Sample records for factor bdnf induces

  1. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission.

    PubMed

    Su, Bo; Ji, Yun-Song; Sun, Xu-lu; Liu, Xiang-Hua; Chen, Zhe-Yu

    2014-01-17

    Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca(2+) buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca(2+) levels. The Ca(2+) sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca(2+) prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.

  2. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression.

    PubMed

    Ilchibaeva, Tatiana V; Kondaurova, Elena M; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2015-09-01

    The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Propofol alleviates electroconvulsive shock-induced memory impairment by modulating proBDNF/mBDNF ratio in depressive rats.

    PubMed

    Zhang, Fan; Luo, Jie; Min, Su; Ren, Li; Qin, Peipei

    2016-07-01

    This study investigated the effects of propofol and electroconvulsive shock (ECS), the analogue of electroconvulsive therapy (ECT) in animals, on tissue plasminogen activator (tPA) and its inhibitor (PAI-1) as well as the precursor of brain-derived neurotrophic factor (proBDNF)/mature BDNF (mBDNF) ratio in depressive rats. ECT is an effective treatment for depression, but can cause cognitive deficit. Some studies have indicated that propofol can ameliorate cognitive decline induced by ECT, but the underlying molecular mechanism is still unclear. Recent evidence has found that mBDNF and its precursor proBDNF are related to depression and cognitive function; they elicit opposite effects on cellular functions. Chronic unpredicted mild stress is widely used to induce depressive behaviors in rodents. This study found that the depression resulted in an increased expression of PAI-1 and upregulation of the proBDNF/mBDNF ratio, together with a decreased level of tPA, long-term potentiation (LTP) impairment, and cognitive decline. The proBDNF/mBDNF ratio was further upregulated after the ECS treatment in depressive rats, resulting in the deterioration of cognitive function and hippocampal LTP. Propofol alone did not reverse the changes in depressive rats, but when co-administered with ECS, it improved the cognitive function, alleviated the impairment of LTP, downregulated the proBDNF/mBDNF ratio, and increased the tPA expression. The results of this study suggest that propofol ameliorates cognitive decline induced by ECT, which was partly by modulating the proBDNF/mBDNF ratio and reversing the excessive changes in hippocampal synaptic plasticity, providing a new evidence for involving the proBDNF/mBDNF system in the progression and treatment of depression. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord

    PubMed Central

    Huie, J. Russell

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI) influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions. PMID:27721996

  5. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression.

    PubMed

    Qiao, Hui; An, Shu-Cheng; Xu, Chang; Ma, Xin-Ming

    2017-05-15

    Major depressive disorder (MDD) is one of the most common psychiatric disorder, but the underlying mechanisms are largely unknown. Increasing evidence shows that brain-derived neurotrophic factor (BDNF) plays an important role in the structural plasticity induced by depression. Considering the opposite effects of BDNF and its precursor proBDNF on neural plasticity, we hypothesized that the balance of BDNF and proBDNF plays a critical role in chronic unpredicted mild stress (CUMS)-induced depressive-like behaviors and structural plasticity in the rodent hippocampus. The aims of this study were to compare the functions of BDNF and proBDNF in the CUMS-induced depressive-like behaviors, and determine the effects of BDNF and proBDNF on expressions of kalirin-7, postsynaptic density protein 95 (PSD95) and NMDA receptor subunit NR2B in the hippocampus of stressed and naïve control rats, respectively. Our results showed that CUMS induced depressive-like behaviors, caused a decrease in the ratio of BDNF/proBDNF in the hippocampus and resulted in a reduction in spine density in hippocampal CA1 pyramidal neurons; these alterations were accompanied by a decrease in the levels of kalirin-7, PSD95 and NR2B in the hippocampus. Injection of exogenous BDNF into the CA1 area of stressed rats reversed CUMS-induced depressive-like behaviors and prevented CUMS-induced spine loss and decrease in kalirin-7, NR2B and PSD95 levels. In contrast, injection of exogenous proBDNF into the CA1 region of naïve rats caused depressive-like behavior and an accompanying decrease in both spine density and the levels of kalirin-7, NR2B and PSD95. Taken together, our results suggest that the ratio of BDNF to proBDNF in the hippocampus plays a key role in CUMS-induced depressive-like behaviors and alterations of dendritic spines in hippocampal CA1 pyramidal neurons. Kalirin-7 may play an important role during this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Knockdown of long noncoding antisense RNA brain-derived neurotrophic factor attenuates hypoxia/reoxygenation-induced nerve cell apoptosis through the BDNF-TrkB-PI3K/Akt signaling pathway.

    PubMed

    Zhong, Jian-Bin; Li, Xie; Zhong, Si-Ming; Liu, Jiu-Di; Chen, Chi-Bang; Wu, Xiao-Yan

    2017-09-27

    Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal cell apoptosis. The antisense RNA of brain-derived neurotrophic factor (BDNF-AS) is a natural antisense transcript that is transcribed opposite the gene that encodes BDNF. The aim of this study was to determine whether knockdown of BDNF-AS can suppress hypoxia/reoxygenation (H/R)-induced neuronal cell apoptosis and whether this is mediated by the BDNF-TrkB-PI3K/Akt pathway. We detected the expression of BDNF and BDNF-AS in brain tissue from 20 patients with cerebral infarction and five patients with other diseases (but no cerebral ischemia). We found that BDNF expression was significantly downregulated in patients with cerebral infarction, whereas the expression of BDNF-AS was significantly upregulated. In both human cortical neurons (HCN2) and human astrocytes, H/R significantly induced the expression of BDNF-AS, but significantly decreased BDNF expression. H/R also significantly induced apoptosis and reduced the mitochondrial membrane potential in these cells. Following downregulation of BDNF-AS by siRNA in human cortical neurons and human astrocyte cells, BDNF expression was significantly upregulated and the H/R-induced upregulation of BDNF-AS was significantly attenuated. BDNF-AS siRNA inhibited H/R-induced cell apoptosis and ameliorated the H/R-induced suppression of mitochondrial membrane potential. H/R inhibited the expression of BDNF, p-AKT/AKT, and TrKB, and this inhibition was recovered by BDNF-AS siRNA. In summary, this study indicates that BDNF-AS siRNA induces activation of the BDNF-TrkB-PI3K/Akt pathway following H/R-induced neurotoxicity. These findings will be useful toward the application of BDNF-AS siRNA for the treatment of neurodegenerative diseases.

  7. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    PubMed

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro

    2016-03-01

    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    PubMed Central

    2013-01-01

    Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM), as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF. PMID:23363775

  9. Enhancement of synaptic transmission induced by BDNF in cultured cortical neurons

    NASA Astrophysics Data System (ADS)

    He, Jun; Gong, Hui; Zeng, Shaoqun; Li, Yanling; Luo, Qingming

    2005-03-01

    Brain-derived neurotrophic factor (BDNF), like other neurotrophins, has long-term effects on neuronal survival and differentiation; furthermore, BDNF has been reported to exert an acute potentiation of synaptic activity and are critically involved in long-term potentiation (LTP). We found that BDNF rapidly induced potentiation of synaptic activity and an increase in the intracellular Ca2+ concentration in cultured cortical neurons. Within minutes of BDNF application to cultured cortical neurons, spontaneous firing rate was dramatically increased as were the frequency and amplitude of excitatory spontaneous postsynaptic currents (EPSCs). Fura-2 recordings showed that BDNF acutely elicited an increase in intracellular calcium concentration ([Ca2+]c). This effect was partially dependent on [Ca2+]o; The BDNF-induced increase in [Ca2+]c can not be completely blocked by Ca2+-free solution. It was completely blocked by K252a and partially blocked by Cd2+ and TTX. The results demonstrate that BDNF can enhances synaptic transmission and that this effect is accompanied by a rise in [Ca2+]c that requires two route: the release of Ca2+ from intracellular calcium stores and influx of extracellular Ca2+ through voltage-dependent Ca2+ channels in cultured cortical neurons.

  10. Transdifferentiation of brain-derived neurotrophic factor (BDNF)-secreting mesenchymal stem cells significantly enhance BDNF secretion and Schwann cell marker proteins.

    PubMed

    Bierlein De la Rosa, Metzere; Sharma, Anup D; Mallapragada, Surya K; Sakaguchi, Donald S

    2017-11-01

    The use of genetically modified mesenchymal stem cells (MSCs) is a rapidly growing area of research targeting delivery of therapeutic factors for neuro-repair. Cells can be programmed to hypersecrete various growth/trophic factors such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and nerve growth factor (NGF) to promote regenerative neurite outgrowth. In addition to genetic modifications, MSCs can be subjected to transdifferentiation protocols to generate neural cell types to physically and biologically support nerve regeneration. In this study, we have taken a novel approach by combining these two unique strategies and evaluated the impact of transdifferentiating genetically modified MSCs into a Schwann cell-like phenotype. After 8 days in transdifferentiation media, approximately 30-50% of transdifferentiated BDNF-secreting cells immunolabeled for Schwann cell markers such as S100β, S100, and p75 NTR . An enhancement was observed 20 days after inducing transdifferentiation with minimal decreases in expression levels. BDNF production was quantified by ELISA, and its biological activity tested via the PC12-TrkB cell assay. Importantly, the bioactivity of secreted BDNF was verified by the increased neurite outgrowth of PC12-TrkB cells. These findings demonstrate that not only is BDNF actively secreted by the transdifferentiated BDNF-MSCs, but also that it has the capacity to promote neurite sprouting and regeneration. Given the fact that BDNF production remained stable for over 20 days, we believe that these cells have the capacity to produce sustainable, effective, BDNF concentrations over prolonged time periods and should be tested within an in vivo system for future experiments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Genetically defined fear-induced aggression: Focus on BDNF and its receptors.

    PubMed

    Ilchibaeva, Tatiana V; Tsybko, Anton S; Kozhemyakina, Rimma V; Kondaurova, Elena M; Popova, Nina K; Naumenko, Vladimir S

    2018-05-02

    Brain-derived neurotrophic factor (BDNF), its precursor proBDNF, BDNF pro-peptide, BDNF mRNA levels, as well as TrkB and p75 NTR receptors mRNA and protein levels, were studied in the brain of rats, selectively bred for more than 85 generations for either the high level or the lack of fear-induced aggressive behavior. Furthermore, we have found that rats of aggressive strain demonstrated both high level of aggression toward humans and increased amplitude of acoustic startle response compared to rats selectively bred for the lack of fear-induced aggression. Significant increase in the BDNF mRNA, mature BDNF and proBDNF protein levels in the raphe nuclei (RN), hippocampus (Hc), nucleus accumbens (NAcc), amygdala, striatum and hypothalamus (Ht) of aggressive rats was revealed. The BDNF/proBDNF ratio was significantly reduced in the Hc and NAcc of highly aggressive rats suggesting prevalence of the proBDNF in these structures. In the Hc and frontal cortex (FC) of aggressive rats, the level of the full-length TrkB (TrkB-FL) receptor form was decreased, whereas the truncated TrkB (TrkB-T) protein level was increased in the RN, FC, substantia nigra and Ht. The TrkB-FL/TrkB-T ratio was significantly decreased in highly aggressive rats suggesting TrkB-T is predominant in highly aggressive rats. The p75 NTR expression was slightly changed in majority of studied brain structures of aggressive rats. The data indicate the BDNF system in the brain of aggressive and nonaggressive animals is extremely different at all levels, from transcription to reception, suggesting significant role of BDNF system in the development of highly aggressive phenotype. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

    PubMed

    Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira

    2014-06-27

    Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells.

    PubMed

    Lim, Won-Chul; Kim, Hyunhee; Kim, Young-Joo; Park, Seung-Ho; Song, Ji-Hye; Lee, Ki Heon; Lee, In Ho; Lee, Yoo-Kyung; So, Kyeong A; Choi, Kyung-Chul; Ko, Hyeonseok

    2017-12-01

    Brain-derived neurotrophic factor (BDNF), the TrkB ligand, is associated with aggressive malignant behavior, including migration and invasion, in tumor cells and a poor prognosis in patients with various types of cancer. Delphinidin is a diphenylpropane-based polyphenolic ring structure-harboring compound, which exhibits a wide range of pharmacological activities, anti-tumor, anti-oxidant, anti-inflammatory, anti-angiogenic and anti-mutagenic activity. However, the possible role of delphinidin in the cancer migration and invasion is unclear. We investigated the suppressive effect of delphinidin on the cancer migration and invasion. Thus, we found that BDNF enhanced cancer migration and invasion in SKOV3 ovarian cancer cell. To exam the inhibitory role of delphinidin in SKOV3 ovarian cancer migration and invasion, we investigated the use of delphinidin as inhibitors of BDNF-induced motility and invasiveness in SKOV3 ovarian cancer cells in vitro. Here, we found that delphinidin prominently inhibited the BDNF-induced increase in cell migration and invasion of SKOV3 ovarian cancer cells. Furthermore, delphinidin remarkably inhibited BDNF-stimulated expression of MMP-2 and MMP-9. Also, delphinidin antagonized the phosphorylation of Akt and nuclear translocation of NF-κB permitted by the BDNF in SKOV3 ovarian cancer cells. Taken together, our findings provide new evidence that delphinidin suppressed the BDNF-induced ovarian cancer migration and invasion through decreasing of Akt activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Determinants of brain-derived neurotrophic factor (BDNF) in umbilical cord and maternal serum.

    PubMed

    Flöck, A; Weber, S K; Ferrari, N; Fietz, C; Graf, C; Fimmers, R; Gembruch, U; Merz, W M

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays a fundamental role in brain development; additionally, it is involved in various aspects of cerebral function, including neurodegenerative and psychiatric diseases. Involvement of BDNF in parturition has not been investigated. The aim of our study was to analyze determinants of umbilical cord BDNF (UC-BDNF) concentrations of healthy, term newborns and their respective mothers. This cross-sectional prospective study was performed at a tertiary referral center. Maternal venous blood samples were taken on admission to labor ward; newborn venous blood samples were drawn from the umbilical cord (UC), before delivery of the placenta. Analysis was performed with a commercially available immunoassay. Univariate analyses and stepwise multivariate regression models were applied. 120 patients were recruited. UC-BDNF levels were lower than maternal serum concentrations (median 641 ng/mL, IQR 506 vs. median 780 ng/mL, IQR 602). Correlation between UC- and maternal BDNF was low (R=0.251, p=0.01). In univariate analysis, mode of delivery (MoD), gestational age (GA), body mass index at delivery, and gestational diabetes were determinants of UC-BDNF (MoD and smoking for maternal BDNF, respectively). Stepwise multivariate regression analysis revealed a model with MoD and GA as determinants for UC-BDNF (MoD for maternal BDNF). MoD and GA at delivery are determinants of circulating BDNF in the mother and newborn. We hypothesize that BDNF, like other neuroendocrine factors, is involved in the neuroendocrine cascade of delivery. Timing and mode of delivery may exert BDNF-induced effects on the cerebral function of newborns and their mothers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Inhibition of NMDA Receptors Prevents the Loss of BDNF Function Induced by Amyloid β.

    PubMed

    Tanqueiro, Sara R; Ramalho, Rita M; Rodrigues, Tiago M; Lopes, Luísa V; Sebastião, Ana M; Diógenes, Maria J

    2018-01-01

    Brain-derived neurotrophic factor (BDNF) plays important functions in cell survival and differentiation, neuronal outgrowth and plasticity. In Alzheimer's disease (AD), BDNF signaling is known to be impaired, partially because amyloid β (Aβ) induces truncation of BDNF main receptor, TrkB-full length (TrkB-FL). We have previously shown that such truncation is mediated by calpains, results in the formation of an intracellular domain (ICD) fragment and causes BDNF loss of function. Since calpains are Ca 2+ -dependent proteases, we hypothesized that excessive intracellular Ca 2+ build-up could be due to dysfunctional N-methyl-d-aspartate receptors (NMDARs) activation. To experimentally address this hypothesis, we investigated whether TrkB-FL truncation by calpains and consequent BDNF loss of function could be prevented by NMDAR blockade. We herein demonstrate that a NMDAR antagonist, memantine, prevented excessive calpain activation and TrkB-FL truncation induced by Aβ 25-35 . When calpains were inhibited by calpastatin, BDNF was able to increase the dendritic spine density of neurons exposed to Aβ 25135 . Moreover, NMDAR inhibition by memantine also prevented Aβ-driven deleterious impact of BDNF loss of function on structural (spine density) and functional outcomes (synaptic potentiation). Collectively, these findings support NMDAR/Ca 2+ /calpains mechanistic involvement in Aβ-triggered BDNF signaling disruption.

  16. Regional differences in the expression of brain-derived neurotrophic factor (BDNF) pro-peptide, proBDNF and preproBDNF in the brain confer stress resilience.

    PubMed

    Yang, Bangkun; Yang, Chun; Ren, Qian; Zhang, Ji-Chun; Chen, Qian-Xue; Shirayama, Yukihiko; Hashimoto, Kenji

    2016-12-01

    Using learned helplessness (LH) model of depression, we measured protein expression of brain-derived neurotrophic factor (BDNF) pro-peptide, BDNF precursors (proBDNF and preproBDNF) in the brain regions of LH (susceptible) and non-LH rats (resilience). Expression of preproBDNF, proBDNF and BDNF pro-peptide in the medial prefrontal cortex of LH rats, but not non-LH rats, was significantly higher than control rats, although expression of these proteins in the nucleus accumbens of LH rats was significantly lower than control rats. This study suggests that regional differences in conversion of BDNF precursors into BDNF and BDNF pro-peptide by proteolytic cleavage may contribute to stress resilience.

  17. Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats.

    PubMed

    Ventskovska, Olena; Porkka-Heiskanen, Tarja; Karpova, Nina N

    2015-04-01

    Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation. © 2014 European Sleep Research Society.

  18. Complete spinal cord injury (SCI) transforms how brain derived neurotrophic factor (BDNF) affects nociceptive sensitization.

    PubMed

    Huang, Yung-Jen; Lee, Kuan H; Grau, James W

    2017-02-01

    Noxious stimulation can induce a lasting increase in neural excitability within the spinal cord (central sensitization) that can promote pain and disrupt adaptive function (maladaptive plasticity). Brain-derived neurotrophic factor (BDNF) is known to regulate the development of plasticity and has been shown to impact the development of spinally-mediated central sensitization. The latter effect has been linked to an alteration in GABA-dependent inhibition. Prior studies have shown that, in spinally transected rats, exposure to regular (fixed spaced) stimulation can counter the development of maladaptive plasticity and have linked this effect to an up-regulation of BDNF. Here it is shown that application of the irritant capsaicin to one hind paw induces enhanced mechanical reactivity (EMR) after spinal cord injury (SCI) and that the induction of this effect is blocked by pretreatment with fixed spaced shock. This protective effect was eliminated if rats were pretreated with the BDNF sequestering antibody TrkB-IgG. Intrathecal (i.t.) application of BDNF prevented, but did not reverse, capsaicin-induced EMR. BDNF also attenuated cellular indices (ERK and pERK expression) of central sensitization after SCI. In uninjured rats, i.t. BDNF enhanced, rather than attenuated, capsaicin-induced EMR and ERK/pERK expression. These opposing effects were related to a transformation in GABA function. In uninjured rats, BDNF reduced membrane-bound KCC2 and the inhibitory effect of the GABA A agonist muscimol. After SCI, BDNF increased KCC2 expression, which would help restore GABAergic inhibition. The results suggest that SCI transforms how BDNF affects GABA function and imply that the clinical usefulness of BDNF will depend upon the extent of fiber sparing. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. BDNF levels in adipose tissue and hypothalamus were reduced in mice with MSG-induced obesity.

    PubMed

    Jin, Yong Jun; Cao, Peng Juan; Bian, Wei Hua; Li, Ming E; Zhou, Rong; Zhang, Ling Yun; Yang, Mei Zi

    2015-01-01

    To observe the expression of brain-derived neurotrophic factor (BDNF) in hypothalamic and adipose tissue in mice with monosodium glutamate (MSG)-induced obesity. The effects of hypothalamic lesions, specifically arcuate nucleus (ARC) lesions, induced by MSG injection were studied in male ICR mice at the neonatal stage. The following parameters were compared: body weight, body length, Lee's index, food intake, body temperature, fat weight, and levels of total cholesterol (CHOL), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and blood glucose (GLU). The BDNF expression levels in hypothalamic and adipose tissue were measured using western blotting. Results Compared with the control group, the model group body had significantly higher weight, Lee's index, food intake, fat weight, CHOL, TG, LDL, HDL, and GLU levels. BDNF expression levels in hypothalamic and adipose tissue were markedly down-regulated in the model group. BDNF may be closely associated with MSG-induced hypothalamic obesity.

  20. Proteolytic Cleavage of ProBDNF into Mature BDNF in the Basolateral Amygdala Is Necessary for Defeat-Induced Social Avoidance

    ERIC Educational Resources Information Center

    Dulka, Brooke N.; Ford, Ellen C.; Lee, Melissa A.; Donnell, Nathaniel J.; Goode, Travis D.; Prosser, Rebecca; Cooper, Matthew A.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is essential for memory processes. The present study tested whether proteolytic cleavage of proBDNF into mature BDNF (mBDNF) within the basolateral amygdala (BLA) regulates the consolidation of defeat-related memories. We found that acute social defeat increases the expression of mBDNF, but not proBDNF, in…

  1. BDNF restores the expression of Jun and Fos inducible transcription factors in the rat brain following repetitive electroconvulsive seizures.

    PubMed

    Hsieh, T F; Simler, S; Vergnes, M; Gass, P; Marescaux, C; Wiegand, S J; Zimmermann, M; Herdegen, T

    1998-01-01

    The expression of inducible transcription factors was studied following repetitive electroconvulsive seizures (ECS), c-Fos, c-Jun, JunB, and JunD immunoreactivities were investigated following a single (1 x ECS) or repetitive ECS evoked once per day for 4, 5, or 10 days (4 x ECS, 5 x ECS, or 10 x ECS). Animals were killed 3 or 12 h following the last ECS. Three hours after 1 x ECS, c-Fos was expressed throughout the cortex and hippocampus. After 5 x ECS and 10 x ECS, c-Fos was reexpressed in the CA4 area, but was completely absent in the other hippocampal areas and cortex. In these areas, c-Fos became only reinducible when the time lag between two ECS stimuli was 5 days. In contrast to c-Fos, intense JunB expression was inducible in the cortex and hippocampus, but not CA4 subfield, after 1 x ECS, 5 x ECS, and 10 x ECS. Repetitive ECS did not effect c-Jun and JunD expression. In a second model of systemic excitation of the brain, repetitive daily injection of kainic acid for 4 days completely failed to express c-Fos, c-Jun, and JunB after the last application whereas injection of kainic acid once per week did not alter the strong expressions compared to a single application of kainic acid. In order to study the maintenance of c-Fos expression during repetitive seizures, brain-derived neurotrophic factor (BDNF) was applied in parallel for 5 or 10 days via miniosmotic pumps and permanent cannula targeted at the hippocampus or the parietal cortex. Infusion of BDNF completely reinduced c-Fos expression during 5 x ECS or 10 x ECS in the cortex ipsilaterally to the cannula and, to a less extent, also increased the expression of c-Jun and JunB when compared to saline-treated controls. BDNF had no effect on the expression patterns in the hippocampus. ECS with or without BDNF infusion did not change the expression patterns of the constitutive transcription factors ATF-2, CREB, and SRF. These data demonstrate that various transcription factors substantially differ in their

  2. Astrocyte truncated-TrkB mediates BDNF antiapoptotic effect leading to neuroprotection.

    PubMed

    Saba, Julieta; Turati, Juan; Ramírez, Delia; Carniglia, Lila; Durand, Daniela; Lasaga, Mercedes; Caruso, Carla

    2018-05-31

    Astrocytes are glial cells that help maintain brain homeostasis and become reactive in neurodegenerative processes releasing both harmful and beneficial factors. We have demonstrated that brain-derived neurotrophic factor (BDNF) expression is induced by melanocortins in astrocytes but BDNF actions in astrocytes are largely unknown. We hypothesize that BDNF may prevent astrocyte death resulting in neuroprotection. We found that BDNF increased astrocyte viability, preventing apoptosis induced by serum deprivation by decreasing active caspase-3 and p53 expression. The antiapoptotic action of BDNF was abolished by ANA-12 (a specific TrkB antagonist) and by K252a (a general Trk antagonist). Astrocytes only express the BDNF receptor TrkB truncated isoform 1, TrkB-T1. BDNF induced ERK, Akt and Src (a non-receptor tyrosine kinase) activation in astrocytes. Blocking ERK and Akt pathways abolished BDNF protection in serum deprivation-induced cell death. Moreover, BDNF protected astrocytes from death by 3-nitropropionic acid (3-NP), an effect also blocked by ANA-12, K252a, and inhibitors of ERK, calcium and Src. BDNF reduced reactive oxygen species (ROS) levels induced in astrocytes by 3-NP and increased xCT expression and glutathione levels. Astrocyte conditioned media (ACM) from untreated astrocytes partially protected PC12 neurons whereas ACM from BDNF-treated astrocytes completely protected PC12 neurons from 3-NP-induced apoptosis. Both ACM from control and BDNF-treated astrocytes markedly reduced ROS levels induced by 3-NP in PC12 cells. Our results demonstrate that BDNF protects astrocytes from cell death through TrkB-T1 signaling, exerts an antioxidant action, and induces release of neuroprotective factors from astrocytes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. MicroRNA-211/BDNF axis regulates LPS-induced proliferation of normal human astrocyte through PI3K/AKT pathway

    PubMed Central

    Zhang, Kexiang; Wu, Song; Li, Zhiyue

    2017-01-01

    Spinal cord injury (SCI) makes a major contribution to disability and deaths worldwide. Reactive astrogliosis, a typical feature after SCI, which undergoes varying molecular and morphological changes, is ubiquitous but poorly understood. Reactive astrogliosis contributes to glial scar formation that impedes axonal regeneration. Brain-derived neurotrophic factor (BDNF), a well-established neurotrophic factor, exerts neuroprotective and growth-promoting effects on a variety of neuronal populations after injury. In the present study, by using LPS-induced in vitro injury model of astroglial cultures, we observed a high expression of interleukin (IL)-6, IL-1β, and BDNF in LPS-stimulated normal human astrocytes (NHAs). BDNF significantly promoted NHA proliferation. Further, online tools were employed to screen the candidate miRNAs which might directly target BDNF to inhibit its expression. Amongst the candidate miRNAs, miR-211 expression was down-regulated by LPS stimulation in a dose-dependent manner. Through direct targetting, miR-211 inhibited BDNF expression. Ectopic miR-211 expression significantly suppressed NHA proliferation, as well as LPS-induced activation of PI3K/Akt pathway. In contrast, inhibition of miR-211 expression significantly promoted NHA proliferation and LPS-induced activation of PI3K/Akt pathway. Taken together, miR-211/BDNF axis regulates LPS-induced NHA proliferation through PI3K/AKT pathway; miR-211/BDNF might serve as a promising target in the strategy against reactive astrocyte proliferation after SCI. PMID:28790168

  4. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate.

    PubMed

    Sleiman, Sama F; Henry, Jeffrey; Al-Haddad, Rami; El Hayek, Lauretta; Abou Haidar, Edwina; Stringer, Thomas; Ulja, Devyani; Karuppagounder, Saravanan S; Holson, Edward B; Ratan, Rajiv R; Ninan, Ipe; Chao, Moses V

    2016-06-02

    Exercise induces beneficial responses in the brain, which is accompanied by an increase in BDNF, a trophic factor associated with cognitive improvement and the alleviation of depression and anxiety. However, the exact mechanisms whereby physical exercise produces an induction in brain Bdnf gene expression are not well understood. While pharmacological doses of HDAC inhibitors exert positive effects on Bdnf gene transcription, the inhibitors represent small molecules that do not occur in vivo. Here, we report that an endogenous molecule released after exercise is capable of inducing key promoters of the Mus musculus Bdnf gene. The metabolite β-hydroxybutyrate, which increases after prolonged exercise, induces the activities of Bdnf promoters, particularly promoter I, which is activity-dependent. We have discovered that the action of β-hydroxybutyrate is specifically upon HDAC2 and HDAC3, which act upon selective Bdnf promoters. Moreover, the effects upon hippocampal Bdnf expression were observed after direct ventricular application of β-hydroxybutyrate. Electrophysiological measurements indicate that β-hydroxybutyrate causes an increase in neurotransmitter release, which is dependent upon the TrkB receptor. These results reveal an endogenous mechanism to explain how physical exercise leads to the induction of BDNF.

  5. BDNF in sleep, insomnia, and sleep deprivation.

    PubMed

    Schmitt, Karen; Holsboer-Trachsler, Edith; Eckert, Anne

    2016-01-01

    The protein brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors involved in plasticity of neurons in several brain regions. There are numerous evidence that BDNF expression is decreased by experiencing psychological stress and that, accordingly, a lack of neurotrophic support causes major depression. Furthermore, disruption in sleep homeostatic processes results in higher stress vulnerability and is often associated with stress-related mental disorders. Recently, we reported, for the first time, a relationship between BDNF and insomnia and sleep deprivation (SD). Using a biphasic stress model as explanation approach, we discuss here the hypothesis that chronic stress might induce a deregulation of the hypothalamic-pituitary-adrenal system. In the long-term it leads to sleep disturbance and depression as well as decreased BDNF levels, whereas acute stress like SD can be used as therapeutic intervention in some insomniac or depressed patients as compensatory process to normalize BDNF levels. Indeed, partial SD (PSD) induced a fast increase in BDNF serum levels within hours after PSD which is similar to effects seen after ketamine infusion, another fast-acting antidepressant intervention, while traditional antidepressants are characterized by a major delay until treatment response as well as delayed BDNF level increase. Key messages Brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of stress-related mood disorders. The interplay of stress and sleep impacts on BDNF level. Partial sleep deprivation (PSD) shows a fast action on BDNF level increase.

  6. Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction.

    PubMed

    Anastasia, Agustin; Deinhardt, Katrin; Chao, Moses V; Will, Nathan E; Irmady, Krithi; Lee, Francis S; Hempstead, Barbara L; Bracken, Clay

    2013-01-01

    A common single-nucleotide polymorphism (SNP) in the human brain-derived neurotrophic factor (BDNF) gene results in a Val66Met substitution in the BDNF prodomain region. This SNP is associated with alterations in memory and with enhanced risk to develop depression and anxiety disorders in humans. Here we show that the isolated BDNF prodomain is detected in the hippocampus and that it can be secreted from neurons in an activity-dependent manner. Using nuclear magnetic resonance spectroscopy and circular dichroism, we find that the prodomain is intrinsically disordered, and the Val66Met substitution induces structural changes. Surprisingly, application of Met66 (but not Val66) BDNF prodomain induces acute growth cone retraction and a decrease in Rac activity in hippocampal neurons. Expression of p75(NTR) and differential engagement of the Met66 prodomain to the SorCS2 receptor are required for this effect. These results identify the Met66 prodomain as a new active ligand, which modulates neuronal morphology.

  7. Val66Met Polymorphism of BDNF Alters Prodomain Structure to Induce Neuronal Growth Cone Retraction

    PubMed Central

    Anastasia, Agustin; Deinhardt, Katrin; Chao, Moses V.; Will, Nathan E.; Irmady, Krithi; Lee, Francis S.; Hempstead, Barbara L.; Bracken, Clay

    2013-01-01

    A common single-nucleotide polymorphism in the human brain-derived neurotrophic factor (BDNF) gene results in a Val66Met substitution in the BDNF prodomain region. This single-nucleotide polymorphism is associated with alterations in memory and with enhanced risk to develop depression and anxiety disorders in humans. Here we show that the isolated BDNF prodomain is detected in the hippocampus and that it can be secreted from neurons in an activity-dependent manner. Using nuclear magnetic resonance spectroscopy and circular dichroism we find that the prodomain is intrinsically disordered, and the Val66Met substitution induces structural changes. Surprisingly, application of Met66 (but not Val66) BDNF prodomain induces acute growth cone retraction and a decrease in Rac activity in hippocampal neurons. Expression of p75NTR and differential engagement of the Met66 prodomain to the SorCS2 receptor are required for this effect. These results identify the Met66 prodomain as a new active ligand which modulates neuronal morphology. PMID:24048383

  8. Brain-derived-neurotrophic-factor (BDNF) stress response in rats bred for learned helplessness.

    PubMed

    Vollmayr, B; Faust, H; Lewicka, S; Henn, F A

    2001-07-01

    Stress-induced elevation of glucocorticoids is accompanied by structural changes and neuronal damage in certain brain areas. This includes reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus which can be prevented by chronic electroconvulsive seizures and antidepressant drug treatment. In the last years we have bred two strains of rats, one which reacts with congenital helplessness to stress (cLH), and one which congenitally does not acquire helplessness when stressed (cNLH). After being selectively bred for more than 40 generations these strains have lost their behavioural plasticity including their sensitivity to antidepressant treatment. We show here that in cLH rats, acute immobilization stress does not induce a reduction of BDNF expression in the hippocampus which is observed in Sprague--Dawley and cNLH rats. All animals tested exhibited elevated corticosterone levels when stressed, an indication, that in cLH rats regulation of BDNF expression in the hippocampal formation is uncoupled from corticosterone increase induced through stress. This may explain the lack of adaptive responses in this strain.

  9. [Over-expression of BDNF inhibits angiotensin II-induced apoptosis of cardiomyocytes in SD rats].

    PubMed

    Cao, Jingli; Wu, Yingfeng; Liu, Geming; Li, Zhenlong

    2018-03-01

    Objective To investigate the role and molecular mechanism of brain-derived neurotrophic factor (BDNF) against the process of cardiomyocyte hypertrophy and apoptosis. Methods Cardiomyocyte hypertrophy were estabolished by angiotensin II (Ang II) in neonatal cardiomyocytes in vitro and incomplete ligature of abdominal aorta of SD rats in vivo. BDNF over-expressing recombinant vector pcDNA5-BDNF was transfected into cardiomyocytes by liposomes. Immunofluorescence staining was used to detect the effect of BDNF transfection on the surface area of myocardial cells. The effect of BDNF transfection on the apoptosis of cardiomyocytes was assayed by flow cytometry. Real-time fluorescent quantitative PCR was performed to detect the effect of over-expression of BDNF on the expressions of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNAs in cardiomyocytes. Western blot assay was used to observe the changes of BDNF, ANP and BNP, calmodulin kinase 2 (CaMK2) and phosphorylated calmodulin kinase 2 (p-CaMK2), calcineurin (CaN), p-CaN, nuclear factor of activated T cells 3 (NFATC3) and p-NFATC3 protein expressions in the myocardial tissues and cardiomyocytes. Results The expression of BDNF protein increased significantly in cardiac hypertrophy animal and cell models in a time-dependent manner. Compared with the untransfected control cardiomyocytes, the surface area of cardiomyocytes, the rate of apoptosis, the levels of ANP and BNP mRNA and protein expression, the levels of p-CaMK2 and CaN protein in the BDNF over-expressed cardiomyocytes were remarkably reduced, while the level of p-NFATC3 protein rose significantly. Conclusion BDNF inhibits the apoptosis of cardiomyocytes induced by Ang II, and it plays the role by inhibiting CaMK2 and CaN signaling pathways.

  10. Long-term Administration of Salicylate-induced Changes in BDNF Expression and CREB Phosphorylation in the Auditory Cortex of Rats

    PubMed Central

    Yi, Bin; Wu, Cong; Shi, Runjie; Han, Kun; Sheng, Haibin; Li, Bei; Mei, Ling; Wang, Xueling; Huang, Zhiwu; Wu, Hao

    2018-01-01

    Hypothesis: We investigated whether salicylate induces tinnitus through alteration of the expression levels of brain-derived neurotrophic factor (BDNF), proBDNF, tyrosine kinase receptor B (TrkB), cAMP-responsive element-binding protein (CREB), and phosphorylated CREB (p-CREB) in the auditory cortex (AC). Background: Salicylate medication is frequently used for long-term treatment in clinical settings, but it may cause reversible tinnitus. Salicylate-induced tinnitus is associated with changes related to central auditory neuroplasticity. Our previous studies revealed enhanced neural activity and ultrastructural synaptic changes in the central auditory system after long-term salicylate administration. However, the underlying mechanisms remained unclear. Methods: Salicylate-induced tinnitus-like behavior in rats was confirmed using gap prepulse inhibition of acoustic startle and prepulse inhibition testing, followed by comparison of the expression levels of BDNF, proBDNF, TrkB, CREB, and p-CREB. Synaptic ultrastructure was observed under a transmission electron microscope. Results: BDNF and p-CREB were upregulated along with ultrastructural changes at the synapses in the AC of rats treated chronically with salicylate (p < 0.05, compared with control group). These changes returned to normal after 14 days of recovery (p > 0.05). Conclusion: Long-term administration of salicylate increased BDNF expression and CREB activation, upregulated synaptic efficacy, and changed synaptic ultrastructure in the AC. There may be a relationship between these factors and the mechanism of tinnitus. PMID:29342042

  11. The Neuroprotective Effect of Curcumin Against Nicotine-Induced Neurotoxicity is Mediated by CREB-BDNF Signaling Pathway.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Fatima, Sulail; Faraji, Fahimeh; Mozaffari, Shiva

    2017-10-01

    Nicotine abuse adversely affects brain and causes apoptotic neurodegeneration. Curcumin- a bright yellow chemical compound found in turmeric is associated with neuroprotective properties. The current study was designed to evaluate the role of CREB-BDNF signaling in mediating the neuroprotective effects of curcumin against nicotine-induced apoptosis, oxidative stress and inflammation in rats. Sixty adult male rats were divided randomly into six groups. Group 1 received 0.7 ml/rat normal saline, group 2 received 6 mg/kg nicotine. Groups 3, 4, 5 and 6 were treated concurrently with nicotine (6 mg/kg) and curcumin (10, 20, 40 and 60 mg/kg i.p. respectively) for 21 days. Open Field Test (OFT) was used to evaluate the motor activity. Hippocampal oxidative, anti-oxidant, inflammatory and apoptotic factors were evaluated. Furthermore, phosphorylated brain cyclic adenosine monophosphate (cAMP) response element binding protein (P-CREB) and brain derived neurotrophic factor (BDNF) levels were studied at gene and protein levels. We found that nicotine disturbed the motor activity in OFT and simultaneous treatment with curcumin (40 and 60 mg/kg) reduced the nicotine-induced motor activity disturbances. In addition, nicotine treatment increased lipid peroxidation and the levels of GSH, IL-1β, TNF-α and Bax, while reducing Bcl-2, P-CREB and BDNF levels in the hippocampus. Nicotine also reduced the activity of superoxide dismutase, glutathione peroxidase and glutathione reductase in hippocampus. In contrast, various doses of curcumin attenuated nicotine-induced apoptosis, oxidative stress and inflammation; while elevating P-CREB and BDNF levels. Thus, curcumin via activation of P-CREB/BDNF signaling pathway, confers neuroprotection against nicotine-induced inflammation, apoptosis and oxidative stress.

  12. Sustained intracellular Ca2+ elevation induced by a brief BDNF application in rat visual cortex neurons.

    PubMed

    Mizoguchi, Yoshito; Nabekura, Junichi

    2003-08-06

    A 1-2 min application of brain-derived neurotrophic factor (BDNF; 20 ng/ml) induced sustained elevation of intracellular Ca2+ lasting > 90 min, using the fura-2 imaging of intracellular Ca2+ mobilization, in visual cortical pyramidal neurons isolated from rats. BDNF increased intracellular Ca2+ through the PLC-gamma phosphorylation after the TrkB receptor tyrosine kinase activation. Either K252a or U73122 suppressed intracellular Ca2+ in the absence of BDNF. We suggest that sustained activation of Trk B receptor tyrosine kinase and PLC-gamma occurs after a brief BDNF application and contributes to the short-term maintenance (< 30 min) of the sustained intracellular Ca2+ elevation.

  13. Synapsins Are Downstream Players of the BDNF-Mediated Axonal Growth.

    PubMed

    Marte, Antonella; Messa, Mirko; Benfenati, Fabio; Onofri, Franco

    2017-01-01

    Synapsins (Syns) are synaptic vesicle-associated phosphoproteins involved in neuronal development and neurotransmitter release. While Syns are implicated in the regulation of brain-derived neurotrophic factor (BDNF)-induced neurotransmitter release, their role in the BDNF developmental effects has not been fully elucidated. By using primary cortical neurons from Syn I knockout (KO) and Syn I/II/III KO mice, we studied the effects of BDNF and nerve growth factor (NGF) on axonal growth. While NGF had similar effects in all genotypes, BDNF induced significant differences in Syn KO axonal outgrowth compared to wild type (WT), an effect that was rescued by the re-expression of Syn I. Moreover, the significant increase of axonal branching induced by BDNF in WT neurons was not detectable in Syn KO neurons. The expression analysis of BDNF receptors in Syn KO neurons revealed a significant decrease of the full length TrkB receptor and an increase in the levels of the truncated TrkB.t1 isoform and p75 NTR associated with a marked reduction of the BDNF-induced MAPK/Erk activation. By using the Trk inhibitor K252a, we demonstrated that these differences in BDNF effects were dependent on a TrkB/p75 NTR imbalance. The data indicate that Syn I plays a pivotal role in the BDNF signal transduction during axonal growth.

  14. A Method for Electrochemical Detection of Brain Derived Neurotrophic Factor (BDNF) in plasma.

    PubMed

    Bockaj, Marina; Fung, Barnabas; Tsoulis, Michael; Foster, Lauren Warren; Soleymani, Leyla

    2018-06-22

    Currently, a blood test for the diagnosis of endometriosis, a common estrogen-dependent gynecological disease, does not exist. Recent studies suggest that circulating concentrations of brain derived neurotrophic factor (BDNF) have potential for the diagnosis of endometriosis. However, at present BDNF can only be measured by ELISA which requires a clinic visit, a routine blood sample, and laboratory testing. Therefore, we developed a point-of-care device (EndoChip) for use with small blood volumes that can be collected through a finger prick. Specifically, the presented device is a polymer-based chip with a wrinkled nanoporous gold film acting as the electrode/sensing layer, allowing for the electrochemical detection of BDNF in plasma. Increasing concentrations of BDNF (0.25 - 2.0 ng/ml) induced significant differences in redox current. The biosensor produces a signal readout in a matter of seconds, and is ideal for realizing multiplexing. Blood samples were collected from women (n=20) with chronic pelvic pain undergoing a diagnostic laparoscopy. Plasma BDNF concentrations measured by commercial ELISA were positively correlated (r2=0.8216; p<0.001) with results from the EndoChip. Our results demonstrate a quick and reliable method for point-of-care quantification of circulating concentrations of BDNF and a promising diagnostic tool for endometriosis.

  15. Melatonin Promotes Brain-Derived Neurotrophic Factor (BDNF) Expression and Anti-Apoptotic Effects in Neonatal Hemolytic Hyperbilirubinemia via a Phospholipase (PLC)-Mediated Mechanism

    PubMed Central

    Luo, Yong; Peng, Mei; Wei, Hong

    2017-01-01

    Background Melatonin therapy shows positive effects on neuroprotective factor brain-derived neurotrophic factor (BDNF) expression and neuronal apoptosis in neonatal hemolytic hyperbilirubinemia. We hypothesized that melatonin promotes BDNF expression and anti-apoptotic effects in neonatal hemolytic hyperbilirubinemia through a phospholipase (PLC)-mediated mechanism. Material/Methods A phenylhydrazine hydrochloride (PHZ)-induced neonatal hemolytic hyperbilirubinemia model was constructed in neonatal rats. Four experimental groups – a control group (n=30), a PHZ group (n=30), a PHZ + melatonin group (n=30), and a PHZ + melatonin+U73122 (a PLC inhibitor) group (n=30) – were constructed. Trunk blood was assayed for serum hemoglobin, hematocrit, total and direct bilirubin, BDNF, S100B, and tau protein levels. Brain tissue levels of neuronal apoptosis, BDNF expression, PLC activity, IP3 content, phospho- and total Ca2+/calmodulin-dependent protein kinase type IV (CaMKIV) expression, and phospho- and total cAMP response element binding protein (CREB) expression were also assayed. Results PHZ-induced hemolytic hyperbilirubinemia was validated by significantly decreased serum hemoglobin and hematocrit as well as significantly increased total and direct serum bilirubin (p<0.05). Neonatal bilirubin-induced neurotoxicity was validated by significantly decreased serum BDNF, brain BDNF, and serum S100B, along with significantly increased serum tau protein (p<0.05). PHZ-induced hemolytic hyperbilirubinemia significantly decreased serum BDNF, brain BDNF, and PLC/IP3/Ca2+ pathway activation while increasing neuronal apoptosis levels (p<0.05), all of which were partially rescued by melatonin therapy (p<0.05). Pre-treatment with the PLC inhibitor U73122 largely abolished the positive effects of melatonin on PLC/IP3/Ca2+ pathway activation, downstream BDNF levels, and neuronal apoptosis (p<0.05). Conclusions Promotion of BDNF expression and anti-apoptotic effects in neonatal

  16. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Fatima, Sulail; Hashemi, Hajar; Gholami, Mina

    2017-03-01

    Alcohol abuse causes severe damage to the brain neurons. Studies have reported the neuroprotective effects of curcumin against alcohol-induced neurodegeneration. However, the precise mechanism of action remains unclear. Seventy rats were equally divided into 7 groups (10 rats per group). Group 1 received normal saline (0.7ml/rat) and group 2 received alcohol (2g/kg/day) for 21days. Groups 3, 4, 5 and 6 concurrently received alcohol (2g/kg/day) and curcumin (10, 20, 40 and 60mg/kg, respectively) for 21days. Animals in group 7 self- administered alcohol for 21days. Group 8 treated with curcumin (60mg/kg, i.p.) alone for 21days. Open Field Test (OFT) was used to investigate motor activity in rats. Hippocampal oxidative, antioxidative and inflammatory factors were evaluated. Furthermore, brain cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and brain derived neurotrophic factor (BDNF) levels were studied at gene level by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, protein expression for BDNF, CREB, phosphorylated CREB (CREB-P), Bax and Bcl-2 was determined by western blotting. Voluntary and involuntary administration of alcohol altered motor activity in OFT, and curcumin treatment inhibited this alcohol-induced motor disturbance. Also, alcohol administration augmented lipid peroxidation, mitochondrial oxidized glutathione (GSSG), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and Bax levels in isolated hippocampal tissues. Furthermore, alcohol-induced significant reduction were observed in reduced form of glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities and CREB, BDNF and Bcl-2 levels. Also curcumin alone did not change the behavior and biochemical and molecular parameters. Curcumin can act as a neuroprotective agent against neurodegenerative effects of alcohol abuse, probably via activation of CREB-BDNF signaling pathway

  17. Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells.

    PubMed

    Qian, Jie; Mummalaneni, Shobha K; Alkahtani, Reem M; Mahavadi, Sunila; Murthy, Karnam S; Grider, John R; Lyall, Vijay

    2016-01-01

    In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells.

  18. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons.

    PubMed

    Marosi, Krisztina; Kim, Sang Woo; Moehl, Keelin; Scheibye-Knudsen, Morten; Cheng, Aiwu; Cutler, Roy; Camandola, Simonetta; Mattson, Mark P

    2016-12-01

    During fasting and vigorous exercise, a shift of brain cell energy substrate utilization from glucose to the ketone 3-hydroxybutyrate (3OHB) occurs. Studies have shown that 3OHB can protect neurons against excitotoxicity and oxidative stress, but the underlying mechanisms remain unclear. Neurons maintained in the presence of 3OHB exhibited increased oxygen consumption and ATP production, and an elevated NAD + /NADH ratio. We found that 3OHB metabolism increases mitochondrial respiration which drives changes in expression of brain-derived neurotrophic factor (BDNF) in cultured cerebral cortical neurons. The mechanism by which 3OHB induces Bdnf gene expression involves generation of reactive oxygen species, activation of the transcription factor NF-κB, and activity of the histone acetyltransferase p300/EP300. Because BDNF plays important roles in synaptic plasticity and neuronal stress resistance, our findings suggest cellular signaling mechanisms by which 3OHB may mediate adaptive responses of neurons to fasting, exercise, and ketogenic diets. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  19. BDNF — a key transducer of antidepressant effects

    PubMed Central

    Björkholm, Carl; Monteggia, Lisa M.

    2016-01-01

    How do antidepressants elicit an antidepressant response? Here, we review accumulating evidence that the neurotrophin brain-derived neurotrophic factor (BDNF) serves as a transducer, acting as the link between the antidepressant drug and the neuroplastic changes that result in the improvement of the depressive symptoms. Over the last decade several studies have consistently highlighted BDNF as a key player in antidepressant action. An increase in hippocampal and cortical expression of BDNF mRNA parallels the antidepressant-like response of conventional antidepressants such as SSRIs. Subsequent studies showed that a single bilateral infusion of BDNF into the ventricles or directly into the hippocampus is sufficient to induce a relatively rapid and sustained antidepressant-like effect. Importantly, the antidepressant-like response to conventional antidepressants is attenuated in mice where the BDNF signaling has been disrupted by genetic manipulations. Low dose ketamine, which has been found to induce a rapid antidepressant effect in patients with treatment-resistant depression, is also dependent on increased BDNF signaling. Ketamine transiently increases BDNF translation in hippocampus, leading to enhanced synaptic plasticity and synaptic strength. Ketamine has been shown to increase BDNF translation by blocking NMDA receptor activity at rest, thereby inhibiting calcium influx and subsequently halting eukaryotic elongation factor 2 (eEF2) kinase leading to a desuppression of protein translation, including BDNF translation. The antidepressant-like response of ketamine is abolished in BDNF and TrkB conditional knockout mice, eEF2 kinase knockout mice, in mice carrying the BDNF met/met allele, and by intra-cortical infusions of BDNF-neutralizing antibodies. In summary, current data suggests that conventional antidepressants and ketamine mediate their antidepressant-like effects by increasing BDNF in forebrain regions, in particular the hippocampus, making BDNF an

  20. BDNF Expression in Perirhinal Cortex is Associated with Exercise-Induced Improvement in Object Recognition Memory

    PubMed Central

    Hopkins, Michael E.; Bucci, David J.

    2010-01-01

    Physical exercise induces widespread neurobiological adaptations and improves learning and memory. Most research in this field has focused on hippocampus-based spatial tasks and changes in brain-derived neurotrophic factor (BDNF) as a putative substrate underlying exercise-induced cognitive improvements. Chronic exercise can also be anxiolytic and causes adaptive changes in stress reactivity. The present study employed a perirhinal cortex-dependent object recognition task as well as the elevated plus maze to directly test for interactions between the cognitive and anxiolytic effects of exercise in male Long Evans rats. Hippocampal and perirhinal cortex tissue was collected to determine whether the relationship between BDNF and cognitive performance extends to this non-spatial and non-hippocampal-dependent task. We also examined whether the cognitive improvements persisted once the exercise regimen was terminated. Our data indicate that 4 weeks of voluntary exercise every-other-day improved object recognition memory. Importantly, BDNF expression in the perirhinal cortex of exercising rats was strongly correlated with object recognition memory. Exercise also decreased anxiety-like behavior, however there was no evidence to support a relationship between anxiety-like behavior and performance on the novel object recognition task. There was a trend for a negative relationship between anxiety-like behavior and hippocampal BDNF. Neither the cognitive improvements nor the relationship between cognitive function and perirhinal BDNF levels persisted after 2 weeks of inactivity. These are the first data demonstrating that region-specific changes in BDNF protein levels are correlated with exercise-induced improvements in non-spatial memory, mediated by structures outside the hippocampus and are consistent with the theory that, with regard to object recognition, the anxiolytic and cognitive effects of exercise may be mediated through separable mechanisms. PMID:20601027

  1. Nerve growth factor pretreatment inhibits lidocaine-induced myelin damage via increasing BDNF expression and inhibiting p38 mitogen activation in the rat spinal cord

    PubMed Central

    Zhao, Guangyi; Li, Dan; Ding, Xudong; Li, Lu

    2017-01-01

    The present study aimed to investigate the effect of exogenous nerve growth factor (NGF) pretreatment on demyelination in the spinal cord of lidocaine-treated rats, and explored the potential neuroprotective mechanisms of NGF. A total of 36 rats were randomly assigned to three groups (n=12 per group): Sham group; Lido group, received intrathecal injection of lidocaine; NGF group, received intrathecal injection of NGF followed by intrathecal injection of lidocaine. Tail-flick tests were used to evaluate neurobehavioral function. Ultrastructural alternations were analyzed by transmission electron microscopy. Immunofluorescence was used to examine the expression of myelin basic protein (MBP) and brain-derived neurotrophic factor (BDNF). ELISA was used to determine serum levels of MBP and proteolipid protein (PLP). Western blotting was used to detect the expression of phosphorylated mitogen activated protein kinase (MAPK). NGF pretreatment reduced lidocaine-induced neurobehavioral damage, nerve fiber demyelination, accompanied by a decrease in MBP expression in the spinal cord and an increase in MBP and PLP in serum. In addition, NGF pretreatment increased BDNF expression in the spinal cord of lidocaine-treated rats. Furthermore, NGF pretreatment reduced p38 MAPK phosphorylation in the spinal cord of lidocaine-treated rats. NGF treatment reduces lidocaine-induced neurotoxicity via the upregulation of BDNF and inhibition of p38 MAPK. NGF therapy may improve the clinical use of lidocaine in intravertebral anesthesia. PMID:28849178

  2. Brain derived neurotrophic factor (BDNF) and autism spectrum disorders (ASD) in childhood.

    PubMed

    Bryn, V; Halvorsen, B; Ueland, T; Isaksen, J; Kolkova, K; Ravn, K; Skjeldal, O H

    2015-07-01

    Neurotrophic factors are essential regulators of neuronal maturation including synaptic synthesis. Among those, Brain derived neurotrophic factor (BDNF) has been in particular focus in the understanding of autism spectrum disorders (ASD). The aim of our study was to investigate whether BNDF could be used as diagnostic/biological marker for ASD. For this purpose we examined the plasma levels of BDNF and the precursors pro- BDNF in patients with ASD and compared it with non-autistic controls; determined whether there was a correlation between the BDNF and proBDNF levels and clinical severity. We also investigated the coding region of BDNF identify for well-variations which could be associated to ASD. The 65 ASD patients (51 boys) were enrolled from a recent completed epidemiological survey covering two counties (Oppland and Hedmark) in Norway. The mean age of the total number of children who participated in this study was 11,7 years. 30 non-autistic children were included as controls, 14 boys and 16 girls. The mean age was 11.3 years. Exclusion criteria for control group were individuals suffering from either neurological, endocrine, or immune insuffiency. Patients with ASD were characterized by moderately but significantly elevated plasma levels of BDNF compared to matched controls. No differences were observed in the proBDNF level between patients and controls. Within the ASD group, children with intellectual disability demonstrated increased BDNF, but not proBDNF levels, while the presence of ADHD had no impact on circulating proBDNF or BDNF. No further associations between plasma proBDNF or BDNF and other clinical demographics were observed. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  3. Acute stress alters transcript expression pattern and reduces processing of proBDNF to mature BDNF in Dicentrarchus labrax

    PubMed Central

    2010-01-01

    Background Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF) has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions. Results We provide a comprehensive characterization of BDNF gene in the Dicentrarchus labrax and its transcriptional, translational and post-translational regulation following acute stress. While total BDNF mRNA levels are unchanged, BDNF transcripts 1c and 1d resulted down regulated after acute stress. Acute stress induces also a significant increase in proBDNF levels and reduction in mature BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we provide here the first evidence that fishes possess a simplified proteolytic regulation of BDNF since the pro28Kda form, generated by the SKI-1 protease in mammals, is absent in fishes because the cleavage site has first emerged in reptilians. Finally, we show that the proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 100%. Conclusion The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates that processing of BDNF is a central mechanism in adaptation to stress and predicts that a similar regulation of pro/mature BDNF has likely been conserved throughout evolution of vertebrates from fish to man. PMID:20074340

  4. Acute stress alters transcript expression pattern and reduces processing of proBDNF to mature BDNF in Dicentrarchus labrax.

    PubMed

    Tognoli, Chiara; Rossi, Federica; Di Cola, Francesco; Baj, Gabriele; Tongiorgi, Enrico; Terova, Genciana; Saroglia, Marco; Bernardini, Giovanni; Gornati, Rosalba

    2010-01-14

    Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF) has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions. We provide a comprehensive characterization of BDNF gene in the Dicentrarchus labrax and its transcriptional, translational and post-translational regulation following acute stress. While total BDNF mRNA levels are unchanged, BDNF transcripts 1c and 1d resulted down regulated after acute stress. Acute stress induces also a significant increase in proBDNF levels and reduction in mature BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we provide here the first evidence that fishes possess a simplified proteolytic regulation of BDNF since the pro28Kda form, generated by the SKI-1 protease in mammals, is absent in fishes because the cleavage site has first emerged in reptilians. Finally, we show that the proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 100%. The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates that processing of BDNF is a central mechanism in adaptation to stress and predicts that a similar regulation of pro/mature BDNF has likely been conserved throughout evolution of vertebrates from fish to man.

  5. Prenatal zinc prevents communication impairments and BDNF disturbance in a rat model of autism induced by prenatal lipopolysaccharide exposure.

    PubMed

    Kirsten, Thiago B; Queiroz-Hazarbassanov, Nicolle; Bernardi, Maria M; Felicio, Luciano F

    2015-06-01

    Aims: Previous investigations by our group have shown that prenatal exposure to lipopolysaccharide (LPS),which mimics infections by Gram-negative bacteria, induced autistic-like behavior. No effective treatment yet exists for autism. Therefore, we used our rat model to test a possible treatment for autism.We selected zinc as the prenatal treatment to prevent or ease the impairments induced by LPS because LPS induces hypozincaemia.Materials and methods:We evaluated the effects of LPS and zinc on female reproductive performance. Communication,which is impaired in autism,was tested in pups by ultrasonic vocalizations. Plasma levels of brain-derived neurotrophic factor (BDNF) were determined because it has been considered an autism important biomarker.Key findings: Prenatal LPS exposure reduced offspring number and treatment with zinc prevented this reduction.Moreover, pups that were prenatally exposed to LPS spent longer periods without calling their mothers, and posttreatment with zinc prevented this impairment induced by LPS to the same levels as controls. Prenatal LPS also increased BDNF levels in adult offspring, and posttreatment with zinc reduced the elevation of BDNF to the same levels as controls.Significance: BDNF hyperactivity was also found in several studies of autistic patients. Together with our previous studies, our model of prenatal LPS induced autistic-like behavioral, brain, and immune disturbances. This suggests that it is a valid rat model of autism. Prenatal zinc prevented reproductive, communication, and BDNF impairments.The present study revealed a potential beneficial effect of prenatal zinc administration for the prevention of autism with regard to the BDNF pathway.

  6. Streptozotocin produces oxidative stress, inflammation and decreases BDNF concentrations to induce apoptosis of RIN5F cells and type 2 diabetes mellitus in Wistar rats.

    PubMed

    Bathina, Siresha; Srinivas, Nanduri; Das, Undurti N

    2017-04-29

    Neurodegenerative disorders, such as deficits in learning, memory and cognition and Alzheimer's disease are associated with diabetes mellitus. Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor and is known to possess anti-obesity, anti-diabetic actions and is believed to have a role in memory and Alzheimer's disease. To investigate whether STZ can reduce BDNF production by rat insulinoma (RIN5F) cells in vitro and decrease BDNF levels in the pancreas, liver and brain in vivo. Streptozotocin (STZ)-induced cytotoxicity to RIN5F cells in vitro and type 2 DM in Wistar rats was employed in the present study. Cell viability, activities of various anti-oxidants and secretion of BDNF by RIN5F cells in vitro were measured using MTT assay, biochemical methods and ELISA respectively. In STZ-induced type 2 DM rats: plasma glucose, interleukin-6 and tumor necrosis factor-α levels and BDNF protein expression in the pancreas, liver and brain tissues were measured. In addition, neuronal count and morphology in the hippocampus and hypothalamus areas was assessed. STZ-induced suppression of RIN5F cell viability was abrogated by BDNF. STZ suppressed BDNF secretion by RIN5F cells in vitro. STZ-induced type 2 DM rats showed hyperglycemia, enhanced plasma IL-6 and TNF-αlevels and reduced plasma and pancreas, liver and brain tissues (P < 0.001) and increased oxidative stress compared to untreated control. Hypothalamic and hippocampal neuron in STZ-treated animals showed a decrease in the number of neurons and morphological changes suggesting of STZ cytotoxicity. The results of the present study suggest that STZ is not only cytotoxic to pancreatic beta cells but also to hypothalamic and hippocampal neurons by inducing oxidative stress. STZ ability to suppress BDNF production by pancreas, liver and brain tissues suggests that impaired memory, learning, and cognitive dysfunction seen in diabetes mellitus could be due to BDNF deficiency. Copyright © 2017 Elsevier

  7. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus.

    PubMed

    Tran, Phu V; Kennedy, Bruce C; Lien, Yu-Chin; Simmons, Rebecca A; Georgieff, Michael K

    2015-02-15

    Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency. Copyright © 2015 the American Physiological Society.

  8. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus

    PubMed Central

    Kennedy, Bruce C.; Lien, Yu-Chin; Simmons, Rebecca A.; Georgieff, Michael K.

    2014-01-01

    Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency. PMID:25519736

  9. Peripheral vascular reactivity and serum BDNF responses to aerobic training are impaired by the BDNF Val66Met polymorphism.

    PubMed

    Lemos, José R; Alves, Cleber R; de Souza, Sílvia B C; Marsiglia, Julia D C; Silva, Michelle S M; Pereira, Alexandre C; Teixeira, Antônio L; Vieira, Erica L M; Krieger, José E; Negrão, Carlos E; Alves, Guilherme B; de Oliveira, Edilamar M; Bolani, Wladimir; Dias, Rodrigo G; Trombetta, Ivani C

    2016-02-01

    Besides neuronal plasticity, the neurotrophin brain-derived neurotrophic factor (BDNF) is also important in vascular function. The BDNF has been associated with angiogenesis through its specific receptor tropomyosin-related kinase B (TrkB). Additionally, Val66Met polymorphism decreases activity-induced BDNF. Since BDNF and TrkB are expressed in vascular endothelial cells and aerobic exercise training can increase serum BDNF, this study aimed to test the hypotheses: 1) Serum BDNF levels modulate peripheral blood flow; 2) The Val66Met BDNF polymorphism impairs exercise training-induced vasodilation. We genotyped 304 healthy male volunteers (Val66Val, n = 221; Val66Met, n = 83) who underwent intense aerobic exercise training on a running track three times/wk for 4 mo. We evaluated pre- and post-exercise training serum BDNF and proBDNF concentration, heart rate (HR), mean blood pressure (MBP), forearm blood flow (FBF), and forearm vascular resistance (FVR). In the pre-exercise training, BDNF, proBDNF, BDNF/proBDNF ratio, FBF, and FVR were similar between genotypes. After exercise training, functional capacity (V̇o2 peak) increased and HR decreased similarly in both groups. Val66Val, but not Val66Met, increased BDNF (interaction, P = 0.04) and BDNF/proBDNF ratio (interaction, P < 0.001). Interestingly, FBF (interaction, P = 0.04) and the FVR (interaction, P = 0.01) responses during handgrip exercise (HG) improved in Val66Val compared with Val66Met, even with similar responses of HR and MBP. There were association between BDNF/proBDNF ratio and FBF (r = 0.64, P < 0.001) and FVR (r = -0.58, P < 0.001) during HG exercise. These results show that peripheral vascular reactivity and serum BDNF responses to exercise training are impaired by the BDNF Val66Met polymorphism and such responsiveness is associated with serum BDNF concentrations in healthy subjects. Copyright © 2016 the American Physiological Society.

  10. Increased production of BDNF in colonic epithelial cells induced by fecal supernatants from diarrheic IBS patients.

    PubMed

    Wang, Peng; Chen, Fei-Xue; Du, Chao; Li, Chang-Qing; Yu, Yan-Bo; Zuo, Xiu-Li; Li, Yan-Qing

    2015-05-22

    Colonic brain-derived neurotrophic factor (BDNF) plays an essential role in pathogenesis of abdominal pain in diarrhea-predominant irritable bowel syndrome (IBS-D), but regulation on its expression remains unclear. We investigated the role of fecal supernatants (FSN) from IBS-D patients on regulating BDNF expression in colonic epithelial cells of human and mice. Using human Caco-2 cells, we found that IBS-D FSN significantly increased BDNF mRNA and protein levels compared to control FSN, which were remarkably suppressed by the serine protease inhibitor. To further explore the potential mechanisms, we investigated the impact of protease-activated receptor-2 (PAR-2) on BDNF expression. We found a significant increase in PAR-2 expression in Caco-2 after IBS-D FSN stimulation. Knockdown of PAR-2 significantly inhibited IBS-D FSN-induced upregulation of BDNF. Moreover, we found that phosphorylation of p38 MAPK, not NF-κB p65, contributed to PAR-2-mediated BDNF overexpression. To confirm these results, we intracolonically infused IBS-D or control FSN in mice and found that IBS-D FSN significantly elevated colonic BDNF and visceral hypersensitivity in mice, which were both suppressed by the inhibitor of serine protease or antagonist of PAR-2. Together, our data indicate that activation of PAR-2 signaling by IBS-D FSN promotes expression of colonic BDNF, thereby contributing to IBS-like visceral hypersensitivity.

  11. Epigenetic regulation of BDNF in the learned helplessness-induced animal model of depression.

    PubMed

    Su, Chun-Lin; Su, Chun-Wei; Hsiao, Ya-Hsin; Gean, Po-Wu

    2016-05-01

    Major depressive disorder (MDD), one of the most common mental disorders, is a significant risk factor for suicide and causes a low quality of life for many people. However, the causes and underlying mechanism of depression remain elusive. In the current work, we investigated epigenetic regulation of BDNF in the learned helplessness-induced animal model of depression. Mice were exposed to inescapable stress and divided into learned helplessness (LH) and resilient (LH-R) groups depending on the number they failed to escape. We found that the LH group had longer immobility duration in the forced swimming test (FST) and tail suspension tests (TST), which is consistent with a depression-related phenotype. Western blotting analysis and enzyme-linked immunosorbent assay (ELISA) revealed that the LH group had lower BDNF expression than that of the LH-R group. The LH group consistently had lower BDNF mRNA levels, as detected by qPCR assay. In addition, we found BDNF exon IV was down-regulated in the LH group. Intraperitoneal injection of imipramine or histone deacetylase inhibitors (HDACi) to the LH mice for 14 consecutive days ameliorated depression-like behaviors and reversed the decrease in BDNF. The expression of HDAC5 was up-regulated in the LH mice, and a ChIP assay revealed that the level of HDAC5 binding to the promoter region of BDNF exon IV was higher than that seen in other groups. Knockdown of HDAC5 reduced depression-like behaviors in the LH mice. Taken together, these results suggest that epigenetic regulation of BDNF by HDAC5 plays an important role in the learned helplessness model of depression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury.

    PubMed

    Wurzelmann, Mary; Romeika, Jennifer; Sun, Dong

    2017-01-01

    Traumatic brain injury (TBI) is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF) has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF), a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  13. Decreased serum levels of mature brain-derived neurotrophic factor (BDNF), but not its precursor proBDNF, in patients with major depressive disorder.

    PubMed

    Yoshida, Taisuke; Ishikawa, Masatomo; Niitsu, Tomihisa; Nakazato, Michiko; Watanabe, Hiroyuki; Shiraishi, Tetsuya; Shiina, Akihiro; Hashimoto, Tasuku; Kanahara, Nobuhisa; Hasegawa, Tadashi; Enohara, Masayo; Kimura, Atsushi; Iyo, Masaomi; Hashimoto, Kenji

    2012-01-01

    Meta-analyses have identified serum levels of brain-derived neurotrophic factor (BDNF) as a potential biomarker for major depressive disorder (MDD). However, at the time, commercially available human ELISA kits are unable to distinguish between proBDNF (precursor of BDNF) and mature BDNF because of limited BDNF antibody specificity. In this study, we examined whether serum levels of proBDNF, mature BDNF, and matrix metalloproteinase-9 (MMP-9), which converts proBDNF to mature BDNF, are altered in patients with MDD. Sixty-nine patients with MDD and 78 age- and gender-matched healthy subjects were enrolled. Patients were evaluated using 17 items on the Structured Interview Guide for the Hamilton Depression Rating Scale. Cognitive impairment was evaluated using the CogState battery. Serum levels of proBDNF, mature BDNF, and MMP-9 were measured using ELISA kits. Serum levels of mature BDNF in patients with MDD were significantly lower than those of normal controls. In contrast, there was no difference in the serum levels of proBDNF and MMP-9 between patients and normal controls. While neither proBDNF nor mature BDNF serum levels was associated with clinical variables, there were significant correlations between MMP-9 serum levels and the severity of depression, quality of life scores, and social function scores in patients. These findings suggest that mature BDNF may serve as a biomarker for MDD, and that MMP-9 may play a role in the pathophysiology of MDD. Further studies using larger sample sizes will be needed to investigate these results.

  14. [BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF): NEUROBIOLOGY AND MARKER VALUE IN NEUROPSYCHIATRY].

    PubMed

    Levada, O A; Cherednichenko, N V

    2015-01-01

    In this review current publications about neurobiology and marker value of brain derived neurotrophic factor (BDNF) in neuropsychiatry are analyzed. It is shown that BDNF is an important member of the family of neurotrophins which widely represented in various structures of the CNS. In prenatal period BDNF is involved in all stages of neuronal networks formation, and in the postnatal period its main role is maintaining the normal brain architectonics, involvement in the processes of neurogenesis and realization of neuroprotective functions. BDNF plays an important role in learning and memory organization, food and motor behavior. BDNF brain expression decreases with age, as well as in degenerative and vascular dementias, affective, anxiety, and behavioral disorders. The reducing of BDNF serum, level reflects the decreasing of its cerebral expression and could be used as a neurobiological marker of these pathological processes but the rising of its concentration could indicate the therapy effectiveness.

  15. ProBDNF Signaling Regulates Depression-Like Behaviors in Rodents under Chronic Stress.

    PubMed

    Bai, Yin-Yin; Ruan, Chun-Sheng; Yang, Chun-Rui; Li, Jia-Yi; Kang, Zhi-Long; Zhou, Li; Liu, Dennis; Zeng, Yue-Qing; Wang, Ting-Hua; Tian, Chang-Fu; Liao, Hong; Bobrovskaya, Larisa; Zhou, Xin-Fu

    2016-11-01

    Chronic exposure to stressful environment is a key risk factor contributing to the development of depression. However, the mechanisms involved in this process are still unclear. Brain-derived neurotropic factor (BDNF) has long been investigated for its positive role in regulation of mood, although the role of its precursor, proBDNF, in regulation of mood is not known. In this study, using an unpredictable chronic mild stress (UCMS) paradigm we found that the protein levels of proBDNF were increased in the neocortex and hippocampus of stressed mice and this UCMS-induced upregulation of proBDNF was abolished by chronic administration of fluoxetine. We then established a rat model of UCMS and found that the expression of proBDNF/p75 NTR /sortilin was upregulated, whereas the expression of mature BDNF and TrkB was downregulated in both neocortex and hippocampus of chronically stressed rats. Finally, we found that the injection of anti-proBDNF antibody via intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) approaches into the UCMS rats significantly reversed the stress-induced depression-like behavior and restored the exploratory activity and spine growth. Although intramuscular injection of AAV-proBDNF did not exacerbate the UCMS-elicited rat mood-related behavioral or pathological abnormalities, i.c.v. injection of AAV-proBDNF increased the depression-like behavior in naive rats. Our findings suggest that proBDNF plays a role in the development of chronic stress-induced mood disturbances in rodents. Central (i.c.v.) or peripheral (i.p.) inhibition of proBDNF by injecting specific anti-proBDNF antibodies may provide a novel therapeutic approach for the treatment of stress-related mood disorders.

  16. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory.

    PubMed

    Lubin, Farah D; Roth, Tania L; Sweatt, J David

    2008-10-15

    Long-term memory formation requires selective changes in gene expression. Here, we determined the contribution of chromatin remodeling to learning-induced changes in brain-derived neurotrophic factor (bdnf) gene expression in the adult hippocampus. Contextual fear learning induced differential regulation of exon-specific bdnf mRNAs (I, IV, VI, IX) that was associated with changes in bdnf DNA methylation and altered local chromatin structure. Infusions of zebularine (a DNA methyltransferase inhibitor) significantly altered bdnf DNA methylation and triggered changes in exon-specific bdnf mRNA levels, indicating that altered DNA methylation is sufficient to drive differential bdnf transcript regulation in the hippocampus. In addition, NMDA receptor blockade prevented memory-associated alterations in bdnf DNA methylation, resulting in a block of altered bdnf gene expression in hippocampus and a deficit in memory formation. These results suggest epigenetic modification of the bdnf gene as a mechanism for isoform-specific gene readout during memory consolidation.

  17. Involvement of brain-derived neurotrophic factor (BDNF) in the functional elimination of synaptic contacts at polyinnervated neuromuscular synapses during development.

    PubMed

    Garcia, N; Santafe, M M; Tomàs, M; Lanuza, M A; Besalduch, N; Tomàs, J

    2010-05-15

    We use immunohistochemistry to describe the localization of brain-derived neurotrophic factor (BDNF) and its receptors trkB and p75(NTR) in the neuromuscular synapses of postnatal rats (P6-P7) during the synapse elimination period. The receptor protein p75(NTR) is present in the nerve terminal, muscle cell and glial Schwann cell whereas BDNF and trkB proteins can be detected mainly in the pre- and postsynaptic elements. Exogenously applied BDNF (10 nM for 3 hr or 50 nM for 1 hr) increases ACh release from singly and dually innervated synapses. This effect may be specific for BDNF because the neurotrophin NT-4 (2-8 nM) does not modulate release at P6-P7. Blocking the receptors trkB and p75(NTR) (with K-252a and anti-p75-192-IgG, respectively) completely abolishes the potentiating effect of exogenous BDNF. In addition, exogenous BDNF transiently recruits functionally depressed silent terminals, and this effect seems to be mediated by trkB. Calcium ions, the L-type voltage-dependent calcium channels and protein kinase C are involved in BDNF-mediated nerve ending recruitment. Blocking experiments suggest that endogenous BDNF could operate through p75(NTR) receptors coupled to potentiate ACh release in all nerve terminals because the anti-p75-192-IgG reduces release. However, blocking the trkB receptor (K-252a) or neutralizing endogenous BDNF with the trkB-IgG fusion protein reveals a trkB-mediated release inhibition on almost mature strong endings in dual junctions. Taken together these results suggest that a BDNF-induced p75(NTR)-mediated ACh release potentiating mechanism and a BDNF-induced trkB-mediated release inhibitory mechanism may contribute to developmental synapse disconnection. (c) 2009 Wiley-Liss, Inc.

  18. BDNF and VEGF in the pathogenesis of stress-induced affective diseases: an insight from experimental studies.

    PubMed

    Nowacka, Marta; Obuchowicz, Ewa

    2013-01-01

    Stress is known to play an important role in etiology, development and progression of affective diseases. Especially, chronic stress, by initiating changes in the hypothalamic-pituitary-adrenal axis (HPA), neurotransmission and the immune system, acts as a trigger for affective diseases. It has been reported that the rise in the concentration of pro-inflammatory cytokines and persistent up-regulation of glucocorticoid expression in the brain and periphery increases the excitotoxic effect on CA3 pyramidal neurons in the hippocampus resulting in dendritic atrophy, apoptosis of neurons and possibly inhibition of neurogenesis in adult brain. Stress was observed to disrupt neuroplasticity in the brain, and growing evidence demonstrates its role in the pathomechanism of affective disorders. Experimental studies indicate that a well-known brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) which have recently focused increasing attention of neuroscientists, promote cell survival, positively modulate neuroplasticity and hippocampal neurogenesis. In this paper, we review the alterations in BDNF and VEGF pathways induced by chronic and acute stress, and their relationships with HPA axis activity. Moreover, behavioral effects evoked in rodents by both above-mentioned factors and the effects consequent to their deficit are presented. Biochemical as well as behavioral findings suggest that BDNF and VEGF play an important role as components of cascade of changes in the pathomechanism of stress-induced affective diseases. Further studies on the mechanisms regulating their expression in stress conditions are needed to better understand the significance of trophic hypothesis of stress-induced affective diseases.

  19. Neuroactive steroids modulate HPA axis activity and cerebral brain-derived neurotrophic factor (BDNF) protein levels in adult male rats.

    PubMed

    Naert, Gaëlle; Maurice, Tangui; Tapia-Arancibia, Lucia; Givalois, Laurent

    2007-01-01

    Depression is characterized by hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. In this major mood disorder, neurosteroids and neurotrophins, particularly brain-derived neurotrophic factor (BDNF), seem to be implicated and have some antidepressant effects. BDNF is highly involved in regulation of the HPA axis, whereas neurosteroids effects have never been clearly established. In this systematic in vivo study, we showed that the principal neuroactive steroids, namely dehydroepiandrosterone (DHEA), pregnenolone (PREG) and their sulfate esters (DHEA-S and PREG-S), along with allopregnanolone (ALLO), stimulated HPA axis activity, while also modulating central BDNF contents. In detail, DHEA, DHEA-S, PREG, PREG-S and ALLO induced corticotropin-releasing hormone (CRH) and/or arginine vasopressin (AVP) synthesis and release at the hypothalamic level, thus enhancing plasma adrenocorticotropin hormone (ACTH) and corticosterone (CORT) concentrations. This stimulation of the HPA axis occurred concomitantly with BDNF modifications at the hippocampus, amygdala and hypothalamus levels. We showed that these neurosteroids induced rapid effects, probably via neurotransmitter receptors and delayed effects perhaps after metabolization in other neuroactive steroids. We highlighted that they had peripheral effects directly at the adrenal level by inducing CORT release, certainly after estrogenic metabolization. In addition, we showed that, at the dose used, only DHEA, DHEA-S and PREG-S had antidepressant effects. In conclusion, these results highly suggest that part of the HPA axis and antidepressant effects of neuroactive steroids could be mediated by BDNF, particularly at the amygdala level. They also suggest that neurosteroids effects on central BDNF could partially explain the trophic properties of these molecules.

  20. Ethanol-BDNF interactions: Still More Questions than Answers

    PubMed Central

    Davis, Margaret I.

