23 concentrations, and several other parameters associated with bone metabolism such as sclerostin, dickkopf-1, and parathyroid hormone. A total of 34 subjects with vitamin D deficiency (defined by serum 25-hydroxyvitamin D levels below 20 ng/mL) were randomly assigned to either the vitamin D injection group (200,000 units) or placebo treatment group. Serum calcium, phosphate, urine calcium/creatinine, serum 25-hydroxyvitamin D, fibroblast growth factor 23, sclerostin, parathyroid hormone, and dickkopf-1 levels were serially measured after treatment. Comparing the vitamin D injection group with the placebo group, no significant changes were observed in serum fibroblast growth factor 23, parathyroid hormone, or dickkopf-1 levels. Serum sclerostin concentrations transiently increased at week 4 in the vitamin D group. However, these elevated levels declined later and there were no statistically significant differences as compared with baseline levels. Serum fibroblast factor 23, sclerostin, parathyroid hormone, and dickkopf-1 levels were not affected significantly by single intramuscular injection of vitamin D₃. Copyright © 2017 Korean Endocrine Society
Uterine Wound Healing: A Complex Process Mediated by Proteins and Peptides.
Lofrumento, Dario D; Di Nardo, Maria A; De Falco, Marianna; Di Lieto, Andrea
2017-01-01
Wound healing is the process by which a complex cascade of biochemical events is responsible of the repair the damage. In vivo, studies in humans and mice suggest that healing and post-healing heterogeneous behavior of the surgically wounded myometrium is both phenotype and genotype dependent. Uterine wound healing process involves many cells: endothelial cells, neutrophils, monocytes/macrophages, lymphocytes, fibroblasts, myometrial cells as well a stem cell population found in the myometrium, myoSP (side population of myometrial cells). Transforming growth factor beta (TGF-β) isoforms, connective tissue growth factor (CTGF), basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and tumor necrosis factor alpha (TNF-β) are involved in the wound healing mechanisms. The increased TGF- β1/β3 ratio reduces scarring and fibrosis. The CTGF altered expression may be a factor involved in the abnormal scars formation of low uterine segment after cesarean section and of the formation of uterine dehiscence. The lack of bFGF is involved in the reduction of collagen deposition in the wound site and thicker scabs. The altered expression of TNF-β, VEGF, and PDGF in human myometrial smooth muscle cells in case of uterine dehiscence, it is implicated in the uterine healing process. The over-and under-expressions of growth factors genes involved in uterine scarring process could represent patient's specific features, increasing the risk of cesarean scar complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Carroll, S M; Carroll, C M; Stremel, R W; Heilman, S J; Steffen, J M; Tobin, G R; Barker, J H
2000-03-01
Ischemia of the distal latissimus dorsi muscle flap occurs when the entire muscle is acutely elevated. Although this level of ischemia may not be critical if the muscle is to be used as a conventional muscle flap, the ischemia causes decreased distal muscle function if it is used for dynamic muscle flap transfer. This experiment was designed to determine whether or not the administration of exogenous basic fibroblast growth factor (bFGF), combined with a sublethal ischemic insult (i.e., vascular delay), would further augment muscle perfusion and function. Both latissimus dorsi muscles of nine canines were subjected to a bipedicle vascular delay procedure immediately followed by thoracodorsal intraarterial injection of 100 microg of bFGF on one side and by intraarterial injection of vehicle on the other. Ten days later, both latissimus dorsi muscles were raised as thoracodorsally based island flaps, with perfusion determined by laser-Doppler fluximetry. The muscles were wrapped around silicone chambers, simulating cardiomyoplasty, and stimulating electrodes were placed around each thoracodorsal nerve. The muscles were then subjected to an experimental protocol to determine muscle contractile function. At the end of the experiment, latissimus dorsi muscle biopsies were obtained for measurement of bFGF expression. The results demonstrated that the administration of 100 microg of bFGF immediately after the vascular delay procedure increases expression of native bFGF. In the distal and middle muscle segments, it also significantly increased muscle perfusion by approximately 20 percent and fatigue resistance by approximately 300 percent. The administration of growth factors may serve as an important adjuvant to surgical procedures using dynamic muscle flap transfers.
Janson, David; Rietveld, Marion; Mahé, Christian; Saintigny, Gaëlle; El Ghalbzouri, Abdoelwaheb
2017-06-01
Papillary and reticular fibroblasts have different effects on keratinocyte proliferation and differentiation. The aim of this study was to investigate whether these effects are caused by differential secretion of soluble factors or by differential generation of extracellular matrix from papillary and reticular fibroblasts. To study the effect of soluble factors, keratinocyte monolayer cultures were grown in papillary or reticular fibroblast-conditioned medium. To study the effect of extracellular matrix, keratinocytes were grown on papillary or reticular-derived matrix. Conditioned medium from papillary or reticular fibroblasts did not differentially affect keratinocyte viability or epidermal development. However, keratinocyte viability was increased when grown on matrix derived from papillary, compared with reticular, fibroblasts. In addition, the longevity of the epidermis was increased when cultured on papillary fibroblast-derived matrix skin equivalents compared with reticular-derived matrix skin equivalents. The findings indicate that the matrix secreted by papillary and reticular fibroblasts is the main causal factor to account for the differences in keratinocyte growth and viability observed in our study. Differences in response to soluble factors between both populations were less significant. Matrix components specific to the papillary dermis may account for the preferential growth of keratinocytes on papillary dermis.
Factor XIIIa is expressed by fibroblasts in fibrovascular tumors.
Nemeth, A J; Penneys, N S
1989-10-01
Factor XIIIa (FXIIIa), a blood and intracellularly produced coagulation factor, has been found in a variety of cell types including fibroblast-like mesenchymal cells, and has been shown to stimulate the proliferation of fibroblasts and some neoplastic cells in vitro. We have already shown that the dendritic fibroblasts composing the fibrous papule contain this factor. We hypothesized that histopathologically similar fibrovascular tumors may also express FXIIIa and, in this report, show that the large stellate fibroblasts found in acquired digital fibrokeratomas, angiofibromas (adenoma sebaceum of Pringle), and oral fibroma (oral fibrous hyperplasia) also express FXIIIa. We postulate that FXIIIa, possibly acting as a growth factor, may be a common denominator in the pathogenesis of these tumors. Another possibility is that these tumors may be the consequence of a local overproduction of FXIIIa in response to an, as yet, unidentified stimulus.
Knuchel, Sarah; Anderle, Pascale; Werfelli, Patricia; Diamantis, Eva; Rüegg, Curzio
2015-01-01
Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion. PMID:25973543
Knuchel, Sarah; Anderle, Pascale; Werfelli, Patricia; Diamantis, Eva; Rüegg, Curzio
2015-06-10
Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion.
Chonchol, Michel; Gitomer, Berenice; Isakova, Tamara; Cai, Xuan; Salusky, Isidro; Pereira, Renata; Abebe, Kaleab; Torres, Vicente; Steinman, Theodor I; Grantham, Jared J; Chapman, Arlene B; Schrier, Robert W; Wolf, Myles
2017-09-07
Increases in fibroblast growth factor 23 precede kidney function decline in autosomal dominant polycystic kidney disease; however, the role of fibroblast growth factor 23 in autosomal dominant polycystic kidney disease has not been well characterized. We measured intact fibroblast growth factor 23 levels in baseline serum samples from 1002 participants in the HALT-PKD Study A ( n =540; mean eGFR =91±17 ml/min per 1.73 m 2 ) and B ( n =462; mean eGFR =48±12 ml/min per 1.73 m 2 ). We used linear mixed and Cox proportional hazards models to test associations between fibroblast growth factor 23 and eGFR decline, percentage change in height-adjusted total kidney volume, and composite of time to 50% reduction in eGFR, onset of ESRD, or death. Median (interquartile range) intact fibroblast growth factor 23 was 44 (33-56) pg/ml in HALT-PKD Study A and 69 (50-93) pg/ml in Study B. In adjusted models, annualized eGFR decline was significantly faster in the upper fibroblast growth factor 23 quartile (Study A: quartile 4, -3.62; 95% confidence interval, -4.12 to -3.12 versus quartile 1, -2.51; 95% confidence interval, -2.71 to -2.30 ml/min per 1.73 m 2 ; P for trend <0.001; Study B: quartile 4, -3.74; 95% confidence interval, -4.14 to -3.34 versus quartile 1, -2.78; 95% confidence interval, -2.92 to -2.63 ml/min per 1.73 m 2 ; P for trend <0.001). In Study A, higher fibroblast growth factor 23 quartiles were associated with greater longitudinal percentage increase in height-adjusted total kidney volume in adjusted models (quartile 4, 6.76; 95% confidence interval, 5.57 to 7.96 versus quartile 1, 6.04; 95% confidence interval, 5.55 to 6.54; P for trend =0.03). In Study B, compared with the lowest quartile, the highest fibroblast growth factor 23 quartile was associated with elevated risk for the composite outcome (hazard ratio, 3.11; 95% confidence interval, 1.84 to 5.25). Addition of fibroblast growth factor 23 to a model of annualized decline in eGFR≥3.0 ml/min per 1.73 m 2 did not improve risk prediction. Higher serum fibroblast growth factor 23 concentration was associated with kidney function decline, height-adjusted total kidney volume percentage increase, and death in patients with autosomal dominant polycystic kidney disease. However, fibroblast growth factor 23 did not substantially improve prediction of rapid kidney function decline. Copyright © 2017 by the American Society of Nephrology.
Requirement of Vascular Integrin α_vβ_3 for Angiogenesis
NASA Astrophysics Data System (ADS)
Brooks, Peter C.; Clark, Richard A. F.; Cheresh, David A.
1994-04-01
Angiogenesis depends on the adhesive interactions of vascular cells. The adhesion receptor integrin α_vβ_3 was identified as a marker of angiogenic vascular tissue. Integrin α_vβ_3 was expressed on blood vessels in human wound granulation tissue but not in normal skin, and it showed a fourfold increase in expression during angiogenesis on the chick chorioallantoic membrane. In the latter assay, a monoclonal antibody to α_vβ_3 blocked angiogenesis induced by basic fibroblast growth factor, tumor necrosis factor-α, and human melanoma fragments but had no effect on preexisting vessels. These findings suggest that α_vβ_3 may be a useful therapeutic target for diseases characterized by neovascularization.
Expression of Inapproptriate Cadherins in Human Breast Carcinomas
2000-08-01
fibroblast growth factor receptor signaling. * We showed that cadherin 11 acts in a manner... fibroblast growth factor receptor signaling; and that cadherin 11 promotes epithelial cell motility in a manner similar to N-cadherin. 28 N-Cadherin...levels of E-cadherin; and that N- cadherin-dependent motility may be mediated by fibroblast growth factor receptor signaling. 14. SUBJECT TERMS
Sakai, Norihiko; Chun, Jerold; Duffield, Jeremy S; Lagares, David; Wada, Takashi; Luster, Andrew D; Tager, Andrew M
2017-03-01
The expansion of the fibroblast pool is a critical step in organ fibrosis, but the mechanisms driving expansion remain to be fully clarified. We previously showed that lysophosphatidic acid (LPA) signaling through its receptor LPA 1 expressed on fibroblasts directly induces the recruitment of these cells. Here we tested whether LPA-LPA 1 signaling drives fibroblast proliferation and activation during the development of renal fibrosis. LPA 1 -deficient (LPA 1 -/- ) or -sufficient (LPA 1 +/+ ) mice were crossed to mice with green fluorescent protein expression (GFP) driven by the type I procollagen promoter (Col-GFP) to identify fibroblasts. Unilateral ureteral obstruction-induced increases in renal collagen were significantly, though not completely, attenuated in LPA 1 -/- Col-GFP mice, as were the accumulations of both fibroblasts and myofibroblasts. Connective tissue growth factor was detected mainly in tubular epithelial cells, and its levels were suppressed in LPA 1 -/- Col-GFP mice. LPA-LPA 1 signaling directly induced connective tissue growth factor expression in primary proximal tubular epithelial cells, through a myocardin-related transcription factor-serum response factor pathway. Proximal tubular epithelial cell-derived connective tissue growth factor mediated renal fibroblast proliferation and myofibroblast differentiation. Administration of an inhibitor of myocardin-related transcription factor/serum response factor suppressed obstruction-induced renal fibrosis. Thus, targeting LPA-LPA 1 signaling and/or myocardin-related transcription factor/serum response factor-induced transcription could be promising therapeutic strategies for renal fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Liabeuf, Sophie; Ryckelynck, Jean-Philippe; El Esper, Najeh; Ureña, Pablo; Combe, Christian; Dussol, Bertrand; Fouque, Denis; Vanhille, Philippe; Frimat, Luc; Thervet, Eric; Mentaverri, Romuald; Prié, Dominique; Choukroun, Gabriel
2017-12-07
Epidemiologic studies suggest that higher serum phosphaturic hormone fibroblast growth factor 23 levels are associated with increase morbidity and mortality. The aim of the FGF23 Reduction Efficacy of a New Phosphate Binder in CKD Trial was to evaluate the effect of sevelamer carbonate on serum C-terminal fibroblast growth factor 23 levels in normophosphatemic patients with CKD stage 3b/4. Patients with CKD, eGFR between 45 and 15 ml/min per 1.73 m 2 , fasting serum phosphate concentration >3.1 mg/dl, and serum C-terminal fibroblast growth factor 23 >80 relative units/ml were included in our double-blind, placebo-controlled, randomized multicenter study. All patients received 100,000 IU cholecalciferol at time of randomization. Participants received either placebo or sevelamer carbonate 4.8 g daily during a 12-week period. Biologic parameters, including serum C-terminal fibroblast growth factor 23, intact fibroblast growth factor 23, and α -klotho, were evaluated at baseline and 12 weeks after inclusion. Of 96 screened patients, 78 (mean±SD age: 63±13 years old; 70% men; mean eGFR: 27±9 ml/min per 1.73 m 2 ) met the inclusion criteria. At baseline, mean eGFR was 27±9 ml/min per 1.73 m 2 , mean serum phosphate level was 3.8±0.5 mg/dl, and median (interquartile range) serum C-terminal fibroblast growth factor 23 level was 157 (120-241) relative units/ml. After 12 weeks of treatment, urinary phosphate-to-creatinine ratio fell significantly in the sevelamer group. The sevelamer and placebo groups did not differ significantly in terms of median change in serum C-terminal fibroblast growth factor 23 levels: the median (interquartile range) change was 38 (-13-114) relative units/ml in the placebo group and 37 (-1-101) relative units/ml in the sevelamer group ( P =0.77). There was no significant difference in serum intact fibroblast growth factor 23, α -klotho, or phosphate levels changes between the two groups. Serum total and LDL cholesterol levels fell significantly in the sevelamer group. In our double-blind, placebo-controlled, randomized study performed in normophosphatemic patients with CKD, a 12-week course of sevelamer carbonate significantly reduced phosphaturia without changing serum phosphorus but did not significantly modify serum C-terminal fibroblast growth factor 23 and intact fibroblast growth factor 23 or α -klotho levels. Copyright © 2017 by the American Society of Nephrology.
Figueiredo, B C; Piccardo, P; Maysinger, D; Clarke, P B; Cuello, A C
1993-10-01
The ability of acidic fibroblast growth factor to elicit a trophic response in the nervous system of the rat was tested in vitro and in vivo. Treatment of cultured septal cells with acidic fibroblast growth factor resulted in an elongation of glial processes as assessed by immunostaining for glial fibrillary acidic protein. Increased choline acetyltransferase was also observed. The responses to acidic fibroblast growth factor in vivo were studied in rats trained in a spatial memory task, using the Morris water maze. Randomly selected animals were subjected to unilateral cortical devascularization. This lesion results in partial unilateral infarction of the neocortex, and in retrograde degeneration of the nucleus basalis magnocellularis. Animals were tested post-lesion for memory retention and were then killed for morphological studies. Intracerebroventricular administration of acidic fibroblast growth factor (0.6 microgram/h for seven days starting at surgery) prevented the lesion-induced impairment in this test, and reduced the nucleus basalis magnocellularis cholinergic degeneration, as assessed by morphometric choline acetyltransferase-like immunoreactivity and radioenzymatic assay for choline acetyltransferase activity. The preservation of the phenotype of injured cholinergic neurons of the nucleus basalis magnocellularis by acidic fibroblast growth factor was indicated by the maintenance of the cross-sectional area of cell bodies and mean length of neuritic processes one month after surgery. The effect of acidic fibroblast growth factor in non-cholinergic cells remains to be investigated. It is suggested that acidic fibroblast growth factor may alleviate the lesion-induced deficit in the memory retention task by preventing disruption of functional connections between nucleus basalis magnocellularis and intact cortical areas.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.
During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived solublemore » factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β{sub 1} (TGF-β{sub 1})-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β{sub 1} at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β{sub 1} is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β{sub 1}.« less
Hafez, Pezhman; Jose, Shinsmon; Chowdhury, Shiplu R; Ng, Min Hwei; Ruszymah, B H I; Abdul Rahman Mohd, Ramzisham
2016-01-01
The alarming rate of increase in myocardial infarction and marginal success in efforts to regenerate the damaged myocardium through conventional treatments creates an exceptional avenue for cell-based therapy. Adult bone marrow mesenchymal stem cells (MSCs) can be differentiated into cardiomyocytes, by treatment with 5-azacytidine, thus, have been anticipated as a therapeutic tool for myocardial infarction treatment. In this study, we investigated the ability of basic fibroblastic growth factor (bFGF) and hydrocortisone as a combined treatment to stimulate the differentiation of MSCs into cardiomyocytes. MSCs were isolated from sternal marrow of patients undergoing heart surgery (CABG). The isolated cells were initially monitored for the growth pattern, followed by characterization using ISCT recommendations. Cells were then differentiated using a combination of bFGF and hydrocortisone and evaluated for the expression of characteristic cardiac markers such as CTnI, CTnC, and Cnx43 at protein level using immunocytochemistry and flow cytometry, and CTnC and CTnT at mRNA level. The expression levels and pattern of the cardiac markers upon analysis with ICC and qRT-PCR were similar to that of 5-azacytidine induced cells and cultured primary human cardiomyocytes. However, flow cytometric evaluation revealed that induction with bFGF and hydrocortisone drives MSC differentiation to cardiomyocytes with a marginally higher efficiency. These results indicate that combination treatment of bFGF and hydrocortisone can be used as an alternative induction method for cardiomyogenic differentiation of MSCs for future clinical applications. © 2015 International Federation for Cell Biology.
Kuroyanagi, Gen; Otsuka, Takanobu; Yamamoto, Naohiro; Matsushima-Nishiwaki, Rie; Nakakami, Akira; Mizutani, Jun; Kozawa, Osamu; Tokuda, Haruhiko
2014-01-01
It is firmly established that resveratrol, a natural food compound abundantly found in grape skins and red wine, has beneficial properties for human health. In the present study, we investigated the effect of basic fibroblast growth factor (FGF-2) on osteoprotegerin (OPG) synthesis in osteoblast-like MC3T3-E1 cells and whether resveratrol affects the OPG synthesis. FGF-2 stimulated both the OPG release and the expression of OPG mRNA. Resveratrol significantly suppressed the FGF-2-stimulated OPG release and the mRNA levels of OPG. SRT1720, an activator of SIRT1, reduced the FGF-2-induced OPG release and the OPG mRNA expression. PD98059, an inhibitor of upstream kinase activating p44/p42 mitogen-activated protein (MAP) kinase, had little effect on the FGF-2-stimulated OPG release. On the other hand, SB203580, an inhibitor of p38 MAP kinase, SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and Akt inhibitor suppressed the OPG release induced by FGF-2. Resveratrol failed to affect the FGF-2-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. The phosphorylation of Akt induced by FGF-2 was significantly suppressed by resveratrol or SRT1720. These findings strongly suggest that resveratrol down-regulates FGF-2-stimulated OPG synthesis through the suppression of the Akt pathway in osteoblasts and that the inhibitory effect of resveratrol is mediated at least in part by SIRT1 activation. PMID:25290095
Min, Shao-xiong; Jin, An-min; Tong, Bin-hui; Zhu, Li-xin; Tian, Jing
2003-04-01
To investigate the osteoinductive ability of the composites consisting of basic fibroblast growth factor (bFGF) and porous poly-DL-lactide (PDLLA) for the development of a new absorbable osteosynthesis material. Highly porous foams of PDLLA with the pore size ranging from 150 to 300 microm were prepared by a solvent-casting, particulate-leaching technique with NaCl as the leachable component. Animal models of radial diaphyseal defects of 1.0 cm with complete removal of the periosteum were induced in 45 rabbits, which were randomly divided into 3 groups to receive the defect repair with PDLLA and PDLLA/bFGF respectively, leaving one group untreated to serve as the control group. The implant specimens were harvested at 2, 4, 8, and 12 weeks respectively after the surgery and X-ray, histological and scanning electron microscopic (SEM) examinations were performed to evaluate the effectiveness of defect repair. At 8 and 12 weeks after implantation, biomechanical test (for three-point bending strength) was employed to study the quality of bone formation. PDLLA/bFGF composite stimulated more bone formation and had higher bending strength than PDLLA (P<0.05), and the bone formation induced by both materials was significantly more than that observed in the control group in every postoperative stage (P<0.05). PDLLA possesses good biocompatibility and absorbability, and when prepared into a porous material, it exhibits good osteoconductibility. As a good bFGF carrier, the foam of PDLLA with three- dimensional structure shows good osteoinductive ability with regard to the rapidity, quantity and quality of the bone formation.
Sato, Yasuhiko; Oba, Takuma; Danjo, Kazumi
2013-01-01
We have discussed the essential property for periodontal disease medication using protein, such as recombinant human basic fibroblast growth factor (rhbFGF). In our previous study, the criteria of thickener for the medication, viscosity, flowability etc., were set. The aim of this study was to evaluate the physical and chemical effect of concomitant use of general dental drug or device on thickener properties for the clinical use of viscous rhbFGF formulation. Viscous formulation was prepared with six cellulose derivatives, two types hydroxy propyl cellulose (HPC), three types hydroxy ethyl cellulose (HEC) and methyl cellulose (MC). Antibiotic ointment, local anesthetic, bone graft substitute, agent for gargle and mouthwashes, were chosen as general dental drug and device. These drugs and device were mixed with the viscous formulations and the change of viscosity and flowability, the remaining ratio of rhbFGF were evaluated. When the various thickener solutions were mixed with the liquid drugs, viscosity and flowability did not changed much. However, in the case of MC solution, viscous property declined greatly when MC solution was mixed with cationic surfactant for gargle. The flowabilities of thickener solutions were declined with insoluble bone graft. The stabilities of rhbFGF in thickener solutions were no problem for 24 hours even in the case of mixing with dental drug or device. Our findings suggested that the viscous rhbFGF formulations prepared in this research were not substantially affected by the concomitant use of dental drug or device, especially the formulation with HPC or HEC was useful.
Sterner, Eric; Masuko, Sayaka; Li, Guoyun; Li, Lingyun; Green, Dixy E.; Otto, Nigel J.; Xu, Yongmei; DeAngelis, Paul L.; Liu, Jian; Dordick, Jonathan S.; Linhardt, Robert J.
2014-01-01
Four well-defined heparan sulfate (HS) block copolymers containing S-domains (high sulfo group content) placed adjacent to N-domains (low sulfo group content) were chemoenzymatically synthesized and characterized. The domain lengths in these HS block co-polymers were ∼40 saccharide units. Microtiter 96-well and three-dimensional cell-based microarray assays utilizing murine immortalized bone marrow (BaF3) cells were developed to evaluate the activity of these HS block co-polymers. Each recombinant BaF3 cell line expresses only a single type of fibroblast growth factor receptor (FGFR) but produces neither HS nor fibroblast growth factors (FGFs). In the presence of different FGFs, BaF3 cell proliferation showed clear differences for the four HS block co-polymers examined. These data were used to examine the two proposed signaling models, the symmetric FGF2-HS2-FGFR2 ternary complex model and the asymmetric FGF2-HS1-FGFR2 ternary complex model. In the symmetric FGF2-HS2-FGFR2 model, two acidic HS chains bind in a basic canyon located on the top face of the FGF2-FGFR2 protein complex. In this model the S-domains at the non-reducing ends of the two HS proteoglycan chains are proposed to interact with the FGF2-FGFR2 protein complex. In contrast, in the asymmetric FGF2-HS1-FGFR2 model, a single HS chain interacts with the FGF2-FGFR2 protein complex through a single S-domain that can be located at any position within an HS chain. Our data comparing a series of synthetically prepared HS block copolymers support a preference for the symmetric FGF2-HS2-FGFR2 ternary complex model. PMID:24563485
Ma, Mingming; Zhang, Zhengwei; Niu, Weiran; Zheng, Wenjing; Kelimu, Jiang
2011-01-01
Purpose This in vitro study aimed to gain insight into the function of fibroblast growth factor 10 (FGF10) on the ocular surface, especially its effect on mRNA expression of the mucins Muc1, Muc4, and Muc5ac, and mucin protein synthesis. Methods We isolated primary cultured rat conjunctival epithelial cells (Cj-ECs) and treated them with FGF10 (1 ng/ml, 10 ng/ml, 100 ng/ml, and 200 ng/ml) and basic fibroblast growth factor 2 (FGF2; 10 ng/ml) for 24 h or 48 h. The proliferation of Cj-ECs was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS). mRNA levels of Muc1, Muc4, and Muc5ac were determined by real-time PCR. Synthesis levels of MUC1 and MUC4 were measured by western blot. Flow cytometry and Annexin V/PI double staining revealed degrees of apoptosis. Results In primary culture, the epithelial cells were compact and cobblestone pavement in shape. Most of the cells were positive for cytokeratin (CK). FGF10 and FGF2 significantly stimulated Muc1, Muc4, and Muc5ac mRNA expression, cell proliferation, and synthesis of MUC1 and MUC4 proteins. FGF10 was more potent than FGF2 in these regards. FGF10 did not restrain the apoptosis of Cj-ECs. Conclusions The results of this study demonstrated that FGF10 is associated with the promotion of Cj-EC proliferation and mucin production. The effects of FGF10 on Cj-ECs support a rationale to investigate its therapeutic potential for ocular surface diseases. PMID:22065934
A Mouse Model of the Cornea Pocket Assay for Angiogenesis Study
Tang, Zhongshu; Zhang, Fan; Li, Yang; Arjunan, Pachiappan; Kumar, Anil; Lee, Chunsik; Li, Xuri
2011-01-01
A normal cornea is clear of vascular tissues. However, blood vessels can be induced to grow and survive in the cornea when potent angiogenic factors are administered 1. This uniqueness has made the cornea pocket assay one of the most used models for angiogenesis studies. The cornea composes multiple layers of cells. It is therefore possible to embed a pellet containing the angiogenic factor of interest in the cornea to investigate its angiogenic effect 2,3. Here, we provide a step by step demonstration of how to (I) produce the angiogenic factor-containing pellet (II) embed the pellet into the cornea (III) analyze the angiogenesis induced by the angiogenic factor of interest. Since the basic fibroblast growth factor (bFGF) is known as one of the most potent angiogenic factors 4, it is used here to induce angiogenesis in the cornea. PMID:21876523
Fibrogenic Lung Injury Induces Non-Cell-Autonomous Fibroblast Invasion.
Ahluwalia, Neil; Grasberger, Paula E; Mugo, Brian M; Feghali-Bostwick, Carol; Pardo, Annie; Selman, Moisés; Lagares, David; Tager, Andrew M
2016-06-01
Pathologic accumulation of fibroblasts in pulmonary fibrosis appears to depend on their invasion through basement membranes and extracellular matrices. Fibroblasts from the fibrotic lungs of patients with idiopathic pulmonary fibrosis (IPF) have been demonstrated to acquire a phenotype characterized by increased cell-autonomous invasion. Here, we investigated whether fibroblast invasion is further stimulated by soluble mediators induced by lung injury. We found that bronchoalveolar lavage fluids from bleomycin-challenged mice or patients with IPF contain mediators that dramatically increase the matrix invasion of primary lung fibroblasts. Further characterization of this non-cell-autonomous fibroblast invasion suggested that the mediators driving this process are produced locally after lung injury and are preferentially produced by fibrogenic (e.g., bleomycin-induced) rather than nonfibrogenic (e.g., LPS-induced) lung injury. Comparison of invasion and migration induced by a series of fibroblast-active mediators indicated that these two forms of fibroblast movement are directed by distinct sets of stimuli. Finally, knockdown of multiple different membrane receptors, including platelet-derived growth factor receptor-β, lysophosphatidic acid 1, epidermal growth factor receptor, and fibroblast growth factor receptor 2, mitigated the non-cell-autonomous fibroblast invasion induced by bronchoalveolar lavage from bleomycin-injured mice, suggesting that multiple different mediators drive fibroblast invasion in pulmonary fibrosis. The magnitude of this mediator-driven fibroblast invasion suggests that its inhibition could be a novel therapeutic strategy for pulmonary fibrosis. Further elaboration of the molecular mechanisms that drive non-cell-autonomous fibroblast invasion consequently may provide a rich set of novel drug targets for the treatment of IPF and other fibrotic lung diseases.
Expression of Inappropriate Cadherins in Human Breast Carcinomas
2000-10-01
fibroblast growth factor receptor ADHERINS constitute a family of transmembrane Hamaguchi et al., 1993). In addition, p120ct", originally...1994. expression is associated with poor prognosis in patients with prostate cancer. Alternative splicing in fibroblast growth factor receptor 2 is... fibroblast growth factor receptor signaling. This year we report that the extracellular domain of N-cadherin is responsible for this
2010-10-01
AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2009 – 14 September 2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth ...8 Appendices…………………………………………………………………………… 8 Supporting Data……………………………………………………………………... 8 Fibroblast Growth Factor -2: an
Decreased levels of serum fibroblast growth factor-2 in children with autism spectrum disorder.
Esnafoglu, Erman; Ayyıldız, Sema Nur
2017-11-01
The neurodevelopment and functioning of the central nervous system, and especially the cerebral cortex, have basic importance to understand neuropsychiatric disorders like autism. Fibroblast growth factor-2 (FGF-2) plays a very important role in the development and functioning of the cortex. FGF-2 is related to developmental processes in the central nervous system such as neurogenesis, migration, differentiation and survival. This study researched the serum FGF-2 levels in children with autism spectrum disorder (ASD). With this aim, 60 ASD children and 40 healthy controls were compared. We applied a sociodemographic form and the Childhood Autism Rating Scale (CARS) to each subject with their family to assess the severity of autism. Additionally, all subjects had routine laboratory tests performed. Serum samples were studied with ELISA. The results found that serum FGF-2 levels were statistically significantly low in the patient group compared to the healthy control group (p value 0.003). Additionally there was a statistically significant negative correlation identified between serum FGF-2 levels and CARS score for all subjects (r = -0.300; p = 0.02). In conclusion, FGF-2 may contribute to the etiopathogenesis of ASD. Copyright © 2017 Elsevier B.V. All rights reserved.
Sequential EMT-MET induces neuronal conversion through Sox2
He, Songwei; Chen, Jinlong; Zhang, Yixin; Zhang, Mengdan; Yang, Xiao; Li, Yuan; Sun, Hao; Lin, Lilong; Fan, Ke; Liang, Lining; Feng, Chengqian; Wang, Fuhui; Zhang, Xiao; Guo, Yiping; Pei, Duanqing; Zheng, Hui
2017-01-01
Direct neuronal conversion can be achieved with combinations of small-molecule compounds and growth factors. Here, by studying the first or induction phase of the neuronal conversion induced by defined 5C medium, we show that the Sox2-mediated switch from early epithelial–mesenchymal transition (EMT) to late mesenchymal–epithelial transition (MET) within a high proliferation context is essential and sufficient for the conversion from mouse embryonic fibroblasts (MEFs) to TuJ+ cells. At the early stage, insulin and basic fibroblast growth factor (bFGF)-induced cell proliferation, early EMT, the up-regulation of Stat3 and Sox2, and the subsequent activation of neuron projection. Up-regulated Sox2 then induced MET and directed cells towards a neuronal fate at the late stage. Inhibiting either stage of this sequential EMT-MET impaired the conversion. In addition, Sox2 could replace sequential EMT-MET to induce a similar conversion within a high proliferation context, and its functions were confirmed with other neuronal conversion protocols and MEFs reprogramming. Therefore, the critical roles of the sequential EMT-MET were implicated in direct cell fate conversion in addition to reprogramming, embryonic development and cancer progression. PMID:28580167
Liao, Chenyi; Zhou, Jian
2014-06-05
The adsorption of basic fibroblast growth factor (bFGF) on the hydroxyapatite (001) surface was investigated by a combination of replica-exchange molecular dynamics (REMD) and conventional molecular dynamics (CMD) methods. In CMD, the protein cannot readily cross the surface water layer, whereas in REMD, the protein can cross the adsorption barrier from the surface water layer and go through weak, medium, then strong adsorption states with three energetically preferred configurations: heparin-binding-up (HP-up), heparin-binding-middle (HP-middle), and heparin-binding-down (HP-down). The HP-middle orientation, with the strongest adsorption energy (-1149 ± 40 kJ·mol(-1)), has the largest adsorption population (52.1-52.6%) and exhibits the largest conformational charge (RMSD of 0.26 ± 0.01 nm) among the three orientations. The HP-down and HP-up orientations, with smaller adsorption energies of -1022 ± 55 and -894 ± 70 kJ·mol(-1), respectively, have smaller adsorption populations of 27.4-27.7% and 19.7-20.5% and present smaller RMSD values of 0.21 ± 0.01 and 0.19 ± 0.01 nm, respectively. The convergent distribution indicates that nearly half of the population (in the HP-middle orientation) will support both FGF/FGFR and DGR-integrin signaling and another half (in the HP-up and HP-down orientations) will support DGR-integrin signaling. The major population (~80%) has the protein dipole directed outward. In the strong adsorption state, there are usually 2 to 3 basic residues that form the anchoring interactions of 210-332 kJ·mol(-1) per residue or that are accompanied by an acidic residue with an adsorption energy of ~207 kJ·mol(-1). Together, the major bound residues form a triangle or a quadrilateral on the surface and stabilize the adsorption geometrically, which indicates topologic matching between the protein and HAP surfaces.
Definition of Two Angiogenic Pathways by Distinct α_v Integrins
NASA Astrophysics Data System (ADS)
Friedlander, Martin; Brooks, Peter C.; Shaffer, Robert W.; Kincaid, Christine M.; Varner, Judith A.; Cheresh, David A.
1995-12-01
Angiogenesis depends on cytokines and vascular cell adhesion events. Two cytokine-dependent pathways of angiogenesis were shown to exist and were defined by their dependency on distinct vascular cell integrins. In vivo angiogenesis in corneal or chorioallantoic membrane models induced by basic fibroblast growth factor or by tumor necrosis factor-α depended on α_vβ_3, whereas angiogenesis initiated by vascular endothelial growth factor, transforming growth factor-α, or phorbol ester depended on α_vβ_5. Antibody to each integrin selectively blocked one of these pathways, and a cyclic peptide antagonist of both integrins blocked angiogenesis stimulated by each cytokine tested. These pathways are further distinguished by their sensitivity to calphostin C, an inhibitor of protein kinase C that blocked angiogenesis potentiated by α_vβ_5 but not by α_vβ_3.
Role of B61, the Ligand for the Eck Receptor Tyrosine Kinase, in TNF- α-Induced Angiogenesis
NASA Astrophysics Data System (ADS)
Pandey, Akhilesh; Shao, Haining; Marks, Rory M.; Polverini, Peter J.; Dixit, Vishva M.
1995-04-01
B61, a cytokine-inducible endothelial gene product, is the ligand for the Eck receptor protein tyrosine kinase (RPTK). Expression of a B61-immunoglobulin chimera showed that B61 could act as an angiogenic factor in vivo and a chemoattractant for endothelial cells in vitro. The Eck RPTK was activated by tumor necrosis factor-α (TNF-α) through induction of B61, and an antibody to B61 attenuated angiogenesis induced by TNF-α but not by basic fibroblast growth factor. This finding suggests the existence of an autocrine or paracrine loop involving activation of the Eck RPTK by its inducible ligand B61 after an inflammatory stimulus, the net effect of which would be to promote angiogenesis, a hallmark of chronic inflammation.
Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis.
Pandey, A; Shao, H; Marks, R M; Polverini, P J; Dixit, V M
1995-04-28
B61, a cytokine-inducible endothelial gene product, is the ligand for the Eck receptor protein tyrosine kinase (RPTK). Expression of a B61-immunoglobulin chimera showed that B61 could act as an angiogenic factor in vivo and a chemoattractant for endothelial cells in vitro. The Eck RPTK was activated by tumor necrosis factor-alpha (TNF-alpha) through induction of B61, and an antibody to B61 attenuated angiogenesis induced by TNF-alpha but not by basic fibroblast growth factor. This finding suggests the existence of an autocrine or paracrine loop involving activation of the Eck RPTK by its inducible ligand B61 after an inflammatory stimulus, the net effect of which would be to promote angiogenesis, a hallmark of chronic inflammation.
Sequential growth factor application in bone marrow stromal cell ligament engineering.
Moreau, Jodie E; Chen, Jingsong; Horan, Rebecca L; Kaplan, David L; Altman, Gregory H
2005-01-01
In vitro bone marrow stromal cell (BMSC) growth may be enhanced through culture medium supplementation, mimicking the biochemical environment in which cells optimally proliferate and differentiate. We hypothesize that the sequential administration of growth factors to first proliferate and then differentiate BMSCs cultured on silk fiber matrices will support the enhanced development of ligament tissue in vitro. Confluent second passage (P2) BMSCs obtained from purified bone marrow aspirates were seeded on RGD-modified silk matrices. Seeded matrices were divided into three groups for 5 days of static culture, with medium supplement of basic fibroblast growth factor (B) (1 ng/mL), epidermal growth factor (E; 1 ng/mL), or growth factor-free control (C). After day 5, medium supplementation was changed to transforming growth factor-beta1 (T; 5 ng/mL) or C for an additional 9 days of culture. Real-time RT-PCR, SEM, MTT, histology, and ELISA for collagen type I of all sample groups were performed. Results indicated that BT supported the greatest cell ingrowth after 14 days of culture in addition to the greatest cumulative collagen type I expression measured by ELISA. Sequential growth factor application promoted significant increases in collagen type I transcript expression from day 5 of culture to day 14, for five of six groups tested. All T-supplemented samples surpassed their respective control samples in both cell ingrowth and collagen deposition. All samples supported spindle-shaped, fibroblast cell morphology, aligning with the direction of silk fibers. These findings indicate significant in vitro ligament development after only 14 days of culture when using a sequential growth factor approach.
Addi, Cyril; Murschel, Frédéric; Liberelle, Benoît; Riahi, Nesrine; De Crescenzo, Gregory
2017-03-01
In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin. We expressed a chimeric protein to be used as an adaptor that comprises one of the coil peptides and a CBD derived from the human fibronectin. We proved that it has the ability to bind simultaneously to a gelatin substrate and to form a heterodimeric coiled-coil domain with recombinant growth factors being tagged with the complementary coil peptide. The tethering of the growth factors was characterized by ELISA and surface plasmon resonance-based biosensing. The bioactivity of the immobilized bFGF and EGF was evaluated by a human umbilical vein endothelial cell proliferation assay and a vascular smooth muscle cell survival assay. We found that the tethering of EGF preserved its mitogenic and anti-apoptotic activity. In the case of bFGF, when captured via our adaptor protein, changes in its natural mode of interaction with gelatin were observed. In an effort to functionalize collagen/gelatin-based biomaterials with growth factors, we have designed an adaptor protein corresponding to a collagen-binding domain fused to a coil peptide. In our strategy, this adaptor protein captures growth factors being tagged with the partner coil peptide in a specific, stable and oriented manner. We have found that the tethering of the Epidermal Growth Factor preserved its mitogenic and anti-apoptotic activity. In the case of the basic Fibroblast Growth Factor, the captured growth factor remained bioactive although its tethering via this adaptor protein modified its natural mode of interaction with gelatin. Altogether this strategy is easily adaptable to the simultaneous tethering of various growth factors. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Chang, Ya-Ching; Chang, Mei-Chi; Chen, Yi-Jane; Liou, Ji-Uei; Chang, Hsiao-Hua; Huang, Wei-Ling; Liao, Wan-Chuen; Chan, Chiu-Po; Jeng, Po-Yuan; Jeng, Jiiang-Huei
2017-06-01
Basic fibroblast growth factor (bFGF) plays differential effects on the proliferation, differentiation, and extracellular matrix turnover in various tissues. However, limited information is known about the effect of bFGF on dental pulp cells. The purposes of this study were to investigate whether bFGF influences the cell differentiation and extracellular matrix turnover of human dental pulp cells (HDPCs) and the related gene and protein expression as well as the role of the mitogen-activated protein kinase (MEK)/extracellular-signal regulated kinase (ERK) signaling pathway. The expression of fibroblast growth factor receptors (FGFRs) in HDPCs was also studied. The expression of FGFR1 and FGFR2 in HDPCs was investigated by reverse-transcription polymerase chain reaction. HDPCs were treated with different concentrations of bFGF. Cell proliferation was evaluated using the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Cell differentiation was evaluated using alkaline phosphatase (ALP) staining. Changes in messenger expression of cyclin B1 and tissue inhibitor of metalloproteinase (TIMP) 1 were determined by reverse-transcription polymerase chain reaction. Changes in protein expression of cdc2, TIMP-1, TIMP-2, and collagen I were determined by Western blotting. U0126 was used to clarify the role of MEK/ERK signaling. HDPCs expressed both FGFR1 and FGFR2. Cell viability was stimulated by 50-250 ng/mL bFGF. The expression and enzyme activities of ALP were inhibited by 10-500 ng/mL bFGF. At similar concentrations, bFGF stimulates cdc2, cyclin B1, and TIMP-1 messenger RNA and protein expression. bFGF showed little effect on TIMP-2 and partly inhibited collagen I expression of pulp cells. U0126 (a MEK/ERK inhibitor) attenuated the bFGF-induced increase of cyclin B1, cdc2, and TIMP-1. bFGF may be involved in pulpal repair and regeneration by activation of FGFRs to regulate cell growth; stimulate cdc2, cyclin B1, and TIMP-1 expression; and inhibit ALP. These events are partly associated with MEK/ERK signaling. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Bovine trophectoderm cell lines induced from bovine fibroblasts with reprogramming factors
USDA-ARS?s Scientific Manuscript database
Bovine trophectoderm (TE) cells were induced [induced bovine trophectoderm-like (iBT)] from bovine fetal liver-derived fibroblasts, and other bovine fetal fibroblasts, after viral-vector transduction with either four or six reprogramming factors (RF), including POU5F1, KLF4, SOX2, C-MYC, SV40 large ...
Joannes, Audrey; Brayer, Stéphanie; Besnard, Valérie; Marchal-Sommé, Joëlle; Jaillet, Madeleine; Mordant, Pierre; Mal, Hervé; Borie, Raphael; Crestani, Bruno; Mailleux, Arnaud A
2016-04-01
Idiopathic pulmonary fibrosis (IPF) is characterized by an accumulation of extracellular matrix proteins and fibroblasts in the distal airways. Key developmental lung signaling pathways are reactivated in IPF. For instance, fibroblast growth factor 9 (FGF9) and FGF18, involved in epithelial-mesenchymal interactions, are critical for lung development. We evaluated the expression of FGF9, FGF18, and FGF receptors (FGFRs) in lung tissue from controls and IPF patients and assessed their effect on proliferation, survival, migration, and differentiation of control and IPF human lung fibroblasts (HLFs). FGF9, FGF18, and all FGFRs were present in the remodeled alveolar epithelium close to the fibroblast foci in IPF lungs. FGFR3 was generally detected in fibroblast foci by immunohistochemistry. In vitro, HLFs mainly expressed mesenchyme-associated FGFR isoforms (FGFR1c and FGFR3c) and FGFR4. FGF9 did not affect fibroblast proliferation, whereas FGF18 inhibited cell growth in control fibroblasts. FGF9 and FGF18 decreased Fas-ligand-induced apoptosis in control but not in IPF fibroblasts. FGF9 prevented transforming growth factor β1-induced myofibroblast differentiation. FGF9 and FGF18 increased the migratory capacities of HLF, and FGF9 actively modulated matrix metalloproteinase activity. In addition, FGFR3 inhibition by small interfering RNA impacted p-ERK activation by FGF9 and FGF18 and their effects on differentiation and migration. These results identify FGF9 as an antiapoptotic and promigratory growth factor on HLF, maintaining fibroblasts in an undifferentiated state. The biological effects of FGF9 and FGF18 were partially driven by FGFR3. FGF18 was a less potent molecule. Both growth factors likely contribute to the fibrotic process in vivo. Copyright © 2016 the American Physiological Society.
Kumar, Amit; Singh, Neha; Goswami, Mukunda; Srivastava, J K; Mishra, Akhilesh K; Lakra, W S
2016-01-01
A new continuous fibroblast cell line was established from the muscle tissue of healthy juvenile Danio rerio (Zebrafish) through explant method. Fish cell lines serve as useful tool for investigating basic fish biology, as a model for bioassay of environmental toxicant, toxicity ranking, and for developing molecular biomarkers. The cell line was continuously subcultured for a period of 12 months (61 passages) and maintained at 28 °C in L-15 medium supplemented with 10% FBS and 10 ng/mL of basic fibroblastic growth factor (bFGF) without use of antibiotics. Its growth rate was proportional to the FBS concentration, with optimum growth at 15% FBS. DNA barcoding (16SrRNA and COX1) was used to authenticate the cell line. Cells were incubated with propidium iodide and sorted via flow cytometry to calculate the DNA content to confirm the genetic stability. Significant green fluorescent protein (GFP) signals confirmed the utility of cell line in transgenic and genetic manipulation studies. In vitro assay was performed with MTT to examine the growth potential of the cell line. The muscle cell line would provide a novel invaluable in vitro model to identify important genes to understand regulatory mechanisms that govern the molecular regulation of myogenesis and should be useful in biomedical research.
Yang, Hua; Qiu, Ying; Zeng, Xianghui; Ding, Yan; Zeng, Jianye; Lu, Kehuan; Li, Dongsheng
2016-06-01
The aim of the present study was to investigate the effects of feeder layers composed of various ratios of mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (hFFs) on the growth of human embryonic stem cells (hESCs). In addition, the secretion levels of basic fibroblast growth factor (bFGF) by the feeder layers was detected. MEFs and hFFs were treated with mitomycin C and seeded onto gelatin-coated plates at a density of 1×10 8 cells/l. The hFFs and MEFs were combined and plated at the following ratios: 0:1, 1:2, 1:1, 2:1 and 1:0. The secretion of bFGF by the various hFF/MEF ratio feeder layers was detected using an enzyme-linked immunosorbent assay. Subsequently, hESCs were cultured on top of the various feeder layers. The differences in the cellular morphology of the hESCs were observed using microscopy, and the expression levels alkaline phosphatase (AKP) and octamer-binding transcription factor 4 (OCT-4) were detected using immunohistochemical analysis as indicators of differentiation status. The results showed that the hFFs secreted substantial quantities of bFGF, while no bFGF was secreted by the MEFs. The clones of hESC growing on the feeder layer containing MEF or hFF alone were flat. By contrast, hESC clones grown on a mixed feeder layer containing hFFs + MEFs at a ratio of 1:1 exhibited an accumulated growth with a clear edge, as compared with the other ratios. In addition, hESCs growing on the feeder layer were positive for the expression of AKP and OCT-4. In summary, feeder layer hFFs secreted bFGF, while MEFs did not, indicating that bFGF is not the only factor that supports the growth and differentiation of hESCs. The optimal growth of hESCs was achieved using a mixed feeder layer composed of hFFs + MEFs at a ratio of 1:1.
Nishizawa, N; Okano, Y; Chatani, Y; Amano, F; Tanaka, E; Nomoto, H; Nozawa, Y; Kohno, M
1990-01-01
We have examined the possible involvements of pertussis toxin (PT)-sensitive guanosine triphosphate (GTP)-binding protein (Gp) and protein kinase C (PKC) in the mitogenic signaling pathways of various growth factors by the use of PT-pretreated and/or 12-O-tetradecanoyl phorbol-13-acetate (TPA)-pretreated mouse fibroblasts. Effects of PT pretreatment (inactivation of PT-sensitive Gp) and TPA pretreatment (depletion of PKC) on mitogen-induced DNA synthesis varied significantly and systematically in response to growth factors: mitogenic responses of cells to thrombin, bombesin, and bradykinin were almost completely abolished both in PT- and TPA-pretreated cells; responses to epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and vanadate were reduced to approximately 50% both in PT- and TPA-pretreated cells compared with native cells; response to basic fibroblast growth factor (bFGF) was not affected in PT-pretreated cells but was inhibited to some extent in TPA-pretreated cells. Thus, growth factors examined have been classified into three groups with regard to the involvements of PT-sensitive Gp and PKC in their signal transduction pathways. Binding of each growth factor to its receptor was not affected significantly by pretreatment of cells with PT or TPA. Inhibitory effects of PT and TPA pretreatment on each mitogen-induced DNA synthesis were not additive, suggesting that the functions of PT-sensitive Gp and PKC lie on an identical signal transduction pathway. Although all three groups of mitogens activated PKC, signaling of each growth factor depends to a varying extent on the function of PKC. Our results indicate that a single peptide growth factor such as EGF, PDGF, or bFGF acts through multiple signaling pathways to induce cell proliferation. Images PMID:2129194
Mesenchymal Stem Cells Derived from Human Limbal Niche Cells
Li, Gui-Gang; Zhu, Ying-Ting; Xie, Hua-Tao; Chen, Szu-Yu; Tseng, Scheffer C. G.
2012-01-01
Purpose. We investigated whether human limbal niche cells generate mesenchymal stem cells. Methods. Limbal niche cells were isolated from the limbal stroma by collagenase alone or following dispase removal of the limbal epithelium (D/C), and cultured on plastic in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS), or coated or three-dimensional Matrigel in embryonic stem cell medium with leukemia inhibitory factor and basic fibroblast growth factor. Expression of cell markers, colony-forming units-fibroblast, tri-lineage differentiation, and ability of supporting limbal epithelial stem/progenitor cells were compared to limbal residual stromal cells. Results. Stromal cells expressing angiogenesis markers were found perivascularly, subjacent to limbal basal epithelial cells, and in D/C and limbal residual stromal cells. When seeded in three-dimensional Matrigel, D/C but not limbal residual stromal cells yielded spheres of angiogenesis progenitors that stabilized vascular networks. Similar to collagenase-isolated cells, D/C cells could be expanded on coated Matrigel for more than 12 passages, yielding spindle cells expressing angiogenesis and mesenchymal stem cells markers, and possessing significantly higher colony-forming units-fibroblast and more efficient tri-lineage differentiation than D/C and limbal residual stromal cells expanded on plastic in DMEM with 10% FBS, of which both lost the pericyte phenotype while limbal residual stromal cells turned into myofibroblasts. Upon reunion with limbal epithelial stem/progenitor cells to form spheres, D/C cells expanded on coated Matrigel maintained higher expression of p63α and lower expression of cytokeratin 12 than those expanded on plastic in DMEM with 10% FBS, while spheres formed with human corneal fibroblasts expressed cytokeratin 12 without p63α. Conclusions. In the limbal stroma, cells subjacent to limbal basal epithelial cells serve as niche cells, and generate progenitors with angiogenesis and mesenchymal stem cells potentials. They might partake in angiogenesis and regeneration during corneal wound healing. PMID:22836771
Shannon, Diane B; McKeown, Scott T W; Lundy, Fionnuala T; Irwin, Chris R
2006-01-01
Wounds of the oral mucosa heal in an accelerated fashion with reduced scarring compared with cutaneous wounds. The differences in healing outcome between oral mucosa and skin could be because of phenotypic differences between the respective fibroblast populations. This study compared paired mucosal and dermal fibroblasts in terms of collagen gel contraction, alpha-smooth muscle actin expression (alpha-SMA), and production of the epithelial growth factors: keratinocyte growth factor (KGF) and hepatocyte growth factor/scatter factor (HGF). The effects of transforming growth factor -beta1 and -beta3 on each parameter were also determined. Gel contraction in floating collagen lattices was determined over a 7-day period. alpha-SMA expression by fibroblasts was determined by Western blotting. KGF and HGF expression were determined by an enzyme-linked immunosorbent assay. Oral fibroblasts induced accelerated collagen gel contraction, yet surprisingly expressed lower levels of alpha-SMA. Oral cells also produced significantly greater levels of both KGF and HGF than their dermal counterparts. Transforming growth factor-beta1 and -beta3, over the concentration range of 0.1-10 ng/mL, had similar effects on cell function, stimulating both gel contraction and alpha-SMA production, but inhibiting KGF and HGF production by both cell types. These data indicate phenotypic differences between oral and dermal fibroblasts that may well contribute to the differences in healing outcome between these two tissues.
Le, Tran; New, Jacob; Jones, Joel W; Usman, Shireen; Yalamanchali, Sreeya; Tawfik, Ossama; Hoover, Larry; Bruegger, Dan E; Thomas, Sufi Mary
2017-10-01
Juvenile nasopharyngeal angiofibroma (JNA) is a benign tumor that presents in adolescent males. Although surgical excision is the mainstay of treatment, recurrences complicate treatment. There is a need to develop less invasive approaches for management. JNA tumors are composed of fibroblasts and vascular endothelial cells. We identified fibroblast growth factor receptor (FGFR) and vascular endothelial growth factor (VEGF) expression in JNA-derived fibroblasts. FGFR influences fibroblast proliferation and VEGF is necessary for angiogenesis. We hypothesized that targeting FGFR would mitigate JNA fibroblast proliferation, invasion, and migration, and that targeting the VEGF receptor would attenuate endothelial tubule formation. After informed consent, fibroblasts from JNA explants of 3 patients were isolated. Fibroblasts were treated with FGFR inhibitor AZD4547, 0 to 25 μg/mL for 72 hours and proliferation was quantified using CyQuant assay. Migration and invasion of JNA were assessed using 24-hour transwell assays with subsequent fixation and quantification. Mitigation of FGFR and downstream signaling was evaluated by immunoblotting. Tubule formation was assessed in human umbilical vein endothelial cells (HUVECs) treated with vehicle control (dimethylsulfoxide [DMSO]) or semaxanib (SU5416) as well as in serum-free media (SFM) or JNA conditioned media (CM). Tubule length was compared between treatment groups. Compared to control, AZD4547 inhibited JNA fibroblast proliferation, migration, and invasion through inhibition of FGFR and downstream signaling, specifically phosphorylation of - p44/42 mitogen activated protein kinase (p44/42 MAPK). JNA fibroblast CM significantly increased HUVEC tubule formation (p = 0.0039). AZD4547 effectively mitigates FGFR signaling and decreases JNA fibroblast proliferation, migration, and invasion. SU5416 attenuated JNA fibroblast-induced tubule formation. AZD4547 may have therapeutic potential in the treatment of JNA. © 2017 ARS-AAOA, LLC.
Green, Jenna; Endale, Mehari; Auer, Herbert; Perl, Anne-Karina T
2016-04-01
Epithelial-mesenchymal cell interactions and factors that control normal lung development are key players in lung injury, repair, and fibrosis. A number of studies have investigated the roles and sources of epithelial progenitors during lung regeneration; such information, however, is limited in lung fibroblasts. Thus, understanding the origin, phenotype, and roles of fibroblast progenitors in lung development, repair, and regeneration helps address these limitations. Using a combination of platelet-derived growth factor receptor α-green fluorescent protein (PDGFRα-GFP) reporter mice, microarray, real-time polymerase chain reaction, flow cytometry, and immunofluorescence, we characterized two distinct interstitial resident fibroblasts, myo- and matrix fibroblasts, and identified a role for PDGFRα kinase activity in regulating their activation during lung regeneration. Transcriptional profiling of the two populations revealed a myo- and matrix fibroblast gene signature. Differences in proliferation, smooth muscle actin induction, and lipid content in the two subpopulations of PDGFRα-expressing fibroblasts during alveolar regeneration were observed. Although CD140α(+)CD29(+) cells behaved as myofibroblasts, CD140α(+)CD34(+) appeared as matrix and/or lipofibroblasts. Gain or loss of PDGFRα kinase activity using the inhibitor nilotinib and a dominant-active PDGFRα-D842V mutation revealed that PDGFRα was important for matrix fibroblast differentiation. We demonstrated that PDGFRα signaling promotes alveolar septation by regulating fibroblast activation and matrix fibroblast differentiation, whereas myofibroblast differentiation was largely PDGFRα independent. These studies provide evidence for the phenotypic and functional diversity as well as the extent of specificity of interstitial resident fibroblasts differentiation during regeneration after partial pneumonectomy.