    2008-01-01

    Brain Derived Neurotrophic Factor (BDNF) has emerged as a regulator of development, plasticity and, recently, addiction. Decreased neurotrophic activity may be involved in ethanol-induced neurodegeneration in the adult brain and in the etiology of alcohol-related neurodevelopmental disorders. This can occur through decreased expression of BDNF or through inability of the receptor to transduce signals in the presence of ethanol. In contrast, recent studies implicate region-specific up-regulation of BDNF and associated signaling pathways in anxiety, addiction and homeostasis after ethanol exposure. Anxiety and depression are precipitating factors for substance abuse and these disorders also involve region-specific changes in BDNF in both pathogenesis and response to pharmacotherapy. Polymorphisms in the genes coding for BDNF and its receptor TrkB are linked to affective, substance abuse and appetitive disorders and therefore may play a role in the development of alcoholism. This review summarizes historical and pre-clinical data on BDNF and TrkB as it relates to ethanol toxicity and addiction. Many unresolved questions about region-specific changes in BDNF expression and the precise role of BDNF in neuropsychiatric disorders and addiction remain to be elucidated. Resolution of these questions will require significant integration of the literature on addiction and comorbid psychiatric disorders that contribute to the development of alcoholism. PMID:18394710

  1. Brain-Derived Neurotrophic Factor (BDNF) in Traumatic Brain Injury-Related Mortality: Interrelationships Between Genetics and Acute Systemic and Central Nervous System BDNF Profiles.

    PubMed

    Failla, Michelle D; Conley, Yvette P; Wagner, Amy K

    2016-01-01

    Older adults have higher mortality rates after severe traumatic brain injury (TBI) compared to younger adults. Brain-derived neurotrophic factor (BDNF) signaling is altered in aging and is important to TBI given its role in neuronal survival/plasticity and autonomic function. Following experimental TBI, acute BDNF administration has not been efficacious. Clinically, genetic variation in BDNF (reduced signaling alleles: rs6265, Met-carriers; rs7124442, C-carriers) can be protective against acute mortality. Postacutely, these genotypes carry lower mortality risk in older adults and greater mortality risk among younger adults. Investigate BDNF levels in mortality/outcome following severe TBI in the context of age and genetic risk. Cerebrospinal fluid (CSF) and serum BDNF were assessed prospectively during the first week following severe TBI (n = 203) and in controls (n = 10). Age, BDNF genotype, and BDNF levels were assessed as mortality/outcome predictors. CSF BDNF levels tended to be higher post-TBI (P = .061) versus controls and were associated with time until death (P = .042). In contrast, serum BDNF levels were reduced post-TBI versus controls (P < .0001). Both gene * BDNF serum and gene * age interactions were mortality predictors post-TBI in the same multivariate model. CSF and serum BDNF tended to be negatively correlated post-TBI (P = .07). BDNF levels predicted mortality, in addition to gene * age interactions, suggesting levels capture additional mortality risk. Higher CSF BDNF post-TBI may be detrimental due to injury and age-related increases in pro-apoptotic BDNF target receptors. Negative CSF and serum BDNF correlations post-TBI suggest blood-brain barrier transit alterations. Understanding BDNF signaling in neuronal survival, plasticity, and autonomic function may inform treatment. © The Author(s) 2015.

  2. Chronic unpredictable stress decreases expression of brain-derived neurotrophic factor (BDNF) in mouse ovaries: relationship to oocytes developmental potential.

    PubMed

    Wu, Li-Min; Hu, Mei-Hong; Tong, Xian-Hong; Han, Hui; Shen, Ni; Jin, Ren-Tao; Wang, Wei; Zhou, Gui-Xiang; He, Guo-Ping; Liu, Yu-Sheng

    2012-01-01

    Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn't affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.

  3. Chronic Unpredictable Stress Decreases Expression of Brain-Derived Neurotrophic Factor (BDNF) in Mouse Ovaries: Relationship to Oocytes Developmental Potential

    PubMed Central

    Tong, Xian-Hong; Han, Hui; Shen, Ni; Jin, Ren-Tao; Wang, Wei; Zhou, Gui-Xiang; He, Guo-Ping; Liu, Yu-Sheng

    2012-01-01

    Background Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. Methods Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. Results Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn’t affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. Conclusion BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress. PMID:23284991

  4. Brain-derived Neurotrophic Factor (BDNF)-TrkB Signaling in Inflammation-related Depression and Potential Therapeutic Targets

    PubMed Central

    Zhang, Ji-chun; Yao, Wei; Hashimoto, Kenji

    2016-01-01

    Depression is the most prevalent and among the most debilitating of psychiatric disorders. The precise neurobiology of this illness is unknown. Several lines of evidence suggest that peripheral and central inflammation plays a role in depressive symptoms, and that anti-inflammatory drugs can improve depressive symptoms in patients with inflammation-related depression. Signaling via brain-derived neurotrophic factor (BDNF) and its receptor, tropomycin receptor kinase B (TrkB) plays a key role in the pathophysiology of depression and in the therapeutic mechanisms of antidepressants. A recent paper showed that lipopolysaccharide (LPS)-induced inflammation gave rise to depression-like phenotype by altering BDNF-TrkB signaling in the prefrontal cortex, hippocampus, and nucleus accumbens, areas thought to be involved in the antidepressant effects of TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF) and TrkB antagonist, ANA-12. Here we provide an overview of the tryptophan-kynurenine pathway and BDNF-TrkB signaling in the pathophysiology of inflammation-induced depression, and propose mechanistic actions for potential therapeutic agents. Additionally, the authors discuss the putative role of TrkB agonists and antagonists as novel therapeutic drugs for inflammation-related depression. PMID:26786147

  5. Blockade of the spinal BDNF-activated JNK pathway prevents the development of antiretroviral-induced neuropathic pain.

    PubMed

    Sanna, Maria Domenica; Ghelardini, Carla; Galeotti, Nicoletta

    2016-06-01

    Although antiretroviral agents have been used successfully in suppressing viral production, they have also been associated with a number of side effects. The antiretroviral toxic neuropathy induces debilitating and extremely difficult to treat pain syndromes that often lead to discontinuation of antiretroviral therapy. Due to the critical need for the identification of novel therapeutic targets to improve antiretroviral neuropathic pain management, we investigated the role of the JNK signalling pathway in the mechanism of antiretroviral painful neuropathy. Mice were exposed to zalcitabine (2',3'-dideoxycytidine, ddC) and stavudine (2',3'-didehydro-3'-deoxythymidine, d4T) that induced a persistent mechanical allodynia and a transient cold allodynia. Treatment with the JNK blocker SP600125 before antiretroviral administration abolished mechanical hypersensitivity with no effect on thermal response. A robust spinal JNK overphosphorylation was observed on post-injection day 1 and 3, along with a JNK-dependent increase in p-c-Jun and ATF3 protein levels. Co-immunoprecipitation experiments showed the presence of a heterodimeric complex between ATF3 and c-Jun indicating that these transcription factors can act together to regulate transcription through heterodimerization. A rise in BDNF and caspase-3 protein levels was detected on day 1 and BDNF sequestration prevented both caspase-3 and p-JNK increase. These data suggest that BDNF plays a role in the early stages of ddC-induced allodynia by promoting apoptotic events and the activation of a hypernociceptive JNK-mediated pathway. We illustrated the activation of a BDNF-mediated JNK pathway involved in the early events responsible for the promotion of neuropathic pain, leading to a better knowledge of the mechanisms involved in the antiretroviral neuropathy. JNK blockade prevents antiretroviral-induced pain hypersensitivity. This may represent a potential prophylactic treatment of neuropathic pain to improve antiretroviral

  6. Effects of BDNF polymorphisms on antidepressant action.

    PubMed

    Tsai, Shih-Jen; Hong, Chen-Jee; Liou, Ying-Jay

    2010-12-01

    Evidence suggests that the down-regulation of the signaling pathway involving brain-derived neurotrophic factor (BDNF), a molecular element known to regulate neuronal plasticity and survival, plays an important role in the pathogenesis of major depression. The restoration of BDNF activity induced by antidepressant treatment has been implicated in the antidepressant therapeutic mechanism. Because there is variability among patients with major depressive disorder in terms of response to antidepressant treatment and since genetic factors may contribute to this inter-individual variability in antidepressant response, pharmacogenetic studies have tested the associations between genetic polymorphisms in candidate genes related to antidepressant therapeutic action. In human BDNF gene, there is a common functional polymorphism (Val66Met) in the pro-region of BDNF, which affects the intracellular trafficking of proBDNF. Because of the potentially important role of BDNF in the antidepressant mechanism, many pharmacogenetic studies have tested the association between this polymorphism and the antidepressant therapeutic response, but they have produced inconsistent results. A recent meta-analysis of eight studies, which included data from 1,115 subjects, suggested that the Val/Met carriers have increased antidepressant response in comparison to Val/Val homozygotes, particularly in the Asian population. The positive molecular heterosis effect (subjects heterozygous for a specific genetic polymorphism show a significantly greater effect) is compatible with animal studies showing that, although BDNF exerts an antidepressant effect, too much BDNF may have a detrimental effect on mood. Several recommendations are proposed for future antidepressant pharmacogenetic studies of BDNF, including the consideration of multiple polymorphisms and a haplotype approach, gene-gene interaction, a single antidepressant regimen, controlling for age and gender interactions, and pharmacogenetic

  7. Serum Brain-derived neurotrophic factor (BDNF): the severity and symptomatic dimensions of depression.

    PubMed

    Jevtović, Saša; Karlović, Dalibor; Mihaljević-Peleš, Alma; Šerić, Vesna; Vrkić, Nada; Jakšić, Nenad

    2011-12-01

    The aim of this study was to compare the concentration of serum Brain-derived neurotrophic factor (BDNF) in patients suffering from major depressive disorder (MDD) considering the severity of MDD episode defined by the Hamilton rating scale for depression (HAMD-17). The other aim was to research the connection between serum BDNF and the symptomatic dimensions of MDD. The study includes 139 participants with major depressive disorder (MDD). Diagnosis of MDD was set by DSM-IV-TR criteria. The severity of MDD was estimated with HAM-D-17 in the manner that mild episode was diagnosed if the score on HAMD-17 was up to 18, moderately severe 18-25 and severe over 25. Concentration of BDNF was determined by the ELISA method. This research could not find a difference in BDNF concentration considering the severity of the depressive disorder in groups suffering from mild, moderately severe and severe episodes of MDD (F=1.816; p=0.169). Factor analysis of HAMD-17 extracted four dimensions of depressive symptoms. None of the symptomatic dimensions was significantly related to BDNF concentration. Results of this study indicate that serum BDNF levels are not related to the severity of depression and its specific symptomatic dimensions. These findings support the idea of a complex relationship between BDNF concentration at the periphery and in the CNS.

  8. Brain-derived Neurotrophic Factor (BDNF) and gray matter volume in bipolar disorder.

    PubMed

    Poletti, S; Aggio, V; Hoogenboezem, T A; Ambrée, O; de Wit, H; Wijkhuijs, A J M; Locatelli, C; Colombo, C; Arolt, V; Drexhage, H A; Benedetti, F

    2017-02-01

    Bipolar Disorder (BD) is a severe psychiatric condition characterized by grey matter (GM) volumes reduction. Neurotrophic factors have been suggested to play a role in the neuroprogressive changes during the illness course. In particular peripheral brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker related to disease activity and neuroprogression in BD. The aim of our study was to investigate if serum levels of BDNF are associated with GM volumes in BD patients and healthy controls (HC). We studied 36 inpatients affected by a major depressive episode in course of BD type I and 17 HC. Analysis of variance was performed to investigate the effect of diagnosis on GM volumes in the whole brain. Threshold for significance was P<0.05, Family Wise Error (FWE) corrected for multiple comparisons. All the analyses were controlled for the effect of nuisance covariates known to influence GM volumes, such as age, gender and lithium treatment. BD patients showed significantly higher serum BDNF levels compared with HC. Reduced GM volumes in BD patients compared to HC were observed in several brain areas, encompassing the caudate head, superior temporal gyrus, insula, fusiform gyrus, parahippocampal gyrus, and anterior cingulate cortex. The interaction analysis between BDNF levels and diagnosis showed a significant effect in the middle frontal gyrus. HC reported higher BDNF levels associated with higher GM volumes, whereas no association between BDNF and GM volumes was observed in BD. Our study seems to suggest that although the production of BDNF is increased in BD possibly to prevent and repair neural damage, its effects could be hampered by underlying neuroinflammatory processes interfering with the neurodevelopmental role of BDNF. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Manipulation of BDNF signaling modifies the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex.

    PubMed

    Anomal, Renata; de Villers-Sidani, Etienne; Merzenich, Michael M; Panizzutti, Rogerio

    2013-01-01

    Sensory experience powerfully shapes cortical sensory representations during an early developmental "critical period" of plasticity. In the rat primary auditory cortex (A1), the experience-dependent plasticity is exemplified by significant, long-lasting distortions in frequency representation after mere exposure to repetitive frequencies during the second week of life. In the visual system, the normal unfolding of critical period plasticity is strongly dependent on the elaboration of brain-derived neurotrophic factor (BDNF), which promotes the establishment of inhibition. Here, we tested the hypothesis that BDNF signaling plays a role in the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex. Elvax resin implants filled with either a blocking antibody against BDNF or the BDNF protein were placed on the A1 of rat pups throughout the critical period window. These pups were then exposed to 7 kHz pure tone for 7 consecutive days and their frequency representations were mapped. BDNF blockade completely prevented the shaping of cortical tuning by experience and resulted in poor overall frequency tuning in A1. By contrast, BDNF infusion on the developing A1 amplified the effect of 7 kHz tone exposure compared to control. These results indicate that BDNF signaling participates in the experience-dependent plasticity induced by pure tone exposure during the critical period in A1.

  10. Effect of brain-derived neurotrophic factor (BDNF) on hepatocyte metabolism.

    PubMed

    Genzer, Yoni; Chapnik, Nava; Froy, Oren

    2017-07-01

    Brain-derived neurotrophic factor (BDNF) plays crucial roles in the development, maintenance, plasticity and homeostasis of the central and peripheral nervous systems. Perturbing BDNF signaling in mouse brain results in hyperphagia, obesity, hyperinsulinemia and hyperglycemia. Currently, little is known whether BDNF affects liver tissue directly. Our aim was to determine the metabolic signaling pathways activated after BDNF treatment in hepatocytes. Unlike its effect in the brain, BDNF did not lead to activation of the liver AKT pathway. However, AMP protein activated kinase (AMPK) was ∼3 times more active and fatty acid synthase (FAS) ∼2-fold less active, suggesting increased fatty acid oxidation and reduced fatty acid synthesis. In addition, cAMP response element binding protein (CREB) was ∼3.5-fold less active together with its output the gluconeogenic transcript phosphoenolpyruvate carboxykinase (Pepck), suggesting reduced gluconeogenesis. The levels of glycogen synthase kinase 3b (GSK3b) was ∼3-fold higher suggesting increased glycogen synthesis. In parallel, the expression levels of the clock genes Bmal1 and Cry1, whose protein products play also a metabolic role, were ∼2-fold increased and decreased, respectively. In conclusion, BDNF binding to hepatocytes leads to activation of catabolic pathways, such as fatty acid oxidation. In parallel gluconeogenesis is inhibited, while glycogen storage is triggered. This metabolic state mimics that of after breakfast, in which the liver continues to oxidize fat, stops gluconeogenesis and replenishes glycogen stores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Role of Hypoxia-Induced Brain Derived Neurotrophic Factor in Human Pulmonary Artery Smooth Muscle

    PubMed Central

    Hartman, William; Helan, Martin; Smelter, Dan; Sathish, Venkatachalem; Thompson, Michael; Pabelick, Christina M.; Johnson, Bruce; Prakash, Y. S.

    2015-01-01

    Background Hypoxia effects on pulmonary artery structure and function are key to diseases such as pulmonary hypertension. Recent studies suggest that growth factors called neurotrophins, particularly brain-derived neurotrophic factor (BDNF), can influence lung structure and function, and their role in the pulmonary artery warrants further investigation. In this study, we examined the effect of hypoxia on BDNF in humans, and the influence of hypoxia-enhanced BDNF expression and signaling in human pulmonary artery smooth muscle cells (PASMCs). Methods and Results 48h of 1% hypoxia enhanced BDNF and TrkB expression, as well as release of BDNF. In arteries of patients with pulmonary hypertension, BDNF expression and release was higher at baseline. In isolated PASMCs, hypoxia-induced BDNF increased intracellular Ca2+ responses to serotonin: an effect altered by HIF1α inhibition or by neutralization of extracellular BDNF via chimeric TrkB-Fc. Enhanced BDNF/TrkB signaling increased PASMC survival and proliferation, and decreased apoptosis following hypoxia. Conclusions Enhanced expression and signaling of the BDNF-TrkB system in PASMCs is a potential mechanism by which hypoxia can promote changes in pulmonary artery structure and function. Accordingly, the BDNF-TrkB system could be a key player in the pathogenesis of hypoxia-induced pulmonary vascular diseases, and thus a potential target for therapy. PMID:26192455

  12. Elevated Serum Brain-Derived Neurotrophic Factor (BDNF) but not BDNF Gene Val66Met Polymorphism Is Associated with Autism Spectrum Disorders.

    PubMed

    Meng, Wei-Dong; Sun, Shao-Jun; Yang, Jie; Chu, Rui-Xue; Tu, Wenjun; Liu, Qiang

    2017-03-01

    The aim of our study was to illuminate the potential role of brain-derived neurotrophic factor (BDNF) in autism spectrum disorder (ASD). We measured the circulating levels of BDNF in serum and BDNF gene (Val66Met) polymorphisms, in which two indicators were then compared between ASD and normal controls. A total of 82 drug-naïve ASD children and 82 age- and gender-matched normal controls were enrolled in the study. Their serum BDNF levels were detected by the ELISA. BDNF Val66Met polymorphism genotyping was conducted as according to the laboratory's standard protocol in laboratory. The ASD severity assessment was mainly determined by the score of the Childhood Autism Rating Scale (CARS). ELISA assay showed that the mean serum BDNF level of children with ASD was significantly (P < 0.0001) higher than that of the control cases (17.75 ± 5.43 vs. 11.49 ± 2.85 ng/ml; t = 9.236). Besides, the serum BDNF levels and CARS scores (P < 0.0001) were positively related. And, the BDNF genotyping results showed that there was no difference between the ASD cases and the control. Among the children with ASD, the mean serum BDNF level of Met/Met group was lower than other groups. According to the ROC curve generated from our clinical data, the optimal cutoff value of serum BDNF levels, an indicator for diagnosis of ASD, was projected to be 12.50 ng/ml. Thus, it yielded a corresponding sensitivity of 81.7 % and the specificity of 66.9 %. Accordingly, area value under the curve was 0.836 (95 % CI, 0.774-0.897); the positive predictive value (PPV) and the negative predictive value (NPV) were 70.1 and 79.1 %, respectively. These results suggested that rather than Val66Met polymorphism, BDNF was more possible to impact the pathogenesis of ASD.

  13. Spirulina maxima extract prevents cell death through BDNF activation against amyloid beta 1-42 (Aβ1-42) induced neurotoxicity in PC12 cells.

    PubMed

    Koh, Eun-Jeong; Kim, Kui-Jin; Choi, Jia; Kang, Do-Hyung; Lee, Boo-Yong

    2018-04-23

    Spirulina maxima is a blue-green micro alga that contains abundant amounts of proteins (60-70%), vitamins, chlorophyll a, and C-phycocyanin (C-PC). It has been shown to reduce oxidative stress, and prevent diabetes and non-alcoholic fatty liver disease. However, it is unclear whether Spirulina maxima 70% ethanol extract (SM70EE), chlorophyll a, and C-PC prevent Aβ 1-42 -induced neurotoxicity in PC12 cells. The aim of this study was to investigate whether SM70EE, chlorophyll a, and C-PC prevent Aβ 1-42 -induced cell death. SM70EE, chlorophyll a, and C-PC suppressed the Aβ 1-42 -induced increase in poly-ADP ribose polymerase-1 (PARP-1) cleavage and reduced Aβ 1-42 -induced decreases in glutathione and its associated factors. The level of brain-derived neurotrophic factor (BDNF), which plays a critical role in neuronal survival and neuroprotection, was increased by SM70EE, chlorophyll a, and C-PC in Aβ 1-42 -treated cells. SM70EE treatment decreased oxidative stress and cell death in response to Aβ 1-42 treatment, while simultaneously suppressing PARP cleavage and increasing the levels of glutathione (GSH) and its associated factors. Moreover, SM70EE lowered the levels of APP and BACE1, two major factors involved in APP processing, and increased BDNF expression during Aβ 1-42 -induced neurotoxicity in PC12 cells. We suggest that SM70EE prevents cell death caused by Aβ 1-42 -induced neurotoxicity via the activation of BDNF signaling. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Stimulation of Synthesis and Release of Brain-Derived Neurotropic Factor (BDNF) from Intestinal Smooth Muscle Cells by Substance P and Pituitary Adenylate Cyclase-Activating Peptide (PACAP)

    PubMed Central

    Al-Qudah, M.; Alkahtani, R.; Akbarali, H.I.; Murthy, K.S.; Grider, J.R.

    2015-01-01

    Background Brain-derived neurotrophic factor (BDNF) is a neurotrophin present in the intestine where it participates in survival and growth of enteric neurons, augmentation of enteric circuits, and stimulation of intestinal peristalsis and propulsion. Previous studies largely focused on the role of neural and mucosal BDNF. The expression and release of BDNF from intestinal smooth muscle and the interaction with enteric neuropeptides has not been studied in gut. Methods The expression and secretion of BDNF from smooth muscle cultured from rabbit longitudinal intestinal muscle in response to substance P and pituitary adenylate cyclase activating peptide (PACAP) was measured by western blot and ELISA. BDNF mRNA was measured by rt-PCR. Key Results The expression of BNDF protein and mRNA was greater in smooth muscle cells from the longitudinal muscle than from circular muscle layer. PACAP and substance P increased the expression of BDNF protein and mRNA in cultured longitudinal smooth muscle cells. PACAP and substance P also stimulated the secretion of BDNF from cultured longitudinal smooth muscle cells. Chelation of intracellular calcium with BAPTA prevented substance P-induced increase in BDNF mRNA and protein expression as well as substance P-induced secretion of BDNF. Conclusions & Inferences Neuropeptides known to be present in enteric neurons innervating the longitudinal layer increase the expression of BDNF mRNA and protein in smooth muscle cells and stimulate the release of BDNF. Considering the ability of BDNF to enhance smooth muscle contraction, this autocrine loop may partially explain the characteristic hypercontractility of longitudinal muscle in inflammatory bowel disease. PMID:26088546

  15. The interplay between ventro striatal BDNF levels and the effects of valproic acid on the acquisition of ethanol-induced conditioned place preference in mice.

    PubMed

    Dos Santos, Manuel Alves; Escudeiro, Sarah Sousa; Vasconcelos, Germana Silva; Matos, Natália Castelo Branco; de Souza, Marcos Romário Matos; Patrocínio, Manoel Cláudio Azevedo; Dantas, Leonardo Pimentel; Macêdo, Danielle; Vasconcelos, Silvânia Maria Mendes

    2017-11-01

    Alcohol addiction is a chronic, relapsing and progressive brain disease with serious consequences for health. Compulsive use of alcohol is associated with the capacity to change brain structures involved with the reward pathway, such as ventral striatum. Recent evidence suggests a role of chromatin remodeling in the pathophysiology of alcohol dependence and addictive-like behaviors. In addition, neuroadaptive changes mediated by the brain-derived neurotrophic factor (BDNF) seems to be an interesting pharmacological target for alcoholism treatment. In the present study, we evaluated the effects of the deacetylase inhibitor valproic acid (VPA) (300mg/kg) on the conditioned rewarding effects of ethanol using conditioned place preference (CPP) (15% v/v; 2g/kg). Ethanol rewarding effect was investigated using a biased protocol of CPP. BDNF levels were measured in the ventral striatum. Ethanol administration induced CPP. VPA pretreatment did not reduce ethanol-CPP acquisition. VPA pretreatment increased BDNF levels when compared to ethanol induced-CPP. VPA pretreatment increased BDNF levels even in saline conditioned mice. Taken together, our results indicate a modulatory effect of VPA on the BDNF levels in the ventral striatum. Overall, this study brings initial insights into the involvement of neurotrophic mechanisms in the ventral striatum in ethanol-induced addictive-like behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Comparison of the influence of two models of mild stress on hippocampal brain-derived neurotrophin factor (BDNF) immunoreactivity in old age rats.

    PubMed

    Badowska-Szalewska, Ewa; Ludkiewicz, Beata; Krawczyk, Rafał; Melka, Natalia; Moryś, Janusz

    2017-01-01

    The way hippocampal neurons function during stress in old age (critical times of life) is dependent on brain derived neurotrophin factor (BDNF). This study examined the influence of acute and chronic forced swim (FS) or high-light open field (HL‑OF) stimulation on the density of BDNF immunoreactive (ir) neurons in the hippocampal pyramidal layers of CA1, CA2, CA3 regions and the granular layer of dentate gyrus (DG) in old (postnatal day 720; P720) Wistar Han rats. Our data showed that in comparison with non-stressed rats, acute FS caused a significant increase in the density of BDNF-ir neurons in CA2 and CA3, while acute HL-OF led to an increase in this factor in all hippocampal subfields with the exception of DG. However, the density of BDNF-ir cells remained unchanged after exposure to chronic FS or HL‑OF in the hippocampal regions in relation to the control rats. These results indicate that acute FS or HL-OF proved to be a stressor that induces an increase in the density of BDNF-ir pyramidal neurons, which was probably connected with up-regulation of HPA axis activity and short‑time memory processing of the stressful situation. Moreover, as far as the influence on BDNF-ir cells in hippocampus is concerned, chronic FS or HL-OF was not an aggravating factor for rats in the ontogenetic periods studied.

  17. Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats.

    PubMed

    Chao, Yu-Chieh; Xie, Fang; Li, Xueyang; Guo, Ruijuan; Yang, Ning; Zhang, Chen; Shi, Rong; Guan, Yun; Yue, Yun; Wang, Yun

    2016-07-01

    Repeated administration of morphine may result in opioid-induced hypersensitivity (OIH), which involves altered expression of numerous genes, including brain-derived neurotrophic factor (BDNF) in dorsal root ganglion (DRG) neurons. Yet, it remains unclear how BDNF expression is increased in DRG neurons after repeated morphine treatment. DNA methylation is an important mechanism of epigenetic control of gene expression. In the current study, we hypothesized that the demethylation regulation of certain BDNF gene promoters in DRG neurons may contribute to the development of OIH. Real-time RT-PCR was used to assess changes in the mRNA transcription levels of major BDNF exons including exon I, II, IV, VI, as well as total BDNF mRNA in DRGs from rats after repeated morphine administration. The levels of exon IV and total BDNF mRNA were significantly upregulated by repeated morphine administration, as compared to that in saline control group. Further, ELISA array and immunocytochemistry study revealed a robust upregulation of BDNF protein expression in DRG neurons after repeated morphine exposure. Correspondingly, the methylation levels of BDNF exon IV promoter showed a significant downregulation by morphine treatment. Importantly, intrathecal administration of a BDNF antibody, but not control IgG, significantly inhibited mechanical hypersensitivity that developed in rats after repeated morphine treatment. Conversely, intrathecal administration of an inhibitor of DNA methylation, 5-aza-2'-deoxycytidine (5-aza-dC) markedly upregulated the BDNF protein expression in DRG neurons and enhanced the mechanical allodynia after repeated morphine exposure. Together, our findings suggest that demethylation regulation of BDNF gene promoter may be implicated in the development of OIH through epigenetic control of BDNF expression in DRG neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Serum and plasma brain-derived neurotrophic factor (BDNF) in abstinent alcoholics and social drinkers

    PubMed Central

    D’Sa, Carrol; Dileone, Ralph J.; Anderson, George M.; Sinha, Rajita

    2013-01-01

    Although the effects of alcohol on brain-derived neurotrophic factor (BDNF) have been extensively studied in rodents, BDNF levels have rarely been measured in abstinent, alcohol-dependent (AD) individuals. Interpretation of reported group comparisons of serum BDNF levels is difficult due to limited information regarding analytical variance, biological variability, and the relative contribution of platelet and plasma pools to serum BDNF. Analytical variance (intra- and inter-assay coefficients of variation) of the enzyme-linked immunosorbent assay (ELISA) was characterized. Within- and between-subject variability, and group differences in serum and plasma BDNF, was assessed on three separate days in 16, 4-week abstinent AD individuals (7M/9F) and 16 social drinkers (SDs; 8M/8F). Significantly higher mean (±sd) serum BDNF levels were observed for the AD group compared to the SD (p = 0.003). No significant difference in mean baseline plasma BDNF levels was observed between AD and SD groups. The low analytical variance, high day-to-day within-individual stability and the high degree of individuality demonstrates the potential clinical utility of measuring serum BDNF levels. The low correlations that we observed between plasma and serum levels are congruent with their representing separate pools of BDNF. The observation of higher basal serum BDNF in the AD group without a concomitant elevation in plasma BDNF levels indicates that the elevated serum BDNF in AD patients is not due to greater BDNF exposure. Further research is warranted to fully elucidate mechanisms underlying this alteration and determine the utility of serum BDNF as a predictor or surrogate marker of chronic alcohol abuse. PMID:22364688

  19. Evidence of associations between brain-derived neurotrophic factor (BDNF) serum levels and gene polymorphisms with tinnitus.

    PubMed

    Coskunoglu, Aysun; Orenay-Boyacioglu, Seda; Deveci, Artuner; Bayam, Mustafa; Onur, Ece; Onan, Arzu; Cam, Fethi S

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) gene polymorphisms are associated with abnormalities in regulation of BDNF secretion. Studies also linked BDNF polymorphisms with changes in brainstem auditory-evoked response test results. Furthermore, BDNF levels are reduced in tinnitus, psychiatric disorders, depression, dysthymic disorder that may be associated with stress, conversion disorder, and suicide attempts due to crises of life. For this purpose, we investigated whether there is any role of BDNF changes in the pathophysiology of tinnitus. In this study, we examined the possible effects of BDNF variants in individuals diagnosed with tinnitus for more than 3 months. Fifty-two tinnitus subjects between the ages of 18 and 55, and 42 years healthy control subjects in the same age group, who were free of any otorhinolaryngology and systemic disease, were selected for examination. The intensity of tinnitus and depression was measured using the tinnitus handicap inventory, and the differential diagnosis of psychiatric diagnoses made using the Structured Clinical Interview for Fourth Edition of Mental Disorders. BDNF gene polymorphism was analyzed in the genomic deoxyribonucleic acid (DNA) samples extracted from the venous blood, and the serum levels of BDNF were measured. One-way analysis of variance and Chi-squared tests were applied. Serum BDNF level was found lower in the tinnitus patients than controls, and it appeared that there is no correlation between BDNF gene polymorphism and tinnitus. This study suggests neurotrophic factors such as BDNF may have a role in tinnitus etiology. Future studies with larger sample size may be required to further confirm our results.

  20. Evidence of associations between brain-derived neurotrophic factor (BDNF) serum levels and gene polymorphisms with tinnitus

    PubMed Central

    Coskunoglu, Aysun; Orenay-Boyacioglu, Seda; Deveci, Artuner; Bayam, Mustafa; Onur, Ece; Onan, Arzu; Cam, Fethi S.

    2017-01-01

    Background: Brain-derived neurotrophic factor (BDNF) gene polymorphisms are associated with abnormalities in regulation of BDNF secretion. Studies also linked BDNF polymorphisms with changes in brainstem auditory-evoked response test results. Furthermore, BDNF levels are reduced in tinnitus, psychiatric disorders, depression, dysthymic disorder that may be associated with stress, conversion disorder, and suicide attempts due to crises of life. For this purpose, we investigated whether there is any role of BDNF changes in the pathophysiology of tinnitus. Materials and Methods: In this study, we examined the possible effects of BDNF variants in individuals diagnosed with tinnitus for more than 3 months. Fifty-two tinnitus subjects between the ages of 18 and 55, and 42 years healthy control subjects in the same age group, who were free of any otorhinolaryngology and systemic disease, were selected for examination. The intensity of tinnitus and depression was measured using the tinnitus handicap inventory, and the differential diagnosis of psychiatric diagnoses made using the Structured Clinical Interview for Fourth Edition of Mental Disorders. BDNF gene polymorphism was analyzed in the genomic deoxyribonucleic acid (DNA) samples extracted from the venous blood, and the serum levels of BDNF were measured. One-way analysis of variance and Chi-squared tests were applied. Results: Serum BDNF level was found lower in the tinnitus patients than controls, and it appeared that there is no correlation between BDNF gene polymorphism and tinnitus. Conclusions: This study suggests neurotrophic factors such as BDNF may have a role in tinnitus etiology. Future studies with larger sample size may be required to further confirm our results. PMID:28615544

  1. Multiple faces of BDNF in cocaine addiction

    PubMed Central

    Li, Xuan; Wolf, Marina E.

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to play roles in many types of plasticity including drug addiction. Here we focus on rodent studies over the past two decades that have demonstrated diverse roles of BDNF in models of cocaine addiction. First, we will provide an overview of studies showing that cocaine exposure alters (and generally increases) BDNF levels in reward-related regions including the ventral tegmental area, nucleus accumbens, prefrontal cortex, and amygdala. Then we will review evidence that BDNF contributes to behavioral changes in animal models of cocaine addiction, focusing on conditioned place preference, behavioral sensitization, maintenance and reinstatement of self-administration, and incubation of cocaine craving. Last, we will review the role of BDNF in synaptic plasticity, particularly as it relates to plasticity of AMPA receptor transmission after cocaine exposure. We conclude that BDNF regulates cocaine-induced behaviors in a highly complex manner that varies depending on the brain region (and even among different cell types within the same brain region), the nature of cocaine exposure, and the “addiction phase” examined (e.g., acquisition vs maintenance; early vs late withdrawal). These complexities make BDNF a daunting therapeutic target for treating cocaine addiction. However, recent clinical evidence suggests that the serum BDNF level may serve as a biomarker in cocaine addicts to predict future relapse, providing an alternative direction for exploring BDNF’s potential relevance to treating cocaine addiction. PMID:25449839

  2. Ketamine induces brain-derived neurotrophic factor expression via phosphorylation of histone deacetylase 5 in rats.

    PubMed

    Choi, Miyeon; Lee, Seung Hoon; Park, Min Hyeop; Kim, Yong-Seok; Son, Hyeon

    2017-08-05

    Ketamine shows promise as a therapeutic agent for the treatment of depression. The increased expression of brain-derived neurotrophic factor (BDNF) has been associated with the antidepressant-like effects of ketamine, but the mechanism of BDNF induction is not well understood. In the current study, we demonstrate that the treatment of rats with ketamine results in the dose-dependent rapid upregulation of Bdnf promoter IV activity and expression of Bdnf exon IV mRNAs in rat hippocampal neurons. Transfection of histone deacetylase 5 (HDAC5) into rat hippocampal neurons similarly induces Bdnf mRNA expression in response to ketamine, whereas transfection of a HDAC5 phosphorylation-defective mutant (Ser259 and Ser498 replaced by Ala259 and Ala498), results in the suppression of ketamine-mediated BDNF promoter IV transcriptional activity. Viral-mediated hippocampal knockdown of HDAC5 induces Bdnf mRNA and protein expression, and blocks the enhancing effects of ketamine on BDNF expression in both unstressed and stressed rats, and thereby providing evidence for the role of HDAC5 in the regulation of Bdnf expression. Taken together, our findings implicate HDAC5 in the ketamine-induced transcriptional regulation of Bdnf, and suggest that the phosphorylation of HDAC5 regulates the therapeutic actions of ketamine. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons

    PubMed Central

    Andreska, Thomas; Aufmkolk, Sarah; Sauer, Markus; Blum, Robert

    2014-01-01

    In the mammalian brain, the neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a key factor for synaptic refinement, plasticity and learning. Although BDNF-induced signaling cascades are well known, the spatial aspects of the synaptic BDNF localization remained unclear. Recent data provide strong evidence for an exclusive presynaptic location and anterograde secretion of endogenous BDNF at synapses of the hippocampal circuit. In contrast, various studies using BDNF overexpression in cultured hippocampal neurons support the idea that postsynaptic elements and other dendritic structures are the preferential sites of BDNF localization and release. In this study we used rigorously tested anti-BDNF antibodies and achieved a dense labeling of endogenous BDNF close to synapses. Confocal microscopy showed natural BDNF close to many, but not all glutamatergic synapses, while neither GABAergic synapses nor postsynaptic structures carried a typical synaptic BDNF label. To visualize the BDNF distribution within the fine structure of synapses, we implemented super resolution fluorescence imaging by direct stochastic optical reconstruction microscopy (dSTORM). Two-color dSTORM images of neurites were acquired with a spatial resolution of ~20 nm. At this resolution, the synaptic scaffold proteins Bassoon and Homer exhibit hallmarks of mature synapses and form juxtaposed bars, separated by a synaptic cleft. BDNF imaging signals form granule-like clusters with a mean size of ~60 nm and are preferentially found within the fine structure of the glutamatergic presynapse. Individual glutamatergic presynapses carried up to 90% of the synaptic BDNF immunoreactivity, and only a minor fraction of BDNF molecules was found close to the postsynaptic bars. Our data proof that hippocampal neurons are able to enrich and store high amounts of BDNF in small granules within the mature glutamatergic presynapse, at a principle site of synaptic plasticity. PMID:24782711

  4. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    PubMed

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  5. The involvement of brain-derived neurotrophic factor in 3,4-methylenedioxymethamphetamine-induced place preference and behavioral sensitization.

    PubMed

    Mouri, Akihiro; Noda, Yukihiro; Niwa, Minae; Matsumoto, Yurie; Mamiya, Takayoshi; Nitta, Atsumi; Yamada, Kiyofumi; Furukawa, Shoei; Iwamura, Tatsunori; Nabeshima, Toshitaka

    2017-06-30

    3,4-Methylenedioxymethamphetamine (MDMA) is known to induce dependence and psychosis in humans. Brain-derived neurotrophic factor (BDNF) is involved in the synaptic plasticity and neurotrophy in midbrain dopaminergic neurons. This study aimed to investigate the role of BDNF in MDMA-induced dependence and psychosis. A single dose of MDMA (10mg/kg) induced BDNF mRNA expression in the prefrontal cortex, nucleus accumbens, and amygdala, but not in the striatum or the hippocampus. However, repeated MDMA administration for 7 days induced BDNF mRNA expression in the striatum and hippocampus. Both precursor and mature BDNF protein expression increased in the nucleus accumbens, mainly in the neurons. Additionally, rapidly increased extracellular serotonin levels and gradually and modestly increased extracellular dopamine levels were noted within the nucleus accumbens of mice after repeated MDMA administration. Dopamine receptor antagonists attenuated the effect of repeated MDMA administration on BDNF mRNA expression in the nucleus accumbens. To examine the role of endogenous BDNF in the behavioral and neurochemical effects of MDMA, we used mice with heterozygous deletions of the BDNF gene. MDMA-induced place preference, behavioral sensitization, and an increase in the levels of extracellular serotonin and dopamine within the nucleus accumbens, were attenuated in BDNF heterozygous knockout mice. These results suggest that BDNF is implicated in MDMA-induced dependence and psychosis by activating the midbrain serotonergic and dopaminergic neurons. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nardostachys jatamansi Targets BDNF-TrkB to Alleviate Ketamine-Induced Schizophrenia-Like Symptoms in Rats.

    PubMed

    Janardhanan, Anjali; Sadanand, Anjana; Vanisree, Arambakkam Janardhanam

    2016-01-01

    Schizophrenia, a common neurological disorder appearing in the late teens or early adulthood, is characterized by disorganized thinking, behaviour, and perception of emotions. Aberrant N-methyl-D-aspartate (NMDA) receptor-mediated synaptic plasticity is a major pathological event here due to dysfunction of dopamine and glutamate transmission at NMDA receptors. De-regulated brain-derived neurotrophic factor (BDNF), i.e., its signalling through the tropomyosin receptor kinase B (TrkB) receptor, is a major feature of schizophrenia. With recent global awareness of traditional plant medicines in reducing side effects, the aim of our study was to evaluate the efficacy of the ethanolic root extract of a herb belonging to the Valerianacea family, Nardostachys jatamansi, against ketamine-induced schizophrenia-like model in rats. The effect of the N. jatamansi drug (oral dosage of 500 mg/kg body weight for 14 days) in ketamine-administered male Wistar albino rats (30 mg/kg body weight for 5 days) on modulating behaviour and the level of neurotransmitters like dopamine and glutamate was studied in whole-brain homogenates, and its influence on BDNF and TrkB levels in 2 relevant brain regions, the hippocampus and prefrontal cortex, was assessed. We observed that N. jatamansi treatment exhibited encouraging results in the modulation of ketamine-induced schizophrenia-like behaviours, principally the positive symptoms. Our drug both significantly upregulated the glutamate level and downregulated the dopamine level in whole-brain homogenates and retained the normal levels of BDNF (in the hippocampus but not in the prefrontal cortex) and TrkB (in both hippocampus and prefrontal cortex) induced by ketamine in rats. These findings suggest a neuroprotective effect of the ethanolic root extract of N. jatamansi against ketamine-induced schizophrenia-like symptoms in rats; possibly, regarding its effect on TrkB signalling. Further research is warranted in the treatment of schizophrenic

  7. Brain-derived neurotrophic factor (BDNF) in children with ASD and their parents: a 3-year follow-up.

    PubMed

    Francis, K; Dougali, A; Sideri, K; Kroupis, C; Vasdekis, V; Dima, K; Douzenis, A

    2018-05-01

    Several lines of evidence point to a probable relationship between brain-derived neurotrophic factor (BDNF) and autism spectrum disorder (ASD), but studies have yielded inconsistent findings on the BDNF serum level in ASD. The study aimed to assess those levels in children with ASD and their families. BDNF serum levels were measured in 45 ASD children without intellectual disability (ID) and allergies, age 30-42 months and age-matched normal controls. BDNF serum levels in the parents of the ASD subjects were compared to normal controls. BDNF serum levels in the ASD subjects were followed up for 3 years and correlated with adaptive functioning changes. BDNF serum levels were measured to be lower in children with ASD and independent of all the major baseline characteristics of the subjects. Having a child with ASD raises the BDNF levels in parents comparing to controls. Prospectively, no correlation between the change of BDNF variables in time and the change of the Vineland scores was found. Our results contradict those from recent published meta-analyses with the age, the presence of ID and allergies being possible contributing factors. The parents' data indeed point to a role of BDNF in the pathophysiology of ASD. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Brain-derived neurotrophic factor (BDNF) -TrKB signaling modulates cancer-endothelial cells interaction and affects the outcomes of triple negative breast cancer.

    PubMed

    Tsai, Yi-Fang; Tseng, Ling-Ming; Hsu, Chih-Yi; Yang, Muh-Hwa; Chiu, Jen-Hwey; Shyr, Yi-Ming

    2017-01-01

    There is good evidence that the tumor microenvironment plays an important role in cancer metastasis and progression. Our previous studies have shown that brain-derived neurotrophic factor (BDNF) participates in the process of metastasis and in the migration of cancer cells. The aim of this study was to investigate the role of BDNF on the tumor cell microenvironment, namely, the cancer cell-endothelial cell interaction of TNBC cells. We conducted oligoneucleotide microarray analysis of potential biomarkers that are able to differentiate recurrent TNBC from non-recurrent TNBC. The MDA-MB-231 and human endothelial HUVEC lines were used for this study and our approaches included functional studies, such as migration assay, as well as Western blot and real-time PCR analysis of migration and angiogenic signaling. In addition, we analyzed the survival outcome of TNBC breast cancer patients according to their expression level of BDNF using clinical samples. The results demonstrated that BDNF was able to bring about autocrinal (MDA-MB-231) and paracrinal (HUVECs) regulation of BDNF-TrkB gene expression and this affected cell migratory activity. The BDNF-induced migratory activity was blocked by inhibitors of ERK, PI3K and TrkB when MDA-MB-231 cells were examined, but only an inhibitor of ERK blocked this activity when HUVEC cells were used. Furthermore, decreased migratory activity was found for △BDNF and △TrkB cell lines. Ingenuity pathway analysis (IPA) of MDA-MB-231 cells showed that BDNF is a key factor that is able to regulate a network made up of metalloproteases and calmodulin. Protein expression levels in a tissue array of tumor slices were found to be correlated with patient prognosis and the results showed that there was significant correlation of TrkB expression, but not of BDNF. expressionwith patient DFS and OS. Our study demonstrates that up-regulation of the BDNF signaling pathway seems tobe involved in the mechanism associated with early recurrence in

  9. Effect of brain-derived neurotrophic factor (BDNF) on sperm quality of normozoospermic men.

    PubMed

    Safari, Hassan; Khanlarkhani, Neda; Sobhani, Aligholi; Najafi, Atefeh; Amidi, Fardin

    2017-07-05

    The neurotrophin family of proteins and their receptors act as important proliferative and pro-survival factors in differentiation of nerve cells and are thought to play key roles in the development of reproductive tissues and normal function of spermatozoa. The objective of the present study was to evaluate the effect of Brain-Derived Neurotrophic Factor (BDNF) on the sperm viability and motility, lipid peroxidation (LPO), mitochondrial activity and concentration of leptin, nitric oxide (NO) and insulin in normozoospermic men. Semen samples from 20 normozoospermic men were divided into three groups: (i) control, (ii) BDNF and (iii) BDNF + K252a. BDNF and K252a were added in the dose of 0.133 and 0.1 nM, respectively. Viability was assessed by eosin-nigrosin staining technique, and motility was observed by microscopy. NO concentration and mitochondrial activity were measured with flow cytometry, and LPO was analyzed using enzyme-linked immunosorbent assay (ELISA) kits. Results showed that exogenous BDNF at 0.133 nM could significantly (p < 0.05) influence viability, motility, NO concentration, mitochondrial activity and LPO content. Secretions of insulin and leptin by human sperm were increased in cells exposed to the exogenous BDNF, whereas viability, mitochondrial activity and insulin and leptin secretions were decreased in cells exposed to the K252.

  10. The role of genetic variation across IL-1β, IL-2, IL-6, and BDNF in antipsychotic-induced weight gain.

    PubMed

    Fonseka, Trehani M; Tiwari, Arun K; Gonçalves, Vanessa F; Lieberman, Jeffrey A; Meltzer, Herbert Y; Goldstein, Benjamin I; Kennedy, James L; Kennedy, Sidney H; Müller, Daniel J

    2015-01-01

    Antipsychotics with high weight gain-inducing propensities influence the expression of immune and neurotrophin genes, which have been independently related to obesity indices. Thus, we investigated whether variants in the genes encoding interleukin (IL)-1β, IL-2, and IL-6 and brain-derived neurotrophic factor (BDNF) Val66Met are associated with antipsychotic-induced weight gain (AIWG). Nineteen polymorphisms were genotyped using Taqman(®) assays in 188 schizophrenia patients on antipsychotic treatment for up to 14 weeks. Mean weight change (%) from baseline was compared across genotypic groups using analysis of covariance (ANCOVA). Epistatic effects between cytokine polymorphisms and BDNF Val66Met were tested using Model-Based Multifactor Dimensionality Reduction. In European patients, IL-1β rs16944*GA (P = 0.013, Pcorrected = 0.182), IL-1β rs1143634*G (P = 0.001, Pcorrected = 0.014), and BDNF Val66Met (Val/Val, P = 0.004, Pcorrected = 0.056) were associated with greater AIWG, as were IL-1β rs4849127*A (P = 0.049, Pcorrected = 0.784), and IL-1β rs16944*GA (P = 0.012, Pcorrected = 0.192) in African Americans. BDNF Val66Met interacted with both IL-1β rs13032029 (Val/Met+ TT, PPerm = 0.029), and IL-6 rs2069837 (Val/Val+ AA, PPerm = 0.021) in Europeans, in addition to IL-1β rs16944 (Val/Val+ GA, PPerm = 0.006) in African Americans. SNPs across IL-1β and BDNF Val66Met may influence AIWG. Replication of these findings in larger, independent samples is warranted.

  11. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats.

    PubMed

    Gong, Meng-Juan; Han, Bin; Wang, Shu-mei; Liang, Sheng-wang; Zou, Zhong-jie

    2016-05-10

    Previously published reports have revealed the antidepressant-like effects of icariin in a chronic mild stress model of depression and in a social defeat stress model in mice. However, the therapeutic effect of icariin in an animal model of glucocorticoid-induced depression remains unclear. This study aimed to investigate antidepressant-like effect and the possible mechanisms of icariin in a rat model of corticosterone (CORT)-induced depression by using a combination of behavioral and biochemical assessments and NMR-based metabonomics. The depression model was established by subcutaneous injections of CORT for 21 consecutive days in rats, as evidenced by reduced sucrose intake and hippocampal brain-derived neurotrophic factor (BDNF) levels, together with an increase in immobility time in a forced swim test (FST). Icariin significantly increased sucrose intake and hippocampal BDNF level and decreased the immobility time in FST in CORT-induced depressive rats, suggesting its potent antidepressant activity. Moreover, metabonomic analysis identified eight, five and three potential biomarkers associated with depression in serum, urine and brain tissue extract, respectively. These biomarkers are primarily involved in energy metabolism, lipid metabolism, amino acid metabolism and gut microbe metabolism. Icariin reversed the pathological process of CORT-induced depression, partially via regulation of the disturbed metabolic pathways. These results provide important mechanistic insights into the protective effects of icariin against CORT-induced depression and metabolic dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Neuropeptide Trefoil Factor 3 Reverses Depressive-Like Behaviors by Activation of BDNF-ERK-CREB Signaling in Olfactory Bulbectomized Rats.

    PubMed

    Li, Jiali; Luo, Yixiao; Zhang, Ruoxi; Shi, Haishui; Zhu, Weili; Shi, Jie

    2015-11-30

    The trefoil factors (TFFs) are a family of three polypeptides, among which TFF1 and TFF3 are widely distributed in the central nervous system. Our previous study indicated that TFF3 was a potential rapid-onset antidepressant as it reversed the depressive-like behaviors induced by acute or chronic mild stress. In order to further identify the antidepressant-like effect of TFF3, we applied an olfactory bulbectomy (OB), a classic animal model of depression, in the present study. To elucidate the mechanism underlying the antidepressant-like activity of TFF3, we tested the role of brain-derived neurotrophic factor (BDNF)-extracellular signal-related kinase (ERK)-cyclic adenosine monophosphate response element binding protein (CREB) signaling in the hippocampus in the process. Chronic systemic administration of TFF3 (0.1 mg/kg, i.p.) for seven days not only produced a significant antidepressant-like efficacy in the OB paradigm, but also restored the expression of BDNF, pERK, and pCREB in the hippocampal CA3. Inhibition of BDNF or extracellular signal-related kinase (ERK) signaling in CA3 blocked the antidepressant-like activity of TFF3 in OB rats. Our findings further confirmed the therapeutic effect of TFF3 against depression and suggested that the normalization of the BDNF-ERK-CREB pathway was involved in the behavioral response of TFF3 for the treatment of depression.

  13. Differential effects of BDNF and neurotrophin 4 (NT4) on endocytic sorting of TrkB receptors.

    PubMed

    Proenca, Catia C; Song, Minseok; Lee, Francis S

    2016-08-01

    Neurotrophins are a family of growth factors playing key roles in the survival, development, and function of neurons. The neurotrophins brain-derived neurotrophic factor (BDNF) and NT4 both bind to and activate TrkB receptors, however, they mediate distinct neuronal functions. The molecular mechanism of how TrkB activation by BDNF and NT4 leads to diverse outcomes is unknown. Here, we report that BDNF and NT4 lead to differential endocytic sorting of TrkB receptors resulting in diverse biological functions in cultured cortical neurons. Fluorescent microscopy and surface biotinylation experiments showed that both neurotrophins stimulate internalization of TrkB with similar kinetics. Exposure to BDNF for 2-3 h reduced the surface pool of TrkB receptors to half, whereas a longer treatment (4-5 h) with NT4 was necessary to achieve a similar level of down-regulation. Although BDNF and NT4 induced TrkB phosphorylation with similar intensities, BDNF induced more rapid ubiquitination and degradation of TrkB than NT4. Interestingly, TrkB receptor ubiquitination by these ligands have substantially different pH sensitivities, resulting in varying degrees of receptor ubiquitination at lower pH levels. Consequently, NT4 was capable of maintaining longer sustained downstream signaling activation that correlated with reduced TrkB ubiquitination at endosomal pH. Thus, by leading to altered endocytic trafficking itineraries for TrkB receptors, BDNF and NT4 elicit differential TrkB signaling in terms of duration, intensity, and specificity, which may contribute to their functional differences in vivo. The neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4), both bind to and activate TrkB receptors, however, they mediate distinct neuronal functions. Here, we propose that BDNF and NT4 lead to differential endocytic sorting of TrkB receptors resulting in diverse biological functions. BDNF induces more rapid ubiquitination and degradation of TrkB than NT4

  14. Effect of cigarette smoke on monocyte procoagulant activity: Focus on platelet-derived brain-derived neurotrophic factor (BDNF).

    PubMed

    Amadio, Patrizia; Baldassarre, Damiano; Sandrini, Leonardo; Weksler, Babette B; Tremoli, Elena; Barbieri, Silvia S

    2017-01-01

    Cigarette smoke (CS) activates platelets, promotes vascular dysfunction, and enhances Tissue Factor (TF) expression in blood monocytes favoring pro-thrombotic states. Brain-derived neurotrophic factor (BDNF), a member of the family of neurotrophins involved in survival, growth, and maturation of neurons, is released by activated platelets (APLTs) and plays a role in the cardiovascular system. The effect of CS on circulating levels of BDNF is controversial and the function of circulating BDNF in atherothrombosis is not fully understood. Here, we have shown that human platelets, treated with an aqueous extract of CS (CSE), released BDNF in a dose-dependent manner. In addition, incubation of human monocytes with BDNF or with the supernatant of platelets activated with CSE increased TF activity by a Tropomyosin receptor kinase B (TrkB)-dependent mechanism. Finally, comparing serum and plasma samples of 12 male never smokers (NS) and 29 male active smokers (AS) we observed a significant increase in microparticle-associated TF activity (MP-TF) as well as BDNF in AS, while in serum, BDNF behaved oppositely. Taken together these findings suggest that platelet-derived BDNF is involved in the regulation of TF activity and that CS plays a role in this pathway by favoring a pro-atherothrombotic state.

  15. Beyond good and evil: A putative continuum-sorting hypothesis for the functional role of proBDNF/BDNF-propeptide/mBDNF in antidepressant treatment.

    PubMed

    Diniz, Cassiano R A F; Casarotto, Plinio C; Resstel, Leonardo; Joca, Sâmia R L

    2018-04-04

    Depression and posttraumatic stress disorder are assumed to be maladaptive responses to stress and antidepressants are thought to counteract such responses by increasing BDNF (brain-derived neurotrophic factor) levels. BDNF acts through TrkB (tropomyosin-related receptor kinase B) and plays a central role in neuroplasticity. In contrast, both precursor proBDNF and BDNF propeptide (another metabolic product from proBDNF cleavage) have a high affinity to p75 receptor (p75R) and usually convey apoptosis and neuronal shrinkage. Although BDNF and proBDNF/propeptide apparently act in opposite ways, neuronal turnover and remodeling might be a final common way that both act to promote more effective neuronal networking, avoiding neuronal redundancy and the misleading effects of environmental contingencies. This review aims to provide a brief overview about the BDNF functional role in antidepressant action and about p75R and TrkB signaling to introduce the "continuum-sorting hypothesis." The resulting hypothesis suggests that both BDNF/proBDNF and BDNF/propeptide act as protagonists to fine-tune antidepressant-dependent neuroplasticity in crucial brain structures to modulate behavioral responses to stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Contribution of capsaicin-sensitive primary afferents to mechanical hyperalgesia induced by ventral root transection in rats: the possible role of BDNF.

    PubMed

    Li, Wei; Wang, Jian-Xiu; Zhou, Zhong-He; Lu, Yao; Li, Xiao-Qiu; Liu, Bao-Jun; Chen, Hui-Sheng

    2016-01-01

    A recent study showed that brain-derived neurotrophic factor (BDNF) may play a role in the development of the neuropathic pain resulting from injury to motor efferent fibres, such as that in the ventral root transection (VRT) model. Capsaicin stimulation of afferent fibres was also shown to result in the release of BDNF into the spinal cord. Here, the effects of ablation of capsaicin-sensitive primary afferents (CSPAs) by local application of capsaicin on the sciatic nerve on VRT-induced mechanical hyperalgesia were observed. The paw withdrawal mechanical threshold (PWMT) was measured before and then 1 and 3 days and 1, 2, 3, 4 and 6 weeks after VRT. The results showed that local application of capsaicin significantly inhibited the decrease in the PWMT induced by VRT, suggesting the inhibitory effect of locally delivered capsaicin. Furthermore, intrathecal administration of exogenous BDNF not only produced mechanical hyperalgesia but also significantly blocked the inhibitory effect of capsaicin. Taken together, the results of this study suggest that CSPA fibres may contribute to mechanical hyperalgesia in the VRT model.

  17. The lighter side of BDNF

    PubMed Central

    Noble, Emily E.; Billington, Charles J.; Kotz, Catherine M.

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) mediates energy metabolism and feeding behavior. As a neurotrophin, BDNF promotes neuronal differentiation, survival during early development, adult neurogenesis, and neural plasticity; thus, there is the potential that BDNF could modify circuits important to eating behavior and energy expenditure. The possibility that “faulty” circuits could be remodeled by BDNF is an exciting concept for new therapies for obesity and eating disorders. In the hypothalamus, BDNF and its receptor, tropomyosin-related kinase B (TrkB), are extensively expressed in areas associated with feeding and metabolism. Hypothalamic BDNF and TrkB appear to inhibit food intake and increase energy expenditure, leading to negative energy balance. In the hippocampus, the involvement of BDNF in neural plasticity and neurogenesis is important to learning and memory, but less is known about how BDNF participates in energy homeostasis. We review current research about BDNF in specific brain locations related to energy balance, environmental, and behavioral influences on BDNF expression and the possibility that BDNF may influence energy homeostasis via its role in neurogenesis and neural plasticity. PMID:21346243

  18. Performance-related increases in hippocampal N-acetylaspartate (NAA) induced by spatial navigation training are restricted to BDNF Val homozygotes.

    PubMed

    Lövdén, Martin; Schaefer, Sabine; Noack, Hannes; Kanowski, Martin; Kaufmann, Jörn; Tempelmann, Claus; Bodammer, Nils Christian; Kühn, Simone; Heinze, Hans-Jochen; Lindenberger, Ulman; Düzel, Emrah; Bäckman, Lars

    2011-06-01

    Recent evidence indicates experience-dependent brain volume changes in humans, but the functional and histological nature of such changes is unknown. Here, we report that adult men performing a cognitively demanding spatial navigation task every other day over 4 months display increases in hippocampal N-acetylaspartate (NAA) as measured with magnetic resonance spectroscopy. Unlike measures of brain volume, changes in NAA are sensitive to metabolic and functional aspects of neural and glia tissue and unlikely to reflect changes in microvasculature. Training-induced changes in NAA were, however, absent in carriers of the Met substitution in the brain-derived neurotrophic factor (BDNF) gene, which is known to reduce activity-dependent secretion of BDNF. Among BDNF Val homozygotes, increases in NAA were strongly related to the degree of practice-related improvement in navigation performance and normalized to pretraining levels 4 months after the last training session. We conclude that changes in demands on spatial navigation can alter hippocampal NAA concentrations, confirming epidemiological studies suggesting that mental experience may have direct effects on neural integrity and cognitive performance. BDNF genotype moderates these plastic changes, in line with the contention that gene-context interactions shape the ontogeny of complex phenotypes.

  19. Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression.

    PubMed

    Haile, C N; Murrough, J W; Iosifescu, D V; Chang, L C; Al Jurdi, R K; Foulkes, A; Iqbal, S; Mahoney, J J; De La Garza, R; Charney, D S; Newton, T F; Mathew, S J

    2014-02-01

    Ketamine produces rapid antidepressant effects in treatment-resistant depression (TRD), but the magnitude of response varies considerably between individual patients. Brain-derived neurotrophic factor (BDNF) has been investigated as a biomarker of treatment response in depression and has been implicated in the mechanism of action of ketamine. We evaluated plasma BDNF and associations with symptoms in 22 patients with TRD enrolled in a randomized controlled trial of ketamine compared to an anaesthetic control (midazolam). Ketamine significantly increased plasma BDNF levels in responders compared to non-responders 240 min post-infusion, and Montgomery-Åsberg Depression Rating Scale (MADRS) scores were negatively correlated with BDNF (r=-0.701, p = 0.008). Plasma BDNF levels at 240 min post-infusion were highly negatively associated with MADRS scores at 240 min (r = -0.897, p=.002), 24 h (r = -0.791, p = 0.038), 48 h (r = -0.944, p = 0.001) and 72 h (r = -0.977, p = 0.010). No associations with BDNF were found for patients receiving midazolam. These data support plasma BDNF as a peripheral biomarker relevant to ketamine antidepressant response.

  20. Use of Brevibacillus choshinensis for the production of biologically active brain-derived neurotrophic factor (BDNF).

    PubMed

    Angart, Phillip A; Carlson, Rebecca J; Thorwall, Sarah; Patrick Walton, S

    2017-07-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family critical for neuronal cell survival and differentiation, with therapeutic potential for the treatment of neurological disorders and spinal cord injuries. The production of recombinant, bioactive BDNF is not practical in most traditional microbial expression systems because of the inability of the host to correctly form the characteristic cystine-knot fold of BDNF. Here, we investigated Brevibacillus choshinensis as a suitable expression host for bioactive BDNF expression, evaluating the effects of medium type (2SY and TM), temperature (25 and 30 °C), and culture time (48-120 h). Maximal BDNF bioactivity (per unit mass) was observed in cultures grown in 2SY medium at extended times (96 h at 30 °C or >72 h at 25 °C), with resulting bioactivity comparable to that of a commercially available BDNF. For cultures grown in 2SY medium at 25 °C for 72 h, the condition that led to the greatest quantity of biologically active protein in the shortest culture time, we recovered 264 μg/L of BDNF. As with other microbial expression systems, BDNF aggregates did form in all culture conditions, indicating that while we were able to recover biologically active BDNF, further optimization of the expression system could yield still greater quantities of bioactive protein. This study provides confirmation that B. choshinensis is capable of producing biologically active BDNF and that further optimization of culture conditions could prove valuable in increasing BDNF yields.

  1. Effects of environmental enrichment on behavioral deficits and alterations in hippocampal BDNF induced by prenatal exposure to morphine in juvenile rats.

    PubMed

    Ahmadalipour, A; Sadeghzadeh, J; Vafaei, A A; Bandegi, A R; Mohammadkhani, R; Rashidy-Pour, A

    2015-10-01

    Prenatal morphine exposure throughout pregnancy can induce a series of neurobehavioral and neurochemical disturbances by affecting central nervous system development. This study was designed to investigate the effects of an enriched environment on behavioral deficits and changes in hippocampal brain-derived neurotrophic factor (BDNF) levels induced by prenatal morphine in rats. On pregnancy days 11-18, female Wistar rats were randomly injected twice daily with saline or morphine. Offspring were weaned on postnatal day (PND) 21. They were subjected to a standard rearing environment or an enriched environment on PNDs 22-50. On PNDs 51-57, the behavioral responses including anxiety and depression-like behaviors, and passive avoidance memory as well as hippocampal BDNF levels were investigated. The light/dark (L/D) box and elevated plus maze (EPM) were used for the study of anxiety, forced swimming test (FST) was used to assess depression-like behavior and passive avoidance task was used to evaluate learning and memory. Prenatal morphine exposure caused a reduction in time spent in the EPM open arms and a reduction in time spent in the lit side of the L/D box. It also decreased step-through latency and increased time spent in the dark side of passive avoidance task. Prenatal morphine exposure also reduced immobility time and increased swimming time in FST. Postnatal rearing in an enriched environment counteracted with behavioral deficits in the EPM and passive avoidance task, but not in the L/D box. This suggests that exposure to an enriched environment during adolescence period alters anxiety profile in a task-specific manner. Prenatal morphine exposure reduced hippocampal BDNF levels, but enriched environment significantly increased BDNF levels in both saline- and morphine-exposed groups. Our results demonstrate that exposure to an enriched environment alleviates behavioral deficits induced by prenatal morphine exposure and up-regulates the decreased levels of BDNF

  2. BDNF mediates improvements in executive function following a 1-year exercise intervention

    PubMed Central

    Leckie, Regina L.; Oberlin, Lauren E.; Voss, Michelle W.; Prakash, Ruchika S.; Szabo-Reed, Amanda; Chaddock-Heyman, Laura; Phillips, Siobhan M.; Gothe, Neha P.; Mailey, Emily; Vieira-Potter, Victoria J.; Martin, Stephen A.; Pence, Brandt D.; Lin, Mingkuan; Parasuraman, Raja; Greenwood, Pamela M.; Fryxell, Karl J.; Woods, Jeffrey A.; McAuley, Edward; Kramer, Arthur F.; Erickson, Kirk I.

    2014-01-01

    Executive function declines with age, but engaging in aerobic exercise may attenuate decline. One mechanism by which aerobic exercise may preserve executive function is through the up-regulation of brain-derived neurotropic factor (BDNF), which also declines with age. The present study examined BDNF as a mediator of the effects of a 1-year walking intervention on executive function in 90 older adults (mean age = 66.82). Participants were randomized to a stretching and toning control group or a moderate intensity walking intervention group. BDNF serum levels and performance on a task-switching paradigm were collected at baseline and follow-up. We found that age moderated the effect of intervention group on changes in BDNF levels, with those in the highest age quartile showing the greatest increase in BDNF after 1-year of moderate intensity walking exercise (p = 0.036). The mediation analyses revealed that BDNF mediated the effect of the intervention on task-switch accuracy, but did so as a function of age, such that exercise-induced changes in BDNF mediated the effect of exercise on task-switch performance only for individuals over the age of 71. These results demonstrate that both age and BDNF serum levels are important factors to consider when investigating the mechanisms by which exercise interventions influence cognitive outcomes, particularly in elderly populations. PMID:25566019

  3. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB

    PubMed Central

    Yu, Zi-Jiang; Yu, Yan; Xiao, Chao-Lun; Kang, Chao-Sheng; Ge, Guo; Linghu, Yan; Zhu, Jun-De; Li, Yu-Mei; Li, Qiang-Ming; Luo, Shi-Peng; Yang, Dang; Li, Lin; Zhang, Wen-Yan; Tian, Guang

    2015-01-01

    High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus. PMID:26368803

  4. Physical therapy intervention (PTI) increases plasma brain-derived neurotrophic factor (BDNF) levels in non-frail and pre-frail elderly women.

    PubMed

    Coelho, F M; Pereira, D S; Lustosa, L P; Silva, J P; Dias, J M D; Dias, R C D; Queiroz, B Z; Teixeira, A L; Teixeira, M M; Pereira, L S M

    2012-01-01

    Biomarkers are important factors in the identification of the frail elderly (higher risk of developing disease) and in assessing the impact of PTI. On the other hand, BDNF has been related to neuroprotection in a series of central nervous system diseases in older age. The levels of BDNF in groups of elderly women classified according to Fried phenotype (non-frail and pre-frail) were compared. We assessed the impact of a PTI on BDNF levels. A convenience sample of 48 elderly women was randomly selected. The PTI group was composed by 20 elderly women selected from this group. Plasma neurotrophic factors, such as BDNF, glial-derived neutrophic factor (GDNF), and nerve growth factor (NGF) were measured by enzyme-linked immunosorbent assay (ELISA). Timed-up-and-go (TUG) test, hand-grip and work/body weight were evaluated before and after the intervention. Plasma concentrations of BDNF were significantly higher in non-frail in comparison to pre-frail elderly women. After the PTI, higher levels of BDNF were found in elderly women (before 351±68 pg/ml and after 593±79 pg/ml; p<0.001). Both groups had an increase in BDNF levels after the PTI. The low levels of BDNF in pre-frail elderly women suggest that this neurotrophic factor may be a key pathophysiological mediator in the syndrome of frailty. The fact that PTI increased BDNF levels in both groups suggests that it may be possible to modify this phenotype. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Methionine increases BDNF DNA methylation and improves memory in epilepsy.

    PubMed

    Parrish, R Ryley; Buckingham, Susan C; Mascia, Katherine L; Johnson, Jarvis J; Matyjasik, Michal M; Lockhart, Roxanne M; Lubin, Farah D

    2015-04-01

    Temporal lobe epilepsy (TLE) patients exhibit signs of memory impairments even when seizures are pharmacologically controlled. Surprisingly, the underlying molecular mechanisms involved in TLE-associated memory impairments remain elusive. Memory consolidation requires epigenetic transcriptional regulation of genes in the hippocampus; therefore, we aimed to determine how epigenetic DNA methylation mechanisms affect learning-induced transcription of memory-permissive genes in the epileptic hippocampus. Using the kainate rodent model of TLE and focusing on the brain-derived neurotrophic factor (Bdnf) gene as a candidate of DNA methylation-mediated transcription, we analyzed DNA methylation levels in epileptic rats following learning. After detection of aberrant DNA methylation at the Bdnf gene, we investigated functional effects of altered DNA methylation on hippocampus-dependent memory formation in our TLE rodent model. We found that behaviorally driven BdnfDNA methylation was associated with hippocampus-dependent memory deficits. Bisulfite sequencing revealed that decreased BdnfDNA methylation levels strongly correlated with abnormally high levels of BdnfmRNA in the epileptic hippocampus during memory consolidation. Methyl supplementation via methionine (Met) increased BdnfDNA methylation and reduced BdnfmRNA levels in the epileptic hippocampus during memory consolidation. Met administration reduced interictal spike activity, increased theta rhythm power, and reversed memory deficits in epileptic animals. The rescue effect of Met treatment on learning-induced BdnfDNA methylation, Bdnf gene expression, and hippocampus-dependent memory, were attenuated by DNA methyltransferase blockade. Our findings suggest that manipulation of DNA methylation in the epileptic hippocampus should be considered as a viable treatment option to ameliorate memory impairments associated with TLE.

  6. Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain-liver axis.

    PubMed

    Yang, B; Ren, Q; Zhang, J-C; Chen, Q-X; Hashimoto, K

    2017-05-16

    Brain-derived neurotrophic factor (BDNF) has a role in the pathophysiology of psychiatric disorders. The precursor proBDNF is converted to mature BDNF and BDNF pro-peptide, the N-terminal fragment of proBDNF; however, the precise function of these proteins in psychiatric disorders is unknown. We sought to determine whether expression of these proteins is altered in the brain and peripheral tissues from patients with psychiatric disorders. We measured protein expression of proBDNF, mature BDNF and BDNF pro-peptide in the parietal cortex, cerebellum, liver and spleen from control, major depressive disorder (MDD), schizophrenia (SZ) and bipolar disorder (BD) groups. The levels of mature BDNF in the parietal cortex from MDD, SZ and BD groups were significantly lower than the control group, whereas the levels of BDNF pro-peptide in this area were significantly higher than controls. In contrast, the levels of proBDNF and BDNF pro-peptide in the cerebellum of MDD, SZ and BD groups were significantly lower than controls. Moreover, the levels of mature BDNF from the livers of MDD, SZ and BD groups were significantly higher than the control group. The levels of mature BDNF in the spleen did not differ among the four groups. Interestingly, there was a negative correlation between mature BDNF in the parietal cortex and mature BDNF in the liver in all the subjects. These findings suggest that abnormalities in the production of mature BDNF and BDNF pro-peptide in the brain and liver might have a role in the pathophysiology of psychiatric disorders, indicating a brain-liver axis in psychiatric disorders.

  7. Intravenous Prenatal Nicotine Exposure Alters METH-Induced Hyperactivity, Conditioned Hyperactivity, and BDNF in Adult Rat Offspring.

    PubMed

    Lacy, Ryan T; Brown, Russell W; Morgan, Amanda J; Mactutus, Charles F; Harrod, Steven B

    2016-01-01

    In the USA, approximately 15% of women smoke tobacco cigarettes during pregnancy. In utero tobacco smoke exposure produces somatic growth deficits like intrauterine growth restriction and low birth weight in offspring, but it can also negatively influence neurodevelopmental outcomes in later stages of life, such as an increased incidence of obesity and drug abuse. Animal models demonstrate that prenatal nicotine (PN) alters the development of the mesocorticolimbic system, which is important for organizing goal-directed behavior. In the present study, we determined whether intravenous (IV) PN altered the initiation and/or expression of methamphetamine (METH)-induced locomotor sensitization as a measure of mesocorticolimbic function in adult rat offspring. We also determined whether PN and/or METH exposure altered protein levels of BDNF (brain-derived neurotrophic factor) in the nucleus accumbens, the dorsal striatum, and the prefrontal cortex of adult offspring. BDNF was of interest because of its role in the development and maintenance of the mesocorticolimbic pathway and its ability to modulate neural processes that contribute to drug abuse, such as sensitization of the dopamine system. Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline, 3×/day on gestational days 8-21. Testing was conducted when offspring reached adulthood (around postnatal day 90). Following 3 once daily habituation sessions the animals received a saline injection and baseline locomotor activity was measured. PN and prenatal saline (PS)-exposed offspring then received 10 once daily injections of METH (0.3 mg/kg) to induce locomotor sensitization. The animals received a METH injection (0.3 mg/kg) to assess the expression of sensitization following a 14-day period of no injections. A day later, all animals were injected with saline and conditioned hyperactivity was assessed. Brain tissue was harvested 24 h later. PN animals habituated more slowly to the activity chambers

  8. Brain-derived neurotrophic factor (BDNF) -TrKB signaling modulates cancer-endothelial cells interaction and affects the outcomes of triple negative breast cancer

    PubMed Central

    Tsai, Yi-Fang; Hsu, Chih-Yi; Yang, Muh-Hwa; Shyr, Yi-Ming

    2017-01-01

    Aims There is good evidence that the tumor microenvironment plays an important role in cancer metastasis and progression. Our previous studies have shown that brain-derived neurotrophic factor (BDNF) participates in the process of metastasis and in the migration of cancer cells. The aim of this study was to investigate the role of BDNF on the tumor cell microenvironment, namely, the cancer cell-endothelial cell interaction of TNBC cells. Methods We conducted oligoneucleotide microarray analysis of potential biomarkers that are able to differentiate recurrent TNBC from non-recurrent TNBC. The MDA-MB-231 and human endothelial HUVEC lines were used for this study and our approaches included functional studies, such as migration assay, as well as Western blot and real-time PCR analysis of migration and angiogenic signaling. In addition, we analyzed the survival outcome of TNBC breast cancer patients according to their expression level of BDNF using clinical samples. Results The results demonstrated that BDNF was able to bring about autocrinal (MDA-MB-231) and paracrinal (HUVECs) regulation of BDNF-TrkB gene expression and this affected cell migratory activity. The BDNF-induced migratory activity was blocked by inhibitors of ERK, PI3K and TrkB when MDA-MB-231 cells were examined, but only an inhibitor of ERK blocked this activity when HUVEC cells were used. Furthermore, decreased migratory activity was found for △BDNF and △TrkB cell lines. Ingenuity pathway analysis (IPA) of MDA-MB-231 cells showed that BDNF is a key factor that is able to regulate a network made up of metalloproteases and calmodulin. Protein expression levels in a tissue array of tumor slices were found to be correlated with patient prognosis and the results showed that there was significant correlation of TrkB expression, but not of BDNF. expressionwith patient DFS and OS. Conclusion Our study demonstrates that up-regulation of the BDNF signaling pathway seems tobe involved in the mechanism

  9. [Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) blood levels in patients with acute carbon monoxide poisoning - a preliminary observations].

    PubMed

    Ciszowski, Krzysztof; Gomółka, Ewa; Gawlikowski, Tomasz; Szpak, Dorota; Potoczek, Anna; Boba, Magdalena

    Neurotrophins are the family of proteins which stimulate and regulate the process of neurogenesis. Several factors belong to the family, mainly nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT 3), and neurotrophin-4/5 (NT-4/5). Acute poisoning with carbon monoxide (CO), which usually is accompanied by neurologic symptoms, can potentially change the secretion profile of neurotrophins. Aim of the study. The main goal of the study is to assess the changes of NGF and BDNF plasma levels during an acute phase of CO poisoning as well as immediately after recovery. Additionally, the relationship among neurotrophin levels and selected aspects of clinical course of CO poisoning were studied. The study group consisted of 18 patients (mean age: 31.8±10.3 years) hospitalized in Toxicology Department of University Hospital in Cracow because of acute CO poisoning. There were 10 women (mean age: 30.2±6.9 years) and 8 men (mean age 33.9±13.7 years) in the group. The levels of NGF and BDNF were evaluated using immunoenzymatic method (ELISA) in plasma samples taken thrice in each patient. The sample 1. was taken during hospital admission, the sample 2. about 12-36 hours after admission, and the sample 3. just before the hospital discharging (usually, on the 3rd-4th day). The clinical data were collected from patients’ anamnesis, physical examination and neuropsychological evaluation. The statistical analysis were performed using tools comprised in STATISTICA 12.0 PL (StatSoft Polska, Cracow, Poland) software. The majority of NGF plasma levels were less than 14 pg/mL (values below the limit of quantification), contrary to the sole case of 34.3 pg/mL. BDNF plasma levels ranged from 4.8 ng/mL to above 48 ng/mL, i.e. they were higher than the upper limit of measurement range for the plasma dilution which had been used. The comparison of NGF and BDNF plasma levels in the study group with their analogues in healthy volunteers taken from the

  10. Abnormality in serum levels of mature brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in mood-stabilized patients with bipolar disorder: a study of two independent cohorts.

    PubMed

    Södersten, Kristoffer; Pålsson, Erik; Ishima, Tamaki; Funa, Keiko; Landén, Mikael; Hashimoto, Kenji; Ågren, Hans

    2014-05-01

    Early detection and diagnosis of bipolar disorder can be difficult. Tools are needed to help clinicians detect bipolar disorder earlier, which would ameliorate the prognosis. ELISA kits that distinguish between mature brain derived neurotrophic factor (BDNF) and proBDNF, we compared serum levels of mature BDNF, proBDNF, and matrix metalloproteinase-9 (MMP-9) in two independent cohorts (Sahlgrenska cohort and Karolinska cohort) of mood-stabilized bipolar patients and healthy controls. The total sample size in both cohorts consisted of 263 (48+215) bipolar patients and 155 (43+112) healthy controls. Levels of mature BDNF and the ratio mature BDNF/proBDNF were significantly higher in patients than in controls. Serum levels of proBDNF were significantly lower in patients compared to controls. Serum levels of MMP-9 did not differ between the groups but MMP-9 correlated positively and significantly with mature BDNF. Mature BDNF, proBDNF, the ratio of mature BDNF/proBDNF and interactions with MMP-9 explained the diagnostic dichotomy in both cohorts with high significance, using multivariate logistic ANCOVA (gender, age, and BMI were covaried out). The model explained 41% of the diagnostic variance in the Sahlgrenska cohort (p<0.0001) and 15% in the Karolinska cohort (p<0.0001). In both cohorts, the equations provided good power for diagnostic classification. The diagnostic sensitivity was 89% in the Sahlgrenska and 74% in the Karolinska cohort, and specificity 77% and 64%, respectively. The study is cross-sectional with no longitudinal follow up. The cohorts are relatively small with no medication-free patients. There are no "ill patient controls". Abnormalities in the conversion of proBDNF to mature BDNF may be associated with pathogenesis of bipolar disorder. Clinical use of these biomarkers may provide opportunities for earlier detection and correct treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Alterations in BDNF (brain derived neurotrophic factor) and GDNF (glial cell line-derived neurotrophic factor) serum levels in bipolar disorder: The role of lithium.

    PubMed

    Tunca, Zeliha; Ozerdem, Aysegul; Ceylan, Deniz; Yalçın, Yaprak; Can, Güneş; Resmi, Halil; Akan, Pınar; Ergör, Gül; Aydemir, Omer; Cengisiz, Cengiz; Kerim, Doyuran

    2014-09-01

    Brain-derived neurotrophic factor (BDNF) has been consistently reported to be decreased in mania or depression in bipolar disorders. Evidence suggests that Glial cell line-derived neurotrophic factor (GDNF) has a role in the pathogenesis of mood disorders. Whether GDNF and BDNF act in the same way across different episodes in bipolar disorders is unclear. BDNF and GDNF serum levels were measured simultaneously by enzyme-linked immunosorbent assay (ELISA) method in 96 patients diagnosed with bipolar disorder according to DSM-IV (37 euthymic, 33 manic, 26 depressed) in comparison to 61 healthy volunteers. SCID- I and SCID-non patient version were used for clinical evaluation of the patients and healthy volunteers respectively. Correlations between the two trophic factor levels, and medication dose, duration and serum levels of lithium or valproate were studied across different episodes of illness. Patients had significantly lower BDNF levels during mania and depression compared to euthymic patients and healthy controls. GDNF levels were not distinctive. However GDNF/BDNF ratio was higher in manic state compared to euthymia and healthy controls. Significant negative correlation was observed between BDNF and GDNF levels in euthymic patients. While BDNF levels correlated positively, GDNF levels correlated negatively with lithium levels. Regression analysis confirmed that lithium levels predicted only GDNF levels positively in mania, and negatively in euthymia. Small sample size in different episodes and drug-free patients was the limitation of thestudy. Current data suggests that lithium exerts its therapeutic action by an inverse effect on BDNF and GDNF levels, possibly by up-regulating BDNF and down-regulating GDNF to achieve euthymia. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effect of different anesthesia techniques on the serum brain-derived neurotrophic factor (BDNF) levels.

    PubMed

    Ozer, A B; Demirel, I; Erhan, O L; Firdolas, F; Ustundag, B

    2015-10-01

    Serum Brain-Derived Neurotrophic Factor (BDNF) levels are associated with neurotransmission and cognitive functions. The goal of this study was to examine the effect of general anesthesia on BDNF levels. It was also to reveal whether this effect had a relationship with the surgical stress response or not. The study included 50 male patients, age 20-40, who were scheduled to have inguinoscrotal surgery, and who were in the ASA I-II risk group. The patients were divided into two groups according to the anesthesia techniques used: general (GA) and spinal (SA). In order to measure serum BDNF, cortisol, insulin and glucose levels, blood samples were taken at four different times: before and after anesthesia, end of the surgery, and before transferal from the recovery room. Serum BDNF levels were significantly low (p < 0.01), cortisol and glucose levels were higher (p < 0.05 and p < 0.01) in Group GA compared with Group SA. No significant difference was detected between the groups in terms of serum insulin levels. There was no correlation between serum BDNF and the stress hormones. Our findings suggested that general anesthetics had an effect on serum BDNF levels independent of the stress response. In future, BDNF could be used as biochemical parameters of anesthesia levels, but studies with a greater scope should be carried out to present the relationship between anesthesia and neurotrophins.

  13. Preliminary evidence of cannabinoid effects on brain-derived neurotrophic factor (BDNF) levels in humans

    PubMed Central

    D’Souza, Deepak Cyril; Pittman, Brian; Perry, Edward; Simen, Arthur

    2009-01-01

    Background Acute and chronic exposure to cannabinoids has been associated with cognitive deficits, a higher risk for schizophrenia and other drug abuse. However, the precise mechanism underlying such effects is not known. Preclinical studies suggest that cannabinoids modulate brain-derived neurotrophic factor (BDNF). Accordingly, we hypothesized that Δ9-tetrahydrocannabinol (Δ9-THC), the principal active component of cannabis, would alter BDNF levels in humans. Materials and methods Healthy control subjects (n=14) and light users of cannabis (n=9) received intravenous administration of (0.0286 mg/kg) Δ9-THC in a double-blind, fixed order, placebo-controlled, laboratory study. Serum sampled at baseline, after placebo administration, and after Δ9-THC administration was assayed for BDNF using ELISA. Results Δ9-THC increased serum BDNF levels in healthy controls but not light users of cannabis. Further, light users of cannabis had lower basal BDNF levels. Δ9-THC produced psychotomimetic effects, perceptual alterations, and “high” and spatial memory impairments. Implications The effects of socially relevant doses of cannabinoids on BDNF suggest a possible mechanism underlying the consequences of exposure to cannabis. This may be of particular importance for the developing brain and also in disorders believed to involve altered neurodevelopment such as schizophrenia. Larger studies to investigate the effects of cannabinoids on BDNF and other neurotrophins are warranted. PMID:18807247

  14. Brain-derived neurotrophic factor (BDNF) plasma concentration in patients diagnosed with premature ovarian insufficiency (POI).

    PubMed

    Czyzyk, Adam; Filipowicz, Dorota; Podfigurna, Agnieszka; Ptas, Paula; Piestrzynska, Malgorzata; Smolarczyk, Roman; Genazzani, Andrea R; Meczekalski, Blazej

    2017-05-01

    Premature ovarian insufficiency (POI) is defined as a cessation of function of ovaries in women younger than 40 years old. Brain-derived neurotrophic factor (BDNF) is a protein critically involved in neuronal growth and metabolism. BDNF also has been shown to be important regulator of oocyte maturation. Recent data show that BDNF can be potentially involved in POI pathology. The aim of the study was to assess the BDNF plasma concentrations in patients diagnosed with idiopathic POI. 23 women diagnosed with POI (age 31 ± 7 years) and 18 (age 31 ± 3) controls were included to the study, matched according to age and body mass index. The BDNF concentrations were measured using competitive enzyme-linked immunosorbent assay (ELISA). Hormonal and metabolic parameters were measured in all individuals, in controls in late follicular phase. The POI group demonstrated lower mean plasma concentrations of BDNF (429.25 ± 65.52 pg/ml) in comparison to healthy controls (479.75 ± 34.75 pg/ml, p = 0.0345). The BDNF plasma concentration correlated negatively (R = -0.79, p < 0.001) with number of months since last menstrual period. There was a positive correlation between BDNF and progesterone in controls. In conclusion, POI patients show significantly lower BDNF plasma concentration and it correlates with the duration of amenorrhea. This observation brings important potential insights to the pathology of POI.

  15. Decreased plasma concentrations of brain-derived neurotrophic factor (BDNF) in patients with functional hypothalamic amenorrhea.

    PubMed

    Podfigurna-Stopa, Agnieszka; Casarosa, Elena; Luisi, Michele; Czyzyk, Adam; Meczekalski, Blazej; Genazzani, Andrea Riccardo

    2013-09-01

    Functional hypothalamic amenorrhea (FHA) is a non organic, secondary amenorrhea related to gonadotropin-releasing hormone pulsatile secretion impairment. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of survival-promoting molecules, plays an important role in the growth, development, maintenance and function of several neuronal systems. The aim of the study was the evaluation of plasma BDNF concentrations in patients with the diagnosis of FHA. We studied 85 subjects diagnosed with FHA who were compared with 10 healthy, eumenorrheic controls with normal body mass index. Plasma BDNF and serum luteinizing hormone, follicle-stimulating hormone and estradiol (E2) concentrations were measured by immunoenzymatic method (enzyme-linked immunosorbent assay). Significantly lower concentration of plasma BDNF was found in FHA patients (196.31 ± 35.26 pg/ml) in comparison to healthy controls (407.20 ± 25.71 pg/ml; p < 0.0001). In the control group, there was a strong positive correlation between plasma BDNF and serum E2 concentrations (r = 0.92, p = 0.0001) but in FHA group it was not found. Role of BDNF in FHA is not yet fully understood. There could be found studies concerning plasma BDNF concentrations in humans and animals in the literature. However, our study is one of the first projects which describes decreased plasma BDNF concentration in patients with diagnosed FHA. Therefore, further studies on BDNF in FHA should clarify the role of this peptide.

  16. The Neurotrophin-Inducible Gene Vgf Regulates Hippocampal Function and Behavior Through a BDNF-Dependent Mechanism

    PubMed Central

    Bozdagi, Ozlem; Rich, Erin; Tronel, Sophie; Sadahiro, Masato; Patterson, Kamara; Shapiro, Matthew L.; Alberini, Cristina M.; Huntley, George W.; Salton, Stephen R. J.

    2009-01-01

    VGF is a neurotrophin-inducible, activity-regulated gene product that is expressed in CNS and PNS neurons, where it is processed into peptides and secreted. VGF synthesis is stimulated by BDNF, a critical regulator of hippocampal development and function, and two VGF C-terminal peptides increase synaptic activity in cultured hippocampal neurons. To assess VGF function in the hippocampus, we tested heterozygous and homozygous VGF knockout mice in two different learning tasks, assessed long-term potentiation (LTP) and depression (LTD) in hippocampal slices from VGF mutant mice, and investigated how VGF C-terminal peptides modulate synaptic plasticity. Treatment of rat hippocampal slices with the VGF-derived peptide TLQP62 resulted in transient potentiation through a mechanism that was selectively blocked by the BDNF scavenger TrkB-Fc, the Trk tyrosine kinase inhibitor K252a (100 nM), and by tPASTOP, an inhibitor of tissue plasminogen activator (tPA), an enzyme involved in pro-BDNF cleavage to BDNF, but was not blocked by the NMDA receptor antagonist APV, anti-p75NTR function-blocking antiserum, nor by prior tetanic stimulation. Although LTP was normal in slices from VGF knockout mice, LTD could not be induced, and VGF mutant mice were impaired in hippocampal-dependent spatial learning and contextual fear conditioning tasks. Our studies indicate that the VGF C-terminal peptide TLQP62 modulates hippocampal synaptic transmission through a BDNF-dependent mechanism, and that VGF deficiency in mice impacts synaptic plasticity and memory in addition to depressive behavior. PMID:18815270

  17. Electrically evoked local muscle contractions cause an increase in hippocampal BDNF.

    PubMed

    Maekawa, Takahiro; Ogasawara, Riki; Tsutaki, Arata; Lee, Kihyuk; Nakada, Satoshi; Nakazato, Koichi; Ishii, Naokata

    2018-05-01

    High-intensity exercise has recently been shown to cause an increase in brain-derived neurotropic factor (BDNF) in the hippocampus. Some studies have suggested that myokines secreted from contracting skeletal muscle, such as irisin (one of the truncated form of fibronectin type III domain-containing protein 5 (FNDC5)), play important roles in this process. Thus, we hypothesized that locally evoked muscle contractions may cause an increase of BDNF in the hippocampus through some afferent mechanisms. Under anesthesia, Sprague-Dawley rats were fixed on a custom-made dynamometer and their triceps surae muscles were made to maximally contract via delivery of electric stimulations of the sciatic nerve (100 Hz with 1-ms pulse and 3-s duration). Following 50 repeated maximal isometric contractions, the protein expressions of BDNF and activation of its receptor in the hippocampus significantly increased compared with the sham-operated control rats. However, the expression of both BDNF and FNDC5 within stimulated muscles did not significantly increase, nor did their serum concentrations change. These results indicate that local muscular contractions under unconsciousness can induce BDNF expression in the hippocampus. This effect may be mediated by peripheral reception of muscle contraction, but not by systemic factors.

  18. Tackling Glaucoma from within the Brain: An Unfortunate Interplay of BDNF and TrkB

    PubMed Central

    Dekeyster, Eline; Geeraerts, Emiel; Buyens, Tom; Van den Haute, Chris; Baekelandt, Veerle; De Groef, Lies; Salinas-Navarro, Manuel; Moons, Lieve

    2015-01-01

    According to the neurotrophin deprivation hypothesis, diminished retrograde delivery of neurotrophic support during an early stage of glaucoma pathogenesis is one of the main triggers that induce retinal ganglion cell (RGC) degeneration. Therefore, interfering with neurotrophic signaling seems an attractive strategy to achieve neuroprotection. Indeed, exogenous neurotrophin administration to the eye has been shown to reduce loss of RGCs in animal models of glaucoma; however, the neuroprotective effect was mostly insufficient for sustained RGC survival. We hypothesized that treatment at the level of neurotrophin-releasing brain areas might be beneficial, as signaling pathways activated by target-derived neurotrophins are suggested to differ from pathways that are initiated at the soma membrane. In our study, first, the spatiotemporal course of RGC degeneration was characterized in mice subjected to optic nerve crush (ONC) or laser induced ocular hypertension (OHT). Subsequently, the well-known neurotrophin brain-derived neurotrophic factor (BDNF) was chosen as the lead molecule, and the levels of BDNF and its high-affinity receptor, tropomyosin receptor kinase B (TrkB), were examined in the mouse retina and superior colliculus (SC) upon ONC and OHT. Both models differentially influenced BDNF and TrkB levels. Next, we aimed for RGC protection through viral vector-mediated upregulation of collicular BDNF, thought to boost the retrograde neurotrophin delivery. Although the previously reported temporary neuroprotective effect of intravitreally delivered recombinant BDNF was confirmed, viral vector-induced BDNF overexpression in the SC did not result in protection of the RGCs in the glaucoma models used. These findings most likely relate to decreased neurotrophin responsiveness upon vector-mediated BDNF overexpression. Our results highlight important insights concerning the complexity of neurotrophic factor treatments that should surely be considered in future

  19. Vascular brain-derived neurotrophic factor pathway in rats with adjuvant-induced arthritis: Effect of anti-rheumatic drugs.

    PubMed

    Pedard, Martin; Quirié, Aurore; Totoson, Perle; Verhoeven, Frank; Garnier, Philippe; Tessier, Anne; Demougeot, Céline; Marie, Christine

    2018-05-02

    In rheumatoid arthritis, the control of both disease activity and standard cardiovascular (CV) risk factors is expected to attenuate the increased CV risk. Evidence that brain-derived neurotrophic factor (BDNF) plays a role in vascular biology led us to investigate the vascular BDNF pathway in arthritis rats as well as the interaction between endothelial nitric oxide (NO) and BDNF production. The aortic BDNF pathway was studied in rats with adjuvant-induced arthritis, (AIA) using Western blot and immunohistochemical analysis. Control of arthritis score was achieved by administration (for 3 weeks) of an equipotent dosage of etanercept, prednisolone, methotrexate, celecoxib or diclofenac. Aortas were exposed to an NO donor or an NO synthase inhibitor and vasoreactivity experiments were performed using LM22A-4 as a TrkB agonist. Vascular BDNF and full length tropomyosin-related kinase B receptor (TrkB-FL) were higher in AIA than in control rats. These changes coincided with decreased endothelial immunoreactivity in BDNF and pTrkB tyr816 and were disconnected from arthritis score. Among anti-rheumatic drugs, only prednisolone and methotrexate prevented AIA-induced vascular BDNF loss. The effect of AIA on aortic BDNF levels was reversed by an NO donor and reproduced by an NOS inhibitor. Finally, LM22A-4 induced both NO-dependent vasodilation and phosphorylation of endothelial NO synthase at serine 1177. Our study identified changes in the BDNF/TrkB pathway as a disease activity-independent component of AIA-associated changes in endothelial phenotype. It provides new perspectives in the understanding and management of the high CV risk reported in rheumatoid arthritis. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The effect of enriched environment across ages: A study of anhedonia and BDNF gene induction.

    PubMed

    Dong, B E; Xue, Y; Sakata, K

    2018-05-02

    Enriched environment treatment (EET) is a potential intervention for depression by inducing brain-derived neurotrophic factor (BDNF). However, its age dependency remains unclear. We recently found that EET during early-life development (ED) was effective in increasing exploratory activity and anti-despair behavior, particularly in promoter IV-driven BDNF deficient mice (KIV), with the largest BDNF protein induction in the hippocampus and frontal cortex. Here, we further determined age dependency of EET effects on anhedonia and promoter-specific BDNF transcription, by using the sucrose preference test and qRT-PCR. Wild-type (WT) and KIV mice received 2 months of EET during ED, young-adulthood and old-adulthood (0-2, 2-4 and 12-14 months, respectively). All KIV groups showed reduced sucrose preference, which EET equally reversed regardless of age. EET increased hippocampal BDNF mRNA levels for all ages and genotypes, but increased frontal cortex BDNF mRNA levels only in ED KIV and old WT mice. Transcription by promoters I and IV was age-dependent in the hippocampus of WT mice: more effective induction of exon IV or I during ED or old-adulthood, respectively. Transcription by almost all 9 promoters was age-specific in the frontal cortex, mostly observed in ED KIV mice. After discontinuance of EET, the EET effects on anti-anhedonia and BDNF transcription in both regions persisted only in ED KIV mice. These results suggested that EET was equally effective in reversing anhedonia and inducing hippocampal BDNF transcription, but was more effective during ED in inducing frontal cortex BDNF transcription and for lasting anti-anhedonic and BDNF effects particularly in promoter IV-BDNF deficiency. © 2018 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  1. BDNF is required for taste axon regeneration following unilateral chorda tympani nerve section.

    PubMed

    Meng, Lingbin; Huang, Tao; Sun, Chengsan; Hill, David L; Krimm, Robin

    2017-07-01

    Taste nerves readily regenerate to reinnervate denervated taste buds; however, factors required for regeneration have not yet been identified. When the chorda tympani nerve is sectioned, expression of brain-derived neurotrophic factor (BDNF) remains high in the geniculate ganglion and lingual epithelium, despite the loss of taste buds. These observations suggest that BDNF is present in the taste system after nerve section and may support taste nerve regeneration. To test this hypothesis, we inducibly deleted Bdnf during adulthood in mice. Shortly after Bdnf gene recombination, the chorda tympani nerve was unilaterally sectioned causing a loss of both taste buds and neurons, irrespective of BDNF levels. Eight weeks after nerve section, however, regeneration was differentially affected by Bdnf deletion. In control mice, there was regeneration of the chorda tympani nerve and taste buds reappeared with innervation. In contrast, few taste buds were reinnervated in mice lacking normal Bdnf expression such that taste bud number remained low. In all genotypes, taste buds that were reinnervated were normal-sized, but non-innervated taste buds remained small and atrophic. On the side of the tongue contralateral to the nerve section, taste buds for some genotypes became larger and all taste buds remained innervated. Our findings suggest that BDNF is required for nerve regeneration following gustatory nerve section. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1.

    PubMed

    Yang, Jenq-Lin; Lin, Yu-Ting; Chuang, Pei-Chin; Bohr, Vilhelm A; Mattson, Mark P

    2014-03-01

    Brain-derived neurotrophic factor (BDNF) promotes the survival and growth of neurons during brain development and mediates activity-dependent synaptic plasticity and associated learning and memory in the adult. BDNF levels are reduced in brain regions affected in Alzheimer's, Parkinson's, and Huntington's diseases, and elevation of BDNF levels can ameliorate neuronal dysfunction and degeneration in experimental models of these diseases. Because neurons accumulate oxidative lesions in their DNA during normal activity and in neurodegenerative disorders, we determined whether and how BDNF affects the ability of neurons to cope with oxidative DNA damage. We found that BDNF protects cerebral cortical neurons against oxidative DNA damage-induced death by a mechanism involving enhanced DNA repair. BDNF stimulates DNA repair by activating cyclic AMP response element-binding protein (CREB), which, in turn, induces the expression of apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme in the base excision DNA repair pathway. Suppression of either APE1 or TrkB by RNA interference abolishes the ability of BDNF to protect neurons against oxidized DNA damage-induced death. The ability of BDNF to activate CREB and upregulate APE1 expression is abolished by shRNA of TrkB as well as inhibitors of TrkB, PI3 kinase, and Akt kinase. Voluntary running wheel exercise significantly increases levels of BDNF, activates CREB, and upregulates APE1 in the cerebral cortex and hippocampus of mice, suggesting a novel mechanism whereby exercise may protect neurons from oxidative DNA damage. Our findings reveal a previously unknown ability of BDNF to enhance DNA repair by inducing the expression of the DNA repair enzyme APE1.

  3. PKA-CREB-BDNF signaling pathway mediates propofol-induced long-term learning and memory impairment in hippocampus of rats.

    PubMed

    Zhong, Yu; Chen, Jing; Li, Li; Qin, Yi; Wei, Yi; Pan, Shining; Jiang, Yage; Chen, Jialin; Xie, Yubo

    2018-04-20

    Studies have found that propofol can induce widespread neuroapoptosis in developing brains, which leads to cause long-term learning and memory abnormalities. However, the specific cellular and molecular mechanisms underlying propofol-induced neuroapoptosis remain elusive. The aim of the present study was to explore the role of PKA-CREB-BDNF signaling pathway in propofol-induced long-term learning and memory impairment during brain development. Seven-day-old rats were randomly assigned to control, intralipid and three treatment groups (n = 5). Rats in control group received no treatment. Intralipid (10%, 10 mL/kg) for vehicle control and different dosage of propofol for three treatment groups (50, 100 and 200 mg/kg) were administered intraperitoneally. FJB staining, immunohistochemistry analysis for neuronal nuclei antigen and transmission electron microscopy were used to detect neuronal apoptosis and structure changes. MWM test examines the long-term spatial learning and memory impairment. The expression of PKA, pCREB and BDNF was quantified using western blots. Propofol induced significant increase of FJB-positive cells and decrease of PKA, pCREB and BDNF protein levels in the immature brain of P7 rats. Using the MWM test, propofol-treated rats demonstrated long-term spatial learning and memory impairment. Moreover, hippocampal NeuN-positive cell loss, long-lasting ultrastructural abnormalities of the neurons and synapses, and long-term down-regulation of PKA, pCREB and BDNF protein expression in adult hippocampus were also found. Our results indicated that neonatal propofol exposure can significantly result in long-term learning and memory impairment in adulthood. The possible mechanism involved in the propofol-induced neuroapoptosis was related to down-regulation of PKA-CREB-BDNF signaling pathway. Copyright © 2018. Published by Elsevier B.V.

  4. ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions.

    PubMed

    Je, H Shawn; Yang, Feng; Ji, Yuanyuan; Potluri, Srilatha; Fu, Xiu-Qing; Luo, Zhen-Ge; Nagappan, Guhan; Chan, Jia Pei; Hempstead, Barbara; Son, Young-Jin; Lu, Bai

    2013-06-12

    During development, mammalian neuromuscular junctions (NMJs) transit from multiple-innervation to single-innervation through axonal competition via unknown molecular mechanisms. Previously, using an in vitro model system, we demonstrated that the postsynaptic secretion of pro-brain-derived neurotrophic factor (proBDNF) stabilizes or eliminates presynaptic axon terminals, depending on its proteolytic conversion at synapses. Here, using developing mouse NMJs, we obtained in vivo evidence that proBDNF and mature BDNF (mBDNF) play roles in synapse elimination. We observed that exogenous proBDNF promoted synapse elimination, whereas mBDNF infusion substantially delayed synapse elimination. In addition, pharmacological inhibition of the proteolytic conversion of proBDNF to mBDNF accelerated synapse elimination via activation of p75 neurotrophin receptor (p75(NTR)). Furthermore, the inhibition of both p75(NTR) and sortilin signaling attenuated synapse elimination. We propose a model in which proBDNF and mBDNF serve as potential "punishment" and "reward" signals for inactive and active terminals, respectively, in vivo.

  5. Blocking GSK3β-mediated dynamin1 phosphorylation enhances BDNF-dependent TrkB endocytosis and the protective effects of BDNF in neuronal and mouse models of Alzheimer's disease.

    PubMed

    Liu, Xiang-Hua; Geng, Zhao; Yan, Jing; Li, Ting; Chen, Qun; Zhang, Qun-Ye; Chen, Zhe-Yu

    2015-02-01

    Endocytosis of tropomyosin related kinase B (TrkB) receptors has critical roles in brain-derived neurotrophic factor (BDNF) mediated signal transduction and biological function, however the mechanism that is governing TrkB endocytosis is still not completely understood. In this study, we showed that GSK3β, a key kinase in neuronal development and survival, could regulate TrkB endocytosis through phosphorylating dynamin1 (Dyn1) but not dynamin2 (Dyn2). Moreover, we found that beta-amyloid (Aβ) oligomer exposure could impair BDNF-dependent TrkB endocytosis and Akt activation through enhancing GSK3β activity in cultured hippocampal neurons, which suggested that BDNF-induced TrkB endocytosis and the subsequent signaling were impaired in neuronal model of Alzheimer's disease (AD). Notably, we found that inhibiting GSK3β phosphorylating Dyn1 by using TAT-Dyn1SpS could rescue the impaired TrkB endocytosis and Akt activation upon BDNF stimuli under Aβ exposure. Finally, TAT-Dyn1SpS could facilitate BDNF-mediated neuronal survival and cognitive enhancement in mouse models of AD. These results clarified a role of GSK3β in BDNF-dependent TrkB endocytosis and the subsequent signaling, and provided a potential new strategy by inhibiting GSK3β-induced Dyn1 phosphorylation for AD treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Maternal obesity alters brain derived neurotrophic factor (BDNF) signaling in the placenta in a sexually dimorphic manner.

    PubMed

    Prince, Calais S; Maloyan, Alina; Myatt, Leslie

    2017-01-01

    Obesity is a major clinical problem in obstetrics being associated with adverse pregnancy outcomes and fetal programming. Brain derived neurotrophic factor (BDNF), a validated miR-210 target, is necessary for placental development, fetal growth, glucose metabolism, and energy homeostasis. Plasma BDNF levels are reduced in obese individuals; however, placental BDNF has yet to be studied in the context of maternal obesity. In this study, we investigated the effect of maternal obesity and sexual dimorphism on placental BDNF signaling. BDNF signaling was measured in placentas from lean (pre-pregnancy BMI < 25) and obese (pre-pregnancy BMI>30) women at term without medical complications that delivered via cesarean section without labor. MiRNA-210, BDNF mRNA, proBDNF, and mature BDNF were measured by RT - PCR, ELISA, and Western blot. Downstream signaling via TRKB (BDNF receptor) was measured using Western blot. Maternal obesity was associated with increased miRNA-210 and decreased BDNF mRNA in placentas from female fetuses, and decreased proBDNF in placentas from male fetuses. We also identified decreased mature BDNF in placentas from male fetuses when compared to female fetuses. Mir-210 expression was negatively correlated with mature BDNF protein. TRKB phosphorylated at tyrosine 817, not tyrosine 515, was increased in placentas from obese women. Maternal obesity was associated with increased phosphorylation of MAPK p38 in placentas from male fetuses, but not phosphorylation of ERK p42/44. BDNF regulation is complex and highly regulated. Pre-pregnancy/early maternal obesity adversely affects BDNF/TRKB signaling in the placenta in a sexually dimorphic manner. These data collectively suggest that induction of placental TRKB signaling could ameliorate the placental OB phenotype, thus improving perinatal outcome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effect of dietary fat and the circadian clock on the expression of brain-derived neurotrophic factor (BDNF).

    PubMed

    Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren

    2016-07-15

    Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain and its decreased levels are associated with the development of obesity and neurodegeneration. Our aim was to test the effect of dietary fat, its timing and the circadian clock on the expression of BDNF and associated signaling pathways in mouse brain and liver. Bdnf mRNA oscillated robustly in brain and liver, but with a 12-h shift between the tissues. Brain and liver Bdnf mRNA showed a 12-h phase shift when fed ketogenic diet (KD) compared with high-fat diet (HFD) or low-fat diet (LFD). Brain or liver Bdnf mRNA did not show the typical phase advance usually seen under time-restricted feeding (RF). Clock knockdown in HT-4 hippocampal neurons led to 86% up-regulation of Bdnf mRNA, whereas it led to 60% down-regulation in AML-12 hepatocytes. Dietary fat in mice or cultured hepatocytes and hippocampal neurons led to increased Bdnf mRNA expression. At the protein level, HFD increased the ratio of the mature BDNF protein (mBDNF) to its precursor (proBDNF). In the liver, RF under LFD or HFD reduced the mBDNF/proBDNF ratio. In the brain, the two signaling pathways related to BDNF, mTOR and AMPK, showed reduced and increased levels, respectively, under timed HFD. In the liver, the reverse was achieved. In summary, Bdnf expression is mediated by the circadian clock and dietary fat. Although RF does not affect its expression phase, in the brain, when combined with high-fat diet, it leads to a unique metabolic state in which AMPK is activated, mTOR is down-regulated and the levels of mBDNF are high. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Serum concentrations of brain-derived neurotrophic factor (BDNF) are decreased in colorectal cancer patients.

    PubMed

    Brierley, G V; Priebe, I K; Purins, L; Fung, K Y C; Tabor, B; Lockett, T; Nice, E; Gibbs, P; Tie, J; McMurrick, P; Moore, J; Ruszkiewicz, A; Burgess, A; Cosgrove, L J

    2013-01-01

    To determine the usefulness of brain-derived neurotrophic factor (BDNF) as a diagnostic biomarker for colorectal cancer (CRC). ELISA immunoassay was used to examine BDNF concentrations in the sera of two different retrospective cohorts consisting of CRC patients and age/gender matched controls. Cohort 1 consisted of 99 controls and 97 CRC patients, whereas cohort 2 consisted of 47 controls and 91 CRC patients. In cohort 1, the median concentration of BDNF was significantly (p< 0.0001) lower in CRC patient samples (18.8 ng/mL, range 4.0-56.5 ng/mL) than control samples (23.4 ng/mL, range 3.0-43.1 ng/mL). This finding was validated in an independent patient cohort (CRC patients: 23.0 ng/mL, range 6.0-45.9 ng/mL; control patients: 32.3 ng/mL, range 14.2-62.4 ng/mL). BDNF concentrations did not differ significantly between Dukes' staging in the patient cohort, however patients with Stages A, B, C and D (p< 0.01 for each stage) tumours had significantly reduced BDNF levels compared to healthy controls. Receiver operating characteristic analysis was performed to determine the ability of BDNF to discriminate between healthy controls and those with CRC. At 95% specificity, BDNF concentrations distinguished CRC patients with 25% and 18% sensitivity, respectively, in cohorts 1 and 2 (cohort 1: AUC=0.79, 95% CI 0.70-0.87; cohort 2: AUC =0.69, 95% CI 0.61-0.76). The serum levels of BDNF were significantly lower in colorectal cancer patients when compared to a control population, and this did not differ between different Dukes' stages.

  9. Roles of p62 in BDNF-dependent autophagy suppression and neuroprotection against mitochondrial dysfunction in rat cortical neurons.

    PubMed

    Wu, Chia-Lin; Chen, Chien-Hui; Hwang, Chi-Shin; Chen, Shang-Der; Hwang, Wei-Chao; Yang, Ding-I

    2017-03-01

    Previously, we have reported that pre-conditioning of primary rat cortical neurons with brain-derived neurotrophic factor (BDNF) may exert neuroprotective effects against 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor. However, the underlying mechanisms, especially potential involvements of autophagy, remain elusive. In this work, we tested the hypothesis that BDNF may suppress 3-NP-induced autophagy to exert its neuroprotective effects by inducing the expression of p62/sequestosome-1 in primary cortical neurons. We found that 3-NP increased total level of microtubule-associated protein 1A/1B-light chain (LC)-3 as well as the LC3-II/LC3-I ratio, an index of autophagy, in primary cortical neurons. BDNF decreased LC3-II/LC3-I ratio and time-dependently induced expression of p62. Knockdown of p62 by siRNA restored LC3-II/LC3-I ratio and increased total LC3 levels associated with BDNF exposure; p62 knockdown also abolished BDNF-dependent neuroprotection against 3-NP. Upstream of p62, we found that BDNF triggered phosphorylation of mammalian target of rapamycin (mTOR) and its downstream mediator p70S6K; importantly, the mTOR inhibitor rapamycin reduced both BDNF-dependent p62 induction as well as 3-NP resistance. BDNF is known to induce c-Jun in cortical neurons. We found that c-Jun knockdown in part attenuated BDNF-mediated p62 induction, whereas p62 knockdown had no significant effects on c-Jun expression. In addition to suppressing p62 induction, rapamycin also partially suppressed BDNF-induced c-Jun expression, but c-Jun knockdown failed to affect mTOR activation. Together, our results suggested that BDNF inhibits 3-NP-induced autophagy via, at least in part, mTOR/c-Jun-dependent induction of p62 expression, together contributing to neuroprotection against mitochondrial inhibition. © 2016 International Society for Neurochemistry.

  10. The brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism affects memory performance in older adults.

    PubMed

    Azeredo, Lucas A de; De Nardi, Tatiana; Levandowski, Mateus L; Tractenberg, Saulo G; Kommers-Molina, Julia; Wieck, Andrea; Irigaray, Tatiana Q; Silva, Irênio G da; Grassi-Oliveira, Rodrigo

    2017-01-01

    Memory impairment is an important contributor to the reduction in quality of life experienced by older adults, and genetic risk factors seem to contribute to variance in age-related cognitive decline. Brain-derived neurotrophic factor (BDNF) is an important nerve growth factor linked with development and neural plasticity. The Val66Met polymorphism in the BDNF gene has been associated with impaired episodic memory in adults, but whether this functional variant plays a role in cognitive aging remains unclear. The purpose of this study was to investigate the effects of the BDNF Val66Met polymorphism on memory performance in a sample of elderly adults. Eighty-seven subjects aged > 55 years were recruited using a community-based convenience sampling strategy in Porto Alegre, Brazil. The logical memory subset of the Wechsler Memory Scale-Revised was used to assess immediate verbal recall (IVR), delayed verbal recall (DVR), and memory retention rate. BDNF Met allele carriers had lower DVR scores (p = 0.004) and a decline in memory retention (p = 0.017) when compared to Val/Val homozygotes. However, we found no significant differences in IVR between the two groups (p = 0.088). These results support the hypothesis of the BDNF Val66Met polymorphism as a risk factor associated with cognitive impairment, corroborating previous findings in young and older adults.

  11. From Molecular to Nanotechnology Strategies for Delivery of Neurotrophins: Emphasis on Brain-Derived Neurotrophic Factor (BDNF)

    PubMed Central

    Géral, Claire; Angelova, Angelina; Lesieur, Sylviane

    2013-01-01

    Neurodegenerative diseases represent a major public health problem, but beneficial clinical treatment with neurotrophic factors has not been established yet. The therapeutic use of neurotrophins has been restrained by their instability and rapid degradation in biological medium. A variety of strategies has been proposed for the administration of these leading therapeutic candidates, which are essential for the development, survival and function of human neurons. In this review, we describe the existing approaches for delivery of brain-derived neurotrophic factor (BDNF), which is the most abundant neurotrophin in the mammalian central nervous system (CNS). Biomimetic peptides of BDNF have emerged as a promising therapy against neurodegenerative disorders. Polymer-based carriers have provided sustained neurotrophin delivery, whereas lipid-based particles have contributed also to potentiation of the BDNF action. Nanotechnology offers new possibilities for the design of vehicles for neuroprotection and neuroregeneration. Recent developments in nanoscale carriers for encapsulation and transport of BDNF are highlighted. PMID:24300402

  12. The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese heroin-dependent patients.

    PubMed

    Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Wang, Tzu-Yun; Chen, Shih-Heng; Chu, Chun-Hsien; Chen, Po See; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2015-02-02

    BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of long-term heroin use. Thus, we investigated the relationships between brain-derived neurotrophic factor (BDNF) plasma concentrations and the BDNF Val66Met nucleotide polymorphism (SNP) in heroin-dependent patients. The pretreatment expression levels of plasma BDNF and the BDNF Val66Met SNP in 172 heroin-dependent patients and 102 healthy controls were checked. BDNF levels were significantly lower in patients (F = 52.28, p < 0.0001), but the distribution of the SNP was not significantly different. Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not affect plasma BDNF levels in our participants. In heroin-dependent patients, plasma BDNF levels were negatively correlated with the length of heroin dependency. Long-term (>15 years) users had significantly lower plasma BDNF levels than did short-term (<5 years) users. We conclude that plasma BDNF concentration in habitual heroin users are not affected by BDNF Val66Met gene variants, but by the length of the heroin dependency.

  13. The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese heroin-dependent patients

    PubMed Central

    Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Wang, Tzu-Yun; Chen, Shih-Heng; Chu, Chun-Hsien; Chen, Po See; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2015-01-01

    BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of long-term heroin use. Thus, we investigated the relationships between brain-derived neurotrophic factor (BDNF) plasma concentrations and the BDNF Val66Met nucleotide polymorphism (SNP) in heroin-dependent patients. The pretreatment expression levels of plasma BDNF and the BDNF Val66Met SNP in 172 heroin-dependent patients and 102 healthy controls were checked. BDNF levels were significantly lower in patients (F = 52.28, p < 0.0001), but the distribution of the SNP was not significantly different. Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not affect plasma BDNF levels in our participants. In heroin-dependent patients, plasma BDNF levels were negatively correlated with the length of heroin dependency. Long-term (>15 years) users had significantly lower plasma BDNF levels than did short-term (<5 years) users. We conclude that plasma BDNF concentration in habitual heroin users are not affected by BDNF Val66Met gene variants, but by the length of the heroin dependency. PMID:25640280

  14. Involvement of BDNF/TrkB and ERK/CREB axes in nitroglycerin-induced rat migraine and effects of estrogen on these signals in the migraine

    PubMed Central

    Guo, Jiu-Qing; Deng, Hui-Hui; Bo, Xiao

    2017-01-01

    ABSTRACT Migraine is a highly prevalent headache disorder, especially in women. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinases (TrkB), as well as extracellular signal-regulated kinase (ERK) and its downstream target c-AMP-responsive element binding protein (CREB) are strongly associated with the transmission of nociceptive information. However, the involvement of these substances in migraine has rarely been examined. In the present study, intraperitoneal injection of nitroglycerin (NTC) successfully induced rat migraine attack, as evidenced by behavioral testing. The location and abundance of these substances in the migraine model were determined by immunohistochemistry, real-time polymerase chain reaction (RT-PCR), western blot and enzyme-linked immunosorbant assays (ELISA). Results showed that BDNF, TrkB, phosphor(p)-ERK and p-CREB were up-regulated in the brain neurons of both male and female rats with NTG-induced migraine compared to non-migraine control, whereas their expression levels were decreased in headache-free intervals of the migraine compared to migraine attacks. Estrogen is an important contributor to migraine. Female ovariectomized rats showed significant reduction in the expression of BDNF, TrkB, p-CREB and p-ERK in both attacks and intervals of NTG-induced migraine, relative to rats that have their ovaries. But, intraperitoneal administration of exogenous estrogen recovered their expression in ovariectomized rats. Collectively, this study unveiled a positive correlation of BDNF/TrkB and ERK/CREB axes in NTG-induced migraine and promoting effects of estrogen on their signals in the migraine. These findings contribute to further understanding the pathogenesis of migraine in the molecular basis. PMID:27875242

  15. A Positive Autoregulatory BDNF Feedback Loop via C/EBPβ Mediates Hippocampal Memory Consolidation

    PubMed Central

    Bambah-Mukku, Dhananjay; Travaglia, Alessio; Chen, Dillon Y.; Pollonini, Gabriella

    2014-01-01

    Little is known about the temporal progression and regulation of the mechanisms underlying memory consolidation. Brain-derived-neurotrophic-factor (BDNF) has been shown to mediate the maintenance of memory consolidation, but the mechanisms of this regulation remain unclear. Using inhibitory avoidance (IA) in rats, here we show that a hippocampal BDNF-positive autoregulatory feedback loop via CCAAT-enhancer binding protein β (C/EBPβ) is necessary to mediate memory consolidation. At training, a very rapid, learning-induced requirement of BDNF accompanied by rapid de novo translation controls the induction of a persistent activation of cAMP-response element binding-protein (CREB) and C/EBPβ expression. The latter, in turn, controls an increase in expression of bdnf exon IV transcripts and BDNF protein, both of which are necessary and, together with the initial BDNF requirement, mediate memory consolidation. The autoregulatory loop terminates by 48 h after training with decreased C/EBPβ and pCREB and increased methyl-CpG binding protein-2, histone-deacetylase-2, and switch-independent-3a binding at the bdnf exon IV promoter. PMID:25209292

  16. A brief primer on the mediational role of BDNF in the exercise-memory link.

    PubMed

    Loprinzi, Paul D; Frith, Emily

    2018-05-02

    One of the most amazing aspects of the human brain is its ability to learn information and use it to change behaviour. A key neurotrophin that influences memory function is brain-derived neurotrophic factor (BDNF). This review briefly discusses the mechanistic role that BDNF may play in facilitating learning and memory. We also describe the role of exercise on this relationship. As discussed herein, BDNF may influence memory via BDNF-induced alterations in membrane receptor expression and translocation, as well as activating several pathways (PLC-y, PI3K, ERK) that act together to facilitate cellular effects that influence synaptic plasticity. Exercise may help to facilitate BDNF expression and its downstream cellular pathways from both direct and indirect mechanisms. © 2018 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  17. The Neuroprotective Role of Acupuncture and Activation of the BDNF Signaling Pathway

    PubMed Central

    Lin, Dong; De La Pena, Ike; Lin, Lili; Zhou, Shu-Feng; Borlongan, Cesar V.; Cao, Chuanhai

    2014-01-01

    Recent studies have been conducted to examine the neuroprotective effects of acupuncture in many neurological disorders. Although the neuroprotective effects of acupuncture has been linked to changes in signaling pathways, accumulating evidence suggest the participation of endogenous biological mediators, such as the neurotrophin (NT) family of proteins, specifically, the brain derived neurotrophic factor (BDNF). Accordingly, acupuncture can inhibit neurodegeneration via expression and activation of BDNF. Moreover, recent studies have reported that acupuncture can increase ATP levels at local stimulated points. We have also demonstrated that acupuncture could activate monocytes and increase the expression of BDNF via the stimulation of ATP. The purpose of this article is to review the recent findings and ongoing studies on the neuroprotective roles of acupuncture and therapeutic implications of acupuncture-induced activation of BDNF and its signaling pathway. PMID:24566146

  18. IL-1β impairs retrograde flow of BDNF signaling by attenuating endosome trafficking.

    PubMed

    Carlos, Anthony J; Tong, Liqi; Prieto, G Aleph; Cotman, Carl W

    2017-02-02

    Pro-inflammatory cytokines accumulate in the brain with age and Alzheimer's disease and can impair neuron health and cognitive function. Brain-derived neurotrophic factor (BDNF) is a key neurotrophin that supports neuron health, function, and synaptic plasticity. The pro-inflammatory cytokine interleukin-1β (IL-1β) impairs BDNF signaling but whether it affects BDNF signaling endosome trafficking has not been studied. This study uses an in vitro approach in primary hippocampal neurons to evaluate the effect of IL-1β on BDNF signaling endosome trafficking. Neurons were cultured in microfluidic chambers that separate the environments of the cell body and its axon terminal, enabling us to specifically treat in axon compartments and trace vesicle trafficking in real-time. We found that IL-1β attenuates BDNF signaling endosomes throughout networks in cultures. In IL-1β-treated cells, overall BDNF endosomal density was decreased, and the colocalization of BDNF endosomes with presynaptic terminals was found to be more than two times higher than in control cultures. Selective IL-1β treatment to the presynaptic compartment in microfluidic chamber attenuated BDNF endosome flux, as measured by reduced BDNF-GFP endosome counts in the somal compartment. Further, IL-1β decreased the BDNF-induced phosphorylation of Erk5, a known BDNF retrograde trafficking target. Mechanistically, the deficiency in trafficking was not due to impaired endocytosis of the BDNF-TrkB complex, or impaired transport rate, since BDNF endosomes traveled at the same rate in both control and IL-1β treatment groups. Among the regulators of presynaptic endosome sorting is the post-translational modification, ubiquitination. In support of this possibility, the IL-1β-mediated suppression of BDNF-induced Erk5 phosphorylation can be rescued by exogenous ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that regulates ubiquitin and endosomal trafficking. We observed a state of

  19. BDNF expression in the hippocampus of maternally separated rats: does Bifidobacterium breve 6330 alter BDNF levels?

    PubMed

    O'Sullivan, E; Barrett, E; Grenham, S; Fitzgerald, P; Stanton, C; Ross, R P; Quigley, E M M; Cryan, J F; Dinan, T G

    2011-09-01

    Brain-derived neurotrophic factor (BDNF) is of interest because of its putative role in stress and psychiatric disorders. Maternal separation is used as an animal model of early-life stress and of irritable bowel syndrome (IBS). Animals exposed to the paradigm show altered gut function together with heightened levels of arousal and corticosterone. Some probiotic organisms have been shown to be of benefit in IBS and influence the brain-gut axis. Our objective was to investigate the effects of maternal separation on BDNF under basal conditions and in response to the probiotic Bifidobacterium breve 6330. The study implemented the maternal separation model which we have previously described. Polymerase chain reaction and in situ hybridisation were performed to measure the effect of maternal separation on both BDNF total variants and BDNF splice variant (exon) IV in the hippocampus. Maternally separated and non-separated rats were treated with B. breve 6330, to investigate the effect of this probiotic on BDNF total variant and BDNF exon IV expression. Maternal separation increased BDNF total variants (P<0.01), whilst having no effect on BDNF exon IV. B. breve 6330 increased BDNF total variants (P<0.01), and decreased BDNF splice variant IV, in non-separated rats (P<0.01). B. breve 6330 did not alter BDNF levels in the maternally separated rats. Maternal separation caused a marked increase in BDNF in the hippocampus. While B. breve 6330 influenced BDNF in normal animals, it had no significant effect on BDNF in those which were maternally separated. We have demonstrated that an orally administered probiotic can influence hippocampal BDNF.

  20. Transcranial direct current stimulation (tDCS) reverts behavioral alterations and brainstem BDNF level increase induced by neuropathic pain model: Long-lasting effect.

    PubMed

    Filho, Paulo Ricardo Marques; Vercelino, Rafael; Cioato, Stefania Giotti; Medeiros, Liciane Fernandes; de Oliveira, Carla; Scarabelot, Vanessa Leal; Souza, Andressa; Rozisky, Joanna Ripoll; Quevedo, Alexandre da Silva; Adachi, Lauren Naomi Spezia; Sanches, Paulo Roberto S; Fregni, Felipe; Caumo, Wolnei; Torres, Iraci L S

    2016-01-04

    Neuropathic pain (NP) is a chronic pain modality that usually results of damage in the somatosensory system. NP often shows insufficient response to classic analgesics and remains a challenge to medical treatment. The transcranial direct current stimulation (tDCS) is a non-invasive technique, which induces neuroplastic changes in central nervous system of animals and humans. The brain derived neurotrophic factor plays an important role in synaptic plasticity process. Behavior changes such as decreased locomotor and exploratory activities and anxiety disorders are common comorbidities associated with NP. Evaluate the effect of tDCS treatment on locomotor and exploratory activities, and anxiety-like behavior, and peripheral and central BDNF levels in rats submitted to neuropathic pain model. Rats were randomly divided: Ss, SsS, SsT, NP, NpS, and NpT. The neuropathic pain model was induced by partial sciatic nerve compression at 14 days after surgery; the tDCS treatment was initiated. The animals of treated groups were subjected to a 20 minute session of tDCS, for eight days. The Open Field and Elevated Pluz Maze tests were applied 24 h (phase I) and 7 days (phase II) after the end of tDCS treatment. The serum, spinal cord, brainstem and cerebral cortex BDNF levels were determined 48 h (phase I) and 8 days (phase II) after tDCS treatment by ELISA. The chronic constriction injury (CCI) induces decrease in locomotor and exploratory activities, increases in the behavior-like anxiety, and increases in the brainstem BDNF levels, the last, in phase II (one-way ANOVA/SNK, P<0.05 for all). The tDCS treatment already reverted all these effects induced by CCI (one-way ANOVA/SNK, P<0.05 for all). Furthermore, the tDCS treatment decreased serum and cerebral cortex BDNF levels and it increased these levels in the spinal cord in phase II (one-way ANOVA/SNK, P<0.05). tDCS reverts behavioral alterations associated to neuropathic pain, indicating possible analgesic and anxiolytic t

  1. Melatonin attenuates scopolamine-induced cognitive impairment via protecting against demyelination through BDNF-TrkB signaling in the mouse dentate gyrus.

    PubMed

    Chen, Bai Hui; Park, Joon Ha; Lee, Tae-Kyeong; Song, Minah; Kim, Hyunjung; Lee, Jae Chul; Kim, Young-Myeong; Lee, Choong-Hyun; Hwang, In Koo; Kang, Il Jun; Yan, Bing Chun; Won, Moo-Ho; Ahn, Ji Hyeon

    2018-04-01

    Animal models of scopolamine-induced amnesia are widely used to study underlying mechanisms and treatment of cognitive impairment in neurodegenerative diseases such as Alzheimer's disease (AD). Previous studies have identified that melatonin improves cognitive dysfunction in animal models. In this study, using a mouse model of scopolamine-induced amnesia, we assessed spatial and short-term memory functions for 4 weeks, investigated the expression of myelin-basic protein (MBP) in the dentate gyrus, and examined whether melatonin and scopolamine cotreatment could keep cognitive function and MBP expression. In addition, to study functions of melatonin for keeping cognitive function and MBP expression, we examined expressions of brain-derived neurotrophic factor (BDNF) and tropomycin receptor kinase B (TrkB) in the mouse dentate gyrus. Scopolamine (1 mg/kg) and melatonin (10 mg/kg) were intraperitoneally treated for 2 and 4 weeks. Two and 4 weeks after scopolamine treatment, mice showed significant cognitive impairment; however, melatonin and scopolamine cotreatment recovered cognitive impairment. Two and 4 weeks of scopolamine treatment, the density of MBP immunoreactive myelinated nerve fibers was significantly decreased in the dentate gyrus; however, scopolamine and melatonin cotreatment significantly increased the scopolamine-induced reduction of MBP expression in the dentate gyrus. Furthermore, the cotreatment of scopolamine and melatonin significantly increased the scopolamine-induced decrease of BDNF and TrKB immunoreactivity in the dentate gyrus. Taken together, our results indicate that melatonin treatment exerts anti-amnesic effect and restores the scopolamine-induced reduction of MBP expression through increasing BDNF and TrkB expressions in the mouse dentate gyrus. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Brain-derived neurotrophic factor (BDNF) in the rostral anterior cingulate cortex (rACC) contributes to neuropathic spontaneous pain-related aversion via NR2B receptors.

    PubMed

    Zhang, Le; Wang, Gongming; Ma, Jinben; Liu, Chengxiao; Liu, Xijiang; Zhan, Yufeng; Zhang, Mengyuan

    2016-10-01

    The rostral anterior cingulate cortex (rACC) plays an important role in pain affect. Previous investigations have reported that the rACC mediates the negative affective component of inflammatory pain and contributed to the aversive state of nerve injury-induced neuropathic pain. Brain-derived neurotrophic factor (BDNF), an activity-dependent neuromodulator in the adult brain, is believed to play a role in the development and maintenance of inflammatory and neuropathic pain in the spinal cord. However, whether and how BDNF in the rACC regulates pain-related aversion due to peripheral nerve injury is largely unknown. Behaviorally, using conditioned place preference (CPP) training in rats, which is thought to reveal spontaneous pain-related aversion, we found that CPP was acquired following spinal clonidine in rats with partial sciatic nerve transection. Importantly, BDNF was upregulated within the rACC in of rats with nerve injury and enhanced the CPP acquisition, while a local injection of a BDNF-tropomyosin receptor kinase B (TrkB) antagonist into the rACC completely blocked this process. Finally, we demonstrated that the BDNF/TrkB pathway exerted its function by activating the NR2B receptor, which is widely accepted to be a crucial factor contributing to pain affect. In conclusion, our results demonstrate that the BDNF/TrkB-mediated signaling pathway in the rACC is involved in the development of neuropathic spontaneous pain-related aversion and that this process is dependent upon activation of NR2B receptors. These findings suggest that suppression of the BDNF-related signaling pathway in the rACC may provide a novel strategy to overcome pain-related aversion. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Brain-derived neurotrophic factor (BDNF) serum basal levels is not affected by power training in mobility-limited older adults - A randomized controlled trial.

    PubMed

    Hvid, L G; Nielsen, M K F; Simonsen, C; Andersen, M; Caserotti, P

    2017-07-01

    Brain-derived neurotrophic factor (BDNF) is a potential important factor involved in neuroplasticity, and may be a mediator for eliciting adaptations in neuromuscular function and physical function in older individuals following physical training. As power training taxes the neural system to a very high extent, it may be particularly effective in terms of eliciting increases in systemic BDNF levels. We examined the effects of 12weeks of power training on mature BDNF (mBDNF) and total BDNF (tBDNF) in mobility-limited older adults from the Healthy Ageing Network of Competence (HANC) study. We included 47 older men and women: n=22 in the training group (TG: progressive high intensity power training, 2 sessions per week; age 82.7±5.4years, 55% women) and n=25 in the control group (CG: no interventions; age 82.2±4.5years, 76% women). Following overnight fasting, basal serum levels of mBDNF and tBDNF were assessed (human ELISA kits) at baseline and post-intervention. At baseline, mBDNF and tBDNF levels were comparable in the two groups, TG and CG. Post-intervention, no significant within-group or between-group changes were observed in mBDNF or tBDNF. Moreover, when divided into responder tertiles based upon changes in mBDNF and tBDNF (i.e. decliners, maintainers, improvers), respectively, comparable findings were observed for TG and CG. Altogether, basal systemic levels of serum mBDNF and tBDNF are not affected in mobility-limited older adults following 12-weeks of power training, and do not appear to be a major mechanistic factor mediating neuroplasticity in mobility-limited older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Sonic hedgehog signaling in spinal cord contributes to morphine-induced hyperalgesia and tolerance through upregulating brain-derived neurotrophic factor expression

    PubMed Central

    Song, Zhi-Jing; Miao, Shuai; Zhao, Ye; Wang, Xiu-Li; Liu, Yue-Peng

    2018-01-01

    Purpose Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh) signaling in opioid-induced hyperalgesia and tolerance. Methods Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine. To investigate the contribution of Shh to morphine-induced hyperalgesia (MIH) and tolerance, Shh signaling inhibitor cyclopamine and Shh small interfering RNA (siRNA) were used. To explore the mechanisms of Shh signaling in MIH and tolerance, brain-derived neurotrophic factor (BDNF) inhibitor K252 and anti-BDNF antibody were used. Results Repeated administration of morphine produced obvious hyperalgesia and tolerance. The behavioral changes were correlated with the upregulation and activation of morphine treatment-induced Shh signaling. Pharmacologic and genetic inhibition of Shh signaling significantly delayed the generation of MIH and tolerance and associated neurochemical changes. Chronic morphine administration also induced upregulation of BDNF. Inhibiting BDNF effectively delayed the generation of MIH and tolerance. The upregulation of BDNF induced by morphine was significantly suppressed by inhibiting Shh signaling. In naïve mice, exogenous activation of Shh signaling caused a rapid increase of BDNF expression, as well as thermal hyperalgesia. Inhibiting BDNF significantly suppressed smoothened agonist-induced hyperalgesia. Conclusion These findings suggest that Shh signaling may be a critical mediator for MIH and tolerance by regulating BDNF expression. Inhibiting Shh signaling, especially during the early phase, may effectively delay or suppress MIH and tolerance. PMID:29662325

  5. Resveratrol prevents cognitive deficits induced by chronic unpredictable mild stress: Sirt1/miR-134 signalling pathway regulates CREB/BDNF expression in hippocampus in vivo and in vitro.

    PubMed

    Shen, Jun; Xu, Linling; Qu, Chujie; Sun, Huimin; Zhang, Junjian

    2018-04-30

    Chronic unpredictable mild stress (CUMS) leads to neuropsychiatric disorders, such as depression, anxiety and cognitive impairment. Resveratrol is a natural polyphenol existed in polygonum cuspidatum and has been demonstrated to be a potent activator of Sirtuin 1 (Sirt1). Previous studies reported that resveratrol treatment ameliorated CUMS-induced depressive-like behavior and cognitive deficits through upregulating cAMP response element-binding protein (CREB) and brain derived neurotrophic factor (BDNF) expression. However, the upstream signalling pathway mediating CREB/BDNF expression and then exerting a protective role on cognitive function remains unclear. The present study aims to investigate the possible mechanism of resveratrol on CUMS-induced cognitive deficits. Male Sprague Dawley rats were adminstrated resveratrol (40 and 80 mg/kg) every day for 4 consecutive weeks before exposure to CUMS procedure. Morris Water Maze test was used to appraise spatial learing and memory of rats. Sirt1/miR-134 signalling pathway and CREB/BDNF expression in hippocampus of rats were measured. We also explored Sirt1/miR-134 signalling pathway and CREB/BDNF expression in primary cultured hippocampus neurons with resveratrol (25, 50 and 100 μmol/L) treatment. We found that resveratrol treatment prevented spatial learing and memory impairment induced by CUMS. Meanwhile the potential mechanism of resveratrol was associated with increased levels of Sirt1, CREB phosphorylation (p-CREB), CREB, BDNF and decreased levels of miR-134 in vivo and in vitro. In conclusion, our study showed that the neuroprotective effect of resveratrol on CUMS-induced cognitive impairment may rely on activating Sirt1/miR-134 pathway and then upregulating its downstream CREB/BDNF expression in hippocampus. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Brain-Derived Neurotrophic Factor in TBI-related mortality: Interrelationships between Genetics and Acute Systemic and CNS BDNF Profiles

    PubMed Central

    Failla, Michelle D.; Conley, Yvette P.; Wagner, Amy K.

    2015-01-01

    Background Older adults have higher mortality rates after severe traumatic brain injury (TBI) compared to younger adults. Brain derived neurotrophic factor (BDNF) signaling is altered in aging and is important to TBI given its role in neuronal survival/plasticity and autonomic function. Following experimental TBI, acute BDNF administration has not been efficacious. Clinically, genetic variation in BDNF (reduced signaling alleles: rs6265, Met-carriers; rs7124442, C-carriers) were protective in acute mortality. Post-acutely, these genotypes carried lower mortality risk in older adults, and greater mortality risk among younger adults. Objective Investigate BDNF levels in mortality/outcome following severe TBI in the context of age and genetic risk. Methods CSF and serum BDNF were assessed prospectively during the first week following severe TBI (n=203), and in controls (n=10). Age, BDNF genotype, and BDNF levels were assessed as mortality/outcome predictors. Results CSF BDNF levels tended to be higher post-TBI (p=0.061) versus controls and were associated with time until death (p=0.042). In contrast, serum BDNF levels were reduced post-TBI versus controls (p<0.0001). Both gene*BDNF serum and gene*age interactions were mortality predictors post-TBI in the same multivariate model. CSF and serum BDNF tended to be negatively correlated post-TBI (p=0.07). Conclusions BDNF levels predicted mortality, in addition to gene*age interactions, suggesting levels capture additional mortality risk. Higher CSF BDNF post-TBI may be detrimental due to injury and age-related increases in pro-apoptotic BDNF target receptors. Negative CSF and serum BDNF correlations post-TBI suggest blood-brain barrier transit alterations. Understanding BDNF signaling in neuronal survival, plasticity, and autonomic function may inform treatment. PMID:25979196

  7. Role of activity-dependent BDNF expression in hippocampal–prefrontal cortical regulation of behavioral perseverance

    PubMed Central

    Sakata, Kazuko; Martinowich, Keri; Woo, Newton H.; Schloesser, Robert J.; Jimenez, Dennisse V.; Ji, Yuanyuan; Shen, Liya; Lu, Bai

    2013-01-01

    Activity-dependent gene transcription, including that of the brain-derived neurotrophic factor (Bdnf) gene, has been implicated in various cognitive functions. We previously demonstrated that mutant mice with selective disruption of activity-dependent BDNF expression (BDNF-KIV mice) exhibit deficits in GABA-mediated inhibition in the prefrontal cortex (PFC). Here, we show that disruption of activity-dependent BDNF expression impairs BDNF-dependent late-phase long-term potentiation (L-LTP) in CA1, a site of hippocampal output to the PFC. Interestingly, early-phase LTP and conventional L-LTP induced by strong tetanic stimulation were completely normal in BDNF-KIV mice. In parallel, attenuation of activity-dependent BDNF expression significantly impairs spatial memory reversal and contextual memory extinction, two executive functions that require intact hippocampal–PFC circuitry. In contrast, spatial and contextual memory per se were not affected. Thus, activity-dependent BDNF expression in the hippocampus and PFC may contribute to cognitive and behavioral flexibility. These results suggest distinct roles for different forms of L-LTP and provide a link between activity-dependent BDNF expression and behavioral perseverance, a hallmark of several psychiatric disorders. PMID:23980178

  8. Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus

    PubMed Central

    Galinato, Melissa H.; Orio, Laura; Mandyam, Chitra D.

    2014-01-01

    Methamphetamine exposure reduces hippocampal long-term potentiation (LTP) and neurogenesis and these alterations partially contribute to hippocampal maladaptive plasticity. The potential mechanisms underlying methamphetamine-induced maladaptive plasticity were identified in the present study. Expression of brain-derived neurotrophic factor (BDNF; a regulator of LTP and neurogenesis), and its receptor tropomyosin-related kinase B (TrkB) were studied in the dorsal and ventral hippocampal tissue lysates in rats that intravenously self-administered methamphetamine in a limited access (1 h/day) or extended access (6 h/day) paradigm for 17 days post baseline sessions. Extended access methamphetamine enhanced expression of BDNF with significant effects observed in the dorsal and ventral hippocampus. Methamphetamine-induced enhancements in BDNF expression were not associated with TrkB receptor activation as indicated by phospho (p)-TrkB-706 levels. Conversely, methamphetamine produced hypophosphorylation of NMDA receptor subunit 2B (GluN2B) at Tyr-1472 in the ventral hippocampus, indicating reduced receptor activation. In addition, methamphetamine enhanced expression of anti-apoptotic protein Bcl-2 and reduced pro-apoptotic protein Bax levels in the ventral hippocampus, suggesting a mechanism for reducing cell death. Analysis of Akt, a pro-survival kinase that suppresses apoptotic pathways and pAkt at Ser-473 demonstrated that extended access methamphetamine reduces Akt expression in the ventral hippocampus. These data reveal that alterations in Bcl-2 and Bax levels by methamphetamine were not associated with enhanced Akt expression. Given that hippocampal function and neurogenesis vary in a subregion-specific fashion, where dorsal hippocampus regulates spatial processing and has higher levels of neurogenesis, whereas ventral hippocampus regulates anxiety-related behaviors, these data suggest that methamphetamine self-administration initiates distinct allostatic changes in

  9. Downregulated Brain-Derived Neurotrophic Factor-Induced Oxidative Stress in the Pathophysiology of Diabetic Retinopathy.

    PubMed

    Behl, Tapan; Kotwani, Anita

    2017-04-01

    Brain-derived neurotrophic factor (BDNF), a member of neurotrophin growth factor family, physiologically mediates induction of neurogenesis and neuronal differentiation, promotes neuronal growth and survival and maintains synaptic plasticity and neuronal interconnections. Unlike the central nervous system, its secretion in the peripheral nervous system occurs in an activity-dependent manner. BDNF improves neuronal mortality, growth, differentiation and maintenance. It also provides neuroprotection against several noxious stimuli, thereby preventing neuronal damage during pathologic conditions. However, in diabetic retinopathy (a neuromicrovascular disorder involving immense neuronal degeneration), BDNF fails to provide enough neuroprotection against oxidative stress-induced retinal neuronal apoptosis. This review describes the prime reasons for the downregulation of BDNF-mediated neuroprotective actions during hyperglycemia, which renders retinal neurons vulnerable to damaging stimuli, leading to diabetic retinopathy. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  10. Low- and high-intensity treadmill exercise attenuates chronic morphine-induced anxiogenesis and memory impairment but not reductions in hippocampal BDNF in female rats.

    PubMed

    Ghodrati-Jaldbakhan, Shahrbanoo; Ahmadalipour, Ali; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Alizadeh, Maryam

    2017-05-15

    Previous studies from our laboratory have shown that treadmill exercise alleviates the deficits in cognitive functions and anxiety behaviors induced by chronic exposure to morphine in male rats. In this study, we investigated the effects of low and high intensities of treadmill exercise on spatial memory, anxiety-like behaviors, and biochemical changes in the hippocampus and serum of morphine-treated female rats. The adult virgin female rats were injected with bi-daily doses (10mg/kg, at 12h intervals) of morphine over a period of 10days. Following these injections, the rats were exercised under low or high intensities for 30min per session on five days a week for four weeks. After exercise training, object location memory, anxiety profile, hippocampal BDNF, and serum corticosterone and BDNF were examined. Morphine-treated animals exhibited increased anxiety levels, impaired object location memory, and reduced hippocampal BDNF. Exercise alleviated these impairing effects on anxiety profile and memory but not hippocampal BDNF. The high-intensity exercise even further reduced the hippocampal BDNF. Additionally, both exercise regimens in the morphine group and the high exercise in the saline group reduced serum BDNF. Finally, the high-intensity exercise enhanced corticosterone serum. These findings indicate that the negative cognitive and behavioral effects of chronic exposure to morphine could be relieved by forced exercise in female rats. However, the exercise intensity is an important factor to be considered during exercise training. Finally, the correlation between changes of brain and serum BDNF and cognitive functions following morphine exposure needs further research. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Measure of anxiety-related behaviors and hippocampal BDNF levels associated to the amnesic effect induced by MK-801 evaluated in the modified elevated plus-maze in rats.

    PubMed

    Hill, Ximena López; Richeri, Analía; Scorza, Cecilia

    2015-08-01

    Non-competitive N-methyl-d-aspartate receptor (NMDA-R) antagonists impair rodent cognition. Specifically, MK-801, the most potent NMDA-R antagonist, induces an amnesic effect on the modified elevated plus maze (mEPM) learning test in rodents, which reflects spatial long-term memory. However, alterations in anxiety-related behaviors could overlap this amnesic effect. Accumulated evidence supports the role of brain-derived neurotrophic factor (BDNF) in learning and memory processes and deficits in hippocampal BDNF function, which underlie cognitive impairments, have been extensively reported. Therefore, we investigated if changes in anxiety-related behaviors and hippocampal BDNF levels are related with the amnesic effect induced by MK-801 in the mEPM.Transfer latency (TL) as an index of spatial memory in the mEPM was used. TL1 was evaluated 30 min after saline/MK-801 injection (day 1, acquisition session) while learning/memory performance was measured 24 h later at TL2 (day 2, retention session). Also at TL2, two other experimental groups were added to measure the anxiety-related behaviors using the classic EPM and BDNF protein levels by ELISA. To evaluate if amnesia endures, an additional session was recorded on day 3 (TL3) and BDNF levels were measured.While TL1 was not significantly modified by MK-801, TL2 was increased compared to the control group indicating an amnesic effect. This effect was not mimicked by anxiety-related behaviors and it was associated to a significant attenuation of BDNF levels. During the third post-training day, the cognitive performance of MK-801-treated animals was improved and an increased BDNF protein expression in the hippocampus accompanied this change

  12. BDNF function as a potential mediator of bipolar disorder and post-traumatic stress disorder comorbidity

    PubMed Central

    Rakofsky, JJ; Ressler, KJ; Dunlop, BW

    2013-01-01

    Bipolar disorder (BD) and post-traumatic stress disorder (PTSD) frequently co-occur among psychiatric patients, leading to increased morbidity and mortality. Brain-derived neurotrophic factor (BDNF) function is associated with core characteristics of both BD and PTSD. We propose a neurobiological model that underscores the role of reduced BDNF function resulting from several contributing sources, including the met variant of the BDNF val66met (rs6265) single-nucleotide polymorphism, trauma-induced epigenetic regulation and current stress, as a contributor to the onset of both illnesses within the same person. Further studies are needed to evaluate the genetic association between the val66met allele and the BD-PTSD population, along with central/peripheral BDNF levels and epigenetic patterns of BDNF gene regulation within these patients. PMID:21931317

  13. The Effects of Acute Exercise on Memory and Brain-Derived Neurotrophic Factor (BDNF).

    PubMed

    Etnier, Jennifer L; Wideman, Laurie; Labban, Jeffrey D; Piepmeier, Aaron T; Pendleton, Daniel M; Dvorak, Kelly K; Becofsky, Katie

    2016-08-01

    Acute exercise benefits cognition, and some evidence suggests that brain-derived neurotrophic factor (BDNF) plays a role in this effect. The purpose of this study was to explore the dose-response relationship between exercise intensity, memory, and BDNF. Young adults completed 3 exercise sessions at different intensities relative to ventilator threshold (Vt) (VO 2max , Vt - 20%, Vt + 20%). For each session, participants exercised for approximately 30 min. Following exercise, they performed the Rey Auditory Verbal Learning Test (RAVLT) to assess short-term memory, learning, and long-term memory recall. Twenty-four hours later, they completed the RAVLT recognition trial, which provided another measure of long-term memory. Blood was drawn before exercise, immediately postexercise, and after the 30-min recall test. Results indicated that long-term memory as assessed after the 24-hr delay differed as a function of exercise intensity with the largest benefits observed following maximal intensity exercise. BDNF data showed a significant increase in response to exercise; however, there were no differences relative to exercise intensity and there were no significant associations between BDNF and memory. Future research is warranted so that we can better understand how to use exercise to benefit cognitive performance.

  14. Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency.

    PubMed

    Katsu-Jiménez, Yurika; Loría, Frida; Corona, Juan Carlos; Díaz-Nido, Javier

    2016-05-01

    Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration.

  15. Serum brain-derived neurotrophic factor (BDNF) across pregnancy and postpartum: Associations with race, depressive symptoms, and low birth weight.

    PubMed

    Christian, Lisa M; Mitchell, Amanda M; Gillespie, Shannon L; Palettas, Marilly

    2016-12-01

    Brain-derived neurotrophic factor (BDNF) is implicated as a causal factor in major depression and is critical to placental development during pregnancy. Longitudinal data on BDNF across the perinatal period are lacking. These data are of interest given the potential implications for maternal mood and fetal growth, particularly among Black women who show ∼2-fold greater risk for delivering low birth weight infants. Serum BDNF, serum cortisol, and depressive symptoms (per CES-D) were assessed during each trimester and 4-11 weeks postpartum among 139 women (77 Black, 62 White). Low birth weight (<2500g) was determined via medical record. Serum BDNF declined considerably from 1st through 3rd trimesters (ps≤0.008) and subsequently increased at postpartum (p<0.001). Black women exhibited significantly higher serum BDNF during the 1st trimester, 2nd trimester, and postpartum (ps≤0.032) as well as lower serum cortisol during the 2nd and 3rd trimester (ps≤0.01). Higher serum cortisol was concurrently associated with lower serum BDNF in the 2nd trimester only (p<0.05). Controlling for race, serum BDNF at both the 2nd and 3rd trimester was negatively associated with 3rd trimester depressive symptoms (ps≤0.02). In addition, women delivering low versus healthy weight infants showed significantly lower serum BDNF in the 3rd trimester (p=0.004). Women delivering low versus healthy weight infants did not differ in depressive symptoms at any time point during pregnancy (ps≥0.34). Serum BDNF declines considerably across pregnancy in Black and White women, with overall higher levels in Blacks. Lower serum BDNF in late pregnancy corresponds with higher depressive symptoms and risk for low birth weight in Black and White women. However, the predictive value of serum BDNF in pregnancy is specific to within-race comparisons. Potential links between racial differences in serum BDNF and differential pregnancy-related cortisol adaptation require further investigation. Copyright

  16. Silymarin ameliorates experimentally induced depressive like behavior in rats: Involvement of hippocampal BDNF signaling, inflammatory cytokines and oxidative stress response.

    PubMed

    Thakare, Vishnu N; Aswar, Manoj K; Kulkarni, Yogesh P; Patil, Rajesh R; Patel, Bhoomika M

    2017-10-01

    Silymarin is a polyphenolic flavonoid of Silybum marianum, exhibited neuroprotection and antidepressant like activity in acute restraint stressed mice. The main objective of the present study is to investigate possible antidepressant like activity of silymarin in experimentally induced depressive behavior in rats. The depressive behaviors were induced in rats by olfactory bulbectomized (OBX) technique. Wistar rats were administered with silymarin at a dose of 100mg/kg and 200mg/kg, by per oral in OBX and sham operated rats. Behavioral (ambulatory and rearing activity and immobility time), neurochemical [serotonin (5-HT), dopamine (DA), norepinephrine (NE) and brain derived neurotrophic factor (BDNF) level], biochemical (MDA formation, IL-6, TNF-α and antioxidants) changes in hippocampus and cerebral cortex along with serum corticosterone were investigated. Rats subjected to OBX elicited significant increase in immobility time, ambulatory and rearing behaviors, reduced BDNF level, 5-HT, DA, NE and antioxidant parameters along with increased serum corticosterone, MDA formation, IL-6, and TNF-α in hippocampus and cerebral cortex compared to sham operated rats. Administration of with silymarin significantly attenuated immobility time, ambulatory and rearing behaviors, serum corticosterone and improved BDNF expression, 5-HT, DA, NE and antioxidant paradigms in cerebral cortex as well as hippocampus. In addition, silymarin attenuated IL-6, and TNF-α significantly in hippocampus and cerebral cortex in OBX rats. Thus, silymarin exhibits anti-depressant-like activity in OBX rats due to alterations in several neurotransmitters, endocrine and immunologic systems, including BDNF, 5-HT, DA, NE, MDA formation, IL-6, and TNF-α in hippocampus and cerebral cortex as well as serum corticosterone. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB

    NASA Technical Reports Server (NTRS)

    Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)

    2003-01-01

    The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.

  18. Brain-Derived Neurotrophic Factor (BDNF) protein levels in anxiety disorders: systematic review and meta-regression analysis

    PubMed Central

    Suliman, Sharain; Hemmings, Sian M. J.; Seedat, Soraya

    2013-01-01

    Background: Brain-Derived Neurotrophic Factor (BDNF) is a neurotrophin that is involved in the synaptic plasticity and survival of neurons. BDNF is believed to be involved in the pathogenesis of several neuropsychiatric disorders. As findings of BDNF levels in anxiety disorders have been inconsistent, we undertook to conduct a systematic review and meta-analysis of studies that assessed BDNF protein levels in these disorders. Methods: We conducted the review using electronic databases and searched reference lists of relevant articles for any further studies. Studies that measured BDNF protein levels in any anxiety disorder and compared these to a control group were included. Effect sizes of the differences in BDNF levels between anxiety disorder and control groups were calculated. Results: Eight studies with a total of 1179 participants were included. Initial findings suggested that BDNF levels were lower in individuals with any anxiety disorder compared to those without [Standard Mean Difference (SMD) = −0.94 (−1.75, −0.12), p ≤ 0.05]. This was, however, dependent on source of BDNF protein [plasma: SMD = −1.31 (−1.69, −0.92), p ≤ 0.01; serum: SMD = −1.06 (−2.27, 0.16), p ≥ 0.01] and type of anxiety disorder [PTSD: SMD = −0.05 (−1.66, 1.75), p ≥ 0.01; OCD: SMD = −2.33 (−4.21, −0.45), p ≤ 0.01]. Conclusion: Although BDNF levels appear to be reduced in individuals with an anxiety disorder, this is not consistent across the various anxiety disorders and may largely be explained by the significantly lowered BDNF levels found in OCD. Results further appear to be mediated by differences in sampling methods. Findings are, however, limited by the lack of research in this area, and given the potential for BDNF as a biomarker of anxiety disorders, it would be useful to clarify the relationship further. PMID:23908608

  19. Beneficial effect of fluoxetine treatment aganist psychological stress is mediated by increasing BDNF expression in selected brain areas

    PubMed Central

    Li, Gongying; Jing, Ping; Liu, Zhidong; Li, Zhiruo; Ma, Hongxia; Tu, Wenzhen; Zhang, Wei; Zhuo, Chuanjun

    2017-01-01

    SSRI antidepressant fluoxetine is widely used to treat psychological stress related disorders, however the underlying working mechanisms is not fully understood, as SSRIs can rapidly increase the extracellular serotonin levels but it normally takes weeks to reveal their therapeutic effect in the stress-related psychological disorders. Our previous study demonstrated that purely psychological stress without any physic stimuli induces a biphasic change in the expression of brain-derived neurotrophic factor (BDNF), which immediately decrease and then gradually increase after the stress; and that the latter BDNF increase in response to the psychological stress involves the activation of serotonin system. To investigate the role of BDNF in the fluoxetine treatment for stress-related psychological disorders, we examined the mRNA and protein levels of BDNF in the brain of Sprague-Dawley (SD) rats, which were pretreated with fluoxetine at 10 mg/kg or vehicle solution for 14 days, over 24 hour after an acute psychological stress exposure. In situ hybridization and immunohistochemistry were performed to detect the expression of BDNF at different time points in various brain regions after the psychological stress. We found that fluoxetine treatment completely blocked the BDNF decrease induced by the psychological stress, and also enhanced the gradual increase in the expression of BDNF in most of the brain regions except VTA after the psychological stress. The results suggest that the enhancement in BDNF levels induced by chronic fluoxetine treatment mediates the therapeutic effect against psychological stress. PMID:29050222

  20. Serum levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in depressed patients with schizophrenia.

    PubMed

    Wysokiński, Adam

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are neurotrophins-proteins that induce the survival, development, and function of neurons. Their role in the development of schizophrenia and mood disorders is widely studied. This study was aimed to determine whether depression affects levels of BDNF and NT-3 in patients with schizophrenia. Data for 53 Caucasian adult hospitalized patients with chronic paranoid schizophrenia was compared with 27 healthy subjects. Clinical symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) and positive, negative and general sub-scores, the Calgary Depression Scale for Schizophrenia (CDSS), the Hamilton Depression Rating Scale (HDRS), and the Clinical Global Impressions scale (CGI). Patients were defined as depressed (SHZ-DEP) with scores CDSS > 6 and HDRS > 7, otherwise they were included into the non-depressed group (SHZ-nonDEP). In total, 17 patients (32.1%) with schizophrenia met criteria for depression. SHZ-DEP patients had higher scores in HDRS, CDSS, PANSS total, PANSS negative, PANSS general and CGI (p < 0.001 for all comparisons). There were no differences in BDNF or NT-3 levels between patients with schizophrenia and controls. BDNF levels were lower in SHZ-DEP compared to SHZ-nonDEP: 18.82 ± 5.95 versus 22.10 ± 5.31 ng/mL, p = 0.045. NT-3 levels were higher in SHZ-DEP compared to SHZ-nonDEP: 133.31 ± 222.19 versus 56.04 ± 201.28 pg/mL, p = 0.033. There were no differences in neurotrophin levels between patients with schizophrenia and controls. We found lower BDNF and higher NT-3 serum levels in depressed patients with schizophrenia.