Green, Jenna; Endale, Mehari; Auer, Herbert
2016-01-01
Epithelial–mesenchymal cell interactions and factors that control normal lung development are key players in lung injury, repair, and fibrosis. A number of studies have investigated the roles and sources of epithelial progenitors during lung regeneration; such information, however, is limited in lung fibroblasts. Thus, understanding the origin, phenotype, and roles of fibroblast progenitors in lung development, repair, and regeneration helps address these limitations. Using a combination of platelet-derived growth factor receptor α–green fluorescent protein (PDGFRα-GFP) reporter mice, microarray, real-time polymerase chain reaction, flow cytometry, and immunofluorescence, we characterized two distinct interstitial resident fibroblasts, myo- and matrix fibroblasts, and identified a role for PDGFRα kinase activity in regulating their activation during lung regeneration. Transcriptional profiling of the two populations revealed a myo- and matrix fibroblast gene signature. Differences in proliferation, smooth muscle actin induction, and lipid content in the two subpopulations of PDGFRα-expressing fibroblasts during alveolar regeneration were observed. Although CD140α+CD29+ cells behaved as myofibroblasts, CD140α+CD34+ appeared as matrix and/or lipofibroblasts. Gain or loss of PDGFRα kinase activity using the inhibitor nilotinib and a dominant-active PDGFRα-D842V mutation revealed that PDGFRα was important for matrix fibroblast differentiation. We demonstrated that PDGFRα signaling promotes alveolar septation by regulating fibroblast activation and matrix fibroblast differentiation, whereas myofibroblast differentiation was largely PDGFRα independent. These studies provide evidence for the phenotypic and functional diversity as well as the extent of specificity of interstitial resident fibroblasts differentiation during regeneration after partial pneumonectomy. PMID:26414960
The Integrative Studies of Genetic and Environmental Factors in Systemic Sclerosis
2008-05-01
15. SUBJECT TERMS Scleroderma (SSc), fibroblasts, fibrosis, silica, environmental particles, susceptibility. 16. SECURITY CLASSIFICATION OF...factors in a viable system - human fibroblasts. Fibroblasts with a scleroderma (SSc) susceptible genetic background may be more vulnerable to...for understanding environmental contributions to fibrosing diseases such as scleroderma (SSc). Third, in the studies of specific biological
Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage
Johns, D.E.; Athanasiou, K.A.
2010-01-01
Tissue engineered fibrocartilage could become a feasible option for replacing tissues like the knee meniscus or temporomandibular joint disc. This study employed five growth factors insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs were worse than the no growth factor control, suggesting a detrimental effect, but the IGF treatment tended to improve the constructs. Additionally, the 6wk time point was consistently better than 3wks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118
Bertin, Ana Carina Junqueira; Vilarinho, Adriana; Junqueira, Ana Lúcia Ariano
2018-02-16
Androgenetic alopecia, also known as male and female pattern hair loss, is a very prevalent condition; however, approved therapeutic options are limited. Fractionated laser has been proposed to assist in penetration of topical medications to the cutaneous tissue. We present four cases of androgenetic alopecia that underwent treatment with a non-ablative erbium glass fractional laser followed by the application of topical finasteride 0,05% and growth factors including basic fibroblast growth factor, insulin-like growth factor, vascular endothelial growth factor, and copper peptide 1%. During all laser treatment sessions, eight passes were performed, at 7 mJ, 3-9% of coverage and density of 120 mzt/cm 2 . A positive response was observed in all of the four patients. Photographs taken 2 weeks after the last session showed improvement in hair regrowth and density. No significant side effects were observed.
Isolation and Characterization of Rat Pituitary Endothelial Cells
Chaturvedi, Kirti; Sarkar, Dipak K.
2010-01-01
Most previous studies that determined the effect of estradiol on angiogenesis used endothelial cells from nonpituitary sources. Because pituitary tumor tissue receives its blood supply via portal and arterial circulation, it is important to use pituitary-derived endothelial cells in studying pituitary angiogenesis. We have developed a magnetic separation technique to isolate endothelial cells from pituitary tissues and have characterized these cells in primary cultures. Endothelial cells of the pituitary showed the existence of endothelial cell marker, CD31, and of von Willebrand factor protein. These cells in cultures also showed immunore-activity of estrogen receptors alpha and beta. The angiogenic factors, vascular endothelial growth factor and basic fibroblast growth factor, significantly increased proliferation and migration of the pituitary-derived endothelial cells in primary cultures. These results suggest that a magnetic separation technique can be used for enrichment of pituitary-derived endothelial cells for determination of cellular mechanisms governing the vascularization in the pituitary. PMID:17028416
Negahdari, Samira; Galehdari, Hamid; Kesmati, Mahnaz; Rezaie, Anahita; Shariati, Gholamreza
2017-01-01
Among the most important factors in wound healing pathways are transforming growth factor beta1 and vascular endothelial growth factor. Fibroblasts are the main cell in all phases wound closure. In this study, the extracts of plant materials such as Adiantum capillus-veneris , Commiphora molmol , Aloe vera , and henna and one mixture of them were used to treatment of normal mouse skin fibroblasts. Cytotoxic effects of each extract and their mixture were assessed on mouse skin fibroblasts cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. We performed migration assays to assess migration properties of mouse skin fibroblasts cells in response to the extracts. Changes in the gene expression of the Tgf β1 and Vegf-A genes were monitored by real-time polymerase chain reaction. A. capillus-veneris , C. molmol and henna extract improved the expression of Tgfβ1 gene. All used extracts upregulated the expression of Vegf-A gene and promoted the migration of mouse fibroblast cells in vitro . The present study demonstrated that the mentioned herbal extracts might be effective in wound healing, through the improvement in the migration of fibroblast cells and regulating the gene expression of Tgfβ1 and Vegf-A genes in fibroblast cells treated with extracts.
Asami, Takashi; Soejima, Kazutaka; Kashimura, Tsutomu; Kazama, Tomohiko; Matsumoto, Taro; Morioka, Kosuke; Nakazawa, Hiroaki
2015-01-01
Although the benefits of basic fibroblast growth factor (bFGF) for wound healing and angiogenesis are well known, its effects on the process of skin graft revascularisation have not been clarified. It was hypothesised that bFGF would be beneficial to promote taking of skin grafts, but that the effect might be limited in the case of bFGF monotherapy. Therefore, this study investigated the efficacy of combination therapy using bFGF and dedifferentiated fat (DFAT) cells. DFAT cells have multilineage differentiation potential, including into endothelial cells, similar to the case of mesenchymal stem cells (MSC). Commercially available human recombinant bFGF was used. DFAT cells were prepared from SD strain rats as an adipocyte progenitor cell line from mature adipocytes. Full-thickness skin was lifted from the back of SD strain rats and then grafted back to the original wound site. Four groups were established prior to skin grafting: control group (skin graft alone), bFGF group (treated with bFGF), DFAT group (treated with DFAT cells), and combination group (treated with both bFGF and DFAT cells). Tissue specimens for histological examination were harvested 48 hours after grafting. The histological findings for the bFGF group showed vascular augmentation in the grafted dermis compared with the control group. However, the difference in the number of revascularised vessels per unit area did not reach statistical significance against the control group. In contrast, in the combination group, skin graft revascularisation was significantly promoted, especially in the upper dermis. The results suggest that replacement of the existing graft vessels was markedly promoted by the combination therapy using bFGF and DFAT cells, which may facilitate skin graft taking.
Basic fibroblast growth factor in an animal model of spontaneous mammary tumor progression.
Kao, Steven; Mo, Jeffrey; Baird, Andrew; Eliceiri, Brian P
2012-06-01
Although basic fibroblast growth factor (FGF2) was the first pro-angiogenic molecule discovered, it has numerous activities on the growth and differentiation of non-vascular cell types. FGF2 is both stimulatory and inhibitory, depending on the cell type evaluated, the experimental design used and the context in which it is tested. Here, we investigated the effects of manipulating endogenous FGF2 on the development of mammary cancer to determine whether its endogenous contribution in vivo is pro- or anti-tumorigenic. Specifically, we examined the effects of FGF2 gene dosing in a cross between a spontaneous breast tumor model (PyVT+ mice) and FGF2-/- (FGF KO) mice. Using these mice, the onset and progression of mammary tumors was determined. As predicted, female FGF2 WT mice developed mammary tumors starting around 60 days after birth and by 80 days, 100% of FGF2 WT female mice had mammary tumors. In contrast, 80% of FGF2 KO female mice had no palpable tumors until nearly three weeks later (85 days) at times when 100% of the WT cohort was tumor positive. All FGF KO mice were tumor-bearing by 115 days. When we compared the onset of mammary tumor development and the tumor progression curves between FGF het and FGF KO mice, we observed a difference, which suggested a gene dosing effect. Analysis of the tumors demonstrated that there were significant differences in tumor size depending on FGF2 status. The delay in tumor onset supports a functional role for FGF2 in mammary tumor progression, but argues against an essential role for FGF2 in overall mammary tumor progression.
Kaji, T; Kaga, K; Miezi, N; Hayashi, T; Ejiri, N; Sakuragawa, N
1990-09-01
To investigate the possible mechanism of the stimulatory effect of a hot water extract from Artemisia leaf (Artemisia princeps PANPANINI) (AFE) on the proliferation of endothelial cells, cells from bovine aorta were cultured for 72 h in RPMI1640 medium supplemented with 10% fetal calf serum in the presence of 5 micrograms/ml AFE. The AFE treatment significantly increased the cell number after culture, while in the presence of 10 micrograms/ml unfractionated heparin, AFE conversely decreased it. This implied that AFE enhanced the cell growth promotion by basic fibroblast growth factor (bFGF). The accumulation of bFGF was significantly increased in the culture medium, in the low-affinity (glycosaminoglycans-binding) fraction, and in the cell extract fraction, but was unchanged in the high-affinity (receptor-binding) fraction. The contents of [35S]sulfate-labeled glycosaminoglycans in both cell layer and the medium were not increased by AFE treatment. The proliferation of A10 cells, an established cell line of smooth muscle cells from murine aorta, was not stimulated by AFE. A10 cells did not produce a significant amount of bFGF in the presence or absence of AFE. Thus, the production of bFGF was considered to be involved in AFE stimulation of cell proliferation. In conclusion, it was suggested that AFE stimulated endothelial cell proliferation by increasing the production of bFGF rather than by an increase in the number of bFGF receptors and the content of glycosaminoglycans in the cell layer. The enhanced reserve of bFGF in the low-affinity fraction of cell layer and in the medium would cause the AFE-stimulated proliferation of endothelial cells.
Nota, Jumpei; Takahashi, Hirotaka; Hakuba, Nobuhiro; Hato, Naohito; Gyo, Kiyofumi
2013-04-01
A new treatment of neural anosmia. To investigate the effects of basic fibroblast growth factor (bFGF)-gelatin hydrogel on recovery of neural anosmia in mice. Anosmia was induced by intraperitoneal injection of 3-methylindole, 200 mg/kg. One week later, the animals underwent 1 of the following 3 procedures bilaterally: (1) group A: single-shot intranasal drip infusion of phosphate-buffered saline, (2) group B: single-shot intranasal drip infusion of bFGF, and (3) group C: placement of bFGF-gelatin hydrogel in the nasal cavity. The olfactory function of the animal was evaluated by the odor-detection test (ODT) 2 and 4 weeks later. Following the testing, the animal was killed, the thickness of the olfactory epithelium was measured, and the number of olfactory marker protein (OMP)-positive cells was counted. Research installation. Mice. The placement of bFGF-gelatin hydrogel in the nasal cavity. An ODT, thickness of olfactory epithelium, the number of OMP-positive cells The ODT proved that neural anosmia recovered in group C but not in groups A and B. Histologically, olfactory epithelium became thicker and the number of OMP-positive cells increased in group C, while such functional and histologic recovery was poor in groups A and B. These findings suggested that placement of bFGF-gelatin hydrogel in the nasal cavity was an efficient way to facilitate recovery of neural anosmia. As a gelatin hydrogel degrades slowly in the body, bFGF is gradually released around the site of the lesion; thus, it constantly exerts its effects on neural regeneration.
Harrison, Caroline A; Dalley, Andrew J; Mac Neil, Sheila
2005-01-01
Hypertrophic scarring and graft contracture are major causes of morbidity after burn injuries. It is well established that application of a split-thickness skin graft reduces scarring and contraction, and cultured epithelial autografts have a similar effect. To investigate the influence of keratinocytes on fibroblast proliferation and fibronectin synthesis, we used an in vitro separated co-culture model in which epithelial sheets were cultured above fibroblast monolayers without physical contact. We also investigated the response of fibroblasts to keratinocyte-conditioned medium (KCM) obtained from confluent and subconfluent keratinocyte monolayers. Both cultured epithelial sheets, composed of adherent fully confluent keratinocytes, and their conditioned medium, reduced fibroblast proliferation. However, KCM from subconfluent keratinocytes stimulated fibroblast proliferation at low concentrations while inhibiting it at higher concentrations, indicating that keratinocytes can produce both mitogenic and growth-inhibiting factors for fibroblasts. KCM, but not epithelial sheet co-culture, also inhibited fibroblast fibronectin synthesis. This indicates regulation of fibroblast phenotype by soluble factors released by the keratinocyte and also suggests that there is a dialogue between keratinocytes and fibroblasts with respect to fibronectin production. We conclude that this separated co-culture model is a simple way to study epithelial/mesenchymal communication particularly with respect to the role of the fibroblast in wound healing.
Ho, Lin; Hsu, Shan-Hui
2018-04-01
3D bioprinting is a technique which enables the direct printing of biodegradable materials with cells into 3D tissue. So far there is no cell reprogramming in situ performed with the 3D bioprinting process. Forkhead box D3 (FoxD3) is a transcription factor and neural crest marker, which was reported to reprogram human fibroblasts into neural crest stem-like cells. In this study, we synthesized a new biodegradable thermo-responsive waterborne polyurethane (PU) gel as a bioink. FoxD3 plasmids and human fibroblasts were co-extruded with the PU hydrogel through the syringe needle tip for cell reprogramming. The rheological properties of the PU hydrogel including the modulus, gelation time, and shear thinning were optimized for the transfection effect of FoxD3 in situ. The corresponding shear rate and shear stress were examined. Results showed that human fibroblasts could be reprogrammed into neural crest stem-like cells with high cell viability during the extrusion process under an average shear stress ∼190 Pa. We further translated the method to the extrusion-based 3D bioprinting, and demonstrated that human fibroblasts co-printed with FoxD3 in the thermo-responsive PU hydrogel could be reprogrammed and differentiated into a neural-tissue like construct at 14 days after induction. The neural-like tissue construct produced by 3D bioprinting from human fibroblasts may be applied to personalized drug screening or neuroregeneration. There is no study so far on cell reprogramming in situ with 3D bioprinting. In this manuscript, a new thermoresponsive polyurethane bioink was developed and employed to deliver FoxD3 plasmid into human fibroblasts by the extrusion-based bioprinting. When the polyurethane gel was extruded through the syringe tip, the shear stress generated may have caused the transient membrane permeability for transfection. The shear stress was optimized for transfection in situ by 3D bioprinting. We demonstrated that human fibroblasts could be reprogrammed into neural crest-like stem cells by 3D bioprinting with the gel, and the reprogrammed cells underwent neural differentiation in the printed structure after induction. The neural-like tissue engineering constructs fabricated by 3D bioprinting from human fibroblasts may be applied for neuroregeneration or further developed as mini-brain for basic research and drug screening. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A cytokine axis regulates elastin formation and degradation
Sproul, Erin P.; Argraves, W. Scott
2013-01-01
Underlying the dynamic regulation of tropoelastin expression and elastin formation in development and disease are transcriptional and post-transcriptional mechanisms that have been the focus of much research. Of particular importance is the cytokine–governed elastin regulatory axis in which the pro-elastogenic activities of transforming growth factor β-1 (TGFβ1) and insulin-like growth factor-I (IGF-I) are opposed by anti-elastogenic activities of basic fibroblast growth factor (bFGF/FGF-2), heparin-binding epidermal growth factor-like growth factor (HB-EGF), EGF, PDGF-BB, TGFα, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and noncanonical TGFβ1 signaling. A key mechanistic feature of the regulatory axis is that cytokines influence elastin formation through effects on the cell cycle involving control of cyclin–cyclin dependent kinase complexes and activation of the Ras/MEK/ERK signaling pathway. In this article we provide an overview of the major cytokines/growth factors that modulate elastogenesis and describe the underlying molecular mechanisms for their action on elastin production. PMID:23160093
Yin yang 1 is a novel regulator of pulmonary fibrosis.
Lin, Xin; Sime, Patricia J; Xu, Haodong; Williams, Marc A; LaRussa, Larry; Georas, Steve N; Guo, Jia
2011-06-15
The differentiation of fibroblasts into myofibroblasts is a cardinal feature of idiopathic pulmonary fibrosis (IPF). The transcription factor Yin Yang 1 (YY1) plays a role in the proliferation and differentiation of diverse cell types, but its role in fibrotic lung diseases is not known. To elucidate the mechanism by which YY1 regulates fibroblast differentiation and lung fibrosis. Lung fibroblasts were cultured with transforming growth factor (TGF)-β or tumor necrosis factor-α. Nuclear factor (NF)-κB, YY1, and α-smooth muscle actin (SMA) were determined in protein, mRNA, and promoter reporter level. Lung fibroblasts and lung fibrosis were assessed in a partial YY1-deficient mouse and a YY1(f/f) conditional knockout mouse after being exposed to silica or bleomycin. TGF-β and tumor necrosis factor-α up-regulated YY1 expression in lung fibroblasts. TGF-β-induced YY1 expression was dramatically decreased by an inhibitor of NF-κB, which blocked I-κB degradation. YY1 is significantly overexpressed in both human IPF and murine models of lung fibrosis, including in the aggregated pulmonary fibroblasts of fibrotic foci. Furthermore, the mechanism of fibrogenesis is that YY1 can up-regulate α-SMA expression in pulmonary fibroblasts. YY1-deficient (YY1(+/-)) mice were significantly protected from lung fibrosis, which was associated with attenuated α-SMA and collagen expression. Finally, decreasing YY1 expression through instilled adenovirus-cre in floxed-YY1(f/f) mice reduced lung fibrosis. YY1 is overexpressed in fibroblasts in both human IPF and murine models in a NF-κB-dependent manner, and YY1 regulates fibrogenesis at least in part by increasing α-SMA and collagen expression. Decreasing YY1 expression may provide a new therapeutic strategy for pulmonary fibrosis.
Zimna, A; Janeczek, A; Rozwadowska, N; Fraczek, M; Kucharzewska, P; Rucinski, M; Mietkiewski, T; Kurpisz, M
2014-04-01
Myocardial infarction results in cardiomyocyte loss and may eventually lead to cardiac failure. Skeletal myoblast transplantation into the scar area may compensate for this observed cell loss by strengthening the weakened myocardium and inducing myogenesis. Moreover, skeletal myoblasts may serve as potential transgene carriers for the myocardium (i.e., delivering pro-angiogenic factors, which may potentially improve blood perfusion in infarcted heart). We examined the influence of the simultaneous overexpression of two potent pro-angiogenic factors, fibroblast growth factor-4 (FGF-4) and vascular endothelial growth factor (VEGF), on human primary myoblast proliferation, cell cycle, resistance to hypoxic stress conditions and myogenic gene expression, as well as the induction of pro-angiogenic activities. We used a bicistronic plasmid vector encoding two factors introduced via an efficient myoblast electroporation method. The levels of overexpressed proteins were assessed, and their functionality at capillary formation was evaluated. This combined approach led to a high level of non-viral transient overexpression of both pro-angiogenic proteins, which proved to be potent regulators of blood vessel development assayed in capillary formation tests. We demonstrated in in vitro conditions that the transfection of human skeletal myoblasts with both FGF-4 and VEGF did not affect their basic biological properties such as the cell cycle, proliferation or expression of myogenic lineage-specific genes, and the modified cells adapted to oxidative stress conditions. Overall, the results obtained suggest that the applied combined approach with the use of two pro-angiogenic genes overexpressed in skeletal muscle stem cells may be an interesting alternative for the effective therapy of myocardial infarction in animal models and/or prospective clinical trials.
Fontanilla, Marta Raquel; Espinosa, Lady Giovanna
2012-09-01
Several studies have evaluated proteins secreted by fibroblasts comprising skin substitutes, finding that they are secreted in combinations and concentrations that promote wound healing. However, assessment of proteins secreted by oral fibroblasts forming a part of oral substitutes is scarce. In our previous work, collagen type-I scaffolds (CSs) and autologous artificial connective tissue (AACT) were produced and implanted in rabbit oral lesions, evidencing that AACT outperforms CS. The present work determined the secreted factor profile of AACT in the time of grafting as well as that of the AACT embedded in the clot. It also evaluated the proliferation and viability of AACT fibroblasts to establish the dwell time of these cells in the grafted area. Finally, it assessed whether CS, AACT, and clot-embedded AACT increase fibroblast recruitment induced by a fibrin clot, because the cell migratory response has been associated with the wound-healing outcome. We found that some of the factors secreted by AACT fibroblasts are significantly different from those secreted by clot-embedded AACT fibroblasts. Also, that the profile of proteins secreted by AACT fibroblasts and clot-embedded AACT fibroblasts is different from already reported protein secretion profiles of other engineered tissues used in treating oral mucosa wounds. It was also found that AACT fibroblasts are viable when grafted and remain in the treated area for almost 2 weeks, and that the migratory response of fibroblasts to tissue-substitute stimulus is significantly less than the migratory response induced by the clot alone. Overall, data suggest that AACT secretion of proteins is modulated by three-dimensionality and environment factors. This bioactivity and the fact that AACT does not increase fibroblast migration can be held accountable for AACT's good performance as a graft.
Shiomi, Tetsuya; Boudreault, Francis; Padem, Nurcicek; Higashiyama, Shigeki; Drazen, Jeffrey M; Tschumperlin, Daniel J
2011-01-01
Lysophospatidic acid (LPA) is a bioactive lipid mediator implicated in tissue repair and wound healing. It mediates diverse functional effects in fibroblasts, including proliferation, migration and contraction, but less is known about its ability to evoke paracrine signaling to other cell types involved in wound healing. We hypothesized that human pulmonary fibroblasts stimulated by LPA would exhibit ectodomain shedding of epidermal growth factor receptor (EGFR) ligands that signal to lung epithelial cells. To test this hypothesis, we used alkaline phosphatase-tagged EGFR ligand plasmids transfected into lung fibroblasts, and enzyme-linked immunosorbent assays to detect shedding of native ligands. LPA induced shedding of alkaline phosphatase-tagged heparin-binding epidermal growth factor (HB-EGF), amphiregulin, and transforming growth factor-a; non-transfected fibroblasts shed amphiregulin and HBEGF under baseline conditions, and increased shedding of HB-EGF in response to LPA. Treatment of fibroblasts with LPA resulted in elevated phosphorylation of extracellular signal-regulated kinase 1/2, enhanced expression of mRNA for c-fos, HB-EGF and amphiregulin, and enhanced proliferation at 96 hours. However, none of these fibroblast responses to LPA required ectodomain shedding or EGFR activity. To test the ability of LPA to stimulate paracrine signaling from fibroblasts, we transferred conditioned medium from LPA-stimulated cells, and found enhanced EGFR and extracellular signal-regulated kinase 1/2 phosphorylation in reporter A549 cells in excess of what could be accounted for by transferred LPA alone. These data show that LPA mediates EGF-family ectodomain shedding, resulting in enhanced paracrine signaling from lung fibroblasts to epithelial cells. © 2011 by the Wound Healing Society.
Ichimura, Yohei; Asano, Yoshihide; Akamata, Kaname; Noda, Shinji; Taniguchi, Takashi; Takahashi, Takehiro; Toyama, Tetsuo; Tada, Yayoi; Sugaya, Makoto; Sato, Shinichi; Kadono, Takafumi
2015-12-01
Progranulin is a growth factor that is active in wound repair and is an antagonist of tumor necrosis factor (TNF) receptors, regulating fibroblast activation, angiogenesis, and inflammation. Because long-standing activation of gene programs related to wound healing is a hallmark of systemic sclerosis (SSc), we sought to investigate the role of progranulin in SSc. Progranulin expression levels in human and murine skin samples were determined by immunohistochemical analysis and quantitative reverse transcription-polymerase chain reaction. The role of progranulin in fibroblast activation was examined using a gene-silencing technique. Progranulin levels in serum obtained from 60 patients with SSc and 16 healthy control subjects were determined by enzyme-linked immunosorbent assay. Progranulin expression was increased in SSc dermal fibroblasts compared with normal dermal fibroblasts, both in vivo and in vitro. Transcription factor Fli-1, a deficiency of which is involved in the activation of SSc dermal fibroblasts, served as a potent repressor of the progranulin gene, and Fli-1(+/-) mice and bleomycin-treated wild-type mice exhibited up-regulated expression of progranulin in dermal fibroblasts. SSc dermal fibroblasts were resistant to the antifibrotic effect of TNF, but this resistance was reversed by gene silencing of progranulin. Serum progranulin levels were elevated in patients with early diffuse cutaneous SSc (dcSSc), especially in those with inflammatory skin symptoms, and were positively correlated with the C-reactive protein level. Progranulin overproduction due to Fli-1 deficiency may contribute to the constitutive activation of SSc dermal fibroblasts by antagonizing the antifibrotic effect of TNF. Progranulin may also be involved in the inflammatory process associated with progressive skin sclerosis in early dcSSc. © 2015, American College of Rheumatology.
Sharaf El Din, Usama A; Salem, Mona M; Abdulazim, Dina O
2017-05-01
The death rate among chronic kidney disease patients is the highest compared to other chronic diseases. 60% of these fatalities are cardiovascular. Cardiovascular calcifications and chronic inflammation affect almost all chronic kidney disease patients and are associated with cardiovascular mortality. Fibroblast growth factor 23 is associated with vascular calcification. Systemic inflammation in chronic kidney disease patients is multifactorial. The role of systemic inflammation in the pathogenesis of vascular calcification was recently reappraised. Fibroblast growth factor 23 was accused as a direct stimulus of left ventricular hypertrophy, uremic inflammation, and impaired neutrophil function. This review will discuss the underlying mechanisms that underlie the link between Fibroblast growth factor 23 and increased mortality encountered among chronic kidney disease patients.
Neuronal expression of fibroblast growth factor receptors in zebrafish.
Rohs, Patricia; Ebert, Alicia M; Zuba, Ania; McFarlane, Sarah
2013-12-01
Fibroblast growth factor (FGF) signaling is important for a host of developmental processes such as proliferation, differentiation, tissue patterning, and morphogenesis. In vertebrates, FGFs signal through a family of four fibroblast growth factor receptors (FGFR 1-4), one of which is duplicated in zebrafish (FGFR1). Here we report the mRNA expression of the five known zebrafish fibroblast growth factor receptors at five developmental time points (24, 36, 48, 60, and 72h postfertilization), focusing on expression within the central nervous system. We show that the receptors have distinct and dynamic expression in the developing zebrafish brain, eye, inner ear, lateral line, and pharynx. In many cases, the expression patterns are similar to those of homologous FGFRs in mouse, chicken, amphibians, and other teleosts. Copyright © 2013 Elsevier B.V. All rights reserved.
Guo, Xiaodong; Zheng, Qixin; Kulbatski, Iris; Yuan, Quan; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiao, Baojun; Pan, Zhengqi; Tang, Shuo
2006-09-01
Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous beta tricalcium phosphate (beta-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new bFGF gene enhanced tissue engineering strategy could be of potential benefit to accelerate bone healing, especially in defects caused by atrophic nonunion and avascular necrosis of the femoral head.
Zhong, Hong-liang; Wang, Zhen-min; Yang, Zhi-jun; Zhao, Fu; Wang, Bo; Wang, Zhong-cheng; Liu, Pi-nan
2012-02-01
Carbon dioxide (CO2) laser soldering is an alternative technique for tissue bonding. Basic fibroblast growth factor (bFGF) and transforming growth factor β(1) (TGFβ(1)) are two key factors for wound healing. This study was performed to demonstrate the efficacy of CO2 laser soldering for dural reconstruction and the effect of bFGF and TGFβ(1) on healing. In Part I, 10 minipigs were randomized into two equal groups. Dural defects were reconstructed by conventional fibrin glue bonding (group I(a)) or CO2 laser soldering (group I(b)). The reconstructed dura was subjected to burst pressure (BP) measurement and immunohistochemical staining after 1 week. In Part II, 36 minipigs were randomized into three equal groups. Dural reconstruction was achieved by CO2 laser soldering. Exogenous bFGF (group II(b)) or TGFβ(1) (group II(c)) was administered while group II(a) served as a control group. The specimens were subjected to BP measurement after 1, 2, 3, and 4 weeks, respectively. In Part I, the dura specimens displayed positive staining of only bFGF in group I(a) and of both bFGF and TGFβ(1) in group I(b). Group I(b) showed higher BP than group I(a) ((98.00 ± 21.41) mmHg vs. (70.80 ± 15.09) mmHg, respectively; P < 0.05). In Part II, BP of group II(c) was significantly higher than that of group II(a) (P < 0.01). The BP of group II(a) trended toward stabilization after 3 weeks of growth, while that of groups II(b) and II(c) trended toward stabilization after 2 weeks of growth. CO2 laser soldering is a reliable technique for dural reconstruction. The superior healing of dural reconstruction by CO2 laser soldering may be related to higher expression of bFGF and TGFβ(1), and CO2 lasers may stimulate their secretion. Exogenous bFGF or TGFβ(1) may improve healing by shortening the wound healing time, and exogenous TGFβ(1) may improve the tensile strength.
Koch, R J; Goode, R L; Simpson, G T
1997-04-01
The purpose of this study was to develop an in vitro serum-free keloid fibroblast model. Keloid formation remains a problem for every surgeon. Prior evaluations of fibroblast characteristics in vitro, especially those of growth factor measurement, have been confounded by the presence of serum-containing tissue culture media. The serum itself contains growth factors, yet has been a "necessary evil" to sustain cell growth. The design of this study is laboratory-based and uses keloid fibroblasts obtained from five patients undergoing facial (ear lobule) keloid removal in a university-affiliated clinic. Keloid fibroblasts were established in primary cell culture and then propagated in a serum-free environment. The main outcome measures included sustained keloid fibroblast growth and viability, which was comparable to serum-based models. The keloid fibroblast cell cultures exhibited logarithmic growth, sustained a high cellular viability, maintained a monolayer, and displayed contact inhibition. Demonstrating model consistency, there was no statistically significant difference between the mean cell counts of the five keloid fibroblast cell lines at each experimental time point. The in vitro growth of keloid fibroblasts in a serum-free model has not been done previous to this study. The results of this study indicate that the proliferative characteristics described are comparable to those of serum-based models. The described model will facilitate the evaluation of potential wound healing modulators, and cellular effects and collagen modifications of laser resurfacing techniques, and may serve as a harvest source for contaminant-free fibroblast autoimplants. Perhaps its greatest utility will be in the evaluation of endogenous and exogenous growth factors.
Micera, Alessandra; Lambiase, Alessandro; Puxeddu, Ilaria; Aloe, Luigi; Stampachiacchiere, Barbara; Levi-Schaffer, Francesca; Bonini, Sergio; Bonini, Stefano
2006-10-01
In response to corneal injury, cytokines and growth factors play a crucial role by influencing epithelial-stromal interaction during the healing and reparative processes which may resolve in tissue remodeling and fibrosis. While transforming growth factor-beta1 (TGF-beta1) is considered the main profibrogenic modulator of these process, recently the nerve growth factor (NGF) appears as a pleiotropic modulator of wound-healing and inflammatory responses. Interestingly in the cornea, where NGF, trkA(NGFR) and p75(NTR) are expressed by epithelial cells and keratocytes, the NGF eye-drop induces the healing of neurotrophic or autoimmune corneal ulcers. During corneal healing, quiescent keratocytes are replaced by active fibroblast-like keratocytes/myofibroblasts. While the NGF effect on epithelial cells has been investigated, no data are reported for NGF effects on fibroblastic-keratocytes, during corneal healing. NGF, trkA(NGFR) and p75(NTR) were found expressed by fibroblastic-keratocytes. NGF was able to induce fibroblastic-keratocyte differentiation into myofibroblasts, migration, Metalloproteinase-9 expression/activity and contraction of a 3D collagen gel, without affecting their proliferation and collagen production. These data also show a two-directional control of fibroblastic-keratocytes by NGF and TGF-beta1. To sum up, the findings of this study indicate that NGF can modulate some functional activities of fibroblastic-keratocytes, thus substantiating the healing effects of NGF on corneal wound-healing.
Wang, Ruolin; Liu, Wenhua; Du, Mi; Yang, Chengzhe; Li, Xuefen; Yang, Pishan
2018-03-01
In situ tissue engineering has become a novel strategy to repair periodontal/bone tissue defects. The choice of cytokines that promote the recruitment and proliferation, and potentiate and maintain the osteogenic differentiation ability of mesenchymal stem cells (MSCs) is the key point in this technique. Stromal cell‑derived factor‑1 (SDF‑1) and basic fibroblast growth factor (bFGF) have the ability to promote the recruitment, and proliferation of MSCs; however, the differential effect of SDF‑1 and bFGF pretreatment on MSC osteogenic differentiation potency remains to be explored. The present study comparatively observed osteogenic differentiation of bone morrow MSCs (BMMSCs) pretreated by bFGF or SDF‑1 in vitro. The gene and protein expression levels of alkaline phosphatase (ALP), runt related transcription factor 2 (Runx‑2) and bone sialoprotein (BSP) were detected using reverse transcription‑quantitative polymerase chain reaction and western blotting. The results showed that the expression of ALP mRNA on day 3, and BSP and Runx‑2 mRNA on day 7 in the bFGF pretreatment group was significantly higher than those in SDF‑1 pretreatment group. Expression levels of Runx‑2 mRNA, and ALP and Runx‑2 protein on day 3 in the SDF‑1 pretreatment group were higher than those in the bFGF pretreatment group. However, there was no significant difference in osteogenic differentiation ability on day 14 and 28 between the bFGF‑ or SDF‑1‑pretreatment groups and the control. In conclusion, bFGF and SDF‑1 pretreatment inhibits osteogenic differentiation of BMMSCs at the early stage, promotes it in the medium phase, and maintains it in the later stage during osteogenic induction, particularly at the mRNA level. Out of the two cytokines, bFGF appeared to have a greater effect on osteogenic differentiation.
Mydlo, J H; Kral, J G; Macchia, R J
1997-09-01
Basic fibroblast growth factor (bFGF or FGF-2) is mitogenic to human prostate epithelial and stromal cells, and it is reported to be elevated in the serum and urine of patients with various cancers, including prostate cancer. Obesity, with increased body fat, is a risk factor for prostate cancer through unknown mechanisms. Because adipose tissue is a source of FGF-2, we determined the quantity and quality of activity of FGF-2 in omental adipose tissue and compared it with normal and cancerous prostate tissues. Using heparin-Sepharose chromatography, we extracted proteins from human omental adipose tissue, adenocarcinoma of the prostate, and benign prostatic hypertrophic (BPH) tissues. Each of the mitogenic proteins eluted with NaCl concentrations between 1.4 M and 1.8 M, similar to control FGF-2. Using FGF-2 antisera (which inhibited the mitogenic activity of the proteins), we performed Western blot analysis to confirm their homology to FGF-2. We also assessed recovery, mitogenicity, and angiogenicity of each of the proteins using thymidine incorporation into human umbilical vein endothelial cells and the chorioallantoic membrane assay. There was greater recovery of FGF-2 from omental adipose tissue compared with cancerous or BPH homogenates (40 micrograms [2.0 micrograms/g] versus 25 micrograms [1.25 micrograms/g] and 20 micrograms [1.0 microgram/g], respectively). Moreover. FGF-2 from adipose tissue had greater mitogenic activity (96.2% versus 74.8% and 54%; P < 0.05) and a greater angiogenic activity (5.1 vessels versus 2.9 and 1.8 vessels; P < 0.05) on the chorioallantoic assay. We suggest that human omental adipose tissue FGF-2 may demonstrate greater mitogenic and angiogenic activity than either BPH or prostate cancer tissue FGF-2. It is not known whether FGF-2 from adipose tissue qualitatively or quantitatively may underlie the relationship between obesity and prostate cancer.
Mydlo, J H; Kral, J G; Macchia, R J
1998-06-01
Basic fibroblast growth factor (bFGF or FGF-2) is mitogenic to numerous epithelial, mesodermal and endothelial cells, and thus may play a role in the neovascularity and progression of several tumors. Furthermore, FGF-2 is reported to be elevated in the serum and urine of patients with various cancers, including renal cancer. Obesity, with increased body fat, is a risk factor for renal cancer through unknown mechanisms. Since adipose tissue is a source of FGF-2, we determined the quantity and quality of activity of FGF-2 in omental adipose tissue and compared it to normal and cancerous renal tissue. Using heparin-Sepharose chromatography we extracted proteins from human omental adipose tissue, renal cell carcinoma (RCC) and benign renal tissue (BRT). Using FGF-2 antisera we performed western blot analysis to confirm their homology to FGF-2. We also assessed recovery, mitogenicity and angiogenicity of each of the proteins using thymidine incorporation into human umbilical vein endothelial cells (HUVEC) and the chorioallantoic membrane (CAM) assay. Each of the three purified mitogenic proteins eluted with NaCl concentrations between 1.4 M. and 1.8 M., similar to control FGF-2. There was greater recovery of FGF-2 from omental adipose tissue compared with renal cell carcinoma or benign renal tissue (42 microg. vs. 24 microg. and 18 microg., respectively; ANOVA p <0.05). Moreover, FGF-2 from adipose tissue had greater mitogenic activity (96.% versus 68% and 38%; p <0.05) and greater angiogenic activity (5.5 vessels versus 2.7 and 1.6 vessels; p <0.05) on the CAM assay. We suggest that human omental adipose tissue FGF-2 may demonstrate greater mitogenic and angiogenic activity than either benign or cancerous renal tissue FGF-2. It is not known if FGF-2 from adipose tissue may play a role in the relationship between obesity and renal cancer.
[Enhancement of wound healing by taspine and its effect on fibroblast].
Dong, Yalin; He, Langchong; Chen, Fang
2005-07-01
To study the effect of taspine on enhancement of skin wound healing and its effect on fibroblast proliferation and autocrine. The plerosis effect of taspine on experimental skin wound was observed in vivo. Different concentrations of taspine were added in vitro and MTT technique was applied to observe its effect on fibroblast proliferation, the levels of transforming growth factor-beta1 (TGF-13P) and epidermal growth factor (EGF) were determined by ELISA. In vivo, exo-applied taspine 300 microg and 150 microg accelerated the recovery of skin wound. In vitro, 0.50-0.4 microg/ml taspine could increase autocrine of TGF-beta1and EGF by fibroblast, but it showed no effect on L929 fibroblast proliferation. Taspine enhances wound healing by increasing the autocrine of TGF-beta1 and EGF by fibroblast.
Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Seo, Han Geuk; Moon, Sung-Hwan; Chung, Hyung-Min; Do, Jeong Tae
2014-11-01
Somatic cells are reprogrammed to induced pluripotent stem cells (iPSCs) by overexpression of a combination of defined transcription factors. We generated iPSCs from mouse embryonic fibroblasts (with Oct4-GFP reporter) by transfection of pCX-OSK-2A (Oct4, Sox2, and Klf4) and pCX-cMyc vectors. We could generate partially reprogrammed cells (XiPS-7), which maintained more than 20 passages in a partially reprogrammed state; the cells expressed Nanog but were Oct4-GFP negative. When the cells were transferred to serum-free medium (with serum replacement and basic fibroblast growth factor), the XiPS-7 cells converted to Oct4-GFP-positive iPSCs (XiPS-7c, fully reprogrammed cells) with ESC-like properties. During the conversion of XiPS-7 to XiPS-7c, we found several clusters of slowly reprogrammed genes, which were activated at later stages of reprogramming. Our results suggest that partial reprogrammed cells can be induced to full reprogramming status by serum-free medium, in which stem cell maintenance- and gamete generation-related genes were upregulated. These long-term expandable partially reprogrammed cells can be used to verify the mechanism of reprogramming.
NASA Astrophysics Data System (ADS)
Peng, Limin; Zheng, Yuan; You, Feng; Wu, Zhihao; Zou, Yuxia; Zhang, Peijun
2016-09-01
The culture of Sertoli cells has become an indispensable resource in studying spermatogenesis. A new Sertoli cell line (POSC) that consisted predominantly of fibroblast-like cells was derived from the testis of the olive flounder Paralichthys olivaceus and sub-cultured for 48 passages. Analysis of the mtDNA COI gene partial sequence confirmed that the cell line was from P. olivaceus. Cells were optimally maintained at 25°C in DMEM/F12 medium supplemented with fetal bovine serum, basic fibroblast growth factor, and epidermal growth factor. The growth curve of POSC showed a typical "S" shape. Chromosome analysis revealed that the cell line possessed the normal P. olivaceus diploid karyotype of 2n=48t. POSC expressed dmrt1 but not vasa, which was detected using RT-PCR and sequencing. Immunocytochemistry revealed that the cells exhibited the testicular Sertoli cell marker FasL. Therefore, POSC appeared to consist of testicular Sertoli cells. Bright fluorescent signals were observed after the cells were transfected with pEGFP-N3 plasmid, with the transfection efficiency reaching 10%. This research not only offers an ideal model for further gene expression and regulation studies on P. olivaceus, but also serves as valuable material in studying fish spermatogenesis, Sertoli cell-germ cell interactions, and the mechanism of growth and development of testis.
Role of fibroblast-derived factors in the pathogenesis of melasma.
Byun, J W; Park, I S; Choi, G S; Shin, J
2016-08-01
The hyperactive melanocytes present in melasma skin are confined to the epidermis, but epidermal ablation to treat melasma pigmentation may lead to disease recurrence and aggravation. Melanocyte function is regulated by interactions between melanocytes and neighbouring cells such as keratinocytes and fibroblasts. Because melasma skin usually shows dermal changes after exposure to sunlight, we hypothesized that sun-damaged fibroblasts might play a crucial role in the pathogenesis of melasma. In this study, the melanogenic role of primary cultured fibroblasts from human melasma skin was investigated. We explored whether primary cultured fibroblasts from melasma tissue have a melanogenic function on cultured human epidermal melanocytes and artificial skin. The cytokine profile derived from fibroblasts and their effect on the pigmented epidermal equivalents were investigated. Fibroblasts from the melasma lesion and perilesional skin increased melanogenesis in cultured human epidermal melanocytes and in artificial skin. Fibroblasts from the melasma lesion and perilesional skin secreted more nerve growth factor (NGF)-β than those in normal buttock skin, and also increased melanogenesis and the expression level of NGF-β in cultured human epidermal melanocytes and artificial skin. These results suggest that fibroblasts may play a role in melanogenesis and the pathogenesis of melasma. © 2016 British Association of Dermatologists.
Production of colony-stimulating factor in human dental pulp fibroblasts.
Sawa, Y; Horie, Y; Yamaoka, Y; Ebata, N; Kim, T; Yoshida, S
2003-02-01
Class II major histocompatilibity complex (MHC)-expressing cells are usually distributed in dental pulp, and it was postulated that the colony-stimulating factor (CSF) derived from dental pulp fibroblasts contributes to the migration of class II MHC-expressing cells into pulp tissue. This study aimed to investigate the CSF production of human dental pulp fibroblasts. In pulp tissue sections, granulocyte (G)-CSF was detected from normal teeth, while G-CSF, macrophage (M)-CSF, and granulocyte-macrophage (GM)-CSF were detected from teeth with dentinal caries. In cultured dental pulp fibroblasts, G-CSF was detected by immunostaining, immunoprecipitation, and ELISA, and mRNAs of G-CSF, M-CSF, and GM-CSF were detected by RT-PCR. The dental pulp fibroblasts cultured with TNF-alpha were found to increase the G-CSF expression and to produce M-CSF and GM-CSF. These findings suggest that dental pulp fibroblasts usually produce G-CSF. In the presence of TNF-alpha, dental pulp fibroblast express M-CSF and GM-CSF.
Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.
Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloidmore » fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.« less
White, Rebekah R.; Shan, Siqing; Rusconi, Christopher P.; Shetty, Geetha; Dewhirst, Mark W.; Kontos, Christopher D.; Sullenger, Bruce A.
2003-01-01
Angiopoietin-2 (Ang2) appears to be a naturally occurring antagonist of the endothelial receptor tyrosine kinase Tie2, an important regulator of vascular stability. Destabilization of the endothelium by Ang2 is believed to potentiate the actions of proangiogenic growth factors. To investigate the specific role of Ang2 in the adult vasculature, we generated a nuclease-resistant RNA aptamer that binds and inhibits Ang2 but not the related Tie2 agonist, angiopoietin-1. Local delivery of this aptamer but not a partially scrambled mutant aptamer inhibited basic fibroblast growth factor-mediated neovascularization in the rat corneal micropocket angiogenesis assay. These in vivo data directly demonstrate that a specific inhibitor of Ang2 can act as an antiangiogenic agent. PMID:12692304
Circadian transcription factor BMAL1 regulates innate immunity against select RNA viruses.
Majumdar, Tanmay; Dhar, Jayeeta; Patel, Sonal; Kondratov, Roman; Barik, Sailen
2017-02-01
BMAL1 (brain and muscle ARNT-like protein 1, also known as MOP3 or ARNT3) belongs to the family of the basic helix-loop-helix (bHLH)-PAS domain-containing transcription factors, and is a key component of the molecular oscillator that generates circadian rhythms. Here, we report that BMAL1-deficient cells are significantly more susceptible to infection by two major respiratory viruses of the Paramyxoviridae family, namely RSV and PIV3. Embryonic fibroblasts from Bmal1 -/- mice produced nearly 10-fold more progeny virus than their wild type controls. These results were supported by animal studies whereby pulmonary infection of RSV produced a more severe disease and morbidity in Bmal1 -/- mice. These results show that BMAL1 can regulate cellular innate immunity against specific RNA viruses.
Development of an ES-like cell culture system (RESC) from rohu, Labeo rohita (Ham.).
Goswami, M; Lakra, W S; Yadav, Kamalendra; Jena, J K
2012-12-01
An embryonic stem (ES)-like cell culture system RESC from a commercially important freshwater carp, Labeo rohita, was developed using blastula stage embryos. The cells were cultured in Leibovitz-15 (L-15) medium in gelatin-coated cell culture flask supplemented with 15 % fetal bovine serum along with 10 ng ml(-1) basic fibroblast growth factor at 28 °C under feeder-free conditions. The ES-like cells were characterized by their unique morphology, alkaline phosphatase activity, embryoid body formation tendency, expression of transcription factor Oct4, and consistent chromosome count. The RESC cells when treated with retinoic acid differentiated into cells of different lineages. The RESC developed from mid-blastula embryos of L. rohita would be a useful tool for cellular differentiation and gene expression studies.
Plasticity of the Muscle Stem Cell Microenvironment.
Dinulovic, Ivana; Furrer, Regula; Handschin, Christoph
2017-01-01
Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes.
2018-02-15
possible mutation in the fibroblast growth factor receptor 3 gene, and type 3, the most common, associated with insulin resistant states and...like growth factor receptor 1 (IGFR1), fibroblast growth factor receptors (FGFR), and epidermal growth factor receptor (EGFR), have all been proposed...as contributing factors. EGFR is a pivotal receptor because it interacts with several other growth factors (PDGF, TF-B, protein kinase C). They
Bernasconi, Pia; Carboni, Nicola; Ricci, Giulia; Siciliano, Gabriele; Politano, Luisa; Maggi, Lorenzo; Mongini, Tiziana; Vercelli, Liliana; Rodolico, Carmelo; Biagini, Elena; Boriani, Giuseppe; Ruggiero, Lucia; Santoro, Lucio; Schena, Elisa; Prencipe, Sabino; Evangelisti, Camilla; Pegoraro, Elena; Morandi, Lucia; Columbaro, Marta; Lanzuolo, Chiara; Sabatelli, Patrizia; Cavalcante, Paola; Cappelletti, Cristina; Bonne, Gisèle; Muchir, Antoine; Lattanzi, Giovanna
2018-04-25
Among rare diseases caused by mutations in LMNA gene, Emery-Dreifuss Muscular Dystrophy type 2 and Limb-Girdle muscular Dystrophy 1B are characterized by muscle weakness and wasting, joint contractures, cardiomyopathy with conduction system disorders. Circulating biomarkers for these pathologies have not been identified. Here, we analyzed the secretome of a cohort of patients affected by these muscular laminopathies in the attempt to identify a common signature. Multiplex cytokine assay showed that transforming growth factor beta 2 (TGF β2) and interleukin 17 serum levels are consistently elevated in the vast majority of examined patients, while interleukin 6 and basic fibroblast growth factor are altered in subgroups of patients. Levels of TGF β2 are also increased in fibroblast and myoblast cultures established from patient biopsies as well as in serum from mice bearing the H222P Lmna mutation causing Emery-Dreifuss muscular dystrophy in humans. Both patient serum and fibroblast conditioned media activated a TGF β2-dependent fibrogenic program in normal human myoblasts and tenocytes and inhibited myoblast differentiation. Consistent with these results, a TGF β2 neutralizing antibody avoided fibrogenic marker activation and myogenesis impairment. Cell intrinsic TGF β2-dependent mechanisms were also determined in laminopathic cells, where TGF β2 activated AKT/mTOR phosphorylation. These data show that TGF β2 contributes to the pathogenesis of Emery-Dreifuss Muscular Dystrophy type 2 and Limb-Girdle muscular Dystrophy 1B and can be considered a potential biomarker of those diseases. Further, the evidence of TGF β2 pathogenetic effects in tenocytes provides the first mechanistic insight into occurrence of joint contractures in muscular laminopathies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandler, Charlotta; Joutsiniemi, Saima; Lindstedt, Ken A.
Synovial fibroblast is the key cell type in the growth of the pathological synovial tissue in arthritis. Here, we show that platelet-derived growth factor (PDGF) is a potent mitogen for synovial fibroblasts isolated from patients with rheumatoid arthritis. Inhibition of PDGF-receptor signalling by imatinib mesylate (1 {mu}M) completely abrogated the PDGF-stimulated proliferation and inhibited approximately 70% of serum-stimulated proliferation of synovial fibroblasts. Similar extent of inhibition was observed when PDGF was neutralized with anti-PDGF antibodies, suggesting that imatinib mesylate does not inhibit pathways other than those mediated by PDGF-receptors. No signs of apoptosis were detected in synovial fibroblasts cultured inmore » the presence of imatinib. These results suggest that imatinib mesylate specifically inhibits PDGF-stimulated proliferation of synovial fibroblasts, and that inhibition of PDGF-receptors could represent a feasible target for novel antirheumatic therapies.« less
Yan, Tuo; Sun, Rong; Li, Chun; Tan, Baihua; Mao, Xuan; Ao, Ningjian
2010-08-01
Type-I collagen and bFGF were immobilized onto the surface of poly (HEMA-co-MMA) hydrogel by grafting and coating methods to improve its cytotoxicity. The multi-layered structure of the biocompatible layer was confirmed by FTIR, AFM and static water contact angles. The layers were stable in body-like environment (pH 7.4). Human skin fibroblast cells (HSFC) were seeded onto Col/bFGF-poly (HEMA-co-MMA), Col-poly (HEMA-co-MMA) and poly (HEMA-co-MMA) films for 1, 3 and 5 day. MTT assay was performed to evaluate the extraction toxicity of the materials. Results showed that the cell attachment, proliferation and differentiation on Col/bFGF-poly (HEMA-co-MMA) film were higher than those of the control group, which indicated the improvement of cell-material interaction. The extraction toxicity of the modified materials was also lower than that of the unmodified group. The protein and bFGF immobilized poly (HEMA-co-MMA) hydrogel might hold great promise to be a biocompatible material.
Wang, Zhenmin; Zhong, Hongliang; Yang, Zhijun; Zhao, Fu; Wang, Bo; Qu, Peiran; Liu, Pinan
2014-05-01
This study aims to explore the probable mechanism of better result of dural reconstruction by CO2 laser soldering and the effect of exogenous basic fibroblast growth factor (bFGF) or transforming growth factor-beta1(TGFβ1) on wound healing. In part I of the study, ten minipigs were randomized into two equal groups, and the dural defects were reconstructed by conventional fibrin glue (FG) bonding (group I a) or by CO2 laser soldering (group Ib). In part II, 36 minipigs were randomized into three equal groups, and the dural defect was reconstructed by CO2 laser soldering; then exogenous bFGF or TGFβ1 was administered in group IIb and group IIc, respectively, while group IIa served as control group. The dural specimens were harvested at 1st week postoperatively in part I; and at 1st, 2nd, 3rd, and 4th week postoperatively in part II, they were examined for healing condition and subjected to hematoxylin-eosin (HE) staining and immunohistochemical (IHC) staining with antibodies against bFGF and TGFβ1. In part I, group Ib showed higher fibroblast cell density than group Ia (P < 0.05). The optical density (OD) for IHC staining with antibodies against bFGF of group Ib was significantly higher than that of group Ia (P < 0.05), and for IHC staining with antibodies against TGFβ1, group Ib showed positive staining while group Ia was negative. In part II, administering exogenous bFGF or TGFβ1 made a left shift of fibroblast cell number-time curve compared with control group. For specimens' IHC staining with antibodies against bFGF, the OD of group IIb was higher than that of group IIa in the corresponding time. For specimens' IHC staining with antibodies against TGFβ1, the OD of groups IIb and IIc was both higher than that of group IIa (P < 0.05 and P < 0.01, respectively). In conclusion, CO2 laser may trigger fibroblast proliferation through stimulating the secretion of bFGF and TGFβ1. Topically administering exogenous bFGF or TGFβ1 could accelerate the healing of the reconstructed dura by enhancing secretion of bFGF and/or TGFβ1 and promoting the process of fibroblast gathering-degrading.
Zhou, Yong; Hagood, James S.; Murphy-Ullrich, Joanne E.
2004-01-01
Distinct subpopulations of fibroblasts contribute to lung fibrosis, although the mechanisms underlying fibrogenesis in these subpopulations are not clear. Differential expression of the glycophosphatidylinositol-linked protein Thy-1 affects proliferation and myofibroblast differentiation. Lung fibroblast populations selected on the basis of Thy-1 expression by cell sorting were examined for responses to fibrogenic stimuli. Thy-1 (−) and Thy-1 (+) fibroblast populations were treated with platelet-derived growth factor-BB, interleukin-1β, interleukin-4, or bleomycin and assessed for activation of transforming growth factor (TGF)-β, Smad3 phosphorylation, and α-smooth muscle actin and fibronectin expression. Thy-1 (−) fibroblasts responded to these stimuli with increased TGF-β activity, Smad3 phosphorylation, and expression of α-smooth muscle actin and fibronectin, whereas Thy-1 (+) fibroblasts resisted stimulation. The unresponsiveness of Thy-1 (+) cells is not because of defective TGF-β signaling because both subsets respond to exogenous active TGF-β. Rather, Thy-1 (−) fibroblasts activate latent TGF-β in response to fibrogenic stimuli, whereas Thy-1 (+) cells fail to do so. Defective activation is common to multiple mechanisms of TGF-β activation, including thrombospondin 1, matrix metalloproteinase, or plasmin. Thy-1 (−) lung fibroblasts transfected with Thy-1 also become resistant to fibrogenic stimulation, indicating that Thy-1 is a critical biological response modifier that protects against fibrotic progression by controlling TGF-β activation. These studies provide a molecular basis for understanding the differential roles of fibroblast subpopulations in fibrotic lung disease through control of latent TGF-β activation. PMID:15277239
Dyondi, Deepti; Webster, Thomas J; Banerjee, Rinti
2013-01-01
Gellan xanthan gels have been shown to be excellent carriers for growth factors and as matrices for several tissue engineering applications. Gellan xanthan gels along with chitosan nanoparticles of 297 ± 61 nm diameter, basic fibroblast growth factor (bFGF), and bone morphogenetic protein 7 (BMP7) were employed in a dual growth factor delivery system to promote the differentiation of human fetal osteoblasts. An injectable system with ionic and temperature gelation was optimized and characterized. The nanoparticle loaded gels showed significantly improved cell proliferation and differentiation due to the sustained release of growth factors. A differentiation marker study was conducted, analyzed, and compared to understand the effect of single vs dual growth factors and free vs encapsulated growth factors. Dual growth factor loaded gels showed a higher alkaline phosphatase and calcium deposition compared to single growth factor loaded gels. The results suggest that encapsulation and stabilization of growth factors within nanoparticles and gels are promising for bone regeneration. Gellan xanthan gels also showed antibacterial effects against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, the common pathogens in implant failure.
Struyf, Sofie; Burdick, Marie D; Proost, Paul; Van Damme, Jo; Strieter, Robert M
2004-10-29
Platelet factor-4 (PF-4)/CXCL4 was the first chemokine described to inhibit neovascularization. Here, the product of the nonallelic variant gene of CXCL4, PF-4var1/PF-4alt, designated CXCL4L1, was isolated for the first time from thrombin-stimulated human platelets and purified to homogeneity. Although secreted CXCL4 and CXCL4L1 differ in only three amino acids, CXCL4L1 was more potent in inhibiting chemotaxis of human microvascular endothelial cells toward interleukin-8 (IL-8)/CXCL8 or basic fibroblast growth factor (bFGF). In vivo, CXCL4L1 was also more effective than CXCL4 in inhibiting bFGF-induced angiogenesis in rat corneas. Thus, activated platelets release CXCL4L1, a potent regulator of endothelial cell biology, which affects angiogenesis and vascular diseases.
Chen, Shangliang; Wang, Mingzhu; Chen, Xinglu; Chen, Shaolian; Liu, Li; Zhu, Jianbin; Wang, Jinhui; Yang, Xiaorong; Cai, Xiangsheng
2018-06-21
BACKGROUND Cytokeratin 19 (CK19) is a typical epithelial marker. In this study, we determined whether epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) could enhance CK19 expression in adipose-derived stem cells (ADSCs), thereby inducing the differentiation of ADSCs into epithelial-like cells. MATERIAL AND METHODS ADSCs were isolated from perinephric fat, and the expression of CD29, CD90, and CD105 was confirmed. Following isolation, ADSCs were cultured in static medium or medium containing EGF or bFGF. RESULTS Flow cytometry revealed that EGF and bFGF could alter mesenchymal stem cell markers as well as the cell cycle of ADSCs. Western blotting and immunofluorescence revealed that after 14 days, EGF treatment enhanced the expression of CK19 in ADSCs. CONCLUSIONS Our findings offer important insight for the clinical use of ADSCs in the generation of epithelial-like cells in the future.
Saitoh, Ohki; Mitsutake, Norisato; Nakayama, Toshiyuki; Nagayama, Yuji
2009-07-01
It is known that genetic abnormalities in oncogenes and/or tumor suppressor genes promote carcinogenesis. Numerous recent articles, however, have demonstrated that epithelial-stromal interaction also plays a critical role for initiation and progression of carcinoma cells. Furthermore, ionizing radiation induces alterations in the tissue microenvironments that promote carcinogenesis. There is little or no information on epithelial-stromal interaction in thyroid carcinoma cells. The objective of this study was to determine if epithelial-stromal interaction influenced the growth of thyroid carcinoma cells in vivo and in vitro and to determine if radiation had added or interacting effects. Normal Fisher rat thyroid follicular cells (FRTL5 cells) and tumorigenic rat thyroid carcinoma cells (FRTL-Tc cells) derived from FRTL5 cells were employed. The cells were injected into thyroids or subcutaneously into left flanks of rats alone or in combination with skin-derived fibroblasts. In groups of rats, fibroblasts were irradiated with 0.1 or 4 Gy x-ray 3 days before inoculation. In vitro growth of FRTL-Tc and FRTL-5 cells were evaluated using the fibroblast-conditioned medium and in a co-culture system with fibroblasts. The in vivo experiments demonstrated that FRTL-Tc cells injected intrathyroidally grew faster than those injected subcutaneously, and that admixed fibroblasts enhanced growth of subcutaneous FRTL-Tc tumors, indicating that the intrathyroidal milieu, particularly in the presence of fibroblasts, confer growth-promoting advantage to thyroid carcinoma cells. This in vivo growth-promoting effect of fibroblasts on FRTL-Tc cells was duplicated in the in vitro experiments using the fibroblast-conditioned medium. Thus, our data demonstrate that this effect is mediated by soluble factor(s), is reversible, and is comparable to that of 10% fetal bovine serum. However, normal FRTL5 cells did not respond to the fibroblast-conditioned medium. Furthermore, high- and low-dose irradiation enhanced and suppressed, respectively, the in vivo fibroblast-mediated growth promotion. This effect was, however, not observed in the in vitro experiment with conditioned medium or even that allowing cell-cell contact. The intrathyroidal stromal microenvironments, particularly fibroblasts, appear to enhance the growth of thyroid carcinomas through soluble factor(s), which is modulated differently by high- and low-dose irradiation. To our knowledge this is the first study to show epithelial-stromal interaction in thyroid carcinoma.
Mia, Masum M.; Boersema, Miriam; Bank, Ruud A.
2014-01-01
One of the most potent pro-fibrotic cytokines is transforming growth factor (TGFβ). TGFβ is involved in the activation of fibroblasts into myofibroblasts, resulting in the hallmark of fibrosis: the pathological accumulation of collagen. Interleukin-1β (IL1β) can influence the severity of fibrosis, however much less is known about the direct effects on fibroblasts. Using lung and dermal fibroblasts, we have investigated the effects of IL1β, TGFβ1, and IL1β in combination with TGFβ1 on myofibroblast formation, collagen synthesis and collagen modification (including prolyl hydroxylase, lysyl hydroxylase and lysyl oxidase), and matrix metalloproteinases (MMPs). We found that IL1β alone has no obvious pro-fibrotic effect on fibroblasts. However, IL1β is able to inhibit the TGFβ1-induced myofibroblast formation as well as collagen synthesis. Glioma-associated oncogene homolog 1 (GLI1), the Hedgehog transcription factor that is involved in the transformation of fibroblasts into myofibroblasts is upregulated by TGFβ1. The addition of IL1β reduced the expression of GLI1 and thereby also indirectly inhibits myofibroblast formation. Other potentially anti-fibrotic effects of IL1β that were observed are the increased levels of MMP1, −2, −9 and −14 produced by fibroblasts exposed to TGFβ1/IL1β in comparison with fibroblasts exposed to TGFβ1 alone. In addition, IL1β decreased the TGFβ1-induced upregulation of lysyl oxidase, an enzyme involved in collagen cross-linking. Furthermore, we found that lung and dermal fibroblasts do not always behave identically towards IL1β. Suppression of COL1A1 by IL1β in the presence of TGFβ1 is more pronounced in lung fibroblasts compared to dermal fibroblasts, whereas a higher upregulation of MMP1 is seen in dermal fibroblasts. The role of IL1β in fibrosis should be reconsidered, and the differences in phenotypical properties of fibroblasts derived from different organs should be taken into account in future anti-fibrotic treatment regimes. PMID:24622053
Parte, Seema; Bhartiya, Deepa; Manjramkar, Dhananjay D; Chauhan, Anahita; Joshi, Amita
2013-04-01
Cryopreserved ovarian cortical tissue acts as a source of primordial follicles (PF) which can either be auto-transplanted or cultured in vitro to obtain mature oocytes. This offers a good opportunity to attain biological parenthood to individuals with gonadal insufficiency including cancer survivors. However, role of various intra- and extra-ovarian factors during PF growth initiation still remain poorly understood. Ovarian biology has assumed a different dimension due to emerging data on presence of pluripotent very small embryonic-like stem cells (VSELs) and ovarian germ stem cells (OGSCs) in ovary surface epithelium (OSE) and the concept of postnatal oogenesis. The present study was undertaken to decipher effect of follicle stimulating hormone (FSH) and basic fibroblast growth factor (bFGF) on the growth initiation of PF during organ culture with a focus on ovarian stem cells. Serum-free cultures of marmoset (n=3) and human (young and peri-menopausal) ovarian cortical tissue pieces were established. Cortical tissue pieces stimulated with FSH (0.5 IU/ml) or bFGF (100 ng/ml) were collected on Day 3 for histological and molecular studies. Gene transcripts specific for pluripotency (Oct-4A, Nanog), early germ cells (Oct-4, c-Kit, Vasa) and to reflect PF growth initiation (oocyte-specific Gdf-9 and Lhx8, and granulosa cells specific Amh) were studied by q-RTPCR. A prominent proliferation of OSE (which harbors stem cells) and transition of PF to primary follicles was observed after FSH and bFGF treatment. Ovarian stem cells were found to be released on the culture inserts and retained the potential to spontaneously differentiate into oocyte-like structures in extended cultures. q-RTPCR analysis revealed an increased expression of gene transcripts specific for VSELs, OGSCs and early germ cells suggestive of follicular transition. The present study shows that both FSH and bFGF stimulate stem cells present in OSE and also lead to PF growth initiation. Thus besides being a source of PF, cryopreserved ovarian cortical tissue could also be a source of stem cells which retain the ability to spontaneously differentiate into oocyte-like structures in vitro. Results provide a paradigm shift in the basic understanding of FSH action and also offer a new perspective to the field of oncofertility research.
Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors
Cheng, Hui; Ang, Heather Yin-Kuan; A. EL Farran, Chadi; Li, Pin; Fang, Hai Tong; Liu, Tong Ming; Kong, Say Li; Chin, Michael Lingzi; Ling, Wei Yin; Lim, Edwin Kok Hao; Li, Hu; Huber, Tara; Loh, Kyle M.; Loh, Yuin-Han; Lim, Bing
2016-01-01
Recent efforts have attempted to convert non-blood cells into hematopoietic stem cells (HSCs) with the goal of generating blood lineages de novo. Here we show that hematopoietic transcription factors Scl, Lmo2, Runx1 and Bmi1 can convert a developmentally distant lineage (fibroblasts) into ‘induced hematopoietic progenitors' (iHPs). Functionally, iHPs generate acetylcholinesterase+ megakaryocytes and phagocytic myeloid cells in vitro and can also engraft immunodeficient mice, generating myeloerythoid and B-lymphoid cells for up to 4 months in vivo. Molecularly, iHPs transcriptionally resemble native Kit+ hematopoietic progenitors. Mechanistically, reprogramming factor Lmo2 implements a hematopoietic programme in fibroblasts by rapidly binding to and upregulating the Hhex and Gfi1 genes within days. Moreover the reprogramming transcription factors also require extracellular BMP and MEK signalling to cooperatively effectuate reprogramming. Thus, the transcription factors that orchestrate embryonic hematopoiesis can artificially reconstitute this programme in developmentally distant fibroblasts, converting them into engraftable blood progenitors. PMID:27869129
Heart repair by reprogramming non-myocytes with cardiac transcription factors
Song, Kunhua; Nam, Young-Jae; Luo, Xiang; Qi, Xiaoxia; Tan, Wei; Huang, Guo N.; Acharya, Asha; Smith, Christopher L.; Tallquist, Michelle D.; Neilson, Eric G.; Hill, Joseph A.; Bassel-Duby, Rhonda; Olson, Eric N.
2012-01-01
The adult mammalian heart possesses little regenerative potential following injury. Fibrosis due to activation of cardiac fibroblasts impedes cardiac regeneration and contributes to loss of contractile function, pathological remodeling and susceptibility to arrhythmias. Cardiac fibroblasts account for a majority of cells in the heart and represent a potential cellular source for restoration of cardiac function following injury through phenotypic reprogramming to a myocardial cell fate. Here we show that four transcription factors, GATA4, Hand2, MEF2C and Tbx5 can cooperatively reprogram adult mouse tail-tip and cardiac fibroblasts into beating cardiac-like myocytes in vitro. Forced expression of these factors in dividing non-cardiomyocytes in mice reprograms these cells into functional cardiac-like myocytes, improves cardiac function and reduces adverse ventricular remodeling following myocardial infarction. Our results suggest a strategy for cardiac repair through reprogramming fibroblasts resident in the heart with cardiogenic transcription factors or other molecules. PMID:22660318
MicroRNA-146a governs fibroblast activation and joint pathology in arthritis.
Saferding, Victoria; Puchner, Antonia; Goncalves-Alves, Eliana; Hofmann, Melanie; Bonelli, Michael; Brunner, Julia S; Sahin, Emine; Niederreiter, Birgit; Hayer, Silvia; Kiener, Hans P; Einwallner, Elisa; Nehmar, Ramzi; Carapito, Raphael; Georgel, Philippe; Koenders, Marije I; Boldin, Mark; Schabbauer, Gernot; Kurowska-Stolarska, Mariola; Steiner, Günter; Smolen, Josef S; Redlich, Kurt; Blüml, Stephan
2017-08-01
Synovial fibroblasts are key cells orchestrating the inflammatory response in arthritis. Here we demonstrate that loss of miR-146a, a key epigenetic regulator of the innate immune response, leads to increased joint destruction in a TNF-driven model of arthritis by specifically regulating the behavior of synovial fibroblasts. Absence of miR-146a in synovial fibroblasts display a highly deregulated gene expression pattern and enhanced proliferation in vitro and in vivo. Deficiency of miR-146a induces deregulation of tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) in synovial fibroblasts, leading to increased proliferation. In addition, loss of miR-146a shifts the metabolic state of fibroblasts towards glycolysis and augments the ability of synovial fibroblasts to support the generation of osteoclasts by controlling the balance of osteoclastogenic regulatory factors receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG). Bone marrow transplantation experiments confirmed the importance of miR-146a in the radioresistant mesenchymal compartment for the control of arthritis severity, in particular for inflammatory joint destruction. This study therefore identifies microRNA-146a as an important local epigenetic regulator of the inflammatory response in arthritis. It is a central element of an anti-inflammatory feedback loop in resident synovial fibroblasts, who are orchestrating the inflammatory response in chronic arthritis. MiR-146a restricts their activation, thereby preventing excessive tissue damage during arthritis. Copyright © 2017 Elsevier Ltd. All rights reserved.
FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium
Vega-Hernández, Mónica; Kovacs, Attila; De Langhe, Stijn; Ornitz, David M.
2011-01-01
The epicardium serves as a source of growth factors that regulate myocardial proliferation and as a source of epicardial-derived cells (EPDC), which give rise to interstitial cardiac fibroblasts and perivascular cells. These progenitors populate the compact myocardium to become part of the mature coronary vasculature and fibrous skeleton of the heart. Little is known about the mechanisms that regulate EPDC migration into the myocardium or the functions carried out by these cells once they enter the myocardium. However, it has been proposed that cardiac fibroblasts are important for growth of the heart during late gestation and are a source of homeostatic factors in the adult. Here, we identify a myocardial to epicardial fibroblast growth factor (FGF) signal, mediated by FGF10 and FGFR2b, that is essential for movement of cardiac fibroblasts into the compact myocardium. Inactivation of this signaling pathway results in fewer epicardial derived cells within the compact myocardium, decreased myocardial proliferation and a resulting smaller thin-walled heart. PMID:21750042
Induction of human cardiomyocyte-like cells from fibroblasts by defined factors.
Wada, Rie; Muraoka, Naoto; Inagawa, Kohei; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Kaneda, Ruri; Suzuki, Tomoyuki; Kamiya, Kaichiro; Tohyama, Shugo; Yuasa, Shinsuke; Kokaji, Kiyokazu; Aeba, Ryo; Yozu, Ryohei; Yamagishi, Hiroyuki; Kitamura, Toshio; Fukuda, Keiichi; Ieda, Masaki
2013-07-30
Heart disease remains a leading cause of death worldwide. Owing to the limited regenerative capacity of heart tissue, cardiac regenerative therapy has emerged as an attractive approach. Direct reprogramming of human cardiac fibroblasts (HCFs) into cardiomyocytes may hold great potential for this purpose. We reported previously that induced cardiomyocyte-like cells (iCMs) can be directly generated from mouse cardiac fibroblasts in vitro and vivo by transduction of three transcription factors: Gata4, Mef2c, and Tbx5, collectively termed GMT. In the present study, we sought to determine whether human fibroblasts also could be converted to iCMs by defined factors. Our initial finding that GMT was not sufficient for cardiac induction in HCFs prompted us to screen for additional factors to promote cardiac reprogramming by analyzing multiple cardiac-specific gene induction with quantitative RT-PCR. The addition of Mesp1 and Myocd to GMT up-regulated a broader spectrum of cardiac genes in HCFs more efficiently compared with GMT alone. The HCFs and human dermal fibroblasts transduced with GMT, Mesp1, and Myocd (GMTMM) changed the cell morphology from a spindle shape to a rod-like or polygonal shape, expressed multiple cardiac-specific proteins, increased a broad range of cardiac genes and concomitantly suppressed fibroblast genes, and exhibited spontaneous Ca(2+) oscillations. Moreover, the cells matured to exhibit action potentials and contract synchronously in coculture with murine cardiomyocytes. A 5-ethynyl-2'-deoxyuridine assay revealed that the iCMs thus generated do not pass through a mitotic cell state. These findings demonstrate that human fibroblasts can be directly converted to iCMs by defined factors, which may facilitate future applications in regenerative medicine.
Daly, Aisling J; McIlreavey, Leanne; Irwin, Chris R
2008-07-01
Invasion and metastasis of oral squamous cell carcinoma (OSCC) is dependent on signals received from stromal fibroblasts present in the surrounding connective tissue. The aim of this study was to investigate the regulation of expression of two important signaling molecules--HGF and SDF-1--by both stromal fibroblasts and their 'activated' form, myofibroblasts, and to determine the role of these two factors in stimulating OSCC cell invasion in vitro. Fibroblasts and myofibroblasts produced similar levels of HGF and SDF-1. IL-1alpha and OSCC cell conditioned medium both stimulated HGF and SDF-1 expression, while TGF-beta(1) inhibited production of each factor. Myofibroblast-derived conditioned medium stimulated OSCC cell invasion through matrigel. Blocking antibodies to both HGF and SDF-1 reduced the level of invasion. In fibroblast-free organotypic raft cultures, addition of HGF and SDF-1 stimulated OSCC cell invasion into the underlying collagen gel, although the pattern of invasion differed from that induced by fibroblasts. Fibroblast-derived HGF and SDF-1 appear to play central roles in the reciprocal interactions between OSCC cells and underlying stromal fibroblasts leading to the local invasion of oral cancer.
Gao, Dan; Zhao, Zhan-Zheng; Liang, Xian-Hui; Li, Yan; Cao, Ying; Liu, Zhang-Suo
2011-11-01
The aim of this study is to investigate the expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and endostatin (ES) in human peritoneum and investigate the relationship between them and peritoneum neoangiogensis in the patients with uraemia and peritoneal dialysis (PD). Peritoneal biopsies were obtained from normal subjects (n = 8), uraemic predialysis patients (n = 12) and PD patients (n = 10). The mRNA expression of VEGF, bFGF and ES in peritoneal tissues were measured through real-time polymerase chain reaction. The protein expression of VEGF, bFGF and ES in peritoneal tissues were determined through western blot. Microvessel density (MVD) of peritoneal tissue was assessed using immunohistochemistry with CD34 monoclonal antibody. The mRNA and protein of VEGF, bFGF and ES were expressed in all peritoneal samples. Compared with the normal control group, the mRNA and protein expression of VEGF and bFGF in peritoneal tissues were all significantly upregulated in the uraemic predialysis and PD group (all P < 0.05). Compared with the normal control group, the protein expression of ES were significantly upregulated in the uraemic predialysis and PD group (all (P < 0.05), but the mRNA expression of ES did not have obvious differences in the uraemic predialysis and PD group as compared to the normal control group (P > 0.05). MVD of peritoneal tissue were increased in the uraemic predialysis and PD group compared with the normal group (all P < 0.05). A significant positive correlation was found between VEGF mRNA expression and MVD, bFGF mRNA expression and MVD. The mRNA expression of VEGF and bFGF, the protein expression of VEGF, bFGF, and ES and microvessel density (MVD) are increased both in the uraemic predialysis and PD patients. These results show that uraemia circumstances and non-physiological compatibility of peritoneal dialysis solution might increase VEGF, bFGF and ES expression and MVD, which might participate in the increment of the peritoneum neoangiogensis and ultrafiltration failure in PD patients. © 2011 The Authors. Nephrology © 2011 Asian Pacific Society of Nephrology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryckaert, M.C.; Tobelem, G.; Lindroth, M.
1988-12-01
Human bone marrow fibroblasts were cultivated and characterized by immunofluorescent staining and electron microscopy. Their interactions with PDGF and TGF{beta} were studied. While a positive intracellular antifibronectin staining was observed, the cultured cells were not labeled with specific antibodies toward factor VIII von Willebrand factor (F VIII/vWF), desmin, and macrophage antigen. The binding of pure human PDGF to the cultured bone marrow fibroblasts was investigated. Addition of an excess of unlabeled PDGF decreased the binding to 75 and 80%, which means that the nonspecific binding represented 20-25% of total binding, whereas epidermal growth factor (EGF) had no effect. Two classesmore » of sites were detected by Scatchard analysis. The stimulation of DNA synthesis of PDGF was quantified by ({sup 3}H)thymidine incorporation. The results suggested that PDGF and TGF{beta} could modulate the growth of bone marrow fibroblasts.« less
Hou, Jingang; Kim, Sunchang
2018-05-05
Cellular senescence suppresses cancer by inducing irreversible cell growth arrest. Nevertheless, senescent cells is proposed as causal link with aging and aging-related pathologies. The physiological beneficial functions of senescent cells are still of paucity. Here we show that senescent human dermal fibroblast accelerates keratinocytes scratch wound healing and stimulates differentiation of fibroblast. Using oxidative stress (100 μM H 2 O 2 exposure for 1 h) induction, we successfully triggered fibroblast senescence and developed senescence associated secretory phenotype (SASP). The induction of SASP was regulated by p38MAPK/MSK2/NF-κB pathway. Interestingly, inhibition of p38MAPK activation only partially suppressed SASP. However, SASP was significantly inhibited by SB747651A, a specific MSK inhibitor. Additionally, we demonstrate that SASP stimulates migration of keratinocytes and myofibroblast transition of fibroblast, through fold-increased secretion of growth factors, platelet-derived growth factor AA (PDGF-AA) and AB (PDGF-AB), transforming growth factor beta 1 (TGF-β1) and beta 2 (TGF-β2), vascular endothelial growth factor A (VEGF-A) and D (VEGF-D), vascular endothelial growth factor receptor 2 (VEGFR2) and 3 (VEGFR3). Importantly, we also confirmed ginsenoside Rb1 promoted SASP-mediated healing process via p38MAPK/MSK2/NF-κB pathway. The results pointed to senescent fibroblast as a potential mechanism of wound healing control in human skin. Further, it provided a candidate targeted for wound therapy. Copyright © 2018 Elsevier Inc. All rights reserved.
Bektik, Emre; Dennis, Adrienne; Prasanna, Prateek; Madabhushi, Anant
2017-01-01
The direct reprogramming of cardiac fibroblasts into induced cardiomyocyte (CM)-like cells (iCMs) holds great promise in restoring heart function. We previously found that human fibroblasts could be reprogrammed toward CM-like cells by 7 reprogramming factors; however, iCM reprogramming in human fibroblasts is both more difficult and more time-intensive than that in mouse cells. In this study, we investigated if additional reprogramming factors could quantitatively and/or qualitatively improve 7-factor-mediated human iCM reprogramming by single-cell quantitative PCR. We first validated 46 pairs of TaqMan® primers/probes that had sufficient efficiency and sensitivity to detect the significant difference of gene expression between individual H9 human embryonic stem cell (ESC)-differentiated CMs (H9CMs) and human fibroblasts. The expression profile of these 46 genes revealed an improved reprogramming in 12-week iCMs compared to 4-week iCMs reprogrammed by 7 factors, indicating a prolonged stochastic phase during human iCM reprogramming. Although none of additional one reprogramming factor yielded a greater number of iCMs, our single-cell qPCR revealed that additional HAND2 or microRNA-1 could facilitate the silencing of fibroblast genes and yield a better degree of reprogramming in more reprogrammed iCMs. Noticeably, the more HAND2 expressed, the higher-level were cardiac genes activated in 7Fs+HAND2-reprogrammed iCMs. In conclusion, HAND2 and microRNA-1 could help 7 factors to facilitate the early progress of iCM-reprogramming from human fibroblasts. Our study provides valuable information to further optimize a method of direct iCM-reprogramming in human cells. PMID:28796841
Bektik, Emre; Dennis, Adrienne; Prasanna, Prateek; Madabhushi, Anant; Fu, Ji-Dong
2017-01-01
The direct reprogramming of cardiac fibroblasts into induced cardiomyocyte (CM)-like cells (iCMs) holds great promise in restoring heart function. We previously found that human fibroblasts could be reprogrammed toward CM-like cells by 7 reprogramming factors; however, iCM reprogramming in human fibroblasts is both more difficult and more time-intensive than that in mouse cells. In this study, we investigated if additional reprogramming factors could quantitatively and/or qualitatively improve 7-factor-mediated human iCM reprogramming by single-cell quantitative PCR. We first validated 46 pairs of TaqMan® primers/probes that had sufficient efficiency and sensitivity to detect the significant difference of gene expression between individual H9 human embryonic stem cell (ESC)-differentiated CMs (H9CMs) and human fibroblasts. The expression profile of these 46 genes revealed an improved reprogramming in 12-week iCMs compared to 4-week iCMs reprogrammed by 7 factors, indicating a prolonged stochastic phase during human iCM reprogramming. Although none of additional one reprogramming factor yielded a greater number of iCMs, our single-cell qPCR revealed that additional HAND2 or microRNA-1 could facilitate the silencing of fibroblast genes and yield a better degree of reprogramming in more reprogrammed iCMs. Noticeably, the more HAND2 expressed, the higher-level were cardiac genes activated in 7Fs+HAND2-reprogrammed iCMs. In conclusion, HAND2 and microRNA-1 could help 7 factors to facilitate the early progress of iCM-reprogramming from human fibroblasts. Our study provides valuable information to further optimize a method of direct iCM-reprogramming in human cells.
Griffin, M; Bhandari, R; Hamilton, G; Chan, Y C; Powell, J T
1993-06-01
During alveolar development and alveolar repair close contacts are established between fibroblasts and lung epithelial cells through gaps in the basement membrane. Using co-culture systems we have investigated whether these close contacts influence synthesis and secretion of the principal surfactant apoprotein (SP-A) by cultured rat lung alveolar type II cells and the synthesis and secretion of type I collagen by fibroblasts. The alveolar type II cells remained cuboidal and grew in colonies on fibroblast feeder layers and on Matrigel-coated cell culture inserts but were progressively more flattened on fixed fibroblast monolayers and plastic. Alveolar type II cells cultured on plastic released almost all their SP-A into the medium by 4 days. Alveolar type II cells cultured on viable fibroblasts or Matrigel-coated inserts above fibroblasts accumulated SP-A in the medium at a constant rate for the first 4 days, and probably recycle SP-A by endocytosis. The amount of mRNA for SP-A was very low after 4 days of culture of alveolar type II cells on plastic, Matrigel-coated inserts or fixed fibroblast monolayers: relatively, the amount of mRNA for SP-A was increased 4-fold after culture of alveolar type II cells on viable fibroblasts. Co-culture of alveolar type II cells with confluent human dermal fibroblasts stimulated by 2- to 3-fold the secretion of collagen type I into the culture medium, even after the fibroblasts' growth had been arrested with mitomycin C. Collagen secretion, by fibroblasts, also was stimulated 2-fold by conditioned medium from alveolar type II cells cultured on Matrigel. The amount of mRNA for type I collagen increased only modestly when fibroblasts were cultured in this conditioned medium. This stimulation of type I collagen secretion diminished as the conditioned medium was diluted out, but at high dilutions further stimulation occurred, indicating that a factor that inhibited collagen secretion also was being diluted out. The conditioned medium contained low levels of IGF-1 and the stimulation of type I collagen secretion was abolished when the conditioned medium was pre-incubated with antibodies to insulin-like growth factor 1 (IGF-1). There are important reciprocal interactions between alveolar type II cells and fibroblasts in co-culture. Direct contacts between alveolar type II cells and fibroblasts appear to have a trophic effect on cultured alveolar type II cells, increasing the levels of mRNA for SP-A. Rat lung alveolar type II cells appear to release a factor (possibly IGF-1) that stimulates type I collagen secretion by fibroblasts.
Yan, Long; Li, Yue; Shi, Zixiao; Lu, Xiaoyin; Ma, Jiao; Hu, Baoyang; Jiao, Jianwei; Wang, Hongmei
2017-08-04
The zinc finger E-box-binding transcription factor Zeb1 plays a pivotal role in the epithelial-mesenchymal transition. Numerous studies have focused on the molecular mechanisms by which Zeb1 contributes to this process. However, the functions of Zeb1 beyond the epithelial-mesenchymal transition remain largely elusive. Using a transdifferentiation system to convert mouse embryonic fibroblasts (MEFs) into functional neurons via the neuronal transcription factors achaete-scute family bHLH (basic helix-loop-helix) transcription factor1 ( Ascl1 ), POU class 3 homeobox 2 (POU3F2/ Brn2 ), and neurogenin 2 (Neurog2, Ngn2 ) (ABN), we found that Zeb1 was up-regulated during the early stages of transdifferentiation. Knocking down Zeb1 dramatically attenuated the transdifferentiation efficiency, whereas Zeb1 overexpression obviously increased the efficiency of transdifferentiation from MEFs to neurons. Interestingly, Zeb1 improved the transdifferentiation efficiency induced by even a single transcription factor ( e.g. Asc1 or Ngn2 ). Zeb1 also rapidly promoted the maturation of induced neuron cells to functional neurons and improved the formation of neuronal patterns and electrophysiological characteristics. Induced neuron cells could form functional synapse in vivo after transplantation. Genome-wide RNA arrays showed that Zeb1 overexpression up-regulated the expression of neuron-specific genes and down-regulated the expression of epithelial-specific genes during conversion. Taken together, our results reveal a new role for Zeb1 in the transdifferentiation of MEFs into neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient.
Kim, Ji Hyeon; Sim, Jiyeon; Kim, Hyun-Jung
2018-04-11
Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro , we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.
Koob, Thomas J; Rennert, Robert; Zabek, Nicole; Massee, Michelle; Lim, Jeremy J; Temenoff, Johnna S; Li, William W; Gurtner, Geoffrey
2013-01-01
Human amnion/chorion tissue derived from the placenta is rich in cytokines and growth factors known to promote wound healing; however, preservation of the biological activities of therapeutic allografts during processing remains a challenge. In this study, PURION® (MiMedx, Marietta, GA) processed dehydrated human amnion/chorion tissue allografts (dHACM, EpiFix®, MiMedx) were evaluated for the presence of growth factors, interleukins (ILs) and tissue inhibitors of metalloproteinases (TIMPs). Enzyme-linked immunosorbent assays (ELISA) were performed on samples of dHACM and showed quantifiable levels of the following growth factors: platelet-derived growth factor-AA (PDGF-AA), PDGF-BB, transforming growth factor α (TGFα), TGFβ1, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), placental growth factor (PLGF) and granulocyte colony-stimulating factor (GCSF). The ELISA assays also confirmed the presence of IL-4, 6, 8 and 10, and TIMP 1, 2 and 4. Moreover, the relative elution of growth factors into saline from the allograft ranged from 4% to 62%, indicating that there are bound and unbound fractions of these compounds within the allograft. dHACM retained biological activities that cause human dermal fibroblast proliferation and migration of human mesenchymal stem cells (MSCs) in vitro. An in vivo mouse model showed that dHACM when tested in a skin flap model caused mesenchymal progenitor cell recruitment to the site of implantation. The results from both the in vitro and in vivo experiments clearly established that dHACM contains one or more soluble factors capable of stimulating MSC migration and recruitment. In summary, PURION® processed dHACM retains its biological activities related to wound healing, including the potential to positively affect four distinct and pivotal physiological processes intimately involved in wound healing: cell proliferation, inflammation, metalloproteinase activity and recruitment of progenitor cells. This suggests a paracrine mechanism of action for dHACM when used for wound healing applications. PMID:23902526
Faulknor, Renea A; Olekson, Melissa A; Nativ, Nir I; Ghodbane, Mehdi; Gray, Andrea J; Berthiaume, François
2015-02-27
During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived soluble factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. SB431542, an inhibitor of transforming growth factor-β1 (TGF-β1)-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β1 at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β1 is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. Copyright © 2015. Published by Elsevier Inc.
Preclinical safety studies on autologous cultured human skin fibroblast transplantation.
Zeng, Wei; Zhang, Shuying; Liu, Dai; Chai, Mi; Wang, Jiaqi; Zhao, Yuming
2014-01-01
Recently, FDA approved the clinical use of autologous fibroblasts (LAVIV™) for the improvement of nasolabial fold wrinkles in adults. The use of autologous fibroblasts for the augmentation of dermal and subcutaneous defects represents a potentially exciting natural alternative to the use of other filler materials for its long-term corrective ability and absence of allergic adverse effects proved by clinical application. However, compared to the clinical evidence, preclinical studies are far from enough. In this study, human skin-derived fibroblasts were cultured and expanded for both in vitro and in vivo observations. In vitro, the subcultured fibroblasts were divided into two groups. One set of cells underwent cell cycle and karyotype analysis at passages 5 and 10. The second group of cells was cocultured in medium with different concentrations of human skin extract D for the measurement of collagen concentration and cell count. In vivo, the subcultured fibroblasts were injected into nude mice subcutaneously. Biopsies were taken for morphology observation and specific collagen staining at 1, 2, and 3 months after injection. The results in vitro showed no significant differences in cell cycle distribution between passages 5 and 10. Cell proliferation and secretion were inhibited as the concentration of extract D increased. In vivo, the fibroblasts were remarkably denser on the experimental side with no dysplastic cells. Mitotic cells were easily observed at the end of the first month but were rare at the end of the third month. Type III collagen was detected at the end of the first month, while collagen type I was positive at the end of the second month. The content of both collagens increased as time passed. The above results indicated that the use of the autologous fibroblasts was safe, providing a basic support for clinical use of fibroblasts.
Norambuena-Soto, Ignacio; Núñez-Soto, Constanza; Sanhueza-Olivares, Fernanda; Cancino-Arenas, Nicole; Mondaca-Ruff, David; Vivar, Raul; Díaz-Araya, Guillermo; Mellado, Rosemarie; Chiong, Mario
2017-05-23
Fibroblasts play several homeostatic roles, including electrical coupling, paracrine signaling and tissue repair after injury. Fibroblasts have low secretory activity. However, in response to injury, they differentiate to myofibroblasts. These cells have an increased extracellular matrix synthesis and secretion, including collagen fibers, providing stiffness to the tissue. In pathological conditions myofibroblasts became resistant to apoptosis, remaining in the tissue, causing excessive extracellular matrix secretion and deposition, which contributes to the progressive tissue remodeling. Therefore, increased myofibroblast content within damaged tissue is a characteristic hallmark of heart, lung, kidney and liver fibrosis. Recently, it was described that cardiac fibroblast to myofibroblast differentiation is triggered by the transforming growth factor β1 (TGF-β1) through a Smad-independent activation of Forkhead box O (FoxO). FoxO proteins are a transcription factor family that includes FoxO1, FoxO3, FoxO4 and FoxO6. In several cells types, they play an important role in cell cycle arrest, oxidative stress resistance, cell survival, energy metabolism, and cell death. Here, we review the role of FoxO family members on the regulation of cardiac fibroblast proliferation and differentiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiao-qing; Liu, Xu, E-mail: xkliuxu@126.com; Wang, Quan-xing, E-mail: wqxejd@126.com
2015-01-01
The exact mechanisms underlying inhibitory effects of pioglitazone (Pio) on Angiotensin II (AngII)-induced atrial fibrosis are complex and remain largely unknown. In the present study, we examined the effect of Pio on AngII-induced mice atrial fibrosis in vivo and atrial fibroblasts proliferation in vitro. In vivo study showed that AngII infusion induced atrial fibrosis and increased expressions of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and tumor necrosis factor receptor associated factor 6 (TRAF6) in mice models. However, those effects could be attenuated by Pio (P<0.01). As for in vitro experiment, Pio suppressed AngII-induced atrial fibroblasts proliferation via nuclear factor-κB/transformingmore » growth factor-β1/TRIF/TRAF6 signaling pathway in primary cultured mice atrial fibroblasts (P<0.01). In conclusion, suppression of Pio on AngII-induced atrial fibrosis might be related to its inhibitory effects on above signaling pathway. - Highlights: • Angiotensin II increased atrial fibrosis and related gene expressions in mice. • Angiotensin II induced atrial fibroblasts proliferation by activating signaling pathway. • Pioglitazone reversed both aforementioned changes.« less
Anitua, E; Sanchez, M; De la Fuente, M; Zalduendo, M M; Orive, G
2012-09-01
Cell migration plays an essential role in development, wound healing, and tissue regeneration. Plasma rich in growth factors (PRGF-Endoret) technology offers a potential source of growth factors involved in tissue regeneration. Here, we evaluate the potential of PRGF-Endoret over tendon cells and synovial fibroblasts migration and study whether the combination of this autologous technology with hyaluronic acid (HA) improves the effect and potential of the biomaterials over the motility of both types of fibroblasts. Migration of primary tendon cells and synovial fibroblasts after culturing with either PRGF or PPGF (plasma poor in growth factors) at different doses was evaluated. Furthermore, the migratory capacity induced by the combination of PPGF and PRGF with HA was tested. PPGF stimulated migration of both types of cells but this effect was significantly higher when PRGF was used. Tendon cells showed an increase of 212% in migratory ability when HA was combined with PPGF and of 335% in the case of HA + PRGF treatment compared with HA alone. PRGF-Endoret stimulates migration of tendon cells and synovial fibroblasts and improves the biological properties of HA.
HSP27 regulates TGF-β mediated lung fibroblast differentiation through the Smad3 and ERK pathways.
Wang, Gang; Jiao, Hao; Zheng, Jun-Nian; Sun, Xia
2017-01-01
Idiopathic pulmonary fibrosis (IPF) is a chronic lethal interstitial lung disease with unknown etiology. Recent studies have indicated that heat-shock protein 27 (HSP27) contributes to the pathogenesis of IPF through the regulation of epithelial-mesenchymal transition (EMT). However, the expression and role of HSP27 in fibroblasts during pulmonary fibrogenesis has not been investigated to date, at least to the best of our knowledge. In this study, we examined the expression of HSP27 in fibrotic lung tissue and fibroblasts from bleomycin (BLM)-challenged mice and human lung fibroblasts treated with transforming growth factor-β (TGF-β). The results revealed that the expression of HSP27 was significantly increased in fibrotic lung tissue and fibroblasts from BLM-challenged mice. In vitro, TGF-β stimulated HSP27 expression in and the differentiation of human lung fibroblasts. The knockdown of Smad3 expression or nuclear factor-κB p65 subunit attenuated the TGF-β-induced increase in HSP27 expression and the differentiation of human lung fibroblasts. In addition, the knockdown of HSP27 expression attenuated the TGF-β-induced activation of ERK and Smad3, and inhibited the differentiation of human lung fibroblasts. On the whole, the findings of our study demonstrate that HSP27 expression is upregulated in lung fibroblasts during pulmonary fibrosis, and subsequently, HSP27 modulates lung fibroblast differentiation through the Smad3 and ERK pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Rong-hui, E-mail: fan_ronghuixa@163.com; Zhu, Xiu-mei; Sun, Yao-wen
Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expressionmore » of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sun-Ah, E-mail: j.sarah.k@gmail.com; Lee, Eun Kyung, E-mail: leeek@catholic.ac.kr; Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701
Epithelial–mesenchymal transition (EMT) acts as a facilitator of metastatic dissemination in the invasive margin of malignant tumors where active tumor–stromal crosstalks take place. Co-cultures of cancer cells with cancer-associated fibroblasts (CAFs) are often used as in vitro models of EMT. We established a tumor–fibroblast proximity co-culture using HT-29 tumor spheroids (TSs) with CCD-18co fibroblasts. When co-cultured with TSs, CCD-18co appeared activated, and proliferative activity as well as cell migration increased. Expression of fibronectin increased whereas laminin and type I collagen decreased in TSs co-cultured with fibroblasts compared to TSs alone, closely resembling the margin of in vivo xenograft tissue. Activemore » TGFβ1 in culture media significantly increased in TS co-cultures but not in 2D co-cultures of cancer cells–fibroblasts, indicating that 3D context-associated factors from TSs may be crucial to crosstalks between cancer cells and fibroblasts. We also observed in TSs co-cultured with fibroblasts increased expression of α-SMA, EGFR and CTGF; reduced expression of membranous β-catenin and E-cadherin, together suggesting an EMT-like changes similar to a marginal region of xenograft tissue in vivo. Overall, our in vitro TS–fibroblast proximity co-culture mimics the EMT-state of the invasive margin of in vivo tumors in early metastasis. - Highlights: • An adjacent co-culture of tumor spheroids and fibroblasts is presented as EMT model. • Activation of fibroblasts and increased cell migration were shown in co-culture. • Expression of EMT-related factors in co-culture was similar to that in tumor tissue. • Crosstalk between spheroids and fibroblasts was demonstrated by secretome analysis.« less
Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis
NASA Technical Reports Server (NTRS)
Ingber, D.
1991-01-01
Capillary endothelial (CE) cells require two extracellular signals in order to switch from quiescence to growth and back to differentiation during angiogenesis: soluble angiogenic factors and insoluble extracellular matrix (ECM) molecules. Soluble endothelial mitogens, such as basic fibroblast growth factor (FGF), act over large distances to trigger capillary growth, whereas ECM molecules act locally to modulate cell responsiveness to these soluble cues. Recent studies reveal that ECM molecules regulate CE cell growth and differentiation by modulating cell shape and by activating intracellular chemical signaling pathways inside the cell. Recognition of the importance of ECM and cell shape during capillary morphogenesis has led to the identification of a series of new angiogenesis inhibitors. Elucidation of the molecular mechanism of capillary regulation may result in development of even more potent angiogenesis modulators in the future.
Plasticity of the Muscle Stem Cell Microenvironment
Dinulovic, Ivana; Furrer, Regula; Handschin, Christoph
2018-01-01
Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology – quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes. PMID:29204832
Jain, Neeraj; Kalailingam, Pazhanichamy; Tan, Kai Wei; Tan, Hui Bing; Sng, Ming Keat; Chan, Jeremy Soon Kiat; Tan, Nguan Soon; Thanabalu, Thirumaran
2016-01-01
Neural-Wiskott Aldrich Syndrome Protein (N-WASP) is expressed ubiquitously, regulates actin polymerization and is essential during mouse development. We have previously shown that N-WASP is critical for cell-ECM adhesion in fibroblasts. To characterize the role of N-WASP in fibroblast for skin development, we generated a conditional knockout mouse model in which fibroblast N-WASP was ablated using the Cre recombinase driven by Fibroblast Specific Protein promoter (Fsp-Cre). N-WASPFKO (N-WASPfl/fl; Fsp-cre) were born following Mendelian genetics, survived without any visible abnormalities for more than 1 year and were sexually reproductive, suggesting that expression of N-WASP in fibroblast is not critical for survival under laboratory conditions. Histological sections of N-WASPFKO mice skin (13 weeks old) showed thicker epidermis with higher percentage of cells staining for proliferation marker (PCNA), suggesting that N-WASP deficient fibroblasts promote keratinocyte proliferation. N-WASPFKO mice skin had elevated collagen content, elevated expression of FGF7 (keratinocyte growth factor) and TGFβ signaling proteins. Wound healing was faster in N-WASPFKO mice compared to control mice and N-WASP deficient fibroblasts were found to have enhanced collagen gel contraction properties. These results suggest that N-WASP deficiency in fibroblasts improves wound healing by growth factor-mediated enhancement of keratinocyte proliferation and increased wound contraction in mice. PMID:27909303
Salgado, R; Benoy, I; Vermeulen, P; van Dam, P; Van Marck, E; Dirix, L
2004-01-01
In order to investigate whether the high bFGF serum levels encountered in cancer patients are derived from the tumour, we analysed serum bFGF levels in 18 untreated randomly selected patients with operable colorectal, cervical and ovarian cancer in the blood draining the tumour, i.e., in mesenteric and uterine veins, and compared these with arterial samples. No significantly elevated bFGF levels were found in the veins draining the tumours compared with arterial samples in our patient population. This suggests that, in contrast to what is generally presumed, serum bFGF levels might also be derived from other sources besides the tumour, e.g., platelets.
Lerman, Oren Z; Galiano, Robert D; Armour, Mary; Levine, Jamie P; Gurtner, Geoffrey C
2003-01-01
Although it is known that systemic diseases such as diabetes result in impaired wound healing, the mechanism for this impairment is not understood. Because fibroblasts are essential for wound repair, we compared the in vitro behavior of fibroblasts cultured from diabetic, leptin receptor-deficient (db/db) mice with wild-type fibroblasts from mice of the same genetic background in processes important during tissue repair. Adult diabetic mouse fibroblast migration exhibited a 75% reduction in migration compared to normal fibroblasts (P < 0.001) and was not significantly stimulated by hypoxia (1% O(2)), whereas wild-type fibroblast migration was up-regulated nearly twofold in hypoxic conditions (P < 0.05). Diabetic fibroblasts produced twice the amount of pro-matrix metalloproteinase-9 as normal fibroblasts, as measured by both gelatin zymography and enzyme-linked immunosorbent assay (P < 0.05). Adult diabetic fibroblasts exhibited a sevenfold impairment in vascular endothelial growth factor (VEGF) production (4.5 +/- 1.3 pg/ml versus 34.8 +/- 3.3 pg/ml, P < 0.001) compared to wild-type fibroblasts. Moreover, wild-type fibroblast production of VEGF increased threefold in response to hypoxia, whereas diabetic fibroblast production of VEGF was not up-regulated in hypoxic conditions (P < 0.001). To address the question whether these differences resulted from chronic hyperglycemia or absence of the leptin receptor, fibroblasts were harvested from newborn db/db mice before the onset of diabetes (4 to 5 weeks old). These fibroblasts showed no impairments in VEGF production under basal or hypoxic conditions, confirming that the results from db/db fibroblasts in mature mice resulted from the diabetic state and were not because of alterations in the leptin-leptin receptor axis. Markers of cellular viability including proliferation and senescence were not significantly different between diabetic and wild-type fibroblasts. We conclude that, in vitro, diabetic fibroblasts show selective impairments in discrete cellular processes critical for tissue repair including cellular migration, VEGF production, and the response to hypoxia. The VEGF abnormalities developed concurrently with the onset of hyperglycemia and were not seen in normoglycemic, leptin receptor-deficient db/db mice. These observations support a role for fibroblast dysfunction in the impaired wound healing observed in human diabetics, and also suggest a mechanism for the poor clinical outcomes that occur after ischemic injury in diabetic patients.
Yoshikawa, Mamoru; Kojima, Hiromi; Wada, Kota; Tsukidate, Toshiharu; Okada, Naoko; Saito, Hirohisa; Moriyama, Hiroshi
2006-07-01
To investigate the role of fibroblasts in the pathogenesis of cholesteatoma. Tissue specimens were obtained from our patients. Middle ear cholesteatoma-derived fibroblasts (MECFs) and postauricular skin-derived fibroblasts (SFs) as controls were then cultured for a few weeks. These fibroblasts were stimulated with interleukin (IL) 1alpha and/or IL-1beta before gene expression assays. We used the human genome U133A probe array (GeneChip) and real-time polymerase chain reaction to examine and compare the gene expression profiles of the MECFs and SFs. Six patients who had undergone tympanoplasty. The IL-1alpha-regulated genes were classified into 4 distinct clusters on the basis of profiles differentially regulated by SF and MECF using a hierarchical clustering analysis. The messenger RNA expressions of LARC (liver and activation-regulated chemokine), GMCSF (granulocyte-macrophage colony-stimulating factor), epiregulin, ICAM1 (intercellular adhesion molecule 1), and TGFA (transforming growth factor alpha) were more strongly up-regulated by IL-1alpha and/or IL-1beta in MECF than in SF, suggesting that these fibroblasts derived from different tissues retained their typical gene expression profiles. Fibroblasts may play a role in hyperkeratosis of middle ear cholesteatoma by releasing molecules involved in inflammation and epidermal growth. These fibroblasts may retain tissue-specific characteristics presumably controlled by epigenetic mechanisms.
Blue light-irradiated human keloid fibroblasts: an in vitro study
NASA Astrophysics Data System (ADS)
Magni, Giada; Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Coppi, Elisabetta; Cherchi, Federica; Fusco, Irene; Pugliese, Anna Maria; Pedata, Felicita; Fraccalvieri, Marco; Gasperini, Stefano; Pavone, Francesco S.; Tripodi, Cristina; Alfieri, Domenico; Targetti, Lorenzo
2018-02-01
Blue LED light irradiation is currently under investigation because of its effect in wound healing improvement. In this context, several mechanisms of action are likely to occur at the same time, consistently with the presence of different light absorbers within the skin. In our previous studies we observed the wound healing in superficial abrasions in an in vivo murine model. The results evidenced that both inflammatory infiltrate and myofibroblasts activity increase after irradiation. In this study we focused on evaluating the consequences of light absorption in fibroblasts from human cells culture: they play a key role in wound healing, both in physiological conditions and in pathological ones, such as keloid scarring. In particular we used keloids fibroblasts as a new target in order to investigate a possible metabolic or cellular mechanism correlation. Human keloid tissues were excised during standard surgery and immediately underwent primary cell culture extraction. Fibroblasts were allowed to grow in the appropriate conditions and then exposed to blue light. A metabolic colorimetric test (WST-8) was then performed. The tests evidenced an effect in mitochondrial activity, which could be modulated by the duration of the treatment. Electrophysiology pointed out a different behavior of irradiated fibroblasts. In conclusion, the Blue LED light affects the metabolic activity of fibroblasts and thus the cellular proliferation rate. No specific effect was found on keloid fibroblasts, thus indicating a very basic intracellular component, such as cytochromes, being the target of the treatment.
Bavik, Claes; Coleman, Ilsa; Dean, James P; Knudsen, Beatrice; Plymate, Steven; Nelson, Peter S
2006-01-15
The greatest risk factor for developing carcinoma of the prostate is advanced age. Potential molecular and physiologic contributors to the frequency of cancer occurrence in older individuals include the accumulation of somatic mutations through defects in genome maintenance, epigenetic gene silencing, oxidative stress, loss of immune surveillance, telomere dysfunction, chronic inflammation, and alterations in tissue microenvironment. In this context, the process of prostate carcinogenesis can be influenced through interactions between intrinsic cellular alterations and the extrinsic microenvironment and macroenvironment, both of which change substantially as a consequence of aging. In this study, we sought to characterize the molecular alterations that occur during the process of prostate fibroblast senescence to identify factors in the aged tissue microenvironment capable of promoting the proliferation and potentially the neoplastic progression of prostate epithelium. We evaluated three mechanisms leading to cell senescence: oxidative stress, DNA damage, and replicative exhaustion. We identified a consistent program of gene expression that includes a subset of paracrine factors capable of influencing adjacent prostate epithelial growth. Both direct coculture and conditioned medium from senescent prostate fibroblasts stimulated epithelial cell proliferation, 3-fold and 2-fold, respectively. The paracrine-acting proteins fibroblast growth factor 7, hepatocyte growth factor, and amphiregulin (AREG) were elevated in the extracellular environment of senescent prostate fibroblasts. Exogenous AREG alone stimulated prostate epithelial cell growth, and neutralizing antibodies and small interfering RNA targeting AREG attenuated, but did not completely abrogate the growth-promoting effects of senescent fibroblast conditioned medium. These results support the concept that aging-related changes in the prostate microenvironment may contribute to the progression of prostate neoplasia.
Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD
2012-07-24
The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.
NASA Astrophysics Data System (ADS)
Xu, Xiaohui; Fan, Tingjun; Jiang, Guojian; Yang, Xiuxia
2015-12-01
A novel continuous ovary cell line from barfin flounder ( Verasper moseri) (BFO cell line) was established with its primitive application in transgenic expression demonstrated in this study. Primarily cultured cells grew well at 22°C in Dulbecco's modified Eagle medium/F12 medium (DMEM/F12, 1:1; pH 7.2) supplemented with 20% fetal bovine serum (FBS), carboxymethyl chitooligosaccharide, basic fibroblast growth factor (bFGF) and insulin-like growth factor-I (IGF-I). The primary BFO cells in fibroblastic morphology proliferated into a confluent monolayer about 2 weeks later, and were able to be subcultured. Impacts of medium and temperature on the growth of the cells were examined. The optimum growth was found in DMEM/F12 with 20% FBS and at 22°C. The BFO cells can be continuously subcultured to Passage 120 steadily with a population doubling time of 32.7 h at Passage 60. Chromosome analysis revealed that 72% of BFO cells at Passage 60 maintained the normal diploid chromosome number (46) with a normal karyotype of 2st+44t. The results of gene transformation indicated that green fluorescence protein (GFP) positively expressed in these cells after being transformed with pcDNA3.1-GFP. Therefore, a continuous and transformable BFO cell line was successfully established, which may serve as a useful tool for cytotechnological manipulation and transgenic modification of this fish.
Nagai, Hiromi; Nishiyama, Koichiro; Seino, Yutomo; Tabata, Yasuhiko; Okamoto, Makito
2016-06-01
Paralyzed tissue due to long-term denervation is resistant to many treatments because it induces irreversible histological changes and disorders of deglutition or phonation. We sought to determine the effect of autologous transplantation of fascia into the vocal fold (ATFV) with controlled release of basic fibroblast growth factor (bFGF) on long-term unilateral vocal fold paralysis (UVFP). Unilateral recurrent laryngeal nerve (RLN) section was performed on 20 rats. Five rats were implanted with autologous fascia only (fascia group), and 10 rats were implanted with autologous fascia and a gelatin hydrogel sheet with 1 μg (1 μg bFGF + fascia group) or 0.1 μg (0.1 μg bFGF + fascia group) of bFGF 4 months after RLN section. We evaluated the normalized glottal gap and laryngeal volume and histological changes 3 months after implantation. The normalized glottal gap was significantly reduced in the 3 fascia implantation groups. Normalized laryngeal volume, fat volume, and lateral thyroarytenoid muscle volume were significantly increased in the 2 fascia implantation with bFGF groups. The ATFV with controlled release of bFGF repaired the glottal gap and laryngeal volume after RLN section and may reduce the occurrence of aspiration and hoarseness. We speculate that this treatment improves laryngeal function in long-term RLN denervation. © The Author(s) 2016.
Becker-Catania, Sara G; Nelson, Julie K; Olivares, Shantel; Chen, Shu-Jen; DeVries, George H
2011-01-01
The ability of an AEF (axolemma-enriched fraction) to influence the proliferation, survival and differentiation of OPC (oligodendrocyte progenitor cells) was evaluated. Following addition of AEF to cultured OPC, the AEF associated with the outer surface of OPC so that subsequent metabolic events were likely mediated by direct AEF-OPC contact. Addition of AEF to the cultured OPC resulted in a dose- and time-dependent increase in proliferation that was partially dependent on Akt (protein kinase B) and MAPK (mitogen-activated protein kinase) activation. The major mitogen in an AEF-SE (soluble 2.0 M NaCl extract of the AEF) was identified as aFGF (acidic fibroblast growth factor) and accounted for 50% of the mitogenicity. The remaining 50% of the mitogenicity had properties consistent with bFGF (basic fibroblast growth factor) but was not unequivocally identified. Under conditions that limit the survival of OPC in culture, AEF treatment prolonged the survival of the OPC. Antigenic and morphological examination of the AEF-treated OPC indicated that the AEF treatment helped the OPC survive in a more immature state. The potential downstream metabolic pathways potentially activated in OPC by AEF and the consequences of these activated pathways are discussed. The results of these studies are consistent with the view that direct contact of axons with OPC stimulates their proliferation and survival while preventing their differentiation. PMID:21345173
Pessina, P; Castillo, V; Sartore, I; Borrego, J; Meikle, A
2016-09-01
Immunoreactive proteins in follicular cells, fibroblasts and endothelial cells were assessed in canine thyroid carcinomas and healthy thyroid glands. No differences were detected in thyrotropin receptor and thyroglobulin staining between cancer and normal tissues, but expression was higher in follicular cells than in fibroblasts. Fibroblast growth factor-2 staining was more intense in healthy follicular cells than in those of carcinomas. Follicular cells in carcinomas presented two- to three-fold greater staining intensity of thyroid transcription factor-1 and proliferating cell nuclear antigen, respectively, than healthy cells, and a similar trend was found for the latter antigen in fibroblasts. Vascular endothelial growth factor staining was more intense in the endothelial cells of tumours than in those of normal tissues. In conclusion, greater expression of factors related to proliferation and angiogenesis was demonstrated in several cell types within thyroid carcinomas compared to healthy tissues, which may represent mechanisms of tumour progression in this disease. © 2014 John Wiley & Sons Ltd.
Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek
2016-01-01
Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality.
Fibroblast growth factor receptor inhibitors.
Kumar, Suneel B V S; Narasu, Lakshmi; Gundla, Rambabu; Dayam, Raveendra; J A R P, Sarma
2013-01-01
Fibroblast growth factor receptors (FGFRs) play an important role in embryonic development, angiogenesis, wound healing, cell proliferation and differentiation. The fibroblast growth factor receptor (FGFR) isoforms have been under intense scrutiny for effective anticancer drug candidates. The fibroblast growth factor (FGF) and its receptor (FGFR) provide another pathway that seems critical to monitoring angiogenesis. Recent findings suggest that FGFR mediates signaling, regulates the PKM2 activity, and plays a crucial role in cancer metabolism. The current review also covers the recent findings on the role of FGFR1 in cancer metabolism. This paper reviews the progress, mechanism, and binding modes of recently known kinase inhibitors such as PD173074, SU series and other inhibitors still under clinical development. Some of the structural classes that will be highlighted in this review include Pyrido[2,3-d]pyrimidines, Indolin- 2-one, Pyrrolo[2,1-f][1,2,4]triazine, Pyrido[2,3-d]pyrimidin-7(8H)-one, and 1,6- Naphthyridin-2(1H)-ones.
Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek
2016-01-01
Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235
Heo, Jung Sun; Lee, Seung-Youp; Lee, Jeong-Chae
2010-11-01
Wnt/β-catenin signaling has been known to influence bone formation and homeostasis. In this study, we investigated the canonical Wnt signaling regulation of osteogenic differentiation from periodontal ligament (PDL) fibroblasts. Stimulating PDL fibroblasts with lithium chloride (LiCl), a canonical Wnt activator, significantly increased mineralized nodule and alkaline phosphatase (ALP) activity in a time- and dose-dependent manner. LiCl up-regulated protein expression of osteogenic transcription factors, including the runt-related gene 2, Msx2, and Osterix 2, in the PDL fibroblasts. Treatment of these cells with LiCl also increased the mRNA levels of ALP, FosB, and Fra1 in a dose-dependent manner. Blockage of canonical Wnt signaling by treating the cells with DKK1 inhibited Wnt1-stimulated mRNA expression of these osteogenic factors. Furthermore, pretreatment with DKK1 reduced the ALP activity and matrix mineralization stimulated by Wnt1. Collectively, these results suggest that canonical Wnt signaling leads to the differentiation of PDL fibroblasts into osteogenic lineage with the attendant stimulation of osteogenic transcription factors.
Choi, Wonseon; Wolber, Rainer; Gerwat, Wolfram; Mann, Tobias; Batzer, Jan; Smuda, Christoph; Liu, Hongfang; Kolbe, Ludger; Hearing, Vincent J.
2010-01-01
Interactions between melanocytes and neighboring cells in the skin are important in regulating skin color in humans. We recently demonstrated that the less pigmented and thicker skin on the palms and soles is regulated by underlying fibroblasts in those areas, specifically via a secreted factor (DKK1) that modulates Wnt signaling. In this study, we tested the hypothesis that dermal fibroblasts regulate the constitutive skin color of individuals ranging from very light to very dark. We used microarray analysis to compare gene expression patterns in fibroblasts derived from lighter skin types compared to darker skin types, with a focus on secreted proteins. We identified a number of genes that differ dramatically in expression and, among the expressed proteins, neuregulin-1, which is secreted by fibroblasts derived from dark skin, effectively increases the pigmentation of melanocytes in tissue culture and in an artificial skin model and regulates their growth, suggesting that it is one of the major factors determining human skin color. PMID:20736300
PAI1 mediates fibroblast-mast cell interactions in skin fibrosis.
Pincha, Neha; Hajam, Edries Yousaf; Badarinath, Krithika; Batta, Surya Prakash Rao; Masudi, Tafheem; Dey, Rakesh; Andreasen, Peter; Kawakami, Toshiaki; Samuel, Rekha; George, Renu; Danda, Debashish; Jacob, Paul Mazhuvanchary; Jamora, Colin
2018-05-01
Fibrosis is a prevalent pathological condition arising from the chronic activation of fibroblasts. This activation results from the extensive intercellular crosstalk mediated by both soluble factors and direct cell-cell connections. Prominent among these are the interactions of fibroblasts with immune cells, in which the fibroblast-mast cell connection, although acknowledged, is relatively unexplored. We have used a Tg mouse model of skin fibrosis, based on expression of the transcription factor Snail in the epidermis, to probe the mechanisms regulating mast cell activity and the contribution of these cells to this pathology. We have discovered that Snail-expressing keratinocytes secrete plasminogen activator inhibitor type 1 (PAI1), which functions as a chemotactic factor to increase mast cell infiltration into the skin. Moreover, we have determined that PAI1 upregulates intercellular adhesion molecule type 1 (ICAM1) expression on dermal fibroblasts, rendering them competent to bind to mast cells. This heterotypic cell-cell adhesion, also observed in the skin fibrotic disorder scleroderma, culminates in the reciprocal activation of both mast cells and fibroblasts, leading to the cascade of events that promote fibrogenesis. Thus, we have identified roles for PAI1 in the multifactorial program of fibrogenesis that expand its functional repertoire beyond its canonical role in plasmin-dependent processes.
2004-01-01
OLIGODENDROCYTE DEVELOPMENT AND REMYELINATION 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...Z39-18 ABSTRACT Title: THE INFLUENCE OF PLATELET-DERIVED GROWTH FACTOR AND FIBROBLAST GROWTH FACTOR 2 ON OLIGODENDROCYTE DEVELOPMENT AND...GROWTH FACTOR 2 ON OLIGODENDROCYTE DEVELOPMENT AND REMYELINATION by Joshua C. Murtie Thesis/dissertation submitted to the
Kanazawa, Yuichiro; Nomura, Jun; Yoshimoto, Shinya; Suzuki, Toshikazu; Kita, Kazuko; Suzuki, Nobuo; Ichinose, Masaharu
2009-01-01
Delayed healing of skin wounds can be caused by wound instability, whereas appropriate massage or exercise prevents sclerosis and scar contracture. However, the mechanism by which wound healing is related to mechanical stress has not been fully elucidated. The present study aimed to identify whether mechanical stretching of fibroblasts reduces their production of extracellular matrix. We transferred skin fibroblasts into collagen-coated elastic silicone chambers, cultured them on a stretching apparatus, and used RT-PCR to examine the effects of mechanical stretching on the expression levels of 17 genes related to extracellular matrix production and growth factor secretion. We found that connective tissue growth factor (CTGF) was downregulated after 24 hr of cell stretching. Specifically, the CTGF mRNA and protein levels were 50% and 48% of the control levels, respectively. These findings suggest that cyclic stretching of fibroblasts contributes to anti-fibrotic processes by reducing CTGF production.
Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L
2011-08-01
Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.
Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.
2011-01-01
Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938
Zhang, Eryun; Gao, Bo; Yang, Li; Wu, Xiaojun; Wang, Zhengtao
2016-02-01
Wound healing requires the essential participation of fibroblasts, which is impaired in diabetic foot ulcers (DFU). Notoginsenoside Ft1 (Ft1), a saponin from Panax notoginseng, can enhance platelet aggregation by activating signaling network mediated through P2Y12 and induce proliferation, migration, and tube formation in cultured human umbilical vein endothelial cells. However, whether it can accelerate fibroblast proliferation and benefit wound healing, especially DFU, has not been elucidated. In the present study on human dermal fibroblast HDF-a, Ft1 increased cell proliferation and collagen production via PI3K/Akt/mTOR signaling pathway. On the excisional wound splinting model established on db/db diabetic mouse, topical application of Ft1 significantly shortened the wound closure time by 5.1 days in contrast with phosphate-buffered saline (PBS) treatment (15.8 versus 20.9 days). Meanwhile, Ft1 increased the rate of re-epithelialization and the amount of granulation tissue at day 7 and day 14. The molecule also enhanced mRNA expressions of COL1A1, COL3A1, transforming growth factor (TGF)-β1 and TGF-β3 and fibronectin, the genes that contributed to collagen expression, fibroblast proliferation, and consequent scar formation. Moreover, Ft1 facilitated the neovascularization accompanied with elevated vascular endothelial growth factor, platelet-derived growth factor, and fibroblast growth factor at either mRNA or protein levels and alleviated the inflammation of infiltrated monocytes indicated by reduced tumor necrosis factor-α and interleukin-6 mRNA expressions in the diabetic wounds. Altogether, these results indicated that Ft1 might accelerate diabetic wound healing by orchestrating multiple processes, including promoting fibroblast proliferation, enhancing angiogenesis, and attenuating inflammatory response, which provided a great potential application of it in clinics for patients with DFU. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
ERIC Educational Resources Information Center
Graham, Bronwyn M.; Richardson, Rick
2016-01-01
These experiments examined the relationship between the neurotrophic factor fibroblast growth factor 2 (FGF2) and individual differences in the expression of conditioned fear. Experiments 1 and 2 demonstrated that rats naturally expressing low levels of contextual or cued fear have higher levels of hippocampal FGF2 relative to rats that express…
Fibroblasts Influence Survival and Therapeutic Response in a 3D Co-Culture Model
Majety, Meher; Pradel, Leon P.; Gies, Manuela; Ries, Carola H.
2015-01-01
In recent years, evidence has indicated that the tumor microenvironment (TME) plays a significant role in tumor progression. Fibroblasts represent an abundant cell population in the TME and produce several growth factors and cytokines. Fibroblasts generate a suitable niche for tumor cell survival and metastasis under the influence of interactions between fibroblasts and tumor cells. Investigating these interactions requires suitable experimental systems to understand the cross-talk involved. Most in vitro experimental systems use 2D cell culture and trans-well assays to study these interactions even though these paradigms poorly represent the tumor, in which direct cell-cell contacts in 3D spaces naturally occur. Investigating these interactions in vivo is of limited value due to problems regarding the challenges caused by the species-specificity of many molecules. Thus, it is essential to use in vitro models in which human fibroblasts are co-cultured with tumor cells to understand their interactions. Here, we developed a 3D co-culture model that enables direct cell-cell contacts between pancreatic, breast and or lung tumor cells and human fibroblasts/ or tumor-associated fibroblasts (TAFs). We found that co-culturing with fibroblasts/TAFs increases the proliferation in of several types of cancer cells. We also observed that co-culture induces differential expression of soluble factors in a cancer type-specific manner. Treatment with blocking antibodies against selected factors or their receptors resulted in the inhibition of cancer cell proliferation in the co-cultures. Using our co-culture model, we further revealed that TAFs can influence the response to therapeutic agents in vitro. We suggest that this model can be reliably used as a tool to investigate the interactions between a tumor and the TME. PMID:26053043
Hypoxia induces pulmonary fibroblast proliferation through NFAT signaling.
Senavirathna, Lakmini Kumari; Huang, Chaoqun; Yang, Xiaoyun; Munteanu, Maria Cristina; Sathiaseelan, Roshini; Xu, Dao; Henke, Craig A; Liu, Lin
2018-02-09
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and typically fatal lung disease with a very low survival rate. Excess accumulation of fibroblasts, myofibroblasts and extracellular matrix creates hypoxic conditions within the lungs, causing asphyxiation. Hypoxia is, therefore, one of the prominent features of IPF. However, there have been few studies concerning the effects of hypoxia on pulmonary fibroblasts. In this study, we investigated the molecular mechanisms of hypoxia-induced lung fibroblast proliferation. Hypoxia increased the proliferation of normal human pulmonary fibroblasts and IPF fibroblasts after exposure for 3-6 days. Cell cycle analysis demonstrated that hypoxia promoted the G1/S phase transition. Hypoxia downregulated cyclin D1 and A2 levels, while it upregulated cyclin E1 protein levels. However, hypoxia had no effect on the protein expression levels of cyclin-dependent kinase 2, 4, and 6. Chemical inhibition of hypoxia-inducible factor (HIF)-2 reduced hypoxia-induced fibroblast proliferation. Moreover, silencing of Nuclear Factor Activated T cell (NFAT) c2 attenuated the hypoxia-mediated fibroblasts proliferation. Hypoxia also induced the nuclear translocation of NFATc2, as determined by immunofluorescence staining. NFAT reporter assays showed that hypoxia-induced NFAT signaling activation is dependent on HIF-2, but not HIF-1. Furthermore, the inhibition or silencing of HIF-2, but not HIF-1, reduced the hypoxia-mediated NFATc2 nuclear translocation. Our studies suggest that hypoxia induces the proliferation of human pulmonary fibroblasts through NFAT signaling and HIF-2.
Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts
Gupta, Manoj K.; Teo, Adrian Kee Keong; Rao, Tata Nageswara; Bhatt, Shweta; Kleinridders, Andre; Shirakawa, Jun; Takatani, Tomozumi; Hu, Jiang; De Jesus, Dario F.; Windmueller, Rebecca; Wagers, Amy J.
2015-01-01
The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed higher proliferation, enhanced expression of insulin signaling and cell cycle genes, and a switch from glycolytic to oxidative phosphorylation metabolism, but they displayed poor reprogramming efficiency compared with cells grown in normal medium. Thus, in contrast to previous studies, our work reveals an inverse correlation between the proliferation rate of somatic cells and reprogramming efficiency, and also suggests that upregulation of proteins in the growth factor signaling pathway limits the ability to induce pluripotency in human somatic fibroblasts. Significance The efficiency with which human cells can be reprogrammed is of interest to stem cell biology. In this study, human fibroblasts cultured in media containing different concentrations of growth factors such as insulin and insulin-like growth factor-1 exhibited variable abilities to proliferate, with consequences on pluripotency. This occurred in part because of changes in the expression of proteins involved in the growth factor signaling pathway, glycolysis, and oxidative phosphorylation. These findings have implications for efficient reprogramming of human cells. PMID:26253715
Plantier, Laurent; Renaud, Hélène; Respaud, Renaud; Marchand-Adam, Sylvain; Crestani, Bruno
2016-12-13
Heritable profibrotic differentiation of lung fibroblasts is a key mechanism of idiopathic pulmonary fibrosis (IPF). Its mechanisms are yet to be fully understood. In this study, individual data from four independent microarray studies comparing the transcriptome of fibroblasts cultured in vitro from normal (total n = 20) and IPF (total n = 20) human lung were compiled for meta-analysis following normalization to z-scores. One hundred and thirteen transcripts were upregulated and 115 were downregulated in IPF fibroblasts using the Significance Analysis of Microrrays algorithm with a false discovery rate of 5%. Downregulated genes were highly enriched for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classes related to inflammation and immunity such as Defense response to virus, Influenza A, tumor necrosis factor (TNF) mediated signaling pathway, interferon-inducible absent in melanoma2 (AIM2) inflammasome as well as Apoptosis. Although upregulated genes were not enriched for any functional class, select factors known to play key roles in lung fibrogenesis were overexpressed in IPF fibroblasts, most notably connective tissue growth factor ( CTGF ) and serum response factor ( SRF ), supporting their role as drivers of IPF. The full data table is available as a supplement.
Giannotti, Giuseppe; Caffino, Lucia; Malpighi, Chiara; Melfi, Simona; Racagni, Giorgio; Fumagalli, Fabio
2015-02-01
During adolescence, the brain is maturing and more sensitive to drugs of abuse that can influence its developmental trajectory. Recently, attention has been focused on basic fibroblast growth factor (FGF-2) given that its administration early in life enhances the acquisition of cocaine self-administration and sensitization at adulthood (Turner et al. (Pharmacol Biochem Behav 92:100-4, 2009), Clinton et al. (Pharmacol Biochem Behav103:6-17, 2012)). Additionally, we found that abstinence from adolescent cocaine exposure long lastingly dysregulates FGF-2 transcription (Giannotti et al. (Psychopharmacology (Berl) 225:553-60, 2013 ). The objectives of the study are to evaluate if (1) a single injection of cocaine (20 mg/kg) at postnatal day 35 alters FGF-2 messenger RNA (mRNA) levels and (2) the first injection influences the trophic response to a second injection (10 mg/kg) provided 24 h or 7 days later. We found regional differences in the FGF-2 expression pattern as either the first or the second injection of cocaine by themselves upregulated FGF-2 mRNA in the medial prefrontal cortex and nucleus accumbens while downregulating it in the hippocampus. The first injection influences the trophic response of the second. Of note, 24 h after the first injection, accumbal and hippocampal FGF-2 changes produced by cocaine in saline-pretreated rats were prevented in cocaine-pretreated rats. Conversely, in the medial prefrontal cortex and hippocampus 7 days after the first injection, the cocaine-induced FGF-2 changes were modified by the subsequent exposure to the psychostimulant. These findings show that a single cocaine injection is sufficient to produce enduring changes in the adolescent brain and indicate that early cocaine priming alters the mechanisms regulating the trophic response in a brain region-specific fashion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moscatelli, D.; Joseph-Silverstein, J.; Manejias, R.
1987-08-01
A M/sub r/ 25,000 form of basic fibroblast growth factor (bFGF) has been isolated from guinea pig grain along with the typical M/sub r/ 18,000 form. Both forms were purified to homogeneity by a combination of heparin-affinity chromatography and ion-exchange chromatography on an FPLC Mono S column. The M/sub r/ 25,000 form, like the M/sub r/ 18,000 form was not eluted from the heparin-affinity column with 0.95 M NaCl, but was eluted with 2 M NaCl. The M/sub r/ 25,000 guinea pig protein stimulated plasminogen activator production by cultured bovine capillary endothelial cells in a dose-dependent manner at concentration ofmore » 0.1-10 ngml, the same range that was effective for guinea pig and human M/sub r/ 18,000 bFGFs. The binding of human /sup 125/I-labeled bFGF to baby hamster kidney cells is inhibited equally by the M/sub r/ 25,000 guinea pig protein and the M/sub r/ 18,000 guinea pig and human bFGFs. Polyclonal antibodies raised against human bFGF recognize both the M/sub r/ 25,000 and 18,000 guinea pig proteins in an immunoblot analysis. In a radioimmunoassay, both the M/sub r/ 25,000 and M/sub r/ 18,000 guinea pig proteins compete equally well with iodinated human bFGF for binding to the anti-human bFGF antibodies. When treated with low concentrations of trypsin, the M/sub r/ 25,000 guinea pig bFGF was converted to a M/sub r/ 18,000 protein. These results show that the two molecules are closely related and suggest that the M/sub r/ 25,000 protein shares substantial homology with the M/sub r/ 18,000 bFGF« less
Teknos, Theodoros N; Islam, Mozaffarul; Arenberg, Douglas A; Pan, Quintin; Carskadon, Shannon L; Abarbanell, Aaron M; Marcus, Benjamin; Paul, Supriti; Vandenberg, Curtis D; Carron, Michael; Nor, Jacques E; Merajver, Sofia D
2005-03-01
To assess the effect of tetrathiomolybdate on cytokine expression, angiogenesis, and tumor growth rate in human squamous cell carcinoma (SCC). Three human SCC cell lines were used in this study for both in vitro and in vivo investigations. Conditioned media from untreated and tetrathiomolybdate-treated cell lines were compared with regard to cytokine levels, endothelial cell chemotaxis, endothelial cell tubule formation, and migration and the ability to induce angiogenesis in a rat aortic ring array. In vivo UM-SCC-38 was seeded onto tissue-engineered scaffolds and surgically implanted into the flanks of immunodeficient mice. Tumor growth rates and the level of angiogenesis were compared after 2 weeks of therapy. A tertiary care facility. In this study, we demonstrate that tetrathiomolybdate significantly decreases the secretion of interleukin 6 and basic fibroblast growth factor by head and neck SCC (HNSCC) cell lines in vitro. Furthermore, we demonstrate that tetrathiomolybdate significantly decreases the secretion of interleukin 6 and basic fibroblast growth factor by HNSCC cell lines in vitro. Furthermore, tetrathiomolybdate treatment of HNSCC cell lines results in significantly decreased endothelial cell chemotaxis, tubule formation, and neovascularization in a rat aortic ring assay. This in vitro evidence of decreased angiogenesis by tetrathiomolybdate is confirmed in vivo by using a severe combined immunodeficiency disorder mouse model in which tetrathiomolybdate therapy is shown to prevent human blood vessel formation. Finally, human HNSCC implanted into immunodeficient mice grow to a much larger size in untreated mice compared with those treated with 0.7 mL/kg per day of oral tetrathiomolybdate. These findings illustrate the ability of tetrathiomolybdate to down-regulate proinflammatory and proangiogenic cytokines in HNSCC. These observations are potentially exciting from a clinical perspective because a global decrease in these cytokines may decrease tumor aggressiveness and reverse the resistance to chemotherapy and radiation therapy seen in this tumor type.
Marui, Akira; Tabata, Yasuhiko; Kojima, Shinsuke; Yamamoto, Masaya; Tambara, Keiichi; Nishina, Takeshi; Saji, Yoshiaki; Inui, Ken-ichi; Hashida, Tohru; Yokoyama, Sumiko; Onodera, Rie; Ikeda, Tadashi; Fukushima, Masanori; Komeda, Masashi
2007-08-01
Limb ischemia remains a challenge. To overcome shortcomings or limitations of gene therapy or cell transplantation, a sustained release system of basic fibroblast growth factor (bFGF) using biodegradable gelatin hydrogel has been developed. A phase I-IIa study was performed, in which 7 patients had critical limb ischemia. They were intramuscularly injected with 200 microg of bFGF-incorporated gelatin hydrogel microspheres into the gastrocnemius of the ischemic limb. End-points were safety and feasibility of treatment after 4 and 24 weeks. One patient was excluded from the study for social reasons, but only after symptomatic improvements. In the evaluation of the other 6 patients, significant improvements were observed in the distance walked in 6 min (295+/-42 m vs 491+/-85 m for pretreatment vs after 24 weeks, p=0.023) and in transcutaneous oxygen pressure (53.5+/-5.2 mmHg vs 65.5+/-4.0 mmHg, p=0.03). The rest pain scale also improved (3.5+/-0.2 vs 1.0+/-0.6, p=0.022). The ankle-brachial pressure index improved at 4 weeks but not at 24 weeks. Among 5 patients who had a non-healing foot ulcer, the ulcer was completely healed in 3 patients, reduced in 1, and there was no change in 1 patient at 24 weeks. The blood levels of bFGF were undetected or within the normal level in all patients. The sustained release of bFGF from gelatin hydrogel might be simple, safe, and effective to achieve therapeutic angiogenesis because it did not need genetic materials or collection of implanted cells, and because it did not have any general effects, which was supported by there being no elevation of the bFGF serum level.
Xia, Xiaoping; Song, Guoxiang; Liu, Xiangfu; Tang, Xiangchen; Ye, Hui
2010-11-01
To investigate the effect of intravitreal basic fibroblast growth factor(bFGF) on activation and proliferation of endogenous retinal progenitor cells in the Royal College of Surgeons(RCS) rats. Twenty-four rats were studied after the 30th postnatal day(≥30). Eighteen affected rats were randomly divided into 3 groups: bFGF-treated, vehicle-treated and untreated group, and 6 unaffected rats were used as normal controls. Six μl of bFGF (5μg/10 μl) or vehicle was injected into the vitreous on days 31, 33 and 35 after birth (P31, P33, P35) in the bFGF group and vehicle group, and no injection was administered in the untreated and control groups. All the rats were euthanized, and their eyes were enucleated, hemisected and fixed at 50 d after birth for immunohistochemistry and measurement of outer nuclear layer thickness. Nestin and Chx10 were positively expressed in all retinal layers, intravitreous injection of bFGF in retina-dystrophic RCS(RCS-p+/Lav) rats induced intense labeling for the retinal progenitor cell markers Chx10 and Nestin, which were highly colocalized. Fluorescence intensity for both labels was slightly less in the control rats, and much less in the vehicle-injected rats as well as in the untreated RCS rats. The outer nuclear layer (ONL) was significantly thicker in bFGF group than that of vehicle-treated or untreated group(p<0.01), but thinner than that of the control group(p<0.01). No significant difference was observed in the ONL thicknesses between the vehicle group and untreated group(P>0.05). bFGF may contribute to the activation of retinal progenitor cells in RCS rats, thus counteract degeneration by promoting the proliferation of the progenitor cells.
Renlund, M; Kovanen, P T; Raivio, K O; Aula, P; Gahmberg, C G; Ehnholm, C
1986-01-01
Salla disease is a lysosomal storage disorder characterized by mental retardation and disturbed sialic acid metabolism. To study endogenous synthesis and breakdown of sialic acid, fibroblasts were incubated for 5 d in the presence and then in the absence of N-[3H]acetylmannosamine. Labeling of free sialic acid was 5-10 times higher in mutant than in normal cells. Radioactivity decreased in 4 d by 75% in normal but only by 30% in mutant fibroblasts. The labeling pattern was not normalized upon coculture of mutant and normal cells. To study the metabolism of extracellular sialic acid, low-density lipoprotein (LDL) was labeled in the sialic acid moiety (periodate-NaB3H4) or in the protein moiety (125I). Binding, internalization, lysosomal degradation, and exit of products of protein catabolism were similar in normal and mutant fibroblasts. Upon incubation with LDL labeled in the sialic acid moiety, mutant cells accumulated 2-3 times more free sialic acid radioactivity than normal fibroblasts, mostly in the lysosomal fraction. After a 24-h chase incubation, radioactivity in free sialic acid decreased by 70-80% in normal but only by 10-30% in mutant cells. In mutant fibroblasts, 40% of the radioactivity remained in lysosomes, whereas no labeled free sialic acid was detected in lysosomes from normal fibroblasts. We conclude that in Salla disease, fibroblast endogenous synthesis of sialic acid and lysosomal cleavage of exogenous glycoconjugates is normal, but free sialic acid cannot leave the lysosome. These findings suggest that the basic defect in Salla disease is deficient transport of free sialic acid through the lysosomal membrane. PMID:3944269
Development and characterization of a new marine fish cell line from turbot (Scophthalmus maximus).
Wang, N; Wang, X L; Sha, Z X; Tian, Y S; Chen, S L
2010-12-01
A new marine fish cell line, TK, derived from turbot (Scophthalmus maximus) kidney, was established by the method of trypsin digestion and subcultured for more than 50 passages over a period of 300 days. The TK cells were maintained in Minimum Essential Medium Eagle (MEM) supplemented with HEPES, antibiotics, fetal bovine serum (FBS), 2-Mercaptoethanol (2-Me), and basic fibroblast growth factor (bFGF). The suitable growth temperature for TK cells was 24°C, and microscopically, TK cells were composed of fibroblast-like cells. Chromosome analysis revealed that the TK cell line has a normal diploid karyotype with 2n=44. Two fish viruses LCDV-C (lymphocystis disease virus from China) and TRBIV (turbot reddish body iridovirus) were used to determine the virus susceptibility of TK cell line. The TK cell line was found to be susceptible to TRBIV, and the infection was confirmed by cytopathic effect (CPE) and transmission electron microscopy, which detected the viral particles in the cytoplasm of virus-infected cells. Finally, significant green fluorescent signals were observed when the TK cells were transfected with pEGFP-N3 vector, indicating its potential utility for fish virus study and genetic manipulation.
Clinical Application of Growth Factors and Cytokines in Wound Healing
Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana
2016-01-01
Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811
Shin, Seung-Heon; Ye, Mi-Kyung; Choi, Sung-Yong; Kim, Yee-Hyuk
2016-06-01
Eosinophils and fibroblasts are known to play major roles in the pathogenesis of nasal polyps. Fungi are commonly found in nasal secretion and are associated with airway inflammation. To investigate whether activated eosinophils by airborne fungi can influence the production of extracellular matrix (ECM) from nasal fibroblasts. Inferior turbinate and nasal polyp fibroblasts were stimulated with Alternaria or Aspergillus, respectively, for 24 hours and ECM messenger RNA (mRNA) and protein expressions were measured. Eosinophils isolated from healthy volunteers were stimulated with Alternaria or Aspergillus for 4 hours then superoxide, eosinophil peroxidase, and transforming growth factor β1 were measured. Then activated eosinophils were cocultured with nasal fibroblasts for 24 hours, and ECM mRNA expressions were measured. Alternaria strongly enhanced ECM mRNA expression and protein production from nasal fibroblasts. Alternaria also induced the production of superoxide, eosinophil peroxidase, and transforming growth factor β1 from eosinophils, and activated eosinophils enhanced ECM mRNA expression when they were cocultured without the Transwell insert system. Eosinophils activated with Alternaria enhanced ECM mRNA expression from nasal polyp fibroblasts. Alternaria plays an important role in tissue fibrosis in the pathogenesis of nasal polyps by directly or indirectly influencing the production of ECM from nasal fibroblasts. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Sáez, C; González-Baena, A C; Japón, M A; Giráldez, J; Segura, D I; Rodríguez-Vallejo, J M; González-Esteban, J; Miranda, G; Torrubia, F
1999-07-01
The development of benign prostatic hyperplasia (BPH) is an androgen-dependent process which may be mediated by a number of locally produced growth factors. One of these, the basic fibroblast growth factor (bFGF or FGF2), has a mitogenic effect on prostatic stroma. High expression levels of bFGF have been reported in BPH. FGFR1 and FGFR2 receptors, that exhibit affinity for bFGF, have been identified in normal and hyperplastic prostate. Finasteride, a 5alpha-reductase inhibitor, is an effective drug in the treatment of BPH, inducing regressive changes in the prostate of treated patients, even though its mechanisms of action are not yet completely elucidated. This study was designed to assess the effects of finasteride on the expression levels of bFGF, FGFR1, and FGFR2 in patients with BPH. The expression levels of bFGF, FGFR1, and FGFR2 in 9 patients with prostatic hyperplasia treated with finasteride were assessed by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) analysis of mRNA expression and were compared with those of 9 control patients with untreated BPH. Immunohistochemistry showed strong bFGF immunoreactivity in the prostatic stroma of untreated patients, this being somewhat weaker in the epithelium. In treated patients, epithelial immunoreactivity was practically negative, and a considerable reduction in stromal immunoreactivity was seen. These findings were also confirmed by RT-PCR. FGFR1 showed a weak immunoreactivity in the stroma and in basal epithelial cells. FGFR1 showed a weak immunoreactivity in the stroma and in basal epithelial cells. FGFR2 exhibited strong stromal immunoreactivity, becoming weaker in the basal epithelium. No differences were seen in the expression of both receptors between the groups of treated and untreated patients. A marked reduction in bFGF levels is seen in BPH treated with finasteride in comparison to untreated BPH. In our opinion, finasteride may act as a negative regulator of bFGF expression, counteracting the role of bFGF in the development of BPH.
Ahmed, Salahuddin; Silverman, Matthew D.; Marotte, Hubert; Kwan, Kevin; Matuszczak, Natalie; Koch, Alisa E.
2010-01-01
Objective Overexpression of the antiapoptotic protein myeloid cell leukemia 1 (Mcl-1) in rheumatoid arthritis (RA) synovial fibroblasts is a major cause of their resistance to tumor necrosis factor α (TNFα)–induced apoptosis. This study was undertaken to evaluate the efficacy of epigallocatechin-3-gallate (EGCG) in down-regulating Mcl-1 expression and its mechanism of RA synovial fibroblast sensitization to TNFα-induced apoptosis. Methods EGCG effects on cultured RA synovial fibroblast cell morphology, proliferation, and viability over 72 hours were determined by microscopy and a fluorescent cell enumeration assay. Caspase 3 activity was determined by a colorimetric assay. Western blotting was used to evaluate the apoptosis mediators poly(ADP-ribose) polymerase (PARP), Mcl-1, Bcl-2, Akt, and nuclear translocation of NF-κB. Results In RA synovial fibroblasts, EGCG (5–50 μM) inhibited constitutive and TNFα-induced Mcl-1 protein expression in a concentration- and time-dependent manner (P < 0.05). Importantly, EGCG specifically abrogated Mcl-1 expression in RA synovial fibroblasts and affected Mcl-1 expression to a lesser extent in osteoarthritis and normal synovial fibroblasts or endothelial cells. Inhibition of Mcl-1 by EGCG triggered caspase 3 activity in RA synovial fibroblasts, which was mediated via down-regulation of the TNFα-induced Akt and NF-κB pathways. Caspase 3 activation by EGCG also suppressed RA synovial fibroblast growth, and this effect was mimicked by Akt and NF-κB inhibitors. Interestingly, Mcl-1 degradation by EGCG sensitized RA synovial fibroblasts to TNFα-induced PARP cleavage and apoptotic cell death. Conclusion Our findings indicate that EGCG itself induces apoptosis and further sensitizes RA synovial fibroblasts to TNFα-induced apoptosis by specifically blocking Mcl-1 expression and, hence, may be of promising adjunct therapeutic value in regulating the invasive growth of synovial fibroblasts in RA. PMID:19404960
Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer.
German, Sergio D; Campbell, Keith H S; Thornton, Elisabeth; McLachlan, Gerry; Sweetman, Dylan; Alberio, Ramiro
2015-02-01
Induced pluripotent stem cells (iPSCs) share similar characteristics of indefinite in vitro growth with embryonic stem cells (ESCs) and may therefore serve as a useful tool for the targeted genetic modification of farm animals via nuclear transfer (NT). Derivation of stable ESC lines from farm animals has not been possible, therefore, it is important to determine whether iPSCs can be used as substitutes for ESCs in generating genetically modified cloned farm animals. We generated ovine iPSCs by conventional retroviral transduction using the four Yamanaka factors. These cells were basic fibroblast growth factor (bFGF)- and activin A-dependent, showed persistent expression of the transgenes, acquired chromosomal abnormalities, and failed to activate endogenous NANOG. Nonetheless, iPSCs could differentiate into the three somatic germ layers in vitro. Because cloning of farm animals is best achieved with diploid cells (G1/G0), we synchronized the iPSCs in G1 prior to NT. Despite the cell cycle synchronization, preimplantation development of iPSC-NT embryos was lower than with somatic cells (2% vs. 10% blastocysts, p<0.01). Furthermore, analysis of the blastocysts produced demonstrated persistent expression of the transgenes, aberrant expression of endogenous SOX2, and a failure to activate NANOG consistently. In contrast, gene expression in blastocysts produced with the parental fetal fibroblasts was similar to those generated by in vitro fertilization. Taken together, our data suggest that the persistent expression of the exogenous factors and the acquisition of chromosomal abnormalities are incompatible with normal development of NT embryos produced with iPSCs.
Effectiveness of a Crocus sativus Extract on Burn Wounds in Rats.
Alemzadeh, Esmat; Oryan, Ahmad
2018-05-23
Crocus sativus is a spice with various pharmacological properties. Crocin, picrocrocin, and safranal are the main compositions of saffron that have recently been considered in the therapy of many diseases. High-performance liquid chromatography analysis revealed presence of these compounds in our saffron extract. This study was carried out to evaluate the effect of saffron on burn wound healing at an in vivo model. Saffron was topically applied on burn wounds in rats; the percentage of wound closure, wound contraction, and the levels of main cytokines and growth factors were measured. The saffron extract was also applied to evaluate the proliferation and migration of human dermal fibroblast (HDF) cells using in vitro scratch assay and resulted in active proliferation and migration of the HDF cells in a dose-dependent manner. A clear enhanced healing was observed in the saffron-treated wounds compared to the silver sulfadiazine and negative control groups. Decreased expression of interleukin-1 β and transforming growth factor- β 1 (TGF- β 1) during the inflammatory phase demonstrated the role of saffron in promoting wound healing. In addition, enhanced TGF- β 1 expression during the proliferative phase and basic fibroblast growth factor during the remodeling phase represented regenerative and anti-scarring role of saffron, respectively. Our histological and biochemical findings also confirmed that saffron significantly stimulated burn wound healing by modulating healing phases. Therefore, saffron can be an optimal option in promoting skin repair and regeneration. Application of this herbal medicinal drug should be encouraged because of its availability and negligible side effects. Georg Thieme Verlag KG Stuttgart · New York.
Kappert, Franziska; Sreeramulu, Sridhar; Jonker, Hendrik R A; Richter, Christian; Rogov, Vladimir V; Proschak, Ewgenij; Hargittay, Bruno; Saxena, Krishna; Schwalbe, Harald
2018-06-04
The interaction of fibroblast growth factors (FGFs) with their fibroblast growth factor receptors (FGFRs) are important in the signaling network of cell growth and development. SSR128129E (SSR), a ligand of small molecular weight with potential anti-cancer properties, acts allosterically on the extracellular domains of FGFRs. Up to now, the structural basis of SSR binding to the D3 domain of FGFR remained elusive. This work reports the structural characterization of the interaction of SSR with one specific receptor, FGFR3, by NMR spectroscopy. This information provides a basis for rational drug design for allosteric FGFR inhibitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cigna, Natacha; Farrokhi Moshai, Elika; Brayer, Stéphanie; Marchal-Somme, Joëlle; Wémeau-Stervinou, Lidwine; Fabre, Aurélie; Mal, Hervé; Lesèche, Guy; Dehoux, Monique; Soler, Paul; Crestani, Bruno; Mailleux, Arnaud A
2012-12-01
Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown cause. Key signaling developmental pathways are aberrantly expressed in IPF. The hedgehog pathway plays a key role during fetal lung development and may be involved in lung fibrogenesis. We determined the expression pattern of several Sonic hedgehog (SHH) pathway members in normal and IPF human lung biopsies and primary fibroblasts. The effect of hedgehog pathway inhibition was assayed by lung fibroblast proliferation and differentiation with and without transforming growth factor (TGF)-β1. We showed that the hedgehog pathway was reactivated in the IPF lung. Importantly, we deciphered the cross talk between the hedgehog and TGF-β pathway in human lung fibroblasts. TGF-β1 modulated the expression of key components of the hedgehog pathway independent of Smoothened, the obligatory signal transducer of the pathway. Smoothened was required for TGF-β1-induced myofibroblastic differentiation of control fibroblasts, but differentiation of IPF fibroblasts was partially resistant to Smoothened inhibition. Furthermore, functional hedgehog pathway machinery from the primary cilium, as well as GLI-dependent transcription in the nucleus, was required for the TGF-β1 effects on normal and IPF fibroblasts during myofibroblastic differentiation. These data identify the GLI transcription factors as potential therapeutic targets in lung fibrosis. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Ras Family GTPases Control Growth of Astrocyte Processes
Kalman, Daniel; Gomperts, Stephen N.; Hardy, Stephen; Kitamura, Marina; Bishop, J. Michael
1999-01-01
Astrocytes in neuron-free cultures typically lack processes, although they are highly process-bearing in vivo. We show that basic fibroblast growth factor (bFGF) induces cultured astrocytes to grow processes and that Ras family GTPases mediate these morphological changes. Activated alleles of rac1 and rhoA blocked and reversed bFGF effects when introduced into astrocytes in dissociated culture and in brain slices using recombinant adenoviruses. By contrast, dominant negative (DN) alleles of both GTPases mimicked bFGF effects. A DN allele of Ha-ras blocked bFGF effects but not those of Rac1-DN or RhoA-DN. Our results show that bFGF acting through c-Ha-Ras inhibits endogenous Rac1 and RhoA GTPases thereby triggering astrocyte process growth, and they provide evidence for the regulation of this cascade in vivo by a yet undetermined neuron-derived factor. PMID:10233170
Central Role for Dermal Fibroblasts in Skin Model Protection against Candida albicans.
Kühbacher, Andreas; Henkel, Helena; Stevens, Philip; Grumaz, Christian; Finkelmeier, Doris; Burger-Kentischer, Anke; Sohn, Kai; Rupp, Steffen
2017-06-01
The fungal pathogen Candida albicans colonizes basically all human epithelial surfaces, including the skin. Under certain conditions, such as immunosuppression, invasion of the epithelia occurs. Not much is known about defense mechanisms against C. albicans in subepithelial layers such as the dermis. Using immune cell-supplemented 3D skin models we defined a new role for fibroblasts in the dermis and identified a minimal set of cell types for skin protection against C. albicans invasion. Dual RNA sequencing of individual host cell populations and C. albicans revealed that dermal invasion is directly impeded by dermal fibroblasts. They are able to integrate signals from the pathogen and CD4+ T cells and shift toward an antimicrobial phenotype with broad specificity that is dependent on Toll-like receptor 2 and interleukin 1β. These results highlight a central function of dermal fibroblasts for skin protection, opening new possibilities for treatment of infectious diseases. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Crowston, Jonathan G; Chang, Lydia H; Constable, Peter H; Daniels, Julie T; Akbar, Arne N; Khaw, Peng T
2002-03-01
To examine the effect of mitomycin-C on the expression of apoptosis genes in human Tenon capsule fibroblasts and to evaluate whether death receptor signaling modulates mitomycin-C cytotoxicity. Bcl-2, Bax, Bcl-x, Fas (CD95) and tumor necrosis factor (TNF) receptor expression was determined by flow cytometry in control and mitomycin-C-treated Tenon fibroblasts. Fibroblast death was quantified using a lactate dehydrogenase release assay. The effect of Fas and TNF-receptor signaling was evaluated using Fas-specific antibodies and soluble TNF-alpha. Tenon fibroblasts constitutively express Bcl-2, Bax, and Bcl-x in culture. Mitomycin-C (0.4 mg/mL) induced a small but consistent increase in the expression of all three proteins. Tenon fibroblasts express low levels of Fas but are resistant to the effects of Fas-receptor ligation. Mitomycin-C (0.01-1.0 mg/mL) led to a significant increase in Fas expression at all concentrations tested (P < 0.01). Pretreatment with mitomycin-C (0.4 mg/mL) rendered fibroblasts susceptible to agonistic anti-Fas monoclonal IgM antibodies (50-500 ng/mL) and led to a further 50% reduction in viable fibroblasts at 48 hours, compared with mitomycin-C alone (P < 0.05). Antibodies that block the Fas receptor did not inhibit mitomycin-C-induced apoptosis. Mitomycin-C alters apoptosis gene expression and primes fibroblasts to the effects of Fas receptor ligation. Factors other than the level of Fas receptor expression modulate the response to Fas receptor signaling. Determining the signals that regulate fibroblast apoptosis may help to refine therapeutic strategies for switching off the subconjunctival healing response and maintaining intraocular pressure control.
Fibroblast Growth Factor-2 Alters the Nature of Extinction
ERIC Educational Resources Information Center
Graham, Bronwyn M.; Richardson, Rick
2011-01-01
These experiments examined the effects of the NMDA-receptor (NMDAr) antagonist MK801 on reacquisition and re-extinction of a conditioned fear that had been previously extinguished before injection of fibroblast growth factor-2 (FGF2) or vehicle. Recent findings have shown that relearning and re-extinction, unlike initial learning and extinction,…
The mouse cornea micropocket angiogenesis assay.
Rogers, Michael S; Birsner, Amy E; D'Amato, Robert J
2007-01-01
The mouse corneal micropocket angiogenesis assay uses the avascular cornea as a canvas to study angiogenesis in vivo. Through the use of standardized slow-release pellets, a predictable angiogenic response is generated over the course of 5 d and then quantified. Uniform slow-release pellets are prepared by mixing purified angiogenic growth factors such as basic fibroblast growth factor or vascular endothelial growth factor with sucralfate (a stabilizer) and Hydron (poly-HEMA (poly(2-hydroxyethyl methacrylate)) to allow slow release). This mixture is applied to a mesh that controls unit size and then allowed to harden. A micropocket is surgically created in the mouse cornea and a pellet implanted. Five days later, the area of the cornea overgrown by the angiogenic response is measured using a slit lamp. A skilled investigator can implant and grade 40 eyes in about 2.5 h. The results of the assay are used to assess the ability of potential therapeutic molecules or genetic differences to modulate angiogenesis in vivo.
Periostin Limits Tumor Response to VEGFA Inhibition.
Keklikoglou, Ioanna; Kadioglu, Ece; Bissinger, Stefan; Langlois, Benoît; Bellotti, Axel; Orend, Gertraud; Ries, Carola H; De Palma, Michele
2018-03-06
Resistance to antiangiogenic drugs limits their applicability in cancer therapy. Here, we show that revascularization and progression of pancreatic neuroendocrine tumors (PNETs) under extended vascular-endothelial growth factor A (VEGFA) blockade are dependent on periostin (POSTN), a matricellular protein expressed by stromal cells. Genetic deletion of Postn in RIP1-Tag2 mice blunted tumor rebounds of M2-like macrophages and αSMA + stromal cells in response to prolonged VEGFA inhibition and suppressed PNET revascularization and progression on therapy. POSTN deficiency also impeded the upregulation of basic fibroblast growth factor (FGF2), an adaptive mechanism previously implicated in PNET evasion from antiangiogenic therapy. Higher POSTN expression correlated with markers of M2-like macrophages in human PNETs, and depleting macrophages with a colony-stimulating factor 1 receptor (CSF1R) antibody inhibited PNET revascularization and progression under VEGFA blockade despite continued POSTN production. These findings suggest a role for POSTN in orchestrating resistance to anti-VEGFA therapy in PNETs. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Uncaria rhynchophylla induces angiogenesis in vitro and in vivo.
Choi, Do-Young; Huh, Jeong-Eun; Lee, Jae-Dong; Cho, Eun-Mi; Baek, Yong-Hyeon; Yang, Ha-Ru; Cho, Yoon-Je; Kim, Kang-Il; Kim, Deog-Yoon; Park, Dong-Suk
2005-12-01
Angiogenesis consists of the proliferation, migration, and differentiation of endothelial cells, and angiogenic factors and matrix protein interactions modulate this process. The aim of this study was to determine the angiogenic properties of Uncaria rhynchophylla. Uncaria rhynchophylla significantly enhanced human umbilical vein endothelial cells (HUVECs) proliferation in a dose-dependent manner. Neutralization of vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) by monoclonal antibody suppressed the Uncaria rhynchophylla stimulatory effect on proliferation. In addition, Uncaria rhynchophylla significantly increased chemotactic-migration on gelatin and tubular structures on Matrigel of HUVECs in a dose-dependent manner. Interestingly, Uncaria rhynchophylla dose-dependently increased VEGF, and bFGF gene expression and protein secretion of HUVEC. The angiogenic activity of Uncaria rhynchophylla was confirmed using an in vivo Matrigel angiogenesis model, showing promotion of blood vessel formation. These results suggest that Uncaria rhynchophylla could potentially used to accelerate vascular wound healing or to promote the growth of collateral blood vessel in ischemic tissues.
Yang, L-C; Tsai, C-H; Huang, F-M; Su, Y-F; Lai, C-C; Liu, C-M; Chang, Y-C
2004-09-01
To investigate the effect of black-pigmented Bacteroides on the expression of vascular endothelial growth factor (VEGF) gene in human pulp fibroblasts. The supernatants of Porphyromonas endodontalis, Porphyromonas gingivalis and Prevotella intermedia were used to evaluate VEGF gene expression in human pulp fibroblasts. The levels of mRNAs were measured by the quantitative reverse-transcriptase polymerase chain reaction analysis. Black-pigmented Bacteroides induced significantly high levels of VEGF mRNA gene expression in human pulp fibroblasts (P < 0.05). In addition, the expression of VEGF depended on the bacteria tested. Black-pigmented Bacteroides may be involved in developing pulpal disease through the stimulation of VEGF production that would lead to the expansion of the vascular network coincident to progression of the inflammation.
Biological effects of plasma rich in growth factors (PRGF) on human endometrial fibroblasts.
Anitua, Eduardo; de la Fuente, María; Ferrando, Marcos; Quintana, Fernando; Larreategui, Zaloa; Matorras, Roberto; Orive, Gorka
2016-11-01
To evaluate the biological outcomes of plasma rich in growth factors (PRGF) on human endometrial fibroblasts in culture. PRGF was obtained from three healthy donors and human endometrial fibroblasts (HEF) were isolated from endometrial specimens from five healthy women. The effects of PRGF on cell proliferation and migration, secretion of vascular endothelial growth factor (VEGF), procollagen type I and hyaluronic acid (HA) and contractility of isolated and cultured human endometrial fibroblasts (HEF) were analyzed. Statistical analysis was performed in order to compare the effects of PRGF with respect to control situation (T-test or Mann-Whitney U-test). We report a significantly elevated human endometrial fibroblast proliferation and migration after treatment with PRGF. In addition, stimulation of HEF with PRGF induced an increased expression of the angiogenic factor VEGF and favored the endometrial matrix remodeling by the secretion of procollagen type I and HA and endometrial regeneration by elevating the contractility of HEF. These results were obtained for all PRGF donors and each endometrial cell line. The myriad of growth factors contained in PRGF promoted HEF proliferation, migration and synthesis of paracrine molecules apart from increasing their contractility potential. These preliminary results suggest that PRGF improves the biological activity of HEF in vitro, enhancing the regulation of several cellular processes implied in endometrial regeneration. This innovative treatment deserves further investigation for its potential in "in vivo" endometrial development and especially in human embryo implantation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cannone, Jaime J.; Barnes, Cindy L.; Achari, Aniruddha; Kundrot, Craig E.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The Sparse Matrix approach for obtaining lead crystallization conditions has proven to be very fruitful for the crystallization of proteins and nucleic acids. Here we report a Sparse Matrix developed specifically for the crystallization of protein-DNA complexes. This method is rapid and economical, typically requiring 2.5 mg of complex to test 48 conditions. The method was originally developed to crystallize basic fibroblast growth factor (bFGF) complexed with DNA sequences identified through in vitro selection, or SELEX, methods. Two DNA aptamers that bind with approximately nanomolar affinity and inhibit the angiogenic properties of bFGF were selected for co-crystallization. The Sparse Matrix produced lead crystallization conditions for both bFGF-DNA complexes.
Fibroblast heterogeneity: implications for human disease.
Lynch, Magnus D; Watt, Fiona M
2018-01-02
Fibroblasts synthesize the extracellular matrix of connective tissue and play an essential role in maintaining the structural integrity of most tissues. Researchers have long suspected that fibroblasts exhibit functional specialization according to their organ of origin, body site, and spatial location. In recent years, a number of approaches have revealed the existence of fibroblast subtypes in mice. Here, we discuss fibroblast heterogeneity with a focus on the mammalian dermis, which has proven an accessible and tractable system for the dissection of these relationships. We begin by considering differences in fibroblast identity according to anatomical site of origin. Subsequently, we discuss new results relating to the existence of multiple fibroblast subtypes within the mouse dermis. We consider the developmental origin of fibroblasts and how this influences heterogeneity and lineage restriction. We discuss the mechanisms by which fibroblast heterogeneity arises, including intrinsic specification by transcriptional regulatory networks and epigenetic factors in combination with extrinsic effects of the spatial context within tissue. Finally, we discuss how fibroblast heterogeneity may provide insights into pathological states including wound healing, fibrotic diseases, and aging. Our evolving understanding suggests that ex vivo expansion or in vivo inhibition of specific fibroblast subtypes may have important therapeutic applications.
Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts
NASA Technical Reports Server (NTRS)
Eckes, B.; Dogic, D.; Colucci-Guyon, E.; Wang, N.; Maniotis, A.; Ingber, D.; Merckling, A.; Langa, F.; Aumailley, M.; Delouvee, A.;
1998-01-01
Loss of a vimentin network due to gene disruption created viable mice that did not differ overtly from wild-type littermates. Here, primary fibroblasts derived from vimentin-deficient (-/-) and wild-type (+/+) mouse embryos were cultured, and biological functions were studied in in vitro systems resembling stress situations. Stiffness of -/- fibroblasts was reduced by 40% in comparison to wild-type cells. Vimentin-deficient cells also displayed reduced mechanical stability, motility and directional migration towards different chemo-attractive stimuli. Reorganization of collagen fibrils and contraction of collagen lattices were severely impaired. The spatial organization of focal contact proteins, as well as actin microfilament organization was disturbed. Thus, absence of a vimentin filament network does not impair basic cellular functions needed for growth in culture, but cells are mechanically less stable, and we propose that therefore they are impaired in all functions depending upon mechanical stability.
Wang, Jie; Cui, Jiefeng
2013-01-01
Purpose To investigate the expression differences of type I collagen (COL1A1) and its underlying mechanisms in human fetal scleral fibroblasts (HFSFs) that were treated with conditioned medium from retinal pigment epithelial (RPE) cells under extremely low-frequency electromagnetic fields (ELF-EMFs). Methods The ELF-EMFs used in this study were established by slidac and artificial coils. Growth of the treated HFSFs was evaluated by a cell-counting kit-8 assay. The expression of COL1A1 and matrix metalloproteinases-2 (MMP-2) in the treated HFSFs was detected by reverse transcription PCR (RT-PCR) and western blot, and the expression of transforming growth factor-β2 (TGF-β2) and basic fibroblast growth factor-2 (FGF-2) in RPE cells exposed to EMFs was detected by RT-PCR. The expression of COL1A1 and MMP-2 in HFSFs was further confirmed by immunofluorescence staining. Activation of extracellular signal-regulated kinase 1/2 (ERK1/2 also called p44/p42 mitogen-activated protein kinases [MAPK]) and p38 in HFSFs was measured by western blot. Results We found that exposure to ELF-EMFs resulted in a decreased proliferation rate of HFSFs and that addition of RPE supernatant medium could enhance this effect. Compared with that of the control cells, a significant decrease in collagen synthesis was detected in HFSFs under ELF-EMFs. However, the expression of MMP-2 was upregulated, which could be further enhanced via an RPE supernatant additive. The activities of ERK1/2 and p38 were significantly increased in HFSFs exposed to ELF-EMFs, and this effect could be enhanced by RPE supernatant medium additive. Conclusions Our results suggested that ELF-EMFs can inhibit the expression of type I collagen in HFSFs and contribute to the remodeling of the sclera. PMID:23592926
Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells.
Harris, David M; Hazan-Haley, Inbal; Coombes, Kevin; Bueso-Ramos, Carlos; Liu, Jie; Liu, Zhiming; Li, Ping; Ravoori, Murali; Abruzzo, Lynne; Han, Lin; Singh, Sheela; Sun, Michael; Kundra, Vikas; Kurzrock, Razelle; Estrov, Zeev
2011-01-01
Patients with prolonged myelosuppression require frequent platelet and occasional granulocyte transfusions. Multi-donor transfusions induce alloimmunization, thereby increasing morbidity and mortality. Therefore, an autologous or HLA-matched allogeneic source of platelets and granulocytes is needed. To determine whether nonhematopoietic cells can be reprogrammed into hematopoietic cells, human mesenchymal stromal cells (MSCs) and skin fibroblasts were incubated with the demethylating agent 5-azacytidine (Aza) and the growth factors (GF) granulocyte-macrophage colony-stimulating factor and stem cell factor. This treatment transformed MSCs to round, non-adherent cells expressing T-, B-, myeloid-, or stem/progenitor-cell markers. The transformed cells engrafted as hematopoietic cells in bone marrow of immunodeficient mice. DNA methylation and mRNA array analysis suggested that Aza and GF treatment demethylated and activated HOXB genes. Indeed, transfection of MSCs or skin fibroblasts with HOXB4, HOXB5, and HOXB2 genes transformed them into hematopoietic cells. Further studies are needed to determine whether transformed MSCs or skin fibroblasts are suitable for therapy.
Transformation of Human Mesenchymal Cells and Skin Fibroblasts into Hematopoietic Cells
Harris, David M.; Hazan-Haley, Inbal; Coombes, Kevin; Bueso-Ramos, Carlos; Liu, Jie; Liu, Zhiming; Li, Ping; Ravoori, Murali; Abruzzo, Lynne; Han, Lin; Singh, Sheela; Sun, Michael; Kundra, Vikas; Kurzrock, Razelle; Estrov, Zeev
2011-01-01
Patients with prolonged myelosuppression require frequent platelet and occasional granulocyte transfusions. Multi-donor transfusions induce alloimmunization, thereby increasing morbidity and mortality. Therefore, an autologous or HLA-matched allogeneic source of platelets and granulocytes is needed. To determine whether nonhematopoietic cells can be reprogrammed into hematopoietic cells, human mesenchymal stromal cells (MSCs) and skin fibroblasts were incubated with the demethylating agent 5-azacytidine (Aza) and the growth factors (GF) granulocyte-macrophage colony-stimulating factor and stem cell factor. This treatment transformed MSCs to round, non-adherent cells expressing T-, B-, myeloid-, or stem/progenitor-cell markers. The transformed cells engrafted as hematopoietic cells in bone marrow of immunodeficient mice. DNA methylation and mRNA array analysis suggested that Aza and GF treatment demethylated and activated HOXB genes. Indeed, transfection of MSCs or skin fibroblasts with HOXB4, HOXB5, and HOXB2 genes transformed them into hematopoietic cells. Further studies are needed to determine whether transformed MSCs or skin fibroblasts are suitable for therapy. PMID:21731684
Comparison of different cooling rates for fibroblast and keratinocyte cryopreservation.
Naaldijk, Yahaira; Friedrich-Stöckigt, Annett; Sethe, Sebastian; Stolzing, Alexandra
2016-10-01
Easy, cost-effective and reliable cryopreservation protocols are crucial for the successful and effective application of tissue engineering. Several different protocols are in use, but no comprehensive comparisons across different machine-based and manual methods have been made. Here, we compare the effects of different cooling rates on the post-thaw survival and proliferative capacity of two basic cell lines for skin tissue engineering fibroblasts and keratinocytes, cultured and frozen in suspension or as a monolayer. We demonstrate that effectiveness of cryopreservation cannot be reliably determined immediately after thawing: the results at this stage were not indicative of cell growth in culture 3 days post-thaw. Cryopreservation of fibroblasts in an adherent state greatly diminishes their subsequent growth potential. This was not observed when freezing in suspension. In keratinocytes, however, adherent freezing is as effective as freezing in suspension, which could lead to significant cost and labour savings in a tissue-engineering environment. The 'optimal' cryopreservation protocol depends on cell type and intended use. Where time, ease and cost are dominant factors, the direct freezing into a nitrogen tank (straight freeze) approach remains a viable method. The most effective solution across the board, as measured by viability 3 days post-thaw, was the commonly used, freezing container method. Where machine-controlled cryopreservation is deemed important for tissue-engineering Good Manufacturing Practice, we present results using a portfolio of different cooling rates, identifying the 'optimal' protocol depending on cell type and culture method. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.