  1. Pitavastatin treatment induces neuroprotection through the BDNF-TrkB signalling pathway in cultured cerebral neurons after oxygen-glucose deprivation.

    PubMed

    Cui, Xiaoyan; Fu, Zhenqiang; Wang, Menghan; Nan, Xiaofei; Zhang, Boai

    2018-05-01

    Along with their lipid-lowering effect, statins have been reported to have neuroprotective function in both in vivo and in vitro models of neurodegenerative diseases. We conducted this study in order to uncover the he neuroprotective effect of the lipophilic statin pitavastatin (PTV) and investigate the underlying molecular mechanisms using primary cultured cerebral neurons exposed to oxygen-glucose deprivation (OGD). The primary cultured cerebral neurons were randomly assigned into four groups: the control group, the pitavastatin treatment group, the OGD group and the OGD + pitavastatin treatment group. The pitavastatin's concentration were set as follows: 1μM, 15μM, 30μM. After 3 hours OGD treatment, we use MTT method to assessment cell viability, immunofluorescence to observe neuron morphology and western blot method analysis the BDNF, TrkB. PTV at concentrations of 1 μM and 15 μM elevated the survival rate of cortical neurons exposed to OGD, whereas 30 μM PTV did not show such an effect. Moreover, PTV promoted neuronal dendrite growth at concentrations of 1 μM and 15 μM. Increased expression levels of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) were observed in both of the following two scenarios: when neurons were treated with PTV for 48 hours and when PTV was added after the OGD procedure. Pitavastatin treatment induces neuroprotection in cultured cerebral neurons after oxygen-glucose deprivation this neuroprotection induced by PTV involves the BDNF-TrkB signalling pathway.

  2. Progressive loss of BDNF in a mouse model of Huntington's disease and rescue by BDNF delivery.

    PubMed

    Zuccato, Chiara; Liber, Daniel; Ramos, Catarina; Tarditi, Alessia; Rigamonti, Dorotea; Tartari, Marzia; Valenza, Marta; Cattaneo, Elena

    2005-08-01

    Huntingtin is a protein of 348 kDa that is mutated in Huntington's disease (HD), a dominantly inherited neurodegenerative disorder. Previous data have led us to propose that aspects of the disease arise from both a loss of the neuroprotective function of the wild-type protein, and a toxic activity gained by the mutant protein. In particular, we have shown that wild-type huntingtin stimulates the production of brain-derived neurotrophic factor (BDNF), a pro-survival factor for the striatal neurons that die in the pathology. Wild-type huntingtin controls BDNF gene transcription in cerebral cortex, which is then delivered to its striatal targets. In the disease state, supply of cortical BDNF to the striatum is strongly reduced, possibly leading to striatal vulnerability. Here we show that a reduction in cortical BDNF messenger level correlates with the progression of the disease in a mouse model of HD. In particular, we show that the progressive loss of mRNAs transcribed from BDNF exon II, III and IV follows a different pattern that may reflect different upstream mechanisms impaired by mutation in huntingtin. On this basis, we also discuss the possibility that delivery of BDNF may represent an useful strategy for Huntington's disease treatment.

  3. BDNF contributes to IBS-like colonic hypersensitivity via activating the enteroglia-nerve unit

    PubMed Central

    Wang, Peng; Du, Chao; Chen, Fei-Xue; Li, Chang-Qing; Yu, Yan-Bo; Han, Ting; Akhtar, Suhail; Zuo, Xiu-Li; Tan, Xiao-Di; Li, Yan-Qing

    2016-01-01

    The over-expressed colonic brain-derived neurotrophic factor (BDNF) has been reported to be associated with abdominal pain in patients with irritable bowel syndrome (IBS). However, the neuropathological mechanism is unclear. We here investigated the involvement of enteroglial cells (EGCs) and enteric nerves in IBS-like visceral hypersensitivity. We showed that glial fibrillary acidic protein (GFAP), tyrosine receptor kinase B (TrkB) and substance P (SP) were significantly increased in the colonic mucosa of IBS patients. The upregulation of those proteins was also observed in the colon of mice with visceral hypersensitivity, but not in the colon of BDNF+/− mice. Functionally, TrkB or EGC inhibitors, or BDNF knockdown significantly suppressed visceral hypersensitivity in mice. Using the EGC cell line, we found that recombinant human BDNF (r-HuBDNF) could directly activate EGCs via the TrkB-phospholipase Cγ1 pathway, thereby inducing a significant upregulation of SP. Moreover, supernatants from r-HuBDNF-activated EGC culture medium, rather than r-HuBDNF alone, triggered markedly augmented discharges in isolated intestinal mesenteric afferent nerves. r-HuBDNF alone could cause mesenteric afferent mechanical hypersensitivity independently, and this effect was synergistically enhanced by activated EGCs. We conclude that EGC-enteric nerve unit may be involved in IBS-like visceral hypersensitivity, and this process is likely initiated by BDNF-TrkB pathway activation. PMID:26837784

  4. Enhanced neuroprotective efficacy of bone marrow mesenchymal stem cells co-overexpressing BDNF and VEGF in a rat model of cardiac arrest-induced global cerebral ischemia

    PubMed Central

    Zhou, Lili; Lin, Qingming; Wang, Peng; Yao, Lan; Leong, Kahong; Tan, Zhiqun; Huang, Zitong

    2017-01-01

    Cardiac arrest-induced global cerebral ischemia injury (CA-GCII) usually leads to a poor neurological outcome without an effective treatment. Bone marrow-derived mesenchymal stem cells (BMMSCs) may provide a potential cell-based therapy against neurologic disorders through induction of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF). To optimize the neuroprotective efficacy of BMMSCs further, in this study we have derived BMMSCs, which co-overexpress both BDNF and VEGF, and tested them for the treatment of CA-GCII in a rat model. Lentiviruses that express rat BDNF exon IV or VEGF-A were created using the bicistronic shuttle vectors of pLVX-IRES-ZsGreen1 and pLVX-IRES-tdTomato, respectively. BMMSCs that were co-transduced with the engineered lentiviruses with co-overexpression of both BDNF and VEGF along with corresponding fluorescent protein reporters were injected via jugular vein of rats that just recovered from a cardiac arrest. Animals were then scored for neurofunctional deficits and examined for brain pathology and gene expression relevant to the engraftment seven days after the treatments. We demonstrate that anchorage of lentiviral vector-transduced BMMSCs, which co-overexpressed both BDNF and VEGF in the hippocampus and temporal cortex along with significantly ameliorated brain pathology and improved neurofunctional performance in CA-GCII rats after transplantation. These findings provide a proof of concept for the further validation of engineered BMMSCs for the treatment of CA-GCII patients in clinical practice in the future. PMID:28492549

  5. The AMPA receptor potentiator Org 26576 modulates stress-induced transcription of BDNF isoforms in rat hippocampus.

    PubMed

    Fumagalli, Fabio; Calabrese, Francesca; Luoni, Alessia; Shahid, Mohammed; Racagni, Giorgio; Riva, Marco A

    2012-02-01

    Brain derived neurotrophic factor (BDNF) is a key mediator of brain plasticity. The modulation of its expression and function is important for cognition and represents a key strategy to enhance neuronal resilience. Within this context, there exists a close interaction between glutamatergic neurotransmission and BDNF activity towards regulating cellular homeostasis and plasticity. The aim of the current study was to investigate the ability of the AMPA receptor potentiator Org 26576 to modulate BDNF expression in selected brain regions under basal conditions or in response to an acute swim stress. Rats subjected to a single intraperitoneal injection with Org 26576 (10mg/kg) or saline were exposed to a swim stress session (5 min) and sacrificed 15 min after the end of stress. Real-time PCR assay was used to determine changes in BDNF transcription in different brain regions. Total BDNF mRNA levels were significantly increased in the hippocampus of animals exposed to the combination of Org 26576 and stress whereas, in prefrontal and frontal cortices, BDNF mRNA levels were modulated by the acute stress, independently from drug treatment. The analysis of BDNF transcripts in the hippocampus revealed a major contribution of exons I and IV. Our results suggest that AMPA receptor potentiation by Org 26576 exerts a positive modulatory influence on BDNF expression during ongoing neuronal activity. Given that these mechanisms are critical for neuronal plasticity, we hypothesized that such changes may facilitate learning/coping mechanisms associated with a mild stressful experience. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Circulating brain derived neurotrophic factor (BDNF) and frequency of BDNF positive T cells in peripheral blood in human ischemic stroke: Effect on outcome.

    PubMed

    Chan, Adeline; Yan, Jun; Csurhes, Peter; Greer, Judith; McCombe, Pamela

    2015-09-15

    The aim of this study was to measure the levels of circulating BDNF and the frequency of BDNF-producing T cells after acute ischaemic stroke. Serum BDNF levels were measured by ELISA. Flow cytometry was used to enumerate peripheral blood leukocytes that were labelled with antibodies against markers of T cells, T regulatory cells (Tregs), and intracellular BDNF. There was a slight increase in serum BDNF levels after stroke. There was no overall difference between stroke patients and controls in the frequency of CD4(+) and CD8(+) BDNF(+) cells, although a subgroup of stroke patients showed high frequencies of these cells. However, there was an increase in the percentage of BDNF(+) Treg cells in the CD4(+) population in stroke patients compared to controls. Patients with high percentages of CD4(+) BDNF(+) Treg cells had a better outcome at 6months than those with lower levels. These groups did not differ in age, gender or initial stroke severity. Enhancement of BDNF production after stroke could be a useful means of improving neuroprotection and recovery after stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Increased serum brain-derived neurotrophic factor (BDNF) is predictive of cocaine relapse outcomes: A prospective study

    PubMed Central

    D’Sa, Carrol; Fox, Helen C.; Hong, Adam K.; Dileone, Ralph J.; Sinha, Rajita

    2011-01-01

    Background Cocaine dependence is associated with high relapse rates but few biological markers associated with relapse outcomes have been identified. Extending preclinical research showing a role for central Brain Derived Neurotrophic Factor (BDNF) in cocaine seeking, we examined whether serum BDNF is altered in abstinent, early recovering, cocaine-dependent individuals and if it is predictive of subsequent relapse risk. Methods Serum samples were collected across three consecutive mornings from 35 treatment-engaged, 3 week abstinent cocaine-dependent inpatients (17M/18F) and 34 demographically matched hospitalized healthy control participants (17M/17F). Cocaine dependent individuals were prospectively followed on days 14, 30 and 90 post-treatment discharge to assess cocaine relapse outcomes. Time to cocaine relapse, number of days of cocaine use (frequency), and amount of cocaine use (quantity) were the main outcome measures. Results High correlations in serum BDNF across days indicated reliable and stable serum BDNF measurements. Significantly higher mean serum BDNF levels were observed for the cocaine-dependent patients compared to healthy control participants (p<.001). Higher serum BDNF levels predicted shorter subsequent time to cocaine relapse (hazard ratio: HR: 1.09, p<.05), greater number of days (p<.05) and higher total amounts of cocaine used (p = .05). Conclusions High serum BDNF levels in recovering cocaine-dependent individuals are predictive of future cocaine relapse outcomes and may represent a clinically relevant marker of relapse risk. These data suggest that serum BDNF levels may provide an indication of relapse risk during early recovery from cocaine dependence. PMID:21741029

  8. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers

    PubMed Central

    Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin

    2018-01-01

    Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB− fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. PMID:28600222

  9. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers.

    PubMed

    Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin

    2017-07-01

    Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB- fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. Copyright © 2017. Published by Elsevier Inc.

  10. HBpF-proBDNF: A New Tool for the Analysis of Pro-Brain Derived Neurotrophic Factor Receptor Signaling and Cell Biology.

    PubMed

    Gaub, Perrine; de Léon, Andrès; Gibon, Julien; Soubannier, Vincent; Dorval, Geneviève; Séguéla, Philippe; Barker, Philip A

    2016-01-01

    Neurotrophins activate intracellular signaling pathways necessary for neuronal survival, growth and apoptosis. The most abundant neurotrophin in the adult brain, brain-derived neurotrophic factor (BDNF), is first synthesized as a proBDNF precursor and recent studies have demonstrated that proBDNF can be secreted and that it functions as a ligand for a receptor complex containing p75NTR and sortilin. Activation of proBDNF receptors mediates growth cone collapse, reduces synaptic activity, and facilitates developmental apoptosis of motoneurons but the precise signaling cascades have been difficult to discern. To address this, we have engineered, expressed and purified HBpF-proBDNF, an expression construct containing a 6X-HIS tag, a biotin acceptor peptide (BAP) sequence, a PreScission™ Protease cleavage site and a FLAG-tag attached to the N-terminal part of murine proBDNF. Intact HBpF-proBDNF has activities indistinguishable from its wild-type counterpart and can be used to purify proBDNF signaling complexes or to monitor proBDNF endocytosis and retrograde transport. HBpF-proBDNF will be useful for characterizing proBDNF signaling complexes and for deciphering the role of proBDNF in neuronal development, synapse function and neurodegenerative disease.

  11. Lack of an association of BDNF Val66Met polymorphism and plasma BDNF with hippocampal volume and memory

    PubMed Central

    Kim, Ana; Fagan, Anne M; Goate, Alison M; Benzinger, Tammie LS; Morris, John C; Head, Denise

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) has been shown to be important for neuronal survival and synaptic plasticity in the hippocampus in non-human animals. The Val66Met polymorphism in the BDNF gene, involving a valine (Val) to methionine (Met) substitution at codon 66, has been associated with lower BDNF secretion in vitro. However, there have been mixed results regarding associations between either circulating BDNF or the BDNF Val66Met polymorphism with hippocampal volume and memory in humans. The current study examined the association of BDNF genotype and plasma BDNF with hippocampal volume and memory in two large independent cohorts of middle-aged and older adults (both cognitively normal and early-stage dementia). Sample sizes ranged from 123 to 649. Measures of the BDNF genotype, plasma BDNF, MRI-based hippocampal volume and memory performance were obtained from the Knight Alzheimer Disease Research Center (ADRC) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). There were no significant differences between BDNF Met+ and Met- groups on either hippocampal volume or memory in either cohort. In addition, plasma BDNF was not significantly associated with either hippocampal volume or memory in either cohort. Neither age, cognitive status nor gender moderated any of the relationships. Overall, current findings suggest that BDNF genotype and plasma BDNF may not be robust predictors for variance in hippocampal volume and memory in middle age and older adult cohorts. PMID:25784293

  12. Engineered BDNF producing cells as a potential treatment for neurologic disease

    PubMed Central

    Deng, Peter; Anderson, Johnathon D.; Yu, Abigail S.; Annett, Geralyn; Fink, Kyle D.; Nolta, Jan A.

    2018-01-01

    Introduction Brain-derived neurotrophic factor (BDNF) has been implicated in wide range of neurological diseases and injury. This neurotrophic factor is vital for neuronal health, survival, and synaptic connectivity. Many therapies focus on the restoration or enhancement of BDNF following injury or disease progression. Areas covered The present review will focus on the mechanisms in which BDNF exerts its beneficial functioning, current BDNF therapies, issues and potential solutions for delivery of neurotrophic factors to the central nervous system, and other disease indications that may benefit from overexpression or restoration of BDNF. Expert opinion Due to the role of BDNF in neuronal development, maturation, and health, BDNF is implicated in numerous neurological diseases making it a prime therapeutic agent. Numerous studies have shown the therapeutic potential of BDNF in a number of neurodegenerative disease models and in acute CNS injury, however clinical translation has fallen short due to issues in delivering this molecule. The use of MSC as a delivery platform for BDNF holds great promise for clinical advancement of neurotrophic factor restoration. The ease with which MSC can be engineered opens the door to the possibility of using this cell-based delivery system to advance a BDNF therapy to the clinic. PMID:27159050

  13. BDNF-induced nitric oxide signals in cultured rat hippocampal neurons: time course, mechanism of generation, and effect on neurotrophin secretion.

    PubMed

    Kolarow, Richard; Kuhlmann, Christoph R W; Munsch, Thomas; Zehendner, Christoph; Brigadski, Tanja; Luhmann, Heiko J; Lessmann, Volkmar

    2014-01-01

    BDNF and nitric oxide signaling both contribute to plasticity at glutamatergic synapses. However, the role of combined signaling of both pathways at the same synapse is largely unknown. Using NO imaging with diaminofluoresceine in cultured hippocampal neurons we analyzed the time course of neurotrophin-induced NO signals. Application of exogenous BDNF, NT-4, and NT-3 (but not NGF) induced NO signals in the soma and in proximal dendrites of hippocampal neurons that were sensitive to NO synthase activity, TrkB signaling, and intracellular calcium elevation. The effect of NO signaling on neurotrophin secretion was analyzed in BDNF-GFP, and NT-3-GFP transfected hippocampal neurons. Exogenous application of the NO donor sodium-nitroprusside markedly inhibited neurotrophin secretion. However, endogenously generated NO in response to depolarization and neurotrophin stimulation, both did not result in a negative feedback on neurotrophin secretion. These results suggest that a negative feedback of NO signaling on synaptic secretion of neurotrophins operates only at high intracellular levels of nitric oxide that are under physiological conditions not reached by depolarization or BDNF signaling.

  14. BDNF-induced nitric oxide signals in cultured rat hippocampal neurons: time course, mechanism of generation, and effect on neurotrophin secretion

    PubMed Central

    Kolarow, Richard; Kuhlmann, Christoph R. W.; Munsch, Thomas; Zehendner, Christoph; Brigadski, Tanja; Luhmann, Heiko J.; Lessmann, Volkmar

    2014-01-01

    BDNF and nitric oxide signaling both contribute to plasticity at glutamatergic synapses. However, the role of combined signaling of both pathways at the same synapse is largely unknown. Using NO imaging with diaminofluoresceine in cultured hippocampal neurons we analyzed the time course of neurotrophin-induced NO signals. Application of exogenous BDNF, NT-4, and NT-3 (but not NGF) induced NO signals in the soma and in proximal dendrites of hippocampal neurons that were sensitive to NO synthase activity, TrkB signaling, and intracellular calcium elevation. The effect of NO signaling on neurotrophin secretion was analyzed in BDNF-GFP, and NT-3-GFP transfected hippocampal neurons. Exogenous application of the NO donor sodium-nitroprusside markedly inhibited neurotrophin secretion. However, endogenously generated NO in response to depolarization and neurotrophin stimulation, both did not result in a negative feedback on neurotrophin secretion. These results suggest that a negative feedback of NO signaling on synaptic secretion of neurotrophins operates only at high intracellular levels of nitric oxide that are under physiological conditions not reached by depolarization or BDNF signaling. PMID:25426021

  15. The BDNF/TrkB signaling pathway is involved in heat hyperalgesia mediated by Cdk5 in rats.

    PubMed

    Zhang, Hong-Hai; Zhang, Xiao-Qin; Xue, Qing-Sheng; Yan-Luo; Huang, Jin-Lu; Zhang, Su; Shao, Hai-Jun; Lu, Han; Wang, Wen-Yuan; Yu, Bu-Wei

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) has been shown to play an important role in mediating inflammation-induced heat hyperalgesia. However, the underlying mechanism remains unclear. The aim of this study was to determine whether roscovitine, an inhibitor of Cdk5, could reverse the heat hyperalgesia induced by peripheral injection of complete Freund's adjuvant (CFA) via the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling pathway in the dorsal horn of the spinal cord in rats. Heat hyperalgesia induced by peripheral injection of CFA was significantly reversed by roscovitine, TrkB-IgG, and the TrkB inhibitor K252a, respectively. Furthermore, BDNF was significantly increased from 0.5 h to 24 h after CFA injection in the spinal cord dorsal horn. Intrathecal adminstration of the Cdk5 inhibitor roscovitine had no obvious effects on BDNF levels. Increased TrkB protein level was significantly reversed by roscovitine between 0.5 h and 6 h after CFA injection. Cdk5 and TrkB co-immunoprecipitation results suggested Cdk5 mediates the heat hyperalgesia induced by CFA injection by binding with TrkB, and the binding between Cdk5 and TrkB was markedly blocked by intrathecal adminstration of roscovitine. Our data suggested that the BDNF-TrkB signaling pathway was involved in CFA-induced heat hyperalgesia mediated by Cdk5. Roscovitine reversed the heat hyperalgesia induced by peripheral injection of CFA by blocking BDNF/TrkB signaling pathway, suggesting that severing the close crosstalk between Cdk5 and the BDNF/TrkB signaling cascade may present a potential target for anti-inflammatory pain.

  16. Brain-Derived Neurotrophic Factor Val66Met Human Polymorphism Impairs the Beneficial Exercise-Induced Neurobiological Changes in Mice.

    PubMed

    Ieraci, Alessandro; Madaio, Alessandro I; Mallei, Alessandra; Lee, Francis S; Popoli, Maurizio

    2016-12-01

    Several studies have shown that exercise improves cognitive functions and emotional behaviors. Positive effects of exercise have been associated with enhanced brain plasticity, adult hippocampal neurogenesis, and increased levels of brain-derived neurotrophic factor (BDNF). However, a substantial variability of individual response to exercise has been described, which may be accounted for by individual genetic variants. Here, we have assessed whether and how the common human BDNF Val66Met polymorphism influences the neurobiological effects modulated by exercise in BDNF Val66Met knock-in male mice. Wild-type (BDNF Val/Val ) and homozygous BDNF Val66Met (BDNF Met/Met ) male mice were housed in cages equipped with or without running wheels for 4 weeks. Changes in behavioral phenotype, hippocampal adult neurogenesis, and gene expression were evaluated in exercised and sedentary control mice. We found that exercise reduced the latency to feed in the novelty suppressed feeding and the immobility time in the forced swimming test in BDNF Val/Val but not in BDNF Met/Met mice. Hippocampal neurogenesis was reduced in BDNF Met/Met mice compared with BDNF Val/Val mice. BDNF Met/Met mice had lower basal BDNF protein levels in the hippocampus, which was not recovered following exercise. Moreover, exercise-induced expression of total BDNF, BDNF splice variants 1, 2, 4, 6 and fibronectin type III domain-containing protein 5 (FNDC5) mRNA levels were absent or reduced in the dentate gyrus of BDNF Met/Met mice. Exercise failed to enhance PGC-1α and FNDC5 mRNA levels in the BDNF Met/Met muscle. Overall these results indicate that, in adult male mice, the BDNF Val66Met polymorphism impairs the beneficial behavioral and neuroplasticity effects induced by physical exercise.

  17. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies.

    PubMed

    Fernandes, Brisa S; Molendijk, Marc L; Köhler, Cristiano A; Soares, Jair C; Leite, Cláudio Manuel G S; Machado-Vieira, Rodrigo; Ribeiro, Thamara L; Silva, Jéssica C; Sales, Paulo M G; Quevedo, João; Oertel-Knöchel, Viola; Vieta, Eduard; González-Pinto, Ana; Berk, Michael; Carvalho, André F

    2015-11-30

    The neurotrophic hypothesis postulates that mood disorders such as bipolar disorder (BD) are associated with a lower expression of brain-derived neurotrophic factor (BDNF). However, its role in peripheral blood as a biomarker of disease activity and of stage for BD, transcending pathophysiology, is still disputed. In the last few years an increasing number of clinical studies assessing BDNF in serum and plasma have been published. Therefore, it is now possible to analyse the association between BDNF levels and the severity of affective symptoms in BD as well as the effects of acute drug treatment of mood episodes on BDNF levels. We conducted a systematic review and meta-analysis of all studies on serum and plasma BDNF levels in bipolar disorder. Through a series of meta-analyses including a total of 52 studies with 6,481 participants, we show that, compared to healthy controls, peripheral BDNF levels are reduced to the same extent in manic (Hedges' g = -0.57, P = 0.010) and depressive (Hedges' g = -0.93, P = 0.001) episodes, while BDNF levels are not significantly altered in euthymia. In meta-regression analyses, BDNF levels additionally negatively correlate with the severity of both manic and depressive symptoms. We found no evidence for a significant impact of illness duration on BDNF levels. In addition, in plasma, but not serum, peripheral BDNF levels increase after the successful treatment of an acute mania episode, but not of a depressive one. In summary, our data suggest that peripheral BDNF levels, more clearly in plasma than in serum, is a potential biomarker of disease activity in BD, but not a biomarker of stage. We suggest that peripheral BDNF may, in future, be used as a part of a blood protein composite measure to assess disease activity in BD.

  18. Z-Guggulsterone Improves the Scopolamine-Induced Memory Impairments Through Enhancement of the BDNF Signal in C57BL/6J Mice.

    PubMed

    Chen, Zhuo; Huang, Chao; Ding, Wenbin

    2016-12-01

    Memory impairment is a common symptom in patients with neurodegenerative disorders, and its suppression could be beneficial to improve the quality of life of those patients. Z-guggulsterone, a compound extracted from the resin of plant Commiphora whighitii, exhibits numerous pharmacological effects in clinical practice, such as treatment of inflammation, arthritis, obesity and lipid metabolism disorders. However, the role and possible mechanism of Z-guggulsterone on brain-associated memory impairments are largely unknown. This issue was addressed in the present study in a memory impairment model induced by scopolamine, a muscarinic acetylcholine receptor antagonist, using the passive avoidance, Y-maze and Morris water maze tests. Results showed that scopolamine significantly decreased the step-through latency and spontaneous alternation of C57BL/6J mice in passive avoidance and Y-maze test, whereas increased the mean escape latency and decreased the swimming time in target quadrant in Morris water maze test. Pretreatment of mice with Z-guggulsterone at doses of 30 and 60 mg/kg effectively reversed the scopolamine-induced memory impairments. Mechanistic studies revealed that Z-guggulsterone pretreatment reversed the scopolamine-induced increase in acetylcholinesterase (AchE) activity, as well as decreases in brain-derived neurotrophic factor (BDNF) protein expression and cAMP response element-binding protein (CREB), extracellular regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) phosphorylation levels in the hippocampus and cortex. Inhibition of the BDNF signal, however, blocked the memory-enhancing effect of Z-guggulsterone. Therefore, these findings demonstrate that Z-guggulsterone attenuates the scopolamine-induced memory impairments mainly through activation of the CREB-BDNF signaling pathway, thereby exhibiting memory-improving effects.

  19. Neurocognitive function, brain-derived neurotrophic factor (BDNF) and IL-6 levels in cancer patients with depression.

    PubMed

    Jehn, C F; Becker, B; Flath, B; Nogai, H; Vuong, L; Schmid, P; Lüftner, D

    2015-10-15

    Increased IL-6 and decreased brain-derived neurotrophic factor (BDNF) levels have been implicated in the pathophysiology of depression. The objective was to assess the influence of BDNF and IL-6 on cognitive function and depression in patients with cancer. Serum BDNF and plasma IL-6 were measured in patients with metastatic cancer. Diagnosis of depression was established according to DSM-IV criteria. Cognitive function was assessed by the Verbal Learning and Memory Test (VLMT). A total of 59 patients were recruited in this study. Only IL-6 levels were significantly elevated in patients with clinical depression (35.7 vs. 6.9 pg/ml; p<0.001). There were no differences in hemoglobin levels (p=0.3) or BDNF levels (p=0.16). Patients with clinical depression showed significant impairment of short-term memory (STM) (24.4 vs. 37.5; p=0.01), but not of long-term memory (LTM) (3.9 vs. 2.8; p=0.3). STM was dependent on the level of BDNF and younger age (b=0.60; p=0.001; b= -0.63; p=0.003, respectively). IL-6 was not only strongly associated with depression, but was an independent predictor of BDNF level as well (b= -0.50; p=0.01). LTM was associated only with a good KPS (b=0.47; p=0.037). Hemoglobin levels and the prior number of chemotherapy lines were not predictive of memory performance. Low BDNF is associated with cognitive impairment, STM, in patients with cancer, however no influence on depression could be found. IL-6 is strongly associated with depression and an independent predictor of BDNF levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Brain-Derived Neurotrophic Factor Induces Cell Survival and the Migration of Murine Adult Hippocampal Precursor Cells During Differentiation In Vitro.

    PubMed

    Ortiz-López, Leonardo; Vega-Rivera, Nelly Maritza; Babu, Harish; Ramírez-Rodríguez, Gerardo Bernabé

    2017-01-01

    The generation of new neurons during adulthood involves local precursor cell migration and terminal differentiation in the dentate gyrus. These events are influenced by the hippocampal microenvironment. Brain-derived neurotrophic factor (BDNF) is relevant for hippocampal neuronal development and behavior. Interestingly, studies that have been performed in controlled in vitro systems that involve isolated precursor cells that were derived from the dentate gyrus (AHPCs) have shown that BDNF induces the activation of the TrkB receptor and, consequentially, might activate signaling pathways that favor survival and neuronal differentiation. Based on the fact that the cellular events of AHPCs that are induced by single factors can be studied in this controlled in vitro system, we investigated the ability of BDNF and the involvement of protein kinase C (PKC), as one of the TrkB-downstream activated signaling proteins, in the regulation of migration, here reflected by motility, of AHPCs. Precursor cells were cultured following a concentration-response curve (1-640 ng/ml) for 24 or 96 h. We found that BDNF favored cell survival without altering the viability under culture proliferative conditions of the AHPCs. Concomitantly, glial- and neuronal-differentiated precursor cells increased as a consequence of survival promoted by BDNF. Additionally, pharmacological approaches showed that BDNF (40 ng/ml)-induced migration of AHPCs was blocked with the compounds K252a and GF109203x, which prevent the activation of TrkB and PKC, respectively. The results indicate that in the in vitro migration of differentiated AHPCs it is involved the BDNF and TrkB cascade. Our results provide additional information about the mechanism by which BDNF impacts adult neurogenesis in the hippocampus.

  1. SEIZURE ACTIVITY INVOLVED IN THE UP-REGULATION OF BDNF mRNA EXPRESSION BY ACTIVATION OF CENTRAL MU OPIOID RECEPTORS

    PubMed Central

    ZHANG, H. N.; KO, M. C.

    2009-01-01

    Chemical-induced seizures up-regulated brain-derived neurotrophic factor (BDNF) mRNA expression. Intracerebroventricular (i.c.v.) administration of endogenous opioids preferentially activating μ opioid receptor (MOR) could also increase BDNF mRNA expression. The aim of this study was to determine to what extent i.c.v. administration of synthetic MOR-selective agonists in rats can modulate both seizure activity and up-regulation of BDNF mRNA expression. Effects and potencies of i.c.v. administration of morphine and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO), were directly investigated by scoring behavioral seizures and measuring BDNF mRNA expression. In addition, effects of the opioid receptor antagonist naloxone and antiepileptic drugs, diazepam, phenobarbital, and valproate, on i.c.v. MOR agonist-induced behavioral seizures and up-regulation of BDNF mRNA expression were determined. A single i.c.v. administration of morphine (10–100 μg) or DAMGO (0.15–1.5 μg) dose-dependently elicited behavioral seizures and increased BDNF mRNA expression in the widespread brain regions. However, subcutaneous administration of MOR agonists neither produced behavioral seizures nor increased BDNF mRNA expression. Pretreatment with naloxone 1 mg/kg significantly reduced behavioral seizure scores and the up-regulation of BDNF mRNA expression elicited by i.c.v. morphine or DAMGO. Similarly, diazepam 10 mg/kg and phenobarbital 40 mg/kg significantly blocked i.c.v. MOR agonist-induced actions. Pretreatment with valproate 300 mg/kg only attenuated behavioral seizures, but it did not affect morphine-induced increase of BDNF mRNA expression. This study provides supporting evidence that seizure activity plays an important role in the up-regulation of BDNF mRNA expression elicited by central MOR activation and that decreased inhibitory action of GABAergic system through the modulation on GABA receptor synaptic function by central MOR activation is involved in its regulation of BDNF m

  2. Post-synaptic BDNF-TrkB Signaling in Synapse Maturation, Plasticity and Disease

    PubMed Central

    Yoshii, Akira; Constantine-Paton, Martha

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is a prototypic neurotrophin that regulates diverse developmental events from the selection of neural progenitors to the terminal dendritic differentiation and connectivity of neurons. We focus here on activity-dependent synaptic regulation by BDNF and its receptor, full length TrkB. BDNF-TrkB signaling is involved in transcription, translation, and trafficking of proteins during various phases of synaptic development and has been implicated in several forms of synaptic plasticity. These functions are carried out by a combination of the three signaling cascades triggered when BDNF binds TrkB: the mitogen-activated protein kinase (MAPK), the phospholipase Cγ (PLC PLCγ), and the phosphatidylinositol 3-kinase (PI3K) pathways. MAPK and PI3K play crucial roles in both translation and/or trafficking of proteins induced by synaptic activity while PLCγ regulates intracellular Ca2+ that can drive transcription via cyclic AMP and a Protein Kinase C. Conversely, the abnormal regulation of BDNF is implicated in various developmental and neurodegenerative diseases that perturb neural development and function. We will discuss the current state of understanding BDNF signaling in the context of synaptic development and plasticity with a focus on the post-synaptic cell and close with the evidence that basic mechanisms of BDNF function still need to be understood in order to effectively treat genetic disruptions of these pathways that cause devastating neurodevelopmental diseases. PMID:20186705

  3. Cholecystokinin-8 induces brain-derived neurotrophic factor expression in noradrenergic neuronal cells.

    PubMed

    Hwang, Cheol Kyu; Kim, Do Kyung; Chun, Hong Sung

    2013-08-01

    The sulfated cholecystokinin octapeptide (CCK-8S) is one of the most abundant CCK fragment in the brain, but the effects of CCK-8S on locus coeruleus (LC) noradrenergic (NA) neuronal cells activity have not been studied. In this study, we investigated the effects of CCK-8S on the expression of brain-derived neurotrophic factor (BDNF) in LC NA neuronal cell line, LC3541. Results showed that CCK-8S (10 nM) elevates BDNF levels time-dependently and by 1.82-fold after 4h of incubation. In addition, pretreatment with CCK-8S reversed H₂O₂ (100 μM)-mediated down-regulation of BDNF expression, and effectively suppressed H₂O₂-induced caspase-3 activation. Furthermore, CCK-8S markedly induced expression of neuronal survival markers, such as extracellular signal-regulated kinase 1/2 (ERK 1/2), Akt/protein kinase B (PKB), Bcl-2, and peroxisome proliferators-activated receptor gamma coactivator-1α (PGC-1α). Pharmacological inhibitors of ERK 1/2, Akt/PKB, and protein kinase A (PKA) reversed CCK-8S-mediated BDNF induction in LC3541 cells. These results suggest the first evidence that CCK-8S can protect noradrenergic neurons and enhance the expression of BDNF via ERK 1/2-Akt/PKB-PKA-dependent pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Microglia promote learning-dependent synapse formation through BDNF

    PubMed Central

    Parkhurst, Christopher N.; Yang, Guang; Ninan, Ipe; Savas, Jeffrey N.; Yates, John R.; Lafaille, Juan J.; Hempstead, Barbara L.; Littman, Dan R.; Gan, Wen-Biao

    2014-01-01

    SUMMARY Microglia are the resident macrophages of the central nervous system and their functions have been extensively studied in various brain pathologies. The physiological roles of microglia in brain plasticity and function, however, remain unclear. To address this question, we generated CX3CR1CreER mice expressing tamoxifen-inducible Cre recombinase that allow for specific manipulation of gene function in microglia. Using CX3CR1CreER to drive diphtheria toxin receptor expression in microglia, we found that microglia could be specifically depleted from the brain upon diphtheria toxin administration. Mice depleted of microglia show deficits in multiple learning tasks and a significant reduction in motor learning-dependent synapse formation. Furthermore, Cre-dependent removal of brain-derived neurotrophic factor (BDNF) from microglia largely recapitulated the effects of microglia depletion. Microglial BDNF increases neuronal TrkB phosphorylation, a key mediator of synaptic plasticity. Together, our findings reveal important physiological functions of microglia in learning and memory by promoting learning-related synapse formation through BDNF signaling. PMID:24360280

  5. BDNF is essential to promote persistence of long-term memory storage

    PubMed Central

    Bekinschtein, Pedro; Cammarota, Martín; Katche, Cynthia; Slipczuk, Leandro; Rossato, Janine I.; Goldin, Andrea; Izquierdo, Ivan; Medina, Jorge H.

    2008-01-01

    Persistence is a characteristic attribute of long-term memories (LTMs). However, little is known about the molecular mechanisms that mediate this process. We recently showed that persistence of LTM requires a late protein synthesis- and BDNF-dependent phase in the hippocampus. Here, we show that intrahippocampal delivery of BDNF reverses the deficit in memory persistence caused by inhibition of hippocampal protein synthesis. Importantly, we demonstrate that BDNF induces memory persistence by itself, transforming a nonlasting LTM trace into a persistent one in an ERK-dependent manner. Thus, BDNF is not only necessary, but sufficient to induce a late postacquisition phase in the hippocampus essential for persistence of LTM storage. PMID:18263738

  6. Plasma levels of mature brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine.

    PubMed

    Yamamori, Hidenaga; Hashimoto, Ryota; Ishima, Tamaki; Kishi, Fukuko; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Umeda-Yano, Satomi; Ito, Akira; Hashimoto, Kenji; Takeda, Masatoshi

    2013-11-27

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. Peripheral BDNF levels in patients with schizophrenia have been widely reported in the literature. However, it is still controversial whether peripheral levels of BDNF are altered in patients with schizophrenia. The peripheral BDNF levels previously reported in patients with schizophrenia were total BDNF (proBDNF and mature BDNF) as it was unable to specifically measure mature BDNF due to limited BDNF antibody specificity. In this study, we examined whether peripheral levels of mature BDNF were altered in patients with treatment-resistant schizophrenia. Matrix metalloproteinase-9 (MMP-9) levels were also measured, as MMP-9 plays a role in the conversion of proBDNF to mature BDNF. Twenty-two patients with treatment-resistant schizophrenia treated with clozapine and 22 age- and sex-matched healthy controls were enrolled. The plasma levels of mature BDNF and MMP-9 were measured using ELISA kits. No significant difference was observed for mature BDNF however, MMP-9 was significantly increased in patients with schizophrenia. The significant correlation was observed between mature BDNF and MMP-9 plasma levels. Neither mature BDNF nor MMP-9 plasma levels were associated clinical variables. Our results do not support the view that peripheral BDNF levels are associated with schizophrenia. MMP-9 may play a role in the pathophysiology of schizophrenia and serve as a biomarker for schizophrenia. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Brain derived neurotrophic factor gene (BDNF) and personality traits: the modifying effect of season of birth and sex.

    PubMed

    Kazantseva, A; Gaysina, D; Kutlumbetova, Yu; Kanzafarova, R; Malykh, S; Lobaskova, M; Khusnutdinova, E

    2015-01-02

    Personality traits are complex phenotypes influenced by interactions of multiple genetic variants of small effect and environmental factors. It has been suggested that the brain derived neurotrophic factor gene (BDNF) is involved in personality traits. Season of birth (SOB) has also been shown to affect personality traits due to its influences on brain development during prenatal and early postnatal periods. The present study aimed to investigate the effects of BDNF on personality traits; and the modifying effects of SOB and sex on associations between BDNF and personality traits. A sample of 1018 young adults (68% women; age range 17-25years) of Caucasian origin from the Russian Federation was assessed on personality traits (Novelty Seeking, Harm Avoidance, Reward Dependence, Persistence, Self-directedness, Cooperativeness, Self-transcendence) with the Temperament and Character Inventory-125 (TCI-125). Associations between personality traits and 12 BDNF SNPs were tested using linear regression models. The present study demonstrated the effect of rs11030102 on Persistence in females only (PFDR=0.043; r(2)=1.3%). There were significant interaction effects between Val66Met (rs6265) and SOB (PFDR=0.048, r(2)=1.4%), and between rs2030323 and SOB (PFDR=0.042, r(2)=1.3%), on Harm Avoidance. Our findings provide evidence for the modifying effect of SOB on the association between BDNF and Harm Avoidance, and for the modifying effect of sex on the association between BDNF and Persistence. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The Role of BDNF in the Development of Fear Learning.

    PubMed

    Dincheva, Iva; Lynch, Niccola B; Lee, Francis S

    2016-10-01

    Brain-derived neurotrophic factor (BDNF) is a growth factor that is dynamically expressed in the brain across postnatal development, regulating neuronal differentiation and synaptic plasticity. The neurotrophic hypothesis of psychiatric mood disorders postulates that in the adult brain, decreased BDNF levels leads to altered neural plasticity, contributing to disease. Although BDNF has been established as a key factor regulating the critical period plasticity in the developing visual system, it has recently been shown to also play a role in fear circuitry maturation, which has implications for the emergence of fear-related mood disorders. This review provides a detailed overview of developmental changes in expression of BDNF isoforms, as well as their receptors across postnatal life. In addition, recent developmental studies utilizing a genetic BDNF single nucleotide polymorphism (Val66Met) knock-in mouse highlight the impact of BDNF on fear learning during a sensitive period spanning the transition into adolescent time frame. We hypothesize that BDNF in the developing brain regulates fear circuit plasticity during a sensitive period in early adolescence, and alterations in BDNF expression (genetic or environmental) have a persistent impact on fear behavior and fear-related disorders. © 2016 Wiley Periodicals, Inc.

  9. Direct Interaction between Scaffolding Proteins RACK1 and 14-3-3ζ Regulates Brain-derived Neurotrophic Factor (BDNF) Transcription*

    PubMed Central

    Neasta, Jérémie; Kiely, Patrick A.; He, Dao-Yao; Adams, David R.; O'Connor, Rosemary; Ron, Dorit

    2012-01-01

    RACK1 is a scaffolding protein that spatially and temporally regulates numerous signaling cascades. We previously found that activation of the cAMP signaling pathway induces the translocation of RACK1 to the nucleus. We further showed that nuclear RACK1 is required to promote the transcription of the brain-derived neurotrophic factor (BDNF). Here, we set out to elucidate the mechanism underlying cAMP-dependent RACK1 nuclear translocation and BDNF transcription. We identified the scaffolding protein 14-3-3ζ as a direct binding partner of RACK1. Moreover, we found that 14-3-3ζ was necessary for the cAMP-dependent translocation of RACK1 to the nucleus. We further observed that the disruption of RACK1/14-3-3ζ interaction with a peptide derived from the RACK1/14-3-3ζ binding site or shRNA-mediated 14-3-3ζ knockdown inhibited cAMP induction of BDNF transcription. Together, these data reveal that the function of nuclear RACK1 is mediated through its interaction with 14-3-3ζ. As RACK1 and 14-3-3ζ are two multifunctional scaffolding proteins that coordinate a wide variety of signaling events, their interaction is likely to regulate other essential cellular functions. PMID:22069327

  10. Protection by [6]-shogaol against lipopolysaccharide-induced toxicity in murine astrocytes is related to production of brain-derived neurotrophic factor.

    PubMed

    Shim, Sehwan; Kim, Sokho; Kwon, Young-Bae; Kwon, Jungkee

    2012-03-01

    [6]-Shogaol has beneficial effects in spinal neuronal regeneration, but associated molecules and mechanisms are not identified. Neurotrophic factors, including brain-derived neurotrophic factor (BDNF), are associated with proliferation and differentiation of neuronal cells and exert a neuroprotective effect in neurodegenerative models. We investigated whether treatment with [6]-shogaol increases BDNF expression in lipopolysaccharide (LPS)-treated astrocytes, and examined the effect of [6]-shogaol on neuronal protection. [6]-Shogaol significantly attenuated the cell death induced by LPS. Western blotting showed that [6]-shogaol treatment reduced Bax expression and increased B-cell lymphoma (Bcl)-2 and BclxL expression in LPS-treated cells, consistent with the effects of BDNF treatment. Furthermore, K252a, a blocker of neurotrophic factors, attenuated the cellular protective effects of [6]-shogaol and BDNF. This study provides the first evidence that [6]-shogaol increases the expression of BDNF in LPS-treated astrocytes. Furthermore, these experimental results indicate that production of BDNF in astrocytes might be related to altered cell viability following [6]-shogaol treatment. Thus, the neuroprotective effects of [6]-shogaol is mediated by up-regulation of BDNF. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The role of BDNF, leptin, and catecholamines in reward learning in bulimia nervosa.

    PubMed

    Homan, Philipp; Grob, Simona; Milos, Gabriella; Schnyder, Ulrich; Eckert, Anne; Lang, Undine; Hasler, Gregor

    2014-12-07

    A relationship between bulimia nervosa and reward-related behavior is supported by several lines of evidence. The dopaminergic dysfunctions in the processing of reward-related stimuli have been shown to be modulated by the neurotrophin brain derived neurotrophic factor (BDNF) and the hormone leptin. Using a randomized, double-blind, placebo-controlled, crossover design, a reward learning task was applied to study the behavior of 20 female subjects with remitted bulimia nervosa and 27 female healthy controls under placebo and catecholamine depletion with alpha-methyl-para-tyrosine (AMPT). The plasma levels of BDNF and leptin were measured twice during the placebo and the AMPT condition, immediately before and 1 hour after a standardized breakfast. AMPT-induced differences in plasma BDNF levels were positively correlated with the AMPT-induced differences in reward learning in the whole sample (P=.05). Across conditions, plasma brain derived neurotrophic factor levels were higher in remitted bulimia nervosa subjects compared with controls (diagnosis effect; P=.001). Plasma BDNF and leptin levels were higher in the morning before compared with after a standardized breakfast across groups and conditions (time effect; P<.0001). The plasma leptin levels were higher under catecholamine depletion compared with placebo in the whole sample (treatment effect; P=.0004). This study reports on preliminary findings that suggest a catecholamine-dependent association of plasma BDNF and reward learning in subjects with remitted bulimia nervosa and controls. A role of leptin in reward learning is not supported by this study. However, leptin levels were sensitive to a depletion of catecholamine stores in both remitted bulimia nervosa and controls. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  12. Schisandra chinensis produces the antidepressant-like effects in repeated corticosterone-induced mice via the BDNF/TrkB/CREB signaling pathway.

    PubMed

    Yan, Tingxu; Xu, Mengjie; Wan, Shutong; Wang, Mengshi; Wu, Bo; Xiao, Feng; Bi, Kaishun; Jia, Ying

    2016-09-30

    The present study aimed to examine the antidepressant-like effects and the possible mechanisms of Schisandra chinensis on depressive-like behavior induced by repeated corticosterone injections in mice. Here we evaluated the effect of an ethanol extract of the dried fruit of S. chinensis (EESC) on BDNF/TrkB/CREB signaling in the hippocampus and the prefrontal cortex. Three weeks of corticosterone injections in mice resulted in depressive-like behavior, as indicated by the significant decrease in sucrose consumption and increase the immobility time in the forced swim test, but without any influence on the locomotor activity. Further, there was a significant increase in serum corticosterone level and a significant downregulation of BDNF/TrkB/CREB signaling pathway in the hippocampus and prefrontal cortex in CORT-treated mice. Treatment of mice with EESC (600mg/kg) significantly ameliorated all the behavioral and biochemical changes induced by corticosterone. Moreover, pharmacological inhibition of BDNF signaling by K252a abolished entirely the antidepressant-like effect triggered by chronic EESC treatment. These results suggest that EESC produces an antidepressant-like effect in CORT-induced depression in mice, which is possibly mediated, at least in part, by rectifying the stress-based hypothalamic-pituitary-adrenal (HPA) axis dysfunction paradigm and upregulation of BDNF/TrkB/CREB signaling pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Effects of the BDNF Val66Met Polymorphism on Anxiety-Like Behavior Following Nicotine Withdrawal in Mice.

    PubMed

    Lee, Bridgin G; Anastasia, Agustin; Hempstead, Barbara L; Lee, Francis S; Blendy, Julie A

    2015-12-01

    Nicotine withdrawal is characterized by both affective and cognitive symptoms. Identifying genetic polymorphisms that could affect the symptoms associated with nicotine withdrawal are important in predicting withdrawal sensitivity and identifying personalized cessation therapies. In the current study we used a mouse model of a non-synonymous single nucleotide polymorphism in the translated region of the brain-derived neurotrophic factor (BDNF) gene that substitutes a valine (Val) for a methionine (Met) amino acid (Val66Met) to examine the relationship between the Val66Met single nucleotide polymorphism and nicotine dependence. This study measured proBDNF and the BDNF prodomain levels following nicotine and nicotine withdrawal and examined a mouse model of a common polymorphism in this protein (BDNF(Met/Met)) in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test. Using the BDNF knock-in mouse containing the BDNF Val66Met polymorphism we found: (1) blunted anxiety-like behavior in BDNF(Met/Met) mice following withdrawal in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test; (2) the anxiolytic effects of chronic nicotine are absent in BDNF(Met/Met) mice; and (3) an increase in BDNF prodomain in BDNF(Met/Met) mice following nicotine withdrawal. Our study is the first to examine the effect of the BDNF Val66Met polymorphism on the affective symptoms of withdrawal from nicotine in mice. In these mice, a single-nucleotide polymorphism in the translated region of the BDNF gene can result in a blunted withdrawal, as measured by decreased anxiety-like behavior. The significant increase in the BDNF prodomain in BDNF(Met/Met) mice following nicotine cessation suggests a possible role of this ligand in the circuitry remodeling after withdrawal. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For

  14. Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKCα and cPKCβI.

    PubMed

    Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L; Lanuza, Maria A; Tomàs, Josep

    2017-01-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.

  15. Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKCα and cPKCβI

    PubMed Central

    Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M.; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L.; Lanuza, Maria A.; Tomàs, Josep

    2017-01-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function. PMID:28572757

  16. Are BDNF and glucocorticoid activities calibrated?

    PubMed Central

    Jeanneteau, Freddy; Chao, Moses V.

    2012-01-01

    One hypothesis to account for the onset and severity of neurological disorders is the loss of trophic support. Indeed, changes in the levels and activities of brain-derived neurotrophic factor (BDNF) occur in numerous neurodegenerative and neuropsychiatric diseases. A deficit promotes vulnerability whereas a gain of function facilitates recovery by enhancing survival, synapse formation and synaptic plasticity. Implementation of ‘BDNF therapies’, however, faces numerous methodological and pharmacokinetic issues. Identifying BDNF mimetics that activate the BDNF receptor or downstream targets of BDNF signaling represent an alternative approach. One mechanism that shows great promise is to study the interplay of BDNF and glucocorticoid hormones, a major class of natural steroid secreted during stress reactions and in synchrony with circadian rhythms. While small amounts of glucocorticoids support normal brain function, excess stimulation by these steroid hormones precipitate stress-related affective disorders. To date, however, because of the paucity of knowledge of underlying cellular mechanisms, deleterious effects of glucocorticoids are not prevented following extreme stress. In the present review, we will discuss the complementary roles share by BDNF and glucocorticoids in synaptic plasticity, and delineate possible signaling mechanisms mediating these effects. PMID:23022538

  17. HIV-1 gp120 Upregulates Brain-Derived Neurotrophic Factor (BDNF) Expression in BV2 Cells via the Wnt/β-Catenin Signaling Pathway.

    PubMed

    Wang, Yongdi; Liao, Jinxu; Tang, Shao-Jun; Shu, Jianhong; Zhang, Wenping

    2017-06-01

    HIV-1 gp120 plays a critical role in the pathogenesis of HIV-associated pain, but the underlying molecular mechanisms are incompletely understood. This study aims to determine the effect and possible mechanism of HIV-1 gp120 on BDNF expression in BV2 cells (a murine-derived microglial cell line). We observed that gp120 (10 ng/ml) activated BV2 cells in cultures and upregulated proBDNF/mBDNF. Furthermore, gp120-treated BV2 also accumulated Wnt3a and β-catenin, suggesting the activation of the Wnt/β-catenin pathway. We demonstrated that activation of the pathway by Wnt3a upregulated BDNF expression. In contrast, inhibition of the Wnt/β-catenin pathway by either DKK1 or IWR-1 attenuated BDNF upregulation induced by gp120 or Wnt3a. These findings collectively suggest that gp120 stimulates BDNF expression in BV2 cells via the Wnt/β-catenin signaling pathway.

  18. A functional brain-derived neurotrophic factor (BDNF) gene variant increases the risk of moderate-to-severe allergic rhinitis.

    PubMed

    Jin, Peng; Andiappan, Anand Kumar; Quek, Jia Min; Lee, Bernett; Au, Bijin; Sio, Yang Yie; Irwanto, Astrid; Schurmann, Claudia; Grabe, Hans Jörgen; Suri, Bani Kaur; Matta, Sri Anusha; Westra, Harm-Jan; Franke, Lude; Esko, Tonu; Sun, Liangdan; Zhang, Xuejun; Liu, Hong; Zhang, Furen; Larbi, Anis; Xu, Xin; Poidinger, Michael; Liu, Jianjun; Chew, Fook Tim; Rotzschke, Olaf; Shi, Li; Wang, De Yun

    2015-06-01

    Brain-derived neurotrophic factor (BDNF) is a secretory protein that has been implicated in the pathogenesis of allergic rhinitis (AR), atopic asthma, and eczema, but it is currently unknown whether BDNF polymorphisms influence susceptibility to moderate-to-severe AR. We sought to identify disease associations and the functional effect of BDNF genetic variants in patients with moderate-to-severe AR. Tagging single nucleotide polymorphisms (SNPs) spanning the BDNF gene were selected from the human HapMap Han Chinese from Beijing (CHB) data set, and associations with moderate-to-severe AR were assessed in 2 independent cohorts of Chinese patients (2216 from Shandong province and 1239 living in Singapore). The functional effects of the BDNF genetic variants were determined by using both in vitro and ex vivo assays. The tagging SNP rs10767664 was significantly associated with the risk of moderate-to-severe AR in both Singapore Chinese (P = .0017; odds ratio, 1.324) and Shandong Chinese populations (P = .039; odds ratio, 1.180). The coding nonsynonymous SNP rs6265 was in perfect linkage with rs10767664 and conferred increased BDNF protein secretion by a human cell line in vitro. Subjects bearing the AA genotype of rs10767664 exhibited increased risk of moderate-to-severe AR and displayed increased BDNF protein and total IgE levels in plasma. Using a large-scale expression quantitative trait locus study, we demonstrated that BDNF SNPs are significantly associated with altered BDNF concentrations in peripheral blood. A common genetic variant of the BDNF gene is associated with increased risk of moderate-to-severe AR, and the AA genotype is associated with increased BDNF mRNA levels in peripheral blood. Together, these data indicate that functional BDNF gene variants increase the risk of moderate-to-severe AR. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. Correlation Between Hedgehog (Hh) Protein Family and Brain-Derived Neurotrophic Factor (BDNF) in Autism Spectrum Disorder (ASD).

    PubMed

    Halepoto, Dost Muhammad; Bashir, Shahid; Zeina, Rana; Al-Ayadhi, Laila Y

    2015-12-01

    To determine the correlation of Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Brain-Derived Neurotrophic Factor (BDNF) in children with Autism Spectrum Disorder (ASD). An observational, comparative study. Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, from October 2011 to May 2012. Serum levels of SHH, IHH and BDNF were determined in recently diagnosed autistic patients and age-matched healthy children (n=25), using the Enzyme-Linked Immunosorbent Assay (ELISA). Childhood Autism Rating Scale (CARS) was used for the assessment of autistic severity. Spearman correlation co-efficient 'r' was determined. The serum levels of IHH and SHH were significantly higher in autistic subjects than those of control subjects. There was significant correlation between age and IHH (r = 0.176, p = 0.03), BDNF and severe IHH (r = 0.1763, p = 0.003), and severe BDNF and severe SHH (r = 0.143, p < 0.001). However, there were no significant relationships among the serum levels of SHH, IHH and BDNF and the CARS score, age or gender. The findings support a correlation between SHH, IHH and BDNF in autistic children, suggesting their pathological role in autism.

  20. Upregulation of blood proBDNF and its receptors in major depression.

    PubMed

    Zhou, Li; Xiong, Jing; Lim, Yoon; Ruan, Ye; Huang, Chaohong; Zhu, Yuhong; Zhong, Jin-hua; Xiao, Zhicheng; Zhou, Xin-Fu

    2013-09-25

    In recent decades, the role of brain-derived neurotrophic factor (BDNF) in depression has received intensive attention. However, the relationship between proBDNF and depression has not been clearly elucidated. Forty drug-free women patients diagnosed with major depression and 50 healthy female controls were enrolled in our study. Peripheral blood was sampled from all the subjects. With the blood samples, we assessed the relationship between BDNF and major depression from following aspects: the levels of BDNF, proBDNF and their receptors in the sera and lymphocytes. The mRNA levels of these factors in lymphocytes were also examined. Furthermore, the correlations between each factor and the severity of major depression were tested. It was found that: (a) the protein and serum levels of proBDNF, sortilin and p75NTR were higher in major depressive patients than in healthy controls while mature BDNF and TrkB levels were lower; (b) the BDNF, TrkB, sortilin and p75NTR mRNA levels changed in line with their protein levels; (c) The levels of mature BDNF and TrkB had negative correlations with the major depression severity, and the levels of proBDNF, p75NTR and sortilin were positively correlated with the scores of HRSD-21; (d) the ratio of proBDNF and mBDNF was imbalanced in major depressive patients. The balance between the proBDNF/p75NTR/sortilin and mBDNF/TrkB signaling pathways appears dysregulated in major depression and both pathways should be considered as biomarkers for the major depression More cases on both genders should be enrolled in our study. And further works on the mechanisms of how BDNF and its receptors are regulated in depression should also be carried out. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  1. Locally Produced BDNF Promotes Sclerotic Change in Alveolar Bone after Nerve Injury

    PubMed Central

    Ida-Yonemochi, Hiroko; Yamada, Yurie; Yoshikawa, Hiroyuki

    2017-01-01

    Brain-derived neurotrophic factor (BDNF), which is released due to nerve injury, is known to promote the natural healing of injured nerves. It is often observed that damage of mandibular canal induces local sclerotic changes in alveolar bone. We reported that peripheral nerve injury promotes the local production of BDNF; therefore, it was possible to hypothesize that peripheral nerve injury affects sclerotic changes in the alveolar bone. This study aimed to evaluate the effect of BDNF on osteogenesis using in vitro osteoblast-lineage cell culture and an in vivo rat osteotomy model. MC3T3-E1 cells were cultured with BDNF and were examined for cell proliferative activity, chemotaxis and mRNA expression levels of osteoblast differentiation markers. For in vivo study, inferior alveolar nerve (IAN) injury experiments and mandibular cortical osteotomy were performed using a rat model. In the osteotomy model, exogenous BDNF was applied to bone surfaces after corticotomy of the mandible, and we morphologically analyzed the new bone formation. As a result, mRNA expression of osteoblast differentiation marker, osteocalcin, was significantly increased by BDNF, although cell proliferation and migration were not affected. In the in vivo study, osteopontin-positive new bone formation was significantly accelerated in the BDNF-grafted groups, and active bone remodeling, involving trkB-positive osteoblasts and osteocytes, continued after 28 days. In conclusion, BDNF stimulated the differentiation of MC3T3-E1 cells and it promoted new bone formation and maturation. These results suggested that local BDNF produced by peripheral nerve injury contributes to accelerating sclerotic changes in the alveolar bone. PMID:28072837

  2. Serum brain-derived neurotrophic factor (BDNF) concentrations in pregnant women with post-traumatic stress disorder and comorbid depression.

    PubMed

    Yang, Na; Gelaye, Bizu; Zhong, Qiuyue; Rondon, Marta B; Sanchez, Sixto E; Williams, Michelle A

    2016-12-01

    There is accumulating evidence for the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression. However, the role of BDNF in the pathophysiology of post-traumatic stress disorder (PTSD) remains controversial, and no study has assessed BDNF concentrations among pregnant women with PTSD. We examined early-pregnancy BDNF concentrations among women with PTSD with and without depression. A total of 2928 women attending prenatal care clinics in Lima, Peru, were recruited. Antepartum PTSD and depression were evaluated using PTSD Checklist-Civilian Version (PCL-C) and Patient Health Questionnaire-9 (PHQ-9) scales, respectively. BDNF concentrations were measured in a subset of the cohort (N = 944) using a competitive enzyme-linked immunosorbent assay (ELISA). Logistic regression procedures were used to estimate odds ratios (OR) and 95 % confidence intervals (95 % CI). Antepartum PTSD (37.4 %) and depression (27.6 %) were prevalent in this cohort of low-income pregnant Peruvian women. Approximately 19.9 % of participants had comorbid PTSD-depression. Median serum BDNF concentrations were lower among women with comorbid PTSD-depression as compared with women without either condition (median [interquartile range], 20.44 [16.97-24.30] vs. 21.35 [17.33-26.01] ng/ml; P = 0.06). Compared to the referent group (those without PTSD and depression), women with comorbid PTSD-depression were 1.52-fold more likely to have low (<25.38 ng/ml) BDNF concentrations (OR = 1.52; 95 % CI 1.00-2.31). We observed no evidence of reduced BDNF concentrations among women with isolated PTSD. BDNF concentrations in early pregnancy were only minimally and non-significantly reduced among women with antepartum PTSD. Reductions in BDNF concentrations were more pronounced among women with comorbid PTSD-depression.

  3. Ratio of mBDNF to proBDNF for Differential Diagnosis of Major Depressive Disorder and Bipolar Depression.

    PubMed

    Zhao, Guoqing; Zhang, Chen; Chen, Jun; Su, Yousong; Zhou, Rubai; Wang, Fan; Xia, Weiping; Huang, Jia; Wang, Zuowei; Hu, Yingyan; Cao, Lan; Guo, Xiaoyun; Yuan, Chengmei; Wang, Yong; Yi, Zhenghui; Lu, Weihong; Wu, Yan; Wu, Zhiguo; Hong, Wu; Peng, Daihui; Fang, Yiru

    2017-09-01

    There is a high rate of misdiagnosis between major depressive disorder (MDD) and bipolar disorder (BD) in clinical practice. Our previous work provided suggestive evidence for brain-derived neurotrophic factor (BDNF) in differentiating BD from MDD. In this study, we aimed to investigate the role of mature BDNF (mBDNF) and its precursor (proBDNF) in distinguishing bipolar depression (BP) from MDD during acute depressive episode. A total of 105 participants, including 44 healthy controls, 37 MDD patients and 24 BP patients, were recruited. Enzyme-linked immunosorbent assay kits were applied to measure plasma mBDNF levels and proBDNF levels of all participants. Plasma mBDNF levels were significantly decreased in BP group than those in MDD group (P = 0.001) and healthy controls (P = 0.002). Significantly higher ratio of mBDNF to proBDNF (M/P) at baseline was showed in MDD group than those in BP group as well as in healthy controls (P = 0.000 and P = 0.000, respectively). The optimal model for discriminating BP was the M/P ratio (area under the ROC curve = 0.858, 95 % CI 0.753-0.963). Furthermore, the M/P ratio was restored to normal levels after antidepressants treatment in MDD group. In summary, our data demonstrated that both plasma mBDNF levels and M/P ratio were lower in BP compared with MDD. These findings further support M/P ratio as a potential differential diagnostic biomarker for BP among patients in depressive episodes.

  4. Val66Met BDNF polymorphism as a vulnerability factor for inflammation-associated depressive symptoms in women with breast cancer

    PubMed Central

    Dooley, Larissa N.; Ganz, Patricia A.; Cole, Steve W.; Crespi, Catherine M.; Bower, Julienne E.

    2016-01-01

    Background Inflammation contributes to the development of depression in a subset of individuals, but risk factors that render certain individuals vulnerable to inflammation-associated depression are undetermined. Drawing from animal studies showing that reduced neuroplasticity mediates effects of inflammation on depression, we hypothesized that individuals genetically predisposed to lower levels of neuroplasticity would be more susceptible to inflammation-associated depression. The current study examined whether the Met allele of the BDNF Val66met polymorphism, which predisposes individuals to reduced levels of brain-derived neurotrophic factor (BDNF), a protein vital for neuroplasticity, moderates the association between inflammation and depressive symptoms. Methods Our sample was 112 women with early-stage breast cancer who had recently completed cancer treatment, which can activate inflammation. Participants provided blood for genotyping and assessment of circulating inflammatory markers, and completed a questionnaire assessing depressive symptoms, including somatic, affective, and cognitive dimensions. Results There was a significant interaction between C-reactive protein (CRP) and the BDNF Val66met polymorphism in predicting cognitive depressive symptoms (p=.004), such that higher CRP was related to more cognitive depressive symptoms among Met allele carriers, but not among Val/Val homozygotes. Post-hoc longitudinal analyses suggested that, for Met carriers, higher CRP at baseline predicted higher cognitive depressive symptoms across a one-year follow-up period (p<.001). Conclusion The BDNF Met allele may be a risk factor for inflammation-associated cognitive depressive symptoms among breast cancer survivors. Women with breast cancer who carry this genotype may benefit from early identification and treatment. Limitation BDNF genotype is an indirect measure of BDNF protein levels. PMID:26967918

  5. The roles of BDNF, S100B, and oxidative stress in interferon-induced depression and the effect of antidepressant treatment in patients with chronic viral hepatitis: a prospective study.

    PubMed

    Cicek, Ismet Esra; Cicek, Erdinc; Kayhan, Fatih; Uguz, Faruk; Erayman, Ibrahim; Kurban, Sevil; Yerlikaya, F Hümeyra; Kaya, Nazmiye

    2014-03-01

    The aim of the study was to research the relationship between interferon (IFN) induced depression and sociodemographic characteristics, neurotrophic factors and oxidative stress. Sixty four cases, 34 with Chronic Hepatitis B (CHB) and 30 with Chronic Hepatitis C (CHC), were included in the study. The patients were assessed with Structured Clinical Interview for DSM-IV (SCID-I), Hamilton Anxiety Rating Scale (HARS) and Hamilton Depression Rating Scale (HDRS) at baseline on the 2nd and 6th weeks of treatment. S100 calcium binding protein B (S100B), brain-derived neurotrophic factor (BDNF), total antioxidant status (TAS) and total oxidative stress (TOS) levels were measured at the same visits. In total, 20 patients were diagnosed with major depression (MD) on the sixth week. A significant relationship was found between depression developed after IFN therapy and baseline HARS scores and the type of IFN-α. When the pretreatment levels of HDRS, HARS, S100B, BDNF, TAS, and TOS were compared to those after treatment on the 2nd week, there was a significant increase in HDRS and HARS levels and a significant decrease in the levels of S100B and BDNF. No significant change was determined for TAS and TOS levels. Our study suggests that the pathogenesis of IFN induced depression may involve neurotrophic factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Involvement of BDNF signaling transmission from basolateral amygdala to infralimbic prefrontal cortex in conditioned taste aversion extinction.

    PubMed

    Xin, Jian; Ma, Ling; Zhang, Tian-Yi; Yu, Hui; Wang, Yue; Kong, Liang; Chen, Zhe-Yu

    2014-05-21

    Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB), play a critical role in memory extinction. However, the detailed role of BDNF in memory extinction on the basis of neural circuit has not been fully understood. Here, we aim to investigate the role of BDNF signaling circuit in mediating conditioned taste aversion (CTA) memory extinction of the rats. We found region-specific changes in BDNF gene expression during CTA extinction. CTA extinction led to increased BDNF gene expression in the basolateral amygdala (BLA) and infralimbic prefrontal cortex (IL) but not in the central amygdaloid nucleus (CeA) and hippocampus (HIP). Moreover, blocking BDNF signaling or exogenous microinjection of BDNF into the BLA or IL could disrupt or enhance CTA extinction, which suggested that BDNF signaling in the BLA and IL is necessary and sufficient for CTA extinction. Interestingly, we found that microinjection of BDNF-neutralizing antibody into the BLA could abolish the extinction training-induced BDNF mRNA level increase in the IL, but not vice versa, demonstrating that BDNF signaling is transmitted from the BLA to IL during extinction. Finally, the accelerated extinction learning by infusion of exogenous BDNF in the BLA could also be blocked by IL infusion of BDNF-neutralizing antibody rather than vice versa, indicating that the IL, but not BLA, is the primary action site of BDNF in CTA extinction. Together, these data suggest that BLA-IL circuit regulates CTA memory extinction by identifying BDNF as a key regulator. Copyright © 2014 the authors 0270-6474/14/347302-12$15.00/0.

  7. Pharmacological profile of brain-derived neurotrophic factor (BDNF) splice variant translation using a novel drug screening assay: a "quantitative code".

    PubMed

    Vaghi, Valentina; Polacchini, Alessio; Baj, Gabriele; Pinheiro, Vera L M; Vicario, Annalisa; Tongiorgi, Enrico

    2014-10-03

    The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. BDNF is Associated With Age-Related Decline in Hippocampal Volume

    PubMed Central

    Erickson, Kirk I.; Prakash, Ruchika Shaurya; Voss, Michelle W.; Chaddock, Laura; Heo, Susie; McLaren, Molly; Pence, Brandt D.; Martin, Stephen A.; Vieira, Victoria J.; Woods, Jeffrey A.; Kramer, Arthur F.

    2010-01-01

    Hippocampal volume shrinks in late adulthood, but the neuromolecular factors that trigger hippocampal decay in aging humans remains a matter of speculation. In rodents, brain derived neurotrophic factor (BDNF) promotes the growth and proliferation of cells in the hippocampus and is important in long-term potentiation and memory formation. In humans, circulating levels of BDNF decline with advancing age and a genetic polymorphism for BDNF has been related to gray matter volume loss in old age. In this study, we tested whether age-related reductions in serum levels of BDNF would be related to shrinkage of the hippocampus and memory deficits in older adults. Hippocampal volume was acquired by automated segmentation of magnetic resonance images in 142 older adults without dementia. The caudate nucleus was also segmented and examined in relation to levels of serum BDNF. Spatial memory was tested using a paradigm in which memory load was parametrically increased. We found that increasing age was associated with smaller hippocampal volumes, reduced levels of serum BDNF, and poorer memory performance. Lower levels of BDNF were associated with smaller hippocampi and poorer memory, even when controlling for the variation related to age. In an exploratory mediation analysis, hippocampal volume mediated the age-related decline in spatial memory and BDNF mediated the age-related decline in hippocampal volume. Caudate nucleus volume was unrelated to BDNF levels or spatial memory performance. Our results identify serum BDNF as a significant factor related to hippocampal shrinkage and memory decline in late adulthood. PMID:20392958

  9. The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese patients with bipolar disorder and schizophrenia.

    PubMed

    Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Chen, Shih-Heng; Chu, Chun-Hsien; Wang, Tzu-Yun; Chen, Po-See; Lee, I-Hui; Yang, Yen-Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2014-06-03

    Brain-derived neurotropic factor (BDNF) is widely distributed in the peripheral and central nervous systems. BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of several mental illnesses. To elucidate the role of BDNF, we compared the plasma BDNF levels and the BDNF Val66Met gene variants effect in several mental disorders. We enrolled 644 participants: 177 patients with bipolar I disorder (BP-I), 190 with bipolar II disorder (BP-II), 151 with schizophrenia, and 126 healthy controls. Their plasma BDNF levels and BDNF Val66Met single nucleotide polymorphisms (SNP) were checked before pharmacological treatment. Plasma levels of BDNF were significantly lower in patients with schizophrenia than in healthy controls and patients with bipolar disorder (F = 37.667, p<0.001); the distribution of the BDNF Val66Met SNP was not different between groups (χ(2) = 5.289, p = 0.507). Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not influence plasma BDNF levels in our participants. Plasma BDNF levels were, however, significantly negatively correlated with depression scores in patients with bipolar disorder and with negative symptoms in patients with schizophrenia. We conclude that plasma BDNF profiles in different mental disorders are not affected by BDNF Val66Met gene variants, but by the process and progression of the illness itself. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. BDNF and TNF-α polymorphisms in memory.

    PubMed

    Yogeetha, B S; Haupt, L M; McKenzie, K; Sutherland, H G; Okolicsyani, R K; Lea, R A; Maher, B H; Chan, R C K; Shum, D H K; Griffiths, L R

    2013-09-01

    Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-α). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-α rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-α polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-α polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-α and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-α in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.

  11. Effects of BDNF receptor antagonist on the severity of physical and psychological dependence, morphine-induced locomotor sensitization and the ventral tegmental area-nucleus accumbens BDNF levels in morphine- dependent and withdrawn rats.

    PubMed

    Khalil-Khalili, Masoumeh; Rashidy-Pour, Ali; Bandegi, Ahmad Reza; Yousefi, Behpoor; Jorjani, Hassan; Miladi-Gorji, Hossein

    2018-03-06

    This study examined the effects of systemic administration of the TrkB receptor antagonist (ANA-12) on the severity of physical and psychological dependence and morphine-induced locomotor sensitization, the ventral tegmental area (VTA)-nucleus accumbens (NAc) BDNF levels in morphine-dependent and withdrawn rats. Rats were injected with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 10 days. Then, rats were tested for naloxone-precipitated morphine withdrawal signs, the anxiety (the elevated plus maze-EPM) after the last morphine injection and injection of ANA12 (ip). Also, morphine-induced locomotor sensitization was evaluated after morphine challenge followed by an injection of ANA-12 in morphine-withdrawn rats. The VTA-NAc BDNF levels were assessed in morphine-dependent and withdrawn rats. The overall Gellert-Holtzman score was significantly higher in morphine-dependent rats receiving ANA-12 than in those receiving saline. Also, the percentage of time spent in the open arms in control and morphine-dependent rats receiving ANA-12 were higher compared to the Cont/Sal and D/Sal rats, respectively. There was no significant difference in the locomotor activity and the VTA-NAc BDNF levels between D/Sal/morphine and D/ANA-12/morphine groups after morphine withdrawal. We conclude that the systemic administration of ANA-12 exacerbates the severity of physical dependence on morphine and partially attenuates the anxiety-like behavior in morphine-dependent rats. However, ANA-12 did not affect morphine-induced locomotor sensitization and the VTA-NAc BDNF levels in morphine-dependent and withdrawn rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Molecular Therapy of Melanocortin-4-Receptor Obesity by an Autoregulatory BDNF Vector.

    PubMed

    Siu, Jason J; Queen, Nicholas J; Liu, Xianglan; Huang, Wei; McMurphy, Travis; Cao, Lei

    2017-12-15

    Mutations in the melanocortin-4-receptor ( MC4R ) comprise the most common monogenic form of severe early-onset obesity, and conventional treatments are either ineffective long-term or contraindicated. Immediately downstream of MC4R-in the pathway for regulating energy balance-is brain-derived neurotrophic factor (BDNF). Our previous studies show that adeno-associated virus (AAV)-mediated hypothalamic BDNF gene transfer alleviates obesity and diabetes in both diet-induced and genetic models. To facilitate clinical translation, we developed a built-in autoregulatory system to control therapeutic gene expression mimicking the body's natural feedback systems. This autoregulatory approach leads to a sustainable plateau of body weight after substantial weight loss is achieved. Here, we examined the efficacy and safety of autoregulatory BDNF gene therapy in Mc4r heterozygous mice, which best resemble MC4R obese patients. Mc4r heterozygous mice were treated with either autoregulatory BDNF vector or YFP control and monitored for 30 weeks. BDNF gene therapy prevented the development of obesity and metabolic syndromes characterized by decreasing body weight and adiposity, suppressing food intake, alleviating hyperleptinemia and hyperinsulinemia, improving glucose and insulin tolerance, and increasing energy expenditure, without adverse cardiovascular function or behavioral disturbances. These safety and efficacy data provide preclinical evidence that BDNF gene therapy is a compelling treatment option for MC4R -deficient obese patients.

  13. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring.

    PubMed

    Ceccanti, Mauro; Coccurello, Roberto; Carito, Valentina; Ciafrè, Stefania; Ferraguti, Giampiero; Giacovazzo, Giacomo; Mancinelli, Rosanna; Tirassa, Paola; Chaldakov, George N; Pascale, Esterina; Ceccanti, Marco; Codazzo, Claudia; Fiore, Marco

    2016-07-01

    Ethanol (EtOH) exposure during pregnancy induces cognitive and physiological deficits in the offspring. However, the role of paternal alcohol exposure (PAE) on offspring EtOH sensitivity and neurotrophins has not received much attention. The present study examined whether PAE may disrupt nerve growth factor (NGF) and/or brain-derived neurotrophic factor (BDNF) and affect EtOH preference/rewarding properties in the male offspring. CD1 sire mice were chronically addicted for EtOH or administered with sucrose. Their male offsprings when adult were assessed for EtOH preference by a conditioned place preference paradigm. NGF and BDNF, their receptors (p75(NTR) , TrkA and TrkB), dopamine active transporter (DAT), dopamine receptors D1 and D2, pro-NGF and pro-BDNF were also evaluated in brain areas. PAE affected NGF levels in frontal cortex, striatum, olfactory lobes, hippocampus and hypothalamus. BDNF alterations in frontal cortex, striatum and olfactory lobes were found. PAE induced a higher susceptibility to the EtOH rewarding effects mostly evident at the lower concentration (0.5 g/kg) that was ineffective in non-PAE offsprings. Moreover, higher ethanol concentrations (1.5 g/kg) produced an aversive response in PAE animals and a significant preference in non-PAE offspring. PAE affected also TrkA in the hippocampus and p75(NTR) in the frontal cortex. DAT was affected in the olfactory lobes in PAE animals treated with 0.5 g/kg of ethanol while no differences were found on D1/D2 receptors and for pro-NGF or pro-BDNF. In conclusion, this study shows that: PAE affects NGF and BDNF expression in the mouse brain; PAE may induce ethanol intake preference in the male offspring. © 2015 Society for the Study of Addiction.

  14. The interrelationship of metabolic syndrome and neurodegenerative diseases with focus on brain-derived neurotrophic factor (BDNF): Kill two birds with one stone.

    PubMed

    Motamedi, Shima; Karimi, Isaac; Jafari, Fariba

    2017-06-01

    The brain-derived neurotrophic factor (BDNF) is involved in metabolic syndrome (MetS) and neurodegenerative diseases (NDD) like Alzheimer's disease, Huntington's disease, Parkinson's disease and depression. If one factor plays an essential role in the pathogenesis of two diseases, it can be concluded that there might be a common root in these two diseases, as well. This review was aimed to highlight the crucial roles of BDNF in the pathogenesis of MetS and NDD and to introduce sole prophylactic or therapeutic applications, BDNF gene therapy and BDFN administration, in controlling MetS and NDD.

  15. Activity-Based Anorexia Alters the Expression of BDNF Transcripts in the Mesocorticolimbic Reward Circuit.

    PubMed

    Ho, Emily V; Klenotich, Stephanie J; McMurray, Matthew S; Dulawa, Stephanie C

    2016-01-01

    Anorexia nervosa (AN) is a complex eating disorder with severe dysregulation of appetitive behavior. The activity-based anorexia (ABA) paradigm is an animal model in which rodents exposed to both running wheels and scheduled feeding develop aspects of AN including paradoxical hypophagia, dramatic weight loss, and hyperactivity, while animals exposed to only one condition maintain normal body weight. Brain-derived neurotrophic factor (BDNF), an activity-dependent modulator of neuronal plasticity, is reduced in the serum of AN patients, and is a known regulator of feeding and weight maintenance. We assessed the effects of scheduled feeding, running wheel access, or both on the expression of BDNF transcripts within the mesocorticolimbic pathway. We also assessed the expression of neuronal cell adhesion molecule 1 (NCAM1) to explore the specificity of effects on BDNF within the mesocorticolimbic pathway. Scheduled feeding increased the levels of both transcripts in the hippocampus (HPC), increased NCAM1 mRNA expression in the ventral tegmental area (VTA), and decreased BDNF mRNA levels in the medial prefrontal cortex (mPFC). In addition, wheel running increased BDNF mRNA expression in the VTA. No changes in either transcript were observed in the nucleus accumbens (NAc). Furthermore, no changes in either transcript were induced by the combined scheduled feeding and wheel access condition. These data indicate that scheduled feeding or wheel running alter BDNF and NCAM1 expression levels in specific regions of the mesocorticolimbic pathway. These findings contribute to our current knowledge of the molecular alterations induced by ABA and may help elucidate possible mechanisms of AN pathology.

  16. Peony glycosides reverse the effects of corticosterone on behavior and brain BDNF expression in rats.

    PubMed

    Mao, Qing-Qiu; Huang, Zhen; Ip, Siu-Po; Xian, Yan-Fang; Che, Chun-Tao

    2012-02-01

    Repeated injections of corticosterone (CORT) induce the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depressive-like behavior. This study aimed to examine the antidepressant-like effect and the possible mechanisms of total glycosides of peony (TGP) in the CORT-induced depression model in rats. The results showed that the 3-week CORT injections induced the significant increase in serum CORT levels in rats. Repeated CORT injections also caused depression-like behavior in rats, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. Moreover, it was found that brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus and frontal cortex were significantly decreased in CORT-treated rats. Treatment of the rats with TGP significantly suppressed the depression-like behavior and increased brain BDNF levels in CORT-treated rats. The results suggest that TGP produces an antidepressant-like effect in CORT-treated rats, which is possibly mediated by increasing BDNF expression in the hippocampus and frontal cortex. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Serum proBDNF/BDNF and response to fluvoxamine in drug-naïve first-episode major depressive disorder patients.

    PubMed

    Yoshimura, Reiji; Kishi, Taro; Hori, Hikaru; Atake, Kiyokazu; Katsuki, Asuka; Nakano-Umene, Wakako; Ikenouchi-Sugita, Atsuko; Iwata, Nakao; Nakamura, Jun

    2014-01-01

    We investigated the association between serum proBDNF, a precursor of brain-derived neurotrophic factor (BDNF), and response to fluvoxamine in patients with major depressive disorder (MDD) using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR): physically healthy and free of current alcohol or drug abuse, comorbid anxiety, or personality disorders. Fifty-one patients with MDD (M/F, 19:32; age, 38 ± 19 years) and 51 healthy controls (M/F, 22:29; age, 34 ± 17 years) were studied using DSM-IV-TR: physically healthy and free of current alcohol or drug abuse, comorbid anxiety, or personality disorders. Serum levels of proBDNF and MDNF were measured by sandwich enzyme-linked immunosorbent assay (ELISA). Serum mature BDNF levels in the MDD patients were significantly lower than those in the healthy controls (t = 3.046, p = 0.0018). On the other hand, no difference was found in serum proBDNF between the MDD patients and the healthy controls (t = -0.979, p = 0.833). A trend of negative correlation was found between baseline serum BDNF and baseline scores of the 17 items of the Hamilton Rating Scale for Depression (HAMD17) (r = -0.183, p = 0.071). No correlation was however found between HAMD17 scores and proBDNF at baseline (r = 0.092, p = 0.421). Furthermore, no correlation was observed between baseline HAMD17 scores and baseline proBDNF/BDNF (r = -0.130, p = 0.190). No changes were observed in serum levels of proBDNF and BDNF during the treatment periods. These results suggest that there is no association between serum proBDNF/BDNF and fluvoxamine response in MDD patients at least within 4 weeks of the treatment.

  18. 1Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults

    PubMed Central

    Whiteman, Andrew; Young, Daniel E.; He, Xuemei; Chen, Tai C.; Wagenaar, Robert C.; Stern, Chantal; Schon, Karin

    2013-01-01

    Convergent evidence from human and non-human animal studies suggests aerobic exercise and increased aerobic capacity may be beneficial for brain health and cognition. It is thought growth factors may mediate this putative relationship, particularly by augmenting plasticity mechanisms in the hippocampus, a brain region critical for learning and memory. Among these factors, glucocorticoids, brain derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF), hormones that have considerable and diverse physiological importance, are thought to effect normal and exercise-induced hippocampal plasticity. Despite these predictions, relatively few published human studies have tested hypotheses that relate exercise and fitness to the hippocampus, and none have considered the potential links to all of these hormonal components. Here we present cross-sectional data from a study of recognition memory; serum BDNF, cortisol, IGF-1, and VEGF levels; and aerobic capacity in healthy young adults. We measured circulating levels of these hormones together with performance on a recognition memory task, and a standard graded treadmill test of aerobic fitness. Regression analyses demonstrated BDNF and aerobic fitness predict recognition memory in an interactive manner. In addition, IGF-1 was positively associated with aerobic fitness, but not with recognition memory. Our results may suggest an exercise adaptation-related change in the BDNF dose-response curve that relates to hippocampal memory. PMID:24269495

  19. The Pilot Study of the Effect of Meditation to the Serum Brain-Derived Neurotrophic Factor (BDNF) of Medical Students, Srinakharinvirot University.

    PubMed

    Turakitwanakan, Wanpen; Mekseepralard, Chantana; Busarakumtragul, Panaree

    2015-11-01

    Mindfulness meditation is a method to decrease stress and increase memory. So, mindfulness meditation should increase serum brain-derived neurotrophic factor (BDNF). To study the effect of mindfulness meditation on the serum BDNF of medical students. The study group consisted of 30 male and female second-year medical students that volunteered to participate in the study, aged 19.1 ± 0.55 year olds (range 18-20) from Srinakharinwirot University. Their blood was drawn to measure BDNF before and after a four-day mindfulness meditation programme. The comparison of serum BDNF levels before and after meditation were analysed by paired t-test. The subjects were 66.77%female and 33.33% male. The average serum BDNF level before the meditation was 17.67 ng/ml (SD 3.58). After meditation, there was a decrease in serum BDNF to 17.34 ng/ml, which was however not statistically significant (SD 4.04, p > 0.05). The levels of blood BDNF decreases slightly after practising meditation. We plan to investigate the reason in the future.

  20. BDNF Polymorphism Predicts General Intelligence after Penetrating Traumatic Brain Injury

    PubMed Central

    Rostami, Elham; Krueger, Frank; Zoubak, Serguei; Dal Monte, Olga; Raymont, Vanessa; Pardini, Matteo; Hodgkinson, Colin A.; Goldman, David; Risling, Mårten; Grafman, Jordan

    2011-01-01

    Neuronal plasticity is a fundamental factor in cognitive outcome following traumatic brain injury. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays an important role in this process. While there are many ways to measure cognitive outcome, general cognitive intelligence is a strong predictor of everyday decision-making, occupational attainment, social mobility and job performance. Thus it is an excellent measure of cognitive outcome following traumatic brain injury (TBI). Although the importance of the single-nucleotide polymorphisms polymorphism on cognitive function has been previously addressed, its role in recovery of general intelligence following TBI is unknown. We genotyped male Caucasian Vietnam combat veterans with focal penetrating TBI (pTBI) (n = 109) and non-head injured controls (n = 38) for 7 BDNF single-nucleotide polymorphisms. Subjects were administrated the Armed Forces Qualification Test (AFQT) at three different time periods: pre-injury on induction into the military, Phase II (10–15 years post-injury, and Phase III (30–35 years post-injury). Two single-nucleotide polymorphisms, rs7124442 and rs1519480, were significantly associated with post-injury recovery of general cognitive intelligence with the most pronounced effect at the Phase II time point, indicating lesion-induced plasticity. The genotypes accounted for 5% of the variance of the AFQT scores, independently of other significant predictors such as pre-injury intelligence and percentage of brain volume loss. These data indicate that genetic variations in BDNF play a significant role in lesion-induced recovery following pTBI. Identifying the underlying mechanism of this brain-derived neurotrophic factor effect could provide insight into an important aspect of post-traumatic cognitive recovery. PMID:22087305

  1. Piperine-like alkamides from Piper nigrum induce BDNF promoter and promote neurite outgrowth in Neuro-2a cells.

    PubMed

    Yun, Young Sook; Noda, Sachie; Takahashi, Shigeru; Takahashi, Yuji; Inoue, Hideshi

    2018-01-01

    Black pepper (Piper nigrum) contains a variety of alkamides. Among them, piperine has been reported to have antidepressant-like effects in chronically stressed mice, but little is known about the biological activity of other alkamides. In this study, we investigated the effects of alkamides from white pepper (P. nigrum) on neuronal cells. Twelve alkamides were isolated from white pepper MeOH extracts, and their chemical structures were identified by NMR and MS analyses. The compounds were subjected to assays using the luciferase-reporter gene under the control of the BDNF promoter or cAMP response element in mouse neuroblastoma Neuro-2a cells. In both assays, marked reporter-inducing activity was observed for piperine (1), piperettine (2) and piperylin (7), all of which have in common an (E)-5-(buta-1,3-dien-1-yl)benzo[d] [1, 3] dioxole moiety. Piperettine (2) and piperylin (7) tended to increase endogenous BDNF protein levels. Furthermore, piperylin (7) promoted retinoic acid-induced neurite outgrowth. These results suggest that piperylin (7), or analogues thereof, may have a beneficial effect on disorders associated with dysregulation of BDNF expression, such as depression.

  2. Focus on ECT seizure quality: serum BDNF as a peripheral biomarker in depressed patients.

    PubMed

    Bumb, Jan Malte; Aksay, Suna Su; Janke, Christoph; Kranaster, Laura; Geisel, Olga; Gass, Peter; Hellweg, Rainer; Sartorius, Alexander

    2015-04-01

    Electroconvulsive therapy (ECT) is a well-established, safe and effective treatment in severest or drug-resistant affective disorders. The potential relation between any peripheral biological marker and the seizure quality as a surrogate for treatment efficacy has not been investigated so far. We prospectively examined serum brain-derived neurotrophic factor (BDNF) levels in 20 patients with major depression before and after electroconvulsive therapy. A seizure quality sum score for every ECT session was build up on the basis of the seizure duration, seizure amplitude, central inhibition, interhemispheric coherence and sympathetic activation. Serum BDNF levels were significantly higher after ECT (P = 0.036). In the linear regression analysis, a significant correlation of the serum BDNF levels and the time between the last ECT and the blood withdrawal (P = 0.01) was observed. The ANOVA revealed a significant influence of the interval between the last ECT and the blood withdrawal (P = 0.0017) as well as the seizure quality (P = 0.038) on the variance of BDNF serum levels. Our data corroborate the neurotrophin hypothesis suggesting an ECT-induced central BDNF rise leading to a delayed (>6 days) and increased equilibrium of the peripheral BDNF. The association of seizure adequacy with a BDNF rise might underline the importance of monitoring seizure quality markers in daily practice.

  3. Differential Expression and Regulation of Brain-Derived Neurotrophic Factor (BDNF) mRNA Isoforms in Brain Cells from Mecp2(308/y) Mouse Model.

    PubMed

    Rousseaud, Audrey; Delépine, Chloé; Nectoux, Juliette; Billuart, Pierre; Bienvenu, Thierry

    2015-08-01

    Rett syndrome (RTT) is a severe neurodevelopmental disease caused by mutations in methyl-CpG-binding protein 2 (MECP2), which encodes a transcriptional modulator of many genes including BDNF. BDNF comprises nine distinct promoter regions, each triggering the expression of a specific transcript. The role of this diversity of transcripts remains unknown. MeCP2 being highly expressed in neurons, RTT was initially considered as a neuronal disease. However, recent studies have shown that MeCP2 was also expressed in astrocytes. Though several studies explored Bdnf IV expression in Mecp2-deficient mice, the differential expression of Bdnf isoforms in Mecp2-deficient neurons and astrocytes was never studied. By using TaqMan technology and a mouse model expressing a truncated Mecp2 (Mecp2(308/y)), we firstly showed in neurons that Bdnf transcripts containing exon I, IIb, IIc, IV, and VI are prominently expressed, whereas in astrocytes, Bdnf transcript containing exon VI is preferentially expressed, suggesting a specific regulation of Bdnf expression at the cellular level. Secondly, we confirmed the repressive role of Mecp2 only on the expression of Bdnf VI in neurons. Our data suggested that the truncated Mecp2 protein maintains its function on Bdnf expression regulation in neurons and in astrocytes. Interestingly, we observed that Bdnf transcripts (I and IXA), regulated by neural activity induced by bicuculline in Mecp2(308/y) neurons, were not affected by histone deacetylase inhibition. In contrast, Bdnf transcripts (IIb, IIc, and VI), regulated by histone deacetylation, were not affected by bicuculline treatment in wild-type and Mecp2(308/y) neurons. All these results reflect the complexity of regulation of Bdnf gene.

  4. BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals

    PubMed Central

    Chen, Wenling; Walwyn, Wendy; Ennes, Helena S.; Kim, Hyeyoung; McRoberts, James A.; Marvizón, Juan Carlos G.

    2014-01-01

    NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75NTR), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75NTR inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr1472 phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and an Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. PMID:24611998

  5. Acute Stress and Chronic Stress Change Brain-Derived Neurotrophic Factor (BDNF) and Tyrosine Kinase-Coupled Receptor (TrkB) Expression in Both Young and Aged Rat Hippocampus

    PubMed Central

    Shi, Shou-Sen; Shao, Shu-hong; Yuan, Bang-ping; Pan, Fang

    2010-01-01

    Purpose The purpose of this study is to explore the dynamic change of brain-derived neurotrophic factor (BDNF) mRNA, protein, and tyrosine kinase-coupled receptor (TrkB) mRNA of the rat hippocampus under different stress conditions and to explore the influence of senescence on the productions expression. Materials and Methods By using forced-swimming in 4℃ cold ice water and 25℃ warm water, young and aged male rats were randomly divided into acute stress (AS) and chronic mild repeated stress (CMRS) subgroups, respectively. BDNF productions and TrkB mRNA in the hippocampus were detected by using Western-blotting and reverse transcription-polymerase chain reaction (RT-PCR), separately, at 15, 30, 60, 180, and 720 min after the last stress session. Results The short AS induced a significant increase in BDNF mRNA and protein in both age groups, but the changes in the young group were substantially greater than those of the aged group (p < 0.005). The CMRS resulted in a decrease in BDNF mRNA and protein, but a significant increase in TrkB mRNA in both young and age groups. The expression of BDNF mRNA and protein in the AS groups were higher than in the CMRS groups at 15, 30, and 60 min after stress. Conclusion The results indicated that the up/down-regulation of BDNF and TrkB were affected by aging and the stimulus paradigm, which might reflect important mechanisms by which the hippocampus copes with stressful stimuli. PMID:20635439

  6. Effects of the BDNF Val66Met Polymorphism on Anxiety-Like Behavior Following Nicotine Withdrawal in Mice

    PubMed Central

    Lee, Bridgin G.; Anastasia, Agustin; Hempstead, Barbara L.; Lee, Francis S.

    2015-01-01

    Introduction: Nicotine withdrawal is characterized by both affective and cognitive symptoms. Identifying genetic polymorphisms that could affect the symptoms associated with nicotine withdrawal are important in predicting withdrawal sensitivity and identifying personalized cessation therapies. In the current study we used a mouse model of a non-synonymous single nucleotide polymorphism in the translated region of the brain-derived neurotrophic factor (BDNF) gene that substitutes a valine (Val) for a methionine (Met) amino acid (Val66Met) to examine the relationship between the Val66Met single nucleotide polymorphism and nicotine dependence. Methods: This study measured proBDNF and the BDNF prodomain levels following nicotine and nicotine withdrawal and examined a mouse model of a common polymorphism in this protein (BDNFMet/Met) in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test. Results: Using the BDNF knock-in mouse containing the BDNF Val66Met polymorphism we found: (1) blunted anxiety-like behavior in BDNFMet/Met mice following withdrawal in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test; (2) the anxiolytic effects of chronic nicotine are absent in BDNFMet/Met mice; and (3) an increase in BDNF prodomain in BDNFMet/Met mice following nicotine withdrawal. Conclusions: Our study is the first to examine the effect of the BDNF Val66Met polymorphism on the affective symptoms of withdrawal from nicotine in mice. In these mice, a single-nucleotide polymorphism in the translated region of the BDNF gene can result in a blunted withdrawal, as measured by decreased anxiety-like behavior. The significant increase in the BDNF prodomain in BDNFMet/Met mice following nicotine cessation suggests a possible role of this ligand in the circuitry remodeling after withdrawal. PMID:25744957

  7. Brain-Derived Neurotrophic Factor Loaded PS80 PBCA Nanocarrier for In Vitro Neural Differentiation of Mouse Induced Pluripotent Stem Cells

    PubMed Central

    Chung, Chiu-Yen; Lin, Martin Hsiu-Chu; Lee, I-Neng; Lee, Tsong-Hai; Lee, Ming-Hsueh; Yang, Jen-Tsung

    2017-01-01

    Brain derived neurotrophic factor (BDNF) can induce neural differentiation in stem cells and has the potential for repair of the nervous system. In this study, a polysorbate 80-coated polybutylcyanoacrylate nanocarrier (PS80 PBCA NC) was constructed to deliver plasmid DNAs (pDNAs) containing BDNF gene attached to a hypoxia-responsive element (HRE-cmvBDNF). The hypoxia-sensing mechanism of BDNF expression and inductiveness of the nano-formulation on mouse induced pluripotent stem cells (iPSCs) to differentiate into neurons following hypoxia was tested in vitro with immunofluorescent staining and Western blotting. The HRE-cmvBDNF appeared to adsorb onto the surface of PS80 PBCA NC, with a resultant mean diameter of 92.6 ± 1.0 nm and zeta potential of −14.1 ± 1.1 mV. HIF-1α level in iPSCs was significantly higher in hypoxia, which resulted in a 51% greater BDNF expression when transfected with PS80 PBCA NC/HRE-cmvBDNF than those without hypoxia. TrkB and phospho-Akt were also elevated which correlated with neural differentiation. The findings suggest that PS80 PBCA NC too can be endocytosed to serve as an efficient vector for genes coupled to the HRE in hypoxia-sensitive cells, and activation of the PI3/Akt pathway in iPSCs by BDNF is capable of neural lineage specification. PMID:28335495

  8. BDNF-TrkB controls cocaine-induced dendritic spines in rodent nucleus accumbens dissociated from increases in addictive behaviors.

    PubMed

    Anderson, Ethan M; Wissman, Anne Marie; Chemplanikal, Joyce; Buzin, Nicole; Guzman, Daniel; Larson, Erin B; Neve, Rachael L; Nestler, Eric J; Cowan, Christopher W; Self, David W

    2017-08-29

    Chronic cocaine use is associated with prominent morphological changes in nucleus accumbens shell (NACsh) neurons, including increases in dendritic spine density along with enhanced motivation for cocaine, but a functional relationship between these morphological and behavioral phenomena has not been shown. Here we show that brain-derived neurotrophic factor (BDNF) signaling through tyrosine kinase B (TrkB) receptors in NACsh neurons is necessary for cocaine-induced dendritic spine formation by using either localized TrkB knockout or viral-mediated expression of a dominant negative, kinase-dead TrkB mutant. Interestingly, augmenting wild-type TrkB expression after chronic cocaine self-administration reverses the sustained increase in dendritic spine density, an effect mediated by TrkB signaling pathways that converge on extracellular regulated kinase. Loss of TrkB function after cocaine self-administration, however, leaves spine density intact but markedly enhances the motivation for cocaine, an effect mediated by specific loss of TrkB signaling through phospholipase Cgamma1 (PLCγ1). Conversely, overexpression of PLCγ1 both reduces the motivation for cocaine and reverses dendritic spine density, suggesting a potential target for the treatment of addiction in chronic users. Together, these findings indicate that BDNF-TrkB signaling both mediates and reverses cocaine-induced increases in dendritic spine density in NACsh neurons, and these morphological changes are entirely dissociable from changes in addictive behavior.

  9. Brain-derived neurotrophic factor (BDNF) and oxidative stress in heroin-dependent male patients undergoing methadone maintenance treatment.

    PubMed

    Tsai, Meng-Chang; Huang, Tiao-Lai

    2017-03-01

    Brain-derived neurotrophic factor (BDNF) and oxidative stress may play a role in patients with heroin dependence. The aim of this study was to investigate the serum levels and activities of BDNF and oxidative stress markers, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC), and 8-hydroxy 2'-deoxyguanosine (8-OHdG), in heroin-dependent patients undergoing methadone maintenance treatment (MMT). 60 heroin-dependent male MMT patients and 30 healthy males were recruited for this study. The serum BDNF and oxidative stress markers of these subjects were measured with assay kits. Analyses of covariance (ANCOVAs) with age and body mass index adjustments indicated that the serum levels of BDNF in the MMT patients were significantly higher than those in the healthy controls (F=5.169; p=0.026). However, there were no significant differences between the heroin-dependent patients and the healthy controls in the serum levels or activities of oxidative stress markers (p>0.05). In conclusion, our results suggest that MMT increases BDNF levels in heroin-dependent patients, and that patients undergoing MMT might be in a balanced state of reduced oxidation. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  10. Sucrose and naltrexone prevent increased pain sensitivity and impaired long-term memory induced by repetitive neonatal noxious stimulation: Role of BDNF and β-endorphin.

    PubMed

    Nuseir, Khawla Q; Alzoubi, Karem H; Alhusban, Ahmed; Bawaane, Areej; Al-Azzani, Mohammed; Khabour, Omar F

    2017-10-01

    Pain in neonates is associated with short and long-term adverse outcomes. Data demonstrated that long-term consequences of untreated pain are linked to the plasticity of the neonate's brain. Sucrose is effective and safe for reducing painful procedures from single events. However, the mechanism of sucrose-induced analgesia is not fully understood. The role of the opioid system in this analgesia using the opioid receptor antagonist Naltrexone was investigated, plus the long-term effects on learning and memory formation during adulthood. Pain was induced in rat pups via needle pricks of the paws. Sucrose solution and/or naltrexone were administered before the pricks. All treatments started on day one of birth and continued for two weeks. At the end of 8weeks, behavioral studies were conducted to test spatial learning and memory using radial arm water maze (RAWM), and pain threshold via foot-withdrawal response to a hot plate. The hippocampus was dissected; levels of brain derived neurotrophic factor (BDNF) and endorphins were assessed using ELISA. Acute repetitive neonatal pain increased pain sensitivity later in life, while naltrexone with sucrose decreased pain sensitivity. Naltrexone and/or sucrose prevented neonatal pain induced impairment of long-term memory, while neonatal pain decreased levels of BDNF in the hippocampus; this decrease was averted by sucrose and naltrexone. Sucrose with naltrexone significantly increased β-endorphin levels in noxiously stimulated rats. In conclusion, naltrexone and sucrose can reverse increased pain sensitivity and impaired long-term memory induced by acute repetitive neonatal pain probably by normalizing BDNF expression and increasing β-endorphin levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Reduced serum concentrations of brain-derived neurotrophic factor (BDNF) in transsexual Brazilian men.

    PubMed

    Fontanari, Anna Martha Vaitses; Costa, Angelo Brandelli; Aguiar, Bianca; Tusset, Cíntia; Andreazza, Tahiana; Schneider, Maiko; da Rosa, Eduarda Dias; Soll, Bianca Machado Borba; Schwarz, Karine; da Silva, Dhiordan Cardoso; Borba, André Oliveira; Mueller, Andressa; Massuda, Raffael; Lobato, Maria Inês Rodrigues

    2016-09-06

    Serum BDNF levels are significantly decreased in transsexual Brazilian women when compared to cis-sexual men. Since transsexual men are also exposed to chronic social stress and have a high prevalence of associated psychopathologies, it is plausible to inquire if BDNF serum levels are altered in transsexual men as well. Therefore, our objective was to evaluate differences in BDNF serum level of transsexual men when compared to cis-sexual men and women. Our sample comprises 27 transsexual men, 31 cis-sexual women and 30 cis-sexual men recruited between 2011 and 2015. We observed that BDNF serum concentration is decreased in transsexual men comparing to cis-sexual men and women. Cross-sex hormone treatment, chronic social stress or long-term gender dysphoria (GD) could explain the variation found in BDNF serum levels. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Changes in brain-derived neurotrophic factor (BDNF) during abstinence could be associated with relapse in cocaine-dependent patients.

    PubMed

    Corominas-Roso, Margarida; Roncero, Carlos; Daigre, Constanza; Grau-Lopez, Lara; Ros-Cucurull, Elena; Rodríguez-Cintas, Laia; Sanchez-Mora, Cristina; Lopez, Maria Victoria; Ribases, Marta; Casas, Miguel

    2015-02-28

    Brain-derived neurotrophic factor (BDNF) is involved in cocaine craving in humans and drug seeking in rodents. Based on this, the aim of this study was to explore the possible role of serum BDNF in cocaine relapse in abstinent addicts. Forty cocaine dependent subjects (DSM-IV criteria) were included in an inpatient 2 weeks abstinence program. Organic and psychiatric co-morbidities were excluded. Two serum samples were collected for each subject at baseline and at after 14 abstinence days. After discharge, all cocaine addicts underwent a 22 weeks follow-up, after which they were classified into early relapsers (ER) (resumed during the first 14 days after discharge,) or late relapsers (LR) (resumed beyond 14 days after discharge). The only clinical differences between groups were the number of consumption days during the last month before detoxification. Serum BDNF levels increased significantly across the 12 days of abstinence in the LR group (p=0.02), whereas in the ER group BDNF remained unchanged. In the ER group, the change of serum BDNF during abstinence negatively correlated with the improvement in depressive symptoms (p=0.02). These results suggest that BDNF has a role in relapse to cocaine consumption in abstinent addicts, although the underlying neurobiological mechanisms remain to be clarified. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Changes in Expression of Dopamine, Its Receptor, and Transporter in Nucleus Accumbens of Heroin-Addicted Rats with Brain-Derived Neurotrophic Factor (BDNF) Overexpression.

    PubMed

    Li, Yixin; Xia, Baijuan; Li, Rongrong; Yin, Dan; Liang, Wenmei

    2017-06-09

    BACKGROUND The aim of this study was to explore how changes in the expression of BDNF in MLDS change the effect of BDNF on dopamine (DA) neurons, which may have therapeutic implications for heroin addiction. MATERIAL AND METHODS We established a rat model of heroin addiction and observed changes in the expression of BDNF, DA, dopamine receptor (DRD), dopamine transporter (DAT), and other relevant pathways in NAc. We also assessed the effect of BDNF overexpression in the NAc, behavioral changes of heroin-conditioned place preference (CPP), and naloxone withdrawal in rats with high levels of BDNF. We established 5 adult male rat groups: heroin addiction, lentivirus transfection, blank virus, sham operation, and control. The PCR gene chip was used to study gene expression changes. BDNF lentivirus transfection was used for BDNF overexpression. A heroin CPP model and a naloxone withdrawal model of rats were established. RESULTS Expression changes were found in 20 of the 84 DA-associated genes in the NAc of heroin-addicted rats. Weight loss and withdrawal symptoms in the lentivirus group for naloxone withdrawal was less than in the blank virus and the sham operation group. These 2 latter groups also showed significant behavioral changes, but such changes were not observed in the BDNF lentivirus group before or after training. DRD3 and DAT increased in the NAc of the lentivirus group. CONCLUSIONS BDNF and DA in the NAc are involved in heroin addiction. BDNF overexpression in NAc reduces withdrawal symptoms and craving behavior for medicine induced by environmental cues for heroin-addicted rats. BDNF participates in the regulation of the dopamine system by acting on DRD3 and DAT.

  14. Serum Brain-Derived Neurotrophic Factor is Related to Platelet Reactivity but not to Genetic Polymorphisms within BDNF Encoding Gene in Patients with Type 2 Diabetes.

    PubMed

    Eyileten, Ceren; Zaremba, Małgorzata; Janicki, Piotr K; Rosiak, Marek; Cudna, Agnieszka; Kapłon-Cieślicka, Agnieszka; Opolski, Grzegorz; Filipiak, Krzysztof J; Kosior, Dariusz A; Mirowska-Guzel, Dagmara; Postula, Marek

    2016-01-07

    The aim of this study was to investigate the association between serum concentrations of the brain-derived neurotrophic factor (BDNF), platelet reactivity and inflammatory markers, as well as its association with BDNF encoding gene variants in type 2 diabetic patients (T2DM) during acetylsalicylic acid (ASA) therapy. This retrospective, open-label study enrolled 91 patients. Serum BDNF, genotype variants, hematological, biochemical, and inflammatory markers were measured. Blood samples were taken in the morning 2-3 h after the last ASA dose. The BDNF genotypes for selected variants were analyzed by use of the iPLEX Sequenom assay. In multivariate linear regression analysis, CADP-CT >74 sec (p<0.001) and sP-selectin concentration (p=0.03) were predictive of high serum BDNF. In multivariate logistic regression analysis, CADP-CT >74 sec (p=0.02) and IL-6 concentration (p=0.03) were risk factors for serum BDNF above the median. Non-significant differences were observed between intronic SNP rs925946, missense SNP rs6265, and intronic SNP rs4923463 allelic groups and BDNF concentrations in the investigated cohort. Chronic inflammatory condition and enhanced immune system are associated with the production of BDNF, which may be why the serum BDNF level in T2DM patients with high platelet reactivity was higher compared to subjects with normal platelet reactivity in this study.

  15. Neuroprotective effects of various doses of topiramate against methylphenidate-induced oxidative stress and inflammation in isolated rat amygdala: the possible role of CREB/BDNF signaling pathway.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Falak, Reza; Heidari, Mansour; Sharzad, Mahshid; Kalantari, Elham

    2016-12-01

    Methylphenidate (MPH) abuse damages brain cells. The neuroprotective effects of topiramate (TPM) have been reported previously, but its exact mechanism of action still remains unclear. This study investigated the in vivo role of various doses of TPM in the protection of rat amygdala cells against methylphenidate-induced oxidative stress and inflammation. Seventy adult male rats were divided into seven groups. Groups 1 and 2 received normal saline (0.7 ml/rat) and MPH (10 mg/kg), respectively, for 21 days. Groups 3, 4, 5, 6, and 7 were concurrently treated with MPH (10 mg/kg) and TPM (10, 30, 50, 70, and 100 mg/kg), respectively, for 21 days. elevated plus maze (EPM) was used to assess motor activity disturbances. In addition, oxidative, antioxidantand inflammatory factors and CREB, Ak1, CAMK4, MAPK3, PKA, BDNF, and c FOS gene levels were measured by RT-PCR, and also, CREB and BDNF protein levels were measured by WB in isolated amygdalae. MPH significantly disturbed motor activity and TPM (70 and 100 mg/kg) neutralized its effects. MPH significantly increased lipid peroxidation, mitochondrial GSSG levels and IL-1β and TNF-α level and CAMK4 gene expression in isolated amygdala cells. In contrast, superoxide dismutase, glutathione peroxidase, and glutathione reductase activities and CREB, BDNF Ak1, MAPK3, PKA, BDNF, and c FOS expression significantly decreased. The various doses of TPM attenuated these effects of MPH. It seems that TPM can be used as a neuroprotective agent and is a good candidate against MPH-induced neurodegeneration.

  16. Hyperphagia, Severe Obesity, Impaired Cognitive Function, and Hyperactivity Associated With Functional Loss of One Copy of the Brain-Derived Neurotrophic Factor (BDNF) Gene

    PubMed Central

    Gray, Juliette; Yeo, Giles S.H.; Cox, James J.; Morton, Jenny; Adlam, Anna-Lynne R.; Keogh, Julia M.; Yanovski, Jack A.; El Gharbawy, Areeg; Han, Joan C.; Tung, Y.C. Loraine; Hodges, John R.; Raymond, F. Lucy; O’Rahilly, Stephen; Farooqi, I. Sadaf

    2008-01-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) inhibits food intake, and rodent models of BDNF disruption all exhibit increased food intake and obesity, as well as hyperactivity. We report an 8-year-old girl with hyperphagia and severe obesity, impaired cognitive function, and hyperactivity who harbored a de novo chromosomal inversion, 46,XX,inv(11)(p13p15.3), a region encompassing the BDNF gene. We have identified the proximal inversion breakpoint that lies 850 kb telomeric of the 5′ end of the BDNF gene. The patient’s genomic DNA was heterozygous for a common coding polymorphism in BDNF, but monoallelic expression was seen in peripheral lymphocytes. Serum concentration of BDNF protein was reduced compared with age- and BMI-matched subjects. Haploinsufficiency for BDNF was associated with increased ad libitum food intake, severe early-onset obesity, hyper-activity, and cognitive impairment. These findings provide direct evidence for the role of the neurotrophin BDNF in human energy homeostasis, as well as in cognitive function, memory, and behavior. PMID:17130481

  17. Apoptosis Signal-Regulating Kinase 1 Is Involved in Brain-Derived Neurotrophic Factor (BDNF)-Enhanced Cell Motility and Matrix Metalloproteinase 1 Expression in Human Chondrosarcoma Cells

    PubMed Central

    Lin, Chih-Yang; Chang, Sunny Li-Yun; Fong, Yi-Chin; Hsu, Chin-Jung; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is the primary malignancy of bone that is characterized by a potent capacity to invade locally and cause distant metastasis, and is therefore associated with poor prognoses. Chondrosarcoma further shows a predilection for metastasis to the lungs. The brain-derived neurotrophic factor (BDNF) is a small molecule in the neurotrophin family of growth factors that is associated with the disease status and outcome of cancers. However, the effect of BDNF on cell motility in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma cell lines had significantly higher cell motility and BDNF expression compared to normal chondrocytes. We also found that BDNF increased cell motility and expression of matrix metalloproteinase-1 (MMP-1) in human chondrosarcoma cells. BDNF-mediated cell motility and MMP-1 up-regulation were attenuated by Trk inhibitor (K252a), ASK1 inhibitor (thioredoxin), JNK inhibitor (SP600125), and p38 inhibitor (SB203580). Furthermore, BDNF also promoted Sp1 activation. Our results indicate that BDNF enhances the migration and invasion activity of chondrosarcoma cells by increasing MMP-1 expression through a signal transduction pathway that involves the TrkB receptor, ASK1, JNK/p38, and Sp1. BDNF thus represents a promising new target for treating chondrosarcoma metastasis. PMID:23892595

  18. Remission of depression following electroconvulsive therapy (ECT) is associated with higher levels of brain-derived neurotrophic factor (BDNF).

    PubMed

    Freire, Thiago Fernando Vasconcelos; Fleck, Marcelo Pio de Almeida; da Rocha, Neusa Sica

    2016-03-01

    Research on the association between electroconvulsive therapy (ECT) and increased brain derived neurotrophic factor (BDNF) levels has produced conflicting result. There have been few studies which have evaluated BDNF levels in clinical contexts where there was remission following treatment. The objective of this study was to investigate whether remission of depression following ECT is associated with changes in BDNF levels. Adult inpatients in a psychiatric unit were invited to participate in this naturalistic study. Diagnoses were made using the Mini-International Neuropsychiatric Interview (MINI) and symptoms were evaluated at admission and discharge using the Hamilton Rating Scale for Depression (HDRS-17). Thirty-one patients who received a diagnosis of depression and were subjected to ECT were included retrospectively. Clinical remission was defined as a score of less than eight on the HDRS-17 at discharge. Serum BDNF levels were measured in blood samples collected at admission and discharge with a commercial kit used in accordance with the manufacturer's instructions. Subjects HDRS-17 scores improved following ECT (t = 13.29; p = 0.00). A generalized estimating equation (GEE) model revealed a remission × time interaction with BDNF levels as a dependent variable in a Wald chi-square test [Wald χ(2) = 5.98; p = 0.01]. A post hoc Bonferroni test revealed that non-remitters had lower BDNF levels at admission than remitters (p = 0.03), but there was no difference at discharge (p = 0.16). ECT remitters had higher serum BDNF levels at admission and the level did not vary during treatment. ECT non-remitters had lower serum BDNF levels at admission, but levels increased during treatment and were similar to those of ECT remitters at discharge. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Transplantation of BDNF-Secreting Mesenchymal Stem Cells Provides Neuroprotection in Chronically Hypertensive Rat Eyes

    PubMed Central

    Harper, Matthew M.; Grozdanic, Sinisa D.; Blits, Bas; Kuehn, Markus H.; Zamzow, Daniel; Buss, Janice E.; Kardon, Randy H.; Sakaguchi, Donald S.

    2011-01-01

    Purpose. To evaluate the ability of mesenchymal stem cells (MSCs) engineered to produce and secrete brain-derived neurotrophic factor (BDNF) to protect retinal function and structure after intravitreal transplantation in a rat model of chronic ocular hypertension (COH). Methods. COH was induced by laser cauterization of trabecular meshwork and episcleral veins in rat eyes. COH eyes received an intravitreal transplant of MSCs engineered to express BDNF and green fluorescent protein (BDNF-MSCs) or just GFP (GFP-MSCs). Computerized pupillometry and electroretinography (ERG) were performed to assess optic nerve and retinal function. Quantification of optic nerve damage was performed by counting retinal ganglion cells (RGCs) and evaluating optic nerve cross-sections. Results. After transplantation into COH eyes, BDNF-MSCs preserved significantly more retina and optic nerve function than GFP-MSC–treated eyes when pupil light reflex (PLR) and ERG function were evaluated. PLR analysis showed significantly better function (P = 0.03) in BDNF-MSC–treated eyes (operated/control ratio = 63.00% ± 11.39%) than GFP-MSC–treated eyes (operated/control ratio = 31.81% ± 9.63%) at 42 days after surgery. The BDNF-MSC–transplanted eyes also displayed a greater level of RGC preservation than eyes that received the GFP-MSCs only (RGC cell counts: BDNF-MSC–treated COH eyes, 112.2 ± 19.39 cells/section; GFP-MSC–treated COH eyes, 52.21 ± 11.54 cells/section; P = 0.01). Conclusions. The authors have demonstrated that lentiviral-transduced BDNF-producing MSCs can survive in eyes with chronic hypertension and can provide retina and optic nerve functional and structural protection. Transplantation of BDNF-producing stem cells may be a viable treatment strategy for glaucoma. PMID:21498611

  20. Promoter Methylation and BDNF and DAT1 Gene Expression Profiles in Patients with Drug Addiction.

    PubMed

    Kordi-Tamandani, Dor Mohammad; Tajoddini, Shahrad; Salimi, Farzaneh

    2015-01-01

    Drug addiction is a brain disorder that has negative consequences for individuals and society. Addictions are chronic relapsing diseases of the brain that are caused by direct drug-induced effects and persevering neuroadaptations at the epigenetic, neuropeptide and neurotransmitter levels. Because the dopaminergic system has a significant role in drug abuse, the purpose of this study was to analyze the methylation and expression profile of brain-derived neurotrophic factor (BDNF) and dopamine transporter (DAT1) genes in individuals with drug addiction. BDNF and DAT1 promoter methylation were investigated with a methylation-specific polymerase chain reaction (PCR) technique in blood samples from 75 individuals with drug addiction and 65 healthy controls. The expression levels of BDNF and DAT1 were assessed in 12 mRNA samples from the blood of patients and compared to the samples of healthy controls (n = 12) with real-time quantitative reverse transcription PCR. No significant differences were found in the methylation of BDNF and DAT1 between patients and controls, but the relative levels of expression of BDNF and DAT1 mRNA differed significantly in the patients compared to controls (p < 0.0001). These results showed that the methylation status of the BDNF and DAT1 genes had no significant function in the processes of drug addiction.

  1. Effects of gravity changes on gene expression of BDNF and serotonin receptors in the mouse brain.

    PubMed

    Ishikawa, Chihiro; Li, Haiyan; Ogura, Rin; Yoshimura, Yuko; Kudo, Takashi; Shirakawa, Masaki; Shiba, Dai; Takahashi, Satoru; Morita, Hironobu; Shiga, Takashi

    2017-01-01

    Spaceflight entails various stressful environmental factors including microgravity. The effects of gravity changes have been studied extensively on skeletal, muscular, cardiovascular, immune and vestibular systems, but those on the nervous system are not well studied. The alteration of gravity in ground-based animal experiments is one of the approaches taken to address this issue. Here we investigated the effects of centrifugation-induced gravity changes on gene expression of brain-derived neurotrophic factor (BDNF) and serotonin receptors (5-HTRs) in the mouse brain. Exposure to 2g hypergravity for 14 days showed differential modulation of gene expression depending on regions of the brain. BDNF expression was decreased in the ventral hippocampus and hypothalamus, whereas increased in the cerebellum. 5-HT1BR expression was decreased in the cerebellum, whereas increased in the ventral hippocampus and caudate putamen. In contrast, hypergravity did not affect gene expression of 5-HT1AR, 5-HT2AR, 5-HT2CR, 5-HT4R and 5-HT7R. In addition to hypergravity, decelerating gravity change from 2g hypergravity to 1g normal gravity affected gene expression of BDNF, 5-HT1AR, 5-HT1BR, and 5-HT2AR in various regions of the brain. We also examined involvement of the vestibular organ in the effects of hypergravity. Surgical lesions of the inner ear's vestibular organ removed the effects induced by hypergravity on gene expression, which suggests that the effects of hypergravity are mediated through the vestibular organ. In summary, we showed that gravity changes induced differential modulation of gene expression of BDNF and 5-HTRs (5-HT1AR, 5-HT1BR and 5-HT2AR) in some brain regions. The modulation of gene expression may constitute molecular bases that underlie behavioral alteration induced by gravity changes.

  2. Effects of gravity changes on gene expression of BDNF and serotonin receptors in the mouse brain

    PubMed Central

    Yoshimura, Yuko; Kudo, Takashi; Shirakawa, Masaki; Shiba, Dai; Takahashi, Satoru; Morita, Hironobu

    2017-01-01

    Spaceflight entails various stressful environmental factors including microgravity. The effects of gravity changes have been studied extensively on skeletal, muscular, cardiovascular, immune and vestibular systems, but those on the nervous system are not well studied. The alteration of gravity in ground-based animal experiments is one of the approaches taken to address this issue. Here we investigated the effects of centrifugation-induced gravity changes on gene expression of brain-derived neurotrophic factor (BDNF) and serotonin receptors (5-HTRs) in the mouse brain. Exposure to 2g hypergravity for 14 days showed differential modulation of gene expression depending on regions of the brain. BDNF expression was decreased in the ventral hippocampus and hypothalamus, whereas increased in the cerebellum. 5-HT1BR expression was decreased in the cerebellum, whereas increased in the ventral hippocampus and caudate putamen. In contrast, hypergravity did not affect gene expression of 5-HT1AR, 5-HT2AR, 5-HT2CR, 5-HT4R and 5-HT7R. In addition to hypergravity, decelerating gravity change from 2g hypergravity to 1g normal gravity affected gene expression of BDNF, 5-HT1AR, 5-HT1BR, and 5-HT2AR in various regions of the brain. We also examined involvement of the vestibular organ in the effects of hypergravity. Surgical lesions of the inner ear’s vestibular organ removed the effects induced by hypergravity on gene expression, which suggests that the effects of hypergravity are mediated through the vestibular organ. In summary, we showed that gravity changes induced differential modulation of gene expression of BDNF and 5-HTRs (5-HT1AR, 5-HT1BR and 5-HT2AR) in some brain regions. The modulation of gene expression may constitute molecular bases that underlie behavioral alteration induced by gravity changes. PMID:28591153

  3. BDNF and LTP-/LTD-like plasticity of the primary motor cortex in Gilles de la Tourette syndrome.

    PubMed

    Marsili, L; Suppa, A; Di Stasio, F; Belvisi, D; Upadhyay, N; Berardelli, I; Pasquini, M; Petrucci, S; Ginevrino, M; Fabbrini, G; Cardona, F; Defazio, G; Berardelli, A

    2017-03-01

    Gilles de la Tourette syndrome (GTS) is characterized by motor and vocal tics and often associated with obsessive-compulsive disorder (OCD). Responses to intermittent/continuous theta-burst stimulation (iTBS/cTBS), which probe long-term potentiation (LTP)-/depression (LTD)-like plasticity in the primary motor cortex (M1), are reduced in GTS. ITBS-/cTBS-induced M1 plasticity can be affected by brain-derived neurotrophic factor (BDNF) polymorphism. We investigated whether the BDNF polymorphism influences iTBS-/cTBS-induced LTP-/LTD-like M1 plasticity in 50 GTS patients and in 50 age- and sex-matched healthy subjects. In GTS patients, motor and psychiatric (OCD) symptom severity was rated using the Yale Global Tic Severity Scale (YGTSS) and the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). We compared M1 iTBS-/cTBS-induced plasticity in healthy subjects and in patients with GTS. We also compared responses to TBS according to BDNF polymorphism (Val/Val vs Met carriers) in patients and controls. Fourteen healthy subjects and 13 GTS patients were Met carriers. When considering the whole group of controls, as expected, iTBS increased whereas cTBS decreased MEPs. Differently, iTBS/cTBS failed to induce LTP-/LTD-like plasticity in patients with GTS. When comparing responses to TBS according to BDNF polymorphism, in healthy subjects, Met carriers showed reduced MEP changes compared with Val/Val individuals. Conversely, in patients with GTS, responses to iTBS/cTBS were comparable in Val/Val individuals and Met carriers. YGTSS and Y-BOCS scores were comparable in Met carriers and in Val/Val subjects. We conclude that iTBS and cTBS failed to induce LTP-/LTD-like plasticity in patients with GTS, and this was not affected by BDNF genotype.

  4. Alterations in brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in the brain regions of a learned helplessness rat model and the antidepressant effects of a TrkB agonist and antagonist.

    PubMed

    Shirayama, Yukihiko; Yang, Chun; Zhang, Ji-chun; Ren, Qian; Yao, Wei; Hashimoto, Kenji

    2015-12-01

    Role of brain-derived neurotrophic factor (BDNF)-TrkB signaling in a learned helplessness (LH) model of depression was investigated. LH rats showed a reduction of BDNF in the medial prefrontal cortex (mPFC), CA3, and dentate gyrus (DG) of the hippocampus, whereas LH rats showed an increase in BDNF in the nucleus accumbens (NAc). Furthermore, levels of proBDNF, a BDNF precursor, were higher in the mPFC, but lower in the NAc, of LH rats. A single bilateral infusion of a TrkB agonist 7,8-DHF, but not a TrkB antagonist ANA-12, into the infralimbic (IL) of mPFC, DG, and CA3, but not the prelimbic (PrL) of mPFC, exerted antidepressant effects in LH rats. In contrast, a single bilateral infusion of ANA-12, but not 7,8-DHF, into the core and shell of NAc exerted antidepressant-like effects in LH rats, with more potent effects observed for the NAc core than for NAc shell. Interestingly, a single administration of 7,8-DHF (10mg/kg, i.p.) significantly improved a decreased phosphorylation of TrkB in the mPFC, CA3, and DG of LH rats. Additionally, ANA-12 (0.5mg/kg, i.p.) significantly improved an increased phosphorylation of TrkB in the NAc of LH rats. In conclusion, these results suggest that LH causes depression-like behavior by altering BDNF in the brain regions, and that proBDNF-BDNF processing and transport may be altered in the mPFC-NAc circuit of LH rats. Therefore, TrkB agonists might exert antidepressant effects by stimulating TrkB in the IL, CA3, and DG, while TrkB antagonists might exert antidepressant effects by blocking TrkB in the NAc. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  5. Chronic Swimming Exercise Ameliorates Low-Soybean-Oil Diet-Induced Spatial Memory Impairment by Enhancing BDNF-Mediated Synaptic Potentiation in Developing Spontaneously Hypertensive Rats.

    PubMed

    Cheng, Mei; Cong, Jiyan; Wu, Yulong; Xie, Jiacun; Wang, Siyuan; Zhao, Yue; Zang, Xiaoying

    2018-05-01

    Exercise and low-fat diets are common lifestyle modifications used for the treatment of hypertension besides drug therapy. However, unrestrained low-fat diets may result in deficiencies of low-unsaturated fatty acids and carry contingent risks of delaying neurodevelopment. While aerobic exercise shows positive neuroprotective effects, it is still unclear whether exercise could alleviate the impairment of neurodevelopment that may be induced by certain low-fat diets. In this research, developing spontaneously hypertensive rats (SHR) were treated with chronic swimming exercise and/or a low-soybean-oil diet for 6 weeks. We found that performance in the Morris water maze was reduced and long-term potentiation in the hippocampus was suppressed by the diet, while a combination treatment of exercise and diet alleviated the impairment induced by the specific low-fat diet. Moreover, the combination treatment effectively increased the expression of brain-derived neurotrophic factor (BDNF) and N-methyl-D-aspartic acid receptor (NMDAR), which were both down-regulated by the low-soybean-oil diet in the hippocampus of developing SHR. These findings suggest that chronic swimming exercise can ameliorate the low-soybean-oil diet-induced learning and memory impairment in developing SHR through the up-regulation of BDNF and NMDAR expression.

  6. Dose-and gender-specific effects of resistance training on circulating levels of brain derived neurotrophic factor (BDNF) in community-dwelling older adults.

    PubMed

    Forti, Louis Nuvagah; Van Roie, Evelien; Njemini, Rose; Coudyzer, Walter; Beyer, Ingo; Delecluse, Christophe; Bautmans, Ivan

    2015-10-01

    BDNF is known to induce neuroplasticity and low circulating levels have been related to neuronal loss in older persons. Physical exercise is thought to trigger BDNF-induced neuroplasticity, but conflicting observations have been reported regarding the effects of resistance training on circulating BDNF in the elderly. These conflicting observations might reflect dose-and gender-specific differences. Fifty-six apparently healthy elderly (68 ± 5 years) participants were randomized to 12 weeks of resistance training (3×/week) at either high-resistance (HIGH, 8 Males, 10 Females, 2 × 10-15 repetitions at 80% 1 RM), low-resistance (LOW, 9 Males, 10 Females, 1 × 80-100 repetitions at 20% 1 RM), or mixed low-resistance (LOW+, 9 Males, 10 Females, 1 × 60 repetitions at 20% 1 RM followed by 1 × 10-20 repetitions at 40% 1 RM). Serum was collected for BDNF assay at baseline and after 12 weeks (24 h-48 h after the last training). 12 weeks of LOW+ exercise significantly increased BDNF levels in male (from 34.9 ± 10.7 ng/mL to 42.9 ± 11.9 ng/mL, time × group interaction p=0.013), but not in female participants. No significant change was observed in HIGH or LOW, neither in male nor female subjects. Our results show that only the mixed-low-resistance training program with a very high number of repetitions at a sufficiently high external resistance was able to increase circulating BDNF in older male participants. Training to volitional fatigue might be necessary to obtain optimal results. Additional studies are needed to unravel the underlying mechanisms, as well as to confirm the observed gender difference. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Atorvastatin treatment is associated with increased BDNF level and improved functional recovery after atherothrombotic stroke.

    PubMed

    Zhang, Jingmiao; Mu, Xiali; Breker, Dane A; Li, Ying; Gao, Zongliang; Huang, Yonglu

    2017-01-01

    Statins have a positive impact on ischemic stroke outcome. It has been reported that statin have neuroprotective function after ischemic stroke in addition to lipid-lowering effect in animal model. However, the neuroprotective function of statin after stroke has not been confirmed in clinical studies. The aim of this study was to evaluate in a clinical model if statins induce neuroprotection after stroke. We, therefore, assessed serum brain-derived neurotrophic factor (BDNF) levels and functional recovery in atherothrombotic stroke patients and investigated their relationship with atorvastatin treatment. Seventy-eight patients with atherothrombotic stroke were enrolled and randomly assigned to atorvastatin treatment group or placebo control group. Neurological function after stroke was assessed with the National Institutes of Health Stroke Scale, modified Rankin Scale (mRS) and Barthel Index (BI). The serum BDNF levels were both measured at 1 day and 6 weeks after stroke. Linear regression was used to assess the association between BDNF levels and neurological function scores. The mRS and BI were markedly improved in the atorvastatin group when compared to placebo at 6 weeks after stroke. The serum BDNF levels in atorvastatin group were significantly elevated by 6 weeks after stroke and higher than the BDNF levels in controls. In addition, the serum BDNF levels significantly correlated with mRS and BI after stroke. Our results demonstrated that atorvastatin treatment was associated with the increased BDNF level and improved functional recovery after atherothrombotic stroke. This study indicates that atorvastatin-related elevation in the BDNF level may promote functional recovery in stroke patients.

  8. Brain-derived neurotrophic factor (BDNF) and TrkB in the piglet brainstem after post-natal nicotine and intermittent hypercapnic hypoxia.

    PubMed

    Tang, Samantha; Machaalani, Rita; Waters, Karen A

    2008-09-26

    Brain-derived neurotrophic factor (BDNF) and its receptor TrkB play a significant role in the regulation of cell growth, survival and death during central nervous system development. The expression of BDNF and TrkB is affected by noxious insults. Two insults during the early post-natal period that are of interest to our laboratory are exposure to nicotine and to intermittent hypercapnic hypoxia (IHH). Piglet models were used to mimic the conditions associated with the risk factors for the sudden infant death syndrome (SIDS) including post-natal cigarette smoke exposure (nicotine model) and prone sleeping where the infant is subjected to re-breathing of expired gases (IHH model). We aimed to determine the effects of nicotine and IHH, alone or in combination, on pro- and rhBDNF and TrkB expression in the developing piglet brainstem. Four piglet groups were studied, with equal gender ratios in each: control (n=14), nicotine (n=14), IHH (n=10) and nic+IHH (n=14). Applying immunohistochemistry, and studying six nuclei of the caudal medulla, we found that compared to controls, TrkB was the only protein significantly decreased after nicotine and nic+IHH exposure regardless of gender. For pro-BDNF and rhBDNF however, observed changes were more evident in males than females exposed to nicotine and nic+IHH. The implications of these findings are that a prior nicotine exposure makes the developing brainstem susceptible to greater changes in the neurotrophic effects of BDNF and its receptor TrkB in the face of a hypoxic insult, and that the effects are greater in males than females.

  9. Plasma BDNF levels following weight recovery in anorexia nervosa.

    PubMed

    Phillips, Kathryn E; Jimerson, David C; Pillai, Anilkumar; Wolfe, Barbara E

    2016-10-15

    Preclinical studies have implicated brain-derived neurotrophic factor (BDNF) in the regulation of eating behavior and body weight. As reviewed in this report, prior studies of BDNF levels in anorexia nervosa have yielded variable results, perhaps reflecting effects of malnutrition and psychiatric comorbidity. The goal of the current report was to assess plasma BDNF as a biomarker in weight-recovered individuals with a history of anorexia nervosa (ANWR). Study groups included women meeting criteria for ANWR and healthy female controls. Participants were in a normal weight range, free of current major psychiatric disorder, and free of medication. Self-ratings included eating disorder symptoms, depression and anxiety. Plasma BDNF levels were measured by enzyme linked immunoassay. Plasma BDNF levels were not significantly different for ANWR and control groups. Plasma BDNF levels were inversely correlated with anxiety ratings in controls (p<0.02) but not in the ANWR group. This report provides new evidence that circulating BDNF concentrations do not differ in healthy controls and ANWR free of psychiatric comorbidity. Additionally, the data provide new information on the relationship between plasma BDNF and anxiety in these two study groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Tyrosine triple mutated AAV2-BDNF gene therapy in a rat model of transient IOP elevation

    PubMed Central

    Igarashi, Tsutomu; Kobayashi, Maika; Kameya, Shuhei; Fujimoto, Chiaki; Nakamoto, Kenji; Takahashi, Hisatomo; Igarashi, Toru; Miyake, Noriko; Iijima, Osamu; Hirai, Yukihiko; Shimada, Takashi; Okada, Takashi; Takahashi, Hiroshi

    2016-01-01

    Purpose We examined the neuroprotective effects of exogenous brain-derived neurotrophic factor (BDNF), which provides protection to retinal ganglion cells (RGCs) in rodents, in a model of transient intraocular pressure (IOP) elevation using a mutant (triple Y-F) self-complementary adeno-associated virus type 2 vector encoding BDNF (tm-scAAV2-BDNF). Methods The tm-scAAV2-BDNF or control vector encoding green fluorescent protein (GFP; tm-scAAV2-GFP) was intravitreally administered to rats, which were then divided into four groups: control, ischemia/reperfusion (I/R) injury only, I/R injury with tm-scAAV2-GFP, and tm-scAAV2-BDNF. I/R injury was then induced by transiently increasing IOP, after which the rats were euthanized to measure the inner retinal thickness and cell counts in the RGC layer. Results Intravitreous injection of tm-scAAV2-BDNF resulted in high levels of BDNF expression in the neural retina. Histological analysis showed that the inner retinal thickness and cell numbers in the RGC layer were preserved after transient IOP elevation in eyes treated with tm-scAAV2-BDNF but not in the other I/R groups. Significantly reduced glial fibrillary acidic protein (GFAP) immunostaining after I/R injury in the rats that received tm-scAAV2-BDNF indicated reduced retinal stress, and electroretinogram (ERG) analysis confirmed preservation of retinal function in the tm-scAAV2-BDNF group. Conclusions These results demonstrate the feasibility and effectiveness of neuroprotective gene therapy using tm-scAAV2-BDNF to protect the inner retina from transiently high intraocular pressure. An in vivo gene therapeutic approach to the clinical management of retinal diseases in conditions such as glaucoma, retinal artery occlusion, hypertensive retinopathy, and diabetic retinopathy thus appears feasible. PMID:27440998

  11. BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification

    PubMed Central

    Cacialli, Pietro; Gueguen, Marie-Madeleine; Coumailleau, Pascal; D’Angelo, Livia; Kah, Olivier; Lucini, Carla; Pellegrini, Elisabeth

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations. PMID:27336917

  12. Autocrine action of BDNF on dendrite development of adult-born hippocampal neurons.

    PubMed

    Wang, Liang; Chang, Xingya; She, Liang; Xu, Duo; Huang, Wei; Poo, Mu-ming

    2015-06-03

    Dendrite development of newborn granule cells (GCs) in the dentate gyrus of adult hippocampus is critical for their incorporation into existing hippocampal circuits, but the cellular mechanisms regulating their dendrite development remains largely unclear. In this study, we examined the function of brain-derived neurotrophic factor (BDNF), which is expressed in adult-born GCs, in regulating their dendrite morphogenesis. Using retrovirus-mediated gene transfection, we found that deletion and overexpression of BDNF in adult-born GCs resulted in the reduction and elevation of dendrite growth, respectively. This effect was mainly due to the autocrine rather than paracrine action of BDNF, because deletion of BDNF only in the newborn GCs resulted in dendrite abnormality of these neurons to a similar extent as that observed in conditional knockout (cKO) mice with BDNF deleted in the entire forebrain. Furthermore, selective expression of BDNF in adult-born GCs in BDNF cKO mice fully restored normal dendrite development. The BDNF autocrine action was also required for the development of normal density of spines and normal percentage of spines containing the postsynaptic marker PSD-95, suggesting autocrine BDNF regulation of synaptogenesis. Furthermore, increased dendrite growth of adult-born GCs caused by voluntary exercise was abolished by BDNF deletion specifically in these neurons and elevated dendrite growth due to BDNF overexpression in these neurons was prevented by reducing neuronal activity with coexpression of inward rectifier potassium channels, consistent with activity-dependent autocrine BDNF secretion. Therefore, BDNF expressed in adult-born GCs plays a critical role in dendrite development by acting as an autocrine factor. Copyright © 2015 the authors 0270-6474/15/358384-10$15.00/0.

  13. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism affects sympathetic tone in a gender-specific way.

    PubMed

    Chang, Chuan-Chia; Chang, Hsin-An; Chen, Tien-Yu; Fang, Wen-Hui; Huang, San-Yuan

    2014-09-01

    The Val/Val genotype of the brain-derived neurotrophic factor (BDNF) polymorphism (Val66Met) has been reported to affect human anxiety-related phenotypes. Substantial research has demonstrated that anxiety is associated with sympathetic activation, while sex steroid hormones have been shown to exert differential actions in regulating BDNF expression. Thus, we examined whether the BDNF variant modulates autonomic function in a gender-dependent manner. From 708 adults initially screened for medical and psychiatric illnesses, a final cohort of 583 drug-free healthy Han Chinese (355 males, 228 females; age 34.43±8.42 years) was recruited for BDNF genotyping (Val/Val: 136, 23.3%, Val/Met: 294, 50.4%, and Met/Met: 153, 26.2%). Time- and frequency-domain analyses of heart rate variability (HRV) were used to assess autonomic outflow to the heart. Significant genotype-by-gender interaction effects were found on HRV indices. Even after adjusting for possible confounders, male participants bearing the Val/Val genotype had significant increases in low frequency (LF), LF% and LF/high frequency (HF) ratio, indicating altered sympathovagal balance with increased sympathetic modulation, compared to male Met/Met homozygotes. Females, however, showed an opposite but non-significant pattern. These results suggest that the studied BDNF polymorphism is associated with sympathetic control in a gender-specific way. The findings here support the view that male subjects with the Val/Val genotype have increased risk of anxiety by association with sympathetic activation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Social learning requires plasticity enhanced by fluoxetine through prefrontal Bdnf-TrkB signaling to limit aggression induced by post-weaning social isolation

    PubMed Central

    Umemori, Juzoh; Tóth, Máté; Biró, László; Miskolczi, Christina; Balázsfi, Diána; Zelena, Dóra; Castrén, Eero

    2017-01-01

    Escalated or abnormal aggression induced by early adverse experiences is a growing issue of social concern and urges the development of effective treatment strategies. Here we report that synergistic interactions between psychosocial and biological factors specifically ameliorate escalated aggression induced by early adverse experiences. Rats reared in isolation from weaning until early adulthood showed abnormal forms of aggression and social deficits that were temporarily ameliorated by re-socialization, but aggression again escalated in a novel environment. We demonstrate that when re-socialization was combined with the antidepressant fluoxetine, which has been shown to reactivate juvenile-like state of plasticity, escalated aggression was greatly attenuated, while neither treatment alone was effective. Early isolation induced a permanent, re-socialization resistant reduction in Bdnf expression in the amygdala and the infralimbic cortex. Only the combined treatment of fluoxetine and re-socialization was able to recover Bdnf expression via epigenetic regulation. Moreover, the behavior improvement after the combined treatment was dependent on TrkB activity. Combined treatment specifically strengthened the input from the ventral hippocampus to the mPFC suggesting that this pathway is an important mediator of the beneficial behavioral effects of the combined psychosocial and pharmacological treatment of abnormal aggression. Our findings suggest that synergy between pharmacological induction of plasticity and psychosocial rehabilitation could enhance the efficacy of therapies for pathological aggression. PMID:28685757

  15. Protective effects of a green tea polyphenol, epigallocatechin-3-gallate, against sevoflurane-induced neuronal apoptosis involve regulation of CREB/BDNF/TrkB and PI3K/Akt/mTOR signalling pathways in neonatal mice.

    PubMed

    Ding, Mei-Li; Ma, Hui; Man, Yi-Gang; Lv, Hong-Yan

    2017-12-01

    Epigallocatechin-3-gallate (EGCG), a polyphenol in green tea, is an effective antioxidant and possesses neuroprotective effects. Brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB) are crucial for neurogenesis and synaptic plasticity. In this study, we aimed to assess the protective effects of EGCG against sevoflurane-induced neurotoxicity in neonatal mice. Distinct groups of C57BL/6 mice were given EGCG (25, 50, or 75 mg/kg body weight) from postnatal day 3 (P3) to P21 and were subjected to sevoflurane (3%; 6 h) exposure on P7. EGCG significantly inhibited sevoflurane-induced neuroapoptosis as determined by Fluoro-Jade B staining and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Increased levels of cleaved caspase-3, downregulated Bad and Bax, and significantly enhanced Bcl-2, Bcl-xL, xIAP, c-IAP-1, and survivin expression were observed. EGCG induced activation of the PI3K/Akt pathway as evidenced by increased Akt, phospho-Akt, GSK-3β, phospho-GSK-3β, and mTORc1 levels. Sevoflurane-mediated downregulation of cAMP/CREB and BDNF/TrkB signalling was inhibited by EGCG. Reverse transcription PCR analysis revealed enhanced BDNF and TrkB mRNA levels upon EGCG administration. Improved performance of mice in Morris water maze tests suggested enhanced learning and memory. The study indicates that EGCG was able to effectively inhibit sevoflurane-induced neurodegeneration and improve learning and memory retention of mice via activation of CREB/BDNF/TrkB-PI3K/Akt signalling.

  16. A Novel In Vivo Model of Focal Light Emitting Diode-Induced Cone-Photoreceptor Phototoxicity: Neuroprotection Afforded by Brimonidine, BDNF, PEDF or bFGF

    PubMed Central

    García-Ayuso, Diego; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Bernal-Garro, José Manuel; Nieto-López, Leticia; Nadal-Nicolás, Francisco Manuel; Villegas-Pérez, María Paz; Wheeler, Larry A.; Vidal-Sanz, Manuel

    2014-01-01

    We have investigated the effects of light-emitting diode (LED)-induced phototoxicity (LIP) on cone-photoreceptors and their protection with brimonidine (BMD), brain-derived neurotrophic factor (BDNF), pigment epithelium-derived factor (PEDF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF). In anesthetized, dark adapted, adult albino rats a blue (400 nm) LED was placed perpendicular to the cornea (10 sec, 200 lux) and the effects were investigated using Spectral Domain Optical Coherence Tomography (SD-OCT) and/or analysing the retina in oriented cross-sections or wholemounts immune-labelled for L- and S-opsin and counterstained with the nuclear stain DAPI. The effects of topical BMD (1%) or, intravitreally injected BDNF (5 µg), PEDF (2 µg), CNTF (0.4 µg) or bFGF (1 µg) after LIP were examined on wholemounts at 7 days. SD-OCT showed damage in a circular region of the superotemporal retina, whose diameter varied from 1,842.4±84.5 µm (at 24 hours) to 1,407.7±52.8 µm (at 7 days). This region had a progressive thickness diminution from 183.4±5 µm (at 12 h) to 114.6±6 µm (at 7 d). Oriented cross-sections showed within the light-damaged region of the retina massive loss of rods and cone-photoreceptors. Wholemounts documented a circular region containing lower numbers of L- and S-cones. Within a circular area (1 mm or 1.3 mm radius, respectively) in the left and in its corresponding region of the contralateral-fellow-retina, total L- or S-cones were 7,118±842 or 661±125 for the LED exposed retinas (n = 7) and 14,040±1,860 or 2,255±193 for the fellow retinas (n = 7), respectively. BMD, BDNF, PEDF and bFGF but not CNTF showed significant neuroprotective effects on L- or S-cones. We conclude that LIP results in rod and cone-photoreceptor loss, and is a reliable, quantifiable model to study cone-photoreceptor degeneration. Intravitreal BDNF, PEDF or bFGF, or topical BMD afford significant cone neuroprotection in this model

  17. A novel in vivo model of focal light emitting diode-induced cone-photoreceptor phototoxicity: neuroprotection afforded by brimonidine, BDNF, PEDF or bFGF.

    PubMed

    Ortín-Martínez, Arturo; Valiente-Soriano, Francisco Javier; García-Ayuso, Diego; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Bernal-Garro, José Manuel; Nieto-López, Leticia; Nadal-Nicolás, Francisco Manuel; Villegas-Pérez, María Paz; Wheeler, Larry A; Vidal-Sanz, Manuel

    2014-01-01

    We have investigated the effects of light-emitting diode (LED)-induced phototoxicity (LIP) on cone-photoreceptors and their protection with brimonidine (BMD), brain-derived neurotrophic factor (BDNF), pigment epithelium-derived factor (PEDF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF). In anesthetized, dark adapted, adult albino rats a blue (400 nm) LED was placed perpendicular to the cornea (10 sec, 200 lux) and the effects were investigated using Spectral Domain Optical Coherence Tomography (SD-OCT) and/or analysing the retina in oriented cross-sections or wholemounts immune-labelled for L- and S-opsin and counterstained with the nuclear stain DAPI. The effects of topical BMD (1%) or, intravitreally injected BDNF (5 µg), PEDF (2 µg), CNTF (0.4 µg) or bFGF (1 µg) after LIP were examined on wholemounts at 7 days. SD-OCT showed damage in a circular region of the superotemporal retina, whose diameter varied from 1,842.4±84.5 µm (at 24 hours) to 1,407.7±52.8 µm (at 7 days). This region had a progressive thickness diminution from 183.4±5 µm (at 12 h) to 114.6±6 µm (at 7 d). Oriented cross-sections showed within the light-damaged region of the retina massive loss of rods and cone-photoreceptors. Wholemounts documented a circular region containing lower numbers of L- and S-cones. Within a circular area (1 mm or 1.3 mm radius, respectively) in the left and in its corresponding region of the contralateral-fellow-retina, total L- or S-cones were 7,118±842 or 661±125 for the LED exposed retinas (n = 7) and 14,040±1,860 or 2,255±193 for the fellow retinas (n = 7), respectively. BMD, BDNF, PEDF and bFGF but not CNTF showed significant neuroprotective effects on L- or S-cones. We conclude that LIP results in rod and cone-photoreceptor loss, and is a reliable, quantifiable model to study cone-photoreceptor degeneration. Intravitreal BDNF, PEDF or bFGF, or topical BMD afford significant cone neuroprotection in this model.

  18. SorCS2 is required for BDNF-dependent plasticity in the hippocampus.

    PubMed

    Glerup, S; Bolcho, U; Mølgaard, S; Bøggild, S; Vaegter, C B; Smith, A H; Nieto-Gonzalez, J L; Ovesen, P L; Pedersen, L F; Fjorback, A N; Kjolby, M; Login, H; Holm, M M; Andersen, O M; Nyengaard, J R; Willnow, T E; Jensen, K; Nykjaer, A

    2016-12-01

    SorCS2 is a member of the Vps10p-domain receptor gene family receptors with critical roles in the control of neuronal viability and function. Several genetic studies have suggested SORCS2 to confer risk of bipolar disorder, schizophrenia and attention deficit-hyperactivity disorder. Here we report that hippocampal N-methyl-d-aspartate receptor-dependent synaptic plasticity is eliminated in SorCS2-deficient mice. This defect was traced to the ability of SorCS2 to form complexes with the neurotrophin receptor p75 NTR , required for pro-brain-derived neurotrophic factor (BDNF) to induce long-term depression, and with the BDNF receptor tyrosine kinase TrkB to elicit long-term potentiation. Although the interaction with p75 NTR was static, SorCS2 bound to TrkB in an activity-dependent manner to facilitate its translocation to postsynaptic densities for synaptic tagging and maintenance of synaptic potentiation. Neurons lacking SorCS2 failed to respond to BDNF by TrkB autophosphorylation, and activation of downstream signaling cascades, impacting neurite outgrowth and spine formation. Accordingly, Sorcs2 -/- mice displayed impaired formation of long-term memory, increased risk taking and stimulus seeking behavior, enhanced susceptibility to stress and impaired prepulse inhibition. Our results identify SorCS2 as an indispensable coreceptor for p75 NTR and TrkB in hippocampal neurons and suggest SORCS2 as the link between proBDNF/BDNF signaling and mental disorders.

  19. The Effect of Exercise Training on Resting Concentrations of Peripheral Brain-Derived Neurotrophic Factor (BDNF): A Meta-Analysis

    PubMed Central

    Dinoff, Adam; Herrmann, Nathan; Swardfager, Walter; Liu, Celina S.; Sherman, Chelsea; Chan, Sarah; Lanctôt, Krista L.

    2016-01-01

    Background The mechanisms through which physical activity supports healthy brain function remain to be elucidated. One hypothesis suggests that increased brain-derived neurotrophic factor (BDNF) mediates some cognitive and mood benefits. This meta-analysis sought to determine the effect of exercise training on resting concentrations of BDNF in peripheral blood. Methods MEDLINE, Embase, PsycINFO, SPORTDiscus, Rehabilitation & Sports Medicine Source, and CINAHL databases were searched for original, peer-reviewed reports of peripheral blood BDNF concentrations before and after exercise interventions ≥ 2 weeks. Risk of bias was assessed using standardized criteria. Standardized mean differences (SMDs) were generated from random effects models. Risk of publication bias was assessed using funnel plots and Egger’s test. Potential sources of heterogeneity were explored in subgroup analyses. Results In 29 studies that met inclusion criteria, resting concentrations of peripheral blood BDNF were higher after intervention (SMD = 0.39, 95% CI: 0.17–0.60, p < 0.001). Subgroup analyses suggested a significant effect in aerobic (SMD = 0.66, 95% CI: 0.33–0.99, p < 0.001) but not resistance training (SMD = 0.07, 95% CI: -0.15–0.30, p = 0.52) interventions. No significant difference in effect was observed between males and females, nor in serum vs plasma. Conclusion Aerobic but not resistance training interventions increased resting BDNF concentrations in peripheral blood. PMID:27658238

  20. The BDNF Val66Met polymorphism regulates glucocorticoid-induced corticohippocampal remodeling and behavioral despair

    PubMed Central

    Notaras, M; Du, X; Gogos, J; van den Buuse, M; Hill, R A

    2017-01-01

    The BDNF Val66Met polymorphism has been associated with sensitivity to stress and affective disorders. We therefore sought to model the inter-causality of these relationships under controlled laboratory conditions. We subjected humanized BDNF Val66Met (hBDNFVal66Met) transgenic mice to a history of stress, modeled by chronic late-adolescent corticosterone (CORT) exposure, before evaluating affective-related behavior using the forced-swim test (FST) in adulthood. While hBDNFMet/Met mice had a depression-like phenotype in the FST irrespective of CORT, hBDNFVal/Val wildtype mice had a resilient phenotype but developed an equally robust depressive-like phenotype following CORT. A range of stress-sensitive molecules were studied across the corticohippocampal axis, and where genotype differences occurred following CORT they tended to inversely coincide with the behavior of the hBDNFVal/Val group. Notably, tyrosine hydroxylase was markedly down-regulated in the mPFC of hBDNFVal/Val mice as a result of CORT treatment, which mimicked expression levels of hBDNFMet/Met mice and the FST behavior of both groups. The expression of calretinin, PSD-95, and truncated TrkB were also concomitantly reduced in the mPFC of hBDNFVal/Val mice by CORT. This work establishes BDNFVal66Met genotype as a regulator of behavioral despair, and identifies new biological targets of BDNF genetic variation relevant to stress-inducible disorders such as depression. PMID:28926000

  1. DREAM regulates BDNF-dependent spinal sensitization

    PubMed Central

    2010-01-01

    Background The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) controls the expression of prodynorphin and has been involved in the modulation of endogenous responses to pain. To investigate the role of DREAM in central mechanisms of pain sensitization, we used a line of transgenic mice (L1) overexpressing a Ca2+- and cAMP-insensitive DREAM mutant in spinal cord and dorsal root ganglia. Results L1 DREAM transgenic mice showed reduced expression in the spinal cord of several genes related to pain, including prodynorphin and BDNF (brain-derived neurotrophic factor) and a state of basal hyperalgesia without change in A-type currents. Peripheral inflammation produced enhancement of spinal reflexes and increased expression of BDNF in wild type but not in DREAM transgenic mice. The enhancement of the spinal reflexes was reproduced in vitro by persistent electrical stimulation of C-fibers in wild type but not in transgenic mice. Exposure to exogenous BDNF produced a long-term enhancement of dorsal root-ventral root responses in transgenic mice. Conclusions Our results indicate that endogenous BDNF is involved in spinal sensitization following inflammation and that blockade of BDNF induction in DREAM transgenic mice underlies the failure to develop spinal sensitization. PMID:21167062

  2. BDNF (brain-derived neurotrophic factor) serum levels in schizophrenic patients with cognitive deficits

    NASA Astrophysics Data System (ADS)

    Utami, N.; Effendy, E.; Amin, M. M.

    2018-03-01

    Schizophrenia is a complex neurodevelopmental disorder with cognitive impairment as the main part. BDNF regulates aspects of developmental plasticity in the brain and is involved in cognitive function. Cognitive functions include capabilities such as attention, executive functioning, assessing, monitoring and evaluating. The aim of the study was to know the BDNF levels in schizophrenic patients with cognitive deficits. The study was held in October 2016 - March 2017, and was the first in Indonesia, especially in North Sumatra. The study was approved by the medical ethics committee of the University of North Sumatera. The study is descriptive based on a retrospective method with cross-sectional approach. The subject is 40 male schizophrenia. Cognitive deficits were assessed by MoCA-Ina. BDNF serum levels were analyzed using the quantitative sandwich enzyme immunoassay. The average MoCA-Ina score is 21.03±5.21. This suggests that there is a cognitive function deficit in schizophrenic patients. The mean serum BDNF level was 26629±6762. MoCA-Ina scores in schizophrenic patients <26 who experienced a deficit of 77.5% and serum BDNF levels with normal values ranging from 6.186 to 42.580pg/ml.

  3. Relationships between serum BDNF and the antidepressant effect of acute exercise in depressed women.

    PubMed

    Meyer, Jacob D; Koltyn, Kelli F; Stegner, Aaron J; Kim, Jee-Seon; Cook, Dane B

    2016-12-01

    Brain-derived neurotrophic factor (BDNF) has recently emerged as one potential mechanism with which exercise improves mood in major depressive disorder (MDD). This study examined the relationship between changes in serum total BDNF and mood following acute exercise in MDD. It was hypothesized that acute exercise would increase BDNF in an intensity-dependent manner and that changes in BDNF would be significantly related to improvement in depressed mood post-exercise. Twenty-four women (age: 38.6±14.0years) with MDD exercised for 30min on a stationary bicycle at light, moderate and hard exercise intensities and performed a quiet rest session using a within-subjects, randomized and counter-balanced design. Before, 10 and 30min after each session, participants completed the profile of mood states (POMS). Blood was drawn before and within 10min after completion of each session and serum total BDNF (sBDNF) was measured by enzyme-linked immunosorbent assay. Acute exercise-induced changes in POMS Depression and sBDNF were analyzed via 4 session (quiet rest, light, moderate, hard) by 2 measurement (pre, post) ANOVA. Secondary analyses examined the effects of baseline mood and antidepressant usage on sBDNF. Exercise resulted in an acute improvement in depressed mood that was not intensity dependent (p>0.05), resulting in significant acute increases in sBDNF (p=0.006) that were also not intensity-dependent (p>0.05). Acute changes in sBDNF were not significantly correlated to changes in POMS depression at 10m (r=-0.171, p=0.161) or 30m (r=-0.151, p=0.215) post-exercise. The fourteen participants taking antidepressant medications exhibited lower post-exercise sBDNF (p=0.015) than the participants not currently taking antidepressants, although mood responses were similar. Acute exercise is an effective mood-enhancing stimulus, although sBDNF does not appear to play a role in this short-term response. Patients who are not currently taking antidepressant medications and those who

  4. BDNF Val 66 Met and 5-HTTLPR genotype moderate the impact of early psychosocial adversity on plasma brain-derived neurotrophic factor and depressive symptoms: a prospective study.