Brøchner, Christian B; Johansen, Julia S; Larsen, Lars A; Bak, Mads; Mikkelsen, Hanne B; Byskov, Anne Grete; Andersen, Claus Yding; Møllgård, Kjeld
2012-03-01
The secreted glycoprotein YKL-40 participates in cell differentiation, inflammation, and cancer progression. High YKL-40 expression is reported during early human development, but its functions are unknown. Six human embryonic stem cell (hESC) lines were cultured in an atmosphere of low or high oxygen tension, in culture medium with or without basic fibroblast growth factor, and on feeder layers comprising mouse embryonic fibroblasts or human foreskin fibroblasts to evaluate whether hESCs and their progeny produced YKL-40 and to characterize YKL-40 expression during differentiation. Secreted YKL-40 protein and YKL-40 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative RT-PCR. Serial-sectioned colonies were stained for YKL-40 protein and for pluripotent hESC (OCT4, NANOG) and germ layer (HNF-3β, PDX1, CD34, p63, nestin, PAX6) markers. Double-labeling showed YKL-40 expression in OCT4-positive hESCs, PAX6-positive neuroectodermal cells, and HNF-3β-positive endodermal cells. The differentiating progeny showed strong YKL-40 expression. Abrupt transition between YKL-40 and OCT4-positive hESCs and YKL-40-positive ecto- and neuroectodermal lineages was observed within the same epithelial-like layer. YKL-40-positive cells within deeper layers lacked contact with OCT4-positive cells. YKL-40 may be important in initial cell differentiation from hESCs toward ectoderm and neuroectoderm, with retained epithelial morphology, whereas later differentiation into endoderm and mesoderm involves a transition into the deeper layers of the colony.
Nolte, Andrea; Aufderklamm, Stefan; Scheu, Katrin; Walker, Tobias; König, Olivia; Böttcher, Miriam; Niederlaender, Jan; Schwentner, Christian; Schlensak, Christian; Stenzl, Arnulf; Wendel, Hans Peter
2013-02-01
To treat urethral strictures of the lower urinary tract, urethrotomy is the method of choice. But this minimally invasive method suffers from poor outcome rates and leads often to restenosis of the urinary tract because of hyper-proliferating fibroblasts. Our aim is to minimize the proliferation of excessive tissue due to a new minimal invasive therapeutic approach. As an appropriate model, we isolated fibroblasts from different benign prostatic hyperplasia patients and transfected them with small interfering RNA (siRNA) against the transcription factor serum response factor (SRF), a key factor for cell cycle regulation and apoptosis. The resulting knockdown of SRF was examined on the messenger RNA level by quantitative real-time polymerase chain reaction and on the protein level by western blot. The correlation of SRF silencing and impact on cell proliferation was examined by xCELLigence, 5-bromo-2'-deoxiuridine proliferation assay, total cell counts, and senescence assay. The transfection of primary prostatic fibroblasts with SRFsiRNA revealed specific and significant knockdown of SRF, leading to significant inhibition of proliferation after the second transfection, which was revealed by proliferation assay and total cell number. The results of this study indicate a substantial role of SRF in prostatic fibroblasts and we suggest that SRF silencing might be used for the treatment of urethral strictures to achieve a durably patent urethra.
Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming.
Mohamed, Tamer M A; Stone, Nicole R; Berry, Emily C; Radzinsky, Ethan; Huang, Yu; Pratt, Karishma; Ang, Yen-Sin; Yu, Pengzhi; Wang, Haixia; Tang, Shibing; Magnitsky, Sergey; Ding, Sheng; Ivey, Kathryn N; Srivastava, Deepak
2017-03-07
Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro. We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. We found that a combination of the transforming growth factor-β inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency 8-fold when added to GMT-overexpressing cardiac fibroblasts. The small molecules also enhanced the speed and quality of cell conversion; we observed beating cells as early as 1 week after reprogramming compared with 6 to 8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared with those exposed to only GMT. Human cardiac reprogramming was similarly enhanced on transforming growth factor-β and WNT inhibition and was achieved most efficiently with GMT plus myocardin. Transforming growth factor-β and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration. © 2016 American Heart Association, Inc.
Proteomics Unveils Fibroblast-Cardiomyocyte Lactate Shuttle and Hexokinase Paradox in Mouse Muscles.
Rakus, Dariusz; Gizak, Agnieszka; Wiśniewski, Jacek R
2016-08-05
Quantitative mapping, given in biochemically interpretable units such as mol per mg of total protein, of tissue-specific proteomes is prerequisite for the analysis of any process in cells. We applied label- and standard-free proteomics to characterize three types of striated muscles: white, red, and cardiac muscle. The analysis presented here uncovers several unexpected and novel features of striated muscles. In addition to differences in protein expression levels, the three muscle types substantially differ in their patterns of basic metabolic pathways and isoforms of regulatory proteins. Importantly, some of the conclusions drawn on the basis of our results, such as the potential existence of a "fibroblast-cardiomyocyte lactate shuttle" and the "hexokinase paradox" point to the necessity of reinterpretation of some basic aspects of striated muscle metabolism. The data presented here constitute a powerful database and a resource for future studies of muscle physiology and for the design of pharmaceutics for the treatment of muscular disorders.
Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics.
Puré, Ellen; Blomberg, Rachel
2018-05-03
Fibroblast activation protein (FAP) is a cell-surface serine protease that acts on various hormones and extracellular matrix components. FAP is highly upregulated in a wide variety of cancers, and is often used as a marker for pro-tumorigenic stroma. It has also been proposed as a molecular target of cancer therapies, and, especially in recent years, a great deal of research has gone into design and testing of diverse FAP-targeted treatments. Yet despite this growing field of research, our knowledge of FAP's basic biology and functional roles in various cancers has lagged behind its use as a tumor-stromal marker. In this review, we summarize and analyze recent advances in understanding the functions of FAP in cancer, most notably its prognostic value in various tumor types, cellular effects on various cell types, and potential as a therapeutic target. We highlight outstanding questions in the field, the answers to which could shape preclinical and clinical studies of FAP.
[Regulation of airway stem cell proliferation in idiopathic pulmonary fibrosis].
Yang, S X; Wu, Q; Sun, X; Li, X; Li, K; Xu, L; Li, Y; Zhang, Q Y; Zhang, Y C; Chen, H Y
2016-09-01
To investigate the effect of fibroblasts on regulating airway stem cell proliferation in idiopathic pulmonary fibrosis. Lung cell suspension was prepared from β-actin-GFP mice. Airway stem cells were obtained by fluorescence activated cell sorting and co-cultured with lung fibroblasts. The fibroblasts were treated with TGF-β inhibitor SB43142. The expression of growth factors FGF1/2 and the effect of FGF1/2 on stem cell proliferation were observed. The cloning efficiency of airway stem cells, when co-cultured with normal lung fibroblast cells for 8 days, was (3.5±1.1)%, while the cloning efficiency was reduced to (0.04±0.04)% when co-cultured with lung fibroblasts from idiopathic pulmonary fibrosis patients. The difference between the 2 groups was statistically significant(P=0.002 5). TGF-β receptor inhibitor SB431542 increased lung fibroblast growth factors FGF1/2 expression.FGF1 mRNA expression was increased to the experimental group 0.005 5 from 0.000 2 in the control group.FGF2 mRNA expression of the amount raised to the experimental group 0.000 15 from 0.000 8 in the control group.FGF1/2 promoted the growth of airway stem cells. After FGF1/2 was co-cultured with normal lung fibroblast cells for 8 days, the cloning efficiency of airway stem cells was (0.3±0.1)%. During the development of idiopathic pulmonary fibrosis, fibroblast secreted FGF1/2 regulate airway stem cell proliferation.
van den Broek, Lenie J.; Kroeze, Kim L.; Waaijman, Taco; Breetveld, Melanie; Sampat-Sardjoepersad, Shakun C.; Niessen, Frank B.; Middelkoop, Esther; Scheper, Rik J.
2014-01-01
Many cell-based regenerative medicine strategies toward tissue-engineered constructs are currently being explored. Cell–cell interactions and interactions with different biomaterials are extensively investigated, whereas very few studies address how cultured cells will interact with soluble wound-healing mediators that are present within the wound bed after transplantation. The aim of this study was to determine how adipose tissue-derived mesenchymal stem cells (ASC), dermal fibroblasts, and keratinocytes will react when they come in contact with the deep cutaneous burn wound bed. Burn wound exudates isolated from deep burn wounds were found to contain many cytokines, including chemokines and growth factors related to inflammation and wound healing. Seventeen mediators were identified by ELISA (concentration range 0.0006–9 ng/mg total protein), including the skin-specific chemokine CCL27. Burn wound exudates activated both ASC and dermal fibroblasts, but not keratinocytes, to increase secretion of CXCL1, CXCL8, CCL2, and CCL20. Notably, ASC but not fibroblasts or keratinocytes showed significant increased secretion of vascular endothelial growth factor (5-fold) and interleukin-6 (253-fold), although when the cells were incorporated in bi-layered skin substitute (SS) these differences were less pronounced. A similar discrepancy between ASC and dermal fibroblast mono-cultures was observed when recombinant human-CCL27 was used instead of burn wound exudates. Although CCL27 did not stimulate the secretion of any of the wound-healing mediators by keratinocytes, these cells, in contrast to ASC or dermal fibroblasts, showed increased proliferation and migration. Taken together, these results indicate that on transplantation, keratinocytes are primarily activated to promote wound closure. In contrast, dermal fibroblasts and, in particular, ASC respond vigorously to factors present in the wound bed, leading to increased secretion of angiogenesis/granulation tissue formation factors. Our findings have implications for the choice of cell type (ASC or dermal fibroblast) to be used in regenerative medicine strategies and indicate the importance of taking into account interactions with the wound bed when developing advanced therapies for difficult-to-close cutaneous wounds. PMID:23980822
Bromberek, B A; Enever, P A J; Shreiber, D I; Caldwell, M D; Tranquillo, R T
2002-05-01
Rat dermal fibroblasts were dispersed initially in the outer shell of a fibrin gel sphere, while the inner core either was devoid of cells or contained peritoneal exudate cells (primarily macrophages), thereby mimicking the inflammatory phase of wound healing. The fibroblasts compacted floating fibrin microspheres over time. In the absence of macrophages, the initial distribution of fibroblasts (only in the shell) induced circumferential alignment of fibrin fibrils via compaction of the shell relative to the core. The aligned fibrils created a contact guidance field, which was manifested by strong circumferential alignment of the fibroblasts. However, in the presence of macrophages, the fibroblasts exhibited more radial alignment despite the simultaneous contact guidance field in the circumferential direction associated with compaction. This was attributed to a chemotactic gradient emanating from the core due to a putative factor(s) released by the macrophages. The presence of a radial chemotactic stimulus was supported by the finding of even greater radial alignment when fibrin microspheres were embedded in an agarose-fibrin gel that abolished compaction and consequently the contact guidance field. Our assay permits the simulation of tissue morphogenetic processes that involve cell guidance phenomena and tractional restructuring of the extracellular matrix.
In vitro effects of ascorbic acid and β-glycerophosphate on human gingival fibroblast cells.
Martinez, Elizabeth F; Donato, Tatiani A G; Arana-Chavez, Victor E
2012-10-01
Ascorbic acid (AA) and β-glycerophosphate (βG) are considered in vitro osteogenic factors important to the differentiation of osteoblastic progenitor and dental pulp cells into mineralized tissue-forming cells. So, the present study investigated in vitro if these mineralizing inducible factors (AA and βG) could influence differentiation of human gingival fibroblasts when compared with human pulp cells and osteogenic cells derived from rat calvaria cultured. The expression of osteopontin (OPN) and osteoadherin (OSAD) was analyzed by indirect immunofluorescence, immunocytochemistry as well as Western-blotting. In addition, the main ultrastructural aspects were also investigated. No mineralized matrix formation occurred on gingival fibroblasts induced with AA+βG. On these cells, no expression of OPN and OSAD was observed when compared with pulp cells, pulp cells induced with AA+βG as well as osteogenic cells. Ultrastructure analysis additionally showed that gingival fibroblasts exhibited typical fibroblast morphology with no nodule formation. The present findings showed that AA and βG could not promote a mineralized cell differentiation of human gingival fibroblasts and confirm that human dental pulp cells, as the osteogenic cells, are capable to form a mineralized extracellular. Copyright © 2012 Elsevier Ltd. All rights reserved.
Brown Lobbins, M L; Shivakumar, B R; Postlethwaite, A E; Hasty, K A
2018-01-01
Peripheral blood mononuclear cells taken from patients with scleroderma express increased levels of interleukin (IL)-13. Moreover, the expression of matrix metalloproteinase-1 (MMP-1) from involved scleroderma skin fibroblasts is refractory to stimulation by tumour necrosis factor (TNF)-α. To elucidate the mechanism(s) involved, we examined the effect of IL-13 on TNF-α-induced MMP-1 expression in normal and scleroderma human dermal fibroblast lines and studied the involvement of serine/threonine kinase B/protein kinase B (Akt) in this response. Dermal fibroblast lines were stimulated with TNF-α in the presence of varying concentrations of IL-13. Total Akt and pAkt were quantitated using Western blot analyses. Fibroblasts were treated with or without Akt inhibitor VIII in the presence of IL-13 followed by TNF-α stimulation. MMP-1 expression was analysed by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using analysis of variance (anova) or Student's t-test. Upon TNF-α stimulation, normal dermal fibroblasts secrete more MMP-1 than systemic sclerosis (SSc) fibroblasts. This increase in MMP-1 is lost when fibroblasts are co-incubated with IL-13 and TNF-α. IL-13 induced a significant increase in levels of pAkt in dermal fibroblasts, while Akt inhibitor VIII reversed the suppressive effects of IL-13 on the response of cultured fibroblasts to TNF-α, increasing their expression of MMP-1. We show that IL-13 suppresses MMP-1 in TNF-α-stimulated normal and scleroderma dermal fibroblast. Akt inhibitor VIII is able to reverse the suppressive effect of IL-13 on MMP-1 expression and protein synthesis. Our data suggest that IL-13 regulates MMP-1 expression in response to TNF-α through an Akt-mediated pathway and may play a role in fibrotic diseases such as scleroderma. © 2017 British Society for Immunology.
Lee, Seung Hwan; Kim, In Gul; Jung, Ae Ryang; Shrestha, Kshitiz Raj; Lee, Jin Ho; Park, Ki Dong; Chung, Byung Ha; Kim, Sae Woong; Kim, Ki Hean
2014-01-01
Erectile dysfunction (ED) is the most frequent long-term problem after radical prostatectomy. We aimed to evaluate whether the use of combination therapy with basic fibroblast growth factor (bFGF)-hydrogel on corpus cavernosum and with adipose-derived stem cells (ADSCs) and brain-derived neurotrophic factor (BDNF)-immobilized poly-lactic-co-glycolic acid (PLGA) membrane on the cavernous nerve (CN) could improve erectile function in a rat model of bilateral cavernous nerve crush injury (BCNI). Rats were randomly divided into five groups (n=15 per group): a normal group (N group), a group receiving saline application after bilateral cavernous nerve crush injury (BCNI), a group undergoing bFGF-hydrogel injection in the corpus cavernosum after BCNI (bFGF), a group receiving ADSC application covered with BDNF-membrane after BCNI (ADSC/BDNF), and a group undergoing coadministration of bFGF-hydrogel injection and BDNF-membrane with ADSCs after BDNF (bFGF+ADSC/BDNF). Four weeks postoperatively, the erectile function was assessed by detecting the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP). Smooth muscle and collagen contents were measured using Masson's trichrome staining. Neuronal nitric oxide synthase (nNOS) expression in the dorsal penile nerve was detected by immunostaining. The protein expression of the α-smooth muscle actin (α-SMA) and the cyclic guanosine monophosphate (cGMP) level of the corpus cavernosum were quantified by western blot and cGMP assay, respectively. In the bFGF+ADSC/BDNF group, the erectile function was significantly elevated compared with the BCNI and other treated groups and showed a significantly increased smooth muscle/collagen ratio, nNOS content, α-SMA expression, and cGMP level. In particular, there were no statistical differences in the ICP/MAP ratio, smooth muscle/collagen ratio, and α-SMA and cGMP levels between the bFGF+ADSC/BDNF group and normal group. Application of the BDNF-immobilized PLGA membrane with human ADSC into the CN and bFGF-incorporated hydrogel into the corpus carvernosum improved nearly normal erectile function in a rat model of postprostatectomy ED. This result suggests that a combined application of bFGF+ADSC/BDNF might be a promising treatment for postprostatectomy ED. PMID:24673637
Basic FGF or VEGF gene therapy corrects insufficiency in the intrinsic healing capacity of tendons
Tang, Jin Bo; Wu, Ya Fang; Cao, Yi; Chen, Chuan Hao; Zhou, You Lang; Avanessian, Bella; Shimada, Masaru; Wang, Xiao Tian; Liu, Paul Y.
2016-01-01
Tendon injury during limb motion is common. Damaged tendons heal poorly and frequently undergo unpredictable ruptures or impaired motion due to insufficient innate healing capacity. By basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) gene therapy via adeno-associated viral type-2 (AAV2) vector to produce supernormal amount of bFGF or VEGF intrinsically in the tendon, we effectively corrected the insufficiency of the tendon healing capacity. This therapeutic approach (1) resulted in substantial amelioration of the low growth factor activity with significant increases in bFGF or VEGF from weeks 4 to 6 in the treated tendons (p < 0.05 or p < 0.01), (2) significantly promoted production of type I collagen and other extracellular molecules (p < 0.01) and accelerated cellular proliferation, and (3) significantly increased tendon strength by 68–91% from week 2 after AAV2-bFGF treatment and by 82–210% from week 3 after AAV2-VEGF compared with that of the controls (p < 0.05 or p < 0.01). Moreover, the transgene expression dissipated after healing was complete. These findings show that the gene transfers provide an optimistic solution to the insufficiencies of the intrinsic healing capacity of the tendon and offers an effective therapeutic possibility for patients with tendon disunion. PMID:26865366
Problem-Based Test: The Effect of Fibroblast Growth Factor on Gene Expression
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2011-01-01
This paper shows the results of an experiment in which the effects of fibroblast growth factor (FGF), actinomycin D (Act D; an inhibitor of transcription), and cycloheximide (CHX; an inhibitor of translation) were studied on the expression of two genes: a gene called "Fnk" and the gene coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).…
Effects of laser immunotherapy on tumor microenvironment
NASA Astrophysics Data System (ADS)
Acquaviva, Joseph T.; Wood, Ethan W.; Hasanjee, Aamr; Chen, Wei R.; Vaughan, Melville B.
2014-02-01
The microenvironments of tumors are involved in a complex and reciprocal dialog with surrounding cancer cells. Any novel treatment must consider the impact of the therapy on the microenvironment. Recently, clinical trials with laser immunotherapy (LIT) have proven to effectively treat patients with late-stage, metastatic breast cancer and melanoma. LIT is the synergistic combination of phototherapy (laser irradiation) and immunological stimulation. One prominent cell type found in the tumor stroma is the fibroblast. Fibroblast cells can secrete different growth factors and extracellular matrix modifying molecules. Furthermore, fibroblast cells found in the tumor stroma often express alpha smooth muscle actin. These particular fibroblasts are coined cancer-associated fibroblast cells (CAFs). CAFs are known to facilitate the malignant progression of tumors. A collagen lattice assay with human fibroblast cells is used to elucidate the effects LIT has on the microenvironment of tumors. Changes in the contraction of the lattice, the differentiation of the fibroblast cells, as well as the proliferation of the fibroblast cells will be determined.
Mesenchymal-endothelial-transition contributes to cardiac neovascularization
Ubil, Eric; Duan, Jinzhu; Pillai, Indulekha C.L.; Rosa-Garrido, Manuel; Wu, Yong; Bargiacchi, Francesca; Lu, Yan; Stanbouly, Seta; Huang, Jie; Rojas, Mauricio; Vondriska, Thomas M.; Stefani, Enrico; Deb, Arjun
2014-01-01
Endothelial cells contribute to a subset of cardiac fibroblasts by undergoing endothelial-to-mesenchymal-transition, but whether cardiac fibroblasts can adopt an endothelial cell fate and directly contribute to neovascularization after cardiac injury is not known. Here, using genetic fate map techniques, we demonstrate that cardiac fibroblasts rapidly adopt an endothelial cell like phenotype after acute ischemic cardiac injury. Fibroblast derived endothelial cells exhibit anatomical and functional characteristics of native endothelial cells. We show that the transcription factor p53 regulates such a switch in cardiac fibroblast fate. Loss of p53 in cardiac fibroblasts severely decreases the formation of fibroblast derived endothelial cells, reduces post infarct vascular density and worsens cardiac function. Conversely, stimulation of the p53 pathway in cardiac fibroblasts augments mesenchymal to endothelial transition, enhances vascularity and improves cardiac function. These observations demonstrate that mesenchymal-to-endothelial-transition contributes to neovascularization of the injured heart and represents a potential therapeutic target for enhancing cardiac repair. PMID:25317562
Delivery of Alginate Scaffold Releasing Two Trophic Factors for Spinal Cord Injury Repair
Grulova, I.; Slovinska, L.; Blaško, J.; Devaux, S.; Wisztorski, M.; Salzet, M.; Fournier, I.; Kryukov, O.; Cohen, S.; Cizkova, D.
2015-01-01
Spinal cord injury (SCI) has been implicated in neural cell loss and consequently functional motor and sensory impairment. In this study, we propose an alginate -based neurobridge enriched with/without trophic growth factors (GFs) that can be utilized as a therapeutic approach for spinal cord repair. The bioavailability of key GFs, such as Epidermal Growth factor (EGF) and basic Fibroblast Growth Factor (bFGF) released from injected alginate biomaterial to the central lesion site significantly enhanced the sparing of spinal cord tissue and increased the number of surviving neurons (choline acetyltransferase positive motoneurons) and sensory fibres. In addition, we document enhanced outgrowth of corticospinal tract axons and presence of blood vessels at the central lesion. Tissue proteomics was performed at 3, 7 and 10 days after SCI in rats indicated the presence of anti-inflammatory factors in segments above the central lesion site, whereas in segments below, neurite outgrowth factors, inflammatory cytokines and chondroitin sulfate proteoglycan of the lectican protein family were overexpressed. Collectively, based on our data, we confirm that functional recovery was significantly improved in SCI groups receiving alginate scaffold with affinity-bound growth factors (ALG +GFs), compared to SCI animals without biomaterial treatment. PMID:26348665
Liu, Ting; Dan, Weihua; Dan, Nianhua; Liu, Xinhua; Liu, Xuexu; Peng, Xu
2017-08-01
Collagen-chitosan composite film modified with grapheme oxide (GO) and 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC), termed CC-G-E film, was loaded with basic fibroblast growth factor (bFGF) as the development of an efficacious wound healing device. In this study we report a novel drug delivery system that prevents the initial burst release and loss of bioactivity of drugs in vitro and in vivo applications. The results showed that CC-G-E film possessed improved thermal stability and a higher rate of crosslinking with increased mechanical properties when the dosage of GO was between 0.03% and 0.07%. It was shown that the in vitro release of bFGF from CC-G-E film continued for more than 28d. Furthermore, the CC-G-E films demonstrated excellent in vitro biocompatibility following culture with L929 fibroblasts in terms of cell adhesion and proliferation. CC-G-E films were implanted into Sprague-Dawley rats to characterize their ability to repair full-thickness skin wounds. Results showed that the CC-G-E film accelerated the wound healing process compared with the blank control. Based on all the results, it was concluded that CC-G-E film operates as a novel drug delivery system and due to its performance in wound remodeling, has potential to be developed as a wound dressing material. Copyright © 2017 Elsevier B.V. All rights reserved.
Lobocki, Michal; Zakrzewska, Malgorzata; Szlachcic, Anna; Krzyscik, Mateusz A; Sokolowska-Wedzina, Aleksandra; Otlewski, Jacek
2017-07-19
Site-specific conjugation is a leading trend in the development of protein conjugates, including antibody-drug conjugates (ADCs), suitable for targeted cancer therapy. Here, we present a very efficient strategy for specific attachment of a cytotoxic drug to fibroblast growth factor 1 (FGF1), a natural ligand of FGF receptors (FGFRs), which are over-expressed in several types of lung, breast, and gastric cancers and are therefore an attractive molecular target. Recently, we showed that FGF1 fused to monomethylauristatin E (vcMMAE) was highly cytotoxic to cells presenting FGFRs on their surface and could be used as a targeting agent alternative to an antibody. Unfortunately, conjugation via maleimide chemistry to endogenous FGF1 cysteines or a cysteine introduced at the N-terminus proceeded with low yield and led to nonhomogeneous products. To improve the conjugation, we introduced a novel Lys-Cys-Lys motif at either FGF1 terminus, which increased cysteine reactivity and allowed us to obtain an FGF1 conjugate with a defined site of conjugation and a yield exceeding 95%. Using FGFR-expressing cancer lines, we confirmed specific cytotoxity of the obtained C-terminal FGF1-vcMMAE conjugate and its selective endocytososis as compared with FGFR1-negative cells. This simple and powerful approach relying on the introduction of a short sequence containing cysteine and positively charged amino acids could be used universally to improve the efficiency of the site-specific chemical modification of other proteins.
Prokop, A; Kozlov, E; Nun Non, S; Dikov, M M; Sephel, G C; Whitsitt, J S; Davidson, J M
2001-01-01
We seek to improve existing methodologies for allogenic grafting of pancreatic islets. The lack of success of encapsulated transplanted islets inside the peritoneal cavity is presently attributed to poor vascularization of the implant. A thick, fibrotic capsule often surrounds the graft, limiting survival. We have tested the hypothesis that neovascularization of the graft material can be induced by the addition of proper angiogenic factors embedded within a polymeric coat. Biocompatible and nonresorbable meshes coated with hydrophilic polymers were implanted in rats and harvested after 1-, 6-, and 12-week intervals. The implant response was assessed by histological observations on the degree of vascularity, fibrosis, and inflammation. Macrostructural geometry of meshes was conducive to tissue ingrowth into the interstitial space between the mesh filaments. Hydrogel coating with incorporated acidic or basic FGF in an electrostatic complex with polyelectrolytes and/or with heparin provided a sustained slow release of the angiogenic growth factor. Anti-factor VIII and anti-collagen type IV antibodies and a GSL I-B4 lectin were used to measure the extent of vascularization. Vigorous and persistent vascularization radiated several hundred microns from the implant. The level of vascularization should provide a sufficient diffusion of nutrients and oxygen to implanted islets. Based on our observations, stable vascularization may require a sustained angiogenic signal to allow for the development of a permanent implant structure.
The nuclear-factor kappaB pathway is activated in pterygium.
Siak, Jay Jyh Kuen; Ng, See Liang; Seet, Li-Fong; Beuerman, Roger W; Tong, Louis
2011-01-05
Pterygium is a prevalent ocular surface disease with unknown pathogenesis. The authors investigated the role of nuclear factor kappa B (NF-κB) transcription factors in pterygium. Surgically excised primary pterygia were studied compared with uninvolved conjunctiva tissues. NF-κB activation was evaluated using Western blot analysis, ELISA, and DNA-binding assays. Primary pterygium fibroblasts were treated with TNF-α (20 ng/mL), and NF-κB activation was evaluated using immunocytochemistry, Western blot analysis, phospho-IκBα ELISA, and DNA-binding assays. TNF-α stimulation of NF-κB target genes RelB, NFKB2, RANTES, MCP-1, ENA-78, MMP-1, MMP-2, and MMP-3 in pterygium fibroblasts was compared with that in primary tenon fibroblasts by real-time PCR. Phosphorylation of IκBα (Ser32) was increased in pterygia tissues compared with uninvolved conjunctiva tissues, as determined by Western blot analysis and ELISA. IκBα expression was decreased, whereas nuclear RelA and p50 DNA-binding capacities were increased. Within 30 minutes of treatment with TNF-α, pterygium fibroblasts showed increased IκBα phosphorylation and nuclear translocation of RelA and p50. Treatment with TNF-α beyond 12 hours resulted in increased nuclear expression of RelB, p100, and p52. Furthermore, the upregulation of RANTES, MCP-1, ENA-78, MMP-1, MMP-2, and MMP-3 expression was more pronounced in TNF-α-treated pterygium fibroblasts than in tenon fibroblasts. The NF-κB pathway is shown for the first time to be activated in pterygia tissues compared with normal conjunctiva tissues. Stimulation by the inflammatory cytokine TNF-α can activate both canonical and noncanonical NF-κB pathways in pterygium fibroblasts with concomitant upregulation of NF-κB target genes.
The effect of myostatin silencing by lentiviral-mediated RNA interference on goat fetal fibroblasts.
Lu, Jian; Wei, Caihong; Zhang, Xiaoning; Xu, Lingyang; Zhang, Shifang; Liu, Jiasen; Cao, Jiaxue; Zhao, Fuping; Zhang, Li; Li, Bichun; Du, Lixin
2013-06-01
Myostatin is a transforming growth factor-β family member that acts as a negative regulator of skeletal muscle mass. To identify possible myostatin inhibitors that may promote muscle growth, we used RNA interference mediated by a lentiviral vector to knockdown myostatin in goat fetal fibroblast cells. We also investigated the expression changes in relevant myogenic regulatory factors (MRFs) and adipogenic regulatory factors in the absence of myostatin in goat fetal fibroblasts. Quantitative RT-PCR revealed that myostatin transcripts were significantly reduced by 75 % (P < 0.01). Western blot showed that myostatin protein expression was reduced by 95 % (P < 0.01). We also found that the mRNA expression of activin receptor IIB (ACVR2B) significantly increased by 350 % (P < 0.01), and p21 increased 172 % (P < 0.01). Furthermore, myostatin inhibition decreased Myf5 and increased MEF2C mRNA expression in goat fetal fibroblasts, suggesting that myostatin regulates MRFs differently in fibroblasts compared to muscle. In addition, the expression of adipocyte marker genes peroxisome proliferator-activated receptor (PPAR) γ and leptin, but not CCAAT/enhance-binding protein (C/EBP) α and C/EBPβ, were upregulated at the transcript level after myostatin silencing. These results suggest that we have generated a novel way to block myostatin in vitro, which could be used to improve livestock meat production and gene therapy of musculoskeletal diseases. This also suggests that myostatin plays a negative role in regulating the expression of adipogenesis related genes in goat fetal fibroblasts.
Anitua, Eduardo; Sanchez, Mikel; Merayo-Lloves, Jesus; De la Fuente, Maria; Muruzabal, Francisco; Orive, Gorka
2011-08-01
Plasma rich in growth factors (PRGF-Endoret) technology is an autologous platelet-enriched plasma obtained from patient's own blood, which after activation with calcium chloride allows the release of a pool of biologically active proteins that influence and promote a range of biological processes including cell recruitment, and growth and differentiation. Because ocular surface wound healing is mediated by different growth factors, we decided to explore the potential of PRGF-Endoret technology in stimulating the biological processes related with fibroblast-induced tissue repair. Furthermore, the anti-fibrotic properties of this technology were also studied. Blood from healthy donors was collected, centrifuged and, whole plasma column (WP) and the plasma fraction with the highest platelet concentration (F3) were drawn off, avoiding the buffy coat. Primary human cells including keratocytes and conjunctival fibroblasts were used to perform the "in vitro" investigations. The potential of PRGF-Endoret in promoting wound healing was evaluated by means of a proliferation and migration assays. Fibroblast cells were induced to myofibroblast differentiation after the treatment with 2.5 ng/mL of TGF-β1. The capability of WP and F3 to prevent and inhibit TGF-β1-induced differentiation was evaluated. Results show that this autologous approach significantly enhances proliferation and migration of both keratocytes and conjunctival fibroblasts. In addition, plasma rich in growth factors prevents and inhibits TGF-β1-induced myofibroblast differentiation. No differences were found between WP and F3 plasma fractions. These results suggest that PRGF-Endoret could reduce scarring while stimulating wound healing in ocular surface. F3 or whole plasma column show similar biological effects in keratocytes and conjunctival fibroblast cells.
Mackenzie, I C; Gao, Z
2001-04-01
Keratinocyte growth factor (KGF) is a stromally derived growth factor of the fibroblast growth factor (FGF) family with paracrine effects targeted to influence the growth and differentiation of epithelia. Regional and temporal changes in KGF expression play important roles in the development and maintenance of epithelial structures and in epithelial wound healing. Differing patterns of expression of KGF by fibroblasts in the gingival region could therefore be related to the observed regional variation in the differentiation and behavior of gingival epithelia. The in vitro and in vivo patterns of expression of KGF mRNA in human gingival and periodontal fibroblasts were examined using reverse transcription polymerase chain reactions (RT-PCR) and in situ hybridization with digoxigenin-labeled riboprobes. The patterns observed for human gingiva were compared with those for human skin and for murine tissues. Gingival and periodontal fibroblasts showed expression of KGF transcripts in vitro, and the degree of expression was markedly influenced by the presence of retinoic acid, an agent known to influence patterns of epithelial differentiation. Sections of human and murine gingiva and skin showed regionally variable expression of transcripts with the cells expressing KGF in the subepithelial, rather than the deeper, connective tissues and periodontium. The results point to a role of KGF in the maintenance of normal growth and differentiation of gingival epithelia. A lack of KGF expression by periodontal fibroblasts in vivo is expected to hinder apical epithelial migration and thus stabilize the epithelial attachment. The effects of retinoic acid (RA) on KGF expression in vitro provide an indirect mechanism by which RA may regulate the growth and differentiation of gingival epithelia.
Ding, Jie; Kwan, Peter; Ma, Zengshuan; Iwashina, Takashi; Wang, Jianfei; Shankowsky, Heather A; Tredget, Edward E
2016-09-01
Dermal wound healing, in which transforming growth factor beta 1 (TGFβ1) plays an important role, is a complex process. Previous studies suggest that vitamin D has a potential regulatory role in TGFβ1 induced activation in bone formation, and there is cross-talk between their signaling pathways, but research on their effects in other types of wound healing is limited. The authors therefore wanted to explore the role of vitamin D and its interaction with low concentration of TGFβ1 in dermal fibroblast-mediated wound healing through an in vitro study. Human dermal fibroblasts were treated with vitamin D, TGFβ1, both, or vehicle, and then the wound healing functions of dermal fibroblasts were measured. To further explore possible mechanisms explaining the synergistic effect of vitamin D and TGFβ1, targeted gene silencing of the vitamin D receptor was performed. Compared to either factor alone, treatment of fibroblasts with both vitamin D and low concentration of TGFβ1 increased gene expression of TGFβ1, connective tissue growth factor, and fibronectin 1, and enhanced fibroblast migration, myofibroblast formation, and collagen production. Vitamin D receptor gene silencing blocked this synergistic effect of vitamin D and TGFβ1 on both collagen production and myofibroblast differentiation. Thus a synergistic effect of vitamin D and low TGFβ1 concentration was found in dermal fibroblast-mediated wound healing in vitro. This study suggests that supplementation of vitamin D may be an important step to improve wound healing and regeneration in patients with a vitamin D deficiency. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Koob, Thomas J; Rennert, Robert; Zabek, Nicole; Massee, Michelle; Lim, Jeremy J; Temenoff, Johnna S; Li, William W; Gurtner, Geoffrey
2013-10-01
Human amnion/chorion tissue derived from the placenta is rich in cytokines and growth factors known to promote wound healing; however, preservation of the biological activities of therapeutic allografts during processing remains a challenge. In this study, PURION® (MiMedx, Marietta, GA) processed dehydrated human amnion/chorion tissue allografts (dHACM, EpiFix®, MiMedx) were evaluated for the presence of growth factors, interleukins (ILs) and tissue inhibitors of metalloproteinases (TIMPs). Enzyme-linked immunosorbent assays (ELISA) were performed on samples of dHACM and showed quantifiable levels of the following growth factors: platelet-derived growth factor-AA (PDGF-AA), PDGF-BB, transforming growth factor α (TGFα), TGFβ1, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), placental growth factor (PLGF) and granulocyte colony-stimulating factor (GCSF). The ELISA assays also confirmed the presence of IL-4, 6, 8 and 10, and TIMP 1, 2 and 4. Moreover, the relative elution of growth factors into saline from the allograft ranged from 4% to 62%, indicating that there are bound and unbound fractions of these compounds within the allograft. dHACM retained biological activities that cause human dermal fibroblast proliferation and migration of human mesenchymal stem cells (MSCs) in vitro. An in vivo mouse model showed that dHACM when tested in a skin flap model caused mesenchymal progenitor cell recruitment to the site of implantation. The results from both the in vitro and in vivo experiments clearly established that dHACM contains one or more soluble factors capable of stimulating MSC migration and recruitment. In summary, PURION® processed dHACM retains its biological activities related to wound healing, including the potential to positively affect four distinct and pivotal physiological processes intimately involved in wound healing: cell proliferation, inflammation, metalloproteinase activity and recruitment of progenitor cells. This suggests a paracrine mechanism of action for dHACM when used for wound healing applications. ©2013 The Authors. International Wound Journal published by John Wiley & Sons Ltd and Medicalhelplines.com Inc.
Singh, Vivek P; Mathison, Megumi; Patel, Vivekkumar; Sanagasetti, Deepthi; Gibson, Brian W; Yang, Jianchang; Rosengart, Todd K
2016-11-10
Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells represents a promising potential new therapy for treating heart disease, inducing significant improvements in postinfarct ventricular function in rodent models. Because reprogramming factors effective in transdifferentiating rodent cells are not sufficient to reprogram human cells, we sought to identify reprogramming factors potentially applicable to human studies. Lentivirus vectors expressing Gata4, Mef2c, and Tbx5 (GMT); Hand2 (H), Myocardin (My), or microRNA (miR)-590 were administered to rat, porcine, and human cardiac fibroblasts in vitro. induced cardiomyocyte-like cell production was then evaluated by assessing expression of the cardiomyocyte marker, cardiac troponin T (cTnT), whereas signaling pathway studies were performed to identify reprogramming factor targets. GMT administration induced cTnT expression in ≈6% of rat fibroblasts, but failed to induce cTnT expression in porcine or human cardiac fibroblasts. Addition of H/My and/or miR-590 to GMT administration resulted in cTNT expression in ≈5% of porcine and human fibroblasts and also upregulated the expression of the cardiac genes, MYH6 and TNNT2. When cocultured with murine cardiomyocytes, cTnT-expressing porcine cardiac fibroblasts exhibited spontaneous contractions. Administration of GMT plus either H/My or miR-590 alone also downregulated fibroblast genes COL1A1 and COL3A1. miR-590 was shown to directly suppress the zinc finger protein, specificity protein 1 (Sp1), which was able to substitute for miR-590 in inducing cellular reprogramming. These data support porcine studies as a surrogate for testing human cardiac reprogramming, and suggest that miR-590-mediated repression of Sp1 represents an alternative pathway for enhancing human cardiac cellular reprogramming. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Cieslik, Katarzyna A; Trial, JoAnn; Crawford, Jeffrey R; Taffet, George E; Entman, Mark L
2014-05-01
Aging has been associated with adverse fibrosis. Here we formulate a new hypothesis and present new evidence that unresponsiveness of mesenchymal stem cells (MSC) and fibroblasts to transforming growth factor beta (TGF-β), due to reduced expression of TGF-β receptor I (TβRI), provides a foundation for cardiac fibrosis in the aging heart via two mechanisms. 1) TGF-β promotes expression of Nanog, a transcription factor that retains MSC in a primitive state. In MSC derived from the aging heart, Nanog expression is reduced and therefore MSC gradually differentiate and the number of mesenchymal fibroblasts expressing collagen increases. 2) As TGF-β signaling pathway components negatively regulate transcription of monocyte chemoattractant protein-1 (MCP-1), a reduced expression of TβRI prevents aging mesenchymal cells from shutting down their own MCP-1 expression. Elevated MCP-1 levels that originated from MSC attract transendothelial migration of mononuclear leukocytes from blood to the tissue. MCP-1 expressed by mesenchymal fibroblasts promotes further migration of monocytes and T lymphocytes away from the endothelial barrier and supports the monocyte transition into macrophages and finally into myeloid fibroblasts. Both myeloid and mesenchymal fibroblasts contribute to fibrosis in the aging heart via collagen synthesis. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ". © 2013. Published by Elsevier Ltd. All rights reserved.
RECK-Mediated β1-Integrin Regulation by TGF-β1 Is Critical for Wound Contraction in Mice.
Gutiérrez, Jaime; Droppelmann, Cristian A; Contreras, Osvaldo; Takahashi, Chiaki; Brandan, Enrique
2015-01-01
Fibroblasts are critical for wound contraction; a pivotal step in wound healing. They produce and modify the extracellular matrix (ECM) required for the proper tissue remodeling. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a key regulator of ECM homeostasis and turnover. However, its role in wound contraction is presently unknown. Here we describe that Transforming growth factor type β1 (TGF-β1), one of the main pro-fibrotic wound-healing promoting factors, decreases RECK expression in fibroblasts through the Smad and JNK dependent pathways. This TGF-β1 dependent downregulation of RECK occurs with the concomitant increase of β1-integrin, which is required for fibroblasts adhesion and wound contraction through the activation of focal adhesion kinase (FAK). Loss and gain RECK expression experiments performed in different types of fibroblasts indicate that RECK downregulation mediates TGF-β1 dependent β1-integrin expression. Also, reduced levels of RECK potentiate TGF-β1 effects over fibroblasts FAK-dependent contraction, without affecting its cognate signaling. The above results were confirmed on fibroblasts derived from the Reck+/- mice compared to wild type-derived fibroblasts. We observed that Reck+/- mice heal dermal wounds more efficiently than wild type mice. Our results reveal a critical role for RECK in skin wound contraction as a key mediator in the axis: TGF-β1-RECK-β1-integrin.
Therapeutic Angiogenesis via Solar Cell-Facilitated Electrical Stimulation.
Jeong, Gun-Jae; Oh, Jin Young; Kim, Yeon-Ju; Bhang, Suk Ho; Jang, Hyeon-Ki; Han, Jin; Yoon, Jeong-Kee; Kwon, Sang-Mo; Lee, Tae Il; Kim, Byung-Soo
2017-11-08
Cell therapy has been suggested as a treatment modality for ischemic diseases, but the poor survival and engraftment of implanted cells limit its therapeutic efficacy. To overcome such limitation, we used electrical stimulation (ES) derived from a wearable solar cell for inducing angiogenesis in ischemic tissue. ES enhanced the secretion of angiogenic growth factors and the migration of mesenchymal stem cells (MSCs), myoblasts, endothelial progenitor cells, and endothelial cells in vitro. In a mouse ischemic hindlimb model, ES generated by a solar cell and applied to the ischemic region promoted migration of MSCs toward the ischemic site and upregulated expression of angiogenic paracrine factors (vascular endothelial, basic fibroblast, and hepatocyte growth factors; and stromal cell-derived factor-1α). Importantly, solar cell-generated ES promoted the formation of capillaries and arterioles at the ischemic region, attenuated muscle necrosis and fibrosis, and eventually prevented loss of the ischemic limb. Solar cell ES therapy showed higher angiogenic efficacy than conventional MSC therapy. This study shows the feasibility of using solar cell ES as a novel treatment for therapeutic angiogenesis.
Eto, Hitomi; Suga, Hirotaka; Aoi, Noriyuki; Kato, Harunosuke; Doi, Kentaro; Kuno, Shinichiro; Tabata, Yasuhiko; Yoshimura, Kotaro
2012-02-01
Although hypertrophic scars (HTSs) and keloids are challenging problems, their pathogenesis is not well understood, making therapy difficult. We showed that matrix metalloproteinase (MMP)-1 expression was downregulated in HTS compared with normal skin from the same patients, whereas type 1 and 3 collagen and transforming growth factor-β (TGF-β) were upregulated. These differences, however, were not seen in cultured fibroblasts, suggesting the involvement of microenvironmental factors in the pathogenesis of HTS. Fibroblast growth factor-2 (FGF-2) highly upregulated the expression of MMP-1 and hepatocyte growth factor (HGF) in both HTS-derived and control fibroblasts; the upregulation was reversed by extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) inhibitors. An animal study using human HTS tissue implanted into nude mice indicated that controlled-release FGF-2 resulted in significantly less weight and decreased hydroxyproline content in HTS. Degradation of collagen fibers in FGF-2-treated HTS was also confirmed histologically. Western blotting showed that FGF-2-treated HTS expressed significantly higher MMP-1 protein than control. Decreased MMP-1 expression may be an important transcriptional change in HTS, and its reversal as well as upregulation of HGF by FGF-2 could be a new therapeutic approach for HTS.
USDA-ARS?s Scientific Manuscript database
Tenofovir (TDF) is associated with phosphaturia and elevated 1,25 dihydroxy vitamin D (1,25-OH(2)D). Fibroblast growth factor-23 causes phosphaturia and increases in response to elevated 1,25-OH(2)D. Vitamin D binding proetin (VDBP) binds to 1,25-OH(2)D, decreasing biologic activity, and is elevated...
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Tenofovir (TDF) is associated with phosphaturia and elevated 1,25 dihydroxy vitamin D (1,25-OH(2)D). Fibroblast growth factor 23 (FGF23) causes phosphaturia and increases in response to elevated 1,25-OH(2)D. Vitamin D binding protein (VDBP) binds to 1,25-OH(2)D, decreasing its biologic...
Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis
Wex, Eva; Pautsch, Alexander; Schnapp, Gisela; Hostettler, Katrin E.; Stowasser, Susanne; Kolb, Martin
2015-01-01
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease characterised by fibrosis of the lung parenchyma and loss of lung function. Although the pathogenic pathways involved in IPF have not been fully elucidated, IPF is believed to be caused by repetitive alveolar epithelial cell injury and dysregulated repair, in which there is uncontrolled proliferation of lung fibroblasts and differentiation of fibroblasts into myofibroblasts, which excessively deposit extracellular matrix (ECM) proteins in the interstitial space. A number of profibrotic mediators including platelet-derived growth factor (PDGF), fibroblast growth factor (FGF) and transforming growth factor-β are believed to play important roles in the pathogenesis of IPF. Nintedanib is a potent small molecule inhibitor of the receptor tyrosine kinases PDGF receptor, FGF receptor and vascular endothelial growth factor receptor. Data from in vitro studies have shown that nintedanib interferes with processes active in fibrosis such as fibroblast proliferation, migration and differentiation, and the secretion of ECM. In addition, nintedanib has shown consistent anti-fibrotic and anti-inflammatory activity in animal models of lung fibrosis. These data provide a strong rationale for the clinical efficacy of nintedanib in patients with IPF, which has recently been demonstrated in phase III clinical trials. PMID:25745043
Li, Ru; Li, Claire H; Nauth, Aaron; McKee, Michael D; Schemitsch, Emil H
2010-09-01
Vascular endothelial growth factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy enhances bone healing of a rabbit tibia segmental bone defect in vivo. The aim of this project was to examine the effect of exogenous human VEGF on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Rat fibroblasts and osteoblasts were harvested from the dermal tissue and periosteum, respectively, of Fisher 344 rats. The cells were then cultured and transfected with pcDNA-human VEGF using Superfect reagent (Qiagen). Four experimental groups were created: 1) fibroblast-VEGF; 2) osteoblast-VEGF; 3) nontransfected fibroblast controls; and 4) nontransfected osteoblast controls. The cultured cells were harvested at 1, 3, and 7 days after the gene transfection. The total mRNA was extracted (Trizol; Invitrogen); both human VEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. The human VEGF165 mRNA was detected by reverse transcriptase-polymerase chain reaction from transfected fibroblasts and osteoblasts at 1, 3, and 7 days after gene transfection. The human VEGF165 levels peaked at Day 1 and then gradually reduced expression in both transfected fibroblasts and osteoblasts. Two endogenous rat VEGF isoforms were detected in this cell culture model: rat VEGF120 and rat VEGF164. We compared the rat VEGF120 and rat VEGF164 expression level of the fibroblasts or osteoblasts that were transfected with human VEGF165, with nontransfected control cells. Both the transfected fibroblasts and osteoblasts showed greater expression of rat VEGF164 than nontransfected controls at Day 1 (peak level) and Day 3, but not at Day 7. The expression of rat VEGF120 was lower in transfected fibroblasts, but higher in transfected osteoblasts, than the relevant control groups at any time point after transfection. In addition, human VEGF gene transfection increased osteoblast cell proliferation after 3 days. These in vitro results suggest that cell-based human VEGF gene therapy is not only effective at causing human VEGF expression, but also enhances endogenous rat VEGF mRNA expression in both fibroblasts and osteoblasts, particularly the rat VEGF164 isoform.
Matrix metalloproteinase-9 activates TGF-β and stimulates fibroblast contraction of collagen gels.
Kobayashi, Tetsu; Kim, HuiJung; Liu, Xiangde; Sugiura, Hisatoshi; Kohyama, Tadashi; Fang, Qiuhong; Wen, Fu-Qiang; Abe, Shinji; Wang, Xingqi; Atkinson, Jeffrey J; Shipley, James M; Senior, Robert M; Rennard, Stephen I
2014-06-01
Matrix metalloproteinase-9 (MMP-9) is a matrix-degrading enzyme implicated in many biological processes, including inflammation. It is produced by many cells, including fibroblasts. When cultured in three-dimensional (3D) collagen gels, fibroblasts contract the surrounding matrix, a function that is thought to model the contraction that characterizes both normal wound repair and fibrosis. The current study was designed to evaluate the role of endogenously produced MMP-9 in fibroblast contraction of 3D collagen gels. Fibroblasts from mice lacking expression of MMP-9 and human lung fibroblasts (HFL-1) transfected with MMP-9 small-interfering RNA (siRNA) were used. Fibroblasts were cast into type I collagen gels and floated in culture medium with or without transforming growth factor (TGF)-β1 for 5 days. Gel size was determined daily using an image analysis system. Gels made from MMP-9 siRNA-treated human fibroblasts contracted less than control fibroblasts, as did fibroblasts incubated with a nonspecific MMP inhibitor. Similarly, fibroblasts cultured from MMP-9-deficient mice contracted gels less than did fibroblasts from control mice. Transfection of the MMP-9-deficient murine fibroblasts with a vector expressing murine MMP-9 restored contractile activity to MMP-9-deficient fibroblasts. Inhibition of MMP-9 reduced active TGF-β1 and reduced several TGF-β1-driven responses, including activity of a Smad3 reporter gene and production of fibronectin. Because TGF-β1 also drives fibroblast gel contraction, this suggests the mechanism for MMP-9 regulation of contraction is through the generation of active TGF-β1. This study provides direct evidence that endogenously produced MMP-9 has a role in regulation of tissue contraction of 3D collagen gels mediated by fibroblasts. Copyright © 2014 the American Physiological Society.
Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan
2015-07-01
It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury.
Genetic analysis of fibroblast growth factor signaling in the Drosophila eye.
Mukherjee, T; Choi, I; Banerjee, Utpal
2012-01-01
The development of eyes in Drosophila involves intricate epithelial reorganization events for accurate positioning of cells and proper formation and organization of ommatidial clusters. We demonstrate that Branchless (Bnl), the fibroblast growth factor ligand, regulates restructuring events in the eye disc primordium from as early as the emergence of clusters from a morphogenetic front to the cellular movements during pupal eye development. Breathless (Btl) functions as the fibroblast growth factor receptor to mediate Bnl signal, and together they regulate expression of DE-cadherin, Crumbs, and Actin. In addition, in the eye Bnl regulates the temporal onset and extent of retinal basal glial cell migration by activating Btl in the glia. We hypothesized that the Bnl functions in the eye are Hedgehog dependent and represent novel aspects of Bnl signaling not explored previously.
Lamprecht, Sergio; Sigal-Batikoff, Ina; Shany, Shraga; Abu-Freha, Naim; Ling, Eduard; Delinasios, George J; Moyal-Atias, Keren; Delinasios, John G; Fich, Alexander
2018-02-27
It is well recognized that cancer cells subvert the phenotype of stromal naïve fibroblasts and instruct the neighboring cells to sustain their growth agenda. The mechanisms underpinning the switch of fibroblasts to cancer-associated fibroblasts (CAFs) are the focus of intense investigation. One of the most significant hallmarks of the biological identity of CAFs is that their tumor-promoting phenotype is stably maintained during in vitro and ex vivo propagation without the continual interaction with the adjacent cancer cells. In this review, we discuss robust evidence showing that the master cytokine Transforming Growth Factor-β1 (TGFβ-1) is a prime mover in reshaping, via epigenetic switches, the phenotype of stromal fibroblasts to a durable state. We also examine, in detail, the pervasive involvement of TGFβ-1 signaling from both cancer cells and CAFs in fostering cancer development, taking colorectal cancer (CRC) as a paradigm of human neoplasia. Finally, we review the stroma-centric anticancer therapeutic approach focused on CAFs-the most abundant cell population of the tumor microenvironment (TME)-as target cells.
Tao, Yong; Liu, Jianming; Zhang, Yunhai; Zhang, Meiling; Fang, Junshun; Han, Wei; Zhang, Zhizhong; Liu, Ya; Ding, Jianping; Zhang, Xiaorong
2009-05-01
In evolution, the red panda (Ailurus fulgens) plays a pivotal role in the higher level phylogeny of arctoides carnivore mammals. The red panda inhabits certain Asian countries only and its numbers are decreasing. Therefore, the development of feasible ways to preserve this species is necessary. Genetic resource cryopreservation and somatic cell nuclear transfer (SCNT) have been used extensively to rescue this endangered species. The present study describes the establishment, for the first time, of a red panda ear fibroblast cell line, which was then cryopreserved, thawed and cultured. Through micromanipulation, interspecies embryos were reconstructed using the cryopreserved-thawed fibroblasts of the red panda as the donor and rabbit oocytes as recipients. A total of 194 enucleated rabbit oocytes were reconstructed with red panda ear fibroblasts; enucleated oocytes were activated without fusion as the control. The results show that the fibroblast cell line was established successfully by tissue culture and then cryopreserved in liquid nitrogen. Supplementation with 20% fetal bovine serum and 8% dimethyl sulphoxide in basic medium facilitated the cryopreservation. The interspecies embryos were successfully reconstructed. The cleavage, morulae and blastocyst rates after in vitro culture were 71, 47 and 23% (31/194), respectively. This study indicated that a somatic cell line could be established and cryopreserved from red panda and that rabbit cytoplast supports mitotic cleavage of the red panda karyoplasts and is capable of reprogramming the nucleus to achieve blastocysts.
El Ghalbzouri, Abdoelwaheb; Jonkman, Marcel F; Dijkman, Remco; Ponec, Maria
2005-01-01
This study was undertaken to examine the role fibroblasts play in the formation of the basement membrane (BM) in human skin equivalents. For this purpose, keratinocytes were seeded on top of fibroblast-free or fibroblast-populated collagen matrix or de-epidermized dermis and cultured in the absence of serum and exogenous growth factors. The expression of various BM components was analyzed on the protein and mRNA level. Irrespective of the presence or absence of fibroblasts, keratin 14, hemidesmosomal proteins plectin, BP230 and BP180, and integrins alpha1beta1, alpha2beta1, alpha3beta1, and alpha6beta4 were expressed but laminin 1 was absent. Only in the presence of fibroblasts or of various growth factors, laminin 5 and laminin 10/11, nidogen, uncein, type IV and type VII collagen were decorating the dermal/epidermal junction. These findings indicate that the attachment of basal keratinocytes to the dermal matrix is most likely mediated by integrins alpha1beta1 and alpha2beta1, and not by laminins that bind to integrin alpha6beta4 and that the epithelial-mesenchymal cross-talk plays an important role in synthesis and deposition of various BM components.
Zhou, Huanyu; Dickson, Matthew E.; Kim, Min Soo; Bassel-Duby, Rhonda; Olson, Eric N.