    PubMed

    Buchmann, Arlette F; Hellweg, Rainer; Rietschel, Marcella; Treutlein, Jens; Witt, Stephanie H; Zimmermann, Ulrich S; Schmidt, Martin H; Esser, Günter; Banaschewski, Tobias; Laucht, Manfred; Deuschle, Michael

    2013-08-01

    Recent studies have emphasized an important role for neurotrophins, such as brain-derived neurotrophic factor (BDNF), in regulating the plasticity of neural circuits involved in the pathophysiology of stress-related diseases. The aim of the present study was to examine the interplay of the BDNF Val⁶⁶Met and the serotonin transporter promoter (5-HTTLPR) polymorphisms in moderating the impact of early-life adversity on BDNF plasma concentration and depressive symptoms. Participants were taken from an epidemiological cohort study following the long-term outcome of early risk factors from birth into young adulthood. In 259 individuals (119 males, 140 females), genotyped for the BDNF Val⁶⁶Met and the 5-HTTLPR polymorphisms, plasma BDNF was assessed at the age of 19 years. In addition, participants completed the Beck Depression Inventory (BDI). Early adversity was determined according to a family adversity index assessed at 3 months of age. Results indicated that individuals homozygous for both the BDNF Val and the 5-HTTLPR L allele showed significantly reduced BDNF levels following exposure to high adversity. In contrast, BDNF levels appeared to be unaffected by early psychosocial adversity in carriers of the BDNF Met or the 5-HTTLPR S allele. While the former group appeared to be most susceptible to depressive symptoms, the impact of early adversity was less pronounced in the latter group. This is the first preliminary evidence indicating that early-life adverse experiences may have lasting sequelae for plasma BDNF levels in humans, highlighting that the susceptibility to this effect is moderated by BDNF Val⁶⁶Met and 5-HTTLPR genotype. Copyright © 2013. Published by Elsevier B.V.

  5. Chronic depolarization enhances the trophic effects of BDNF in rescuing auditory neurons following a sensorineural hearing loss

    PubMed Central

    Shepherd, Robert K.; Coco, Anne; Epp, Stephanie B.; Crook, Jeremy M.

    2007-01-01

    The development and maintenance of spiral ganglion neurons (SGNs) appears to be supported by both neural activity and neurotrophins. Removal of this support leads to their gradual degeneration. Here, we examine whether the exogenous delivery of the neurotrophin brain-derived neurotrophic factor (BDNF) in concert with electrical stimulation (ES) provides a greater protective effect than delivery of BDNF alone in vivo. The left cochlea of profoundly deafened guinea pigs was implanted with an electrode array and drug delivery system. BDNF or artificial perilymph (AP) was delivered continuously for 28 days. ES induced neural activity in two cohorts (BDNF/ES and AP/ES) while control animals received BDNF or AP without ES (BDNF/- and AP/-). The right cochleae of each animal served as deafened untreated controls. Electrically-evoked auditory brainstem responses (EABRs) were recorded immediately following surgery and at completion of the drug delivery period. AP/ES and AP/- cohorts showed an increase in EABR threshold over the implantation period while both BDNF cohorts exhibited a reduction in threshold (P < 0.001, t-test). Changes in neural sensitivity were complemented by significant differences in both SGN survival and soma area. BDNF cohorts demonstrated a significant trophic or survival advantage and larger soma area compared with AP-treated and deafened control cochleae; this advantage was greatest in the base of the cochlea. Importantly, ES significantly enhanced the survival effects of BDNF throughout the majority of the cochlea (P < 0.05, Bonferroni's test), while there was no evidence of trophic support provided by ES alone. Co-treatment of SGNs with BDNF and ES provide a substantial functional and trophic advantage; this treatment may have important implications for neural prostheses. PMID:15844207

  6. Decreased serum BDNF levels in patients with epileptic and psychogenic nonepileptic seizures

    PubMed Central

    LaFrance, W.C.; Leaver, K.; Stopa, E.G.; Papandonatos, G.D.; Blum, A.S.

    2010-01-01

    Objective: Neurotrophins promote neurogenesis and help regulate synaptic reorganization. Their dysregulation has been implicated in a number of neurologic and psychiatric disorders. Previous studies have shown decreased levels of brain-derived neurotrophic factor (BDNF) in the serum of patients with psychiatric disorders such as major depressive disorder (MDD) and conversion disorder (CD). In human patients with temporal lobe epilepsy, there is an increase in both BDNF mRNA and protein levels in surgically resected hippocampi compared to controls. One study of children with epilepsy has found normal to increased serum BDNF levels compared to controls. Serum BDNF levels have not been investigated in adult patients with epileptic seizures (ES). We hypothesized that BDNF would differentiate between ES and psychogenic nonepileptic seizures (PNES). Methods: We assessed serum BDNF immunoreactivity in 15 patients with ES, 12 patients with PNES, and 17 healthy volunteers. Serum BDNF levels were measured using an enzyme-linked immunoassay. Results: Healthy controls showed higher BDNF levels (4,289 ± 1,810 pg/mL) compared to patients with PNES (1,033 ± 435 pg/mL) (p < 0.001). However, unexpectedly, healthy controls also showed higher levels of BDNF compared to patients with ES without comorbid MDD (977 ± 565 pg/mL) (p < 0.001). Conclusions: Unlike children, adults with epilepsy appear to have decreased levels of serum BDNF. Reduced serum BDNF levels can be used to differentiate adult patients with ES or PNES from healthy controls. Further human studies are needed to better understand the pathophysiology explaining the decreased serum BDNF levels found in epilepsy and in PNES. GLOSSARY AED = antiepileptic drug; BDI-II = Beck Depression Inventory II; BDNF = brain-derived neurotrophic factor; CD = conversion disorder; ECS = electroconvulsive seizure; ES = epileptic seizure; GTC = generalized tonic-clonic seizure; HC = healthy control; MDD = major depressive disorder; PNES

  7. The Role of Brain-Derived Neurotrophic Factor (BDNF) in the Development of Neurogenic Detrusor Overactivity (NDO)

    PubMed Central

    Frias, Bárbara; Santos, João; Morgado, Marlene; Sousa, Mónica Mendes; Gray, Susannah M.Y.; McCloskey, Karen D.; Allen, Shelley; Cruz, Francisco

    2015-01-01

    Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients. PMID:25653370

  8. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  9. Impaired fear extinction learning in adult heterozygous BDNF knock-out mice.

    PubMed

    Psotta, Laura; Lessmann, Volkmar; Endres, Thomas

    2013-07-01

    Brain-derived neurotrophic factor (BDNF) is a crucial regulator of neuroplasticity, which underlies learning and memory processes in different brain areas. To investigate the role of BDNF in the extinction of amygdala-dependent cued fear memories, we analyzed fear extinction learning in heterozygous BDNF knock-out mice, which possess a reduction of endogenous BDNF protein levels to ~50% of wild-type animals. Since BDNF expression has been shown to decline with aging of animals, we tested the performance in extinction learning of these mice at 2 months (young adults) and 7 months (older adults) of age. The present study shows that older adult heterozygous BDNF knock-out mice, which have a chronic 50% lack of BDNF, also possess a deficit in the acquisition of extinction memory, while extinction learning remains unaffected in young adult heterozygous BDNF knock-out mice. This deficit in extinction learning is accompanied by a reduction of BDNF protein in the hippocampus, amygdala and the prefrontal cortex. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. BDNF Val66Met in preclinical Alzheimer's disease is associated with short-term changes in episodic memory and hippocampal volume but not serum mBDNF.

    PubMed

    Lim, Yen Ying; Rainey-Smith, Stephanie; Lim, Yoon; Laws, Simon M; Gupta, Veer; Porter, Tenielle; Bourgeat, Pierrick; Ames, David; Fowler, Christopher; Salvado, Olivier; Villemagne, Victor L; Rowe, Christopher C; Masters, Colin L; Zhou, Xin Fu; Martins, Ralph N; Maruff, Paul

    2017-11-01

    The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism Met allele exacerbates amyloid (Aβ) related decline in episodic memory (EM) and hippocampal volume (HV) over 36-54 months in preclinical Alzheimer's disease (AD). However, the extent to which Aβ+ and BDNF Val66Met is related to circulating markers of BDNF (e.g. serum) is unknown. We aimed to determine the effect of Aβ and the BDNF Val66Met polymorphism on levels of serum mBDNF, EM, and HV at baseline and over 18-months. Non-demented older adults (n = 446) underwent Aβ neuroimaging and BDNF Val66Met genotyping. EM and HV were assessed at baseline and 18 months later. Fasted blood samples were obtained from each participant at baseline and at 18-month follow-up. Aβ PET neuroimaging was used to classify participants as Aβ- or Aβ+. At baseline, Aβ+ adults showed worse EM impairment and lower serum mBDNF levels relative to Aβ- adults. BDNF Val66Met polymorphism did not affect serum mBDNF, EM, or HV at baseline. When considered over 18-months, compared to Aβ- Val homozygotes, Aβ+ Val homozygotes showed significant decline in EM and HV but not serum mBDNF. Similarly, compared to Aβ+ Val homozygotes, Aβ+ Met carriers showed significant decline in EM and HV over 18-months but showed no change in serum mBDNF. While allelic variation in BDNF Val66Met may influence Aβ+ related neurodegeneration and memory loss over the short term, this is not related to serum mBDNF. Longer follow-up intervals may be required to further determine any relationships between serum mBDNF, EM, and HV in preclinical AD.

  11. Serum pro-BDNF/BDNF as a treatment biomarker for response to docosahexaenoic acid in traumatized people vulnerable to developing psychological distress: a randomized controlled trial.

    PubMed

    Matsuoka, Y; Nishi, D; Tanima, Y; Itakura, M; Kojima, M; Hamazaki, K; Noguchi, H; Hamazaki, T

    2015-07-07

    Our open-label pilot study showed that supplementation with docosahexaenoic acid (DHA) increased serum brain-derived neurotrophic factor (BDNF) levels and that there might be an association between changes in serum BDNF levels and reduced psychological distress. Animal research has indicated that a DHA-enriched diet increases BDNF in the brain. In this randomized double-blind controlled trial of severely injured patients vulnerable to posttraumatic stress disorder (PTSD) and depression, we examined whether DHA increases serum BDNF levels and whether changes in BDNF levels are associated with subsequent symptoms of PTSD and depression. Patients received 1470 mg per day of DHA plus 147 mg per day of eicosapentaenoic acid (EPA; n = 53) or placebo (n = 57) for 12 weeks. Serum levels of mature BDNF and precursor pro-BDNF at baseline and 12-week follow-up were measured using enzyme-linked immunosorbent assay kits. At 12 weeks, we used the Clinician-Administered PTSD Scale to assess PTSD symptoms and depressive symptoms by the Montgomery-Åsberg Depression Rating Scale. We found a significant increase in serum BDNF levels during the trial in the DHA and placebo groups with no interaction between time and group. Changes in BDNF levels were not associated with PTSD severity but negatively associated with depression severity (Spearman's ρ = -0.257, P = 0.012). Changes in pro-BDNF were also negatively associated with depression severity (Spearman's ρ = -0.253, P = 0.013). We found no specific effects of DHA on increased serum levels of BDNF and pro-BDNF; however, evidence in this study suggests that increased BDNF and pro-BDNF have a protective effect by minimizing depression severity.

  12. Spirulina non-protein components induce BDNF gene transcription via HO-1 activity in C6 glioma cells.

    PubMed

    Morita, Kyoji; Itoh, Mari; Nishibori, Naoyoshi; Her, Song; Lee, Mi-Sook

    2015-01-01

    Blue-green algae are known to contain biologically active proteins and non-protein substances and considered as useful materials for manufacturing the nutritional supplements. Particularly, Spirulina has been reported to contain a variety of antioxidants, such as flavonoids, carotenoids, and vitamin C, thereby exerting their protective effects against the oxidative damage to the cells. In addition to their antioxidant actions, polyphenolic compounds have been speculated to cause the protection of neuronal cells and the recovery of neurologic function in the brain through the production of brain-derived neurotrophic factor (BDNF) in glial cells. Then, the protein-deprived extract was prepared by removing the most part of protein components from aqueous extract of Spirulina platensis, and the effect of this extract on BDNF gene transcription was examined in C6 glioma cells. Consequently, the protein-deprived extract was shown to cause the elevation of BDNF mRNA levels following the expression of heme oxygenase-1 (HO-1) in the glioma cells. Therefore, the non-protein components of S. platensis are considered to stimulate BDNF gene transcription through the HO-1 induction in glial cells, thus proposing a potential ability of the algae to indirectly modulate the brain function through the glial cell activity.

  13. Brain-Derived Neurotrophic Factor Val66Met Human Polymorphism Impairs the Beneficial Exercise-Induced Neurobiological Changes in Mice

    PubMed Central

    Ieraci, Alessandro; Madaio, Alessandro I; Mallei, Alessandra; Lee, Francis S; Popoli, Maurizio

    2016-01-01

    Several studies have shown that exercise improves cognitive functions and emotional behaviors. Positive effects of exercise have been associated with enhanced brain plasticity, adult hippocampal neurogenesis, and increased levels of brain-derived neurotrophic factor (BDNF). However, a substantial variability of individual response to exercise has been described, which may be accounted for by individual genetic variants. Here, we have assessed whether and how the common human BDNF Val66Met polymorphism influences the neurobiological effects modulated by exercise in BDNF Val66Met knock-in male mice. Wild-type (BDNFVal/Val) and homozygous BDNF Val66Met (BDNFMet/Met) male mice were housed in cages equipped with or without running wheels for 4 weeks. Changes in behavioral phenotype, hippocampal adult neurogenesis, and gene expression were evaluated in exercised and sedentary control mice. We found that exercise reduced the latency to feed in the novelty suppressed feeding and the immobility time in the forced swimming test in BDNFVal/Val but not in BDNFMet/Met mice. Hippocampal neurogenesis was reduced in BDNFMet/Met mice compared with BDNFVal/Val mice. BDNFMet/Met mice had lower basal BDNF protein levels in the hippocampus, which was not recovered following exercise. Moreover, exercise-induced expression of total BDNF, BDNF splice variants 1, 2, 4, 6 and fibronectin type III domain-containing protein 5 (FNDC5) mRNA levels were absent or reduced in the dentate gyrus of BDNFMet/Met mice. Exercise failed to enhance PGC-1α and FNDC5 mRNA levels in the BDNFMet/Met muscle. Overall these results indicate that, in adult male mice, the BDNF Val66Met polymorphism impairs the beneficial behavioral and neuroplasticity effects induced by physical exercise. PMID:27388329

  14. BDNF action in the brain attenuates diabetic hyperglycemia via insulin-independent inhibition of hepatic glucose production.

    PubMed

    Meek, Thomas H; Wisse, Brent E; Thaler, Joshua P; Guyenet, Stephan J; Matsen, Miles E; Fischer, Jonathan D; Taborsky, Gerald J; Schwartz, Michael W; Morton, Gregory J

    2013-05-01

    Recent evidence suggests that central leptin administration fully normalizes hyperglycemia in a rodent model of uncontrolled insulin-deficient diabetes by reducing hepatic glucose production (HGP) and by increasing glucose uptake. The current studies were undertaken to determine whether brain-derived neurotrophic factor (BDNF) action in the brain lowers blood glucose in uncontrolled insulin-deficient diabetes and to investigate the mechanisms mediating this effect. Adult male rats implanted with cannulas to either the lateral cerebral ventricle or the ventromedial hypothalamic nucleus (VMN) received either vehicle or streptozotocin to induce uncontrolled insulin-deficient diabetes. Three days later, animals received daily intracerebroventricular or intra-VMN injections of either BDNF or its vehicle. We found that repeated daily intracerebroventricular administration of BDNF attenuated diabetic hyperglycemia independent of changes in food intake. Instead, using tracer dilution techniques during a basal clamp, we found that BDNF lowered blood glucose levels by potently suppressing HGP, without affecting tissue glucose uptake, an effect associated with normalization of both plasma glucagon levels and hepatic expression of gluconeogenic genes. Moreover, BDNF microinjection directly into the VMN also lowered fasting blood glucose levels in uncontrolled insulin-deficient diabetes, but this effect was modest compared with intracerebroventricular administration. We conclude that central nervous system BDNF attenuates diabetic hyperglycemia via an insulin-independent mechanism. This action of BDNF likely involves the VMN and is associated with inhibition of glucagon secretion and a decrease in the rate of HGP.

  15. The interplay of stress and sleep impacts BDNF level.

    PubMed

    Giese, Maria; Unternaehrer, Eva; Brand, Serge; Calabrese, Pasquale; Holsboer-Trachsler, Edith; Eckert, Anne

    2013-01-01

    Sleep plays a pivotal role in normal biological functions. Sleep loss results in higher stress vulnerability and is often found in mental disorders. There is evidence that brain-derived neurotrophic factor (BDNF) could be a central player in this relationship. Recently, we could demonstrate that subjects suffering from current symptoms of insomnia exhibited significantly decreased serum BDNF levels compared with sleep-healthy controls. In accordance with the paradigm indicating a link between sleep and BDNF, we aimed to investigate if the stress system influences the association between sleep and BDNF. Participants with current symptoms of insomnia plus a former diagnosis of Restless Legs Syndrome (RLS) and/or Periodic Limb Movement (PLM) and sleep healthy controls were included in the study. They completed questionnaires on sleep (ISI, Insomnia Severity Index) and stress (PSS, Perceived Stress Scale) and provided a blood sample for determination of serum BDNF. We found a significant interaction between stress and insomnia with an impact on serum BDNF levels. Moreover, insomnia severity groups and score on the PSS each revealed a significant main effect on serum BDNF levels. Insomnia severity was associated with increased stress experience affecting serum BDNF levels. Of note, the association between stress and BDNF was only observed in subjects without insomnia. Using a mediation model, sleep was revealed as a mediator of the association between stress experience and serum BDNF levels. This is the first study to show that the interplay between stress and sleep impacts BDNF levels, suggesting an important role of this relationship in the pathogenesis of stress-associated mental disorders. Hence, we suggest sleep as a key mediator at the connection between stress and BDNF. Whether sleep is maintained or disturbed might explain why some individuals are able to handle a certain stress load while others develop a mental disorder.

  16. BDNF in schizophrenia, depression and corresponding animal models.

    PubMed

    Angelucci, F; Brenè, S; Mathé, A A

    2005-04-01

    Understanding the etiology and pathogenesis schizophrenia and depression is a major challenge facing psychiatry. One hypothesis is that these disorders are secondary to a malfunction of neurotrophic factors. Inappropriate neurotrophic support during brain development could lead to structural disorganisation in which neuronal networks are established in a nonoptimal manner. Inadequate neurotrophic support in adult individuals could ultimately be an underlying mechanism leading to decreased capacity of brain to adaptive changes and increased vulnerability to neurotoxic damage. Brain-derived neurotrophic factor (BDNF) is a mediator involved in neuronal survival and plasticity of dopaminergic, cholinergic, and serotonergic neurons in the central nervous system (CNS). In this review, we summarize findings regarding altered BDNF in schizophrenia and depression and animal models, as well as the effects of antipsychotic and antidepressive treatments on the expression of BDNF.

  17. Captodiamine, a putative antidepressant, enhances hypothalamic BDNF expression in vivo by synergistic 5-HT2c receptor antagonism and sigma-1 receptor agonism.

    PubMed

    Ring, Rebecca M; Regan, Ciaran M

    2013-10-01

    The putative antidepressant captodiamine is a 5-HT2c receptor antagonist and agonist at sigma-1 and D3 dopamine receptors, exerts an anti-immobility action in the forced swim paradigm, and enhances dopamine turnover in the frontal cortex. Captodiamine has also been found to ameliorate stress-induced anhedonia, reduce the associated elevations of hypothalamic corticotrophin-releasing factor (CRF) and restore the reductions in hypothalamic BDNF expression. Here we demonstrate chronic administration of captodiamine to have no significant effect on hypothalamic CRF expression through sigma-1 receptor agonism; however, both sigma-1 receptor agonism or 5-HT2c receptor antagonism were necessary to enhance BDNF expression. Regulation of BDNF expression by captodiamine was associated with increased phosphorylation of transcription factor CREB and mediated through sigma-1 receptor agonism but blocked by 5-HT2c receptor antagonism. The existence of two separate signalling pathways was confirmed by immunolocalisation of each receptor to distinct cell populations in the paraventricular nucleus of the hypothalamus. Increased BDNF induced by captodiamine was also associated with enhanced expression of synapsin, but not PSD-95, suggesting induction of long-term structural plasticity between hypothalamic synapses. These unique features of captodiamine may contribute to its ability to ameliorate stress-induced anhedonia as the hypothalamus plays a prominent role in regulating HPA axis activity.

  18. BDNF Regulates the Expression and Distribution of Vesicular Glutamate Transporters in Cultured Hippocampal Neurons

    PubMed Central

    Melo, Carlos V.; Silva, Carla G.; Duarte, Carlos B.

    2013-01-01

    BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT) 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7), indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during embryonic and neonatal

  19. Garcinol Upregulates GABAA and GAD65 Expression, Modulates BDNF-TrkB Pathway to Reduce Seizures in Pentylenetetrazole (PTZ)-Induced Epilepsy

    PubMed Central

    Hao, Fang; Jia, Li-Hua; Li, Xiao-Wan; Zhang, Ying-Rui; Liu, Xue-Wu

    2016-01-01

    Background Epilepsy is the most predominant neurological disorder characterized by recurrent seizures. Despite treatment with antiepileptic drugs, epilepsy still is a challenge to treat, due to the associated adverse effects of the drugs. Previous investigations have shown critical roles of BDNF-TrkB signalling and expression of glutamic acid decarboxylase 65 (GAD65) and GABAA in the brain during epilepsy. Thus, drugs that could modulate BDNF-TrkB signal and expression of GAD65 and GABAA could aid in therapy. Recent experimental data have focussed on plant-derived compounds in treatments. Garcinol (camboginol), is a polyisoprenylated benzophenone derived from the fruit of Garcinia indica. We investigated the effects of garcinol in pentylenetetrazole (PTZ)-induced epileptic models. Material/Methods Seizure scores were measured in epilepsy kindled mice. Neuronal degeneration and apoptosis were assessed by Nissl staining, TUNEL assay, and Fluoro-Jade B staining. Immunohistochemistry was performed to evaluate cleaved caspase-3 expressions. Expression of BDNF, TrkB, GABAA, GAD65, Bad, Bcl-2, Bcl-xL, and Bax were determined by western blots. Results Significantly reduced seizure scores and mortality rates were observed with pretreatment with garcinol. Elevated expression of apoptotic proteins and caspase-3 in kindled mice were effectively downregulated by garcinol. Epileptogenic mice presented increased BDNF and TrkB with considerably decreased GABAA and GAD65 expression. Garcinol significantly enhanced GABAA and GAD65 while it suppressed BDNF and TrkB. Garcinol enhanced the performance of mice in Morris water maze tests. Conclusions Garcinol exerts neuroprotective effects via supressing apoptosis and modulating BDNF-TrkB signalling and GAD65/GABAA expressions and also enhanced cognition and memory of the mice. PMID:27855137

  20. Clozapine blockade of MK-801-induced learning/memory impairment in the mEPM: Role of 5-HT1A receptors and hippocampal BDNF levels.

    PubMed

    López Hill, Ximena; Richeri, Analía; Scorza, María Cecilia

    2017-10-01

    Cognitive impairment associated with schizophrenia (CIAS) is highly prevalent and affects the overall functioning of patients. Clozapine (Clz), an atypical antipsychotic drug, significantly improves CIAS although the underlying mechanisms remain under study. The role of the 5-HT 1A receptor (5-HT 1A -R) in the ability of Clz to prevent the learning/memory impairment induced by MK-801 was investigated using the modified elevated plus-maze (mEPM) considering the Transfer latency (TL) as an index of spatial memory. We also investigated if changes in hippocampal brain-derived neurotrophic factor (BDNF) levels underlie the behavioral prevention induced by Clz. Clz (0.5 and 1mg/kg)- or vehicle-pretreated Wistar rats were injected with MK-801 (0.05mg/kg) or saline. TL was evaluated 35min later (TL1, acquisition session) while learning/memory performance was measured 24h (TL2, retention session) and 48h later (TL3, long-lasting effect). WAY-100635, a 5-HT 1A -R antagonist, was pre-injected (0.3mg/kg) to examine the presumed 5-HT 1A -R involvement in Clz action. At TL2, another experimental group treated with Clz and MK-801 and its respective control groups were added to measure BDNF protein levels by ELISA. TL1 and TL3 were not significantly modified by the different treatments. MK-801 increased TL2 compared to control group leading a disruption of spatial memory processing which was markedly attenuated by Clz. WAY-100635 suppressed this action supporting a relevant role of 5-HT 1A -R in the Clz mechanism of action to improve spatial memory dysfunction. Although a significant decrease of hippocampal BDNF levels underlies the learning/memory impairment induced by MK-801, this effect was not significantly prevented by Clz. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui

    Highlights: •Forced exercise can ameliorate WBI induced cognitive impairment in our rat model. •Mature BDNF plays an important role in the effects of forced exercise. •Exercise may be a possible treatment of the radiation-induced cognitive impairment. -- Abstract: Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating themore » effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague–Dawley rats received a single dose of 20 Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2 months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF–pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF–pCREB signaling in non

  2. Association of brain-derived neurotrophic factor (BDNF) haploinsufficiency with lower adaptive behaviour and reduced cognitive functioning in WAGR/11p13 deletion syndrome.

    PubMed

    Han, Joan C; Thurm, Audrey; Golden Williams, Christine; Joseph, Lisa A; Zein, Wadih M; Brooks, Brian P; Butman, John A; Brady, Sheila M; Fuhr, Shannon R; Hicks, Melanie D; Huey, Amanda E; Hanish, Alyson E; Danley, Kristen M; Raygada, Margarita J; Rennert, Owen M; Martinowich, Keri; Sharp, Stephen J; Tsao, Jack W; Swedo, Susan E

    2013-01-01

    In animal studies, brain-derived neurotrophic factor (BDNF) is an important regulator of central nervous system development and synaptic plasticity. WAGR (Wilms tumour, Aniridia, Genitourinary anomalies, and mental Retardation) syndrome is caused by 11p13 deletions of variable size near the BDNF locus and can serve as a model for studying human BDNF haploinsufficiency (+/-). We hypothesized that BDNF+/- would be associated with more severe cognitive impairment in subjects with WAGR syndrome. Twenty-eight subjects with WAGR syndrome (6-28 years), 12 subjects with isolated aniridia due to PAX6 mutations/microdeletions (7-54 years), and 20 healthy controls (4-32 years) received neurocognitive assessments. Deletion boundaries for the subjects in the WAGR group were determined by high-resolution oligonucleotide array comparative genomic hybridization. Within the WAGR group, BDNF+/- subjects (n = 15), compared with BDNF intact (+/+) subjects (n = 13), had lower adaptive behaviour (p = .02), reduced cognitive functioning (p = .04), higher levels of reported historical (p = .02) and current (p = .02) social impairment, and higher percentage meeting cut-off score for autism (p = .047) on Autism Diagnostic Interview-Revised. These differences remained nominally significant after adjusting for visual acuity. Using diagnostic measures and clinical judgement, 3 subjects (2 BDNF+/- and 1 BDNF+/+) in the WAGR group (10.7%) were classified with autism spectrum disorder. A comparison group of visually impaired subjects with isolated aniridia had cognitive functioning comparable to that of healthy controls. In summary, among subjects with WAGR syndrome, BDNF+/- subjects had a mean Vineland Adaptive Behaviour Compose score that was 14-points lower and a mean intelligence quotient (IQ) that was 20-points lower than BDNF+/+ subjects. Our findings support the hypothesis that BDNF plays an important role in human neurocognitive development. Published by Elsevier Ltd.

  3. Plasma and serum brain-derived neurotrophic factor (BDNF) levels and their association with neurocognition in at-risk mental state, first episode psychosis and chronic schizophrenia patients.

    PubMed

    Heitz, Ulrike; Papmeyer, Martina; Studerus, Erich; Egloff, Laura; Ittig, Sarah; Andreou, Christina; Vogel, Tobias; Borgwardt, Stefan; Graf, Marc; Eckert, Anne; Riecher-Rössler, Anita

    2018-06-25

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive processes. Since cognitive deficits are a core feature of psychotic disorders, the investigation of BDNF levels in psychosis and their correlation with cognition has received increased attention. However, there are no studies investigating BDNF levels in individuals with an at-risk mental state (ARMS) for psychosis. Hence, the aims of the present study were: (1) assessing peripheral BDNF levels across different (potential) stages of psychosis; (2) investigating their association with cognition. Plasma and serum BDNF levels and neuropsychological performance were assessed in 16 ARMS, six first-episode psychosis (FEP), and 11 chronic schizophrenia (CS) patients. Neuropsychological assessment covered intelligence, verbal memory, working memory, attention and executive functioning. Both plasma and serum BDNF levels were highest in CS, intermediate in FEP and lowest in ARMS. Multiple regression analysis revealed a significant positive association of plasma BDNF levels with planning ability across all groups. The lower peripheral BDNF levels in ARMS compared to FEP and CS might point towards an important drop of this neurotrophin prior to the onset of frank psychosis. The associations of peripheral BDNF with planning-abilities match previous findings.

  4. MPTP-induced changes in hippocampal synaptic plasticity and memory are prevented by memantine through the BDNF-TrkB pathway

    PubMed Central

    Zhu, Guoqi; Li, Junyao; He, Ling; Wang, Xuncui; Hong, Xiaoqi

    2015-01-01

    Background and Purpose Mild cognitive deficit in early Parkinson's disease (PD) has been widely studied. Here we have examined the effects of memantine in preventing memory deficit in experimental PD models and elucidated some of the underlying mechanisms. Experimental Approaches I.p. injection of 1-methyl-4- phenyl-1,2,3,6-tetrahydro pyridine (MPTP) in C57BL/6 mice was used to produce models of PD. We used behavioural tasks to test memory. In vitro, we used slices of hippocampus, with electrophysiological, Western blotting, real time PCR, elisa and immunochemical techniques. Key Results Following MPTP injection, long-term memory was impaired and these changes were prevented by pre-treatment with memantine. In hippocampal slices from MPTP treated mice, long-term potentiation (LTP) –induced by θ burst stimulation (10 bursts, 4 pulses) was decreased, while long-term depression (LTD) induced by low-frequency stimulation (1 Hz, 900 pulses) was enhanced, compared with control values. A single dose of memantine (i.p., 10 mg·kg−1) reversed the decreased LTP and the increased LTD in this PD model. Activity-dependent changes in tyrosine kinase receptor B (TrkB), ERK and brain-derived neurotrophic factor (BDNF) expression were decreased in slices from mice after MPTP treatment. These effects were reversed by pretreatment with memantine. Incubation of slices in vitro with 1-methyl-4-phenylpyridinium (MPP+) decreased depolarization-induced expression of BDNF. This effect was prevented by pretreatment of slices with memantine or with calpain inhibitor III, suggesting the involvement of an overactivated calcium signalling pathway. Conclusions and Implications Memantine should be useful in preventing loss of memory and hippocampal synaptic plasticity in PD models. PMID:25560396

  5. Brain-derived neurotrophic factor--a major player in stimulation-induced homeostatic metaplasticity of human motor cortex?

    PubMed

    Mastroeni, Claudia; Bergmann, Til Ole; Rizzo, Vincenzo; Ritter, Christoph; Klein, Christine; Pohlmann, Ines; Brueggemann, Norbert; Quartarone, Angelo; Siebner, Hartwig Roman

    2013-01-01

    Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter-individual variability which has been partially attributed to the val(66)met polymorphism in the brain-derived neurotrophic factor (BDNF) gene. Here we used theta burst stimulation (TBS) to examine whether the BDNF val(66)met genotype can be used to predict the expression of TBS-induced homeostatic metaplasticity in human M1HAND. TBS is a patterned rTMS protocol with intermittent TBS (iTBS) usually inducing a lasting increase and continuous TBS (cTBS) a lasting decrease in corticospinal excitability. In three separate sessions, healthy val(66)met (n = 12) and val(66)val (n = 17) carriers received neuronavigated cTBS followed by cTBS (n = 27), cTBS followed by iTBS (n = 29), and iTBS followed by iTBS (n = 28). Participants and examiner were blinded to the genotype at the time of examination. As expected, the first TBS intervention induced a decrease (cTBS) and increase (iTBS) in corticospinal excitability, respectively, at the same time priming the after effects caused by the second TBS intervention in a homeostatic fashion. Critically, val(66)met carriers and val(66)val carriers showed very similar response patterns to cTBS and iTBS regardless of the order of TBS interventions. Since none of the observed TBS effects was modulated by the BDNF val(66)met polymorphism, our results do not support the notion that the BDNF val(66)met genotype is a major player with regard to TBS-induced plasticity and metaplasticity in the human M1HAND.

  6. Interaction Between 5-HTTLPR and BDNF Val66Met Polymorphisms on HPA Axis Reactivity in Preschoolers

    PubMed Central

    Dougherty, Lea R.; Klein, Daniel N.; Congdon, Eliza; Canli, Turhan; Hayden, Elizabeth P.

    2009-01-01

    This study examined whether the interaction between the serotonin transporter promoter region (5-HTTLPR) and brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms was associated with hypothalamic-pituitary-adrenal (HPA) axis reactivity to stress. A community sample of 144 preschool-aged children was genotyped and exposed to stress-inducing laboratory tasks. Salivary cortisol was obtained at four time points during a standardized laboratory assessment before and after stressors involving separation from a parent and frustrating tasks. Children homozygous for the short-5-HTTLPR allele and carrying the Met-BDNF allele evidenced a significantly lower initial level of cortisol, followed by a positive increase in cortisol in response to the laboratory stressors. In contrast, children who were homozygous for the short-5-HTTLPR and the Val-BDNF alleles evidenced a greater decline in cortisol in response to the laboratory stressors. Findings indicated that the BDNF gene moderated the association between 5-HTTLPR and children’s biological stress responses, suggesting that epistatic effects play a role in individual differences in stress regulation, and possibly genetic vulnerability to stress-related disorders. PMID:19914329

  7. BDNF in fragile X syndrome.

    PubMed

    Castrén, Maija L; Castrén, Eero

    2014-01-01

    Fragile X syndrome (FXS) is a monogenic disorder that is caused by the absence of FMR1 protein (FMRP). FXS serves as an excellent model disorder for studies investigating disturbed molecular mechanisms and synapse function underlying cognitive impairment, autism, and behavioral disturbance. Abnormalities in dendritic spines and synaptic transmission in the brain of FXS individuals and mouse models for FXS indicate perturbations in the development, maintenance, and plasticity of neuronal network connectivity. However, numerous alterations are found during the early development in FXS, including abnormal differentiation of neural progenitors and impaired migration of newly born neurons. Several aspects of FMRP function are modulated by brain-derived neurotrophic factor (BDNF) signaling. Here, we review the evidence of the role for BDNF in the developing and adult FXS brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Autocrine activity of BDNF induced by the STAT3 signaling pathway causes prolonged TrkB activation and promotes human non-small-cell lung cancer proliferation

    PubMed Central

    Chen, Bo; Liang, Yan; He, Zheng; An, Yunhe; Zhao, Weihong; Wu, Jianqing

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin superfamily, which has been implicated in the pathophysiology of the nervous system. Recently, several studies have suggested that BDNF and/or its receptor, tropomyosin related kinase B (TrkB), are involved in tumor growth and metastasis in several cancers, including prostate cancer, neuroblastoma, pancreatic ductal carcinoma, hepatocellular carcinoma, and lung cancer. Despite the increasing emphasis on BDNF/TrkB signaling in human tumors, how it participates in primary tumors has not yet been determined. Additionally, little is known about the molecular mechanisms that elicit signaling downstream of TrkB in the progression of non-small-cell lung cancer (NSCLC). In this study, we report the significant expression of BDNF in NSCLC samples and show that BDNF stimulation increases the synthesis of BDNF itself through activation of STAT3 in lung cancer cells. The release of BDNF can in turn activate TrkB signaling. The activation of both TrkB and STAT3 contribute to downstream signaling and promote human non-small-cell lung cancer proliferation. PMID:27456333

  9. The function of BDNF in the adult auditory system.

    PubMed

    Singer, Wibke; Panford-Walsh, Rama; Knipper, Marlies

    2014-01-01

    The inner ear of vertebrates is specialized to perceive sound, gravity and movements. Each of the specialized sensory organs within the cochlea (sound) and vestibular system (gravity, head movements) transmits information to specific areas of the brain. During development, brain-derived neurotrophic factor (BDNF) orchestrates the survival and outgrowth of afferent fibers connecting the vestibular organ and those regions in the cochlea that map information for low frequency sound to central auditory nuclei and higher-auditory centers. The role of BDNF in the mature inner ear is less understood. This is mainly due to the fact that constitutive BDNF mutant mice are postnatally lethal. Only in the last few years has the improved technology of performing conditional cell specific deletion of BDNF in vivo allowed the study of the function of BDNF in the mature developed organ. This review provides an overview of the current knowledge of the expression pattern and function of BDNF in the peripheral and central auditory system from just prior to the first auditory experience onwards. A special focus will be put on the differential mechanisms in which BDNF drives refinement of auditory circuitries during the onset of sensory experience and in the adult brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Influence of BDNF Genotype and Exercise on BDNF Serum Levels and VO2 Max after Acute Exercise and Post Training

    DTIC Science & Technology

    2017-07-29

    exercise prescription and training. 15. SUBJECT TERMS cognitive, physical training, BDNF, Val66Val, Val66Met, VO2Max 16. SECURITY CLASSIFICATION...Key Words: Functional agility training, physical training, cognitive upregulation, brain-derived neurotrophic factor, BDNF, Val66Val, Val66Met...cognitive output [21,29,30]. Met carriers may also experience better physical function recovery post-brain injury event [31]. Importantly, exercise may

  11. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    PubMed Central

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  12. Improved Healing after the Co-Transplantation of HO-1 and BDNF Overexpressed Mesenchymal Stem Cells in the Subacute Spinal Cord Injury of Dogs.

    PubMed

    Khan, Imdad Ullah; Yoon, Yongseok; Kim, Ahyoung; Jo, Kwang Rae; Choi, Kyeung Uk; Jung, Taeseong; Kim, Namyul; Son, YeonSung; Kim, Wan Hee; Kweon, Oh-Kyeong

    2018-01-01

    Abundant expression of proinflammatory cytokines after a spinal cord injury (SCI) creates an inhibitory microenvironment for neuroregeneration. The mesenchymal stem cells help to mitigate the inflammation and improve neural growth and survival. For this purpose, we potentiated the function of adipose-derived mesenchymal stem cells (Ad-MSCs) by transfecting them with brain-derived neurotrophic factor (BDNF) and heme oxygenase-1 (HO-1), through a lentivirus, to produce BDNF overexpressed Ad-MSCs (BDNF-MSCs), and HO-1 overexpressed Ad-MSCs (HO-1-MSCs). Sixteen SCI beagle dogs were randomly assigned into four treatment groups. We injected both HO-1 and BDNF-overexpressed MSCs as a combination group, to selectively control inflammation and induce neuroregeneration in SCI dogs, and compared this with BDNF-MSCs, HO-1-MSCs, and GFP-MSCs injected dogs. The groups were compared in terms of improvement in canine Basso, Beattie, and Bresnahan (cBBB) score during 8 weeks of experimentation. After 8 weeks, spinal cords were harvested and subjected to western blot analysis, immunofluorescent staining, and hematoxylin and eosin (H&E) staining. The combination group showed a significant improvement in hindlimb functions, with a higher BBB score, and a robust increase in neuroregeneration, depicted by a higher expression of Tuj-1, NF-M, and GAP-43 due to a decreased expression of the inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), and an increased expression of interleukin-10 (IL-10) ( P ≤ 0.05). H&E staining showed more reduced intraparenchymal fibrosis in the combination group than in other groups ( P ≤ 0.05). It was thus suggested that the cotransplantation of HO-1 and BDNF-MSCs is more effective in promoting the healing of SCI. HO-1-MSCs reduce inflammation, which favors BDNF-induced neuroregeneration in SCI of dogs.

  13. Insufficient Astrocyte-Derived Brain-Derived Neurotrophic Factor Contributes to Propofol-Induced Neuron Death Through Akt/Glycogen Synthase Kinase 3β/Mitochondrial Fission Pathway.

    PubMed

    Liu, Yanan; Yan, Yasheng; Inagaki, Yasuyoshi; Logan, Sarah; Bosnjak, Zeljko J; Bai, Xiaowen

    2017-07-01

    Growing animal evidence demonstrates that prolonged exposure to propofol during brain development induces widespread neuronal cell death, but there is little information on the role of astrocytes. Astrocytes can release neurotrophic growth factors such as brain-derived neurotrophic factor (BDNF), which can exert the protective effect on neurons in paracrine fashion. We hypothesize that during propofol anesthesia, BDNF released from developing astrocytes may not be sufficient to prevent propofol-induced neurotoxicity. Hippocampal astrocytes and neurons isolated from neonatal Sprague Dawley rats were exposed to propofol at a clinically relevant dose of 30 μM or dimethyl sulfoxide as control for 6 hours. Propofol-induced cell death was determined by propidium iodide (PI) staining in astrocyte-alone cultures, neuron-alone cultures, or cocultures containing either low or high density of astrocytes (1:9 or 1:1 ratio of astrocytes to neurons ratio [ANR], respectively). The astrocyte-conditioned medium was collected 12 hours after propofol exposure and measured by protein array assay. BDNF concentration in astrocyte-conditioned medium was quantified using enzyme-linked immunosorbent assay. Neuron-alone cultures were treated with BDNF, tyrosine receptor kinase B inhibitor cyclotraxin-B, glycogen synthase kinase 3β (GSK3β) inhibitor CHIR99021, or mitochondrial fission inhibitor Mdivi-1 before propofol exposure. Western blot was performed for quantification of the level of protein kinase B and GSK3β. Mitochondrial shape was visualized through translocase of the outer membrane 20 staining. Propofol increased cell death in neurons by 1.8-fold (% of PI-positive cells [PI%] = 18.6; 95% confidence interval [CI], 15.2-21.9, P < .05) but did not influence astrocyte viability. The neuronal death was attenuated by a high ANR (1:1 cocultures; fold change [FC] = 1.17, 95% CI, 0.96-1.38, P < .05), but not with a low ANR [1:9 cocultures; FC = 1.87, 95% CI, 1.48-2.26, P > .05

  14. Cellular mechanisms underlying an effect of "early handling" on pCREB and BDNF in the neonatal rat hippocampus.

    PubMed

    Garoflos, Efstathios; Stamatakis, Antonios; Mantelas, Athanasios; Philippidis, Helen; Stylianopoulou, Fotini

    2005-08-09

    Early experiences have long-term effects on brain function and behavior. However, the precise mechanisms involved still remain elusive. In an effort to address this issue, we employed the model of "early handling", which is known to affect the ability of the adult organism to respond to stressful stimuli, and determined its effects on hippocampal pCREB and BDNF 2, 4, and 8 h later. 8 h following "handling" on postnatal day 1, there was an increase in pCREB and BDNF positive cells in the hippocampus, a brain area which is a specific target of "handling". On the other hand, vehicle injection resulted in decreased pCREB and BDNF in both handled and non-handled animals 2 and 4 h later. The "handling"-induced increase of pCREB and BDNF was cancelled by inhibition of NMDA, AMPA/kainate, GABA-A, 5-HT1A or 5-HT2A/C receptors, as well as L-type voltage-gated Ca(2+) channels. It thus appears that "early handling" activates these neurotransmitter receptors, leading to increased intracellular Ca(2+), phosphorylation of the transcription factor CREB, and increased BDNF expression. BDNF can then exert its morphogenetic effects and thus "imprint" the effects of "handling" on the brain.

  15. Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1β and brain-derived neurotrophic factor.

    PubMed

    Ho, Tin-Yun; Tang, Nou-Ying; Hsiang, Chien-Yun; Hsieh, Ching-Liang

    2014-05-15

    Uncaria rhynchophylla (UR) has been used for the treatment of convulsions and epilepsy in traditional Chinese medicine. This study reported the major anti-convulsive signaling pathways and effective targets of UR and rhynchophylline (RP) using genomic and immunohistochemical studies. Epileptic seizure model was established by intraperitoneal injection of kainic acid (KA) in rats. Electroencephalogram and electromyogram recordings indicated that UR and RP improved KA-induced epileptic seizures. Toll-like receptor (TLR) and neurotrophin signaling pathways were regulated by UR in both cortex and hippocampus of KA-treated rats. KA upregulated the expression levels of interleukin-1β (IL-1β) and brain-derived neurotrophin factor (BDNF), which were involved in TLR and neurotrophin signaling pathways, respectively. However, UR and RP downregulated the KA-induced IL-1β and BDNF gene expressions. Our findings suggested that UR and RP exhibited anti-convulsive effects in KA-induced rats via the regulation of TLR and neurotrophin signaling pathways, and the subsequent inhibition of IL-1β and BDNF gene expressions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. P2X7, NMDA and BDNF receptors converge on GSK3 phosphorylation and cooperate to promote survival in cerebellar granule neurons.

    PubMed

    Ortega, Felipe; Pérez-Sen, Raquel; Morente, Verónica; Delicado, Esmerilda G; Miras-Portugal, Maria Teresa

    2010-05-01

    Glycogen synthase kinase-3 (GSK3) is a key player in the regulation of neuronal survival. Herein, we report evidence of an interaction between P2X7 receptors with NMDA and BDNF receptors at the level of GSK3 signalling and neuroprotection. The activation of these receptors in granule neurons led to a sustained pattern of GSK3 phosphorylation that was mainly PKC-dependent. BDNF was the most potent at inducing GSK3 phosphorylation, which was also dependent on PI3K. The P2X7 agonist, BzATP, exhibited additive effects with both NMDA and BDNF to rescue granule neurons from cell death induced by PI3K inhibition. This survival effect was mediated by the PKC-dependent GSK3 pathway. In addition, ERK1/2 proteins were also involved in BDNF protective effect. These results show the function of ATP in amplifying neuroprotective actions of glutamate and neurotrophins, and support the role of GSK3 as an important convergence point for these survival promoting factors in granule neurons.

  17. Voluntary resistance running with short distance enhances spatial memory related to hippocampal BDNF signaling.

    PubMed

    Lee, Min Chul; Okamoto, Masahiro; Liu, Yu Fan; Inoue, Koshiro; Matsui, Takashi; Nogami, Haruo; Soya, Hideaki

    2012-10-15

    Although voluntary running has beneficial effects on hippocampal cognitive functions if done abundantly, it is still uncertain whether resistance running would be the same. For this purpose, voluntary resistance wheel running (RWR) with a load is a suitable model, since it allows increased work levels and resultant muscular adaptation in fast-twitch muscle. Here, we examined whether RWR would have potential effects on hippocampal cognitive functions with enhanced hippocampal brain-derived neurotrophic factor (BDNF), as does wheel running without a load (WR). Ten-week-old male Wistar rats were assigned randomly to sedentary (Sed), WR, and RWR (to a maximum load of 30% of body weight) groups for 4 wk. We found that in RWR, work levels increased with load, but running distance decreased by about half, which elicited muscular adaptation for fast-twitch plantaris muscle without causing any negative stress effects. Both RWR and WR led to improved spatial learning and memory as well as gene expressions of hippocampal BDNF signaling-related molecules. RWR increased hippocampal BDNF, tyrosine-related kinase B (TrkB), and cAMP response element-binding (CREB) protein levels, whereas WR increased only BDNF. With both exercise groups, there were correlations between spatial memory and BDNF protein (r = 0.41), p-CREB protein (r = 0.44), and work levels (r = 0.77). These results suggest that RWR plays a beneficial role in hippocampus-related cognitive functions associated with hippocampal BDNF signaling, even with short distances, and that work levels rather than running distance are more determinant of exercise-induced beneficial effects in wheel running with and without a load.

  18. Head-out immersion in hot water increases serum BDNF in healthy males.

    PubMed

    Kojima, Daisuke; Nakamura, Takeshi; Banno, Motohiko; Umemoto, Yasunori; Kinoshita, Tokio; Ishida, Yuko; Tajima, Fumihiro

    2017-11-20

    Brain-derived neurotrophic factor (BDNF) is an important neurotrophin. The present study investigated the effects of head-out water immersion (HOI) on serum BDNF concentrations. Eight healthy men performed 20 min head-out water immersion at 42 °C (hot-HOI) and 35 °C (neutral-HOI). These experimental trials were administered in a randomised order separated by at least 7 days. Venous blood samples were withdrawn at rest, immediately after the 20-min HOI, as well as at 15 and 30 min after the end of the HOI. Serum BDNF and S100β, plasma cortisol, platelet and monocyte counts, and core body temperature (T cb ) were measured. T cb was higher at the end of the hot-HOI and 15 min after hot-HOI (p < 0.01), but recovered to pre-HOI level at 30 min after hot-HOI. No change in T cb was recorded during neutral-HOI. BDNF level was higher (p < 0.05) at the end of the hot-HOI and at 15 min after the end of hot-HOI, and returned to the baseline at 30 min after hot-HOI. S100β, platelet count and monocyte count remained stable throughout the study. Cortisol level was lower at the end of the hot-HOI and returned to pre-HOI level during the recovery period. BDNF and S100β, cortisol, and platelet and monocyte counts did not change throughout the neutral-HOI study. The present findings suggested that the increase in BDNF during 20-min hot-HOI was induced by hyperthermia through enhanced production, rather than by changes in permeability of the blood-brain barrier (BBB), platelet clotting mechanisms or secretion from monocytes.

  19. Depression- and anxiety-like behaviour is related to BDNF/TrkB signalling in a mouse model of psoriasis.

    PubMed

    JiaWen, W; Hong, S; ShengXiang, X; Jing, L

    2018-04-01

    The prevalence of anxiety and depression is significantly higher in individuals with psoriasis than in the general population. Clinical data also show that anti-anxiety and antidepression drugs can reduce skin lesions in patients with psoriasis, but the actual mechanism is still poorly understood. To investigate whether brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrKB) signalling plays a role in the mechanism underlying psoriasis with depression and anxiety behaviours. Expression of BDNF and tropomyosin receptor kinase B (TrKB) in the K5.Stat3C mouse, an animal model of psoriasis, were investigated by reverse transcription PCR and Western blotting. Anxiety-like behaviours in the elevated-plus maze test and changes in BDNF/TrkB that have been implicated in depression and anxiety behaviours were measured. Skin lesions induced by 12-O-tetradecanoyl phorbol-13-acetate (TPA) were also measured when the mice were administered fluoxetine and K252a, an antagonist of TrkB. The antidepression and anti-anxiety drug fluoxetine reduced TPA-induced skin lesions and increased expression of BDNF and TrkB in K5.Stat3C mice. More importantly, the effects of fluoxetine were reversed by the TrkB antagonist K252a. BDNF/TrkB signalling participates in the pathological mechanism of depression and anxiety behaviours in psoriasis. Our findings provide a new therapeutic strategy for the treatment of skin lesions in psoriasis. © 2018 British Association of Dermatologists.

  20. Decreased Plasma BDNF Levels of Patients with Somatization Disorder

    PubMed Central

    Kang, Nam-In; Park, Jong-Il

    2016-01-01

    Objective Brain-derived neurotrophic factor (BDNF), one of the most abundant and important neurotrophins, is known to be involved in the development, survival, maintenance, and plasticity of neurons in the nervous system. Some studies have suggested that BDNF may play a role in the pathophysiology of several psychiatric illnesses such as depression and schizophrenia. Similarly, it is likely that the alteration of BDNF may be associated with the neuro-modulation that contributes to the development of somatization disorder. Methods The purpose of this study was to determine whether there is an abnormality of plasma BDNF levels in patients with somatization disorder, and to analyze the nature of the alteration after pharmacotherapy using an enzyme-linked immunosorbent assay (ELISA). Results The plasma BDNF levels of the patients with a somatization disorder were significantly lower compared with those of the control volunteers (83.61±89.97 pg/mL vs. 771.36±562.14 pg/mL); moreover, the plasma BDNF levels of those patients who received an antidepressant were significantly increased after the treatment (118.13±91.45 pg/mL vs. 72.92±88.21 pg/mL). Conclusion These results suggest that BDNF may play a role in the pathophysiology of somatization disorder. PMID:27757131

  1. The Effects of BDNF Val66Met Gene Polymorphism on Serum BDNF and Cognitive Function in Methamphetamine-Dependent Patients and Normal Controls: A Case-Control Study.

    PubMed

    Su, Hang; Tao, Jingyan; Zhang, Jie; Xie, Ying; Wang, Yue; Zhang, Yu; Han, Bin; Lu, Yuling; Sun, Haiwei; Wei, Youdan; Zou, Shengzhen; Wu, Wenxiu; Zhang, Jiajia; Xu, Ke; Zhang, Xiangyang; He, Jincai

    2015-10-01

    Studies suggest that a functional polymorphism of the brain-derived neurotrophic factor gene (BDNF Val66Met) may contribute to methamphetamine dependence. We hypothesized that this polymorphism had a role in cognitive deficits in methamphetamine-dependent patients and in the relationship of serum BDNF with cognitive impairments. We conducted a case-control study by assessing 194 methamphetamine-dependent patients and 378 healthy volunteers without history of drug use on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the presence of the BDNF Val66Met polymorphism and serum BDNF levels. We showed no significant differences in genotype and allele distributions between the methamphetamine-dependent patients and controls. Some aspects of cognitive function significantly differed in the 2 groups. The serum BDNF levels in methamphetamine-dependent patients were significantly higher than those of the healthy controls. In the patients, partial correlation analysis showed a significant positive correlation between serum BDNF and the delayed memory index score. The RBANS scores showed statistically significant BDNF level × genotype interaction. Further regression analyses showed a significant positive association between BDNF levels and the RBANS total score, immediate memory or attention index among Val homozygote patients, whereas a significant negative association of BDNF levels with the RBANS total score, visuospatial/constructional, or language index was found among Met/Val heterozygous patients. We demonstrated significant impairment on some aspects of cognitive function and increased BDNF levels in methamphetamine-dependent patients as well as genotypic differences in the relationships between BDNF levels and RBANS scores on the BDNF Val66Met polymorphism only in these patients.

  2. Effect of Brain-Derived Neurotrophic Factor Haploinsufficiency on Stress-Induced Remodeling of Hippocampal Neurons

    PubMed Central

    Magariños, A.M.; Li, C.J.; Toth, J. Gal; Bath, K.G.; Jing, D.; Lee, F.S.; McEwen, B.S.

    2010-01-01

    Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the hippocampus and released from neurons in an activity-dependent manner, as a mediator of the stress-induced dendritic remodeling. The analysis of Golgi-impregnated hippocampal sections revealed that wild type (WT) C57BL/6 male mice showed a similar CA3 apical dendritic remodeling in response to three weeks of CRS to that previously described for rats. Haploinsufficient BDNF mice (BDNF±) did not show such remodeling, but, even without CRS, they presented shorter and simplified CA3 apical dendritic arbors, like those observed in stressed WT mice. Furthermore, unstressed BDNF± mice showed a significant decrease in total hippocampal volume. The dendritic arborization of CA1 pyramidal neurons was not affected by CRS or genotype. However, only in WT mice, CRS induced changes in the density of dendritic spine shape subtypes in both CA1 and CA3 apical dendrites. These results suggest a complex role of BDNF in maintaining the dendritic and spine morphology of hippocampal neurons and the associated volume of the hippocampal formation. The inability of CRS to modify the dendritic structure of CA3 pyramidal neurons in BDNF± mice suggests an indirect, perhaps permissive, role of BDNF in mediating hippocampal dendritic remodeling. PMID:20095008

  3. Brain-derived Neurotrophic Factor Promotes the Migration of Olfactory Ensheathing Cells Through TRPC Channels.

    PubMed

    Wang, Ying; Teng, Hong-Lin; Gao, Yuan; Zhang, Fan; Ding, Yu-Qiang; Huang, Zhi-Hui

    2016-12-01

    Olfactory ensheathing cells (OECs) are a unique type of glial cells with axonal growth-promoting properties in the olfactory system. Organized migration of OECs is essential for neural regeneration and olfactory development. However, the molecular mechanism of OEC migration remains unclear. In the present study, we examined the effects of brain-derived neurotrophic factor (BDNF) on OEC migration. Initially, the "scratch" migration assay, the inverted coverslip and Boyden chamber migration assays showed that BDNF could promote the migration of primary cultured OECs. Furthermore, BDNF gradient attracted the migration of OECs in single-cell migration assays. Mechanistically, TrkB receptor expressed in OECs mediated BDNF-induced OEC migration, and BDNF triggered calcium signals in OECs. Finally, transient receptor potential cation channels (TRPCs) highly expressed in OECs were responsible for BDNF-induced calcium signals, and required for BDNF-induced OEC migration. Taken together, these results demonstrate that BDNF promotes the migration of cultured OECs and an unexpected finding is that TRPCs are required for BDNF-induced OEC migration. GLIA 2016;64:2154-2165. © 2016 Wiley Periodicals, Inc.

  4. Increased blood BDNF in healthy individuals with a family history of depression.

    PubMed

    Knorr, Ulla; Søndergaard, Mia H Greisen; Koefoed, Pernille; Jørgensen, Anders; Faurholt-Jepsen, Maria; Vinberg, Maj; Kessing, Lars Vedel

    2017-10-01

    The brain-derive neurotrophic factor (BDNF) may play an important role in the course of depression. We aimed to study the associations between peripheral whole blood BDNF levels in healthy individuals with and without a family history of depression. BDNF levels were significantly increased in healthy individuals with (n = 76), compared with healthy individuals without (n = 39) a family history of depression and persisted after adjustment for age and gender differences. Higher BDNF levels were associated with increasing age and seasonality. A family history of depression may contribute to an elevation of peripheral BDNF levels in healthy individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. FTY720/Fingolimod Reduces Synucleinopathy and Improves Gut Motility in A53T Mice: CONTRIBUTIONS OF PRO-BRAIN-DERIVED NEUROTROPHIC FACTOR (PRO-BDNF) AND MATURE BDNF.

    PubMed

    Vidal-Martínez, Guadalupe; Vargas-Medrano, Javier; Gil-Tommee, Carolina; Medina, David; Garza, Nathan T; Yang, Barbara; Segura-Ulate, Ismael; Dominguez, Samantha J; Perez, Ruth G

    2016-09-23

    Patients with Parkinson's disease (PD) often have aggregated α-synuclein (aSyn) in enteric nervous system (ENS) neurons, which may be associated with the development of constipation. This occurs well before the onset of classic PD motor symptoms. We previously found that aging A53T transgenic (Tg) mice closely model PD-like ENS aSyn pathology, making them appropriate for testing potential PD therapies. Here we show that Tg mice overexpressing mutant human aSyn develop ENS pathology by 4 months. We then evaluated the responses of Tg mice and their WT littermates to the Food and Drug Administration-approved drug FTY720 (fingolimod, Gilenya) or vehicle control solution from 5 months of age. Long term oral FTY720 in Tg mice reduced ENS aSyn aggregation and constipation, enhanced gut motility, and increased levels of brain-derived neurotrophic factor (BDNF) but produced no significant change in WT littermates. A role for BDNF was directly assessed in a cohort of young A53T mice given vehicle, FTY720, the Trk-B receptor inhibitor ANA-12, or FTY720 + ANA-12 from 1 to 4 months of age. ANA-12-treated Tg mice developed more gut aSyn aggregation as well as constipation, whereas FTY720-treated Tg mice had reduced aSyn aggregation and less constipation, occurring in part by increasing both pro-BDNF and mature BDNF levels. The data from young and old Tg mice revealed FTY720-associated neuroprotection and reduced aSyn pathology, suggesting that FTY720 may also benefit PD patients and others with synucleinopathy. Another finding was a loss of tyrosine hydroxylase immunoreactivity in gut neurons with aggregated aSyn, comparable with our prior findings in the CNS. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Brain-Derived Neurotrophic Factor – A Major Player in Stimulation-Induced Homeostatic Metaplasticity of Human Motor Cortex?

    PubMed Central

    Rizzo, Vincenzo; Ritter, Christoph; Klein, Christine; Pohlmann, Ines; Brueggemann, Norbert; Quartarone, Angelo; Siebner, Hartwig Roman

    2013-01-01

    Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter-individual variability which has been partially attributed to the val66met polymorphism in the brain-derived neurotrophic factor (BDNF) gene. Here we used theta burst stimulation (TBS) to examine whether the BDNF val66met genotype can be used to predict the expression of TBS-induced homeostatic metaplasticity in human M1HAND. TBS is a patterned rTMS protocol with intermittent TBS (iTBS) usually inducing a lasting increase and continuous TBS (cTBS) a lasting decrease in corticospinal excitability. In three separate sessions, healthy val66met (n = 12) and val66val (n = 17) carriers received neuronavigated cTBS followed by cTBS (n = 27), cTBS followed by iTBS (n = 29), and iTBS followed by iTBS (n = 28). Participants and examiner were blinded to the genotype at the time of examination. As expected, the first TBS intervention induced a decrease (cTBS) and increase (iTBS) in corticospinal excitability, respectively, at the same time priming the after effects caused by the second TBS intervention in a homeostatic fashion. Critically, val66met carriers and val66val carriers showed very similar response patterns to cTBS and iTBS regardless of the order of TBS interventions. Since none of the observed TBS effects was modulated by the BDNF val66met polymorphism, our results do not support the notion that the BDNF val66met genotype is a major player with regard to TBS-induced plasticity and metaplasticity in the human M1HAND. PMID:23469118

  7. The psychology of psychiatric genetics: evidence that positive emotions in females moderate genetic sensitivity to social stress associated with the BDNF Val-sup-6-sup-6Met polymorphism.

    PubMed

    Wichers, Marieke; Kenis, Gunter; Jacobs, Nele; Myin-Germeys, Inez; Schruers, Koen; Mengelers, Ron; Delespaul, Philippe; Derom, Catherine; Vlietinck, Robert; van Os, Jim

    2008-08-01

    Previous work indicated protective effects of positive emotions on genetically influenced stress sensitivity. Given the fact that expression of brain-derived-neurotrophic-factor (BDNF) is associated with stress-induced behavioral changes, it was hypothesized that the BDNF Val-sup-6-sup-6Met genotype may mediate genetic effects on stress sensitivity, conditional on the level of concurrent positive emotions. Subjects (n=446) participated in a momentary assessment study, collecting appraisals of stress and affect in the flow of daily life. Multilevel regression analyses examined moderation of daily life stress-induced negative affect (NA) by BDNF genotype, and to what degree this was conditional on concurrent positive emotions. Results showed that heterozygous BDNF "Met" carriers exhibited an increased NA response to social stress compared with "Val/Val" subjects. Positive emotions at the time of the stressor decreased BDNF genetic moderation of the NA response to social stress in a dose-response fashion. This effect was most pronounced in BDNF Met carriers. Thus, the impact of BDNF genotype on stress sensitivity is conditional on the experience of positive emotions. Interdisciplinary research in psychology and psychiatric genetics may lead to the improvement of treatment choices in stress-related disorders. Copyright (c) 2008 APA, all rights reserved.

  8. Prenatal exposure to polycyclic aromatic hydrocarbons/aromatics, BDNF and child development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perera, Frederica, E-mail: fpp1@columbia.edu; Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032; Phillips, David H.

    Objectives: Within a New York City (NYC) birth cohort, we assessed the associations between polycyclic aromatic hydrocarbon (PAH) and other aromatic DNA adducts and brain derived neurotrophic factor (BDNF) concentrations in umbilical cord blood, and neurodevelopment at age 2 years and whether BDNF is a mediator of the associations between PAH/aromatic-DNA adducts and neurodevelopment. Methods: PAH/aromatic-DNA adduct concentrations in cord blood were measured in 505 children born to nonsmoking African-American and Dominican women residing in NYC, and a subset was assessed for neurodevelopment at 2 years using the Bayley Scales of Infant Development Mental Development Index (MDI). A spectrum ofmore » PAH/aromatic-DNA adducts was measured using the {sup 32}P-postlabeling assay; DNA adducts formed by benzo[a]pyrene (B[a]P), a representative PAH, were measured by High Performance Liquid Chromatography (HPLC)/fluorescence. BDNF mature protein in cord blood plasma was quantified by an ELISA. Multivariate regression analysis, adjusting for potential confounders, was conducted. Results: PAH/aromatic-DNA adduct concentration measured by postlabeling was inversely associated with BDNF concentration (p=0.02) and with MDI scores at 2 years (p=0.04). BDNF level was positively associated with MDI scores (p=0.003). Restricting to subjects having all three measures (PAH/aromatic-DNA adducts by postlabeling, MDI, and BDNF), results were similar but attenuated (p=0.13, p=0.05, p=0.01, respectively). Associations between B[a]P-DNA adducts and BDNF and B[a]P-DNA adducts and MDI at age 2 years were not significant. At age 3 years, the positive association of BDNF with MDI was not observed. Conclusions: The results at age 2 suggest that prenatal exposure to a spectrum of PAH/aromatic pollutants may adversely affect early neurodevelopment, in part by reducing BDNF levels during the fetal period. However, the same relationship was not seen at age 3. - Highlights: • Cord blood

  9. The CB₁ cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway.

    PubMed

    Blázquez, C; Chiarlone, A; Bellocchio, L; Resel, E; Pruunsild, P; García-Rincón, D; Sendtner, M; Timmusk, T; Lutz, B; Galve-Roperh, I; Guzmán, M

    2015-10-01

    The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. In particular, the CB1 receptor is highly expressed in the basal ganglia, mostly on terminals of medium-sized spiny neurons, where it plays a key neuromodulatory function. The CB1 receptor also confers neuroprotection in various experimental models of striatal damage. However, the assessment of the physiological relevance and therapeutic potential of the CB1 receptor in basal ganglia-related diseases is hampered, at least in part, by the lack of knowledge of the precise mechanism of CB1 receptor neuroprotective activity. Here, by using an array of pharmacological, genetic and pharmacogenetic (designer receptor exclusively activated by designer drug) approaches, we show that (1) CB1 receptor engagement protects striatal cells from excitotoxic death via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin complex 1 pathway, which, in turn, (2) induces brain-derived neurotrophic factor (BDNF) expression through the selective activation of BDNF gene promoter IV, an effect that is mediated by multiple transcription factors. To assess the possible functional impact of the CB1/BDNF axis in a neurodegenerative-disease context in vivo, we conducted experiments in the R6/2 mouse, a well-established model of Huntington's disease, in which the CB1 receptor and BDNF are known to be severely downregulated in the dorsolateral striatum. Adeno-associated viral vector-enforced re-expression of the CB1 receptor in the dorsolateral striatum of R6/2 mice allowed the re-expression of BDNF and the concerted rescue of the neuropathological deficits in these animals. Collectively, these findings unravel a molecular link between CB1 receptor activation and BDNF expression, and support the relevance of the CB1/BDNF axis in promoting striatal neuron survival.

  10. Chronic ethanol ingestion, type 2 diabetes mellitus, and brain-derived neurotrophic factor (BDNF) in rats.

    PubMed

    Jung, Kyu-In; Ju, Anes; Lee, Hee-Mi; Lee, Seong-Su; Song, Chan-Hee; Won, Wang-Youn; Jeong, Jae-Seung; Hong, Oak-Kee; Kim, Jae-Hwa; Kim, Dai-Jin

    2011-01-07

    Chronic alcohol consumption contributes to the development of type 2 diabetes mellitus (T2DM) while decreasing the level of brain-derived neurotrophic factor (BDNF). BDNF may be an important regulator of glucose metabolism, so it may be associated with an increased risk for T2DM in alcoholism. We evaluated the association of chronic heavy alcohol exposure, T2DM and BDNF level. Ten week-old type 2 diabetic OLETF rats and non-diabetic LETO rats of similar weight were used. The rats were randomized by weight into four treatment groups: (1) OLETF-Ethanol (O-E, n=13), (2) OLETF-Control (O-C, n=15), (3) LETO-Ethanol (L-E, n=11), and (4) LETO-Control (L-C, n=14). The ethanol groups were fed an isocaloric liquid diet containing ethanol while the control groups were fed with the same diet containing maltose-dextran over a 6-week period using a pair-feeding control model in order to regulate different caloric ingestion. After 6 weeks of feeding, an Intraperitoneal Glucose Tolerance Test (IP-GTT) was performed and BDNF levels were analyzed. Prior to IP-GTT, the mean glucose levels in the O-E, O-C, L-E, and L-C groups were 90.38±12.84, 102.13±5.04, 95.18±6.43, and 102.36±4.43mg/dL, respectively. Thirty minutes after intraperitoneal injection, the mean glucose levels were 262.62±63.77, 229.07±51.30, 163.45±26.63, and 156.64±34.42mg/dL, respectively; the increased amount of the mean glucose level in the O-E group was significantly higher than that in the O-C group (p<0.05). One hundred twenty minutes after intraperitoneal injection, the mean glucose levels were 167.38±45.37, 121.20±18.54, 106.73±6.94, and 104.57±9.49mg/dL, respectively; the increased amount of the mean glucose level in the O-E group was significantly higher than that in the O-C group (p<0.01). The difference in mean glucose levels between the O-E group and O-C group was still significant even after adjusting for time (p<0.05). Mean BDNF levels were 405.95±326.16, 618.23±462.15, 749.18±599.93, and

  11. Nicotine and cigarette smoke modulate Nrf2-BDNF-dopaminergic signal and neurobehavioral disorders in adult rat cerebral cortex.

    PubMed

    Naha, Nibedita; Gandhi, D N; Gautam, A K; Prakash, J Ravi

    2018-05-01

    Nicotine and cigarette smoking (CS) are associated with addiction behavior, drug-seeking, and abuse. However, the mechanisms that mediate this association especially, the role of brain-derived neurotrophic factor (BDNF), dopamine (DA), and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in the cerebral cortex, are not fully known. Therefore, we hypothesized that overexpression of BDNF and DA, and suppression of Nrf2 contribute to several pathological and behavioral alterations in adult cerebral cortex. Methodology/Principal Observations: We treated Wistar rats with different doses of oral nicotine and passive CS for 4-week (short-term) and 12-week (long-term) duration, where doses closely mimic the human smoking scenario. Our result showed dose-dependent association of anxiogenic and depressive behavior, and cognitive interference with neurodegeneration and DNA damage in the cerebral cortex upon exposure to nicotine/CS as compared to the control. Further, the results are linked to upregulation of oxidative stress, overexpression of BDNF, DA, and DA marker, tyrosine hydroxylase (TH), with concomitant downregulation of ascorbate and Nrf2 expression in the exposed cerebral cortex when compared with the control. Overall, our data strongly suggest that the intervention of DA and BDNF, and depletion of antioxidants are important factors during nicotine/CS-induced cerebral cortex pathological changes leading to neurobehavioral impairments, which could underpin the novel therapeutic approaches targeted at tobacco smoking/nicotine's neuropsychological disorders including cognition and drug addiction.

  12. Exercise reduces diet-induced cognitive decline and increases hippocampal brain-derived neurotrophic factor in CA3 neurons

    PubMed Central

    Noble, Emily E.; Mavanji, Vijayakumar; Little, Morgan R.; Billington, Charles J.; Kotz, Catherine M.; Wang, ChuanFeng

    2014-01-01

    Background Previous studies have shown that a western diet impairs, whereas physical exercise enhances hippocampus-dependent learning and memory. Both diet and exercise influence expression of hippocampal brain-derived neurotrophic factor (BDNF), which is associated with improved cognition. We hypothesized that exercise reverses diet-induced cognitive decline while increasing hippocampal BDNF. Methods To test the effects of exercise on hippocampal-dependent memory, we compared cognitive scores of Sprague-Dawley rats exercised by voluntary running wheel (RW) access or forced treadmill (TM) to sedentary (Sed) animals. Memory was tested by two-way active avoidance test (TWAA), in which animals are exposed to a brief shock in a specific chamber area. When an animal avoids, escapes or has reduced latency to do either, this is considered a measure of memory. In a second experiment, rats were fed either a high-fat diet or control diet for 16 weeks, then randomly assigned to running wheel access or sedentary condition, and TWAA memory was tested once a week for seven weeks of exercise intervention. Results Both groups of exercised animals had improved memory as indicated by reduced latency to avoid and escape shock, and increased avoid and escape episodes (p<0.05). Exposure to a high-fat diet resulted in poor performance during both the acquisition and retrieval phases of the memory test as compared to controls. Exercise reversed high-fat diet-induced memory impairment, and increased brain-derived neurotrophic factor (BDNF) in neurons of the hippocampal CA3 region. Conclusions These data suggest that exercise improves memory retrieval, particularly with respect to avoiding aversive stimuli, and may be beneficial in protecting against diet induced cognitive decline, likely via elevated BDNF in neurons of the CA3 region. PMID:24755094

  13. Exercise reduces diet-induced cognitive decline and increases hippocampal brain-derived neurotrophic factor in CA3 neurons.

    PubMed

    Noble, Emily E; Mavanji, Vijayakumar; Little, Morgan R; Billington, Charles J; Kotz, Catherine M; Wang, ChuanFeng

    2014-10-01

    Previous studies have shown that a western diet impairs, whereas physical exercise enhances hippocampus-dependent learning and memory. Both diet and exercise influence expression of hippocampal brain-derived neurotrophic factor (BDNF), which is associated with improved cognition. We hypothesized that exercise reverses diet-induced cognitive decline while increasing hippocampal BDNF. To test the effects of exercise on hippocampal-dependent memory, we compared cognitive scores of Sprague-Dawley rats exercised by voluntary running wheel (RW) access or forced treadmill (TM) to sedentary (Sed) animals. Memory was tested by two-way active avoidance test (TWAA), in which animals are exposed to a brief shock in a specific chamber area. When an animal avoids, escapes or has reduced latency to do either, this is considered a measure of memory. In a second experiment, rats were fed either a high-fat diet or control diet for 16 weeks, then randomly assigned to running wheel access or sedentary condition, and TWAA memory was tested once a week for 7 weeks of exercise intervention. Both groups of exercised animals had improved memory as indicated by reduced latency to avoid and escape shock, and increased avoid and escape episodes (p<0.05). Exposure to a high-fat diet resulted in poor performance during both the acquisition and retrieval phases of the memory test as compared to controls. Exercise reversed high-fat diet-induced memory impairment, and increased brain-derived neurotrophic factor (BDNF) in neurons of the hippocampal CA3 region. These data suggest that exercise improves memory retrieval, particularly with respect to avoiding aversive stimuli, and may be beneficial in protecting against diet induced cognitive decline, likely via elevated BDNF in neurons of the CA3 region. Published by Elsevier Inc.

  14. High Versus Low Load Resistance Training: The Effect of 24 Weeks Detraining on Serum Brain Derived-Neurotrophic Factor (BDNF) in Older Adults.

    PubMed

    Nuvagah Forti, L; Van Roie, E; Njemini, R; Coudyzer, W; Beyer, I; Delecluse, C; Bautmans, I

    2017-01-01

    Previously we showed that 12 weeks of mixed-low resistance training (LOW+) significantly increased circulating BDNF in older male individuals. To examine the impact of 24 weeks detraining on circulating BDNF. Randomized intervention study. Community-dwelling older adults. Forty-seven out of 56 participants stopped training (detraining) after 12 weeks of resistance exercise (3x/week) at either HIGH-resistance (5 Males, 5 Females, 2x10-15 repetitions at 80%1RM), LOW-resistance (6 Males, 7 Females, 1x80-100 repetitions at 20%1RM), or mixed-low LOW+-resistance (6 Males, 8 Females, 1x60 repetitions at 20%1RM followed by 1x10-20 repetitions at 40%1RM), of whom 37 (aged 68±5 years) provided sufficient serum samples for BDNF analysis at baseline, 12 week and at 36 weeks (24 weeks detraining). BDNF had initially increased by 31% (from 33.4±10.9 ng/mL to 44.5±13.2 ng/mL, p=0.005) after 12 weeks in the LOW+ exercise group in males and decreased by 26% (from 44.5±13.2 ng/mL to 32.9±10.7 ng/mL) after detraining, though not statistically significant (p=0.082). In females, no significant change in BDNF was found in any of the intervention groups (p>0.05), neither after training, nor detraining. At 36 weeks all of the subgroups showed BDNF levels comparable (all p>0.10) to baseline (before the exercise intervention). Our results show that a 12-weeks LOW+ resistance exercise increases circulating BDNF in older male subjects but that this reduces back to baseline levels after 24 weeks of detraining. Continuous exercise adherence seems to be needed to sustain the training-induced effects on BDNF in older persons. Additional studies are needed to unravel the underlying mechanisms, as well as to confirm the observed sex difference.

  15. [Prenatal lead exposure related to cord blood brain derived neurotrophic factor (BDNF) levels and impaired neonatal neurobehavioral development].

    PubMed

    Ren, L H; Mu, X Y; Chen, H Y; Yang, H L; Qi, W

    2016-06-01

    To explore the relationship between umbilical cord blood brain-derived neurotrophic factor (BDNF) and neonatal neurobehavioral development in lead exposure infants. All infants and their mother were randomly selected during 2011 to 2012, subjects were selected according to the umbilical cord blood lead concentrations, which contcentration of lead was higher than 0.48 μmol/L were taken into high lead exposure group, about 60 subjects included. Comparing to the high lead exposure group, according to gender, weight, pregnant week, length and head circumferenece, the level of cord blood lead concentration under 0.48 μmol/L were taken into control group, 60 cases included. Lead content was determined by graphite furnace atomic absorption spectrometry. Neonatal behavioral neurological assessment (NBNA) was used to determine the development of neonatal neuronal behavior. The content of BDNF was detected by ELISA. Comparing the BDNF and the NBNA score between two groups, and linear correlation was given on analysis the correlation between lead concentration in cord blood and BDNF, BDNF and the NBNA score. Lead content in high exposure group was (0.613±0.139) μmol/L, and higher than (0.336±0.142) μmol/L in low exposure group (t=3.21, P<0.001) . NBNA summary score (36.35±1.86), active muscle tension score (6.90±0.27) and general assessment score (5.93±0.32) in high exposure group were lower than those (38.13±0.96, 7.79±0.35, 6.00±0.00) in low exposure group (t values were 8.21, 10.23, 2.32, respectively, P values were <0.001, <0.001 and 0.037) . BDNF content in high exposure group which was (3.538±1.203) ng/ml was higher than low exposure group (2.464±0.918) ng/ml (t=7.60, P<0.001). The correlation analysis found that the cord blood BDNF content was negatively correlated with NBNA summary score, passive muscle tension and active muscle tone score (r was -0.27, -0.29, -0.30, respectively, P values were <0.001, respectively) . Prenatal lead exposure results poor

  16. Dendrobium alkaloids prevent Aβ25–35-induced neuronal and synaptic loss via promoting neurotrophic factors expression in mice

    PubMed Central

    Nie, Jing; Tian, Yong; Zhang, Yu; Lu, Yan-Liu; Li, Li-Sheng

    2016-01-01

    Background Neuronal and synaptic loss is the most important risk factor for cognitive impairment. Inhibiting neuronal apoptosis and preventing synaptic loss are promising therapeutic approaches for Alzheimer’s disease (AD). In this study, we investigate the protective effects of Dendrobium alkaloids (DNLA), a Chinese medicinal herb extract, on β-amyloid peptide segment 25–35 (Aβ25-35)-induced neuron and synaptic loss in mice. Method Aβ25–35(10 µg) was injected into the bilateral ventricles of male mice followed by an oral administration of DNLA (40 mg/kg) for 19 days. The Morris water maze was used for evaluating the ability of spatial learning and memory function of mice. The morphological changes were examined via H&E staining and Nissl staining. TUNEL staining was used to check the neuronal apoptosis. The ultrastructure changes of neurons were observed under electron microscope. Western blot was used to evaluate the protein expression levels of ciliary neurotrophic factor (CNTF), glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) in the hippocampus and cortex. Results DNLA significantly attenuated Aβ25–35-induced spatial learning and memory impairments in mice. DNLA prevented Aβ25–35-induced neuronal loss in the hippocampus and cortex, increased the number of Nissl bodies, improved the ultrastructural injury of neurons and increased the number of synapses in neurons. Furthermore, DNLA increased the protein expression of neurotrophic factors BDNF, CNTF and GDNF in the hippocampus and cortex. Conclusions DNLA can prevent neuronal apoptosis and synaptic loss. This effect is mediated at least in part via increasing the expression of BDNF, GDNF and CNTF in the hippocampus and cortex; improving Aβ-induced spatial learning and memory impairment in mice. PMID:27994964

  17. Spirulina maxima Extract Prevents Neurotoxicity via Promoting Activation of BDNF/CREB Signaling Pathways in Neuronal Cells and Mice.

    PubMed

    Koh, Eun-Jeong; Seo, Young-Jin; Choi, Jia; Lee, Hyeon Yong; Kang, Do-Hyung; Kim, Kui-Jin; Lee, Boo-Yong

    2017-08-17

    Spirulina maxima is a microalgae which contains flavonoids and other polyphenols. Although Spirulina maxima 70% ethanol extract (SM70EE) has diverse beneficial effects, its effects on neurotoxicity have not been fully understood. In this study, we investigated the neuroprotective effects of SM70EE against trimethyltin (TMT)-induced neurotoxicity in HT-22 cells. SM70EE inhibited the cleavage of poly-ADP ribose polymerase (PARP). Besides, ROS production was decreased by down-regulating oxidative stress-associated enzymes. SM70EE increased the factors of brain-derived neurotrophic factor (BDNF)/cyclic AMPresponsive elementbinding protein (CREB) signalling pathways. Additionally, acetylcholinesterase (AChE) was suppressed by SM70EE. Furthermore, we investigated whether SM70EE prevents cognitive deficits against scopolamine-induced neurotoxicity in mice by applying behavioral tests. SM70EE increased step-through latency time and decreased the escape latency time. Therefore, our data suggest that SM70EE may prevent TMT neurotoxicity through promoting activation of BDNF/CREB neuroprotective signaling pathways in neuronal cells. In vivo study, SM70EE would prevent cognitive deficits against scopolamine-induced neurotoxicity in mice.

  18. Functional regeneration of the transected recurrent laryngeal nerve using a collagen scaffold loaded with laminin and laminin-binding BDNF and GDNF

    PubMed Central

    Wang, Baoxin; Yuan, Junjie; Chen, Xinwei; Xu, Jiafeng; Li, Yu; Dong, Pin

    2016-01-01

    Recurrent laryngeal nerve (RLN) injury remains a challenge due to the lack of effective treatments. In this study, we established a new drug delivery system consisting of a tube of Heal-All Oral Cavity Repair Membrane loaded with laminin and neurotrophic factors and tested its ability to promote functional recovery following RLN injury. We created recombinant fusion proteins consisting of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) fused to laminin-binding domains (LBDs) in order to prevent neurotrophin diffusion. LBD-BDNF, LBD-GDNF, and laminin were injected into a collagen tube that was fitted to the ends of the transected RLN in rats. Functional recovery was assessed 4, 8, and 12 weeks after injury. Although vocal fold movement was not restored until 12 weeks after injury, animals treated with the collagen tube loaded with laminin, LBD-BDNF and LBD-GDNF showed improved recovery in vocalisation, arytenoid cartilage angles, compound muscle action potentials and regenerated fibre area compared to animals treated by autologous nerve grafting (p < 0.05). These results demonstrate the drug delivery system induced nerve regeneration following RLN transection that was superior to that induced by autologus nerve grafting. It may have potential applications in nerve regeneration of RLN transection injury. PMID:27558932

  19. Paradoxical visuomotor adaptation to reversed visual input is predicted by BDNF Val66Met polymorphism

    PubMed Central

    Barton, Brian; Treister, Andrew; Humphrey, Melanie; Abedi, Garen; Cramer, Steven C.; Brewer, Alyssa A.

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain, influencing neural development, plasticity, and repair (Chen et al., 2004; Thoenen, 1995). The BDNF gene contains a single-nucleotide polymorphism (SNP) called Val66Met. The Met allele interferes with intracellular BDNF-trafficking, decreases activity-dependent BDNF secretion, and consequently is often associated with a shift from plasticity to stability in neural circuits (Egan et al., 2003). We investigated the behavioral consequences of the presence of the Met allele by comparing how 40 heterozygous subjects with the Val/Met genotype and 35 homozygous subjects with the Val/Val genotype performed on visuomotor tasks (reaching and navigation) under two conditions: normal vision and completely left-right reversed vision. As expected, subjects did not differ in their short-term ability to learn the tasks with normal vision (p = 0.58). Intuitively, it would be expected that homozygous Val/Val subjects with a propensity for greater BDNF-induced activity-dependent plasticity would learn new tasks more quickly than heterozygous Val/Met subjects with decreased BDNF secretion (Gilbert, Li, & Piech, 2009). However, we found the opposite here. When short-term mechanisms of visuomotor adaptation were engaged to compensate for the misalignment of visual and somatomotor information created by the left-right reversal of vision, heterozygous Val/Met subjects learned significantly more quickly than their homozygous Val/Val counterparts (p = 0.027). Our results demonstrate the paradoxical finding that the presence of the Met allele, which is thought to promote cortical stability, here improves immediate visuomotor adaptation to left–right-reversed visual input. PMID:25104829

  20. Brain-derived neurotrophic factor and interleukin-6 levels in the serum and cerebrospinal fluid of children with viral infection-induced encephalopathy.

    PubMed

    Morichi, Shinichiro; Yamanaka, Gaku; Ishida, Yu; Oana, Shingo; Kashiwagi, Yasuyo; Kawashima, Hisashi

    2014-11-01

    We investigated changes in the brain-derived neurotrophic factor (BDNF) and interleukin (IL)-6 levels in pediatric patients with central nervous system (CNS) infections, particularly viral infection-induced encephalopathy. Over a 5-year study period, 24 children hospitalized with encephalopathy were grouped based on their acute encephalopathy type (the excitotoxicity, cytokine storm, and metabolic error types). Children without CNS infections served as controls. In serum and cerebrospinal fluid (CSF) samples, BDNF and IL-6 levels were increased in all encephalopathy groups, and significant increases were noted in the influenza-associated and cytokine storm encephalopathy groups. Children with sequelae showed higher BDNF and IL-6 levels than those without sequelae. In pediatric patients, changes in serum and CSF BDNF and IL-6 levels may serve as a prognostic index of CNS infections, particularly for the diagnosis of encephalopathy and differentiation of encephalopathy types.

  1. Brain-derived neurotrophic factor and hypothalamic-pituitary-adrenal axis adaptation processes in a depressive-like state induced by chronic restraint stress.

    PubMed

    Naert, Gaelle; Ixart, Guy; Maurice, Tangui; Tapia-Arancibia, Lucia; Givalois, Laurent

    2011-01-01

    Depression is potentially life-threatening. The most important neuroendocrine abnormality in this disorder is hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. Recent findings suggest that all depression treatments may boost the neurotrophin production especially brain-derived neurotrophic factor (BDNF). Moreover, BDNF is highly involved in the regulation of HPA axis activity. The aim of this study was to determine the impact of chronic stress (restraint 3h/day for 3 weeks) on animal behavior and HPA axis activity in parallel with hippocampus, hypothalamus and pituitary BDNF levels. Chronic stress induced changes in anxiety (light/dark box test) and anhedonic states (sucrose preference test) and in depressive-like behavior (forced swimming test); general locomotor activity and body temperature were modified and animal body weight gain was reduced by 17%. HPA axis activity was highly modified by chronic stress, since basal levels of mRNA and peptide hypothalamic contents in CRH and AVP and plasma concentrations in ACTH and corticosterone were significantly increased. The HPA axis response to novel acute stress was also modified in chronically stressed rats, suggesting adaptive mechanisms. Basal BDNF contents were increased in the hippocampus, hypothalamus and pituitary in chronically stressed rats and the BDNF response to novel acute stress was also modified. This multiparametric study showed that chronic restraint stress induced a depressive-like state that was sustained by mechanisms associated with BDNF regulation. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. BDNF and AMPA receptors in the cNTS modulate the hyperglycemic reflex after local carotid body NaCN stimulation.

    PubMed

    Cuéllar, R; Montero, S; Luquín, S; García-Estrada, J; Melnikov, V; Virgen-Ortiz, A; Lemus, M; Pineda-Lemus, M; de Álvarez-Buylla, E

    2017-07-01

    The application of sodium cyanide (NaCN) to the carotid body receptors (CBR) (CBR stimulation) induces rapid blood hyperglycemia and an increase in brain glucose retention. The commissural nucleus tractus solitarius (cNTS) is an essential relay nucleus in this hyperglycemic reflex; it receives glutamatergic afferents (that also release brain derived neurotrophic factor, BDNF) from the nodose-petrosal ganglia that relays CBR information. Previous work showed that AMPA in NTS blocks hyperglycemia and brain glucose retention after CBR stimulation. In contrast, BDNF, which attenuates glutamatergic AMPA currents in NTS, enhances these glycemic responses. Here we investigated the combined effects of BDNF and AMPA (and their antagonists) in NTS on the glycemic responses to CBR stimulation. Microinjections of BDNF plus AMPA into the cNTS before CBR stimulation in anesthetized rats, induced blood hyperglycemia and an increase in brain arteriovenous (a-v) of blood glucose concentration difference, which we infer is due to increased brain glucose retention. By contrast, the microinjection of the TrkB antagonist K252a plus AMPA abolished the glycemic responses to CBR stimulation similar to what is observed after AMPA pretreatments. In BDNF plus AMPA microinjections preceding CBR stimulation, the number of c-fos immunoreactive cNTS neurons increased. In contrast, in the rats microinjected with K252a plus AMPA in NTS, before CBR stimulation, c-fos expression in cNTS decreased. The expression of AMPA receptors GluR2/3 did not change in any of the studied groups. These results indicate that BDNF in cNTS plays a key role in the modulation of the hyperglycemic reflex initiated by CBR stimulation. Copyright © 2017. Published by Elsevier B.V.

  3. Interaction between 5-HTTLPR and BDNF Val66Met polymorphisms on HPA axis reactivity in preschoolers.

    PubMed

    Dougherty, Lea R; Klein, Daniel N; Congdon, Eliza; Canli, Turhan; Hayden, Elizabeth P

    2010-02-01

    This study examined whether the interaction between the serotonin transporter promoter region (5-HTTLPR) and brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms was associated with hypothalamic-pituitary-adrenal (HPA) axis reactivity to stress. A community sample of 144 preschool-aged children was genotyped and exposed to stress-inducing laboratory tasks. Salivary cortisol was obtained at four time points during a standardized laboratory assessment before and after stressors involving separation from a parent and frustrating tasks. Children homozygous for the short-5-HTTLPR allele and carrying the Met-BDNF allele evidenced a significantly lower initial level of cortisol, followed by a positive increase in cortisol in response to the laboratory stressors. In contrast, children who were homozygous for the short-5-HTTLPR and the Val-BDNF alleles evidenced a greater decline in cortisol in response to the laboratory stressors. Findings indicated that the BDNF gene moderated the association between 5-HTTLPR and children's biological stress responses, suggesting that epistatic effects play a role in individual differences in stress regulation, and possibly genetic vulnerability to stress-related disorders. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Alteration in brain-derived neurotrophic factor (BDNF) after treatment of mice with herbal mixture containing Euphoria longana, Houttuynia cordata and Dioscorea japonica.

    PubMed

    Jeon, Songhee; Lee, Chia-Hung; Liu, Quan Feng; Kim, Geun Woo; Koo, Byung-Soo; Pak, Sok Cheon

    2014-11-28

    Literature data indicate that brain-derived neurotrophic factor (BDNF), cyclic-AMP response element-binding protein (CREB) and phospho-CREB (pCREB) may have a place in depression. BDNF belongs to the neurotrophin family that plays an important role in proliferation, survival and differentiation of different cell populations in the mammalian nervous system. The herbal mixture used in the present study consists of Euphoria longana, Houttuynia cordata and Dioscorea japonica. The purpose of the present study was to determine the neuroprotective effect of herbal mixture. We also tested the hypothesis that administration of herbs reverses memory deficits and promotes the protein expression of BDNF in the mouse brain. Mice were randomized into four different treatment groups (n = 10/group). Normal and stress groups received regular lab chow without stress and under stress conditions, respectively, for 3 weeks. The animals in the stress group were immobilized for 4 hours a day for 2 weeks. Different doses of herbal mixture (206 and 618 mg/kg) were administered for 3 weeks to those mice under stress conditions. Mice were analyzed by behavioral tests and immunoblotting examination in the hippocampus and cortex. An additional in vitro investigation was performed to examine whether herbs induce neurotoxicity in a human neuroblastoma cell line, SH-SY5Y cells. No significant toxicity of herbs on human neuroblastoma cells was observed. These herbs demonstrated an inductive effect on the expression of BDNF, pCREB and pAkt. For spatial working memory test, herbal mixture fed mice exhibited an increased level of spontaneous alternation (p < 0.01) compared to those in stress conditions. Moreover, herbal mixture produced highly significant (p < 0.01) reduction in the immobility time in the tail suspension test. Mice in the herbal mixture groups demonstrated lower serum corticosterone concentration than mice in the stress group (p < 0.05). Effects of the oral administration of

  5. Brain-Derived Neurotrophic Factor Deficiency Restricts Proliferation of Oligodendrocyte Progenitors Following Cuprizone-Induced Demyelination

    PubMed Central

    Tsiperson, Vladislav; Huang, Yangyang; Bagayogo, Issa; Song, Yeri; VonDran, Melissa W; DiCicco-Bloom, Emanuel

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors that through its neurotrophic tyrosine kinase, receptor, type 2 (TrkB) receptor, increases 5-bromo-2-deoxyuridine incorporation in oligodendrocyte progenitor cells (OPCs) in culture. Roles in vivo are less well understood; however, increases in numbers of OPCs are restricted in BDNF+/− mice following cuprizone-elicited demyelination. Here, we investigate whether these blunted increases in OPCs are associated with changes in proliferation. BDNF+/+ and BDNF+/− mice were fed cuprizone-containing or control feed. To assess effects on OPC numbers, platelet-derived growth factor receptor alpha (PDGFRα)+ or NG2+ cells were counted. To monitor DNA synthesis, 5-ethynyl-2′-deoxyuridine (EdU) was injected intraperitoneally and colocalized with PDGFRα+ cells. Alternatively, proliferating cell nuclear antigen (PCNA) was colocalized with PDGFRα or NG2. Labeling indices were determined in the BDNF+/+ and BDNF+/− animals. After 4 or 5 weeks of control feed, BDNF+/− mice exhibit similar numbers of OPCs compared with BDNF+/+ animals. The labeling indices for EdU and PCNA also were not significantly different, suggesting that neither the DNA synthesis phase (S phase) nor the proliferative pool size was different between genotypes. In contrast, when mice were challenged by cuprizone for 4 or 5 weeks, increases in OPCs observed in BDNF+/+ mice were reduced in the BDNF+/− mice. This difference in elevations in cell number was accompanied by decreases in EdU labeling and PCNA labeling without changes in cell death, indicating a reduction in the DNA synthesis and the proliferative pool. Therefore, levels of BDNF influence the proliferation of OPCs resulting from a demyelinating lesion. PMID:25586993

  6. Reduced cortical BDNF expression and aberrant memory in Carf knockout mice

    PubMed Central

    McDowell, Kelli A.; Hutchinson, Ashley N.; Wong-Goodrich, Sarah J.E.; Presby, Matthew M.; Su, Dan; Rodriguiz, Ramona M.; Law, Krystal C.; Williams, Christina L.; Wetsel, William C.; West, Anne E.

    2010-01-01

    Transcription factors are a key point of convergence between the cell-intrinsic and extracellular signals that guide synaptic development and brain plasticity. Calcium-Response Factor (CaRF) is a unique transcription factor first identified as a binding protein for a calcium-response element in the gene encoding Brain-Derived Neurotrophic Factor (Bdnf). We have now generated Carf knockout (KO) mice to characterize the function of this factor in vivo. Intriguingly, Carf KO mice have selectively reduced expression of Bdnf exon IV-containing mRNA transcripts and BDNF protein in the cerebral cortex while BDNF levels in the hippocampus and striatum remain unchanged, implicating CaRF as a brain region-selective regulator of BDNF expression. At the cellular level, Carf KO mice show altered expression of GABAergic proteins at striatal synapses, raising the possibility that CaRF may contribute to aspects of inhibitory synapse development. Carf KO mice show normal spatial learning in the Morris water maze and normal context-dependent fear conditioning. However they have an enhanced ability to find a new platform location on the first day of reversal training in the water maze and they extinguish conditioned fear more slowly than their wildtype (WT) littermates. Finally, Carf KO mice show normal short-term and long-term memory in a novel object recognition task, but exhibit impairments during the remote memory phase of testing. Taken together these data reveal novel roles for CaRF in the organization and/or function of neural circuits that underlie essential aspects of learning and memory. PMID:20519520

  7. Developmental Thyroid Hormone Insufficiency Reduces Expression of Brain-Derived Neurotrophic Factor (BDNF) in Adults But Not in Neonates

    EPA Science Inventory

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin critical for many developmental and physiological aspects of CNS function. Severe hypothyroidism in the early neonatal period results in developmental and cognitive impairments and reductions in mRNA and protein expressio...

  8. Association between BDNF levels and suicidal behaviour: a systematic review and meta-analysis.

    PubMed

    Eisen, Rebecca B; Perera, Stefan; Banfield, Laura; Anglin, Rebecca; Minuzzi, Luciano; Samaan, Zainab

    2015-12-30

    Suicidal behaviour is a complex phenomenon with a multitude of risk factors. Brain-derived neurotrophic factor (BDNF), a protein crucial to nervous system function, may be involved in suicide risk. The objective of this systematic review is to evaluate and summarize the literature examining the relationship between BDNF levels and suicidal behaviour. A predefined search strategy was used to search MEDLINE, EMBASE, PsychINFO, and CINAHL from inception to December 2015. Studies were included if they investigated the association between BDNF levels and suicidal behaviours (including completed suicide, attempted suicide, or suicidal ideation) by comparing BDNF levels in groups with and without suicidal behaviour. Only the following observational studies were included: case-control and cohort studies. Both clinical- and community-based samples were included. Screening, data extraction, and risk of bias assessment were conducted in duplicate. Six-hundred thirty-one articles were screened, and 14 were included in the review. Three studies that assessed serum BDNF levels in individuals with suicide attempts and controls were combined in a meta-analysis that showed no significant association between serum BDNF and suicide attempts. The remaining 11 studies were not eligible for the meta-analysis and provided inconsistent findings regarding associations between BDNF and suicidal behaviour. The findings of the meta-analysis indicate that there is no significant association between serum BDNF and attempted suicide. The qualitative review of the literature did not provide consistent support for an association between BDNF levels and suicidal behaviour. The evidence has significant methodological limitations. PROSPERO CRD42015015871.

  9. BDNF pathway is involved in the protective effects of SS-31 on isoflurane-induced cognitive deficits in aging mice.

    PubMed

    Wu, Jing; Zhang, Mingqiang; Li, Huihui; Sun, Xiaoru; Hao, Shuangying; Ji, Muhuo; Yang, Jianjun; Li, Kuanyu

    2016-05-15

    Mitochondrial dysfunction has been linked to the earliest pathogenesis of isoflurane-induced cognitive impairments in developing or aging mammalian brain. However, its molecular mechanism is poorly understood and a pharmacologic treatment to rapidly reverse mitochondrial dysfunction is lacking. Fifteen-month-old male C57BL/6 mice were exposed to isoflurane for two hours following intraperitoneal administration of mitochondrion-targeted peptide SS-31 or vehicle with 30min interval. The hippocampus was immediately removed for biochemical assays and mitochondria isolation after inhalation. Behavioral tests were evaluated by the open field test and fear conditioning test 24h after the experiment. We showed that cognitive deficits induced by exposure of the aging mice to isoflurane were accompanied by mitochondrial dysfunction in hippocampus due to loss of the enzymatic activity of complex I. This loss resulted in the increase of reactive oxygen species production, decrease of ATP production and mitochondrial membrane potential, and opening of mitochondrial permeability transition pore. Further, we provided evidence that the BDNF signaling pathway was involved in this process to regulate synaptic plasticity-related proteins, for instance, downregulation of synapsin 1, PSD-95 and p-CREB, and upregulation of NR2A, NR2B, CaMKIIα and CaMKIIβ. Of note, the isoflurane-induced cognitive deficits were rescued by SS-31 through reversal of mitochondrial dysfunction, which facilitated the regulation of BDNF signaling including the expression reversal of aforementioned important synaptic-signaling proteins in aging mice. Our data demonstrate that reversing mitochondrial dysfunction by SS-31 enhances BDNF signaling pathway and synaptic plasticity, and provides protective effects on cognitive function, thereby support the notion that SS-31 may have therapeutic benefits for elderly humans undertaking anesthesia. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The BDNF Val66Met polymorphism: relation to familiar risk of affective disorder, BDNF levels and salivary cortisol.

    PubMed

    Vinberg, Maj; Trajkovska, Viktorija; Bennike, Bente; Knorr, Ulla; Knudsen, Gitte M; Kessing, Lars V

    2009-10-01

    Brain-derived neurotrophic factor (BDNF) and the hypothalamic-pituitary-adrenal (HPA) axis are considered to play an important role in the pathophysiology of affective disorders. The aim of the present study was to investigate whether the BDNF Val66Met polymorphism is associated with a familiar risk of affective disorder and whether these genotypes affect whole blood BDNF level and salivary cortisol. In a high-risk study, healthy monozygotic and dizygotic twins with and without a co-twin (high- and low-risk twins, respectively) history of affective disorder were identified through nationwide registers. Familiar predisposition to unipolar and bipolar disorder was not associated with any specific genotype pattern of the BDNF Val66Met polymorphism, not in this sample of 124 val/val, 58 val/met and 8 met/met individuals. However, the combination of having a high familiar risk of affective disorder and the met allele was associated with a higher whole blood BDNF (p=0.02) and a higher evening cortisol level (p=0.01), but not with awakening cortisol. Individuals at high risk of affective disorders and who are carriers of the met allele of the Val66Met polymorphism may present with an enhanced stress response. The presence of a specific genotype alone may not enhance the risk of developing an affective episode. Rather, the altered stress response may be expressed only in combination with other risk variants through interactions with the environment.

  11. Chronic stress associated with hypercaloric diet changes the hippocampal BDNF levels in male Wistar rats.

    PubMed

    Macedo, I C; Rozisky, J R; Oliveira, C; Oliveira, C M; Laste, G; Nonose, Y; Santos, V S; Marques, P R; Ribeiro, M F M; Caumo, W; Torres, I L S

    2015-06-01

    Chronic stress, whether associated with obesity or not, leads to different neuroendocrine and psychological changes. Obesity or being overweight has become one of the most serious worldwide public health problems. Additionally, it is related to a substantial increase in daily energy intake, which results in substituting nutritionally adequate meals for snacks. This metabolic disorder can lead to morbidity, mortality, and reduced quality of life. On the other hand, brain-derived neurotrophic factor (BDNF) is widely expressed in all brain regions, particularly in the hypothalamus, where it has important effects on neuroprotection, synaptic plasticity, mammalian food intake-behavior, and energy metabolism. BDNF is involved in many activities modulated by the hypothalamic-pituitary-adrenal (HPA) axis. Therefore, this study aims to evaluate the effect of obesity associated with chronic stress on the BDNF central levels of rats. Obesity was controlled by analyzing the animals' caloric intake and changes in body weight. As a stress parameter, we analyzed the relative adrenal gland weight. We found that exposure to chronic restraint stress during 12 weeks increases the adrenal gland weight, decreases the BDNF levels in the hippocampus and is associated with a decrease in the calorie and sucrose intake, characterizing anhedonia. These effects can be related stress, a phenomenon that induces depression-like behavior. On the other hand, the rats that received the hypercaloric diet had an increase in calorie intake and became obese, which was associated with a decrease in hypothalamus BDNF levels. Copyright © 2015. Published by Elsevier Ltd.

  12. Anxiolytic effects of muscarinic acetylcholine receptors agonist oxotremorine in chronically stressed rats and related changes in BDNF and FGF2 levels in the hippocampus and prefrontal cortex.

    PubMed

    Di Liberto, Valentina; Frinchi, Monica; Verdi, Vincenzo; Vitale, Angela; Plescia, Fulvio; Cannizzaro, Carla; Massenti, Maria F; Belluardo, Natale; Mudò, Giuseppa

    2017-02-01

    In depressive disorders, one of the mechanisms proposed for antidepressant drugs is the enhancement of synaptic plasticity in the hippocampus and cerebral cortex. Previously, we showed that the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine (Oxo) increases neuronal plasticity in hippocampal neurons via FGFR1 transactivation. Here, we aimed to explore (a) whether Oxo exerts anxiolytic effect in the rat model of anxiety-depression-like behavior induced by chronic restraint stress (CRS), and (b) if the anxiolytic effect of Oxo is associated with the modulation of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and fibroblast growth factor-2 (FGF2), and phosphorylated Erk1/2 (p-Erk1/2) levels in the dorsal or ventral hippocampus and in the medial prefrontal cortex. The rats were randomly divided into four groups: control unstressed, CRS group, CRS group treated with 0.2 mg/kg Oxo, and unstressed group treated with Oxo. After 21 days of CRS, the groups were treated for 10 days with Oxo or saline. The anxiolytic role of Oxo was tested by using the following: forced swimming test, novelty suppressed feeding test, elevated plus maze test, and light/dark box test. The hippocampi and prefrontal cortex were used to evaluate BDNF and FGF2 protein levels and p-Erk1/2 levels. Oxo treatment significantly attenuated anxiety induced by CRS. Moreover, Oxo treatment counteracted the CRS-induced reduction of BDNF and FGF2 levels in the ventral hippocampus and medial prefrontal cerebral cortex CONCLUSIONS: The present study showed that Oxo treatment ameliorates the stress-induced anxiety-like behavior and rescues FGF2 and BDNF levels in two brain regions involved in CRS-induced anxiety, ventral hippocampal formation, and medial prefrontal cortex.

  13. Loss of BDNF or Its Receptors in Three Mouse Models Has Unpredictable Consequences for Anxiety and Fear Acquisition

    ERIC Educational Resources Information Center

    Olsen, Ditte; Kaas, Mathias; Schwartz, Ole; Nykjaer, Anders; Glerup, Simon

    2013-01-01

    BDNF-induced signaling is essential for the development of the central nervous system and critical for plasticity in adults. Mature BDNF signals through TrkB, while its precursor proBDNF employs p75[superscript NTR], resulting in activation of signaling cascades with opposite effects on neuronal survival, growth cone decisions, and synaptic…

  14. The BDNF polymorphism Val66Met may be predictive of swallowing improvement post pharyngeal electrical stimulation in dysphagic stroke patients.

    PubMed

    Essa, H; Vasant, D H; Raginis-Zborowska, A; Payton, A; Michou, E; Hamdy, S

    2017-08-01

    The aim of this study was to explore the effect of brain-derived neurotrophic factor (BDNF) polymorphism rs6265 (Val66Met) in both "natural" and treatment induced recovery of swallowing after dysphagic stroke. Sixteen dysphagic stroke patients that completed a single-blind randomized sham controlled trial of pharyngeal electrical stimulation (PES) within 6 weeks of their stroke (N=38), were genotyped for the BDNF SNP Val66Met (rs6265) from saliva samples. These patients received active or sham PES according to randomized allocation. PES was delivered at a set frequency (5 Hz), intensity (75% of maximal tolerated), and duration (10 minutes) once a day for three consecutive days. Clinical measurements were taken from patients at baseline, 2 weeks and 3 months post entering the study. Changes in swallowing ability based on the dysphagia severity rating scale (DSRS) were compared between active and sham groups and associated with BDNF SNP status. In the active stimulation group, patients with the Met BDNF allele demonstrated significantly greater improvements in DSRS at 3 months compared to patients homozygous for the Val allele (P=.009). By comparison, there were no significant associations at the 2 week stage in either the active or sham group, or at 3 month in the sham group. Functional scores including the Barthel Index and modified Rankin scale were also unaffected by BDNF status. Our findings suggest an association between BDNF and stimulation induced swallowing recovery. Further work will be required to validate these observations and demonstrate clinical utility in patients. © 2017 John Wiley & Sons Ltd.

  15. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunetto de Farias, Caroline; Children's Cancer Institute, 90420-140 Porto Alegre, RS; Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. Black-Right-Pointing-Pointer TrkB inhibition potentiated the antitumor effect of cetuximab. Black-Right-Pointing-Pointer BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling canmore » protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.« less

  16. Botanicals as Modulators of Neuroplasticity: Focus on BDNF

    PubMed Central

    Sangiovanni, Enrico; Brivio, Paola

    2017-01-01

    The involvement of brain-derived neurotrophic factor (BDNF) in different central nervous system (CNS) diseases suggests that this neurotrophin may represent an interesting and reliable therapeutic target. Accordingly, the search for new compounds, also from natural sources, able to modulate BDNF has been increasingly explored. The present review considers the literature on the effects of botanicals on BDNF. Botanicals considered were Bacopa monnieri (L.) Pennell, Coffea arabica L., Crocus sativus L., Eleutherococcus senticosus Maxim., Camellia sinensis (L.) Kuntze (green tea), Ginkgo biloba L., Hypericum perforatum L., Olea europaea L. (olive oil), Panax ginseng C.A. Meyer, Rhodiola rosea L., Salvia miltiorrhiza Bunge, Vitis vinifera L., Withania somnifera (L.) Dunal, and Perilla frutescens (L.) Britton. The effect of the active principles responsible for the efficacy of the extracts is reviewed and discussed as well. The high number of articles published (more than one hundred manuscripts for 14 botanicals) supports the growing interest in the use of natural products as BDNF modulators. The studies reported strengthen the hypothesis that botanicals may be considered useful modulators of BDNF in CNS diseases, without high side effects. Further clinical studies are mandatory to confirm botanicals as preventive agents or as useful adjuvant to the pharmacological treatment. PMID:29464125

  17. A significant association between BDNF promoter methylation and the risk of drug addiction.

    PubMed

    Xu, Xuting; Ji, Huihui; Liu, Guili; Wang, Qinwen; Liu, Huifen; Shen, Wenwen; Li, Longhui; Xie, Xiaohu; Zhou, Wenhua; Duan, Shiwei

    2016-06-10

    As a member of the neurotrophic factor family, brain derived neurotrophic factor (BDNF) plays an important role in the survival and differentiation of neurons. The aim of our work was to evaluate the role of BDNF promoter methylation in drug addiction. A total of 60 drug abusers (30 heroin and 30 methylamphetamine addicts) and 52 healthy age- and gender-matched controls were recruited for the current case control study. Bisulfite pyrosequencing technology was used to determine the methylation levels of five CpGs (CpG1-5) on the BDNF promoter. Among the five CpGs, CpG5 methylation was significantly lower in drug abusers than controls. Moreover, significant associations were found between CpG5 methylation and addictive phenotypes including tension-anxiety, anger-hostility, fatigue-inertia, and depression-dejection. In addition, luciferase assay showed that the DNA fragment of BDNF promoter played a key role in the regulation of gene expression. Our results suggest that BDNF promoter methylation is associated with drug addiction, although further studies are needed to understand the mechanisms by which BDNF promoter methylation contributes to the pathophysiology of drug addiction. Copyright © 2016. Published by Elsevier B.V.

  18. BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons

    PubMed Central

    Dieni, Sandra; Matsumoto, Tomoya; Dekkers, Martijn; Rauskolb, Stefanie; Ionescu, Mihai S.; Deogracias, Ruben; Gundelfinger, Eckart D.; Kojima, Masami; Nestel, Sigrun; Frotscher, Michael

    2012-01-01

    Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ∼10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system. PMID:22412021

  19. Minimal traumatic brain injury causes persistent changes in DNA methylation at BDNF gene promoters in rat amygdala: A possible role in anxiety-like behaviors.

    PubMed

    Sagarkar, Sneha; Bhamburkar, Tanmayi; Shelkar, Gajanan; Choudhary, Amit; Kokare, Dadasaheb M; Sakharkar, Amul J

    2017-10-01

    Minimal traumatic brain injury (MTBI) often transforms into chronic neuropsychiatric conditions including anxiety, the underlying mechanisms of which are largely unknown. In the present study, we employed the closed-head injury paradigm to induce MTBI in rats and examined whether DNA methylation can explain long-term changes in the expression of the brain-derived neurotrophic factor (BDNF) in the amygdala as well as trauma-induced anxiety-like behaviors. The MTBI caused anxiety-like behaviors and altered the expression of DNA methyltransferase (DNMT) isoforms (DNMT1, DNMT3a, and DNMT3b) and factors involved in DNA demethylation such as the growth arrest and DNA damage 45 (GADD45a and GADD45b). After 30days of MTBI, the over-expression of DNMT3a and DNMT3b corresponded to heightened DNMT activity, whereas the mRNA levels of GADD45a and GADD45b were declined. The methylated cytosine levels at the BDNF promoters (Ip, IVp and IXp) were increased in the amygdala of the trauma-induced animals; these coincided negatively with the mRNA levels of exon IV and IXa, but not of exon I. Interestingly, treatment with 5-azacytidine, a pan DNMT inhibitor, normalized the MTBI-induced DNMT activity and DNA hypermethylation at exon IVp and IXp. Furthermore, 5-azacytidine also corrected the deficits in the expression of exons IV and IXa and reduced the anxiety-like behaviors. These results suggest that the DNMT-mediated DNA methylation at the BDNF IVp and IXp might be involved in the regulation of BDNF gene expression in the amygdala. Further, it could also be related to MTBI-induced anxiety-like behaviors via the regulation of synaptic plasticity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Plasma BDNF Concentration, Val66Met Genetic Variant, and Depression-Related Personality Traits

    PubMed Central

    Terracciano, Antonio; Martin, Bronwen; Ansari, David; Tanaka, Toshiko; Ferrucci, Luigi; Maudsley, Stuart; Mattson, Mark P.; Costa, Paul T.

    2010-01-01

    Brain derived neurotrophic factor (BDNF) regulates synaptic plasticity and neurogenesis, and BDNF plasma and serum levels have been associated with depression, Alzheimer's disease, and other psychiatric and neurodegenerative disorders. In a relatively large community sample, drawn from the Baltimore Longitudinal Study of Aging (BLSA), we examine whether BDNF plasma concentration is associated with the Val66Met functional polymorphism of the BDNF gene (n = 335) and with depression-related personality traits assessed with the NEO-PI-R (n = 391). Plasma concentration of BDNF was not associated with the Val66Met variant in either men or women. However, in men, but not in women, BDNF plasma level was associated with personality traits linked to depression. Contrary to the notion that low BDNF is associated with negative outcomes, we found lower plasma levels in men who score lower on depression and vulnerability to stress (two facets of Neuroticism) and higher on Conscientiousness and Extraversion. These findings challenge the prevailing hypothesis that lower peripheral levels of BDNF are a marker of depression. PMID:20345896

  1. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and post-stroke dementia: a hospital-based study from northern Iran.

    PubMed

    Rezaei, Sajjad; Asgari Mobarake, Karim; Saberi, Alia; Keshavarz, Parvaneh; Leili, Ehsan Kazemnejad

    2016-06-01

    Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with functional and cognitive outcomes of stroke and plays a key role in preventing neuronal death. This study aimed to answer the following question: does BDNF Val66Met polymorphism prognosticate survival status and risk of post-stroke dementia (PSD)? In a retrospective cohort study, 206 patients with ischemic stroke (IS) entered the study. They were consecutively being admitted to the neurology clinic in Poursina Hospital (northern Iran) from 2012 to 2014. The diagnosis of PSD was based on DSM-5 criteria. The current and the premorbid cognitive statuses of the patients were respectively assessed through the third edition of Addenbrooke's Cognitive Examination and the Informant Questionnaire on Cognitive Decline in the Elderly. BDNF Val66Met gene polymorphism was determined by PCR-RFLP. On average, 48 patients (23.3 %) developed PSD 6 months after IS. Log-rank test showed that the survival rate of at least one Val-allele carriers was significantly lower than that of Met/Met homozygotes (P = 0.0005), and the former developed PSD sooner than the latter (375, 492 days, respectively). Cox model showed that heterozygous carriers of Val/Met were at greater risk of PSD over time (HR 2.280, 95 % CI 1.566-4.106, P = 0.006). However, the risk ratio of patients with PSD among different BDNF genotypes decreased after adjusting demographic, clinical, and vascular risk factors, and was no longer statistically significant (AHR 2.434, 95 % CI 0.597-9.926, P = 0.215). Val-allele carriers or Val/Met genotypes were more quickly diagnosed as having dementia after IS. However, this genetic vulnerability became more destructive when it was added to demographic, clinical, and vascular risk factors.

  2. Brain-Derived Neurotrophic Factor (BDNF) Promotes Cochlear Spiral Ganglion Cell Survival and Function in Deafened, Developing Cats

    PubMed Central

    Leake, Patricia A.; Hradek, Gary T.; Hetherington, Alexander M.; Stakhovskaya, Olga

    2011-01-01

    Postnatal development and survival of spiral ganglion (SG) neurons depend upon both neural activity and neurotrophic support. Our previous studies showed that electrical stimulation from a cochlear implant only partly prevents SG degeneration after early deafness. Thus, neurotrophic agents that might be combined with an implant to improve neural survival are of interest. Recent studies reporting that BDNF promotes SG survival after deafness, have been conducted in rodents and limited to relatively short durations. Our study examined longer duration BDNF treatment in deafened cats that may better model the slow progression of SG degeneration in human cochleae and provides the first study of BDNF in the developing auditory system. Kittens were deafened neonatally, implanted at 4-5 weeks with intracochlear electrodes containing a drug-delivery cannula, and BDNF or artificial perilymph was infused for 10 weeks from a mini-osmotic pump. In BDNF-treated cochleae SG cells grew to normal size and were significantly larger than cells on the contralateral side. However, their morphology was not completely normal and many neurons lacked or had thinned perikaryl myelin. Unbiased stereology was employed to estimate SG cell density, independent of cell size. BDNF was effective in promoting significantly improved survival of SG neurons in these developing animals. BDNF treatment also resulted in higher density and larger size of myelinated radial nerve fibers, sprouting of fibers into the scala tympani, and improvement in electrically-evoked auditory brainstem response thresholds. Although BDNF may have potential therapeutic value in the developing auditory system, many serious obstacles currently preclude clinical application. PMID:21452221

  3. Mice with altered BDNF signaling as models for mood disorders and antidepressant effects

    PubMed Central

    Lindholm, Jesse S. O.; Castrén, Eero

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase TrkB support neuronal survival during development and promote connectivity and plasticity in the adult brain. Decreased BDNF signaling is associated with the pathophysiology of depression and the mechanisms underlying the actions of antidepressant drugs (AD). Several transgenic mouse models with decreases or increases in the amount of BDNF or the activity of TrkB signaling have been created. This review summarizes the studies where various mouse models with increased or decreased BDNF levels or TrkB signaling were used to evaluate the role of BDNF signaling in depression-like behavior. Although a large number of models have been employed and several studies have been published, no clear-cut connections between BDNF levels or signaling and depression-like behavior in mice have emerged. However, it is clear that BDNF plays a critical role in the mechanisms underlying the actions of AD. PMID:24817844

  4. Localization of BDNF expression in the developing brain of zebrafish

    PubMed Central

    De Felice, E; Porreca, I; Alleva, E; De Girolamo, P; Ambrosino, C; Ciriaco, E; Germanà, A; Sordino, P

    2014-01-01

    The brain-derived neurotrophic factor (BDNF) gene is expressed in differentiating and post-mitotic neurons of the zebrafish embryo, where it has been implicated in Huntington's disease. Little is known, however, about the full complement of neuronal cell types that express BDNF in this important vertebrate model. Here, we further explored the transcriptional profiles during the first week of development using real-time quantitative polymerase chain reaction (RT-qPCR) and whole-mount in situ hybridization (WISH). RT-qPCR results revealed a high level of maternal contribution followed by a steady increase of zygotic transcription, consistent with the notion of a prominent role of BDNF in neuronal maturation and maintenance. Based on WISH, we demonstrate for the first time that BDNF expression in the developing brain of zebrafish is structure specific. Anatomical criteria and co-staining with genetic markers (shh, pax2a, emx1, krox20, lhx2b and lhx9) visualized major topological domains of BDNF-positive cells in the pallium, hypothalamus, posterior tuberculum and optic tectum. Moreover, the relative timing of BDNF transcription in the eye and tectum may illustrate a mechanism for coordinated development of the retinotectal system. Taken together, our results are compatible with a local delivery and early role of BDNF in the developing brain of zebrafish, adding basic knowledge to the study of neurotrophin functions in neural development and disease. PMID:24588510

  5. BDNF val66met Polymorphism Affects Aging of Multiple Types of Memory

    PubMed Central

    Kennedy, Kristen M.; Reese, Elizabeth D.; Horn, Marci M.; Sizemore, April N.; Unni, Asha K.; Meerbrey, Michael E.; Kalich, Allan G.; Rodrigue, Karen M.

    2014-01-01

    The BDNF val66met polymorphism (rs6265) influences activity-dependent secretion of brain-derived neurotrophic factor in the synapse, which is crucial for learning and memory. Individuals homozygous or heterozygous for the met allele have lower BDNF secretion than val homozygotes and may be at risk for reduced declarative memory performance, but it remains unclear which types of declarative memory may be affected and how aging of memory across the lifespan is impacted by the BDNF val66met polymorphism. This cross-sectional study investigated the effects of BDNF polymorphism on multiple indices of memory (item, associative, prospective, subjective complaints) in a lifespan sample of 116 healthy adults aged 20-93 years. Advancing age showed a negative effect on item, associative and prospective memory, but not on subjective memory complaints. For item and prospective memory, there were significant age x BDNF group interactions, indicating the adverse effect of age on memory performance across the lifespan was much stronger in the BDNF met carriers than for the val homozygotes. BDNF met carriers also endorsed significantly greater subjective memory complaints, regardless of age, and showed a trend (p < .07) toward poorer associative memory performance compared to val homozygotes. These results suggest that genetic predisposition to the availability of brain-derived neurotrophic factor, by way of the BDNF val66met polymorphism, exerts an influence on multiple indices of episodic memory – in some cases in all individuals regardless of age (subjective memory and perhaps associative memory), in others as an exacerbation of age-related differences in memory across the lifespan (item and prospective memory). PMID:25264352

  6. Regulation of BDNF Release by ARMS/Kidins220 through Modulation of Synaptotagmin-IV Levels.

    PubMed

    López-Benito, Saray; Sánchez-Sánchez, Julia; Brito, Verónica; Calvo, Laura; Lisa, Silvia; Torres-Valle, María; Palko, Mary E; Vicente-García, Cristina; Fernández-Fernández, Seila; Bolaños, Juan P; Ginés, Silvia; Tessarollo, Lino; Arévalo, Juan C

    2018-06-06

    BDNF is a growth factor with important roles in the nervous system in both physiological and pathological conditions, but the mechanisms controlling its secretion are not completely understood. Here, we show that ARMS/Kidins220 negatively regulates BDNF secretion in neurons from the CNS and PNS. Downregulation of the ARMS/Kidins220 protein in the adult mouse brain increases regulated BDNF secretion, leading to its accumulation in the striatum. Interestingly, two mouse models of Huntington's disease (HD) showed increased levels of ARMS/Kidins220 in the hippocampus and regulated BDNF secretion deficits. Importantly, reduction of ARMS/Kidins220 in hippocampal slices from HD mice reversed the impaired regulated BDNF release. Moreover, there are increased levels of ARMS/Kidins220 in the hippocampus and PFC of patients with HD. ARMS/Kidins220 regulates Synaptotagmin-IV levels, which has been previously observed to modulate BDNF secretion. These data indicate that ARMS/Kidins220 controls the regulated secretion of BDNF and might play a crucial role in the pathogenesis of HD. SIGNIFICANCE STATEMENT BDNF is an important growth factor that plays a fundamental role in the correct functioning of the CNS. The secretion of BDNF must be properly controlled to exert its functions, but the proteins regulating its release are not completely known. Using neuronal cultures and a new conditional mouse to modulate ARMS/Kidins220 protein, we report that ARMS/Kidins220 negatively regulates BDNF secretion. Moreover, ARMS/Kidins220 is overexpressed in two mouse models of Huntington's disease (HD), causing an impaired regulation of BDNF secretion. Furthermore, ARMS/Kidins220 levels are increased in brain samples from HD patients. Future studies should address whether ARMS/Kidins220 has any function on the pathophysiology of HD. Copyright © 2018 the authors 0270-6474/18/385415-14$15.00/0.

  7. BDNF Val66Met is Associated with Introversion and Interacts with 5-HTTLPR to Influence Neuroticism

    PubMed Central

    Terracciano, Antonio; Tanaka, Toshiko; Sutin, Angelina R; Deiana, Barbara; Balaci, Lenuta; Sanna, Serena; Olla, Nazario; Maschio, Andrea; Uda, Manuela; Ferrucci, Luigi; Schlessinger, David; Costa, Paul T

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) regulates synaptic plasticity and neurotransmission, and has been linked to neuroticism, a major risk factor for psychiatric disorders. A recent genome-wide association (GWA) scan, however, found the BDNF Val66Met polymorphism (rs6265) associated with extraversion but not with neuroticism. In this study, we examine the links between BDNF and personality traits, assessed using the Revised NEO Personality Inventory (NEO-PI-R), in a sample from SardiNIA (n=1560) and the Baltimore Longitudinal Study of Aging (BLSA; n=1131). Consistent with GWA results, we found that BDNF Met carriers were more introverted. By contrast, in both samples and in a meta-analysis inclusive of published data (n=15251), we found no evidence for a main effect of BDNF Val66Met on neuroticism. Finally, on the basis of recent reports of an epistatic effect between BDNF and the serotonin transporter, we explored a Val66Met × 5-HTTLPR interaction in a larger SardiNIA sample (n=2333). We found that 5-HTTLPR LL carriers scored lower on neuroticism in the presence of the BDNF Val variant, but scored higher on neuroticism in the presence of the BDNF Met variant. Our findings support the association between the BDNF Met variant and introversion and suggest that BDNF interacts with the serotonin transporter gene to influence neuroticism. PMID:20042999

  8. Prefrontal cortical BDNF: A regulatory key in cocaine- and food-reinforced behaviors

    PubMed Central

    Pitts, Elizabeth G.; Taylor, Jane R.; Gourley, Shannon L.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) affects synaptic plasticity and neural structure and plays key roles in learning and memory processes. Recent evidence also points to important, yet complex, roles for BDNF in rodent models of cocaine abuse and addiction. Here we examine the role of prefrontal cortical (PFC) BDNF in reward-related decision making and behavioral sensitivity to, and responding for, cocaine. We focus on BDNF within the medial and orbital PFC, its regulation by cocaine during early postnatal development and in adulthood, and how BDNF in turn influences responding for drug reinforcement, including in reinstatement models. When relevant, we draw comparisons and contrasts with experiments using natural (food) reinforcers. We also summarize findings supporting, or refuting, the possibility that BDNF in the medial and orbital PFC regulate the development and maintenance of stimulus-response habits. Further investigation could assist in the development of novel treatment approaches for cocaine use disorders. PMID:26923993

  9. BDNF/TrkB Pathway Mediates the Antidepressant-Like Role of H2S in CUMS-Exposed Rats by Inhibition of Hippocampal ER Stress.

    PubMed

    Wei, Le; Kan, Li-Yuan; Zeng, Hai-Ying; Tang, Yi-Yun; Huang, Hong-Lin; Xie, Ming; Zou, Wei; Wang, Chun-Yan; Zhang, Ping; Tang, Xiao-Qing

    2018-06-01

    Our previous works have shown that hydrogen sulfide (H 2 S) significantly attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors and hippocampal endoplasmic reticulum (ER) stress. Brain-derived neurotrophic factor (BDNF) generates an antidepressant-like effect by its receptor tyrosine protein kinase B (TrkB). We have previously found that H 2 S upregulates the expressions of BDNF and p-TrkB in the hippocampus of CUMS-exposed rats. Therefore, the present work was to explore whether BDNF/TrkB pathway mediates the antidepressant-like role of H 2 S by blocking hippocampal ER stress. We found that treatment with K252a (an inhibitor of BDNF/TrkB pathway) significantly increased the immobility time in the forced swim test and tail suspension test and increased the latency to feed in the novelty-suppressed feeding test in the rats cotreated with sodium hydrosulfide (NaHS, a donor of H 2 S) and CUMS. Similarly, K252a reversed the protective effect of NaHS against CUMS-induced hippocampal ER stress, as evidenced by increases in the levels of ER stress-related proteins, glucose-regulated protein 78, CCAAT/enhancer binding protein homologous protein and cleaved caspase-12. Taken together, our results suggest that BDNF/TrkB pathway plays an important mediatory role in the antidepressant-like action of H 2 S in CUMS-exposed rats, which is by suppression of hippocampal ER stress. These data provide a novel mechanism underlying the protection of H 2 S against CUMS-induced depressive-like behaviors.

  10. ProBDNF inhibits collective migration and chemotaxis of rat Schwann cells.

    PubMed

    Ding, You-Quan; Li, Xuan-Yang; Xia, Guan-Nan; Ren, Hong-Yi; Zhou, Xin-Fu; Su, Bing-Yin; Qi, Jian-Guo

    2016-10-01

    Schwann cell migration, including collective migration and chemotaxis, is essential for the formation of coordinate interactions between Schwann cells and axons during peripheral nerve development and regeneration. Moreover, limited migration of Schwann cells imposed a serious obstacle on Schwann cell-astrocytes intermingling and spinal cord repair after Schwann cell transplantation into injured spinal cords. Recent studies have shown that mature brain-derived neurotrophic factor, a member of the neurotrophin family, inhibits Schwann cell migration. The precursor form of brain-derived neurotrophic factor, proBDNF, was expressed in the developing or degenerating peripheral nerves and the injured spinal cords. Since "the yin and yang of neurotrophin action" has been established as a common sense, proBDNF would be expected to promote Schwann cell migration. However, we found, in the present study, that exogenous proBDNF also inhibited in vitro collective migration and chemotaxis of RSC 96 cells, a spontaneously immortalized rat Schwann cell line. Moreover, proBDNF suppressed adhesion and spreading of those cells. At molecular level, proBDNF inhibits F-actin polymerization and focal adhesion dynamics in cultured RSC 96 cells. Therefore, our results suggested a special case against the classical opinion of "the yin and yang of neurotrophin action" and implied that proBDNF might modulate peripheral nerve development or regeneration and spinal cord repair through perturbing native or transplanted Schwann cell migration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A Critical Role of Mitochondria in BDNF-Associated Synaptic Plasticity After One-Week Vortioxetine Treatment.

    PubMed

    Chen, Fenghua; Danladi, Jibrin; Ardalan, Maryam; Elfving, Betina; Müller, Heidi K; Wegener, Gregers; Sanchez, Connie; Nyengaard, Jens R

    2018-06-01

    Preclinical studies have indicated that antidepressant effect of vortioxetine involves increased synaptic plasticity and promotion of spine maturation. Mitochondria dysfunction may contribute to the pathophysiological basis of major depressive disorder. Taking into consideration that vortioxetine increases spine number and dendritic branching in hippocampus CA1 faster than fluoxetine, we hypothesize that new spines induced by vortioxetine can rapidly form functional synapses by mitochondrial support, accompanied by increased brain-derived neurotrophic factor signaling. Rats were treated for 1 week with vortioxetine or fluoxetine at pharmacologically relevant doses. Number of synapses and mitochondria in hippocampus CA1 were quantified by electron microscopy. Brain-derived neurotrophic factor protein levels were visualized with immunohistochemistry. Gene and protein expression of synapse and mitochondria-related markers were investigated with real-time quantitative polymerase chain reaction and immunoblotting. Vortioxetine increased number of synapses and mitochondria significantly, whereas fluoxetine had no effect after 1-week dosing. BDNF levels in hippocampus DG and CA1 were significantly higher after vortioxetine treatment. Gene expression levels of Rac1 after vortioxetine treatment were significantly increased. There was a tendency towards increased gene expression levels of Drp1 and protein levels of Rac1. However, both gene and protein levels of c-Fos were significantly decreased. Furthermore, there was a significant positive correlation between BDNF levels and mitochondria and synapse numbers. Our results imply that mitochondria play a critical role in synaptic plasticity accompanied by increased BDNF levels. Rapid changes in BDNF levels and synaptic/mitochondria plasticity of hippocampus following vortioxetine compared with fluoxetine may be ascribed to vortioxetine's modulation of serotonin receptors.

  12. Diphenyl diselenide ameliorates monosodium glutamate induced anxiety-like behavior in rats by modulating hippocampal BDNF-Akt pathway and uptake of GABA and serotonin neurotransmitters.

    PubMed

    Rosa, Suzan Gonçalves; Quines, Caroline Brandão; Stangherlin, Eluza Curte; Nogueira, Cristina Wayne

    2016-03-01

    Monosodium glutamate (MSG), a flavor enhancer used in food, administered to neonatal rats causes neuronal lesions and leads to anxiety when adulthood. We investigated the anxiolytic-like effect of diphenyl diselenide (PhSe)2 and its mechanisms on anxiety induced by MSG. Neonatal male and female Wistar rats received a subcutaneous injection of saline (0.9%) or MSG (4 g/kg/day) from the 1st to 10th postnatal day. At 60 days of life, the rats received (PhSe)2 (1mg/kg/day) or vehicle by the intragastric route for 7 days. The spontaneous locomotor activity (LAM), elevated plus maze test (EPM) and contextual fear conditioning test (CFC) as well as neurochemical ([(3)H]GABA and [(3)H]5-HT uptake) and molecular analyses (Akt and p-Akt and BDNF levels) were carried out after treatment with (PhSe)2. Neonatal exposure to MSG increased all anxiogenic parameters in LAM, EPM and CFC tests. MSG increased GABA and 5-HT uptake in hippocampus of rats, without changing uptake in cerebral cortex. The levels of BDNF and p-Akt were reduced in hippocampus of rats treated with MSG. The administration of (PhSe)2 to rats reversed all behavioral anxiogenic parameters altered by MSG. The increase in hippocampal GABA and 5-HT uptake induced by MSG was reversed by (PhSe)2. (PhSe)2 reversed the reduction in hippocampal BDNF and p-Akt levels induced by MSG. In conclusion, the anxiolytic-like action of (PhSe)2 in rats exposed to MSG during their neonatal period is related to its modulation of hippocampal GABA and 5-HT uptake as well as the BDNF-Akt pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Lack of promoter IV-driven BDNF transcription results in depression-like behavior.

    PubMed

    Sakata, K; Jin, L; Jha, S

    2010-10-01

    Transcription of Bdnf is controlled by multiple promoters, in which promoter IV contributes significantly to activity-dependent Bdnf transcription. We have generated promoter IV mutant mice [brain-derived neurotrophic factor (BDNF)-KIV] in which promoter IV-driven expression of BDNF is selectively disrupted by inserting a green fluorescent protein (GFP)-STOP cassette within the Bdnf exon IV locus. BDNF-KIV animals exhibited depression-like behavior as shown by the tail suspension test (TST), sucrose preference test (SPT) and learned helplessness test (LHT). In addition, BDNF-KIV mice showed reduced activity in the open field test (OFT) and reduced food intake in the novelty-suppressed feeding test (NSFT). The mutant mice did not display anxiety-like behavior in the light and dark box test and elevated plus maze tests. Interestingly, the mutant mice showed defective response inhibition in the passive avoidance test (PAT) even though their learning ability was intact when measured with the active avoidance test (AAT). These results suggest that promoter IV-dependent BDNF expression plays a critical role in the control of mood-related behaviors. This is the first study that directly addressed the effects of endogenous promoter-driven expression of BDNF in depression-like behavior. © 2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  14. Inhibitory Effect of Memantine on Streptozotocin-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Neurotrophic Factor Decline in Astrocytes.

    PubMed

    Rajasekar, N; Nath, Chandishwar; Hanif, Kashif; Shukla, Rakesh

    2016-12-01

    Our earlier studies showed that insulin receptor (IR) dysfunction along with neuroinflammation and amyloidogenesis played a major role in streptozotocin (STZ)-induced toxicity in astrocytes. N-methyl-D-aspartate (NMDA) receptor antagonist-memantine shows beneficial effects in Alzheimer's disease (AD) pathology. However, the protective molecular and cellular mechanism of memantine in astrocytes is not properly understood. Therefore, the present study was undertaken to investigate the effect of memantine on insulin receptors, neurotrophic factors, neuroinflammation, and amyloidogenesis in STZ-treated astrocytes. STZ (100 μM) treatment for 24 h in astrocytes resulted significant decrease in brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and insulin-degrading enzyme (IDE) expression in astrocytes. Treatment with memantine (1-10 μM) improved STZ-induced neurotrophic factor decline (BDNF, GDNF) along with IR dysfunction as evidenced by a significant increase in IR protein expression, phosphorylation of IRS-1, Akt, and GSK-3 α/β in astrocytes. Further, memantine attenuated STZ-induced amyloid precursor protein (APP), β-site APP-cleaving enzyme-1 and amyloid-β 1-42 expression and restored IDE expression in astrocytes. In addition, memantine also displays protective effects against STZ-induced astrocyte activation showed by reduction of inflammatory markers, nuclear factor kappa-B translocation, glial fibrillary acidic protein, cyclooxygenase-2, tumor necrosis factor-α level, and oxidative-nitrostative stress. The results suggest that besides the NMDA receptor antagonisic activity, effect on astroglial IR and neurotrophic factor may also be an important factor in the beneficial effect of memantine in AD pathology. Graphical Abstract Novel neuroprotective mechanisms of memenatine in streptozotocin-induced toxicity in astrocytes.

  15. On the quest for a biomechanism of transsexualism: is there a role for BDNF?

    PubMed

    Fuss, Johannes; Biedermann, Sarah V; Stalla, Günter K; Auer, Matthias K

    2013-12-01

    Previous studies hypothesized a neurobiological mechanism for gender identity disorder (GID). Recently a possible role for serum brain-derived neurotrophic factor (BDNF) was suggested on the basis of reduced serum BDNF levels in male-to-female individuals. Here we review the question whether there is indeed a role of BDNF in the development of transsexualism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Corticospinal excitability in the non-dominant hand is affected by BDNF genotype.

    PubMed

    Chang, Won Hyuk; Hwang, Jung Min; Uhm, Kyeong Eun; Pascual-Leone, Alvaro; Kim, Yun-Hee

    2017-02-01

    The objective of this study was to assess the functional state of corticospinal projections in the non-dominant hand according to brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms. We investigated this in 34 healthy right-handed individuals (12 men, mean age 27.4 ± 3.4 years) who underwent two experimental sessions consisting of corticospinal excitability measurements with single-pulse transcranial magnetic stimulation (TMS) and hand motor function assessments with a sequential finger motor task of the non-dominant hand. Experimental sessions were separated by periods of at least 2 days to avoid carryover effects. Data were analyzed according to BDNF polymorphism (Val/Val vs. Val/Met vs. Met/Met group). Ten (29.4%), seventeen (50.0%), and seven (20.6%) participants were allocated to the Val/Val, Val/Met, and Met/Met groups, respectively. Motor thresholds to TMS did not differ among groups, but the amplitude of the motor-evoked potentials in the non-dominant hand induced by suprathreshold (120% of MT) TMS was significantly lower in the Met/Met group than in the other two groups (p < 0.05). Movement accuracy and reaction time in the sequential finger motor task showed no significant differences among groups. These results indicate that Met/Met BDNF homozygote status affects corticospinal excitability, and should be controlled for in studies of motor system function using brain stimulation. Our findings may have clinical implications regarding further investigation of the impact of BDNF genotype on the human motor system.

  17. Learned helplessness is independent of levels of brain-derived neurotrophic factor in the hippocampus

    PubMed Central

    Greenwood, Benjamin N.; Strong, Paul V.; Foley, Teresa E.; Thompson, Robert; Fleshner, Monika

    2007-01-01

    Reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus have been implicated in human affective disorders and behavioral stress responses. The current studies examined the role of BDNF in the behavioral consequences of inescapable stress, or learned helplessness. Inescapable stress decreased BDNF mRNA and protein in the hippocampus of sedentary rats. Rats allowed voluntary access to running wheels for either 3 or 6 weeks prior to exposure to stress were protected against stress-induced reductions of hippocampal BDNF protein. The observed prevention of stress-induced deceases in BDNF, however, occurred in a time course inconsistent with the prevention of learned helplessness by wheel running, which is evident following 6 weeks, but not 3 weeks, of wheel running. BDNF suppression in physically active rats was produced by administering a single injection of the selective serotonin reuptake inhibitor fluoxetine (10 mg/kg) just prior to stress. Despite reduced levels of hippocampal BDNF mRNA following stress, physically active rats given the combination of fluoxetine and stress remained resistant against learned helplessness. Sedentary rats given both fluoxetine and stress still demonstrated typical learned helplessness behaviors. Fluoxetine by itself reduced BDNF mRNA in sedentary rats only, but did not affect freezing or escape learning 24 hours later. Finally, bilateral injections of BDNF (1 μg) into the dentate gyrus prior to stress prevented stress-induced reductions of hippocampal BDNF but did not prevent learned helplessness in sedentary rats. These data indicate that learned helplessness behaviors are independent of the presence or absence of hippocampal BDNF because blocking inescapable stress-induced BDNF suppression does not always prevent learned helplessness, and learned helplessness does not always occur in the presence of reduced BDNF. Results also suggest that the prevention of stress-induced hippocampal BDNF suppression is not

  18. Learned helplessness is independent of levels of brain-derived neurotrophic factor in the hippocampus.

    PubMed

    Greenwood, B N; Strong, P V; Foley, T E; Thompson, R S; Fleshner, M

    2007-02-23

    Reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus have been implicated in human affective disorders and behavioral stress responses. The current studies examined the role of BDNF in the behavioral consequences of inescapable stress, or learned helplessness. Inescapable stress decreased BDNF mRNA and protein in the hippocampus of sedentary rats. Rats allowed voluntary access to running wheels for either 3 or 6 weeks prior to exposure to stress were protected against stress-induced reductions of hippocampal BDNF protein. The observed prevention of stress-induced deceases in BDNF, however, occurred in a time course inconsistent with the prevention of learned helplessness by wheel running, which is evident following 6 weeks, but not 3 weeks, of wheel running. BDNF suppression in physically active rats was produced by administering a single injection of the selective serotonin reuptake inhibitor fluoxetine (10 mg/kg) just prior to stress. Despite reduced levels of hippocampal BDNF mRNA following stress, physically active rats given the combination of fluoxetine and stress remained resistant against learned helplessness. Sedentary rats given both fluoxetine and stress still demonstrated typical learned helplessness behaviors. Fluoxetine by itself reduced BDNF mRNA in sedentary rats only, but did not affect freezing or escape learning 24 h later. Finally, bilateral injections of BDNF (1 mug) into the dentate gyrus prior to stress prevented stress-induced reductions of hippocampal BDNF but did not prevent learned helplessness in sedentary rats. These data indicate that learned helplessness behaviors are independent of the presence or absence of hippocampal BDNF because blocking inescapable stress-induced BDNF suppression does not always prevent learned helplessness, and learned helplessness does not always occur in the presence of reduced BDNF. Results also suggest that the prevention of stress-induced hippocampal BDNF suppression is not

  19. Investigation of brain-derived neurotrophic factor (BDNF) gene expression in hypothalamus of obese rats: Modulation by omega-3 fatty acids.

    PubMed

    Abdel-Maksoud, Sahar M; Hassanein, Sally I; Gohar, Neveen A; Attia, Saad M M; Gad, Mohamed Z

    2017-10-01

    The aim of this study was investigating the effect of omega-3 fatty acids (ω-3 FAs) on brain-derived neurotrophic factor (BDNF) gene expression, using in vivo and in vitro models, to unravel the potential mechanisms of polyunsaturated fatty acids use in obesity. Twenty-nine Sprague-Dawley rats were divided into three groups; lean controls fed normal chow diet for 14 weeks, obese controls fed 60% of their diet as saturated fats for 14 weeks, and ω-3 FAs-treated rats fed 60% saturated fat diet for 14 weeks with concomitant oral administration of 400 mg/kg/day ω-3 FAs, mainly docosahexaenoic acid and EPA, from week 12 to week 14. For the in vitro experiment, hypothalamic cells from six obese rats were cultured in the presence of different concentrations of ω-3 FAs to determine its direct effect on BDNF expression. In vivo results showed that obesity has negative effect on BDNF gene expression in rat hypothalamus that was reversed by administration of ω-3 FAs. Obese rats showed hypercholesterolemia, hypertriglyceridemia, normoinsulinemia, hyperglycemia and hyperleptinemia. Treatment with ω-3 FAs showed significant decrease in serum total cholesterol and TAG. Also serum glucose level and HOMA index were decreased significantly. In vitro results demonstrated the increase in BDNF expression by ω-3 FAs in a dose-dependent manner. Obesity causes down-regulation of BDNF gene expression that can be reversed by ω-3 FAs treatment, making them an interesting treatment approach for obesity and metabolic disease.

  20. Presynaptic GABAergic inhibition regulated by BDNF contributes to neuropathic pain induction

    PubMed Central

    Chen, Jeremy Tsung-chieh; Guo, Da; Campanelli, Dario; Frattini, Flavia; Mayer, Florian; Zhou, Luming; Kuner, Rohini; Heppenstall, Paul A.; Knipper, Marlies; Hu, Jing

    2014-01-01

    The gate control theory proposes the importance of both pre- and post-synaptic inhibition in processing pain signal in the spinal cord. However, although postsynaptic disinhibition caused by brain-derived neurotrophic factor (BDNF) has been proved as a crucial mechanism underlying neuropathic pain, the function of presynaptic inhibition in acute and neuropathic pain remains elusive. Here we show that a transient shift in the reversal potential (EGABA) together with a decline in the conductance of presynaptic GABAA receptor result in a reduction of presynaptic inhibition after nerve injury. BDNF mimics, whereas blockade of BDNF signalling reverses, the alteration in GABAA receptor function and the neuropathic pain syndrome. Finally, genetic disruption of presynaptic inhibition leads to spontaneous development of behavioural hypersensitivity, which cannot be further sensitized by nerve lesions or BDNF. Our results reveal a novel effect of BDNF on presynaptic GABAergic inhibition after nerve injury and may represent new strategy for treating neuropathic pain. PMID:25354791

  1. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort

    PubMed Central

    Avgan, Nesli; Sutherland, Heidi G.; Spriggens, Lauren K.; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M.; Shum, David H. K.; Griffiths, Lyn R.

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale—Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance. PMID:28304362

  2. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort.

    PubMed

    Avgan, Nesli; Sutherland, Heidi G; Spriggens, Lauren K; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M; Shum, David H K; Griffiths, Lyn R

    2017-03-17

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory ( p -value = 0.003) in a small cohort ( n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale-Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism ( p -value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF , and its anti-sense transcript BDNF-AS , in long-term visual memory performance.

  3. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor (BDNF) tohuman umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) promotescrush-injured rat sciatic nerve regeneration.

    PubMed

    Hei, Wei-Hong; Almansoori, Akram A; Sung, Mi-Ae; Ju, Kyung-Won; Seo, Nari; Lee, Sung-Ho; Kim, Bong-Ju; Kim, Soung-Min; Jahng, Jeong Won; He, Hong; Lee, Jong-Ho

    2017-03-16

    This study was designed toinvestigate the efficacy of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) in a rat sciatic nerve crush injury model. BDNF protein and mRNA expression after infection was checked through an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Male Sprague-Dawley rats (200-250g, 6 weeks old) were distributed into threegroups (n=20 each): the control group, UCB-MSC group, and BDNF-adenovirus infected UCB-MSC (BDNF-Ad+UCB-MSC) group. UCB-MSCs (1×10 6 cells/10μl/rat) or BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat)were transplantedinto the rats at the crush site immediately after sciatic nerve injury. Cell tracking was done with PKH26-labeled UCB-MSCs and BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat). The rats were monitored for 4 weeks post-surgery. Results showed that expression of BDNF at both the protein and mRNA levels was higher inthe BDNF-Ad+UCB-MSC group compared to theUCB-MSC group in vitro.Moreover, BDNF mRNA expression was higher in both UCB-MSC group and BDNF-Ad+ UCB-MSC group compared tothe control group, and BDNF mRNA expression in theBDNF-Ad+UCB-MSC group was higher than inboth other groups 5days after surgeryin vivo. Labeled neurons in the dorsal root ganglia (DRG), axon counts, axon density, and sciatic function index were significantly increased in the UCB-MSC and BDNF-Ad+ UCB-MSCgroupscompared to the controlgroup four weeksaftercell transplantation. Importantly,the BDNF-Ad+UCB-MSCgroup exhibited more peripheral nerve regeneration than the other two groups.Our results indicate thatboth UCB-MSCs and BDNF-Ad+UCB-MSCscan improve rat sciatic nerve regeneration, with BDNF-Ad+UCB-MSCsshowing a greater effectthan UCB-MSCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. BDNF val66met polymorphism affects aging of multiple types of memory.

    PubMed

    Kennedy, Kristen M; Reese, Elizabeth D; Horn, Marci M; Sizemore, April N; Unni, Asha K; Meerbrey, Michael E; Kalich, Allan G; Rodrigue, Karen M

    2015-07-01

    The BDNF val66met polymorphism (rs6265) influences activity-dependent secretion of brain-derived neurotrophic factor in the synapse, which is crucial for learning and memory. Individuals homozygous or heterozygous for the met allele have lower BDNF secretion than val homozygotes and may be at risk for reduced declarative memory performance, but it remains unclear which types of declarative memory may be affected and how aging of memory across the lifespan is impacted by the BDNF val66met polymorphism. This cross-sectional study investigated the effects of BDNF polymorphism on multiple indices of memory (item, associative, prospective, subjective complaints) in a lifespan sample of 116 healthy adults aged 20-93 years. Advancing age showed a negative effect on item, associative and prospective memory, but not on subjective memory complaints. For item and prospective memory, there were significant age×BDNF group interactions, indicating the adverse effect of age on memory performance across the lifespan was much stronger in the BDNF met carriers than for the val homozygotes. BDNF met carriers also endorsed significantly greater subjective memory complaints, regardless of age, and showed a trend (p<.07) toward poorer associative memory performance compared to val homozygotes. These results suggest that genetic predisposition to the availability of brain-derived neurotrophic factor, by way of the BDNF val66met polymorphism, exerts an influence on multiple indices of episodic memory - in some cases in all individuals regardless of age (subjective memory and perhaps associative memory), in others as an exacerbation of age-related differences in memory across the lifespan (item and prospective memory). This article is part of a Special Issue entitled Memory & Aging. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. BDNF promotes the growth of human neurons through crosstalk with the Wnt/β-catenin signaling pathway via GSK-3β.

    PubMed

    Yang, Jin-Wei; Ru, Jin; Ma, Wei; Gao, Yan; Liang, Zhang; Liu, Jia; Guo, Jian-Hui; Li, Li-Yan

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal growth; however, the downstream regulatory mechanisms remain unclear. In this study, we investigated whether BDNF exerts its neurotrophic effects through the Wnt/β-catenin signaling pathway in human embryonic spinal cord neurons in vitro. We found that neuronal growth (soma size and average neurite length) was increased by transfection with a BDNF overexpression plasmid. Western blotting and real-time quantitative PCR showed that expression of the BDNF pathway components TrkB, PI3K, Akt and PLC-γ was increased by BDNF overexpression. Furthermore, the Wnt signaling factors Wnt, Frizzled and Dsh and the downstream target β-catenin were upregulated, whereas GSK-3β was downregulated. In contrast, when BDNF signaling was downregulated with BDNF siRNA, the growth of neurons was decreased. Furthermore, BDNF signaling factors, Wnt pathway components and β-catenin were all downregulated, whereas GSK-3β was upregulated. This suggests that BDNF affects the growth of neurons in vitro through crosstalk with Wnt signaling, and that GSK-3β may be a critical factor linking these two pathways. To evaluate this possibility, we treated neurons with 6-bromoindirubin-3'-oxime (BIO), a small molecule GSK-3β inhibitor. BIO reduced the effects of BDNF upregulation/downregulation on soma size and average neurite length, and suppressed the impact of BDNF modulation on the Wnt signaling pathway. Taken together, our findings suggest that BDNF promotes the growth of neurons in vitro through crosstalk with the Wnt/β-catenin signaling pathway, and that this interaction may be mediated by GSK-3β. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Transcranial direct current stimulation (tDCS) neuromodulatory effects on mechanical hyperalgesia and cortical BDNF levels in ovariectomized rats.

    PubMed

    da Silva Moreira, Sônia Fátima; Medeiros, Liciane Fernandes; de Souza, Andressa; de Oliveira, Carla; Scarabelot, Vanessa Leal; Fregni, Felipe; Caumo, Wolnei; Torres, Iraci L S

    2016-01-15

    Epidemiological studies show that painful disorders are more prevalent in women than in men, and the transcranial direct current stimulation (tDCS) technique has been tested in chronic pain states. We explored the effect of tDCS on pain behavior and brain-derived neurotrophic factor (BDNF) levels in ovariectomized rats. Forty-five female Wistar adult rats were distributed into five groups: control (CT), ovariectomy + tDCS (OT), ovariectomy + sham tDCS (OS), sham ovariectomy + tDCS (ST), and sham ovariectomy+shamtDCS (SS). The rats were subjected to cathodal tDCS. The vaginal cytology and the estradiol levels confirmed the hormonal status. In addition, nociceptive behavior was evaluated using the tail-flick, von Frey, and hot-plate tests, as well as the BDNF levels in the serum, hypothalamus, hippocampus, spinal cord, and cerebral cortex. One-way analysis of variance (ANOVA) or two-way ANOVA was used for statistical analysis, followed by the Bonferroni, and P-value b 0.05 was considered significant. The ovariectomized animals presented a hypersensitivity response in the hot-plate (P b 0.01) and von Frey (P b 0.05) tests, as well as increased serum BDNF (P b 0.05) and decreased hypothalamic BDNF (P b 0.01) levels. The OT, OS, ST, and SS groups showed decreased hippocampal BDNF levels as compared with the control group (P b 0.001). The interaction between tDCS and ovariectomy on the cortical BDNF levels (P b 0.01) was observed. The ovariectomy induced nociceptive hypersensitivity and altered serum and hypothalamic BDNF levels. The cathodal tDCS partially reversed nociceptive hypersensitivity.

  7. Dose-dependent effects of wheel running on cocaine-seeking and prefrontal cortex Bdnf exon IV expression in rats.

    PubMed

    Peterson, Alexis B; Abel, Jean M; Lynch, Wendy J

    2014-04-01

    Physical activity, and specifically exercise, has shown promise as an intervention for drug addiction; however, the exercise conditions that produce the most efficacious response, as well as its underlying mechanism, are unknown. In this study, we examined the dose-dependent effects of wheel running, an animal model of exercise, during abstinence on subsequent cocaine-seeking and associated changes in prefrontal cortex (PFC) brain-derived neurotrophic factor (Bdnf) exon IV expression, a marker of epigenetic regulation implicated in cocaine relapse and known to be regulated by exercise. Cocaine-seeking was assessed under a within-session extinction/cue-induced reinstatement procedure following extended access cocaine or saline self-administration (24-h/day, 4 discrete trials/h, 10 days, 1.5 mg/kg/infusion) and a 14-day abstinence period. During abstinence, rats had either locked or unlocked running wheel access for 1, 2, or 6 h/day. Bdnf exon IV expression was assessed using quantitative real-time polymerase chain reaction. Cocaine-seeking was highest under the locked wheel condition, and wheel running dose dependently attenuated this effect. Cocaine increased Bdnf exon IV expression, and wheel running dose dependently attenuated this increase, with complete blockade in rats given 6-h/day access. Notably, the efficacy of exercise was inversely associated with Bdnf exon IV expression, and both its efficacy and its effects on Bdnf exon IV expression were mimicked by treatment during abstinence with sodium butyrate, a histone deacetylase inhibitor that, like exercise, modulates gene transcription, including Bdnf exon IV expression. Taken together, these results indicate that the efficacy of exercise is dose dependent and likely mediated through epigenetic regulation of PFC Bdnf.

  8. Localization of BDNF expression in the developing brain of zebrafish.

    PubMed

    De Felice, E; Porreca, I; Alleva, E; De Girolamo, P; Ambrosino, C; Ciriaco, E; Germanà, A; Sordino, P

    2014-05-01

    The brain-derived neurotrophic factor (BDNF) gene is expressed in differentiating and post-mitotic neurons of the zebrafish embryo, where it has been implicated in Huntington's disease. Little is known, however, about the full complement of neuronal cell types that express BDNF in this important vertebrate model. Here, we further explored the transcriptional profiles during the first week of development using real-time quantitative polymerase chain reaction (RT-qPCR) and whole-mount in situ hybridization (WISH). RT-qPCR results revealed a high level of maternal contribution followed by a steady increase of zygotic transcription, consistent with the notion of a prominent role of BDNF in neuronal maturation and maintenance. Based on WISH, we demonstrate for the first time that BDNF expression in the developing brain of zebrafish is structure specific. Anatomical criteria and co-staining with genetic markers (shh, pax2a, emx1, krox20, lhx2b and lhx9) visualized major topological domains of BDNF-positive cells in the pallium, hypothalamus, posterior tuberculum and optic tectum. Moreover, the relative timing of BDNF transcription in the eye and tectum may illustrate a mechanism for coordinated development of the retinotectal system. Taken together, our results are compatible with a local delivery and early role of BDNF in the developing brain of zebrafish, adding basic knowledge to the study of neurotrophin functions in neural development and disease. © 2014 Anatomical Society.