2015-01-01
Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique. PMID:26354121
Gillespie, Zoe E; MacKay, Kimberly; Sander, Michelle; Trost, Brett; Dawicki, Wojciech; Wickramarathna, Aruna; Gordon, John; Eramian, Mark; Kill, Ian R; Bridger, Joanna M; Kusalik, Anthony; Mitchell, Jennifer A; Eskiw, Christopher H
2015-01-01
Rapamycin is a well-known inhibitor of the Target of Rapamycin (TOR) signaling cascade; however, the impact of this drug on global genome function and organization in normal primary cells is poorly understood. To explore this impact, we treated primary human foreskin fibroblasts with rapamycin and observed a decrease in cell proliferation without causing cell death. Upon rapamycin treatment chromosomes 18 and 10 were repositioned to a location similar to that of fibroblasts induced into quiescence by serum reduction. Although similar changes in positioning occurred, comparative transcriptome analyses demonstrated significant divergence in gene expression patterns between rapamycin-treated and quiescence-induced fibroblasts. Rapamycin treatment induced the upregulation of cytokine genes, including those from the Interleukin (IL)-6 signaling network, such as IL-8 and the Leukemia Inhibitory Factor (LIF), while quiescent fibroblasts demonstrated up-regulation of genes involved in the complement and coagulation cascade. In addition, genes significantly up-regulated by rapamycin treatment demonstrated increased promoter occupancy of the transcription factor Signal Transducer and Activator of Transcription 5A/B (STAT5A/B). In summary, we demonstrated that the treatment of fibroblasts with rapamycin decreased proliferation, caused chromosome territory repositioning and induced STAT5A/B-mediated changes in gene expression enriched for cytokines. PMID:26652669
Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1
Moon, Jai-Hee; Heo, June Seok; Kim, Jun Sung; Jun, Eun Kyoung; Lee, Jung Han; Kim, Aeree; Kim, Jonggun; Whang, Kwang Youn; Kang, Yong-Kook; Yeo, Seungeun; Lim, Hee-Joung; Han, Dong Wook; Kim, Dong-Wook; Oh, Sejong; Yoon, Byung Sun; Schöler, Hans R; You, Seungkwon
2011-01-01
Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4, Sox2, and Klf4 in combination with c-Myc. Recently, Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into iPS cells. Here, we report that Bmi1 leads to the transdifferentiation of mouse fibroblasts into NSC-like cells, and, in combination with Oct4, can replace Sox2, Klf4 and c-Myc during the reprogramming of fibroblasts into iPS cells. Furthermore, activation of sonic hedgehog signaling (by Shh, purmorphamine, or oxysterol) compensates for the effects of Bmi1, and, in combination with Oct4, reprograms mouse embryonic and adult fibroblasts into iPS cells. One- and two-factor iPS cells are similar to mouse embryonic stem cells in their global gene expression profile, epigenetic status, and in vitro and in vivo differentiation into all three germ layers, as well as teratoma formation and germline transmission in vivo. These data support that converting fibroblasts with Bmi1 or activation of the sonic hedgehog pathway to an intermediate cell type that expresses Sox2, Klf4, and N-Myc allows iPS generation via the addition of Oct4. PMID:21709693
Ieda, Masaki
2016-09-23
It is well known that cardiac function is tightly controlled by neural activity; however, the molecular mechanism of cardiac innervation during development and the relationship with heart disease remain undetermined. My work has revealed the molecular networks that govern cardiac innervation and its critical roles in heart diseases such as silent myocardial ischemia and arrhythmias. Cardiomyocytes proliferate during embryonic development, but lose their proliferative capacity after birth. Cardiac fibroblasts are a major source of cells during fibrosis and induce cardiac hypertrophy after myocardial injury in the adult heart. Despite the importance of fibroblasts in the adult heart, the role of fibroblasts in embryonic heart development was previously not determined. I demonstrated that cardiac fibroblasts play important roles in myocardial growth and cardiomyocyte proliferation during embryonic development, and I identified key paracrine factors and signaling pathways. In contrast to embryonic cardiomyocytes, adult cardiomyocytes have little regenerative capacity, leading to heart failure and high mortality rates after myocardial infarction. Leveraging the knowledge of developmental biology, I identified cardiac reprogramming factors that can directly convert resident cardiac fibroblasts into cardiomyocytes for heart regeneration. These findings greatly improved our understanding of heart development and diseases, and provide a new strategy for heart regenerative therapy. (Circ J 2016; 80: 2081-2088).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Ci-Hang; Wang, Xin-Tong; Ma, Wei
2015-03-06
Recent evidence suggested that nonirradiated cancer-associated fibroblasts (CAFs) promoted aggressive phenotypes of cancer cells through epithelial–mesenchymal transition (EMT). Hepatoma-derived growth factor (HDGF) is a radiosensitive gene of esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the effect of irradiated fibroblasts on EMT and HDGF expression of ESCC. Our study demonstrated that coculture with nonirradiated fibroblasts significantly increased the invasive ability of ESCC cells and the increased invasiveness was further accelerated when they were cocultured with irradiated fibroblasts. Scattering of ESCC cells was also accelerated by the supernatant from irradiated fibroblasts. Exposure of ESCC cells to supernatant from irradiatedmore » fibroblasts resulted in decreased E-cadherin, increased vimentin in vitro and β-catenin was demonstrated to localize to the nucleus in tumor cells with irradiated fibroblasts in vivo models. The expression of HDGF and β-catenin were increased in both fibroblasts and ESCC cells of irradiated group in vitro and in vivo models. Interestingly, the tumor cells adjoining the stromal fibroblasts displayed strong nuclear HDGF immunoreactivity, which suggested the occurrence of a paracrine effect of fibroblasts on HDGF expression. These data suggested that irradiated fibroblasts promoted invasion, growth, EMT and HDGF expression of ESCC. - Highlights: • Irradiated CAFs accelerated invasiveness and scattering of ESCC cell lines. • Irradiated CAFs promoted EMT of ESCC cells. • Irradiated fibroblasts induced nuclear β-catenin relocalization in ESCC cells. • Irradiated fibroblasts increased HDGF expression in vitro and in vivo.« less
Muir, Lindsey A.; Murry, Charles E.
2016-01-01
In Duchenne muscular dystrophy (DMD) and other muscle wasting disorders, cell therapies are a promising route for promoting muscle regeneration by supplying a functional copy of the missing dystrophin gene and contributing new muscle fibers. The clinical application of cell-based therapies is resource intensive, and it will therefore be necessary to address key limitations that reduce cell engraftment into muscle tissue. A pressing issue is poor donor cell survival following transplantation, which in preclinical studies limits the ability to effectively test the impact of cell-based therapy on whole muscle function. We, therefore, sought to improve engraftment and the functional impact of in vivo myogenically converted dermal fibroblasts (dFbs) using a prosurvival cocktail (PSC) that includes heat shock followed by treatment with insulin-like growth factor-1, a caspase inhibitor, a Bcl-XL peptide, a KATP channel opener, basic fibroblast growth factor, Matrigel, and cyclosporine A. Advantages of dFbs include compatibility with the autologous setting, ease of isolation, and greater proliferative potential than DMD satellite cells. dFbs expressed tamoxifen-inducible MyoD and carried a mini-dystrophin gene driven by a muscle-specific promoter. After transplantation into muscles of mdx mice, a 70% reduction in donor cells was observed by day 5, and a 94% reduction by day 28. However, treatment with PSC gave a nearly three-fold increase in donor cells in early engraftment, and greatly increased the number of donor-contributed muscle fibers and total engrafted area in transplanted muscles. Furthermore, dystrophic muscles that received dFbs with PSC displayed reduced injury with eccentric contractions and an increase in maximum isometric force. Thus, enhancing survival of myogenic cells increases engraftment and improves structure and function of dystrophic muscle. PMID:27503462
Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model.
Sygnecka, Katja; Heider, Andreas; Scherf, Nico; Alt, Rüdiger; Franke, Heike; Heine, Claudia
2015-04-01
Mesenchymal stem cells (MSCs) have been identified as promising candidates for neuroregenerative cell therapies. However, the impact of different isolation procedures on the functional and regenerative characteristics of MSC populations has not been studied thoroughly. To quantify these differences, we directly compared classically isolated bulk bone marrow-derived MSCs (bulk BM-MSCs) to the subpopulation Sca-1(+)Lin(-)CD45(-)-derived MSCs(-) (SL45-MSCs), isolated by fluorescence-activated cell sorting from bulk BM-cell suspensions. Both populations were analyzed with respect to functional readouts, that are, frequency of fibroblast colony forming units (CFU-f), general morphology, and expression of stem cell markers. The SL45-MSC population is characterized by greater morphological homogeneity, higher CFU-f frequency, and significantly increased nestin expression compared with bulk BM-MSCs. We further quantified the potential of both cell populations to enhance neuronal fiber growth, using an ex vivo model of organotypic brain slice co-cultures of the mesocortical dopaminergic projection system. The MSC populations were cultivated underneath the slice co-cultures without direct contact using a transwell system. After cultivation, the fiber density in the border region between the two brain slices was quantified. While both populations significantly enhanced fiber outgrowth as compared with controls, purified SL45-MSCs stimulated fiber growth to a larger degree. Subsequently, we analyzed the expression of different growth factors in both cell populations. The results show a significantly higher expression of brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor in the SL45-MSCs population. Altogether, we conclude that MSC preparations enriched for primary MSCs promote neuronal regeneration and axonal regrowth, more effectively than bulk BM-MSCs, an effect that may be mediated by a higher BDNF secretion.
Muir, Lindsey A; Murry, Charles E; Chamberlain, Jeffrey S
2016-09-07
In Duchenne muscular dystrophy (DMD) and other muscle wasting disorders, cell therapies are a promising route for promoting muscle regeneration by supplying a functional copy of the missing dystrophin gene and contributing new muscle fibers. The clinical application of cell-based therapies is resource intensive, and it will therefore be necessary to address key limitations that reduce cell engraftment into muscle tissue. A pressing issue is poor donor cell survival following transplantation, which in preclinical studies limits the ability to effectively test the impact of cell-based therapy on whole muscle function. We, therefore, sought to improve engraftment and the functional impact of in vivo myogenically converted dermal fibroblasts (dFbs) using a prosurvival cocktail (PSC) that includes heat shock followed by treatment with insulin-like growth factor-1, a caspase inhibitor, a Bcl-XL peptide, a K ATP channel opener, basic fibroblast growth factor, Matrigel, and cyclosporine A. Advantages of dFbs include compatibility with the autologous setting, ease of isolation, and greater proliferative potential than DMD satellite cells. dFbs expressed tamoxifen-inducible MyoD and carried a mini-dystrophin gene driven by a muscle-specific promoter. After transplantation into muscles of mdx mice, a 70% reduction in donor cells was observed by day 5, and a 94% reduction by day 28. However, treatment with PSC gave a nearly three-fold increase in donor cells in early engraftment, and greatly increased the number of donor-contributed muscle fibers and total engrafted area in transplanted muscles. Furthermore, dystrophic muscles that received dFbs with PSC displayed reduced injury with eccentric contractions and an increase in maximum isometric force. Thus, enhancing survival of myogenic cells increases engraftment and improves structure and function of dystrophic muscle.
Stretching Fibroblasts Remodels Fibronectin and Alters Cancer Cell Migration
NASA Astrophysics Data System (ADS)
Ao, Mingfang; Brewer, Bryson M.; Yang, Lijie; Franco Coronel, Omar E.; Hayward, Simon W.; Webb, Donna J.; Li, Deyu
2015-02-01
Most investigations of cancer-stroma interactions have focused on biochemical signaling effects, with much less attention being paid to biophysical factors. In this study, we investigated the role of mechanical stimuli on human prostatic fibroblasts using a microfluidic platform that was adapted for our experiments and further developed for both repeatable performance among multiple assays and for compatibility with high-resolution confocal microscopy. Results show that mechanical stretching of normal tissue-associated fibroblasts (NAFs) alters the structure of secreted fibronectin. Specifically, unstretched NAFs deposit and assemble fibronectin in a random, mesh-like arrangement, while stretched NAFs produce matrix with a more organized, linearly aligned structure. Moreover, the stretched NAFs exhibited an enhanced capability for directing co-cultured cancer cell migration in a persistent manner. Furthermore, we show that stretching NAFs triggers complex biochemical signaling events through the observation of increased expression of platelet derived growth factor receptor α (PDGFRα). A comparison of these behaviors with those of cancer-associated fibroblasts (CAFs) indicates that the observed phenotypes of stretched NAFs are similar to those associated with CAFs, suggesting that mechanical stress is a critical factor in NAF activation and CAF genesis.
Inhibition of the mitogenic response to platelet-derived growth factor by terbinafine
DOE Office of Scientific and Technical Information (OSTI.GOV)
St. Denny, I.H.; Glinka, K.G.; Nemecek, G.M.
1987-05-01
Terbinafine (T;(E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic which inhibits fungal squalene epoxidase activity, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated mitogenesis. The inclusion of 1.5-5{mu}M T in fibroblast incubation media was associated with increased ({sup 3}H)thymidine incorporation into DNA in the presence and absence of PDGF. However, T at concentrations above 6{mu}M reduced DNA synthesis in control and PDGF-exposed cultures to nearly undetectable levels. Under a phase-contrast microscope, fibroblasts appeared morphologically normal at T concentrations as high as 25 {mu}M. Neither the uptake of ({sup 3}H)thymidine nor the specific binding of {sup 125}I-PDGF to fibroblast receptors was significantly affected bymore » 10 {mu}M T. Furthermore, concentrations of T which antagonized the mitogenic response to PDGF also interfered with fibroblast growth factor-induced mitogenesis. Together, these data suggest that T has the ability to inhibit the in vitro action of PDGF via a post-receptor mechanism.« less
He, Xingxing; Hu, Xiang; Ma, Xiaojing; Su, Hang; Ying, Lingwen; Peng, Jiahui; Pan, Xiaoping; Bao, Yuqian; Zhou, Jian; Jia, Weiping
2017-06-15
Recently, basic and clinical studies have provided evidence supporting the relationship between circulating levels of fibroblast growth factor (FGF) 23 and the development of atherosclerosis. Given that diabetes is an established risk factor for lower extremity atherosclerotic disease (LEAD), the goal of the present study was to explore the relationship between serum FGF23 levels and LEAD, as well as the related factors, in Chinese patients with type 2 diabetes mellitus (T2DM). A total of 401 hospitalized T2DM patients (201 subjects with LEAD and 200 subjects without LEAD) were enrolled in this study. Serum FGF23 levels were determined by a sandwich enzyme-linked immunosorbent assay. Femoral intima-media thickness (F-IMT) and lower limb atherosclerotic plaque were assessed through color Doppler ultrasound. The median (interquartile range) serum FGF23 levels in the entire study population was 42.08 (35.59-49.17) pg/mL. Subjects with LEAD had significantly higher serum FGF23 levels compared with those without LEAD (44.00 [37.54-51.30] pg/mL versus 40.42 [32.61-48.23] pg/mL, P < 0.001). Logistic regression showed that serum FGF23 levels were independently and positively correlated with the presence of LEAD (odds ratio 1.039, 95% confidence interval 1.012-1.067, P = 0.004). In addition, multiple liner regression analysis revealed that serum FGF23 levels were positively associated with F-IMT (standardized β = 0.175, P < 0.001). Furthermore, this relationship remained significant after additional adjustment for gender and factors potentially affecting serum FGF23 levels (serum calcium, serum phosphorus, and glomerular filtration rate), respectively (both P < 0.01). In Chinese patients with T2DM, serum FGF23 levels were independently and positively correlated with the presence of LEAD.
Shi, Qiang; Liu, Xiaoyan; Bai, Yuanyuan; Cui, Chuanjue; Li, Jun; Li, Yishi; Hu, Shengshou; Wei, Yingjie
2011-01-01
Cardiac fibroblasts (CFs) are the primary cell type responsible for cardiac fibrosis during pathological myocardial remodeling. Several studies have illustrated that pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone) attenuates cardiac fibrosis in different animal models. However, the effects of pirfenidone on cardiac fibroblast behavior have not been examined. In this study, we investigated whether pirfenidone directly modulates cardiac fibroblast behavior that is important in myocardial remodeling such as proliferation, myofibroblast differentiation, migration and cytokine secretion. Fibroblasts were isolated from neonatal rat hearts and bioassays were performed to determine the effects of pirfenidone on fibroblast function. We demonstrated that treatment of CFs with pirfenidone resulted in decreased proliferation, and attenuated fibroblast α-smooth muscle actin expression and collagen contractility. Boyden chamber assay illustrated that pirfenidone inhibited fibroblast migration ability, probably by decreasing the ratio of matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1. Furthermore, pirfenidone attenuated the synthesis and secretion of transforming growth factor-β1 but elevated that of interleukin-10. These direct and pleiotropic effects of pirfenidone on cardiac fibroblasts point to its potential use in the treatment of adverse myocardial remodeling. PMID:22132230
Efficient and high yield isolation of myoblasts from skeletal muscle.
Shahini, Aref; Vydiam, Kalyan; Choudhury, Debanik; Rajabian, Nika; Nguyen, Thy; Lei, Pedro; Andreadis, Stelios T
2018-05-24
Skeletal muscle (SkM) regeneration relies on the activity of myogenic progenitors that reside beneath the basal lamina of myofibers. Here, we describe a protocol for the isolation of the SkM progenitors from young and old mice by exploiting their outgrowth potential from SkM explants on matrigel coated dishes in the presence of high serum, chicken embryo extract and basic fibroblast growth factor. Compared to other protocols, this method yields a higher number of myoblasts (10-20 million) by enabling the outgrowth of these cells from tissue fragments. The majority of outgrowth cells (~90%) were positive for myogenic markers such as α7-integrin, MyoD, and Desmin. The myogenic cell population could be purified to 98% with one round of pre-plating on collagen coated dishes, where differential attachment of fibroblasts and other non-myogenic progenitors separates them from myoblasts. Moreover, the combination of high serum medium and matrigel coating provided a proliferation advantage to myogenic cells, which expanded rapidly (~24 h population doubling), while non-myogenic cells diminished over time, thereby eliminating the need for further purification steps such as FACS sorting. Finally, myogenic progenitors gave rise to multinucleated myotubes that exhibited sarcomeres and spontaneous beating in the culture dish. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Mirkeshavarz, M; Ganjibakhsh, M; Aminishakib, P; Farzaneh, P; Mahdavi, N; Vakhshiteh, F; Karimi, A; Gohari, N S; Kamali, F; Kharazifard, M J; Shahzadeh Fazeli, S A; Nasimian, A
2017-10-31
Oral cancer represents the sixth most common cancer type worldwide. Patients with oral cancer express high levels of IL-6 which is associated with very poor prognosis. Previous studies illustrated that IL-6 cytokine induces angiogenesis. It has also been reported that the presence of Cancer- Associated Fibroblasts (CAFs) is essential for angiogenesis. In this study, we examined the correlation between IL-6 and CAF and the role of this correlation on VEGF production. In this study, quantitative expression level of IL-6 and VEGF in CAF and Oral Cancer Cells (OCCs) examined through Real Time PCR and ELISA and western blot analysis. In addition, maintenance and retention of IL-6 and VEGF checked out in co-culture experiment of CAF and OCC cells. These experiments demonstrated that in oral cancer, CAF cell line secretes significantly more IL-6 than OCC. Also IL-6 is a factor that causes VEGF secretion in CAF cell line. CAF is the basic and the most essential source for producing IL-6 in patients with oral cancer. Secreted IL-6 is able to induce VEGF production in both CAF and OCCs. Correlation between CAF, IL-6 and VEGF could be considered as an approach for cancer therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Che, Xiajing; Wang, Qin; Xie, Yuanyuan
Renal fibrosis, a progressive process characterized by the accumulation of extracellular matrix (ECM) leading to organ dysfunction, is a characteristic of chronic kidney diseases. Among fibrogenic factors known to regulate the renal fibrotic process, transforming growth factor-β (TGF-β) plays a central role. In the present study, we examined the effect of Astragaloside IV (AS-IV), a component of the traditional Chinese medicinal plant Astragalus membranaceus, on the processes associated with renal fibrosis in cultured mouse renal fibroblasts treated with TGF-β1. RT-PCR, western blotting, immunofluorescence staining and collagen assays showed that AS-IV suppressed TGF-β1 induced fibroblast proliferation, transdifferentiation, and ECM production inmore » a dose-dependent manner. Examination of the underlying mechanisms showed that the effect of AS-IV on the inhibition of fibroblast differentiation and ECM formation were mediated by its modulation of the activity of the MAPK and NF-κB signaling pathways. Taken together, our results indicate that AS-IV alleviates renal interstitial fibrosis via a mechanism involving the MAPK and NF-κB signaling pathways and demonstrate the therapeutic potential of AS-IV for the treatment of chronic kidney diseases. - Highlights: • AS-IV suppressed TGF-β1 induced renal fibroblast proliferation. • AS-IV suppressed TGF-β1 induced renal fibroblast transdifferentiation. • AS-IV suppressed TGF-β1 induced ECM production. • AS-IV alleviates renal fibrosis via the MAPK and NF-κB signaling pathways.« less
Characterization of interleukin-4-stimulated nasal polyp fibroblasts.
Steinke, John W; Crouse, Charles D; Bradley, Dewayne; Hise, Kathleen; Lynch, Kevin; Kountakis, Stilianos E; Borish, Larry
2004-02-01
Chronic hyperplastic eosinophilic sinusitis is an inflammatory disease that results in the accumulation of eosinophils, fibroblasts, mast cells, and goblet cells at the site of injury. A common feature of this disease is the presence of nasal polyposis (NP). The current studies were designed to assess the contribution of interleukin (IL)-4 to fibroblast-mediated inflammation in chronic hyperplastic eosinophilic sinusitis/NP. In addition, we hypothesized that cysteinyl leukotrienes (CysLT) may directly influence fibroblast-mediated fibrotic and remodeling pathways in this disorder. Fibroblasts were isolated from NP tissue. All fibroblast lines expressed the IL-4 receptor. IL-4 induced changes in mRNA and protein expression of fibrotic (transforming growth factor-beta1 and -beta2) and inflammatory cytokines and chemokines (IL-6 and CCL11) by fibroblasts as measured by semiquantitative and quantitative polymerase chain reaction, RNase protection assay, and enzyme-linked immunosorbent assay. The expression of CysLT and other proinflammatory lipid receptors on fibroblasts was evaluated. CysLT1 and CysLT2 receptors were not expressed on fibroblasts; however, LPA(1) receptor was constitutively expressed and LPA(2) receptor expression was upregulated by IL-4. The metabolic cascade involved in CysLT synthesis was not expressed in fibroblasts and could not be induced by IL-4 treatment.
Epstein Shochet, Gali; Wollin, Lutz; Shitrit, David
2018-03-12
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment. © 2018 Asian Pacific Society of Respirology.
Kumagai, Hiroyuki; Someno, Tetsuya; Dobashi, Kazuyuki; Isshiki, Kunio; Ishizuka, Masaaki; Ikeda, Daishiro
2004-02-01
In the course of screening program for inhibitors of angiogenesis, novel substances designated as ICM0301A approximately H (1 approximately 8) were isolated from the culture broth of Aspergillus sp. F-1491. ICM0301s inhibited the growth of human umbilical vein endothelial cells (HUVECs) induced by basic fibroblast growth factor (bFGF) with IC50 values of 2.2 approximately 9.3 microg/ml. ICM0301A (1) showed significant anti-angiogenic activity at lower than 10 microg/ml in the angiogenesis model using rat aorta cultured in fibrin gel. ICM0301s showed very low cytotoxicity against various tumor cells. Furthermore, 1CM0301A did not show any toxic symptom in mice by intraperitoneal injection at 100 mg/kg.
Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing
2016-01-01
Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment. PMID:27272504
Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing
2016-06-07
Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment.
Lee, Kunwoo; Yu, Pengzhi; Lingampalli, Nithya; Kim, Hyun Jin; Tang, Richard; Murthy, Niren
2015-01-01
The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. PMID:25834424
Collaborative and Defensive Fibroblasts in Tumor Progression and Therapy Resistance.
Chiavarina, Barbara; Turtoi, Andrei
2017-01-01
Tumor microenvironment is a complex network of epithelial cancer cells and non-transformed stromal cells. Of the many stromal cell types, fibroblasts are the most numerous ones and are traditionally viewed as supportive elements of cancer progression. Many studies show that cancer cells engage in active crosstalk with associated fibroblasts in order to obtain key resources, such as growth factors and nutrients. The facets of fibroblast "complicity to murder" in cancer are multiple. However, recent therapeutic attempts aiming at depleting fibroblasts from tumors, perturbed rather simplistic picture. Contrary to the expectations, tumors devoid of fibroblasts accelerated their progression while patients faced poorer outcomes. These studies remind us of the physiologic roles fibroblasts have in maintaining tissue homeostasis even in the presence of cancer. It is becoming increasingly clear that our research focus on advanced tumors has biased our understanding of fibroblast role in tumor biology. The numerous events where the fibroblasts protect the tissue from malignant transformation remain largely unacknowledged, as the tumors are invisible. The present review has the ambition to offer a more balanced view of fibroblasts functions in cancer progression and therapy resistance. We will address the question whether it is possible to synergize the efforts with fibroblasts as the therapeutic concept against tumor progression and therapy resistance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Lee, Jai-Wei; Li, Hung; Wu, Hung-Yi; Liu, Shyh-Shyan; Shen, Perng-Chin
2016-03-01
The objective of this study was to compare the thermotolerance of ear fibroblasts derived from various SCNT cattle. Specimens were produced from cloned embryos that had been reconstructed using donor cells (d) from the same Holstein cow (Hd) and the ooplasm (o) from Holstein cattle (Ho) or Taiwan yellow cattle (Yo). Polymorphism in the D-loop region of mitochondrial DNA in ear fibroblasts derived from SCNT cattle reconstructed with the Y ooplasm and H donor cells (SCNT-Yo-Hd) indicates that the cytoplasm originated from Bos indicus. The rates of apoptosis in heat-shocked ear fibroblasts derived from SCNT-Yo-Hd cattle (1.9%) and purebred Y cattle (1.5%) were significantly (P < 0.05) lower than those of cells derived from SCNT cattle reconstructed with the H ooplasm (SCNT-Ho-Hd: 3.4%), donor cells (4.0%), and purebred Holstein (4.1%) cattle. At the protein level, the relative abundances of apoptosis-inducing factor, B cell lymphoma 2-associated X protein, endonuclease G, cytochrome c, cysteinyl aspartate-specific proteinases 3, 8 and 9 in ear fibroblasts derived from SCNT-Yo-Hd cattle were significantly (P < 0.05) lower than those of cells derived from SCNT-Ho-Hd cattle after heat shock. In contrast, the relative abundances of heat shock proteins 27, 70 and B cell lymphoma 2 in ear fibroblasts derived from SCNT-Yo-Hd cattle were higher (P < 0.05) than those of fibroblasts derived from SCNT-Ho-Hd cattle. Moreover, heat-shocked ear fibroblasts derived from SCNT-Yo-Hd cattle have a significantly (P < 0.05) lower percentage of apoptosis-inducing factor-positive nuclei than do heat-shocked ear fibroblasts derived from SCNT-Ho-Hd cattle (11.1% vs. 18.5%). Taken together, these results report that ear fibroblasts derived from SCNT cattle reconstructed using the Y ooplasm are more thermotolerant than ear fibroblasts derived from SCNT cattle reconstructed using the H ooplasm. This is an indication that the cytoplasm may be a major determinant of thermal sensitivity in bovine ear fibroblasts. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Tao; Ding, Yuanyuan; An, Hongli; Feng, Liuxin; Wang, Sicen
2015-07-14
Tyrosine 367 Cysteine-fibroblast growth factor receptor 4 cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry was developed. Tyrosine 367 Cysteine-HEK293 cells were used as cell membrane stationary phase. Specificity and reproducibility of the cell membrane chromatography was evaluated using 1-tert-butyl-3-{2-[4-(diethylamino)butylamino]-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl}urea, Nimodipine and dexamethasone acetate. Then, anti-tumor components acting on Tyrosine 367 Cysteine-fibroblast growth factor receptor 4 were screened and identified from extracts of Ligusticum wallichii. Components from the extract were retained on the cell membrane chromatographic column. The retained fraction was directly eluted into high-performance liquid chromatography with mass spectrometry system for separation and identification. Finally, Levistolide A was identified as an active component from Ligusticum wallichii extracts. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan colorimetric assay revealed that Levistolide A inhibits proliferation of overexpressing the mutated receptor cells with dose-dependent manner. Phosphorylation of fibroblast growth factor receptor 4 was also decrease under Levistolide A treatment. Flex dock simulation verified that Levistolide A could bind with the tyrosine kinase domain of fibroblast growth factor receptor 4. Therefore, Levistolide A screened by the cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry can arrest cell growth. In conclusion, the two-dimensional high-performance liquid chromatography method can screen and identify potential anti-tumor ingredients which specifically act on the tyrosine kinase domain of the mutated fibroblast growth factor receptor 4. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Pengfei; Zhang, Yingjie; Liu, Yunye
2016-01-01
Fibroblast growth factor 21 (FGF-21) is a secreted protein, which has anti-diabetic and lipocaic effects, but its ability to protect against hepatic fibrosis has not been studied. In this study, we investigated the ability of FGF-21 to attenuate dimethylnitrosamine (DMN)-induced hepatic fibrogenesis in mice and the mechanism of its action. Hepatic fibrosis was induced by injection of DMN, FGF-21 was administered to the mice once daily in association with DMN injection till the end of the experiment. Histopathological examination, tissue 4-hydroxyproline content and expressions of smooth muscle α-actin (α-SMA) and collagen I were measured to assess hepatic fibrosis. Ethanol/PDGF-BB-activated hepaticmore » stellate cells (HSCs) were used to understand the mechanisms of FGF-21 inhibited hepatic fibrogenesis. Results showed that FGF-21 treatment attenuated hepatic fibrogenesis and was associated with a significant decrease in intrahepatic fibrogenesis, 4-hydroxyproline accumulation, α-SMA expression and collagen I deposition. FGF-21 treatment inhibited the activation of HSCs via down-regulating the expression of TGF-β, NF-κB nuclear translocation, phosphorylation levels of smad2/3 and IκBα. Besides, FGF-21 treatment caused activated HSC apoptosis with increasing expression of Caspase-3, and decreased the ratio of Bcl-2 to Bax. In conclusion, FGF-21 attenuates hepatic fibrogenesis and inhibits the activation of HSC warranting the use of FGF-21 as a potential therapeutic agent in the treatment of hepatic fibrosis. - Highlights: • Fibroblast growth factor 21 attenuates hepatic fibrogenesis. • Fibroblast growth factor 21 attenuates hepatic fibrogenesis via TGF-β/smad2/3 signaling pathways. • Fibroblast growth factor 21 attenuates hepatic fibrogenesis via NF-κB signaling pathways.« less
Bunch, T Jared; Mahapatra, Srijoy; Bruce, G Keith; Johnson, Susan B; Miller, Dylan V; Horne, Benjamin D; Wang, Xiao-Li; Lee, Hon-Chi; Caplice, Noel M; Packer, Douglas L
2006-05-30
Atrioventricular (AV) nodal ablation for management of atrial fibrillation (AF) is irreversible and requires permanent pacemaker implantation. We hypothesized that as an alternative, implantation of autologous fibroblasts in the perinodal region would focally modify AV nodal conduction and that this modulation would be enhanced by pretreatment with transforming growth factor-beta1 (TGF-beta1), a stimulant of fibroblasts. Skin biopsies were taken from 12 mongrel dogs, and derived fibroblasts were dissociated and grown in culture for 2 weeks. Multiple injections (0.25 mL) were made through an 8F NOGA catheter along the fast/slow AV nodal pathways as guided by an electroanatomic mapping system. Seven dogs received fibroblasts alone (1x10(6) cells/mL), 7 dogs received TGF-beta1 (5 microg), 4 dogs received fibroblasts and TGF-beta1 (1x10(6) cells/mL+5 microg), and 4 dogs received saline only. AV node function was assessed at baseline and after 4 weeks. Saline (80 mL) with assigned therapy (0.25 mL per injection) was injected into the peri-AV nodal region in each dog. At baseline, the AH interval (66+/-3 ms) and the average RR interval (331+/-17 ms) in pacing-induced AF were similar in each cohort. The increase in AH interval in normal sinus rhythm was longer after fibroblast (23+/-4 versus 5+/-5 ms; P=0.05) and fibroblast plus TGF-beta1 (50+/-5 versus 5+/-5 ms; P<0.001) injections than with saline alone, with similar findings during high right atrium and distal coronary sinus pacing. The AH interval was not significantly increased after TGF-beta1 injections. The AH interval was significantly longer after fibroblast plus TGF-beta1 injections than with either therapy (TGF-beta1 or fibroblasts) alone. The RR interval during AF was increased in dogs that received fibroblasts alone (110+/-36 versus -41+/-34 ms) and to a greater extent with the addition of TGF-beta1 (294+/-108 versus -41+/-34 ms). No AV block was seen in any cohort at 4 weeks. Labeled fibroblasts that expressed vimentin were identified in all dogs that received cell injections at 4 weeks. AV nodal modification can be achieved with injected fibroblasts without the creation of AV block. The effect on AV node conduction is substantially enhanced by pretreatment of fibroblasts with TGF-beta1. These data have therapeutic potential for the management of rapid ventricular rate during AF without pacemaker implantation.
Hunt, Nicola C.; Shelton, Richard M.; Henderson, Deborah J.
2013-01-01
Vascularization of engineered or damaged tissues is essential to maintain cell viability and proper tissue function. Revascularization of the left ventricle (LV) of the heart after myocardial infarction is particularly important, since hypoxia can give rise to chronic heart failure due to inappropriate remodeling of the LV after death of cardiomyocytes (CMs). Fibroblasts can express vascular endothelial growth factor (VEGF), which plays a major role in angiogenesis and also acts as a chemoattractant and survival factor for CMs and cardiac progenitors. In this in vitro model study, mouse NIH 3T3 fibroblasts encapsulated in 2% w/v Ca-alginate were shown to remain viable for 150 days. Semiquantitative reverse transcription–polymerase chain reaction and immunohistochemistry demonstrated that over 21 days of encapsulation, fibroblasts continued to express VEGF, while enzyme-linked immunosorbent assay showed that there was sustained release of VEGF from the Ca-alginate during this period. The scaffold degraded gradually over the 21 days, without reduction in volume. Cells released from the Ca-alginate at 7 and 21 days as a result of scaffold degradation were shown to retain viability, to adhere to fibronectin in a normal manner, and continue to express VEGF, demonstrating their potential to further contribute to maintenance of cardiac function after scaffold degradation. This model in vitro study therefore demonstrates that fibroblasts encapsulated in Ca-alginate provide sustained release of VEGF. PMID:23082964
Multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair.
Chiquet, Matthias; Katsaros, Christos; Kletsas, Dimitris
2015-06-01
Fibroblasts are cells of mesenchymal origin. They are responsible for the production of most extracellular matrix in connective tissues and are essential for wound healing and repair. In recent years, it has become clear that fibroblasts from different tissues have various distinct traits. Moreover, wounds in the oral cavity heal under very special environmental conditions compared with skin wounds. Here, we reviewed the current literature on the various interconnected functions of gingival and mucoperiosteal fibroblasts during the repair of oral wounds. The MEDLINE database was searched with the following terms: (gingival OR mucoperiosteal) AND fibroblast AND (wound healing OR repair). The data gathered were used to compare oral fibroblasts with fibroblasts from other tissues in terms of their regulation and function during wound healing. Specifically, we sought answers to the following questions: (i) what is the role of oral fibroblasts in the inflammatory response in acute wounds; (ii) how do growth factors control the function of oral fibroblasts during wound healing; (iii) how do oral fibroblasts produce, remodel and interact with extracellular matrix in healing wounds; (iv) how do oral fibroblasts respond to mechanical stress; and (v) how does aging affect the fetal-like responses and functions of oral fibroblasts? The current state of research indicates that oral fibroblasts possess unique characteristics and tightly controlled specific functions in wound healing and repair. This information is essential for developing new strategies to control the intraoral wound-healing processes of the individual patient. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Jung, Jae-A; Yoon, Young-Don; Lee, Hyup-Woo; Kang, So-Ra; Han, Seung-Kyu
2018-02-01
Various types of skin substitutes composed of fibroblasts and/or keratinocytes have been used for the treatment of diabetic ulcers. However, the effects have generally not been very dramatic. Recently, human umbilical cord blood-derived mesenchymal stromal cells (hUCB-MSCs) have been commercialised for cartilage repair as a first cell therapy product using allogeneic stem cells. In a previous pilot study, we reported that hUCB-MSCs have a superior wound-healing capability compared with fibroblasts. The present study was designed to compare the treatment effect of hUCB-MSCs with that of fibroblasts on the diabetic wound healing in vitro. Diabetic fibroblasts were cocultured with healthy fibroblasts or hUCB-MSCs. Five groups were evaluated: group I, diabetic fibroblasts without coculture; groups II and III, diabetic fibroblasts cocultured with healthy fibroblasts or hUCB-MSCs; and groups IV and V, no cell cocultured with healthy fibroblasts or hUCB-MSCs. After a 3-day incubation, cell proliferation, collagen synthesis levels and glycosaminoglycan levels, which are the major contributing factors in wound healing, were measured. As a result, a hUCB-MSC-treated group showed higher cell proliferation, collagen synthesis and glycosaminoglycan level than a fibroblast-treated group. In particular, there were significant statistical differences in collagen synthesis and glycosaminoglycan levels (P = 0·029 and P = 0·019, respectively). In conclusion, these results demonstrate that hUCB-MSCs may have a superior effect to fibroblasts in stimulating diabetic wound healing. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Krieg, Thomas; Abraham, David; Lafyatis, Robert
2007-01-01
Fibrosis, characterized by excessive extracellular matrix accumulation, is a common feature of many connective tissue diseases, notably scleroderma (systemic sclerosis). Experimental studies suggest that a complex network of intercellular interactions involving endothelial cells, epithelial cells, fibroblasts and immune cells, using an array of molecular mediators, drives the pathogenic events that lead to fibrosis. Transforming growth factor-β and endothelin-1, which are part of a cytokine hierarchy with connective tissue growth factor, are key mediators of fibrogenesis and are primarily responsible for the differentiation of fibroblasts toward a myofibroblast phenotype. The tight skin mouse (Tsk-1) model of cutaneous fibrosis suggests that numerous other genes may also be important. PMID:17767742
Genetic Analysis of Fibroblast Growth Factor Signaling in the Drosophila Eye
Mukherjee, T.; Choi, I.; Banerjee, Utpal
2012-01-01
The development of eyes in Drosophila involves intricate epithelial reorganization events for accurate positioning of cells and proper formation and organization of ommatidial clusters. We demonstrate that Branchless (Bnl), the fibroblast growth factor ligand, regulates restructuring events in the eye disc primordium from as early as the emergence of clusters from a morphogenetic front to the cellular movements during pupal eye development. Breathless (Btl) functions as the fibroblast growth factor receptor to mediate Bnl signal, and together they regulate expression of DE-cadherin, Crumbs, and Actin. In addition, in the eye Bnl regulates the temporal onset and extent of retinal basal glial cell migration by activating Btl in the glia. We hypothesized that the Bnl functions in the eye are Hedgehog dependent and represent novel aspects of Bnl signaling not explored previously. PMID:22384378
Wang, Jun; Si, Yanfang; Wu, Chen; Sun, Lu; Ma, Yudong; Ge, Aili; Li, Baomin
2012-10-17
Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to the pathological process of atherosclerosis.
2012-01-01
Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to the pathological process of atherosclerosis. PMID:23072373
Ji, Hong; Tang, Haiying; Lin, Hongli; Mao, Jingwei; Gao, Lili; Liu, Jia; Wu, Taihua
2014-11-01
The differentiation of fibroblasts, which are promoted by transforming growth factor-β (TGF-β)/Smad, is involved in the process of pulmonary fibrosis. The Rho/Rho-associated coiled-coil-forming protein kinase (Rock) pathway may regulate the fibroblast differentiation and myofibroblast expression of α-smooth muscle actin (α-SMA), however, the mechanism is not clear. The aim of the present study was to evaluate the role of Rho/Rock and TGF-β/Smad in TGF-β1-induced lung fibroblasts differentiation. Human embryonic lung fibroblasts were stimulated by TGF-β1, Y-27632 (inhibitor of Rho/Rock signaling) and staurosporine (inhibitor of TGF-β/Smad signaling). The α-SMA expression, cell cycle progression, content of the extracellular matrix (ECM) in cell culture supernatants and the expression of RhoA, RhoC, Rock1 and Smad2 were detected. The results demonstrated that α-SMA-positive cells significantly increased following TGF-β1 stimulation. Rho/Rock and TGF-β/Smad inhibitors suppressed TGF-β1-induced lung fibroblast differentiation. The inhibitors increased G 0 /G 1 and decreased S and G 2 /M percentages. The concentrations of the ECM proteins in the supernatant were significantly increased by TGF-β1 stimulation, whereas they were decreased by inhibitor stimulation. RhoA, RhoC, Rock1, Smad2 and tissue inhibitor of metalloproteinase-1 were upregulated by TGF-β1 stimulation. The Rho/Rock inhibitor downregulated Smad2 expression and the TGF-β/Smad inhibitor downregulated RhoA, RhoC and Rock1 expression. Therefore, the Rho/Rock pathway and Smad signaling were involved in the process of lung fibroblasts transformation, induced by TGF-β1, to myofibroblasts. The two pathways may undergo cross-talk in the lung fibroblasts differentiation in vitro .
Most, D; Efron, D T; Shi, H P; Tantry, U S; Barbul, A
2001-10-01
Inducible nitric oxide synthase (iNOS) and its product, nitric oxide, have been shown to play important roles in wound biology. The present study was performed to investigate the role of iNOS in modulating the cytokine cascade during the complex process of skin graft wound healing.Fifteen iNOS-knockout mice and 15 wild-type C57BL/6J mice were subjected to autogenous 1-cm2 intrascapular full-thickness skin grafts. Three animals in each group were killed on postoperative days 3, 5, 7, 10, and 14. Specimens were then analyzed using nonisotopic in situ hybridization versus mRNA of tumor growth factor-beta1, vascular endothelial growth factor, iNOS, endothelial nitric oxide synthase (eNOS), tumor necrosis factor-alpha, and basic fibroblast growth factor, as well as positive and negative control probes. Positive cells in both grafts and wound beds were counted using a Leica microgrid. Scar thickness was measured with a Leica micrometer. Data were analyzed using the unpaired Student's t test. Expression of iNOS was 2- to 4-fold higher in knockout mice than in wild-type mice on postoperative days 5, 7, and 14. Expression of eNOS was 2- to 2.5-fold higher in knockout mice than in wild-type mice on postoperative days 5 and 7. Tumor necrosis factor-alpha expression was 2- to 7-fold higher in knockout mice than in wild-type mice on all postoperative days. In contrast, expression levels of angiogenic/fibrogenic cytokines (vascular endothelial growth factor, basis fibroblast growth factor, and tumor growth factor-beta1) were 2.5- to 4-fold higher in wild-type mice than in knockout mice. Scars were 1.5- to 2.5-fold thicker in knockout mice than in wild-type mice at all time points. All of the above results represent statistically significant differences (p < 0.05). Significantly different patterns of cytokine expression were seen in knockout and wild-type mice. Although the scar layer was thicker in knockout mice, it showed much greater infiltration with inflammatory cells. These data further delineate the modulatory effect of iNOS and nitric oxide in healing skin grafts.
Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki
2015-01-01
Summary Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. PMID:26626177
Sato, M; Akaboshi, S; Katsumoto, T; Taniguchi, M; Higaki, K; Tai, T; Sakuraba, H; Ohno, K
1998-01-01
Cultured fibroblasts from patients with Niemann-Pick disease type C (NP-C) are characterized by lysosomal accumulation of unesterified cholesterol and a defect in intracellular trafficking of cholesterol. We have found the accumulation of GM2 ganglioside in NP-C fibroblasts [Yano T, Taniguchi M, Akaboshi S, Vanier MT, Tai T, Sakuraba H, et al. Proc Japan Acad 1996;72B:214-219]. In this communication we show that several inhibitors known to inhibit intracellular cholesterol transport, progesterone, imipramine and KN-62, elicit accumulation of not only unesterified cholesterol but also GM2 ganglioside. This finding suggests that intracellular transport of cholesterol may be coupled with that of GM2 ganglioside. The accumulation of free cholesterol and GM2 ganglioside may be a clue for understanding the basic defect of NP-C. Recently NPC1 gene is found by the positional cloning. The mechanism of accumulating of GM2 ganglioside should be further investigated by studying of the functions of NPC1 gene.
The effect of tributyltin on human eosinophilic [correction of eosinophylic] leukemia EoL-1 cells.
Sroka, Jolanta; Włosiak, Przemysław; Wilk, Anna; Antonik, Justyna; Czyz, Jarosław; Madeja, Zbigniew
2008-01-01
Organotin compounds are chemicals that are widely used in industry and agriculture as plastic stabilizers, catalysts and biocides. Many of them, including tributyltin (TBT), have been detected in human food and, as a consequence, detectable levels have been found in human blood. As organotin compounds were shown to possess immunotoxic activity, we focused our attention on the effect of TBT on the basic determinants of the function of eosinophils, i.e. cell adhesiveness and motility. We used human eosinophylic leukemia EoL-1 cells, a common in vitro cellular model of human eosinophils. Here, we demonstrate that TBT causes a dose-dependent decrease in the viability of EoL-1 cells. When administered at sub-lethal concentrations, TBT significantly decreases the adhesion of EoL-1 cells to human fibroblasts (HSFs) and inhibits their migration on fibroblast surfaces. Since the basic function of eosinophils is to invade inflamed tissues, our results indicate that TBT, and possibly other organotin compounds, may affect major cellular properties involved in the determination of in vivo eosinophil function.
Mitomycin C and endoscopic sinus surgery: where are we?
Tabaee, Abtin; Brown, Seth M; Anand, Vijay K
2007-02-01
Mitomycin C has been used successfully in various ophthalmologic and, more recently, otolaryngologic procedures. Its modulation of fibroblast activity allows for decreased scarring and fibrosis. Several recent trials have examined the efficacy of mitomycin C in reducing synechia and stenosis following endoscopic sinus surgery. Basic science studies using fibroblast cell lines have demonstrated a dose-dependent suppression of activity with the use of mitomycin C. This is further supported by animal studies that have shown lower rates of maxillary ostial restenosis following application of mitomycin C. No human trial, however, has demonstrated a statistically significant impact of mitomycin C on the incidence of postoperative synechia or stenosis following sinus surgery. The limitations of the literature are discussed. The antiproliferative properties of mitomycin C may theoretically decrease the incidence of synechia and stenosis following endoscopic sinus surgery. Although this is supported by basic science studies and its successful use in other fields, the clinical evidence to date has not shown the application of mitomycin C to be effective in preventing stenosis after endoscopic sinus surgery. Future prospective studies are required before definitive conclusions can be made.
YANG, ZHIZHOU; SUN, ZHAORUI; LIU, HONGMEI; REN, YI; SHAO, DANBING; ZHANG, WEI; LIN, JINFENG; WOLFRAM, JOY; WANG, FENG; NIE, SHINAN
2015-01-01
It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson’s trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury. PMID:25815693
Hiramatsu, Kunihiko; Sasagawa, Satoru; Outani, Hidetatsu; Nakagawa, Kanako; Yoshikawa, Hideki; Tsumaki, Noriyuki
2011-01-01
Repair of cartilage injury with hyaline cartilage continues to be a challenging clinical problem. Because of the limited number of chondrocytes in vivo, coupled with in vitro de-differentiation of chondrocytes into fibrochondrocytes, which secrete type I collagen and have an altered matrix architecture and mechanical function, there is a need for a novel cell source that produces hyaline cartilage. The generation of induced pluripotent stem (iPS) cells has provided a tool for reprogramming dermal fibroblasts to an undifferentiated state by ectopic expression of reprogramming factors. Here, we show that retroviral expression of two reprogramming factors (c-Myc and Klf4) and one chondrogenic factor (SOX9) induces polygonal chondrogenic cells directly from adult dermal fibroblast cultures. Induced cells expressed marker genes for chondrocytes but not fibroblasts, i.e., the promoters of type I collagen genes were extensively methylated. Although some induced cell lines formed tumors when subcutaneously injected into nude mice, other induced cell lines generated stable homogenous hyaline cartilage–like tissue. Further, the doxycycline-inducible induction system demonstrated that induced cells are able to respond to chondrogenic medium by expressing endogenous Sox9 and maintain chondrogenic potential after substantial reduction of transgene expression. Thus, this approach could lead to the preparation of hyaline cartilage directly from skin, without generating iPS cells. PMID:21293062
Chevalier, Benoit; Puisségur, Marie-Pierre; Lebrigand, Kevin; Robbe-Sermesant, Karine; Bertero, Thomas; Lino Cardenas, Christian L.; Courcot, Elisabeth; Rios, Géraldine; Fourre, Sandra; Lo-Guidice, Jean-Marc; Marcet, Brice; Cardinaud, Bruno; Barbry, Pascal; Mari, Bernard
2009-01-01
Background Epithelial-mesenchymal interactions are critical in regulating many aspects of vertebrate embryo development, and for the maintenance of homeostatic equilibrium in adult tissues. The interactions between epithelium and mesenchyme are believed to be mediated by paracrine signals such as cytokines and extracellular matrix components secreted from fibroblasts that affect adjacent epithelia. In this study, we sought to identify the repertoire of microRNAs (miRNAs) in normal lung human fibroblasts and their potential regulation by the cytokines TNF-α, IL-1β and TGF-β. Methodology/Principal Findings MiR-155 was significantly induced by inflammatory cytokines TNF-α and IL-1β while it was down-regulated by TGF-β. Ectopic expression of miR-155 in human fibroblasts induced modulation of a large set of genes related to “cell to cell signalling”, “cell morphology” and “cellular movement”. This was consistent with an induction of caspase-3 activity and with an increase in cell migration in fibroblasts tranfected with miR-155. Using different miRNA bioinformatic target prediction tools, we found a specific enrichment for miR-155 predicted targets among the population of down-regulated transcripts. Among fibroblast-selective targets, one interesting hit was keratinocyte growth factor (KGF, FGF-7), a member of the fibroblast growth factor (FGF) family, which owns two potential binding sites for miR-155 in its 3′-UTR. Luciferase assays experimentally validated that miR-155 can efficiently target KGF 3′-UTR. Site-directed mutagenesis revealed that only one out of the 2 potential sites was truly functional. Functional in vitro assays experimentally validated that miR-155 can efficiently target KGF 3′-UTR. Furthermore, in vivo experiments using a mouse model of lung fibrosis showed that miR-155 expression level was correlated with the degree of lung fibrosis. Conclusions/Significance Our results strongly suggest a physiological function of miR-155 in lung fibroblasts. Altogether, this study implicates this miRNA in the regulation by mesenchymal cells of surrounding lung epithelium, making it a potential key player during tissue injury. PMID:19701459
Chen, Tsan-Chi; Chang, Shu-Wen
2010-03-01
To investigate how mitomycin C (MMC) modulates hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) secretions in human corneal fibroblasts and regulates human corneal epithelial (HCE) cell migration. Primary human corneal fibroblasts were treated with MMC (0.05, 0.1, or 0.2 mg/mL for 5 minutes) and were cultivated with or without interleukin (IL)-1beta. Transcript and secretion of HGF and KGF were determined by quantitative real-time RT-PCR and Western blot analysis, respectively. The effect of MMC-treated fibroblasts on HCE cell migration was evaluated using a transwell migration assay. The influence of MMC on HGF expression/secretion and HCE cell migration was further confirmed by RNA interference. The number of IL-1 receptors (IL-1R) on the fibroblast surface was analyzed by flow cytometry. MMC alone did not affect endogenous HGF expression, whereas IL-1beta alone significantly upregulated HGF transcripts and secretion. By modifying IL-1R numbers, MMC further upregulated IL-1beta-related HGF expression at a concentration of 0.05 mg/mL but to a lesser extent at 0.1 and 0.2 mg/mL. KGF transcripts and intracellular expression were suppressed by MMC dose dependently in the presence or absence of IL-1beta, whereas KGF secretion was not affected. Conditioned medium from MMC-treated fibroblasts exerted a similar concentration-dependent effect on HCE cell migration, enhancing migration most significantly at 0.05 mg/mL MMC in the presence of IL-1beta. The MMC dose-dependent modulation of HCE cell migration was abolished in HGF-silenced fibroblasts. MMC differentially modulated IL-1R expression at various concentrations and regulated HGF and KGF differently. MMC alone did not alter HGF expression. In the presence of IL-1beta, MMC-treated corneal fibroblasts modified HCE cell migration through IL-1beta-induced HGF secretion.
Figueroa, R; Lindenmaier, H; Hergenhahn, M; Nielsen, K V; Boukamp, P
2000-06-01
The life span of normal fibroblasts in vitro (Hayflick limit) depends on donor age, and telomere shortening has been proposed as a potential mechanism. By quantitative fluorescence in situ hybridization and Southern blot analysis, we show progressive telomere loss to about 5 kb mean telomere restriction fragment length in fibroblasts from two adult donors within 40 population doublings, whereas in fibroblasts from two infant donors, telomere erosion is reduced, leaving a mean telomere restriction fragment length of approximately 7 kb at senescence (after approximately 60 population doublings). Aging of fibroblasts from both infant and adult donors was not accompanied by chromosomal abnormalities but was correlated with increased telomere repeat-binding factor 2 expression at both the protein and transcriptional level.
Li, Xiaohu; Huang, Haiyan; Liu, Xirong; Xia, Hongxia; Li, Mincai
2015-03-01
To observe the differentiation of the neonatal rat bone marrow mesenchymal stem cells (MSCs) into insulin-producing cells and detect the expressions of insulin, pancreatic duodenal homebox-1 (PDX-1) and nestin. MSCs were isolated from the neonatal rats and cultured in the modified medium composed of 10 μg/L human epidermal growth factor (EGF), 10 μg/L basic fibroblast growth factor (bFGF), 10 μg/L hepatocyte growth factor (HGF), 10 μg/L human B cell regulin, 20 mmol/L nicotinamide and 20 g/L B27. After the induction, the mRNA expressions of insulin, PDX-1 and nestin were examined by reverse transcription-PCR, and the insulin, PDX-1 and nestin protein levels were detected by immunocytochemistry. The insulin and PDX-1 mRNA expressions increased and the nestin mRNA expression decreased in the differentiation of the neonatal rat MSCs into insulin-producing cells. The nestin, PDX-1 and insulin proteins were co-expressed in insulin-producing cells. MSCs can be induced to differentiate into insulin-producing cells.
Zimering, Mark B.; Anderson, Robert J.; Ge, Ling; Moritz, Thomas E.; Duckworth, William C.
2013-01-01
Aim: Cardiovascular disease (CVD) is a leading cause of morbidity and mortality in adults with type 2 diabetes mellitus. The aim of the present study was to test whether plasma basic fibroblast growth factor (bFGF) levels predict future CVD occurrence in adults from the Veterans Affairs Diabetes Trial (VADT). Methods: Nearly 400 veterans, 40 years of age or older having a mean baseline diabetes duration of 11.4 years were recruited from outpatient clinics at six geographically distributed sites in the VADT. Within the VADT, they were randomly assigned to intensive or standard glycemic treatment, with follow-up as much as seven and one-half years. CVD occurrence was examined at baseline in the patient population and during randomized treatment. Plasma bFGF was determined with a sensitive, specific two-site enzyme-linked immunoassay at the baseline study visit in all 399 subjects and repeated at the year 1 study visit in a randomly selected subset of 215 subjects. Results: One hundred and five first cardiovascular events occurred in these 399 subjects. The best fit model of risk factors associated with the time to first CVD occurrence (in the study) over a seven and one-half year period had as significant predictors: prior cardiovascular event [hazard ratio (HR) 3.378; 95% confidence intervals (CI) 3.079–3.807; P < 0.0001), baseline plasma bFGF (HR 1.008; 95% CI 1.002–1.014; P = 0.01), age (HR 1.027; 95% CI 1.004–1.051; P = 0.019), baseline plasma triglycerides (HR 1.001; 95% CI 1.000–1.002; P = 0.02), and diabetes duration-treatment interaction (P = 0.03). Intensive glucose-lowering was associated with significantly decreased hazard ratios for CVD occurrence (0.38–0.63) in patients with known diabetes duration of 0–10 years, and non-significantly increased hazard ratios for CVD occurrence (0.82–1.78) in patients with longer diabetes duration. Conclusion: High level of plasma bFGF is a predictive biomarker of future CVD occurrence in this population of adult type 2 diabetes. PMID:24319441
Li, Yulin; Li, Zhenya; Zhang, Congcong; Li, Ping; Wu, Yina; Wang, Chunxiao; Bond Lau, Wayne; Ma, Xin-Liang; Du, Jie
2017-05-23
Hypertensive ventricular remodeling is a common cause of heart failure. However, the molecular mechanisms regulating ventricular remodeling remain poorly understood. We used a discovery-driven/nonbiased approach to identify increased activating transcription factor 3 (ATF3) expression in hypertensive heart. We used loss/gain of function approaches to understand the role of ATF3 in heart failure. We also examined the mechanisms through transcriptome, chromatin immunoprecipitation sequencing analysis, and in vivo and in vitro experiments. ATF3 expression increased in murine hypertensive heart and human hypertrophic heart. Cardiac fibroblast cells are the primary cell type expressing high ATF3 levels in response to hypertensive stimuli. ATF3 knockout (ATF3KO) markedly exaggerated hypertensive ventricular remodeling, a state rescued by lentivirus-mediated/miRNA-aided cardiac fibroblast-selective ATF3 overexpression. Conversely, conditional cardiac fibroblast cell-specific ATF3 transgenic overexpression significantly ameliorated ventricular remodeling and heart failure. We identified Map2K3 as a novel ATF3 target. ATF3 binds with the Map2K3 promoter, recruiting HDAC1, resulting in Map2K3 gene-associated histone deacetylation, thereby inhibiting Map2K3 expression. Genetic Map2K3 knockdown rescued the profibrotic/hypertrophic phenotype in ATF3KO cells. Last, we demonstrated that p38 is the downstream molecule of Map2K3 mediating the profibrotic/hypertrophic effects in ATF3KO animals. Inhibition of p38 signaling reduced transforming growth factor-β signaling-related profibrotic and hypertrophic gene expression, and blocked exaggerated cardiac remodeling in ATF3KO cells. Our study provides the first evidence that ATF3 upregulation in cardiac fibroblasts in response to hypertensive stimuli protects the heart by suppressing Map2K3 expression and subsequent p38-transforming growth factor-β signaling. These results suggest that positive modulation of cardiac fibroblast ATF3 may represent a novel therapeutic approach against hypertensive cardiac remodeling. © 2017 American Heart Association, Inc.
Nie, Kaiyu; Li, Pengcheng; Zeng, Xueqin; Sun, Guangfeng; Jin, Wenhu; Wei, Zairong; Wang, Bo; Qi, Jianping; Wang, Yuming; Wang, Dali
2010-06-01
To investigate the efficacy of basic fibroblast growth factor (bFGF) combined with topical oxygen therapy for deep II degree burn wounds, by comparing the effects of bFGF combined with topical oxygen therapy and bFGF with routine therapy. From February 2004 to July 2009, 85 patients with deep II degree burn wounds (117 wounds) were enrolled and divided into 4 groups randomly according to different treatments. There was no significant difference in sex, age, disease course, wound size, and wound treatment size among 4 groups (P > 0.05). In group A, 18 patients (28 wounds) were treated routinely; in group B, 23 patients (30 wounds) were treated with routine methods and topical oxygen therapy; in group C, 19 patients (25 wounds) were treated with routine methods and bFGF therapy; and in group D, 25 patients (34 wounds) were treated with routine methods and bFGF/topical oxygen therapy. Topical oxygen therapy was administered to the wound for 90 minutes per day for 3 weeks. The bFGF therapy was applied everyday (150 U/cm2) for 3 weeks. All cases were followed up 6-12 months (9 months on average). The wound healing times in groups A, B, C, and D were (27.3 +/- 6.6), (24.2 +/- 5.8), (22.2 +/- 6.8), and (18.2 +/- 4.8) days, respectively; showing significant difference between group A and group D (P < 0.05). The wound healing rates in groups A, B, C, and D were 67.8% +/- 12.1%, 85.1% +/- 7.5%, 89.2% +/- 8.3%, and 96.1% +/- 5.6%, respectively; showing significant differences between group A and groups B, C, D (P < 0.05). The therapic effective rates in groups A, B, C, and D were 75%, 90%, 92%, and 100%, respectively; showing significant difference between group A and group D (P < 0.05). The Vancouver scar scale scoring of group D 6 months after treatment was better than that of group A (P < 0.05). The bFGF combined with topical oxygen therapy can enhance deep II degree burn wound healing. Furthermore, the therapy method is simple and convenient.
Benavente, Claudia A; Sierralta, Walter D; Conget, Paulette A; Minguell, José J
2003-06-01
Uncommitted mesenchymal stem cells (MSC), upon commitment and differentiation give rise to several mature mesenchymal lineages. Although the involvement of specific growth factors, including FGF2, in the development of committed MSC is known, the effect of FGF2 on uncommitted progenitors remains unclear. We have analyzed on a comparative basis, the subcellular distribution and mitogenic effect of FGF2 in committed and uncommitted MSC prepared from human bone marrow. Indirect immunofluorescence studies showed strong nuclear FGF2 staining in both progenitors; however, cytoplasmic staining was only detected in committed cells. Western blot analysis revealed the presence of 22.5 and 21-22 kDa forms of FGF2 in the nucleus of both progenitors; however, their relative content was higher in uncommitted than in committed cells. Exogenous FGF2 stimulated proliferation and sustained quiescence in committed and uncommitted cells, respectively. These results show that both type of progenitors, apart from morphological and proliferative differences, display specific patterns of response to FGF2.
Lidgerwood, Grace E; Lim, Shiang Y; Crombie, Duncan E; Ali, Ray; Gill, Katherine P; Hernández, Damián; Kie, Josh; Conquest, Alison; Waugh, Hayley S; Wong, Raymond C B; Liang, Helena H; Hewitt, Alex W; Davidson, Kathryn C; Pébay, Alice
2016-04-01
We demonstrate that a combination of Noggin, Dickkopf-1, Insulin Growth Factor 1 and basic Fibroblast Growth Factor, promotes the differentiation of human pluripotent stem cells into retinal pigment epithelium (RPE) cells. We describe an efficient one-step approach that allows the generation of RPE cells from both human embryonic stem cells and human induced pluripotent stem cells within 40-60 days without the need for manual excision, floating aggregates or imbedded cysts. Compared to methods that rely on spontaneous differentiation, our protocol results in faster differentiation into RPE cells. This pro-retinal culture medium promotes the growth of functional RPE cells that exhibit key characteristics of the RPE including pigmentation, polygonal morphology, expression of mature RPE markers, electrophysiological membrane potential and the ability to phagocytose photoreceptor outer segments. This protocol can be adapted for feeder, feeder-free and serum-free conditions. This method thereby provides a rapid and simplified production of RPE cells for downstream applications such as disease modelling and drug screening.
Combining platelet-rich plasma and tissue-engineered skin in the treatment of large skin wound.
Han, Tong; Wang, Hao; Zhang, Ya Qin
2012-03-01
The objective of the study was to observe the effects of tissue-engineered skin in combination with platelet-rich plasma (PRP) and other preparations on the repair of large skin wound on nude mice.We first prepared PRP from venous blood by density-gradient centrifugation. Large skin wounds were created surgically on the dorsal part of nude mice. The wounds were then treated with either artificial skin, tissue-engineered skin, tissue-engineered skin combined with basic fibroblast growth factor, tissue-engineered skin combined with epidermal growth factor, or tissue-engineered skin combined with PRP. Tissue specimens were collected at different time intervals after surgery. Hematoxylin-eosin and periodic acid-Schiff staining and immunohistochemistry were performed to assess the rate of wound healing.Macroscopic observations, hematoxylin-eosin/periodic acid-Schiff staining, and immunohistochemistry revealed that the wounds treated with tissue-engineered skin in combination with PRP showed the most satisfactory wound recovery, among the 5 groups.
Coleman, Kimberly D; Ghosh, Mimi; Crist, Sarah G; Wright, Jacqueline A; Rossoll, Richard M; Wira, Charles R; Fahey, John V
2012-01-01
Hepatocyte Growth Factor (HGF) secretion facilitates epithelial cell growth and development in the female reproductive tract (FRT) and may contribute to pathological conditions such as cancer and endometriosis. We hypothesized that estradiol and poly (I:C), a synthetic RNA mimic, may have a regulatory effect on HGF secretion by stromal fibroblasts from FRT tissues. Following hysterectomies, normal tissue from the uterus, endocervix, and ectocervix were dispersed into stromal cell fractions by enzymatic digestion and differential filtering. Stromal fibroblasts were cultured and treated with estradiol and/or poly (I:C), and conditioned media were analyzed for HGF via enzyme-linked immunosorbent assay. Treating uterine fibroblasts with estradiol or poly (I:C) significantly increased HGF secretion. When uterine fibroblasts were co-treated with estradiol and poly (I:C), the effect on HGF secretion was additive. In contrast, stromal fibroblasts from endo- and ecto-cervix were unresponsive to estradiol, but were stimulated to secrete HGF by poly (I:C). HGF secretion is uniquely regulated in the uterus, but not in ecto- and endo-cervix, by estradiol. Moreover, potential viral pathogens further induce HGF. These findings have potential applications in understanding both hormonal regulation of normal tissue as well as the role of HGF in tumorogenesis, endometriosis, and human immunodeficiency virus infection. © 2011 John Wiley & Sons A/S.
Saito, Takeyuki; Hara, Masamitsu; Kumamaru, Hiromi; Kobayakawa, Kazu; Yokota, Kazuya; Kijima, Ken; Yoshizaki, Shingo; Harimaya, Katsumi; Matsumoto, Yoshihiro; Kawaguchi, Kenichi; Hayashida, Mitsumasa; Inagaki, Yutaka; Shiba, Keiichiro; Nakashima, Yasuharu; Okada, Seiji
2017-12-01
Ligamentum flavum (LF) hypertrophy causes lumbar spinal canal stenosis, leading to leg pain and disability in activities of daily living in elderly individuals. Although previous studies have been performed on LF hypertrophy, its pathomechanisms have not been fully elucidated. In this study, we demonstrated that infiltrating macrophages were a causative factor for LF hypertrophy. Induction of macrophages into the mouse LF by applying a microinjury resulted in LF hypertrophy along with collagen accumulation and fibroblasts proliferation at the injured site, which were very similar to the characteristics observed in the severely hypertrophied LF of human. However, we found that macrophage depletion by injecting clodronate-containing liposomes counteracted LF hypertrophy even with microinjury. For identification of fibroblasts in the LF, we used collagen type I α 2 linked to green fluorescent protein transgenic mice and selectively isolated green fluorescent protein-positive fibroblasts from the microinjured LF using laser microdissection. A quantitative RT-PCR on laser microdissection samples revealed that the gene expression of collagen markedly increased in the fibroblasts at the injured site with infiltrating macrophages compared with the uninjured location. These results suggested that macrophage infiltration was crucial for LF hypertrophy by stimulating collagen production in fibroblasts, providing better understanding of the pathophysiology of LF hypertrophy. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Fibrosis of Two: Epithelial Cell-Fibroblast Interactions in Pulmonary Fibrosis
Sakai, Norihiko; Tager, Andrew M.
2013-01-01
Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the “pas de deux” (steps of two), or perhaps more appropriate to IPF pathogenesis, the “folie à deux” (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their “fibrosis of two”, including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. PMID:23499992
Integrin-linked kinase is required for TGF-β1 induction of dermal myofibroblast differentiation.
Vi, Linda; de Lasa, Cristina; DiGuglielmo, Gianni M; Dagnino, Lina
2011-03-01
Cutaneous repair after injury requires activation of resident dermal fibroblasts and their transition to myofibroblasts. The key stimuli for myofibroblast formation are activation of transforming growth factor-β (TGF-β) receptors and mechanotransduction mediated by integrins and associated proteins. We investigated the role of integrin-linked kinase (ILK) in TGF-β1 induction of dermal fibroblast transition to myofibroblasts. ILK-deficient fibroblasts treated with TGF-β1 exhibited attenuation of Smad 2 and 3 phosphorylation, accompanied by impaired transcriptional activation of Smad targets, such as α-smooth muscle actin. These alterations were not limited to Smad-associated TGF-β1 responses, as stimulation of noncanonical mitogen-activated protein kinase pathways by this growth factor was also diminished in the absence of ILK. ILK-deficient fibroblasts exhibited abnormalities in the actin cytoskeleton, and did not form supermature focal adhesions or contractile F-actin stress fibers, indicating a severe impairment in their capacity to differentiate into myofibroblasts. These defects extended to the inability of cells to contract extracellular matrices when embedded in collagen lattices. We conclude that ILK is necessary to transduce signals implicated in the transition of dermal fibroblasts to myofibroblasts originating from matrix substrates and TGF-β1.
Andrieu, N; Salvayre, R; Levade, T
1994-01-01
The hydrolysis of sphingomyelin (SPM) has been reported to mediate a number of responses to extracellular agents, including cytokines. The so-called SPM cycle may result from the activation of different types of sphingomyelinases (SPMases). We investigated the hypothetical contribution of acid lysosomal SPMase in the SPM signal-transduction pathway. We examined the ability of human skin fibroblasts with a genetic deficiency of acid lysosomal SPMase activity to respond to tumour necrosis factor alpha (TNF-alpha) or interleukin-1 beta (IL-1 beta). We report that both cytokines promoted SPM hydrolysis in fibroblasts derived from patients with Niemann-Pick disease or I-cell disease, similar to that observed in normal cells. Treatment of normal fibroblasts with cationic amphiphilic drugs resulted in inhibition of acid SPMase activity, but had no effect on cytokine-induced SPM turnover. In addition, TNF-alpha and IL-1 beta stimulated [3H]thymidine incorporation in Niemann-Pick fibroblasts, as in normal cells. Thus our results argue against a role for acid endolysosomal SPMase in mediating the cytokine-induced SPM signalling cascade. Images Figure 2 PMID:7980390
Liu, Yanfei; Zhang, Ling; Wei, Wei
2017-01-01
Peptide self-assembly is one of the promising bottom-up approaches for creating synthetic supermolecular architectures. Noncovalent interactions such as hydrophobic packing, electrostatic interaction, and polypeptide chain entropy (ΔSC) are the most relevant factors that affect the folding and self-assembly of peptides and the stability of supermolecular structures. The GVGV tetrapeptide is an abundant repeat in elastin, an extracellular matrix protein. In this study, four GVGV-containing peptides were designed with the aim of understanding the effects of these weak interactions on peptide self-assembly. Transmission electron microscopy, circular dichroism spectroscopy, dynamic light scattering measurements, and rheometry assays were used to study the structural features of the peptides. Because self-assembling peptides with different amino acid sequences may significantly affect protein release, basic fibroblast growth factor (bFGF) was used as a model molecule and encapsulated within the P2 (RLDLGVGVRLDLGVGV) hydrogel to study the release kinetics. The results showed that the balance among hydrophobic effects, electrostatic interactions, and chain entropy determined the molecular state and self-assembly of the peptide. Moreover, encapsulation of bFGF within the P2 hydrogel allowed its sustained release without causing changes in the secondary structure. The release profiles could be tuned by adjusting the P2 hydrogel concentration. Cell Counting Kit-8 and Western blot assays demonstrated that the encapsulated and released bFGFs were biologically active and capable of promoting the proliferation of murine fibroblast NIH-3T3 cells, most likely due to the activation of downstream signaling pathways. PMID:28176898
[Primary culture and characteristics of colorectal cancer-associated fibroblasts].
Wen, Huan; Nie, Qianqian; Jiang, Zhinong; Deng, Hong
2015-10-01
To compare the biological characteristics of colorectal cancer associated fibroblasts (CAFs) with normal fibroblasts (NFs). CAFs and NFs were isolated from fresh specimens of colorectal cancer and their paired normal colon tissue and cultured by tissue explant method. Light microscopy, quantitative polymerase chain reaction (qPCR), Western blot, immunofluorescence microscopy, electron microscopy and flow cytometry were used to identify isolated fibroblasts and to explore their characteristics of activation and growth. Primary colorectal CAFs and NFs were isolated and cultured successfully. NFs showed spindled morphology and were arranged in interlacing or spiral bundles. CAFs were polygonal or spindle, but were fatter than NFs. They were distributed randomly and arranged irregularly, and had obvious actin expression. CAFs and NFs both expressed fibronectin, but not E-cadherin, CD31 and caldesmon. qPCR showed that CAFs expressed more fibroblast activation protein (FAP) and less fibroblast specific protein 1 (FSP1) than that of NFs. There was no difference in the expression of α-SMA between NFs and CAFs by Western blot. α-SMA was bundled in parallel to the long axis of the cell by immunofluorescence. By electron microscopy, CAFs but not NFs showed dense myofilament that was arranged regularly. Flow cytometry showed that the percentage of S- and G2-phase in CAFs were significantly lower than that in NFs. mRNA expression of transforming growth factor β1, stromal derived factor 1 (SDF-1) and platelet derived growth factor (PDGF)-D in CAFs were lower while that for PDGFC was higher than that in NFs. That indicated the proliferation of CAFs was inhibited and the secretion of some cytokines was different when compared with NFs. CAFs show differences with NFs in morphology, characteristics of activation and secretion of some cytokines. The proliferation of CAFs is down regulated as compared with NFs.
The hallmarks of fibroblast ageing.
Tigges, Julia; Krutmann, Jean; Fritsche, Ellen; Haendeler, Judith; Schaal, Heiner; Fischer, Jens W; Kalfalah, Faiza; Reinke, Hans; Reifenberger, Guido; Stühler, Kai; Ventura, Natascia; Gundermann, Sabrina; Boukamp, Petra; Boege, Fritz
2014-06-01
Ageing is influenced by the intrinsic disposition delineating what is maximally possible and extrinsic factors determining how that frame is individually exploited. Intrinsic and extrinsic ageing processes act on the dermis, a post-mitotic skin compartment mainly consisting of extracellular matrix and fibroblasts. Dermal fibroblasts are long-lived cells constantly undergoing damage accumulation and (mal-)adaptation, thus constituting a powerful indicator system for human ageing. Here, we use the systematic of ubiquitous hallmarks of ageing (Lopez-Otin et al., 2013, Cell 153) to categorise the available knowledge regarding dermal fibroblast ageing. We discriminate processes inducible in culture from phenomena apparent in skin biopsies or primary cells from old donors, coming to the following conclusions: (i) Fibroblasts aged in culture exhibit most of the established, ubiquitous hallmarks of ageing. (ii) Not all of these hallmarks have been detected or investigated in fibroblasts aged in situ (in the skin). (iii) Dermal fibroblasts aged in vitro and in vivo exhibit additional features currently not considered ubiquitous hallmarks of ageing. (iv) The ageing process of dermal fibroblasts in their physiological tissue environment has only been partially elucidated, although these cells have been a preferred model of cell ageing in vitro for decades. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiao-Qing; Zhang, Dao-Liang; Zhang, Ming-Jian
Aims: Atrial fibroblasts and macrophages have long been thought to participate in atrial fibrillation (AF). However, which specific mediator may regulate the interaction between them remains unclear. Methods and results: We provided the evidence for the involvement of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF), an important inflammation-related molecule, in the pathophysiology of AF. Patients with AF showed higher levels of angiotensin II (AngII) and TRIF expression and larger number of macrophages infiltration in left atria appendage than individuals with sinus rhythm (SR). In the cell study, AngII induced chemokines expressions in mouse atrial fibroblasts and AngII-stimulated atrial fibroblasts inducedmore » the chemotaxis of macrophages, which were reduced by losartan and TRIF siRNA. Meanwhile, AngII-stimulated atrial fibroblasts proliferation was enhanced by macrophages. Conclusions: Our data demonstrated that TRIF may be a crucial factor promoting the interaction between atrial fibroblasts and macrophages, leading to atrial fibrosis. - Highlights: • Compared with SR, AF showed higher TRIF expression in left atrial appendage. • TRIF siRNA reversed macrophage chemotaxis induced by AngII-treated fibroblast. • TRIF siRNA reversed chemokines expressions induced by AngII in fibroblast. • AngII-stimulated atrial fibroblast proliferation was enhanced by macrophage.« less
NASA Astrophysics Data System (ADS)
Kim, K. Jin; Li, Bing; Winer, Jane; Armanini, Mark; Gillett, Nancy; Phillips, Heidi S.; Ferrara, Napoleone
1993-04-01
THE development of new blood vessels (angiogenesis) is required for many physiological processes including embryogenesis, wound healing and corpus luteum formation1,2. Blood vessel neoformation is also important in the pathogenesis of many disorders1-5, particularly rapid growth and metastasis of solid tumours3-5. There are several potential mediators of tumour angiogenesis, including basic and acidic fibroblast growth factors, tumour necrosis factor-α and transforming factors-α and -β 1,2. But it is unclear whether any of these agents actually mediates angiogenesis and tumour growth in vivo. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen and an angiogenesis inducer released by a variety of tumour cells and expressed in human tumours in situ. To test whether VEGF may be a tumour angiogenesis factor in vivo, we injected human rhabdomyosar-coma, glioblastoma multiforme or leiomyosarcoma cell lines into nude mice. We report here that treatment with a monoclonal antibody specific for VEGF inhibited the growth of the tumours, but had no effect on the growth rate of the tumour cells In vitro. The density of vessels was decreased in the antibody-treated tumours. These findings demonstrate that inhibition of the action of an angiogenic factor spontaneously produced by tumour cells may suppress tumour growth in vivo.
Arrieta, O; Guevara, P; Escobar, E; García-Navarrete, R; Pineda, B; Sotelo, J
2005-01-01
Angiotensin II (Ang II) is a main effector peptide in the renin–angiotensin system and participates in the regulation of vascular tone. It also has a role in the expression of growth factors that induce neovascularisation which is closely associated to the growth of malignant gliomas. We have shown that the selective blockage of the AT1 receptor of angiotensin inhibites tumour growth, cell proliferation and angiogenesis of C6 rat glioma. The aim of this study was to study the effects of the blockage of AT1 receptor on the synthesis of growth factors, and in the genesis of apoptosis in cultured C6 glioma cells and in rats with C6 glioma. Administration of losartan at doses of 40 or 80 mg kg−1 to rats with C6 glioma significantly decreased tumoral volume and production of platelet-derived growth factor, vascular endothelial growth factor and basic fibroblast growth factor. It also induced apoptosis in a dose-dependent manner. Administration of Ang II increased cell proliferation of cultured C6 cells which decreased by the administration of losartan. Our results suggest that the selective blockage of AT1 diminishes tumoral growth through inhibition of growth factors and promotion of apoptosis. PMID:15785746
Connective tissue fibroblasts and Tcf4 regulate myogenesis
Mathew, Sam J.; Hansen, Jody M.; Merrell, Allyson J.; Murphy, Malea M.; Lawson, Jennifer A.; Hutcheson, David A.; Hansen, Mark S.; Angus-Hill, Melinda; Kardon, Gabrielle
2011-01-01
Muscle and its connective tissue are intimately linked in the embryo and in the adult, suggesting that interactions between these tissues are crucial for their development. However, the study of muscle connective tissue has been hindered by the lack of molecular markers and genetic reagents to label connective tissue fibroblasts. Here, we show that the transcription factor Tcf4 (transcription factor 7-like 2; Tcf7l2) is strongly expressed in connective tissue fibroblasts and that Tcf4GFPCre mice allow genetic manipulation of these fibroblasts. Using this new reagent, we find that connective tissue fibroblasts critically regulate two aspects of myogenesis: muscle fiber type development and maturation. Fibroblasts promote (via Tcf4-dependent signals) slow myogenesis by stimulating the expression of slow myosin heavy chain. Also, fibroblasts promote the switch from fetal to adult muscle by repressing (via Tcf4-dependent signals) the expression of developmental embryonic myosin and promoting (via a Tcf4-independent mechanism) the formation of large multinucleate myofibers. In addition, our analysis of Tcf4 function unexpectedly reveals a novel mechanism of intrinsic regulation of muscle fiber type development. Unlike other intrinsic regulators of fiber type, low levels of Tcf4 in myogenic cells promote both slow and fast myogenesis, thereby promoting overall maturation of muscle fiber type. Thus, we have identified novel extrinsic and intrinsic mechanisms regulating myogenesis. Most significantly, our data demonstrate for the first time that connective tissue is important not only for adult muscle structure and function, but is a vital component of the niche within which muscle progenitors reside and is a critical regulator of myogenesis. PMID:21177349
Pleiotrophin is downregulated in human keloids.
Lee, Dong Hun; Jin, Cheng Long; Kim, Yeji; Shin, Mi Hee; Kim, Ji Eun; Kim, Minji; Lee, Min Jung; Cho, Soyun
2016-10-01
Keloid is an abnormal hyperproliferative scarring process with involvement of complex genetic and triggering environmental factors. Previously published dysregulated gene expression profile of keloids includes genes involved in tumor formation. Pleiotrophin (PTN) is a secreted, heparin-binding growth factor which is involved in various biological functions such as cell growth, differentiation, and tumor progression. Although PTN expression was reported to be increased in hypertrophic scars, there is no study on PTN expression in keloids, and previous microarray results are controversial. To clarify differential expression of PTN in keloids, we investigated the expression of PTN and its interacting molecules in keloid and control fibroblasts, and performed immunohistochemical staining of PTN using tissue arrays. The expressions of PTN, its upstream regulator platelet-derived growth factor subunit B (PDGF-B) and corresponding PDGF receptors were significantly downregulated in keloid fibroblasts compared to normal human fibroblasts, and the decreased PTN protein expression was confirmed by immunohistochemistry as well as Western blot. Moreover, functional downstream receptor protein tyrosine phosphatase β/ζ was significantly upregulated in keloid fibroblasts, supporting overall downregulation of PTN signaling pathway. The lowered PTN expression in keloids suggests a different pathomechanism from that of hypertrophic scars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, A.A.; Imai, A.; Tamaya, T.
Growing evidence suggests an association between intra-amniotic infection and premature initiation of parturition. We recently demonstrated that some factor(s) including endotoxin produced by the organism stimulates endogenous phospholipase A2 resulting in liberation of arachidonic acid and prostaglandin formation. The studies presented in this report were designated to evaluate the mechanism for endotoxin to stimulate phospholipase A2 using human endometrial fibroblasts. Exposure of the fibroblasts to endotoxin from Escherichia coli in the presence of ({sup 32}P) phosphate increased {sup 32}P-labeling of phosphatidic acid (PA) and phosphatidyl-inositol (PI) in a dose-dependent and a time-dependent manners. The PA labeling occurred without a measurablemore » lag time. These findings demonstrate that the endotoxin stimulates phosphoinositide metabolism in human endometrial fibroblasts by a receptor-mediated mechanism. Membrane phosphoinositide turnover stimulated by endotoxin results in cytosolic Ca{sup 2+} increment, liberation of arachidonic acid, which may be involved in the initiation of parturition.« less
Circuit Design Features of a Stable Two-Cell System.
Zhou, Xu; Franklin, Ruth A; Adler, Miri; Jacox, Jeremy B; Bailis, Will; Shyer, Justin A; Flavell, Richard A; Mayo, Avi; Alon, Uri; Medzhitov, Ruslan
2018-02-08
Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions. Copyright © 2018 Elsevier Inc. All rights reserved.
1987-02-20
fibroblast growth factors . Soon, we shall be able to use such products to stimulate specific cell types. Knowledge of the mediators produced by each cell type...source of some of these enzymes. 7. Finally, we have begun an extensive investigation on chemotactic fac- tors present in SM lesions. Factors ...gamma-interferon, Interleukin 1, and epi- dermal and fibroblast growth factors . Soon we shall be able to use such products to stimulate specific
König, Hans-Georg; Fenner, Beau J; Byrne, Jennifer C; Schwamborn, Robert F; Bernas, Tytus; Jefferies, Caroline A; Prehn, Jochen H M
2012-12-15
Neuronal survival and plasticity critically depend on constitutive activity of the transcription factor nuclear factor-κB (NF-κB). We here describe a role for a small intracellular fibroblast growth factor homologue, the fibroblast growth factor homologous factor 1 (FHF1/FGF12), in the regulation of NF-κB activity in mature neurons. FHFs have previously been described to control neuronal excitability, and mutations in FHF isoforms give rise to a form of progressive spinocerebellar ataxia. Using a protein-array approach, we identified FHF1b as a novel interactor of the canonical NF-κB modulator IKKγ/NEMO. Co-immunoprecipitation, pull-down and GAL4-reporter experiments, as well as proximity ligation assays, confirmed the interaction of FHF1 and NEMO and demonstrated that a major site of interaction occurred within the axon initial segment. Fhf1 gene silencing strongly activated neuronal NF-κB activity and increased neurite lengths, branching patterns and spine counts in mature cortical neurons. The effects of FHF1 on neuronal NF-κB activity and morphology required the presence of NEMO. Our results imply that FHF1 negatively regulates the constitutive NF-κB activity in neurons.
Elgharably, Haytham; Ganesh, Kasturi; Dickerson, Jennifer; Khanna, Savita; Abas, Motaz; Ghatak, Piya Das; Dixit, Sriteja; Bergdall, Valerie; Roy, Sashwati; Sen, Chandan K
2014-01-01
We recently performed proteomic characterization of a modified collagen gel (MCG) dressing and reported promising effects of the gel in healing full-thickness excisional wounds. In this work, we test the translational relevance of our aforesaid findings by testing the dressing in a swine model of chronic ischemic wounds recently reported by our laboratory. Full-thickness excisional wounds were established in the center of bipedicle ischemic skin flaps on the backs of animals. Ischemia was verified by laser Doppler imaging, and MCG was applied to the test group of wounds. Seven days post wounding, macrophage recruitment to the wound was significantly higher in MCG-treated ischemic wounds. In vitro, MCG up-regulated expression of Mrc-1 (a reparative M2 macrophage marker) and induced the expression of anti-inflammatory cytokine interleukin (IL)-10 and of fibroblast growth factor-basic (β-FGF). An increased expression of CCR2, an M2 macrophage marker, was noted in the macrophages from MCG treated wounds. Furthermore, analyses of wound tissues 7 days post wounding showed up-regulation of transforming growth factor-β, vascular endothelial growth factor, von Willebrand's factor, and collagen type I expression in MCG-treated ischemic wounds. At 21 days post wounding, MCG-treated ischemic wounds displayed higher abundance of proliferating endothelial cells that formed mature vascular structures and increased blood flow to the wound. Fibroblast count was markedly higher in MCG-treated ischemic wound-edge tissue. In addition, MCG-treated wound-edge tissues displayed higher abundance of mature collagen with increased collagen type I : III deposition. Taken together, MCG helped mount a more robust inflammatory response that resolved in a timely manner, followed by an enhanced proliferative phase, angiogenic outcome, and postwound tissue remodeling. Findings of the current study warrant clinical testing of MCG in a setting of ischemic chronic wounds. © 2014 by the Wound Healing Society.
Fekete, Natalie; Gadelorge, Mélanie; Fürst, Daniel; Maurer, Caroline; Dausend, Julia; Fleury-Cappellesso, Sandrine; Mailänder, Volker; Lotfi, Ramin; Ignatius, Anita; Sensebé, Luc; Bourin, Philippe; Schrezenmeier, Hubert; Rojewski, Markus Thomas
2012-01-01
Background aims The clinical use of human mesenchymal stromal cells (MSC) requires ex vivo expansion in media containing supplements such as fetal bovine serum or, alternatively, human platelet lysate (PL). Methods Platelet concentrates were frozen, quarantine stored, thawed and sterile filtered to obtain PL. PL content and its effect on fibroblast-colony-forming unit (CFU-F) formation, MSC proliferation and large-scale expansion were studied. Results PL contained high levels of basic fibroblast growth factor (bFGF), soluble CD40L (sCD40L), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), platelet-derived growth factor AA (PDGF-AA), platelet-derived growth factor AB/BB (PDGF-AB/BB), chemokine (C-C) ligand 5 (CCL5; RANTES) transforming growth factor-β1 (TGF-β1) and chemokine (C-X-C) ligand 1/2/3 (GRO), with low batch-to-batch variability, and most were stable for up to 14 days. Inhibition of PDGF-BB and bFGF decreased MSC proliferation by about 20% and 50%, respectively. The strongest inhibition (about 75%) was observed with a combination of anti-bFGF + anti-PDGF-BB and anti-bFGF + anti-TGF-β1 + anti-PDGF-BB. Interestingly, various combinations of recombinant PDGF-BB, bFGF and TGF-β1 were not sufficient to promote cell proliferation. PL from whole blood-derived pooled platelet concentrates and apheresis platelet concentrates did not differ significantly in their growth-promoting activity on MSC. Conclusions PL enhances MSC proliferation and can be regarded as a safe tool for MSC expansion for clinical purposes. \\in particular, PDGF-BB and bFGF are essential components for the growth-promoting effect of PL, but are not sufficient for MSC proliferation. PMID:22296115
Inhibition of TGFβ signaling increases direct conversion of fibroblasts to induced cardiomyocytes.
Ifkovits, Jamie L; Addis, Russell C; Epstein, Jonathan A; Gearhart, John D
2014-01-01
Recent studies have been successful at utilizing ectopic expression of transcription factors to generate induced cardiomyocytes (iCMs) from fibroblasts, albeit at a low frequency in vitro. This work investigates the influence of small molecules that have been previously reported to improve differentiation to cardiomyocytes as well as reprogramming to iPSCs in conjunction with ectopic expression of the transcription factors Hand2, Nkx2.5, Gata4, Mef2C, and Tbx5 on the conversion to functional iCMs. We utilized a reporter system in which the calcium indicator GCaMP is driven by the cardiac Troponin T promoter to quantify iCM yield. The TGFβ inhibitor, SB431542 (SB), was identified as a small molecule capable of increasing the conversion of both mouse embryonic fibroblasts and adult cardiac fibroblasts to iCMs up to ∼5 fold. Further characterization revealed that inhibition of TGFβ by SB early in the reprogramming process led to the greatest increase in conversion of fibroblasts to iCMs in a dose-responsive manner. Global transcriptional analysis at Day 3 post-induction of the transcription factors revealed an increased expression of genes associated with the development of cardiac muscle in the presence of SB compared to the vehicle control. Incorporation of SB in the reprogramming process increases the efficiency of iCM generation, one of the major goals necessary to enable the use of iCMs for discovery-based applications and for the clinic.
Inhibition of TGFβ Signaling Increases Direct Conversion of Fibroblasts to Induced Cardiomyocytes
Ifkovits, Jamie L.; Addis, Russell C.; Epstein, Jonathan A.; Gearhart, John D.
2014-01-01
Recent studies have been successful at utilizing ectopic expression of transcription factors to generate induced cardiomyocytes (iCMs) from fibroblasts, albeit at a low frequency in vitro. This work investigates the influence of small molecules that have been previously reported to improve differentiation to cardiomyocytes as well as reprogramming to iPSCs in conjunction with ectopic expression of the transcription factors Hand2, Nkx2.5, Gata4, Mef2C, and Tbx5 on the conversion to functional iCMs. We utilized a reporter system in which the calcium indicator GCaMP is driven by the cardiac Troponin T promoter to quantify iCM yield. The TGFβ inhibitor, SB431542 (SB), was identified as a small molecule capable of increasing the conversion of both mouse embryonic fibroblasts and adult cardiac fibroblasts to iCMs up to ∼5 fold. Further characterization revealed that inhibition of TGFβ by SB early in the reprogramming process led to the greatest increase in conversion of fibroblasts to iCMs in a dose-responsive manner. Global transcriptional analysis at Day 3 post-induction of the transcription factors revealed an increased expression of genes associated with the development of cardiac muscle in the presence of SB compared to the vehicle control. Incorporation of SB in the reprogramming process increases the efficiency of iCM generation, one of the major goals necessary to enable the use of iCMs for discovery-based applications and for the clinic. PMID:24586958
Rossano, F; Rizzo, A; Sanges, M R; Cipollaro de L'Ero, G; Tufano, M A
1993-01-01
In this study we provide evidence that structural and soluble components of periodontopathogenic bacteria, such as Prevotella melaninogenica and Fusobacterium nucleatum, induce the release of cytokines in vitro known to cause in vivo necrotic inflammatory phenomena and bone resorption (tumor necrosis factor-alpha, interleukin-1 alpha and interleukin-6). Human monocytes and gingival fibroblasts were cultivated in vitro in the presence of both particulate and soluble bacterial fractions. A dose-dependent production of tumor necrosis factor-alpha by monocytes and gingival fibroblasts was observed in the presence of fractions of P. melaninogenica and F. nucleatum. Interleukin-1 alpha was produced in approximately the same quantities in the presence of soluble fractions of either P. melaninogenica or F. nucleatum, but in greater quantities in response to particulate fractions of P. melaninogenica. Monocytes released larger amounts of interleukin-1 alpha (about 3000 pg/ml) than gingival fibroblasts (about 1500 pg/ml). Interleukin-6 was released in greater quantities by monocytes in the presence of the pellet fraction of P. melaninogenica (about 5.5 ng/ml), but gingival fibroblasts released larger amounts of interleukin-6, especially in the presence of particulate and soluble components of F. nucleatum (about 12 ng/ml). The ability to induce the release of these cytokines notably increases the pathogenic potential of the bacteria involved in the damage of periodontal tissue.
Du, X; Iacovitti, L
1995-07-01
The phenotypically plastic neurons of the embryonic mouse striatum were used to explore mechanisms of catecholamine differentiation in culture. De novo transcription and translation of the CA biosynthetic enzyme, tyrosine hydroxylase (TH), was induced in striatal neurons exposed, simultaneously or sequentially, to the growth factor, acidic fibroblast growth factor (aFGF) and a catecholamine. Although dopamine was the most potent aFGF partner (ED50 = 4 microM), a number of substances, including dopamine (D1) receptor agonists, beta-adrenoceptor agonists, and dopamine uptake inhibitors also trigger TH induction when accompanied by aFGF. However, since none of the receptor antagonists nor transport blockers tested could inhibit dopamine's action, the mechanism remains obscure. Structure-activity analysis suggests that effective aFGF partners all contain an amine group separated from a catechol nucleus by two carbons. Thus, TH expression can be novelly induced by the synergistic interaction of aFGF, and to a lesser extent basic FGF, and a variety of CA-containing partner molecules. We speculate that a similar association between growth factor and transmitter may be required in development for the differentiation of a CA phenotype in brain neurons.
Park, In-Su; Chung, Phil-Sang; Ahn, Jin Chul
2014-11-01
The aim of this study was to investigate the effects of low-level laser therapy (LLLT) on transplanted human adipose-derived mesenchymal stem cells (hASCs) spheroid in a hind limb ischemia animal model. LLLT, hASCs spheroid and hASCs spheroid transplantation with LLLT (spheroid + LLLT) were applied to the ischemic hind limbs in athymic mice. The survival, differentiation and secretion of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF), and hepatocyte growth factor (HGF) of the spheroid ASCs were evaluated by immunohistochemistry and western blots. Spheroid + LLLT group had enhanced the tissue regeneration, including angiogenesis, compared with the ASC group. The spheroid ASCs contributed to tissue regeneration via differentiation and secretion of growth factors. In the spheroid + LLLT group, the survival of spheroid hASCs increased with a concomitant decrease in apoptosis of spheroid hASCs in the ischemic hind limb. The secretion of growth factors was stimulated in the spheroid + LLLT group compared with the ASCs and spheroid group. These data suggested that LLLT is an effective biostimulator of spheroid hASCs in tissue regeneration that enhanced the survival of ASCs and stimulated the secretion of growth factors in the ischemic hind limb. Copyright © 2014 Elsevier Ltd. All rights reserved.
Influence of the interaction between nodal fibroblast and breast cancer cells on gene expression
Santos, Rosângela Portilho Costa; Benvenuti, Ticiana Thomazine; Honda, Suzana Terumi; Del Valle, Paulo Roberto; Katayama, Maria Lucia Hirata; Brentani, Helena Paula; Carraro, Dirce Maria; Rozenchan, Patrícia Bortman; Brentani, Maria Mitzi; de Lyra, Eduardo Carneiro; Torres, César Henrique; Salzgeber, Marcia Batista; Kaiano, Jane Haruko Lima; Góes, João Carlos Sampaio
2010-01-01
Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor. Electronic supplementary material The online version of this article (doi:10.1007/s13277-010-0108-7) contains supplementary material, which is available to authorized users. PMID:20820980
Influence of the interaction between nodal fibroblast and breast cancer cells on gene expression.
Santos, Rosângela Portilho Costa; Benvenuti, Ticiana Thomazine; Honda, Suzana Terumi; Del Valle, Paulo Roberto; Katayama, Maria Lucia Hirata; Brentani, Helena Paula; Carraro, Dirce Maria; Rozenchan, Patrícia Bortman; Brentani, Maria Mitzi; de Lyra, Eduardo Carneiro; Torres, César Henrique; Salzgeber, Marcia Batista; Kaiano, Jane Haruko Lima; Góes, João Carlos Sampaio; Folgueira, Maria Aparecida Azevedo Koike
2011-02-01
Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor.
van Rooyen, Beverley A; Schäfer, Georgia; Leaner, Virna D; Parker, M Iqbal
2013-10-03
Recent studies have revealed that interactions between tumour cells and the surrounding stroma play an important role in facilitating tumour growth and invasion. Stromal fibroblasts produce most of the extracellular matrix components found in the stroma. The aim of this study was to investigate mechanisms involved in tumour cell-mediated regulation of extracellular matrix and adhesion molecules in co-cultured fibroblasts. To this end, microarray analysis was performed on CCD-1068SK human fibroblast cells after direct co-culture with MDA-MB-231 human breast tumour cells. We found that the expression of both connective tissue growth factor (CTGF/CCN2) and type I collagen was negatively regulated in CCD-1068SK fibroblast cells under direct co-culture conditions. Further analysis revealed that Smad7, a known negative regulator of the Smad signalling pathway involved in CCN2 promoter regulation, was increased in directly co-cultured fibroblasts. Inhibition of Smad7 expression in CCD-1068SK fibroblasts resulted in increased CCN2 expression, while Smad7 overexpression had the opposite effect. Silencing CCN2 gene expression in fibroblasts led, in turn, to a decrease in type I collagen mRNA and protein levels. ERK signalling was also shown to be impaired in CCD-1068SK fibroblasts after direct co-culture with MDA-MB-231 tumour cells, with Smad7 overexpression in fibroblasts leading to a similar decrease in ERK activity. These effects were not, however, seen in fibroblasts that were indirectly co-cultured with tumour cells. We therefore conclude that breast cancer cells require close contact with fibroblasts in order to upregulate Smad7 which, in turn, leads to decreased ERK signalling resulting in diminished expression of the stromal proteins CCN2 and type I collagen.
Activation of cardiac fibroblasts by ethanol is blocked by TGF-β inhibition.
Law, Brittany A; Carver, Wayne E
2013-08-01
Alcohol abuse is the second leading cause of dilated cardiomyopathy, a disorder specifically referred to as alcoholic cardiomyopathy (ACM). Rodent and human studies have revealed cardiac fibrosis to be a consequence of ACM, and prior studies by this laboratory have associated this occurrence with elevated transforming growth factor-beta (TGF-β) and activated fibroblasts (myofibroblasts). To date, there have been no other studies to investigate the direct effect of alcohol on the cardiac fibroblast. Primary rat cardiac fibroblasts were cultured in the presence of ethanol (EtOH) and assayed for fibroblast activation by collagen gel contraction, alpha-smooth muscle actin (α-SMA) expression, migration, proliferation, apoptosis, collagen I and III, and TGF-β expression. The TGF-β receptor type 1 inhibitor compound SB 431542 and a soluble recombinant TGF-βII receptor (RbII) were used to assess the role of TGF-β in the response of cardiac fibroblasts to EtOH. Treatment for cardiac fibroblasts with EtOH at concentrations of 100 mg/dl or higher resulted in fibroblast activation and fibrogenic activity after 24 hours including an increase in contraction, α-SMA expression, migration, and expression of collagen I and TGF-β. No changes in fibroblast proliferation or apoptosis were observed. Inhibition of TGF-β by SB 431542 and RbII attenuated the EtOH-induced fibroblast activation. EtOH treatment directly promotes cardiac fibroblast activation by stimulating TGF-β release from fibroblasts. Inhibiting the action of TGF-β decreases the fibrogenic effect induced by EtOH treatment. The results of this study support TGF-β to be an important component in cardiac fibrosis induced by exposure to EtOH. Copyright © 2013 by the Research Society on Alcoholism.
Activation of cardiac fibroblasts by ethanol is blocked by TGF-β inhibition
Law, Brittany A.; Carver, Wayne E.
2013-01-01
Background Alcohol abuse is the second leading cause of dilated cardiomyopathy, a disorder specifically referred to as Alcoholic Cardiomyopathy (ACM). Rodent and human studies have revealed cardiac fibrosis to be a consequence of ACM and prior studies by this lab have associated this occurrence with elevated transforming growth factor-beta (TGF-β) and activated fibroblasts (myofibroblasts). To date there have been no other studies to investigate the direct effect of alcohol on the cardiac fibroblast. Methods Primary rat cardiac fibroblasts were cultured in the presence of ethanol and assayed for fibroblast activation by collagen gel contraction, alpha smooth muscle- actin (α-SMA) expression, migration, proliferation, apoptosis, collagen I & III and TGF-β expression. The TGF-β receptor type 1 inhibitor compound SB 431542 and a soluble recombinant TGF-βII receptor (RbII) were used to assess the role of of TGF-β in the response of cardiac fibroblasts to ethanol. Results Treatment of cardiac fibroblasts with ethanol at concentrations of 100 mg/dl or higher resulted in fibroblast activation and fibrogenic activity after 24 hours including an increase in contraction, α-SMA expression, migration, and expression of collagen I and TGF-β. No changes in fibroblast proliferation or apoptosis were observed. Inhibition of TGF-β by SB 431542 and RbII attenuated the ethanol-induced fibroblast activation. Conclusions Ethanol treatment directly promotes cardiac fibroblast activation by stimulating TGF-β release from fibroblasts. Inhibiting the action of TGF-β decreases the fibrogenic effect induced by ethanol treatment. The results of this study support TGF-β to be an important component in cardiac fibrosis induced by exposure to ethanol. PMID:23528014
Cellular Dysfunction in the Diabetic Fibroblast
Lerman, Oren Z.; Galiano, Robert D.; Armour, Mary; Levine, Jamie P.; Gurtner, Geoffrey C.
2003-01-01
Although it is known that systemic diseases such as diabetes result in impaired wound healing, the mechanism for this impairment is not understood. Because fibroblasts are essential for wound repair, we compared the in vitro behavior of fibroblasts cultured from diabetic, leptin receptor-deficient (db/db) mice with wild-type fibroblasts from mice of the same genetic background in processes important during tissue repair. Adult diabetic mouse fibroblast migration exhibited a 75% reduction in migration compared to normal fibroblasts (P < 0.001) and was not significantly stimulated by hypoxia (1% O2), whereas wild-type fibroblast migration was up-regulated nearly twofold in hypoxic conditions (P < 0.05). Diabetic fibroblasts produced twice the amount of pro-matrix metalloproteinase-9 as normal fibroblasts, as measured by both gelatin zymography and enzyme-linked immunosorbent assay (P < 0.05). Adult diabetic fibroblasts exhibited a sevenfold impairment in vascular endothelial growth factor (VEGF) production (4.5 ± 1.3 pg/ml versus 34.8 ± 3.3 pg/ml, P < 0.001) compared to wild-type fibroblasts. Moreover, wild-type fibroblast production of VEGF increased threefold in response to hypoxia, whereas diabetic fibroblast production of VEGF was not up-regulated in hypoxic conditions (P < 0.001). To address the question whether these differences resulted from chronic hyperglycemia or absence of the leptin receptor, fibroblasts were harvested from newborn db/db mice before the onset of diabetes (4 to 5 weeks old). These fibroblasts showed no impairments in VEGF production under basal or hypoxic conditions, confirming that the results from db/db fibroblasts in mature mice resulted from the diabetic state and were not because of alterations in the leptin-leptin receptor axis. Markers of cellular viability including proliferation and senescence were not significantly different between diabetic and wild-type fibroblasts. We conclude that, in vitro, diabetic fibroblasts show selective impairments in discrete cellular processes critical for tissue repair including cellular migration, VEGF production, and the response to hypoxia. The VEGF abnormalities developed concurrently with the onset of hyperglycemia and were not seen in normoglycemic, leptin receptor-deficient db/db mice. These observations support a role for fibroblast dysfunction in the impaired wound healing observed in human diabetics, and also suggest a mechanism for the poor clinical outcomes that occur after ischemic injury in diabetic patients. PMID:12507913
Zhao, Xue-Ke; Cheng, Yiju; Liang Cheng, Ming; Yu, Lei; Mu, Mao; Li, Hong; Liu, Yang; Zhang, Baofang; Yao, Yumei; Guo, Hui; Wang, Rong; Zhang, Quan
2016-01-01
Lung fibrosis is a major medical problem for the aging population worldwide. Fibroblast migration plays an important role in fibrosis. Focal Adhesion Kinase (FAK) senses the extracellular stimuli and initiates signaling cascades that promote cell migration. This study first examined the dose and time responses of FAK activation in human lung fibroblasts treated with platelet derived growth factor BB (PDGF-BB). The data indicate that FAK is directly recruited by integrin β1 and the subsequent FAK activation is required for fibroblast migration on fibronectin. In addition, the study has identified that α5β1 and α4β1 are the major integrins for FAK-mediated fibroblast migration on fibronect. In contrast, integrins αvβ3, αvβ6, and αvβ8 play a minor but distinct role in fibroblast migration on fibronectin. FAK inhibitor significantly reduces PDGF-BB stimulated fibroblast migration. Importantly, FAK inhibitor protects bleomycin-induced lung fibrosis in mice. FAK inhibitor blocks FAK activation and significantly reduces signaling cascade of fibroblast migration in bleomycin-challenged mice. Furthermore, FAK inhibitor decreases lung fibrotic score, collagen accumulation, fibronectin production, and myofibroblast differentiation in in bleomycin-challenged mice. These data demonstrate that FAK mediates fibroblast migration mainly via integrin β1. Furthermore, the findings suggest that targeting FAK signaling is an effective therapeutic strategy against fibrosis. PMID:26763945
Fibroblasts in myocardial infarction: a role in inflammation and repair
Shinde, Arti V.; Frangogiannis, Nikolaos G.
2014-01-01
Fibroblasts do not only serve as matrix-producing reparative cells, but exhibit a wide range of functions in inflammatory and immune responses, angiogenesis and neoplasia. The adult mammalian myocardium contains abundant fibroblasts enmeshed within the interstitial and perivascular extracellular matrix. The current review manuscript discusses the dynamic phenotypic and functional alterations of cardiac fibroblasts following myocardial infarction. Extensive necrosis of cardiomyocytes in the infarcted heart triggers an intense inflammatory reaction. In the early stages of infarct healing, fibroblasts become pro-inflammatory cells, activating the inflammasome and producing cytokines, chemokines and proteases. Pro-inflammatory cytokines (such as Interleukin-1) delay myofibroblast transformation, until the wound is cleared from dead cells and matrix debris. Resolution of the inflammatory infiltrate is associated with fibroblast migration, proliferation, matrix protein synthesis and myofibroblast conversion. Growth factors and matricellular proteins play an important role in myofibroblast activation during the proliferative phase of healing. Formation of a mature cross-linked scar is associated with clearance of fibroblasts, as poorly-understood inhibitory signals restrain the fibrotic response. However, in the non-infarcted remodeling myocardium, local fibroblasts may remain activated in response to volume and pressure overload and may promote interstitial fibrosis. Considering their abundance, their crucial role in cardiac inflammation and repair, and their involvement in myocardial dysfunction and arrhythmogenesis, cardiac fibroblasts may be key therapeutic targets in cardiac remodeling. PMID:24321195
Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki
2015-12-08
Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Wang, Mei; Wu, Chunping; Guo, Yu; Cao, Xiaojuan; Zheng, Wenwei; Fan, Guo-Kang
2017-05-01
Most primarily cultured laryngeal squamous cell carcinoma cells are difficult to propagate in vitro and have a low survival rate. However, in our previous work to establish a laryngeal squamous cell carcinoma cell line, we found that laryngeal cancer-associated fibroblasts appeared to strongly inhibit the apoptosis of primarily cultured laryngeal squamous cell carcinoma cells in vitro. In this study, we investigated whether paired laryngeal cancer-associated fibroblasts alone can effectively support the growth of primarily cultured laryngeal squamous cell carcinoma cells in vitro. In all, 29 laryngeal squamous cell carcinoma specimens were collected and primarily cultured. The laryngeal squamous cell carcinoma cells were separated from cancer-associated fibroblasts by differential trypsinization and continuously subcultured. Morphological changes of the cultured laryngeal squamous cell carcinoma cells were observed. Immunocytofluorescence was used to authenticate the identity of the cancer-associated fibroblasts and laryngeal squamous cell carcinoma cells. Flow cytometry was used to quantify the proportion of apoptotic cells. Western blot was used to detect the protein levels of caspase-3. Enzyme-linked immunosorbent assay was used to detect the levels of chemokine (C-X-C motif) ligand 12, chemokine (C-X-C motif) ligand 7, hepatocyte growth factor, and fibroblast growth factor 1 in the supernatants of the laryngeal squamous cell carcinoma and control cells. AMD3100 (a chemokine (C-X-C motif) receptor 4 antagonist) and an anti-chemokine (C-X-C motif) ligand 7 antibody were used to block the tumor-supporting capacity of cancer-associated fibroblasts. Significant apoptotic changes were detected in the morphology of laryngeal squamous cell carcinoma cells detached from cancer-associated fibroblasts. The percentage of apoptotic laryngeal squamous cell carcinoma cells and the protein levels of caspase-3 increased gradually in subsequent subcultures. In contrast, no significant differences in the proliferation capacity of laryngeal squamous cell carcinoma cells cocultured with cancer-associated fibroblasts were detected during subculturing. High level of chemokine (C-X-C motif) ligand 12 was detected in the culture supernatant of cancer-associated fibroblasts. The tumor-supporting effect of cancer-associated fibroblasts was significantly inhibited by AMD3100. Our findings demonstrate that the paired laryngeal cancer-associated fibroblasts alone are sufficient to support the primary growth of laryngeal squamous cell carcinoma cells in vitro and that the chemokine (C-X-C motif) ligand 12/chemokine (C-X-C motif) receptor 4 axis is one of the major contributors.
Lin, Junshan; Xie, Cheng; Chen, Ruiqing; Li, Dumiao
2016-05-01
To investigate androgen receptor (AR) expression and the effect of epidermal growth factor (EGF) and testosterone on AR expression level. EGF or different concentrations of testosterone were incubated with the primary urethral plate fibroblasts from patients with hypospadias. The levels of AR expression in the fibroblasts were detected by immunocytochemical assays and graphical analysis. There was no significant difference in AR activation under physiological concentrations (3×10(-8) mol/L) of testosterone between the control and the distal hypospadias group (P>0.05). However, there was a significant decrease in AR activation in the proximal hypospadias group compared to that in the control group (P<0.001). Under the concentration of 3×10(-6) mol/L, the effects of testosterone on AR activation were dramatically different in the three groups (control group>distal hypospadias group>proximal hypospadias group, P<0.001). AR activation level in the group of proximal hypospadias was improved most obviously when EGF and physiological concentration of testosterone were employed in the urethral plate fibroblasts from hypospadias patients (P<0.001), and it was improved more in the distal hypospadias group than that in the control group (P=0.02). AR expression and activation in the urethral plate fibroblasts from hypospadias patients are abnormal. EGF can be used to improve AR activation in fibroblasts from different types of hypospadias, especially in the proximal type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Salgado, Carlos; Fuentes-Calvo, Isabel; Instituto 'Reina Sofia' de Investigacion Nefrologica, Universidad de Salamanca, 37007 Salamanca
2006-07-01
Transforming growth factor {beta}1 (TGF-{beta}1) has a relevant role in the origin and maintenance of glomerulosclerosis and tubule-interstitial fibrosis. TGF-{beta} and Ras signaling pathways are closely related: TGF-{beta}1 overcomes Ras mitogenic effects and Ras counteracts TGF-{beta} signaling. Tubule-interstitial fibrosis is associated to increases in Ras, Erk, and Akt activation in a renal fibrosis model. We study the role of N- and H-Ras isoforms, and the involvement of the Ras effectors Erk and Akt, in TGF-{beta}1-mediated extracellular matrix (ECM) synthesis and proliferation, using embrionary fibroblasts from double knockout (KO) mice for H- and N-Ras (H-ras {sup -/-}/N-ras {sup -/-}) isoforms andmore » from heterozygote mice (H-ras {sup +/-}/N-ras {sup +/-}). ECM synthesis is increased in basal conditions in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts, this increase being higher after stimulation with TGF-{beta}1. TGF-{beta}1-induced fibroblast proliferation is smaller in H-ras {sup -/-}/N-ras {sup -/-} than in H-ras {sup +/-}/N-ras {sup +/-} fibroblasts. Erk activation is decreased in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts; inhibition of Erk activation reduces fibroblast proliferation. Akt activation is higher in double KO fibroblasts than in heterozygotes; inhibition of Akt activation also inhibits ECM synthesis. We suggest that H- and N-Ras isoforms downregulate ECM synthesis, and mediate proliferation, in part through MEK/Erk activation. PI3K-Akt pathway activation may be involved in the increase in ECM synthesis observed in the absence of H- and N-Ras.« less
Profibrotic Phenotype of Conjunctival Fibroblasts from Mucous Membrane Pemphigoid
Saw, Valerie P.J.; Schmidt, Enno; Offiah, Ifeoma; Galatowicz, Grazyna; Zillikens, Detlef; Dart, John K.G.; Calder, Virginia L.; Daniels, Julie T.
2011-01-01
Ocular mucous membrane pemphigoid is an immunobullous disease in which excessive conjunctival fibrosis causes blindness, and the pathogenesis of scarring is incompletely understood. To establish whether profibrotic fibroblasts with an altered phenotype exist in ocular mucous membrane pemphigoid, we compared the functional characteristics of pemphigoid conjunctival fibroblasts to normal conjunctival fibroblasts with respect to cell division; migration; collagen contraction; matrix metalloproteinase, secretion of collagen and chemokines; and myofibroblast differentiation. We found that pemphigoid fibroblasts showed increased cell division (P = 0.01), increased migration in serum-free medium (72 ± 18 migrated cells versus 33 ± 11, P = 0.04), increased collagen contraction in the presence of 10 ng/ml tumor necrosis factor-α, increased collagen type I secretion (P = 0.03), increased secretion of matrix metalloproteinase-3 (P = 0.03), and increased secretion of eotaxin in response to interleukin-13 (P = 0.04). Differences between pemphigoid and normal conjunctival fibroblasts with respect to collagen contraction and MMP secretion in the presence of interleukin-13 were also observed. Together, these findings indicate that pemphigoid conjunctival fibroblasts have a profibrotic phenotype that is maintained in vitro. No differences between pemphigoid fibroblasts obtained from acutely inflamed versus clinically uninflamed conjunctiva were observed. Developing effective antifibrotic therapies will require understanding of the mechanisms that both induce and maintain the profibrotic phenotype. PMID:21224056
Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki
2014-07-17
Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming. © 2014 The Authors.
Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki
2014-01-01
Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming. PMID:24920580
Latif, Najma; Quillon, Alfred; Sarathchandra, Padmini; McCormack, Ann; Lozanoski, Alec; Yacoub, Magdi H.; Chester, Adrian H.
2015-01-01
Valve interstitial cells (VICs) are fibroblastic in nature however in culture it is widely accepted that they differentiate into a myofibroblastic phenotype. This study assessed a fibroblast culture media formulation for its ability to maintain the phenotype and function of VICs as in the intact healthy valve. Normal human VICs were cultured separately in standard DMEM and in fibroblast media consisting of FGF2 (10ng/ml), insulin (50ng/ml) and 2% FCS for at least a week. Cell morphology, aspect ratio, size, levels and distribution of protein expression, proliferation, cell cycle, contraction and migration were assessed. Some VICs and some valve endothelial cells expressed FGF2 in valve tissue and this expression was increased in calcified valves. VICs in DMEM exhibited large, spread cells whereas VICs in fibroblast media were smaller, elongated and spindly. Aspect ratio and size were both significantly higher in DMEM (p<0.01). The level of expression of α-SMA was significantly reduced in fibroblast media at day 2 after isolation (p<0.01) and the expression of α-SMA, SM22 and EDA-fibronectin was significantly reduced in fibroblast media at days 7 and 12 post-isolation (p<0.01). Expression of cytoskeletal proteins, bone marker proteins and extracellular matrix proteins was reduced in fibroblast media. Proliferation of VICs in fibroblast media was significantly reduced at weeks 1 (p<0.05) and 2 (p<0.01). Collagen gel contraction was significantly reduced in fibroblast media (p<0.05). VICs were found to have significantly fewer and smaller focal adhesions in fibroblast media (p<0.01) with significantly fewer supermature focal adhesions in fibroblast media (p<0.001). Ultrastructurally, VICs in fibroblast media resembled native VICs from intact valves. VICs in fibroblast media demonstrated a slower migratory ability after wounding at 72 hours (p<0.01). Treatment of human VICs with this fibroblast media formulation has the ability to maintain and to dedifferentiate the VICs back to a fibroblastic phenotype with phenotypic and functional characteristics ascribed to cells in the intact valve. This methodology is fundamental in the study of normal valve biology, pathology and in the field of tissue engineering. PMID:26042674
Clancy, Robert M; Markham, Androo J; Jackson, Tanisha; Rasmussen, Sara E; Blumenberg, Miroslav; Buyon, Jill P
2017-09-01
The signature lesion of SSA/Ro autoantibody-associated congenital heart block (CHB) is fibrosis and a macrophage infiltrate, supporting an experimental focus on cues influencing the fibroblast component. The transcriptomes of human fetal cardiac fibroblasts were analyzed using two complementary approaches. Cardiac injury conditions were simulated in vitro by incubating human fetal cardiac fibroblasts with supernatants from macrophages transfected with the SSA/Ro-associated noncoding Y ssRNA. The top 10 upregulated transcripts in the stimulated fibroblasts reflected a type I interferon (IFN) response [e.g., IFN-induced protein 44-like (IFI44L), of MX dynamin-like GTPase (MX)1, MX2, and radical S -adenosyl methionine domain containing 2 (Rsad2)]. Within the fibrotic pathway, transcript levels of endothelin-1 (EDN1), phosphodiesterase (PDE)4D, chemokine (C-X-C motif) ligand (CXCL)2, and CXCL3 were upregulated, while others, including adenomedullin, RAP guanine nucleotide exchange factor 3 (RAPGEF3), tissue inhibitor of metalloproteinase (TIMP)1, TIMP3, and dual specificity phosphatase 1, were downregulated. Agnostic Database for Annotation, Visualization and Integrated Discovery analysis revealed a significant increase in inflammatory genes, including complement C3A receptor 1 (C3AR1), F2R-like thrombin/trypsin receptor 3, and neutrophil cytosolic factor 2. In addition, stimulated fibroblasts expressed high levels of phospho-MADS box transcription enhancer factor 2 [a substrate of MAPK5 (ERK5)], which was inhibited by BIX-02189, a specific inhibitor of ERK5. Translation to human disease leveraged an unprecedented opportunity to interrogate the transcriptome of fibroblasts freshly isolated and cell sorted without stimulation from a fetal heart with CHB and a matched healthy heart. Consistent with the in vitro data, five IFN response genes were among the top 10 most highly expressed transcripts in CHB fibroblasts. In addition, the expression of matrix-related genes reflected fibrosis. These data support the novel finding that cardiac injury in CHB may occur secondary to abnormal remodeling due in part to upregulation of type 1 IFN response genes. NEW & NOTEWORTHY Congenital heart block is a rare disease of the fetal heart associated with maternal anti-Ro autoantibodies which can result in death and for survivors, lifelong pacing. This study provides in vivo and in vitro transcriptome-support that injury may be mediated by an effect of Type I Interferon on fetal fibroblasts. Copyright © 2017 the American Physiological Society.
Nakajima, Hiroaki; Terazawa, Shuko; Niwano, Takao; Yamamoto, Yorihiro; Imokawa, Genji
2016-01-01
We recently reported that the over-expression of skin fibroblast-derived neutral endopeptidase (NEP) plays a pivotal role in impairing the three-dimensional architecture of dermal elastic fibers during the biological mechanism of ultraviolet (UV)-induced skin wrinkling. In that process, a UVB-associated epithelial-mesenchymal cytokine interaction as well as a direct UVA-induced cellular stimulation are associated with the up-regulation of NEP in human fibroblasts. In this study, we characterized the mode of action of ubiquinol10 which may abrogate the up-regulation of NEP by dermal fibroblasts, resulting in a reported in vivo anti-wrinkling action, and compared that with 3 other anti-oxidants, astaxanthin (AX), riboflavin (RF) and flavin mononucleotide (FMN). Post-irradiation treatment with all 4 of those anti-oxidants elicited an interrupting effect on the UVB-associated epithelial-mesenchymal cytokine interaction leading to the up-regulation of NEP in human fibroblasts but with different modes of action. While AX mainly served as an inhibitor of the secretion of wrinkle-inducing cytokines, such as interleukin-1α (IL-1α) and granulocyte macrophage colony stimulatory factor (GM-CSF) in UVB-exposed epidermal keratinocytes, ubiquinol10, RF and FMN predominantly interrupted the IL-1α and GM-CSF-stimulated expression of NEP in dermal fibroblasts. On the other hand, as for the UVA-associated mechanism, similar to the abrogating effects reported for AX and FMN, ubiquinol10 but not RF had the potential to abrogate the increased expression of NEP and matrix-metalloproteinase-1 in UVA-exposed human fibroblasts. Our findings strongly support the in vivo anti-wrinkling effects of ubiquinol10 and AX on human and animal skin and provide convincing proof of the UV-induced wrinkling mechanism that essentially focuses on the over-expression of NEP by dermal fibroblasts as an intrinsic causative factor. PMID:27648570
A Novel Role of Peripheral Corticotropin-Releasing Hormone (CRH) on Dermal Fibroblasts
Rassouli, Olga; Liapakis, George; Lazaridis, Iakovos; Sakellaris, George; Gkountelias, Kostas; Gravanis, Achille; Margioris, Andrew N.
2011-01-01
Corticotropin-releasing hormone, or factor, (CRH or CRF) exerts important biological effects in multiple peripheral tissues via paracrine/autocrine actions. The aim of our study was to assess the effects of endogenous CRH in the biology of mouse and human skin fibroblasts, the primary cell type involved in wound healing. We show expression of CRH and its receptors in primary fibroblasts, and we demonstrate the functionality of fibroblast CRH receptors by induction of cAMP. Fibroblasts genetically deficient in Crh (Crh−/−) had higher proliferation and migration rates and compromised production of IL-6 and TGF-β1 compared to the wildtype (Crh+/+) cells. Human primary cultures of foreskin fibroblasts exposed to the CRF1 antagonist antalarmin recapitulated the findings in the Crh−/− cells, exhibiting altered proliferative and migratory behavior and suppressed production of IL-6. In conclusion, our findings show an important role of fibroblast-expressed CRH in the proliferation, migration, and cytokine production of these cells, processes associated with the skin response to injury. Our data suggest that the immunomodulatory effects of CRH may include an important, albeit not explored yet, role in epidermal tissue remodeling and regeneration and maintenance of tissue homeostasis. PMID:21765902
Rotondo Dottore, Giovanna; Leo, Marenza; Casini, Giamberto; Latrofa, Francesco; Cestari, Luca; Sellari-Franceschini, Stefano; Nardi, Marco; Vitti, Paolo; Marcocci, Claudio; Marinò, Michele
2017-02-01
A recent clinical trial has shown a beneficial effect of the antioxidant agent selenium in Graves' orbitopathy (GO). In order to shed light on the cellular mechanisms on which selenium may act, this study investigated its effects in cultured orbital fibroblasts. Primary cultures of orbital fibroblasts from six GO patients and six control subjects were established. Cells were treated with H 2 O 2 to induce oxidative stress, after pre-incubation with selenium-(methyl)selenocysteine (SeMCys). The following assays were performed: glutathione disulfide (GSSG), as a measure of oxidative stress, glutathione peroxidase (GPX) activity, cell proliferation, hyaluronic acid (HA), and pro-inflammatory cytokines. H 2 O 2 induced an increase in cell GSSG and fibroblast proliferation, which were reduced by SeMCys. Incubation of H 2 O 2 -treated cells with SeMCys was followed by an increase in glutathione peroxidase activity, one of the antioxidant enzymes into which selenium is incorporated. At the concentrations used (5 μM), H 2 O 2 did not significantly affect HA release, but it was reduced by SeMCys. H 2 O 2 determined an increase in endogenous cytokines involved in the response to oxidative stress and GO pathogenesis, namely tumor necrosis factor alpha, interleukin 1 beta, and interferon gamma. The increases in tumor necrosis factor alpha and interferon gamma were blocked by SeMCys. While the effects of SeMCys on oxidative stress and cytokines were similar in GO and control fibroblasts, they were exclusive to GO fibroblasts in terms of inhibiting proliferation and HA secretion. Selenium, in the form of SeMCys, abolishes some of the effects of oxidative stress in orbital fibroblasts, namely increased proliferation and secretion of pro-inflammatory cytokines. SeMCys reduces HA release in GO fibroblasts in a manner that seems at least in part independent from H 2 O 2 -induced oxidative stress. Some effects of SeMCys are specific for GO fibroblasts. These findings reveal some cellular mechanisms by which selenium may act in patients with GO.
Fibroblast Growth Factor Receptor-4 and Prostate Cancer Progression
2007-10-01
difference between the two FGFR-4 variants? Achondroplasia (dwarfism) is caused by a similar mutation in FGFR-3 (Gly380 to Arg380). Increased FGFR-3...what is the molecular basis for the difference between the two FGFR-4 variants? Achondroplasia is caused by a similar mutation in FGFR-3 (Gly380 to...lysosomal targeting of activated fibroblast growth factor receptor 3 in achondroplasia . Proc Natl Acad Sci U S A 2004;101(2):609-14. 27. Hyun TS, Rao DS
Holmsen, H; Male, R; Rongved, S; Langeland, N; Lillehaug, J
1989-01-01
Pig platelet-derived growth factor (PDGF) increased the rate of [32P]Pi uptake by murine fibroblasts, resulting in a 3-9-fold elevation of the specific radioactivity of ATP, PtdInsP, PtdInsP2, PtdIns and phosphatidic acid. The specific radioactivity was 10-60-fold higher in ATP than in the four phospholipids. These substances are therefore not in metabolic equilibrium, which complicates determination of inositol phospholipid turnover. PMID:2548480
Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers.
Tiong, Kai Hung; Mah, Li Yen; Leong, Chee-Onn
2013-12-01
The fibroblast growth factor receptors (FGFRs) regulate important biological processes including cell proliferation and differentiation during development and tissue repair. Over the past decades, numerous pathological conditions and developmental syndromes have emerged as a consequence of deregulation in the FGFRs signaling network. This review aims to provide an overview of FGFR family, their complex signaling pathways in tumorigenesis, and the current development and application of therapeutics targeting the FGFRs signaling for treatment of refractory human cancers.
Interactions between epithelial and stromal cells play an important role in cancer development and progression. Epithelial cancers develop when changes occur to tumor suppressor genes in stromal fibroblast cells. For example, loss of tumor suppressor, p53, in stromal fibroblasts leads to p53 inactivation in the epithelium in a prostate cancer model, and disruption of the transforming growth factor-b receptor II (TGF-βRII) in stromal fibroblasts results in intraepithelial dysplasia in prostate cancer and invasive squamous cell carcinoma (SCC) in mouse forestomach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchigami, Takao; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544; Kibe, Toshiro
Highlights: • We studied the interaction between tumor cells and fibroblasts in ameloblastoma. • AM-3 ameloblastoma cells secreted significantly high IL-1α levels. • IL-1α derived from AM-3 cells promoted IL-6 and IL-8 secretion of fibroblasts. • IL-6 and IL-8 activated the cellular motility and proliferation of AM-3 cells. - Abstract: Ameloblastoma is an odontogenic benign tumor that occurs in the jawbone, which invades bone and reoccurs locally. This tumor is treated by wide surgical excision and causes various problems, including changes in facial countenance and mastication disorders. Ameloblastomas have abundant tumor stroma, including fibroblasts and immune cells. Although cell-to-cell interactionsmore » are considered to be involved in the pathogenesis of many diseases, intercellular communications in ameloblastoma have not been fully investigated. In this study, we examined interactions between tumor cells and stromal fibroblasts via soluble factors in ameloblastoma. We used a human ameloblastoma cell line (AM-3 ameloblastoma cells), human fibroblasts (HFF-2 fibroblasts), and primary-cultured fibroblasts from human ameloblastoma tissues, and analyzed the effect of ameloblastoma-associated cell-to-cell communications on gene expression, cytokine secretion, cellular motility and proliferation. AM-3 ameloblastoma cells secreted higher levels of interleukin (IL)-1α than HFF-2 fibroblasts. Treatment with conditioned medium from AM-3 ameloblastoma cells upregulated gene expression and secretion of IL-6 and IL-8 of HFF-2 fibroblasts and primary-cultured fibroblast cells from ameloblastoma tissues. The AM3-stimulated production of IL-6 and IL-8 in fibroblasts was neutralized by pretreatment of AM-3 cells with anti-IL-1α antibody and IL-1 receptor antagonist. Reciprocally, cellular motility of AM-3 ameloblastoma cells was stimulated by HFF-2 fibroblasts in IL-6 and IL-8 dependent manner. In conclusion, ameloblastoma cells and stromal fibroblasts behave interactively via these cytokines to create a microenvironment that leads to the extension of ameloblastomas.« less
Wu, Qing-Qing; Xiao, Yang; Jiang, Xiao-Han; Yuan, Yuan; Yang, Zheng; Chang, Wei; Bian, Zhou-Yan; Tang, Qi-Zhu
2017-06-01
The aim of this study is to investigate the effect of evodiamine on fibroblast activation in cardiac fibroblasts and endothelial to mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs). Neonatal rat cardiac fibroblasts were stimulated with transforming growth factor beta 1 (TGF-β1) to induce fibroblast activation. After co-cultured with evodiamine (5, 10 μM), the proliferation and pro-fibrotic proteins expression of cardiac fibroblasts were evaluated. HUVECs were also stimulated with TGF-β1 to induce EndMT and treated with evodiamine (5, 10 μM) at the same time. The EndMT response in the HUVECs was evaluated as well as the capacity of the transitioned endothelial cells migrating to surrounding tissue. As a result, Evodiamine-blunted TGF-β1 induced activation of cardiac fibroblast into myofibroblast as assessed by the decreased expressions of α-SMA. Furthermore, evodiamine reduced the increased protein expression of fibrosis markers in neonatal and adult rat cardiac fibroblasts induced by TGF-β1. HUVECs stimulated with TGF-β1 exhibited lower expression levels of CD31, CD34, and higher levels of α-SMA, vimentin than the control cells. This phenotype was eliminated in the HUVECs treated with both 5 and 10 μM evodiamine. Evodiamine significantly reduced the increase in migration ability that occurred in response to TGF-β1 in HUVECs. In addition, the activation of Smad2, Smad3, ERK1/2, and Akt, and the nuclear translocation of Smad4 in both cardiac fibroblasts and HUVEC were blocked by evodiamine treatment. Thus, evodiamine could prevent cardiac fibroblasts from activation into myofibroblast and protect HUVEC against EndMT. These effects may be mediated by inhibition of the TGFβ pathway in both cardiac fibroblasts and HUVECs.
Identification of a transitional fibroblast function in very early rheumatoid arthritis
Filer, Andrew; Ward, Lewis S C; Kemble, Samuel; Davies, Christopher S; Munir, Hafsa; Rogers, Rebekah; Raza, Karim; Buckley, Christopher Dominic; Nash, Gerard B; McGettrick, Helen M
2017-01-01
Objectives Synovial fibroblasts actively regulate the inflammatory infiltrate by communicating with neighbouring endothelial cells (EC). Surprisingly, little is known about how the development of rheumatoid arthritis (RA) alters these immunomodulatory properties. We examined the effects of phase of RA and disease outcome (resolving vs persistence) on fibroblast crosstalk with EC and regulation of lymphocyte recruitment. Methods Fibroblasts were isolated from patients without synovitis, with resolving arthritis, very early RA (VeRA; symptom ≤12 weeks) and established RA undergoing joint replacement (JRep) surgery. Endothelial-fibroblast cocultures were formed on opposite sides of porous filters. Lymphocyte adhesion from flow, secretion of soluble mediators and interleukin 6 (IL-6) signalling were assessed. Results Fibroblasts from non-inflamed and resolving arthritis were immunosuppressive, inhibiting lymphocyte recruitment to cytokine-treated endothelium. This effect was lost very early in the development of RA, such that fibroblasts no longer suppressed recruitment. Changes in IL-6 and transforming growth factor beta 1 (TGF-β1) signalling appeared critical for the loss of the immunosuppressive phenotype. In the absence of exogenous cytokines, JRep, but not VeRA, fibroblasts activated endothelium to support lymphocyte. Conclusions In RA, fibroblasts undergo two distinct changes in function: first a loss of immunosuppressive responses early in disease development, followed by the later acquisition of a stimulatory phenotype. Fibroblasts exhibit a transitional functional phenotype during the first 3 months of symptoms that contributes to the accumulation of persistent infiltrates. Finally, the role of IL-6 and TGF-β1 changes from immunosuppressive in resolving arthritis to stimulatory very early in the development of RA. Early interventions targeting ‘pathogenic’ fibroblasts may be required in order to restore protective regulatory processes. PMID:28847766
Rodriguez-Menocal, Luis; Salgado, Marcela; Ford, Dwayne
2012-01-01
Chronic wounds continue to be a major cause of morbidity for patients and an economic burden on the health care system. Novel therapeutic approaches to improved wound healing will need, however, to address cellular changes induced by a number of systemic comorbidities seen in chronic wound patients, such as diabetes, chronic renal failure, and arterial or venous insufficiency. These effects likely include impaired inflammatory cell migration, reduced growth factor production, and poor tissue remodeling. The multifunctional properties of bone marrow-derived mesenchymal stem cells (MSCs), including their ability to differentiate into various cell types and capacity to secrete factors important in accelerating healing of cutaneous wounds, have made MSCs a promising agent for tissue repair and regeneration. In this study we have used an in vitro scratch assay procedure incorporating labeled MSCs and fibroblasts derived from normal donors and chronic wound patients in order to characterize the induction of mobilization when these cells are mixed. A modified Boyden chamber assay was also used to examine the effect of soluble factors on fibroblast migration. These studies suggest that MSCs play a role in skin wound closure by affecting dermal fibroblast migration in a dose-dependent manner. Deficiencies were noted, however, in chronic wound patient fibroblasts and MSCs as compared with those derived from normal donors. These findings provide a foundation to develop therapies targeted specifically to the use of bone marrow-derived MSCs in wound healing and may provide insight into why some wounds do not heal. PMID:23197781
Rodriguez-Menocal, Luis; Salgado, Marcela; Ford, Dwayne; Van Badiavas, Evangelos
2012-03-01
Chronic wounds continue to be a major cause of morbidity for patients and an economic burden on the health care system. Novel therapeutic approaches to improved wound healing will need, however, to address cellular changes induced by a number of systemic comorbidities seen in chronic wound patients, such as diabetes, chronic renal failure, and arterial or venous insufficiency. These effects likely include impaired inflammatory cell migration, reduced growth factor production, and poor tissue remodeling. The multifunctional properties of bone marrow-derived mesenchymal stem cells (MSCs), including their ability to differentiate into various cell types and capacity to secrete factors important in accelerating healing of cutaneous wounds, have made MSCs a promising agent for tissue repair and regeneration. In this study we have used an in vitro scratch assay procedure incorporating labeled MSCs and fibroblasts derived from normal donors and chronic wound patients in order to characterize the induction of mobilization when these cells are mixed. A modified Boyden chamber assay was also used to examine the effect of soluble factors on fibroblast migration. These studies suggest that MSCs play a role in skin wound closure by affecting dermal fibroblast migration in a dose-dependent manner. Deficiencies were noted, however, in chronic wound patient fibroblasts and MSCs as compared with those derived from normal donors. These findings provide a foundation to develop therapies targeted specifically to the use of bone marrow-derived MSCs in wound healing and may provide insight into why some wounds do not heal.
Inhibition of α-SMA by the Ectodomain of FGFR2c Attenuates Lung Fibrosis
Ju, Wang; Zhihong, Yu; Zhiyou, Zhou; Qin, Huang; Dingding, Wang; Li, Sun; Baowei, Zhu; Xing, Wei; Ying, He; An, Hong
2012-01-01
The soluble ectodomain of fibroblast growth factor receptor-IIIc (sFGFR2c) is able to bind to fibroblast growth factor (FGF) ligands and block the activation of the FGF-signaling pathway. In this study, sFGFR2c inhibited lung fibrosis dramatically in vitro and in vivo. The upregulation of α-smooth muscle actin (α-SMA) in fibroblasts by transforming growth factor-β1 (TGF-β1) is an important step in the process of lung fibrosis, in which FGF-2, released by TGF-β1, is involved. sFGFR2c inhibited α-SMA induction by TGF-β1 via both the extracellular signal-regulated kinase 1/2 (ERK1/2) and Smad3 pathways in primary mouse lung fibroblasts and the proliferation of mouse lung fibroblasts. In a mouse model of bleomycin (BLM)-induced lung fibrosis, mice were treated with sFGFR2c from d 3 or d 10 to 31 after BLM administration. Then we used hematoxylin and eosin staining, Masson staining and immunohistochemical staining to evaluate the inhibitory effects of sFGFR2c on lung fibrosis. The treatment with sFGFR2c resulted in significant attenuation of the lung fibrosis score and collagen deposition. The expression levels of α-SMA, p-FGFRs, p-ERK1/2 and p-Smad3 in the lungs of sFGFR2c-treated mice were markedly lower. sFGFR2c may have potential for the treatment of lung fibrosis as an FGF-2 antagonist. PMID:22451267
Audette, Dylan S.; Anand, Deepti; So, Tammy; Rubenstein, Troy B.; Lachke, Salil A.; Lovicu, Frank J.; Duncan, Melinda K.
2016-01-01
Lens epithelial cells differentiate into lens fibers (LFs) in response to a fibroblast growth factor (FGF) gradient. This cell fate decision requires the transcription factor Prox1, which has been hypothesized to promote cell cycle exit in differentiating LF cells. However, we find that conditional deletion of Prox1 from mouse lenses results in a failure in LF differentiation despite maintenance of normal cell cycle exit. Instead, RNA-seq demonstrated that Prox1 functions as a global regulator of LF cell gene expression. Intriguingly, Prox1 also controls the expression of fibroblast growth factor receptors (FGFRs) and can bind to their promoters, correlating with decreased downstream signaling through MAPK and AKT in Prox1 mutant lenses. Further, culturing rat lens explants in FGF increased their expression of Prox1, and this was attenuated by the addition of inhibitors of MAPK. Together, these results describe a novel feedback loop required for lens differentiation and morphogenesis, whereby Prox1 and FGFR signaling interact to mediate LF differentiation in response to FGF. PMID:26657765
Discovery and progress of direct cardiac reprogramming.
Kojima, Hidenori; Ieda, Masaki
2017-06-01
Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.
He, Xiaolin; Chao, Yuan; Zhou, Guangxian; Chen, Yulin
2016-01-10
To determine the relationship between fibroblast growth factor 5 (FGF5) and FGF5-short (FGF5s) in dermal papilla cells of cashmere goat primary and secondary hair follicles. We isolated dermal papilla cells from primary hair follicle (PHF) and secondary hair follicle (SHF) of cashmere goat, and found that the FGF5 receptor, fibroblast growth factor receptor 1 (FGFR1), was expressed in these two types of dermal papilla cells. Moreover, adenovirus-mediated overexpression of FGF5 could upregulate the mRNA expression of insulin-like growth factor-1 (IGF-1), versican and noggin that were important for follicle growth maintenance, whereas downregulate the expression of anagen chalone bone morphogenetic protein 4 (BMP4) in dermal papilla cells. However, these alterations were partly reversed by FGF5s overexpression. In conclusion, our results demonstrated that FGF5s acted as an inhibitor of FGF5 in the regulation of anagen-catagen transition of cashmere goat dermal papilla cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis
Xie, Ting; Liang, Jiurong; Liu, Ningshan; Huan, Caijuan; Zhang, Yanli; Liu, Weijia; Kumar, Maya; Xiao, Rui; D’Armiento, Jeanine; Metzger, Daniel; Chambon, Pierre; Papaioannou, Virginia E.; Stripp, Barry R.; Jiang, Dianhua
2016-01-01
Progressive tissue fibrosis is a major cause of the morbidity and mortality associated with repeated epithelial injuries and accumulation of myofibroblasts. Successful treatment options are limited by an incomplete understanding of the molecular mechanisms that regulate myofibroblast accumulation. Here, we employed in vivo lineage tracing and real-time gene expression transgenic reporting methods to analyze the early embryonic transcription factor T-box gene 4 (TBX4), and determined that TBX4-lineage mesenchymal progenitors are the predominant source of myofibroblasts in injured adult lung. In a murine model, ablation of TBX4-expressing cells or disruption of TBX4 signaling attenuated lung fibrosis after bleomycin-induced injury. Furthermore, TBX4 regulated hyaluronan synthase 2 production to enable fibroblast invasion of matrix both in murine models and in fibroblasts from patients with severe pulmonary fibrosis. These data identify TBX4 as a mesenchymal transcription factor that drives accumulation of myofibroblasts and the development of lung fibrosis. Targeting TBX4 and downstream factors that regulate fibroblast invasiveness could lead to therapeutic approaches in lung fibrosis. PMID:27400124
Audette, Dylan S; Anand, Deepti; So, Tammy; Rubenstein, Troy B; Lachke, Salil A; Lovicu, Frank J; Duncan, Melinda K
2016-01-15
Lens epithelial cells differentiate into lens fibers (LFs) in response to a fibroblast growth factor (FGF) gradient. This cell fate decision requires the transcription factor Prox1, which has been hypothesized to promote cell cycle exit in differentiating LF cells. However, we find that conditional deletion of Prox1 from mouse lenses results in a failure in LF differentiation despite maintenance of normal cell cycle exit. Instead, RNA-seq demonstrated that Prox1 functions as a global regulator of LF cell gene expression. Intriguingly, Prox1 also controls the expression of fibroblast growth factor receptors (FGFRs) and can bind to their promoters, correlating with decreased downstream signaling through MAPK and AKT in Prox1 mutant lenses. Further, culturing rat lens explants in FGF increased their expression of Prox1, and this was attenuated by the addition of inhibitors of MAPK. Together, these results describe a novel feedback loop required for lens differentiation and morphogenesis, whereby Prox1 and FGFR signaling interact to mediate LF differentiation in response to FGF. © 2016. Published by The Company of Biologists Ltd.
Cutaneous Scarring: Basic Science, Current Treatments, and Future Directions.
Marshall, Clement D; Hu, Michael S; Leavitt, Tripp; Barnes, Leandra A; Lorenz, H Peter; Longaker, Michael T
2018-02-01
Significance: Scarring of the skin from burns, surgery, and injury constitutes a major burden on the healthcare system. Patients affected by major scars, particularly children, suffer from long-term functional and psychological problems. Recent Advances: Scarring in humans is the end result of the wound healing process, which has evolved to rapidly repair injuries. Wound healing and scar formation are well described on the cellular and molecular levels, but truly effective molecular or cell-based antiscarring treatments still do not exist. Recent discoveries have clarified the role of skin stem cells and fibroblasts in the regeneration of injuries and formation of scar. Critical Issues: It will be important to show that new advances in the stem cell and fibroblast biology of scarring can be translated into therapies that prevent and reduce scarring in humans without major side effects. Future Directions: Novel therapies involving the use of purified human cells as well as agents that target specific cells and modulate the immune response to injury are currently undergoing testing. In the basic science realm, researchers continue to refine our understanding of the role that particular cell types play in the development of scar.
Cathepsin B is the driving force of esophageal cell invasion in a fibroblast-dependent manner.
Andl, Claudia D; McCowan, Kelsey M; Allison, Gillian L; Rustgi, Anil K
2010-06-01
Esophageal cancer, which frequently exhibits coordinated loss of E-cadherin (Ecad) and transforming growth factor beta (TGFbeta) receptor II (TbetaRII), has a high mortality rate. In a three-dimensional organotypic culture model system, esophageal keratinocytes expressing dominant-negative mutant versions of both Ecad and TbetaRII (ECdnT) invade into the underlying matrix embedded with fibroblasts. We also find that cathepsin B induction is necessary for fibroblast-mediated invasion. Furthermore, the ECdnT cells in this physiological context activate fibroblasts through the secretion of TGFbeta1, which, in turn, is activated by cathepsin B. These results suggest that the interplay between the epithelial compartment and the surrounding microenvironment is crucial to invasion into the extracellular matrix.
Tanaka, Yuka Tsuda; Tanaka, Kiyotaka; Kojima, Hiroyuki; Hamada, Tomoji; Masutani, Teruaki; Tsuboi, Makoto; Akao, Yukihiro
2013-01-15
Aging of skin is characterized by skin wrinkling, laxity, and pigmentation induced by several environmental stress factors. Histological changes during the photoaging of skin include hyperproliferation of keratinocytes and melanocytes causing skin wrinkles and pigmentation. Nuclear factor kappa B (NF-κB) is one of the representative transcription factors active in conjunction with inflammation. NF-κB is activated by stimulation such as ultraviolet rays and inflammatory cytokines and induces the expression of various genes such as those of basic fibroblast growth factor (bFGF) and matrix metalloprotease-1 (MMP-1). We screened several plant extracts for their possible inhibitory effect on the transcriptional activity of NF-κB. One of them, an extract from Cynara scolymus L., showed a greatest effect on the suppression of NF-κB transactivation. As a result, we found that cynaropicrin, which is a sesquiterpene lactone, inhibited the NF-κB-mediated transactivation of bFGF and MMP-1. Furthermore, it was confirmed that in an in vivo mouse model cynaropicrin prevented skin photoaging processes leading to the hyperproliferation of keratinocytes and melanocytes. These findings taken together indicate that cynaropicrin is an effective antiphotoaging agent that acts by inhibiting NF-κB-mediated transactivation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Endale, Mehari; Ahlfeld, Shawn; Bao, Erik; Chen, Xiaoting; Green, Jenna; Bess, Zach; Weirauch, Matthew; Xu, Yan; Perl, Anne Karina
2017-08-01
The following data are derived from key stages of acinar lung development and define the developmental role of lung interstitial fibroblasts expressing platelet-derived growth factor alpha (PDGFRα). This dataset is related to the research article entitled "Temporal, spatial, and phenotypical changes of PDGFRα expressing fibroblasts during late lung development" (Endale et al., 2017) [1]. At E16.5 (canalicular), E18.5 (saccular), P7 (early alveolar) and P28 (late alveolar), PDGFRα GFP mice, in conjunction with immunohistochemical markers, were utilized to define the spatiotemporal relationship of PDGFRα + fibroblasts to endothelial, stromal and epithelial cells in both the proximal and distal acinar lung. Complimentary analysis with flow cytometry was employed to determine changes in cellular proliferation, define lipofibroblast and myofibroblast populations via the presence of intracellular lipid or alpha smooth muscle actin (αSMA), and evaluate the expression of CD34, CD29, and Sca-1. Finally, PDGFRα + cells isolated at each stage of acinar lung development were subjected to RNA-Seq analysis, data was subjected to Bayesian timeline analysis and transcriptional factor promoter enrichment analysis.
Goldman, Mitchel P.
2017-01-01
Background: Cosmeceutical products represent an increasingly important therapeutic option for anti-aging and rejuvenation, either used alone or in combination with dermatologic surgical procedures. Among this group of products, topical growth factors have demonstrated efficacy in randomized, controlled clinical trials. However, comparisons between different products remain uncommon. Objective: The objective of this randomized, double-blind, split-face clinical trial was to compare two different topical growth factor formulations derived from either human fibroblasts or human adipose tissue derived mesenchymal stem cells. Methods: This was an institutional review board-approved, randomized, double-blind, split-face clinical trial involving 20 healthy subjects with moderate-to-severe facial wrinkling secondary to photodamage. One half of the face was randomized to receive topical human fibroblast growth factors and the other topical human mesenchymal stem cell growth factors. Treatment was continued for three months, and evaluations were performed in a double-blind fashion. Results: Both growth factor formulations achieved significant improvement in facial wrinkling. Blinded investigator and subject evaluations did not detect any significant differences between the two formulations in terms of efficacy, safety, or tolerability. Conclusion: Both human fibroblast growth factors and human mesenchymal stem cell growth factors are effective at facial rejuvenation. Topical growth factors represent a useful therapeutic modality. PMID:28670356
Wu, Douglas C; Goldman, Mitchel P
2017-05-01
Background: Cosmeceutical products represent an increasingly important therapeutic option for anti-aging and rejuvenation, either used alone or in combination with dermatologic surgical procedures. Among this group of products, topical growth factors have demonstrated efficacy in randomized, controlled clinical trials. However, comparisons between different products remain uncommon. Objective: The objective of this randomized, double-blind, split-face clinical trial was to compare two different topical growth factor formulations derived from either human fibroblasts or human adipose tissue derived mesenchymal stem cells. Methods: This was an institutional review board-approved, randomized, double-blind, split-face clinical trial involving 20 healthy subjects with moderate-to-severe facial wrinkling secondary to photodamage. One half of the face was randomized to receive topical human fibroblast growth factors and the other topical human mesenchymal stem cell growth factors. Treatment was continued for three months, and evaluations were performed in a double-blind fashion. Results: Both growth factor formulations achieved significant improvement in facial wrinkling. Blinded investigator and subject evaluations did not detect any significant differences between the two formulations in terms of efficacy, safety, or tolerability. Conclusion: Both human fibroblast growth factors and human mesenchymal stem cell growth factors are effective at facial rejuvenation. Topical growth factors represent a useful therapeutic modality.
Billings, Paul C; Pacifici, Maurizio
2015-01-01
Heparan sulfate (HS) is a component of cell surface and matrix-associated proteoglycans (HSPGs) that, collectively, play crucial roles in many physiologic processes including cell differentiation, organ morphogenesis and cancer. A key function of HS is to bind and interact with signaling proteins, growth factors, plasma proteins, immune-modulators and other factors. In doing so, the HS chains and HSPGs are able to regulate protein distribution, bio-availability and action on target cells and can also serve as cell surface co-receptors, facilitating ligand-receptor interactions. These proteins contain an HS/heparin-binding domain (HBD) that mediates their association and contacts with HS. HBDs are highly diverse in sequence and predicted structure, contain clusters of basic amino acids (Lys and Arg) and possess an overall net positive charge, most often within a consensus Cardin-Weintraub (CW) motif. Interestingly, other domains and residues are now known to influence protein-HS interactions, as well as interactions with other glycosaminoglycans, such as chondroitin sulfate. In this review, we provide a description and analysis of HBDs in proteins including amphiregulin, fibroblast growth factor family members, heparanase, sclerostin and hedgehog protein family members. We discuss HBD structural and functional features and important roles carried out by other protein domains, and also provide novel conformational insights into the diversity of CW motifs present in Sonic, Indian and Desert hedgehogs. Finally, we review progress in understanding the pathogenesis of a rare pediatric skeletal disorder, Hereditary Multiple Exostoses (HME), characterized by HS deficiency and cartilage tumor formation. Advances in understanding protein-HS interactions will have broad implications for basic biology and translational medicine as well as for the development of HS-based therapeutics.
Haak, Andrew J.; Tsou, Pei-Suen; Amin, Mohammad A.; Ruth, Jeffrey H.; Campbell, Phillip; Fox, David A.; Khanna, Dinesh; Larsen, Scott D.
2014-01-01
Systemic sclerosis (SSc), or scleroderma, similar to many fibrotic disorders, lacks effective therapies. Current trials focus on anti-inflammatory drugs or targeted approaches aimed at one of the many receptor mechanisms initiating fibrosis. In light of evidence that a myocardin-related transcription factor (MRTF)–and serum response factor (SRF)–regulated gene transcriptional program induced by Rho GTPases is essential for myofibroblast activation, we explored the hypothesis that inhibitors of this pathway may represent novel antifibrotics. MRTF/SRF-regulated genes show spontaneously increased expression in primary dermal fibroblasts from patients with diffuse cutaneous SSc. A novel small-molecule inhibitor of MRTF/SRF-regulated transcription (CCG-203971) inhibits expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and collagen 1 (COL1A2) in both SSc fibroblasts and in lysophosphatidic acid (LPA)–and transforming growth factor β (TGFβ)–stimulated fibroblasts. In vivo treatment with CCG-203971 also prevented bleomycin-induced skin thickening and collagen deposition. Thus, targeting the MRTF/SRF gene transcription pathway could provide an efficacious new approach to therapy for SSc and other fibrotic disorders. PMID:24706986
Sawaki, Daigo; Hou, Lianguo; Tomida, Shota; Sun, Junqing; Zhan, Hong; Aizawa, Kenichi; Son, Bo-Kyung; Kariya, Taro; Takimoto, Eiki; Otsu, Kinya; Conway, Simon J.; Manabe, Ichiro; Komuro, Issei; Friedman, Scott L.; Nagai, Ryozo; Suzuki, Toru
2015-01-01
Aims Krüppel-like factors (KLFs) are a family of transcription factors which play important roles in the heart under pathological and developmental conditions. We previously identified and cloned Klf6 whose homozygous mutation in mice results in embryonic lethality suggesting a role in cardiovascular development. Effects of KLF6 on pathological regulation of the heart were investigated in the present study. Methods and results Mice heterozygous for Klf6 resulted in significantly diminished levels of cardiac fibrosis in response to angiotensin II infusion. Intriguingly, a similar phenotype was seen in cardiomyocyte-specific Klf6 knockout mice, but not in cardiac fibroblast-specific knockout mice. Microarray analysis revealed increased levels of the extracellular matrix factor, thrombospondin 4 (TSP4), in the Klf6-ablated heart. Mechanistically, KLF6 directly suppressed Tsp4 expression levels, and cardiac TSP4 regulated the activation of cardiac fibroblasts to regulate cardiac fibrosis. Conclusion Our present studies on the cardiac function of KLF6 show a new mechanism whereby cardiomyocytes regulate cardiac fibrosis through transcriptional control of the extracellular matrix factor, TSP4, which, in turn, modulates activation of cardiac fibroblasts. PMID:25987545
Yu, Zhi-hong; Wang, Ding-ding; Zhou, Zhi-you; He, Shui-lian; Chen, An-an; Wang, Ju
2012-01-01
We have developed a strong inhibitor (S252W mutant soluble ectodomain of fibroblast growth factor recptor-2 IIIc, msFGFR2) that binds FGFs strongly and blocks the activation of FGFRs. In vitro, msFGFR2 could inhibit the promoting effect of transforming growth factor (TGF)-β1 on the proliferation of primary lung fibroblasts. In vivo, msFGFR2 alleviated lung fibrosis through inhibiting the expression of α-smooth muscle actin (SMA) and collagen deposit. In Western blotting of the right lung tissues and immunohistochemical assay, we found the level of p-FGFRs, p-mitogen activated protein kinase (MAPK) and p-Smad3 in the mice of bleomycin (BLM) group treated with msFGFR2 was down dramatically compared with the mice of BLM group, which suggested the activations of FGF and TGF-β signals were blocked meanwhile. In summary, msFGFR2 attenuated BLM-induced fibrosis and is an attractive therapeutic candidate for human pulmonary fibrosis.
High inorganic phosphate causes DNMT1 phosphorylation and subsequent fibrotic fibroblast activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Xiaoying; Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen; Xu, Xingbo
Phosphate is an essential constituent of critical cellular functions including energy metabolism, nucleic acid synthesis and phosphorylation-dependent cell signaling. Increased plasma phosphate levels are an independent risk factor for lowered life-expectancy as well as for heart and kidney failure. Nevertheless, direct cellular effects of elevated phosphate concentrations within the microenvironment are poorly understood and have been largely neglected in favor of phosphor-regulatory hormones. Because interstitial fibrosis is the common determinant of chronic progressive kidney disease, and because fibroblasts are major mediators of fibrogenesis, we here explored the effect of high extracellular phosphate levels on renal fibroblasts. We demonstrate that highmore » inorganic phosphate directly induces fibrotic fibroblast activation associated with increased proliferative activity, increased expression of α-smooth muscle actin and increased synthesis of type I collagen. We further demonstrate that such fibroblast activation is dependent on phosphate influx, aberrant phosphorylation of DNA methyltransferase DNMT1 and aberrant CpG island promoter methylation. In summary, our studies demonstrate that elevated phosphate concentrations induce pro-fibrotic fibroblast activation independent of phospho-regulatory hormones. - Highlights: • We exposed human kidney fibroblasts to media containing 1 mM or 3 mM phosphate. • Increased phosphate influx causes phosphorylation of DNA methyltransferase Dnmt1. • Phosphorylated Dnmt1 causes promoter methylation and transcriptional silencing of RASAL1. • Depletion of RASAL1 causes increased intrinsic Ras-GTP activity and fibroblast activation. • Inorganic phosphate causes fibroblast activation independent of phospho-regulatory hormones.« less
Kovac, Stjepana; Preza, Elisavet; Houlden, Henry; Walker, Matthew C; Abramov, Andrey Y
2018-04-27
Mutations in genes affecting mitochondrial proteins are increasingly recognised in patients with epilepsy, but the factors determining cell fate during seizure activity in these mutations remain unknown. Fluorescent dye imaging techniques were applied to fibroblast cell lines from patients suffering from common mitochondrial mutations and to age-matched controls. Using live cell imaging techniques in fibroblasts, we show that fibroblasts with mutations in the mitochondrial genome had reduced mitochondrial membrane potential and NADH pools and higher redox indices, indicative of respiratory chain dysfunction. Increasing concentrations of ferutinin, a Ca 2+ ionophore, led to oscillatory Ca 2+ signals in fibroblasts resembling dynamic Ca 2+ changes that occur during seizure-like activity. Co-monitoring of mitochondrial membrane potential (ΔΨ m ) changes induced by ferutinin showed accelerated membrane depolarisation and cell collapse in fibroblasts with mutations in the mitochondrial genome when compared to controls. Ca 2+ flash photolysis using caged Ca 2+ confirmed impaired Ca 2+ handling in fibroblasts with mitochondrial mutations. Findings indicate that intracellular Ca 2+ levels cannot be compensated during periods of hyperexcitability, leading to Ca 2+ overload and subsequent cell death in mitochondrial diseases.
Ren, Aixia; Moon, Changsuk; Zhang, Weiqiang; Sinha, Chandrima; Yarlagadda, Sunitha; Arora, Kavisha; Wang, Xusheng; Yue, Junming; Parthasarathi, Kaushik; Heil-Chapdelaine, Rick; Tigyi, Gabor; Naren, Anjaparavanda P.
2014-01-01
Chemotactic migration of fibroblasts toward growth factors relies on their capacity to sense minute extracellular gradients and respond to spatially confined receptor-mediated signals. Currently, mechanisms underlying the gradient sensing of fibroblasts remain poorly understood. Using single-particle tracking methodology, we determined that a lysophosphatidic acid (LPA) gradient induces a spatiotemporally restricted decrease in the mobility of LPA receptor 2 (LPA2) on chemotactic fibroblasts. The onset of decreased LPA2 mobility correlates to the spatial recruitment and coupling to LPA2-interacting proteins that anchor the complex to the cytoskeleton. These localized PDZ motif-mediated macromolecular complexes of LPA2 trigger a Ca2+ puff gradient that governs gradient sensing and directional migration in response to LPA. Disruption of the PDZ motif-mediated assembly of the macromolecular complex of LPA2 disorganizes the gradient of Ca2+ puffs, disrupts gradient sensing, and reduces the directional migration of fibroblasts toward LPA. Our findings illustrate that the asymmetric macromolecular complex formation of chemoattractant receptors mediates gradient sensing and provides a new mechanistic basis for models to describe gradient sensing of fibroblasts. PMID:25542932
Kabir, Tasnuva D.; Leigh, Ross J.; Tasena, Hataitip; Mellone, Massimiliano; Coletta, Ricardo D.; Parkinson, Eric K.; Prime, Stephen S.; Thomas, Gareth J.; Paterson, Ian C.; Zhou, Donghui; McCall, John; Speight, Paul M.; Lambert, Daniel W.
2016-01-01
Senescent cancer-associated fibroblasts (CAF) develop a senescence-associated secretory phenotype (SASP) that is believed to contribute to cancer progression. The mechanisms underlying SASP development are, however, poorly understood. Here we examined the functional role of microRNA in the development of the SASP in normal fibroblasts and CAF. We identified a microRNA, miR-335, up-regulated in the senescent normal fibroblasts and CAF and able to modulate the secretion of SASP factors and induce cancer cell motility in co-cultures, at least in part by suppressing the expression of phosphatase and tensin homologue (PTEN). Additionally, elevated levels of cyclo-oxygenase 2 (PTGS2; COX-2) and prostaglandin E2 (PGE2) secretion were observed in senescent fibroblasts, and inhibition of COX-2 by celecoxib reduced the expression of miR-335, restored PTEN expression and decreased the pro-tumourigenic effects of the SASP. Collectively these data demonstrate the existence of a novel miRNA/PTEN-regulated pathway modulating the inflammasome in senescent fibroblasts. PMID:27385366
Waibel, Jill S; Mi, Qing-Sheng; Ozog, David; Qu, Le; Zhou, Li; Rudnick, Ashley; Al-Niaimi, Firas; Woodward, Julie; Campos, Valerie; Mordon, Serge
2016-03-01
Laser-assisted drug delivery is an emerging technology to achieve greater penetration by existing topical medications to reach desired targets in the tissue. The objective of this research was to study whether laser-assisted delivery of Vitamin C, E, and Ferulic immediately postoperatively of fractional ablative laser could improve wound healing. Secondary objectives were to evaluate the potential molecular markers involved in this wound-healing process. A double blinded, prospective, single center, randomized split face trial of Vitamin C, E, and Ferulic topical formula #740019 to decrease postoperative recovery time in fractional ablative laser resurfacing for photo damage. Fifteen healthy men and women of ages 30-55 years were treated with the Vitamin C, E, and Ferulic acid serum to one side of face and vehicle to the other side of face, within 2 minutes immediately after fractional ablative CO2 laser surgery and daily during the healing process. Patients were evaluated daily on days 1-7 using photographs, patient questionnaires, and molecular evaluation. Clinically, postoperative Vitamin C, E, and Ferulic delivery resulted in decreased edema versus vehicle on postoperative day 7 and decreased erythema versus vehicle on postoperative days 3 and 5. Molecularly, the expression of basic fibroblast growth factor (bFGF) was significantly increased at day 5 on the lesion treated with Vitamin C, E, and Ferulic acid serum compared to vehicle control on the other side. This is first study to show that Vitamin C, E, and Ferulic acid correlate with more rapid wound healing post-fractional ablative laser. Elevated bFGF could be involved in the Vitamin C, E, and Ferulic acid-induced rapid wound healing. © 2015 Wiley Periodicals, Inc.
Growth and differentiation of human lens epithelial cells in vitro on matrix
NASA Technical Reports Server (NTRS)
Blakely, E. A.; Bjornstad, K. A.; Chang, P. Y.; McNamara, M. P.; Chang, E.; Aragon, G.; Lin, S. P.; Lui, G.; Polansky, J. R.
2000-01-01
PURPOSE: To characterize the growth and maturation of nonimmortalized human lens epithelial (HLE) cells grown in vitro. METHODS: HLE cells, established from 18-week prenatal lenses, were maintained on bovine corneal endothelial (BCE) extracellular matrix (ECM) in medium supplemented with basic fibroblast growth factor (FGF-2). The identity, growth, and differentiation of the cultures were characterized by karyotyping, cell morphology, and growth kinetics studies, reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and Western blot analysis. RESULTS: HLE cells had a male, human diploid (2N = 46) karyotype. The population-doubling time of exponentially growing cells was 24 hours. After 15 days in culture, cell morphology changed, and lentoid formation was evident. Reverse transcription-polymerase chain reaction (RT-PCR) indicated expression of alphaA- and betaB2-crystallin, fibroblast growth factor receptor 1 (FGFR1), and major intrinsic protein (MIP26) in exponential growth. Western analyses of protein extracts show positive expression of three immunologically distinct classes of crystallin proteins (alphaA-, alphaB-, and betaB2-crystallin) with time in culture. By Western blot analysis, expression of p57(KIP2), a known marker of terminally differentiated fiber cells, was detectable in exponential cultures, and levels increased after confluence. MIP26 and gamma-crystallin protein expression was detected in confluent cultures, by using immunofluorescence, but not in exponentially growing cells. CONCLUSIONS: HLE cells can be maintained for up to 4 months on ECM derived from BCE cells in medium containing FGF-2. With time in culture, the cells demonstrate morphologic characteristics of, and express protein markers for, lens fiber cell differentiation. This in vitro model will be useful for investigations of radiation-induced cataractogenesis and other studies of lens toxicity.
Enhancement of scleral macromolecular permeability with prostaglandins.
Weinreb, R N
2001-01-01
PURPOSE: It is proposed that the sclera is a metabolically active and pharmacologically responsive tissue. These studies were undertaken to determine whether prostaglandin exposure can enhance scleral permeability to high-molecular-weight substances. METHODS: Topical prostaglandin F2 alpha (PGF2 alpha) was administered to monkeys to determine if this altered the amount of scleral matrix metalloproteinases (MMPs). Experiments also were performed to determine whether the prostaglandin F (FP) receptor and gene transcripts are expressed in normal human sclera. Permeability of organ-cultured human sclera following prostaglandin exposure then was studied and the amount of MMP released into the medium measured. Finally, the permeability of human sclera to basic fibroblast growth factor (FGF-2) was determined following prostaglandin exposure. RESULTS: Topical prostaglandin administration that reduced scleral collagen also increased scleral MMP-1, MMP-2, and MMP-3 by 63 +/- 35%, 267 +/- 210%, and 729 +/- 500%, respectively. FP receptor protein was localized in scleral fibroblasts, and FP receptor gene transcript was identified in sclera. Exposure to prostaglandin F2 alpha, 17-phenyltrinor, PGF2 alpha, or latanoprost acid increased scleral permeability by up to 124%, 183%, or 213%, respectively. In these cultures, MMP-1, MMP-2, and MMP-3 were increased by up to 37%, 267%, and 96%, respectively. Finally, transscleral absorption of FGF-2 was increased by up to 126% with scleral exposure to latanoprost. CONCLUSIONS: These studies demonstrate that the sclera is metabolically active and pharmacologically responsive to prostaglandins. Further, they demonstrate the feasibility of cotreatment with prostaglandin to enhance transscleral delivery of peptides, such as growth factors and high-molecular-weight substances, to the posterior segment of the eye. PMID:11797317
Zahir-Jouzdani, Forouhe; Mahbod, Mirgholamreza; Soleimani, Masoud; Vakhshiteh, Faezeh; Arefian, Ehsan; Shahosseini, Saeed; Dinarvand, Rasoul; Atyabi, Fatemeh
2018-01-01
Corneal haze, commonly caused by deep physical and chemical injuries, can greatly impair vision. Growth factors facilitate fibroblast proliferation and differentiation, which leads to haze intensity. In this study, the potential effect of chitosan (CS) and thiolated-chitosan (TCS) nanoparticles and solutions on inhibition of fibroblast proliferation, fibroblast to myofibroblast differentiation, neovascularization, extracellular matrix (ECM) deposition, and pro-fibrotic cytokine expression was examined. Transforming growth factor beta-1 (TGFβ 1 ) was induced by interleukin-6 (IL6) in human corneal fibroblasts and expression levels of TGFβ 1 , Platelet-derived growth factor (PDGF), α-smooth muscle actins (α-SMA), collagen type I (Col I), fibronectin (Fn) and vascular endothelial growth factor (VEGF) were quantified using qRT-PCR. To assess wound-healing capacity, TCS-treated mice were examined for α-SMA positive cells, collagen deposition, inflammatory cells and neovascularization through pathological immunohistochemistry. The results revealed that CS and TCS could down-regulate the expression levels of TGFβ 1 and PDGF comparable to that of TGFβ 1 knockdown experiment. However, down-regulation of TGFβ 1 was not regulated through miR29b induction. Neovascularization along with α-SMA and ECM deposition were significantly diminished. According to these findings, CS and TCS can be considered as potential anti-fibrotic and anti-angiogenic therapeutics. Furthermore, TCS, thiolated derivative of CS, will increase mucoadhesion of the polymer at the corneal surface which makes the polymer efficient and non-toxic therapeutic approach for corneal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shavell, Valerie I; Fletcher, Nicole M; Jiang, Zhong L; Saed, Ghassan M; Diamond, Michael P
2012-03-01
To determine the effect of uncoupling oxidative phosphorylation with 2,4-dinitrophenol (DNP) on adhesion phenotype development. Prospective experimental study. Academic medical center. Women undergoing laparotomy for pelvic pain from whom normal peritoneum and adhesions were excised to create primary cultures of normal peritoneal and adhesion fibroblasts. Treatment of normal peritoneal and adhesion fibroblasts isolated from the same patient(s) with or without 0.2 mM DNP for 24 hours. Evaluation of adhesion phenotype markers type I collagen, vascular endothelial growth factor (VEGF), and hypoxia-inducible factor (HIF)-1α. In agreement with prior findings, adhesion fibroblasts exhibited significantly higher basal levels of type I collagen, VEGF, and HIF-1α compared with normal peritoneal fibroblasts. Treatment of normal peritoneal fibroblasts with DNP resulted in significant increases in type I collagen (10.2 ± 1.4 vs. 18.4 ± 1.9 fg/μg RNA) and VEGF (8.2 ± 1.1 vs. 13.7 ± 0.4 fg/μg RNA) over baseline. HIF-1α levels did not increase when normal peritoneal fibroblasts were treated with DNP. The adhesion phenotype, which is normally expressed in response to hypoxia, is reproduced in a normoxic environment by uncoupling oxidative phosphorylation with DNP, as evidenced by an increase in type I collagen and VEGF. Acquisition of the adhesion phenotype was via a mechanism distinct from up-regulation of HIF-1α. These observations are consistent with the hypothesis that the adhesion phenotype represents a state of intracellular metabolic depletion. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.