  9. Gender difference in association of cognition with BDNF in chronic schizophrenia.

    PubMed

    Zhang, Xiang Yang; Chen, Da-Chun; Tan, Yun-Long; Tan, Shu-Ping; Wang, Zhi-Ren; Yang, Fu-De; Xiu, Mei-Hong; Hui, Li; Lv, Meng-Han; Zunta-Soares, Giovana B; Soares, Jair C

    2014-10-01

    While numerous studies have reported that brain-derived neurotrophic factor (BDNF) may be involved in the pathophysiology of schizophrenia, very few studies have explored its association with cognitive impairment or gender differences in schizophrenia which we explored. We compared gender differences in 248 chronic schizophrenic patients (male/female=185/63) to 188 healthy controls (male/female=98/90) on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and serum BDNF. Schizophrenic symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). Our results showed that schizophrenic patients performed worse than normals on most of the cognitive tasks, and male patients had significantly lower immediate memory and delayed memory scores than female patients. BDNF levels were significantly lower in patients than controls, and male patients had significantly lower BDNF levels than female patients. For the patients, BDNF was positively associated with immediate memory and the RBANS total score. Furthermore, these associations were only observed in female not male patients. Among healthy controls, no gender difference was observed in cognitive domains and BDNF levels, or in the association between BDNF and cognition. Our results suggest gender differences in cognitive impairments, BDNF levels and their association in chronic patients with schizophrenia. However, the findings should be regarded as preliminary due to the cross-sectional design and our chronic patients, which need replication in a first-episode and drug naïve patients using a longitudinal study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. BDNF Up-Regulates α7 Nicotinic Acetylcholine Receptor Levels on Subpopulations of Hippocampal Interneurons

    PubMed Central

    Massey, Kerri A.; Zago, Wagner M.; Berg, Darwin K.

    2006-01-01

    In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of α7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABAA receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased α7-nAChR clusters were most prominent on interneuron subtypes known to innervate directly excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling α7-nAChR levels. PMID:17029981

  11. Age-Dependent Deficits in Fear Learning in Heterozygous BDNF Knock-Out Mice

    ERIC Educational Resources Information Center

    Endres, Thomas; Lessmann, Volkmar

    2012-01-01

    Beyond its trophic function, the neurotrophin BDNF (brain-derived neurotrophic factor) is well known to crucially mediate synaptic plasticity and memory formation. Whereas recent studies suggested that acute BDNF/TrkB signaling regulates amygdala-dependent fear learning, no impairments of cued fear learning were reported in heterozygous BDNF…

  12. Impaired eye-blink conditioning in waggler, a mutant mouse with cerebellar BDNF deficiency.

    PubMed

    Bao, S; Chen, L; Qiao, X; Knusel, B; Thompson, R F

    1998-01-01

    In addition to their trophic functions, neurotrophins are also implicated in synaptic modulation and learning and memory. Although gene knockout techniques have been used widely in studying the roles of neurotrophins at molecular and cellular levels, behavioral studies using neurotrophin knockouts are limited by the early-onset lethality and various sensory deficits associated with the gene knockout mice. In the present study, we found that in a spontaneous mutant mouse, waggler, the expression of brain-derived neurotrophic factor (BDNF) was selectively absent in the cerebellar granule cells. The cytoarchitecture of the waggler cerebellum appeared to be normal at the light microscope level. The mutant mice exhibited no sensory deficits to auditory stimuli or heat-induced pain. However, they were massively impaired in classic eye-blink conditioning. These results suggest that BDNF may have a role in normal cerebellar neuronal function, which, in turn, is essential for classic eye-blink conditioning.

  13. Long noncoding RNA BDNF-AS is associated with clinical outcomes and has functional role in human prostate cancer.

    PubMed

    Li, Wensheng; Dou, Zhongling; We, Shuguang; Zhu, Zhiyi; Pan, Dong; Jia, Zhaohui; Liu, Hui; Wang, Xiaobin; Yu, Guoqiang

    2018-06-01

    The underlying molecular mechanisms of prostate cancer (CaP) are largely unknown. We investigated the expression, prognostic value and functional role of long non-coding RNA (lncRNA) brain-derived neurotrophin factor antisense (BDNF-AS) in CaP. Clinical tumor samples were excised from patients with CaP. Their endogenous BDNF-AS expression levels were evaluated by qRT-PCR. Correlations between CaP patients' endogenous BDNF-AS expression and their clinicopathological factors, overall survival were statistically analyzed. BDNF-AS expression levels were also probed in immortal CaP cell lines. In LNCaP and PC-3 cells, BDNF-AS was ectopically overexpressed through lentiviral transduction. The functions of BDNF-AS upregulation on CaP cell development were evaluated both in vitro and in vivo. BDNF-AS was downregulated in human CaP tumors. Low BDNF-AS expression was correlated with CaP patients' poor prognosis and shorter overall survival. BDNF-AS was also found to be lowly expressed in CaP cell lines. In LNCaP and PC-3 cells, lentivirus-driven BDNF-AS overexpression exerted significantly tumor-suppressing effects on hindering cancer cell proliferation and invasion in vitro, and explant growth in vivo. Downregulated BDNF-AS in CaP patients could be a potential prognostic biomarker for predicating poor prognosis and survival. Upregulating BDNF-AS may be a novel molecular intervening target for CaP treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Protective effects of telmisartan and tempol on lipopolysaccharide-induced cognitive impairment, neuroinflammation, and amyloidogenesis: possible role of brain-derived neurotrophic factor.

    PubMed

    Khallaf, Waleed A I; Messiha, Basim A S; Abo-Youssef, Amira M H; El-Sayed, Nesrine S

    2017-07-01

    Angiotensin II has pro-inflammatory and pro-oxidant potentials. We investigated the possible protective effects of the Angiotensin II receptor blocker telmisartan, compared with the superoxide scavenger tempol, on lipopolysaccharide (LPS)-induced cognitive decline and amyloidogenesis. Briefly, mice were allocated into a normal control group, an LPS control group, a tempol treatment group, and 2 telmisartan treatment groups. A behavioral study was conducted followed by a biochemical study via assessment of brain levels of beta amyloid (Aβ) and brain-derived neurotropic factor (BDNF) as amyloidogenesis and neuroplasticity markers, tumor necrosis factor alpha (TNF-α), nitric oxide end products (NOx), neuronal and inducible nitric oxide synthase (nNOS and iNOS) as inflammatory markers, and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione reduced (GSH), and nitrotyrosine (NT) as oxido-nitrosative stress markers. Finally, histopathological examination of cerebral cortex, hippocampus, and cerebellum sections was performed using routine and special Congo red stains. Tempol and telmisartan improved cognition, decreased brain Aβ deposition and BDNF depletion, decreased TNF-α, NOx, nNOS, iNOS, MDA, and NT brain levels, and increased brain SOD and GSH contents, parallel to confirmatory histopathological evidences. In conclusion, tempol and telmisartan are promising drugs in managing cognitive impairment and amyloidogenesis, at least via upregulation of BDNF with inhibition of neuroinflammation and oxido-nitrosative stress.

  15. Pivotal Role of Brain-Derived Neurotrophic Factor Secreted by Mesenchymal Stem Cells in Severe Intraventricular Hemorrhage in Newborn Rats.

    PubMed

    Ahn, So Yoon; Chang, Yun Sil; Sung, Dong Kyung; Sung, Se In; Ahn, Jee-Yin; Park, Won Soon

    2017-01-24

    Mesenchymal stem cell (MSC) transplantation protects against neonatal severe intraventricular hemorrhage (IVH)-induced brain injury by a paracrine rather than regenerative mechanism; however, the paracrine factors involved and their roles have not yet been delineated. This study aimed to identify the paracrine mediator(s) and to determine their role in mediating the therapeutic effects of MSCs in severe IVH. We first identified significant upregulation of brain-derived neurotrophic factor (BDNF) in MSCs compared with fibroblasts, in both DNA and antibody microarrays, after thrombin exposure. We then knocked down BDNF in MSCs by transfection with small interfering (si)RNA specific for human BDNF. The therapeutic effects of MSCs with or without BDNF knockdown were evaluated in vitro in rat neuronal cells challenged with thrombin, and in vivo in newborn Sprague-Dawley rats by injecting 200 μl of blood on postnatal day 4 (P4), and transplanting MSCs (1 × 105 cells) intraventricularly on P6. siRNA-induced BDNF knockdown abolished the in vitro benefits of MSCs on thrombin-induced neuronal cell death. BDNF knockdown also abolished the in vivo protective effects against severe IVH-induced brain injuries such as the attenuation of posthemorrhagic hydrocephalus, impaired behavioral test performance, increased astrogliosis, increased number of TUNEL cells, ED-1+ cells, and inflammatory cytokines, and reduced myelin basic protein expression. Our data indicate that BDNF secreted by transplanted MSCs is one of the critical paracrine factors that play a seminal role in attenuating severe IVH-induced brain injuries in newborn rats.

  16. Antidepressive and BDNF effects of enriched environment treatment across ages in mice lacking BDNF expression through promoter IV

    PubMed Central

    Jha, S; Dong, B E; Xue, Y; Delotterie, D F; Vail, M G; Sakata, K

    2016-01-01

    Reduced promoter IV-driven expression of brain-derived neurotrophic factor (BDNF) is implicated in stress and major depression. We previously reported that defective promoter IV (KIV) caused depression-like behavior in young adult mice, which was reversed more effectively by enriched environment treatment (EET) than antidepressants. The effects of promoter IV-BDNF deficiency and EET over the life stages remain unknown. Since early-life development (ED) involves dynamic epigenetic processes, we hypothesized that EET during ED would provide maximum antidepressive effects that would persist later in life due to enhanced, long-lasting BDNF induction. We tested this hypothesis by determining EET effects across three life stages: ED (0–2 months), young adult (2–4 months), and old adult (12–14 months). KIV mice at all life stages showed depression-like behavior in the open-field and tail-suspension tests compared with wild-type mice. Two months of EET reduced depression-like behavior in ED and young adult, but not old adult mice, with the largest effect in ED KIV mice. This effect lasted for 1 month after discontinuance of EET only in ED mice. BDNF protein induction by EET in the hippocampus and frontal cortex was also the largest in ED mice and persisted only in the hippocampus of ED KIV mice after discontinuance of EET. No gender-specific effects were observed. The results suggest that defective promoter IV causes depression-like behavior, regardless of age and gender, and that EET during ED is particularly beneficial to individuals with promoter IV-BDNF deficiency, while additional treatment may be needed for older adults. PMID:27648918

  17. Induction of the plasticity-associated immediate early gene Arc by stress and hallucinogens: role of brain-derived neurotrophic factor.

    PubMed

    Benekareddy, Madhurima; Nair, Amrita R; Dias, Brian G; Suri, Deepika; Autry, Anita E; Monteggia, Lisa M; Vaidya, Vidita A

    2013-03-01

    Exposure to stress and hallucinogens in adulthood evokes persistent alterations in neurocircuitry and emotional behaviour. The structural and functional changes induced by stress and hallucinogen exposure are thought to involve transcriptional alterations in specific effector immediate early genes. The immediate early gene, activity regulated cytoskeletal-associated protein (Arc), is important for both activity and experience dependent plasticity. We sought to examine whether trophic factor signalling through brain-derived neurotrophic factor (BDNF) contributes to the neocortical regulation of Arc mRNA in response to distinct stimuli such as immobilization stress and the hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI). Acute exposure to either immobilization stress or DOI induced Arc mRNA levels within the neocortex. BDNF infusion into the neocortex led to a robust up-regulation of local Arc transcript expression. Further, baseline Arc mRNA expression in the neocortex was significantly decreased in inducible BDNF knockout mice with an adult-onset, forebrain specific BDNF loss. The induction of Arc mRNA levels in response to both acute immobilization stress or a single administration of DOI was significantly attenuated in the inducible BDNF knockout mice. Taken together, our results implicate trophic factor signalling through BDNF in the regulation of cortical Arc mRNA expression, both under baseline conditions and following stress and hallucinogen exposure. These findings suggest the possibility that the regulation of Arc expression via BDNF provides a molecular substrate for the structural and synaptic plasticity observed following stimuli such as stress and hallucinogens.

  18. Effects of brain-derived neurotrophic factor (BDNF) on the cochlear nucleus in cats deafened as neonates.

    PubMed

    Kandathil, Cherian K; Stakhovskaya, Olga; Leake, Patricia A

    2016-12-01

    Many previous studies have shown significant neurotrophic effects of intracochlear delivery of BDNF in preventing degeneration of cochlear spiral ganglion (SG) neurons after deafness in rodents and our laboratory has shown similar results in developing cats deafened prior to hearing onset. This study examined the morphology of the cochlear nucleus (CN) in a group of neonatally deafened cats from a previous study in which infusion of BDNF elicited a significant improvement in survival of the SG neurons. Five cats were deafened by systemic injections of neomycin sulfate (60 mg/kg, SQ, SID) starting one day after birth, and continuing for 16-18 days until auditory brainstem response (ABR) testing demonstrated profound bilateral hearing loss. The animals were implanted unilaterally at about 1 month of age using custom-designed electrodes with a drug-delivery cannula connected to an osmotic pump. BDNF (94 μg/ml; 0.25 μl/hr) was delivered for 10 weeks. The animals were euthanized and studied at 14-23 weeks of age. Consistent with the neurotrophic effects of BDNF on SG survival, the total CN volume in these animals was significantly larger on the BDNF-treated side than on the contralateral side. However, total CN volume, both ipsi- and contralateral to the implants in these deafened juvenile animals, was markedly smaller than the CN in normal adult animals, reflecting the severe effects of deafness on the central auditory system during development. Data from the individual major CN subdivisions (DCN, Dorsal Cochlear Nucleus; PVCN, Posteroventral Cochlear Nucleus; AVCN, Anteroventral Cochlear Nucleus) also were analyzed. A significant difference was observed between the BDNF-treated and control sides only in the AVCN. Measurements of the cross-sectional areas of spherical cells showed that cells were significantly larger in the AVCN ipsilateral to the implant than on the contralateral side. Further, the numerical density of spherical cells was significantly lower in

  19. Epigenetic Modification of Hippocampal Bdnf DNA in Adult Rats in an Animal Model of Post-Traumatic Stress Disorder

    PubMed Central

    Roth, Tania L.; Zoladz, Phillip R.; Sweatt, J. David; Diamond, David M.

    2011-01-01

    Epigenetic alterations of the brain-derived neurotrophic factor (Bdnf) gene have been linked with memory, stress, and neuropsychiatric disorders. Here we examined whether there was a link between an established rat model of post-traumatic stress disorder (PTSD) and BdnfDNA methylation. Adult male Sprague-Dawley rats were given psychosocial stress composed of two acute cat exposures in conjunction with 31 days of daily social instability. These manipulations have been shown previously to produce physiological and behavioral sequelae in rats that are comparable to symptoms observed in traumatized people with PTSD. We then assessed BdnfDNA methylation patterns (at exon IV) and gene expression. We have found here that the psychosocial stress regimen significantly increased BdnfDNA methylation in the dorsal hippocampus, with the most robust hypermethylation detected in the dorsal CA1 subregion. Conversely, the psychosocial stress regimen significantly decreased methylation in the ventral hippocampus (CA3). No changes in BdnfDNA methylation were detected in the medial prefrontal cortex or basolateral amygdala. In addition, there were decreased levels of BdnfmRNA in both the dorsal and ventral CA1. These results provide evidence that traumatic stress occurring in adulthood can induce CNS gene methylation, and specifically, support the hypothesis that epigenetic marking of the Bdnfgene may underlie hippocampal dysfunction in response to traumatic stress. Furthermore, this work provides support for the speculative notion that altered hippocampal BdnfDNA methylation is a cellular mechanism underlying the persistent cognitive deficits which are prominent features of the pathophysiology of PTSD. PMID:21306736

  20. VGF and Its C-Terminal Peptide TLQP-62 Regulate Memory Formation in Hippocampus via a BDNF-TrkB-Dependent Mechanism.

    PubMed

    Lin, Wei-Jye; Jiang, Cheng; Sadahiro, Masato; Bozdagi, Ozlem; Vulchanova, Lucy; Alberini, Cristina M; Salton, Stephen R

    2015-07-15

    Regulated expression and secretion of BDNF, which activates TrkB receptor signaling, is known to play a critical role in cognition. Identification of additional modulators of cognitive behavior that regulate activity-dependent BDNF secretion and/or potentiate TrkB receptor signaling would therefore be of considerable interest. In this study, we show in the adult mouse hippocampus that expression of the granin family gene Vgf and secretion of its C-terminal VGF-derived peptide TLQP-62 are required for fear memory formation. We found that hippocampal VGF expression and TLQP-62 levels were transiently induced after fear memory training and that sequestering secreted TLQP-62 peptide in the hippocampus immediately after training impaired memory formation. Reduced VGF expression was found to impair learning-evoked Rac1 induction and phosphorylation of the synaptic plasticity markers cofilin and synapsin in the adult mouse hippocampus. Moreover, TLQP-62 induced acute, transient activation of the TrkB receptor and subsequent CREB phosphorylation in hippocampal slice preparations and its administration immediately after training enhanced long-term memory formation. A critical role of BDNF-TrkB signaling as a downstream effector in VGF/TLQP-62-mediated memory consolidation was further revealed by posttraining activation of BDNF-TrkB signaling, which rescued impaired fear memory resulting from hippocampal administration of anti-VGF antibodies or germline VGF ablation in mice. We propose that VGF is a critical component of a positive BDNF-TrkB regulatory loop and, upon its induced expression by memory training, the TLQP-62 peptide rapidly reinforces BDNF-TrkB signaling, regulating hippocampal memory consolidation. Identification of the cellular and molecular mechanisms that regulate long-term memory formation and storage may provide alternative treatment modalities for degenerative and neuropsychiatric memory disorders. The neurotrophin BDNF plays a prominent role in cognitive

  1. VGF and Its C-Terminal Peptide TLQP-62 Regulate Memory Formation in Hippocampus via a BDNF-TrkB-Dependent Mechanism

    PubMed Central

    Lin, Wei-Jye; Jiang, Cheng; Sadahiro, Masato; Bozdagi, Ozlem; Vulchanova, Lucy; Alberini, Cristina M.

    2015-01-01

    Regulated expression and secretion of BDNF, which activates TrkB receptor signaling, is known to play a critical role in cognition. Identification of additional modulators of cognitive behavior that regulate activity-dependent BDNF secretion and/or potentiate TrkB receptor signaling would therefore be of considerable interest. In this study, we show in the adult mouse hippocampus that expression of the granin family gene Vgf and secretion of its C-terminal VGF-derived peptide TLQP-62 are required for fear memory formation. We found that hippocampal VGF expression and TLQP-62 levels were transiently induced after fear memory training and that sequestering secreted TLQP-62 peptide in the hippocampus immediately after training impaired memory formation. Reduced VGF expression was found to impair learning-evoked Rac1 induction and phosphorylation of the synaptic plasticity markers cofilin and synapsin in the adult mouse hippocampus. Moreover, TLQP-62 induced acute, transient activation of the TrkB receptor and subsequent CREB phosphorylation in hippocampal slice preparations and its administration immediately after training enhanced long-term memory formation. A critical role of BDNF-TrkB signaling as a downstream effector in VGF/TLQP-62-mediated memory consolidation was further revealed by posttraining activation of BDNF-TrkB signaling, which rescued impaired fear memory resulting from hippocampal administration of anti-VGF antibodies or germline VGF ablation in mice. We propose that VGF is a critical component of a positive BDNF-TrkB regulatory loop and, upon its induced expression by memory training, the TLQP-62 peptide rapidly reinforces BDNF-TrkB signaling, regulating hippocampal memory consolidation. SIGNIFICANCE STATEMENT Identification of the cellular and molecular mechanisms that regulate long-term memory formation and storage may provide alternative treatment modalities for degenerative and neuropsychiatric memory disorders. The neurotrophin BDNF plays a

  2. Risperidone reverses the spatial object recognition impairment and hippocampal BDNF-TrkB signalling system alterations induced by acute MK-801 treatment

    PubMed Central

    Chen, Guangdong; Lin, Xiaodong; Li, Gongying; Jiang, Diego; Lib, Zhiruo; Jiang, Ronghuan; Zhuo, Chuanjun

    2017-01-01

    The aim of the present study was to investigate the effects of a commonly-used atypical antipsychotic, risperidone, on alterations in spatial learning and in the hippocampal brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signalling system caused by acute dizocilpine maleate (MK-801) treatment. In experiment 1, adult male Sprague-Dawley rats subjected to acute treatment of either low-dose MK801 (0.1 mg/kg) or normal saline (vehicle) were tested for spatial object recognition and hippocampal expression levels of BDNF, TrkB and the phophorylation of TrkB (p-TrkB). We found that compared to the vehicle, MK-801 treatment impaired spatial object recognition of animals and downregulated the expression levels of p-TrkB. In experiment 2, MK-801- or vehicle-treated animals were further injected with risperidone (0.1 mg/kg) or vehicle before behavioural testing and sacrifice. Of note, we found that risperidone successfully reversed the deleterious effects of MK-801 on spatial object recognition and upregulated the hippocampal BDNF-TrkB signalling system. Collectively, the findings suggest that cognitive deficits from acute N-methyl-D-aspartate receptor blockade may be associated with the hypofunction of hippocampal BDNF-TrkB signalling system and that risperidone was able to reverse these alterations. PMID:28451387

  3. A Critical Role of Mitochondria in BDNF-Associated Synaptic Plasticity After One-Week Vortioxetine Treatment

    PubMed Central

    Chen, Fenghua; Danladi, Jibrin; Ardalan, Maryam; Elfving, Betina; Müller, Heidi K; Sanchez, Connie; Nyengaard, Jens R

    2018-01-01

    Abstract Background Preclinical studies have indicated that antidepressant effect of vortioxetine involves increased synaptic plasticity and promotion of spine maturation. Mitochondria dysfunction may contribute to the pathophysiological basis of major depressive disorder. Taking into consideration that vortioxetine increases spine number and dendritic branching in hippocampus CA1 faster than fluoxetine, we hypothesize that new spines induced by vortioxetine can rapidly form functional synapses by mitochondrial support, accompanied by increased brain-derived neurotrophic factor signaling. Methods Rats were treated for 1 week with vortioxetine or fluoxetine at pharmacologically relevant doses. Number of synapses and mitochondria in hippocampus CA1 were quantified by electron microscopy. Brain-derived neurotrophic factor protein levels were visualized with immunohistochemistry. Gene and protein expression of synapse and mitochondria-related markers were investigated with real-time quantitative polymerase chain reaction and immunoblotting. Results Vortioxetine increased number of synapses and mitochondria significantly, whereas fluoxetine had no effect after 1-week dosing. BDNF levels in hippocampus DG and CA1 were significantly higher after vortioxetine treatment. Gene expression levels of Rac1 after vortioxetine treatment were significantly increased. There was a tendency towards increased gene expression levels of Drp1 and protein levels of Rac1. However, both gene and protein levels of c-Fos were significantly decreased. Furthermore, there was a significant positive correlation between BDNF levels and mitochondria and synapse numbers. Conclusion Our results imply that mitochondria play a critical role in synaptic plasticity accompanied by increased BDNF levels. Rapid changes in BDNF levels and synaptic/mitochondria plasticity of hippocampus following vortioxetine compared with fluoxetine may be ascribed to vortioxetine’s modulation of serotonin receptors. PMID

  4. Effect of co-administration of memantine and sertraline on the antidepressant-like activity and brain-derived neurotrophic factor (BDNF) levels in the rat brain.

    PubMed

    Amidfar, Meysam; Réus, Gislaine Z; Quevedo, João; Kim, Yong-Ku; Arbabi, Mohammad

    2017-01-01

    A developing body of data has drawn attention to the N-methyl-d-aspartate (NMDA) receptor antagonists as potential drugs for the treatment of major depressive disorder (MDD). We investigated the possibility of synergistic interactions between the antidepressant sertraline with the uncompetitive NMDA receptor antagonist, memantine. The present study was aimed to evaluate behavioural and molecular effects of the chronic treatment with memantine and sertraline alone or in combination in rats. To this aim, rats were chronically treated with memantine (2.5 and 5mg/kg) and sertraline (5mg/kg) for 14days once a day, and then exposed to the forced swimming test. The brain-derived neurotrophic factor (BDNF) levels were assessed in the hippocampus and prefrontal cortex in all groups by ELISA sandwich assay. Sertraline and memantine (2.5mg/kg) alone did not have effect on the immobility time; however, the effect of sertraline was enhanced by both doses of memantine. Combined treatment with memantine and sertraline produced stronger increases in the BDNF protein levels in the hippocampus and prefrontal cortex. Our results indicate that co-administration of antidepressant memantine with sertraline may induce a more pronounced antidepressant activity than treatment with each antidepressant alone. Antidepressant properties using the combination of memantine and sertraline could be attributed to increased levels of BDNF. This finding may be of particular importance in the case of drug-resistant patients and could suggest a method of obtaining significant antidepressant actions whereas limiting side effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus.

    PubMed

    Jeanneteau, Freddy D; Lambert, W Marcus; Ismaili, Naima; Bath, Kevin G; Lee, Francis S; Garabedian, Michael J; Chao, Moses V

    2012-01-24

    Regulation of the hypothalamic-pituitary-adrenal (HPA) axis is critical for adaptation to environmental changes. The principle regulator of the HPA axis is corticotrophin-releasing hormone (CRH), which is made in the parventricular nucleus and is an important target of negative feedback by glucocorticoids. However, the molecular mechanisms that regulate CRH are not fully understood. Disruption of normal HPA axis activity is a major risk factor of neuropsychiatric disorders in which decreased expression of the glucocorticoid receptor (GR) has been documented. To investigate the role of the GR in CRH neurons, we have targeted the deletion of the GR, specifically in the parventricular nucleus. Impairment of GR function in the parventricular nucleus resulted in an enhancement of CRH expression and an up-regulation of hypothalamic levels of BDNF and disinhibition of the HPA axis. BDNF is a stress and activity-dependent factor involved in many activities modulated by the HPA axis. Significantly, ectopic expression of BDNF in vivo increased CRH, whereas reduced expression of BDNF, or its receptor TrkB, decreased CRH expression and normal HPA functions. We find the differential regulation of CRH relies upon the cAMP response-element binding protein coactivator CRTC2, which serves as a switch for BDNF and glucocorticoids to direct the expression of CRH.

  6. Brain-derived neurotrophic factor into adult neocortex strengthens a taste aversion memory.

    PubMed

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2016-01-15

    Nowadays, it is known that brain derived neurotrophic-factor (BDNF) is a protein critically involved in regulating long-term memory related mechanisms. Previous studies from our group in the insular cortex (IC), a brain structure of the temporal lobe implicated in acquisition, consolidation and retention of conditioned taste aversion (CTA), demonstrated that BDNF is essential for CTA consolidation. Recent studies show that BDNF-TrkB signaling is able to mediate the enhancement of memory. However, whether BDNF into neocortex is able to enhance aversive memories remains unexplored. In the present work, we administrated BDNF in a concentration capable of inducing in vivo neocortical LTP, into the IC immediately after CTA acquisition in two different conditions: a "strong-CTA" induced by 0.2M lithium chloride i.p. as unconditioned stimulus, and a "weak-CTA" induced by 0.1M lithium chloride i.p. Our results show that infusion of BDNF into the IC converts a weak CTA into a strong one, in a TrkB receptor-dependent manner. The present data suggest that BDNF into the adult insular cortex is sufficient to increase an aversive memory-trace. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Epigenetic alterations of the BDNF gene in combat-related post-traumatic stress disorder.

    PubMed

    Kim, T Y; Kim, S J; Chung, H G; Choi, J H; Kim, S H; Kang, J I

    2017-02-01

    Brain-derived neurotrophic factor (BDNF) plays a crucial role in modulating resilience and vulnerability to stress. The aim of this study was to investigate whether epigenetic regulation of the BDNF gene is a biomarker of post-traumatic stress disorder (PTSD) development among veterans exposed to combat in the Vietnam War. Using the Clinician-Administered PTSD Scale, combat veterans were grouped into those with (n = 126) and without (n = 122) PTSD. DNA methylation levels at four CpG sites within the BDNF promoter I region were quantified in the peripheral blood using pyrosequencing. The effects of BDNF DNA methylation levels and clinical variables on the diagnosis of PTSD were tested using binary logistic regression analysis. Subjects with PTSD showed a higher DNA methylation of four CpG sites at the BDNF promoter compared with those without PTSD. High methylation levels at the BDNF promoter CpG site, high combat exposure, and alcohol problems were significantly associated with PTSD diagnosis. This study demonstrated an association between higher DNA methylation of the BDNF promoter and PTSD diagnosis in combat-exposed individuals. Our findings suggest that altered BDNF methylation may be a valuable biomarker of PTSD after trauma exposure. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Chronic antidepressant administration alleviates frontal and hippocampal BDNF deficits in CUMS rat.

    PubMed

    Zhang, Yang; Gu, Fenghua; Chen, Jia; Dong, Wenxin

    2010-12-17

    Stress activates the hypothalamo-pituitary-adrenal (HPA) axis, regulates the expression of brain-derived neurotrophic factor (BDNF) in the brain, and mediates mood. Antidepressants alleviate stress and up-regulate BDNF gene expression. In this study, we investigated the effect of chronic unpredictable mild stress (CUMS) and the different kinds of antidepressant treatments on the HPA axis and the BDNF expression in the rat brain. Adult Wistar male rats were exposed to a six-week CUMS procedure and received different antidepressant treatments including venlafaxine, mirtazapine, and fluoxetine. Immunohistochemistry and real-time PCR were used to measure BDNF expression levels in the rat brain, and ELISAs were used to investigate the plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels. CUMS significantly decreased the BDNF protein level in the DG, CA1, and CA3 of the hippocampus and increased plasma CORT level. Chronic antidepressant treatments all significantly increased BDNF protein levels in the hippocampus and the pre-frontal cortex. In addition, venlafaxine and mirtazapine inhibited the increase of plasma CORT level. These results suggested that an increase in the BDNF level in the brain could be a pivotal mechanism of various antidepressants to exert their therapeutic effects. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Propofol exposure during late stages of pregnancy impairs learning and memory in rat offspring via the BDNF-TrkB signalling pathway.

    PubMed

    Zhong, Liang; Luo, Foquan; Zhao, Weilu; Feng, Yunlin; Wu, Liuqin; Lin, Jiamei; Liu, Tianyin; Wang, Shengqiang; You, Xuexue; Zhang, Wei

    2016-10-01

    The brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) (BDNF-TrkB) signalling pathway plays a crucial role in regulating learning and memory. Synaptophysin provides the structural basis for synaptic plasticity and depends on BDNF processing and subsequent TrkB signalling. Our previous studies demonstrated that maternal exposure to propofol during late stages of pregnancy impaired learning and memory in rat offspring. The purpose of this study is to investigate whether the BDNF-TrkB signalling pathway is involved in propofol-induced learning and memory impairments. Propofol was intravenously infused into pregnant rats for 4 hrs on gestational day 18 (E18). Thirty days after birth, learning and memory of offspring was assessed by the Morris water maze (MWM) test. After the MWM test, BDNF and TrkB transcript and protein levels were measured in rat offspring hippocampus tissues using real-time PCR (RT-PCR) and immunohistochemistry (IHC), respectively. The levels of phosphorylated-TrkB (phospho-TrkB) and synaptophysin were measured by western blot. It was discovered that maternal exposure to propofol on day E18 impaired spatial learning and memory of rat offspring, decreased mRNA and protein levels of BDNF and TrkB, and decreased the levels of both phospho-TrkB and synaptophysin in the hippocampus. Furthermore, the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) reversed all of the observed changes. Treatment with 7,8-DHF had no significant effects on the offspring that were not exposed to propofol. The results herein indicate that maternal exposure to propofol during the late stages of pregnancy impairs spatial learning and memory of offspring by disturbing the BDNF-TrkB signalling pathway. The TrkB agonist 7,8-DHF might be a potential therapy for learning and memory impairments induced by maternal propofol exposure. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular

  10. BDNF Binds Its Pro-Peptide with High Affinity and the Common Val66Met Polymorphism Attenuates the Interaction

    PubMed Central

    Uegaki, Koichi; Kumanogoh, Haruko; Mizui, Toshiyuki; Hirokawa, Takatsugu; Ishikawa, Yasuyuki; Kojima, Masami

    2017-01-01

    Most growth factors are initially synthesized as precursors then cleaved into bioactive mature domains and pro-domains, but the biological roles of pro-domains are poorly understood. In the present study, we investigated the pro-domain (or pro-peptide) of brain-derived neurotrophic factor (BDNF), which promotes neuronal survival, differentiation and synaptic plasticity. The BDNF pro-peptide is a post-processing product of the precursor BDNF. Using surface plasmon resonance and biochemical experiments, we first demonstrated that the BDNF pro-peptide binds to mature BDNF with high affinity, but not other neurotrophins. This interaction was more enhanced at acidic pH than at neutral pH, suggesting that the binding is significant in intracellular compartments such as trafficking vesicles rather than the extracellular space. The common Val66Met BDNF polymorphism results in a valine instead of a methionine in the pro-domain, which affects human brain functions and the activity-dependent secretion of BDNF. We investigated the influence of this variation on the interaction between BDNF and the pro-peptide. Interestingly, the Val66Met polymorphism stabilized the heterodimeric complex of BDNF and its pro-peptide. Furthermore, compared with the Val-containing pro-peptide, the complex with the Met-type pro-peptide was more stable at both acidic and neutral pH, suggesting that the Val66Met BDNF polymorphism forms a more stable complex. A computational modeling provided an interpretation to the role of the Val66Met mutation in the interaction of BDNF and its pro-peptide. Lastly, we performed electrophysiological experiments, which indicated that the BDNF pro-peptide, when pre-incubated with BDNF, attenuated the ability of BDNF to inhibit hippocampal long-term depression (LTD), suggesting a possibility that the BDNF pro-peptide may interact directly with BDNF and thereby inhibit its availability. It was previously reported that the BDNF pro-domain exerts a chaperone-like function

  11. Long-term delivery of brain-derived neurotrophic factor (BDNF) from nanoporous silica nanoparticles improves the survival of spiral ganglion neurons in vitro

    PubMed Central

    Warwas, Dawid P.; Ehlert, Nina; Lenarz, Thomas; Warnecke, Athanasia; Behrens, Peter

    2018-01-01

    Sensorineural hearing loss (SNHL) can be overcome by electrical stimulation of spiral ganglion neurons (SGNs) via a cochlear implant (CI). Restricted CI performance results from the spatial gap between the SGNs and the electrode, but the efficacy of CI is also limited by the degeneration of SGNs as one consequence of SHNL. In the healthy cochlea, the survival of SGNs is assured by endogenous neurotrophic support. Several applications of exogenous neurotrophic supply have been shown to reduce SGN degeneration in vitro and in vivo. In the present study, nanoporous silica nanoparticles (NPSNPs), with an approximate diameter of <100 nm, were loaded with the brain-derived neurotrophic factor (BDNF) to test their efficacy as long-term delivery system for neurotrophins. The neurotrophic factor was released constantly from the NPSNPs over a release period of 80 days when the surface of the nanoparticles had been modified with amino groups. Cell culture investigations with NIH3T3 fibroblasts attest a good general cytocompatibility of the NPSNPs. In vitro experiments with SGNs indicate a significantly higher survival rate of SGNs in cell cultures that contained BDNF-loaded nanoparticles compared to the control culture with unloaded NPSNPs (p<0.001). Importantly, also the amounts of BDNF released up to a time period of 39 days increased the survival rate of SGNs. Thus, NPSNPs carrying BDNF are suitable for the treatment of inner ear disease and for the protection and the support of SGNs. Their nanoscale nature and the fact that a direct contact of the nanoparticles and the SGNs is not necessary for neuroprotective effects, should allow for the facile preparation of nanocomposites, e.g., with biocompatible polymers, to install coatings on implants for the realization of implant-based growth factor delivery systems. PMID:29584754

  12. Association of testosterone and BDNF serum levels with craving during alcohol withdrawal.

    PubMed

    Heberlein, Annemarie; Lenz, Bernd; Opfermann, Birgitt; Gröschl, Michael; Janke, Eva; Stange, Katrin; Groh, Adrian; Kornhuber, Johannes; Frieling, Helge; Bleich, Stefan; Hillemacher, Thomas

    2016-08-01

    Preclinical and clinical studies show associations between testosterone and brain-derived neurotrophic growth factor (BDNF) serum levels. BDNF and testosterone have been independently reported to influence alcohol consumption. Therefore, we aimed to investigate a possible interplay of testosterone and BDNF contributing to alcohol dependence. Regarding possible interplay of testosterone and BDNF and the activity of the hypothalamic pituitary axis (HPA), we included cortisol serum levels in our research. We investigated testosterone and BDNF serum levels in a sample of 99 male alcohol-dependent patients during alcohol withdrawal (day 1, 7, and 14) and compared them to a healthy male control group (n = 17). The testosterone serum levels were significantly (p < 0.001) higher in the patients' group than in the control group and decreased significantly during alcohol withdrawal (p < 0.001). The decrease of testosterone serum levels during alcohol withdrawal (days 1-7) was significantly associated with the BDNF serum levels (day 1: p = 0.008). In a subgroup of patients showing high cortisol serum levels (putatively mirroring high HPA activity), we found a significant association of BDNF and testosterone as well as with alcohol craving measured by the Obsessive and Compulsive Drinking Scale (OCDS). Our data suggest a possible association of BDNF and testosterone serum levels, which may be relevant for the symptomatology of alcohol dependence. Further studies are needed to clarify our results. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Sex differences in stress-induced social withdrawal: role of brain derived neurotrophic factor in the bed nucleus of the stria terminalis.

    PubMed

    Greenberg, Gian D; Laman-Maharg, Abigail; Campi, Katharine L; Voigt, Heather; Orr, Veronica N; Schaal, Leslie; Trainor, Brian C

    2013-01-01

    Depression and anxiety disorders are more common in women than men, and little is known about the neurobiological mechanisms that contribute to this disparity. Recent data suggest that stress-induced changes in neurotrophins have opposing effects on behavior by acting in different brain networks. Social defeat has been an important approach for understanding neurotrophin action, but low female aggression levels in rats and mice have limited the application of these methods primarily to males. We examined the effects of social defeat in monogamous California mice (Peromyscus californicus), a species in which both males and females defend territories. We demonstrate that defeat stress increases mature brain-derived neurotrophic factor (BDNF) protein but not mRNA in the bed nucleus of the stria terminalis (BNST) in females but not males. Changes in BDNF protein were limited to anterior subregions of the BNST, and there were no changes in the adjacent nucleus accumbens (NAc). The effects of defeat on social withdrawal behavior and BDNF were reversed by chronic, low doses of the antidepressant sertraline. However, higher doses of sertraline restored social withdrawal and elevated BDNF levels. Acute treatment with a low dose of sertraline failed to reverse the effects of defeat. Infusions of the selective tyrosine-related kinase B receptor (TrkB) antagonist ANA-12 into the anterior BNST specifically increased social interaction in stressed females but had no effect on behavior in females naïve to defeat. These results suggest that stress-induced increases in BDNF in the anterior BNST contribute to the exaggerated social withdrawal phenotype observed in females.

  14. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors.

    PubMed

    Campos, Carlos; Rocha, Nuno Barbosa F; Lattari, Eduardo; Paes, Flávia; Nardi, António E; Machado, Sérgio

    2016-06-01

    Age-related neurodegenerative disorders, like Alzheimer's or Parkinson's disease, are becoming a major issue to public health care. Currently, there is no effective pharmacological treatment to address cognitive impairment in these patients. Here, we aim to explore the role of exercise-induced trophic factor enhancement in the prevention or delay of cognitive decline in patients with neurodegenerative diseases. There is a significant amount of evidence from animal and human studies that links neurodegenerative related cognitive deficits with changes on brain and peripheral trophic factor levels. Several trials with elderly individuals and patients with neurodegenerative diseases report exercise induced cognitive improvements and changes on trophic factor levels including BDNF, IGF-I, among others. Further studies with healthy aging and clinical populations are needed to understand how diverse exercise interventions produce different variations in trophic factor signaling. Genetic profiles and potential confounders regarding trophic factors should also be addressed in future trials.

  15. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation.

    PubMed

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-09-15

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in Bdnf(lacZ/+) mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. BDNF serum levels in schizophrenic patients during treatment augmentation with sarcosine (results of the PULSAR study).

    PubMed

    Strzelecki, Dominik; Kałużyńska, Olga; Wysokiński, Adam

    2016-08-30

    Finding a relationship between schizophrenia symptoms severity and initial level of BDNF and its changes during augmentation of antipsychotic treatment with sarcosine. 57 individuals with schizophrenia with predominantly negative symptoms completed a 6-month RCT prospective study. The patients received 2g of sarcosine (n=27) or placebo (n=30) daily. At the beginning, after 6 weeks and 6 months BDNF levels were measured. Severity of symptoms was assessed using the Positive and Negative Syndrome Scale (PANSS) and Calgary Depression Scale for Schizophrenia (CDSS). BDNF serum levels were stable after 6 weeks and 6 months in both groups. We noted improvement in negative symptoms, general psychopathology and total PANSS score in sarcosine group comparing to placebo, however there was no correlations between serum BDNF concentrations and PANSS scores in all assessments. Initial serum BDNF concentrations cannot be used as a predictor of the improvement resulting from adding sarcosine. Our results indicate that either BDNF is not involved in the NMDA-dependent mechanism of sarcosine action or global changes in BDNF concentrations induced by amino-acid cannot be detected in blood assessments. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Control of Spine Maturation and Pruning through ProBDNF Synthesized and Released in Dendrites

    PubMed Central

    Orefice, Lauren L.; Shih, Chien-Cheng; Xu, Haifei; Waterhouse, Emily G.; Xu, Baoji

    2015-01-01

    Excess synapses formed during early postnatal development are pruned over an extended period, while the remaining synapses mature. Synapse pruning is critical for activity-dependent refinement of neuronal connections and its dysregulation has been found in neurodevelopmental disorders such as autism spectrum disorders; however, the mechanism underlying synapse pruning remains largely unknown. As dendritic spines are the postsynaptic sites for the vast majority of excitatory synapses, spine maturation and pruning are indicators for maturation and elimination of these synapses. Our previous studies have found that dendritically localized mRNA for brain-derived neurotrophic factor (BDNF) regulates spine maturation and pruning. Here we investigated the mechanism by which dendritic Bdnf mRNA, but not somatically restricted Bdnf mRNA, promotes spine maturation and pruning. We found that neuronal activity stimulates both translation of dendritic Bdnf mRNA and secretion of its translation product mainly as proBDNF. The secreted proBDNF promotes spine maturation and pruning, and its effect on spine pruning is in part mediated by the p75NTR receptor via RhoA activation. Furthermore, some proBDNF is extracellularly converted to mature BDNF and then promotes maturation of stimulated spines by activating Rac1 through the TrkB receptor. In contrast, translation of somatic Bdnf mRNA and the release of its translation product mainly as mature BDNF are independent of action potentials. These results not only reveal a biochemical pathway regulating synapse pruning, but also suggest that BDNF synthesized in the soma and dendrites is released through distinct secretory pathways. PMID:26705735

  18. Effect of Chronic Restraint Stress on HPA Axis Activity and Expression of BDNF and Trkb in the Hippocampus of Pregnant Rats: Possible Contribution in Depression during Pregnancy and Postpartum Period.

    PubMed

    Maghsoudi, Nader; Ghasemi, Rasoul; Ghaempanah, Zahra; Ardekani, Ali M; Nooshinfar, Elahe; Tahzibi, Abbas

    2014-01-01

    Brain-Derived Neurotrophic Factor (BDNF) and its receptor, TrkB, in the hippocampus are targets for adverse effects of stress paradigms; in addition, BDNF and its receptor play key role in the pathology of brain diseases like depression. In the present study, we evaluated the possible role of hippocampal BDNF in depression during pregnancy. To achieve the purpose, repeated restrain stress (1 or 3 hours daily for 7 days) during the last week of pregnancy was used and alteration in the gene expression of hippocampal BDNF and TrkB evaluated by semi-quantitative PCR. The results showed that in stress group the level of ACTH and Corticosterone is increased showing that our model was efficient in inducing psychological stress; we also found that BDNF and TrkB expression are decreased in 3 hours stress group but not in 1 hour stress compared to control group. Our results imply that decrease in BDNF and its receptor could contribute in some adverse effects of stress during pregnancy such as elevation of depressive like behavior.

  19. Fear extinction and BDNF: Translating animal models of PTSD to the clinic

    PubMed Central

    Andero, Raül; Ressler, Kerry J

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is the most studied neurotrophin involved in synaptic plasticity processes that are required for long-term learning and memory. Specifically, BDNF gene expression and activation of its high-affinity TrkB receptor are necessary in the amygdala, hippocampus and prefrontal cortex for the formation of emotional memories, including fear memories. Among the psychiatric disorders with altered fear processing there is Post-traumatic Stress Disorder (PTSD) which is characterized by an inability to extinguish fear memories. Since BDNF appears to enhance extinction of fear, targeting impaired extinction in anxiety disorders such as PTSD via BDNF signalling may be an important and novel way to enhance treatment efficacy. The aim of this review is to provide a translational point of view that stems from findings in the BDNF regulation of synaptic plasticity and fear extinction. In addition, there are different systems that seem to alter fear extinction through BDNF modulation like the endocannabionoid system and the hypothalamic-pituitary adrenal axis (HPA). Recent work also finds that the pituitary adenylate cyclase-activating polypeptide (PACAP) and PAC1 receptor, which are upstream of BDNF activation, may be implicated in PTSD. Especially interesting are data that exogenous fear extinction enhancers such as antidepressants, histone deacetylases inhibitors (HDACi) and D-cycloserine, a partial NMDA agonist, may act through or in concert with the BDNF-TrkB system. Finally, we review studies where recombinant BDNF and a putative TrkB agonist, 7,8-DHF, may enhance extinction of fear. These approaches may lead to novel agents that improve extinction in animal models and eventually humans. PMID:22530815

  20. Delayed neuroprotection against cerebral ischemia reperfusion injury: putative role of BDNF and GSK-3β.

    PubMed

    Taliyan, Rajeev; Ramagiri, Sruthi

    2016-08-01

    Numerous studies have demonstrated the possible neuroprotective role of lithium treatment against neurological disorders. However, the role of lithium in delayed phase of neuronal death against focal ischemia has not been explored. Therefore, the present study was designed to investigate the effect and molecular mechanisms of post-lithium treatment against cerebral ischemic reperfusion (I/R) injury and associated cognitive deficits in rats. I/R injury was induced by right middle cerebral artery occlusion and lithium (40 and 60 mg/kg) were given intraperitoneally, 24 h after the insult and continued for 1 week with 24-h interval. Using Lasser Doppler, cerebral blood flow was monitored before, during and after MCAO induction. Besides behavioral, biochemical, and histological evaluation, levels of tumor necrosis factor alpha (TNF-α) and brain-derived neurotrophic factor (BDNF) were also estimated. I/R injury resulted in significant elevation of neurological deficits, oxidative stress, neuroinflammation, and cognitive impairments. We found that lithium injection, 24 h after I/R-injury continued for 1 week, dose dependently prevented behavioral abnormality and cognitive impairments. Moreover, lithium attenuated the levels of oxidative stress and pro-inflammatory-cytokines TNF-α level. Further, lithium treatments significantly reduced neuronal damage and augmented healthy neuronal count and improved neuronal density in hippocampus. These neuroprotective effects of delayed lithium treatment were associated with upregulation of neurotrophic factor BDNF levels. Delayed lithium treatment provides neuroprotection against cerebral I/R injury and associated cognitive deficits by upregulating BDNF expression that opens a new avenue to treat I/R injury even after active cell death.

  1. Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons.

    PubMed

    Rejali, Darius; Lee, Valerie A; Abrashkin, Karen A; Humayun, Nousheen; Swiderski, Donald L; Raphael, Yehoash

    2007-06-01

    Spiral ganglion neurons often degenerate in the deaf ear, compromising the function of cochlear implants. Cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant. Brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears. Providing enhanced levels of BDNF in human ears may be accomplished by one of several different methods. The goal of these experiments was to test a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, we transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert, and determined that these cells secreted BDNF. We then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani. We determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes. This protective effect decreased in the higher cochlear turns. The data demonstrate the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival.

  2. Genotypes do not confer risk for delinquency but rather alter susceptibility to positive and negative environmental factors: gene-environmentinteractions of BDNF Val66Met, 5-HTTLPR, and MAOA-uVNTR [corrected].

    PubMed

    Nilsson, Kent W; Comasco, Erika; Hodgins, Sheilagh; Oreland, Lars; Åslund, Cecilia

    2014-12-10

    Previous evidence of gene-by-environment interactions associated with emotional and behavioral disorders is contradictory. Differences in findings may result from variation in valence and dose of the environmental factor, and/or failure to take account of gene-by-gene interactions. The present study investigated interactions between the brain-derived neurotrophic factor gene (BDNF Val66Met), the serotonin transporter gene-linked polymorphic region (5-HTTLPR), the monoamine oxidase A (MAOA-uVNTR) polymorphisms, family conflict, sexual abuse, the quality of the child-parent relationship, and teenage delinquency. In 2006, as part of the Survey of Adolescent Life in Västmanland, Sweden, 1 337 high-school students, aged 17-18 years, anonymously completed questionnaires and provided saliva samples for DNA analyses. Teenage delinquency was associated with two-, three-, and four-way interactions of each of the genotypes and the three environmental factors. Significant four-way interactions were found for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × family conflicts and for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × sexual abuse. Further, the two genotype combinations that differed the most in expression levels (BDNF Val66Met Val, 5-HTTLPR LL, MAOA-uVNTR LL [girls] and L [boys] vs BDNF Val66Met Val/Met, 5-HTTLPR S/LS, MAOA-uVNTR S/SS/LS) in interaction with family conflict and sexual abuse were associated with the highest delinquency scores. The genetic variants previously shown to confer vulnerability for delinquency (BDNF Val66Met Val/Met × 5-HTTLPR S × MAOA-uVNTR S) were associated with the lowest delinquency scores in interaction with a positive child-parent relationship. Functional variants of the MAOA-uVNTR, 5-HTTLPR, and BDNF Val66Met, either alone or in interaction with each other, may be best conceptualized as modifying sensitivity to environmental factors that confer either risk or protection for teenage delinquency. © The Author 2015. Published by Oxford University

  3. Genotypes Do Not Confer Risk For Delinquency ut Rather Alter Susceptibility to Positive and Negative Environmental Factors: Gene-Environment Interactions of BDNF Val66Met, 5-HTTLPR, and MAOA-uVNTR

    PubMed Central

    Comasco, Erika; Hodgins, Sheilagh; Oreland, Lars; Åslund, Cecilia

    2015-01-01

    Background: Previous evidence of gene-by-environment interactions associated with emotional and behavioral disorders is contradictory. Differences in findings may result from variation in valence and dose of the environmental factor, and/or failure to take account of gene-by-gene interactions. The present study investigated interactions between the brain-derived neurotrophic factor gene (BDNF Val66Met), the serotonin transporter gene-linked polymorphic region (5-HTTLPR), the monoamine oxidase A (MAOA-uVNTR) polymorphisms, family conflict, sexual abuse, the quality of the child-parent relationship, and teenage delinquency. Methods: In 2006, as part of the Survey of Adolescent Life in Västmanland, Sweden, 1 337 high-school students, aged 17–18 years, anonymously completed questionnaires and provided saliva samples for DNA analyses. Results: Teenage delinquency was associated with two-, three-, and four-way interactions of each of the genotypes and the three environmental factors. Significant four-way interactions were found for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × family conflicts and for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × sexual abuse. Further, the two genotype combinations that differed the most in expression levels (BDNF Val66Met Val, 5-HTTLPR LL, MAOA-uVNTR LL [girls] and L [boys] vs BDNF Val66Met Val/Met, 5-HTTLPR S/LS, MAOA-uVNTR S/SS/LS) in interaction with family conflict and sexual abuse were associated with the highest delinquency scores. The genetic variants previously shown to confer vulnerability for delinquency (BDNF Val66Met Val/Met × 5-HTTLPR S × MAOA-uVNTR S) were associated with the lowest delinquency scores in interaction with a positive child-parent relationship. Conclusions: Functional variants of the MAOA-uVNTR, 5-HTTLPR, and BDNF Val66Met, either alone or in interaction with each other, may be best conceptualized as modifying sensitivity to environmental factors that confer either risk or protection for teenage delinquency. PMID

  4. The serum protein levels of the tPA-BDNF pathway are implicated in depression and antidepressant treatment.

    PubMed

    Jiang, H; Chen, S; Li, C; Lu, N; Yue, Y; Yin, Y; Zhang, Y; Zhi, X; Zhang, D; Yuan, Y

    2017-04-04

    Evidence demonstrates that brain-derived neurotrophic factor (BDNF) has a pivotal role in the pathogenesis of major depressive disorder (MDD). Precursor-BDNF (proBDNF) and mature BDNF (mBDNF) have opposing biological effects in neuroplasticity, and the tissue-type plasminogen activator (tPA)/plasmin system is crucial in the cleavage processing of proBDNF to mBDNF. However, very little is known about the role of the tPA-BDNF pathway in MDD. We examined serum protein concentrations in the tPA-BDNF pathway, including tPA, BDNF, tropomyosin receptor kinase B (TrkB), proBDNF and p75NTR, obtained from 35 drug-free depressed patients before and after 8 weeks of escitalopram (mean 12.5 mg per day) or duloxetine (mean 64 mg per day) treatment and 35 healthy controls using sandwich ELISA (enzyme-linked immunosorbent assay) methods. Serum tPA and BDNF and the ratio of BDNF/proBDNF were significantly lower in the MDD patients than in controls, whereas TrkB, proBDNF and its receptor p75NTR were higher. After 8 weeks of treatment, tPA, BDNF and proBDNF and the BDNF/proBDNF ratio were reversed, but p75NTR was higher than baseline, and TrkB was not significantly changed. tPA, BDNF, TrkB, proBDNF and p75NTR all yielded fairly good or excellent diagnostic performance (area under the receiver operating characteristic curve (AUC) >0.8 or 0.9). Combination of these five proteins demonstrated much better diagnostic effectiveness (AUC: 0.977) and adequate sensitivity and specificity of 88.1% and 92.7%, respectively. Our results suggest that the tPA-BDNF lysis pathway may be implicated in the pathogenesis of MDD and the mechanisms underlying antidepressant therapeutic action. The combination of tPA, BDNF, TrkB, proBDNF and p75NTR may provide a diagnostic biomarker panel for MDD.

  5. Light-Emitting Diode (LED) therapy improves occipital cortex damage by decreasing apoptosis and increasing BDNF-expressing cells in methanol-induced toxicity in rats.

    PubMed

    Ghanbari, Amir; Ghareghani, Majid; Zibara, Kazem; Delaviz, Hamdallah; Ebadi, Elham; Jahantab, Mohammad Hossein

    2017-05-01

    Methanol-induced retinal toxicity, frequently associated with elevated free radicals and cell edema, is characterized by progressive retinal ganglion cell (RGC) death and vision loss. Previous studies investigated the effect of photomodulation on RGCs, but not the visual cortex. In this study, the effect of 670nm Light-Emitting Diode (LED) therapy on RGCs and visual cortex recovery was investigated in a seven-day methanol-induced retinal toxicity protocol in rats. Methanol administration showed a reduction in the number of RGCs, loss of neurons (neuronal nuclear antigen, NeuN+), activation of glial fibrillary acidic protein (GFAP+) expressing cells, suppression of brain-derived neurotrophic factor (BDNF+) positive cells, increase in apoptosis (caspase 3+) and enhancement of nitric oxide (NO) release in serum and brain. On the other hand, LED therapy significantly reduced RGC death, in comparison to the methanol group. In addition, the number of BDNF positive cells was significantly higher in the visual cortex of LED-treated group, in comparison to methanol-intoxicated and control groups. Moreover, LED therapy caused a significant decrease in cell death (caspase 3+ cells) and a significant reduction in the NO levels, both in serum and brain tissue, in comparison to methanol-intoxicated rats. Overall, LED therapy demonstrated a number of beneficial effects in decreasing oxidative stress and in functional recovery of RGCs and visual cortex. Our data suggest that LED therapy could be a potential condidate as a non-invasive approach for treatment of retinal damage, which needs further clinicl studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Brain-derived neurotrophic factor enhances cholinergic contraction of longitudinal muscle of rabbit intestine via activation of phospholipase C

    PubMed Central

    Al-Qudah, M.; Anderson, C. D.; Mahavadi, S.; Bradley, Z. L.; Akbarali, H. I.; Murthy, K. S.

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of proteins best known for its role in neuronal survival, differentiation, migration, and synaptic plasticity in central and peripheral neurons. BDNF is also widely expressed in nonneuronal tissues including the gastrointestinal tract. The role of BDNF in intestinal smooth muscle contractility is not well defined. The aim of this study was to identify the role of BDNF in carbachol (CCh)- and substance P (SP)-induced contraction of intestinal longitudinal smooth muscle. BDNF, selective tropomyosin-related kinase B (TrkB) receptor agonists, and pharmacological inhibitors of signaling pathways were examined for their effects on contraction of rabbit intestinal longitudinal muscle strips induced by CCh and SP. BDNF activation of intracellular signaling pathways was examined by Western blot in homogenates of muscle strips and isolated muscle cells. One-hour preincubation with BDNF enhanced intestinal muscle contraction induced by CCh but not by SP. The selective synthetic TrkB agonists LM 22A4 and 7,8-dihydroxyflavone produced similar effects to BDNF. The Trk antagonist K-252a, a TrkB antibody but not p75NTR antibody, blocked the effect of BDNF. The enhancement of CCh-induced contraction by BDNF was blocked by the phospholipase C (PLC) antagonist U73122, but not by ERK1/2 or Akt antagonists. Direct measurement in muscle strips and isolated muscle cells showed that BDNF caused phosphorylation of TrkB receptors and PLC-γ, but not ERK1/2 or Akt. We conclude that exogenous BDNF augments the CCh-induced contraction of longitudinal muscle from rabbit intestine by activating TrkB receptors and subsequent PLC activation. PMID:24356881

  7. Brain-derived neurotrophic factor enhances cholinergic contraction of longitudinal muscle of rabbit intestine via activation of phospholipase C.

    PubMed

    Al-Qudah, M; Anderson, C D; Mahavadi, S; Bradley, Z L; Akbarali, H I; Murthy, K S; Grider, J R

    2014-02-15

    Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of proteins best known for its role in neuronal survival, differentiation, migration, and synaptic plasticity in central and peripheral neurons. BDNF is also widely expressed in nonneuronal tissues including the gastrointestinal tract. The role of BDNF in intestinal smooth muscle contractility is not well defined. The aim of this study was to identify the role of BDNF in carbachol (CCh)- and substance P (SP)-induced contraction of intestinal longitudinal smooth muscle. BDNF, selective tropomyosin-related kinase B (TrkB) receptor agonists, and pharmacological inhibitors of signaling pathways were examined for their effects on contraction of rabbit intestinal longitudinal muscle strips induced by CCh and SP. BDNF activation of intracellular signaling pathways was examined by Western blot in homogenates of muscle strips and isolated muscle cells. One-hour preincubation with BDNF enhanced intestinal muscle contraction induced by CCh but not by SP. The selective synthetic TrkB agonists LM 22A4 and 7,8-dihydroxyflavone produced similar effects to BDNF. The Trk antagonist K-252a, a TrkB antibody but not p75NTR antibody, blocked the effect of BDNF. The enhancement of CCh-induced contraction by BDNF was blocked by the phospholipase C (PLC) antagonist U73122, but not by ERK1/2 or Akt antagonists. Direct measurement in muscle strips and isolated muscle cells showed that BDNF caused phosphorylation of TrkB receptors and PLC-γ, but not ERK1/2 or Akt. We conclude that exogenous BDNF augments the CCh-induced contraction of longitudinal muscle from rabbit intestine by activating TrkB receptors and subsequent PLC activation.

  8. Brain-Derived Neurotrophic Factor Contributes to Colonic Hypermotility in a Chronic Stress Rat Model.

    PubMed

    Quan, Xiaojing; Luo, Hesheng; Fan, Han; Tang, Qincai; Chen, Wei; Cui, Ning; Yu, Guang; Xia, Hong

    2015-08-01

    Brain-derived neurotrophic factor (BDNF) has prokinetic effects on gut motility and is increased in the colonic mucosa of irritable bowel syndrome. We aimed to investigate the possible involvement of BDNF in stress-induced colonic hypermotility. Male Wistar rats were exposed to daily 1-h water avoidance stress (WAS) or sham WAS for 10 consecutive days. The presence of BDNF and substance P (SP) in the colonic mucosa was determined using enzyme immunoassay kits. Immunohistochemistry and western blotting were performed to assess the expression of BDNF and its receptor, TrkB. The contractions of muscle strips were studied in an organ bath system. Repeated WAS increased the fecal pellet expulsion and spontaneous contractile activities of the colonic muscle strips. Both BDNF and SP in the colonic mucosa were elevated following WAS. Immunohistochemistry revealed the presence of BDNF and TrkB in the mucosa and myenteric plexus. BDNF and TrkB were both up-regulated in colon devoid of mucosa and submucosa from the stressed rats compared with the control. BDNF pretreatment caused an enhancement of the SP-induced contraction of the circular muscle (CM) strips. TrkB antibody significantly inhibited the contraction of the colonic muscle strips and attenuated the excitatory effects of SP on contractions of the CM strips. Repeated WAS increased the contractile activities of the CM strips induced by SP after BDNF pretreatment, and this effect was reversed by TrkB antibody. The colonic hypermotility induced by repeated WAS may be associated with the increased expression of endogenous BDNF and TrkB. BDNF may have potential clinical therapeutic use in modulating gut motility.

  9. Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways.

    PubMed

    Kim, Jisung; Lee, Siyoung; Choi, Bo-Ryoung; Yang, Hee; Hwang, Youjin; Park, Jung Han Yoon; LaFerla, Frank M; Han, Jung-Soo; Lee, Ki Won; Kim, Jiyoung

    2017-02-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that supports the survival of existing neurons and encourages the growth and differentiation of new neurons and synapses. We investigated the effect of sulforaphane, a hydrolysis product of glucoraphanin present in Brassica vegetables, on neuronal BDNF expression and its synaptic signaling pathways. Mouse primary cortical neurons and a triple-transgenic mouse model of Alzheimer's disease (3 × Tg-AD) were used to study the effect of sulforaphane. Sulforaphane enhanced neuronal BDNF expression and increased levels of neuronal and synaptic molecules such as MAP2, synaptophysin, and PSD-95 in primary cortical neurons and 3 × Tg-AD mice. Sulforaphane elevated levels of synaptic TrkB signaling pathway components, including CREB, CaMKII, ERK, and Akt in both primary cortical neurons and 3 × Tg-AD mice. Sulforaphane increased global acetylation of histone 3 (H3) and H4, inhibited HDAC activity, and decreased the level of HDAC2 in primary cortical neurons. Chromatin immunoprecipitation analysis revealed that sulforaphane increased acetylated H3 and H4 at BDNF promoters, suggesting that sulforaphane regulates BDNF expression via HDAC inhibition. These findings suggest that sulforaphane has the potential to prevent neuronal disorders such as Alzheimer's disease by epigenetically enhancing neuronal BDNF expression and its TrkB signaling pathways. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The cognitive impairment induced by zinc deficiency in rats aged 0∼2 months related to BDNF DNA methylation changes in the hippocampus.

    PubMed

    Hu, Yan-Dan; Pang, Wei; He, Cong-Cong; Lu, Hao; Liu, Wei; Wang, Zi-Yu; Liu, Yan-Qiang; Huang, Cheng-Yu; Jiang, Yu-Gang

    2017-11-01

    This study was carried out to understand the effects of zinc deficiency in rats aged 0∼2 months on learning and memory, and the brain-derived neurotrophic factor (BDNF) gene methylation status in the hippocampus. The lactating mother rats were randomly divided into three groups (n = 12): zinc-adequate group (ZA: zinc 30 mg/kg diet), zinc-deprived group (ZD: zinc 1 mg/kg diet), and a pair-fed group (PF: zinc 30 mg/kg diet), in which the rats were pair-fed to those in the ZD group. After weaning (on day 23), offspring were fed the same diets as their mothers. After 37 days, the zinc concentrations in the plasma and hippocampus were measured, and the behavioral function of the offspring rats was measured using the passive avoidance performance test. We then assessed the DNA methylation patterns of the exon IX of BDNF by methylation-specific quantitative real-time PCR and the mRNA expression of BDNF in the hippocampus by RT-PCR. Compared with the ZA and PF groups, rats in the ZD group had shorter latency period, lower zinc concentrations in the plasma and hippocampus (P < 0.05). Interestingly, the DNA methylation of the BDNF exon IX was significantly increased in the ZD group, compared with the ZA and PF groups, whereas the expression of the BDNF mRNA was decreased. In addition, the DNMT1 mRNA expression was significantly upregulated and DNMT3A was downregulated in the ZD group, but not in the ZA and PF groups. The learning and memory damage in offspring may be a result of the epigenetic changes of the BDNF genes in response to the zinc-deficient diet during 0∼2 month period. Furthermore, this work supports the speculative notion that altered DNA methylation of BDNF in the hippocampus is one of the main causes of cognitive impairment by zinc deficiency.

  11. Plasma BDNF levels are correlated with aggressiveness in patients with amnestic mild cognitive impairment or Alzheimer disease.

    PubMed

    Nagata, Tomoyuki; Kobayashi, Nobuyuki; Shinagawa, Shunichiro; Yamada, Hisashi; Kondo, Kazuhiro; Nakayama, Kazuhiko

    2014-04-01

    In the present study, we examined whether neuropsychiatric symptoms were correlated with plasma brain-derived neurotrophic factor (BDNF) levels as a state marker or were associated with the BDNF polymorphism Val66Met in patients with amnestic mild cognitive impairment (A-MCI) or Alzheimer disease (AD). One hundred and seventy-six outpatients with AD (n = 129) or A-MCI (n = 47) were selected and their plasma BDNF concentrations measured. Next, we investigated the correlation between the plasma BDNF level and the Behavioral Pathology in Alzheimer Disease (Behave-AD) subscale scores, which reflect neuropsychiatric symptoms. We also compared the plasma BDNF level and the Behave-AD subscale scores among the BDNF Val66Met genotypic groups. Among the seven Behave-AD subscale scores, aggressiveness was positively correlated with the plasma BDNF level (ρ = 0.237, P < 0.005), but did not differ significantly among the three BDNF Val66Met genotypic groups. The Behave-AD total and other subscale scores did not differ significantly among the BDNF Val66Met genotypic groups and were not associated with the plasma BDNF level. Moreover, the plasma BDNF level did not differ significantly among the three BDNF Val66Met genotypic groups or between patients with A-MCI and those with AD. The plasma BDNF level was robustly correlated with aggressiveness, implying that the plasma BDNF level might be useful as a behavioral state marker in patients with AD or A-MCI.

  12. Higher brain BDNF gene expression is associated with slower cognitive decline in older adults.

    PubMed

    Buchman, Aron S; Yu, Lei; Boyle, Patricia A; Schneider, Julie A; De Jager, Philip L; Bennett, David A

    2016-02-23

    We tested whether brain-derived neurotrophic factor (BDNF) gene expression levels are associated with cognitive decline in older adults. Five hundred thirty-five older participants underwent annual cognitive assessments and brain autopsy at death. BDNF gene expression was measured in the dorsolateral prefrontal cortex. Linear mixed models were used to examine whether BDNF expression was associated with cognitive decline adjusting for age, sex, and education. An interaction term was added to determine whether this association varied with clinical diagnosis proximate to death (no cognitive impairment, mild cognitive impairment, or dementia). Finally, we examined the extent to which the association of Alzheimer disease (AD) pathology with cognitive decline varied by BDNF expression. Higher brain BDNF expression was associated with slower cognitive decline (p < 0.001); cognitive decline was about 50% slower with the 90th percentile BDNF expression vs 10th. This association was strongest in individuals with dementia. The level of BDNF expression was lower in individuals with pathologic AD (p = 0.006), but was not associated with macroscopic infarcts, Lewy body disease, or hippocampal sclerosis. BDNF expression remained associated with cognitive decline in a model adjusting for age, sex, education, and neuropathologies (p < 0.001). Furthermore, the effect of AD pathology on cognitive decline varied by BDNF expression such that the effect was strongest for high levels of AD pathology (p = 0.015); thus, in individuals with high AD pathology (90th percentile), cognitive decline was about 40% slower with the 90th percentile BDNF expression vs 10th. Higher brain BDNF expression is associated with slower cognitive decline and may also reduce the deleterious effects of AD pathology on cognitive decline. © 2016 American Academy of Neurology.

  13. Regulation of BDNF chromatin status and promoter accessibility in a neural correlate of associative learning

    PubMed Central

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Keifer, Joyce

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) gene expression critically controls learning and its aberrant regulation is implicated in Alzheimer's disease and a host of neurodevelopmental disorders. The BDNF gene is target of known DNA regulatory mechanisms but details of its activity-dependent regulation are not fully characterized. We performed a comprehensive analysis of the epigenetic regulation of the turtle BDNF gene (tBDNF) during a neural correlate of associative learning using an in vitro model of eye blink classical conditioning. Shortly after conditioning onset, the results from ChIP-qPCR show conditioning-dependent increases in methyl-CpG-binding protein 2 (MeCP2) and repressor basic helix-loop-helix binding protein 2 (BHLHB2) binding to tBDNF promoter II that corresponds with transcriptional repression. In contrast, enhanced binding of ten-eleven translocation protein 1 (Tet1), extracellular signal-regulated kinase 1/2 (ERK1/2), and cAMP response element-binding protein (CREB) to promoter III corresponds with transcriptional activation. These actions are accompanied by rapid modifications in histone methylation and phosphorylation status of RNA polymerase II (RNAP II). Significantly, these remarkably coordinated changes in epigenetic factors for two alternatively regulated tBDNF promoters during conditioning are controlled by Tet1 and ERK1/2. Our findings indicate that Tet1 and ERK1/2 are critical partners that, through complementary functions, control learning-dependent tBDNF promoter accessibility required for rapid transcription and acquisition of classical conditioning. PMID:26336984

  14. Extracellular and intracellular cleavages of proBDNF required at two distinct stages of late-phase LTP

    NASA Astrophysics Data System (ADS)

    Pang, Petti T.; Nagappan, Guhan; Guo, Wei; Lu, Bai

    2016-05-01

    Although late-phase long-term potentiation (L-LTP) is implicated in long-term memory, its molecular mechanisms are largely unknown. Here we provide evidence that L-LTP can be divided into two stages: an induction stage (I) and a maintenance stage (II). Both stages require mature brain-derived neurotrophic factor (mBDNF), but involve distinct underlying mechanisms. Stage I requires secretion of existing proBDNF followed by extracellular cleavage by tPA/plasmin. Stage II depends on newly synthesized BDNF. Surprisingly, mBDNF at stage II is derived from intracellular cleavage of proBDNF by furin/PC1. Moreover, stage I involves BDNF-TrkB signaling mainly through MAP kinase, whereas all three signaling pathways (phospholipase C-γ, PI3 kinase, and MAP kinase) are required for the maintenance of L-LTP at stage II. These results reveal the molecular basis for two temporally distinct stages in L-LTP, and provide insights on how BDNF modulates this long-lasting synaptic alternation at two critical time windows.

  15. Daily visual stimulation in the critical period enhances multiple aspects of vision through BDNF-mediated pathways in the mouse retina

    PubMed Central

    Mui, Amanda M.; Yang, Victoria; Aung, Moe H.; Fu, Jieming; Adekunle, Adewumi N.; Prall, Brian C.; Sidhu, Curran S.; Park, Han na; Boatright, Jeffrey H.; Iuvone, P. Michael

    2018-01-01

    Visual experience during the critical period modulates visual development such that deprivation causes visual impairments while stimulation induces enhancements. This study aimed to determine whether visual stimulation in the form of daily optomotor response (OMR) testing during the mouse critical period (1) improves aspects of visual function, (2) involves retinal mechanisms and (3) is mediated by brain derived neurotrophic factor (BDNF) and dopamine (DA) signaling pathways. We tested spatial frequency thresholds in C57BL/6J mice daily from postnatal days 16 to 23 (P16 to P23) using OMR testing. Daily OMR-treated mice were compared to littermate controls that were placed in the OMR chamber without moving gratings. Contrast sensitivity thresholds, electroretinograms (ERGs), visual evoked potentials, and pattern ERGs were acquired at P21. To determine the role of BDNF signaling, a TrkB receptor antagonist (ANA-12) was systemically injected 2 hours prior to OMR testing in another cohort of mice. BDNF immunohistochemistry was performed on retina and brain sections. Retinal DA levels were measured using high-performance liquid chromatography. Daily OMR testing enhanced spatial frequency thresholds and contrast sensitivity compared to controls. OMR-treated mice also had improved rod-driven ERG oscillatory potential response times, greater BDNF immunoreactivity in the retinal ganglion cell layer, and increased retinal DA content compared to controls. VEPs and pattern ERGs were unchanged. Systemic delivery of ANA-12 attenuated OMR-induced visual enhancements. Daily OMR testing during the critical period leads to general visual function improvements accompanied by increased DA and BDNF in the retina, with this process being requisitely mediated by TrkB activation. These results suggest that novel combination therapies involving visual stimulation and using both behavioral and molecular approaches may benefit degenerative retinal diseases or amblyopia. PMID:29408880

  16. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise.

    PubMed

    Saucedo Marquez, Cinthia Maria; Vanaudenaerde, Bart; Troosters, Thierry; Wenderoth, Nicole

    2015-12-15

    Exercise can have a positive effect on the brain by activating brain-derived neurotrophic factor (BDNF)-related processes. In healthy humans there appears to be a linear relationship between exercise intensity and the positive short-term effect of acute exercise on BDNF levels (i.e., the highest BDNF levels are reported after high-intensity exercise protocols). Here we performed two experiments to test the effectiveness of two high-intensity exercise protocols, both known to improve cardiovascular health, to determine whether they have a similar efficacy in affecting BDNF levels. Participants performed a continuous exercise (CON) protocol at 70% of maximal work rate and a high-intensity interval-training (HIT) protocol at 90% of maximal work rate for periods of 1 min alternating with 1 min of rest (both protocols lasted 20 min). We observed similar BDNF kinetics in both protocols, with maximal BDNF concentrations being reached toward the end of training (experiment 1). We then showed that both exercise protocols significantly increase BDNF levels compared with a rest condition (CON P = 0.04; HIT P < 0.001), with HIT reaching higher BDNF levels than CON (P = 0.035) (experiment 2). These results suggest that shorter bouts of high intensity exercise are slightly more effective than continuous high-intensity exercise for elevating serum BDNF. Additionally, 73% of the participants preferred the HIT protocol (P = 0.02). Therefore, we suggest that the HIT protocol might represent an effective and preferred intervention for elevating BDNF levels and potentially promoting brain health. Copyright © 2015 the American Physiological Society.

  17. Serum cortisol and BDNF in patients with major depression-effect of yoga.

    PubMed

    Naveen, G H; Varambally, Shivarama; Thirthalli, Jagadisha; Rao, Mukund; Christopher, Rita; Gangadhar, B N

    2016-06-01

    Depression is associated with low serum Brain Derived Neurotrophic Factor (BDNF) and elevated levels of serum cortisol. Yoga practices have been associated with antidepressant effects, increase in serum BDNF, and reduction in serum cortisol. This study examined the association between serum BDNF and cortisol levels in drug-naïve patients with depression treated with antidepressants, yoga therapy, and both. Fifty-four drug-naïve consenting adult outpatients with Major Depression (32 males) received antidepressants only (n = 16), yoga therapy only (n = 19), or yoga with antidepressants (n = 19). Serum BDNF andcortisol levels were obtained before and after 3 months using a sandwich ELISA method. One-way ANOVA, Chi-square test, and Pearson's correlation tests were used for analysis. The groups were comparable at baseline on most parameters. Significant improvement in depression scores and serum BDNF levels, and reduction in serum cortisol in the yoga groups, have been described in previous reports. A significant negative correlation was observed between change in BDNF (pre-post) and cortisol (pre-post) levels in the yoga-only group (r = -0.59, p = 0.008). In conclusion, yoga may facilitate neuroplasticity through stress reduction in depressed patients. Further studies are needed to confirm the findings and delineate the pathways for these effects.

  18. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation

    PubMed Central

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-01-01

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in BdnflacZ/+ mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. PMID:26164656

  19. LIF is more potent than BDNF in promoting neurite outgrowth of mammalian auditory neurons in vitro.

    PubMed

    Gillespie, L N; Clark, G M; Bartlett, P F; Marzella, P L

    2001-02-12

    Neurotrophic factors are known to play a crucial role in the elongation and guidance of auditory nerve fibres to their targets within the organ of Corti. Maintenance of these neural connections following deafness would clearly influence the efficacy of therapies for hearing recovery. The growth factors leukaemia inhibitory factor (LIF), brain-derived neurotrophic factor (BDNF) and transforming growth factor-beta 5 (TGF-beta5) were tested for their efficacy in promoting neurite outgrowth from dissociated cultures of early postnatal rat auditory neurons. Our results indicate that while BDNF enhances neurite outgrowth in a strong fashion, LIF is more potent; moreover, the combined administration of both factors has even greater neuritogenic capacities. TGF-beta5, although neurotrophic, has no neuritogenic activity on cultured auditory neurons. LIF and BDNF may therefore be potential candidates when developing pharmacological therapies for hearing recovery.

  20. BDNF gene delivery within and beyond templated agarose multi-channel guidance scaffolds enhances peripheral nerve regeneration

    NASA Astrophysics Data System (ADS)

    Gao, Mingyong; Lu, Paul; Lynam, Dan; Bednark, Bridget; Campana, W. Marie; Sakamoto, Jeff; Tuszynski, Mark

    2016-12-01

    Objective. We combined implantation of multi-channel templated agarose scaffolds with growth factor gene delivery to examine whether this combinatorial treatment can enhance peripheral axonal regeneration through long sciatic nerve gaps. Approach. 15 mm long scaffolds were templated into highly organized, strictly linear channels, mimicking the linear organization of natural nerves into fascicles of related function. Scaffolds were filled with syngeneic bone marrow stromal cells (MSCs) secreting the growth factor brain derived neurotrophic factor (BDNF), and lentiviral vectors expressing BDNF were injected into the sciatic nerve segment distal to the scaffold implantation site. Main results. Twelve weeks after injury, scaffolds supported highly linear regeneration of host axons across the 15 mm lesion gap. The incorporation of BDNF-secreting cells into scaffolds significantly increased axonal regeneration, and additional injection of viral vectors expressing BDNF into the distal segment of the transected nerve significantly enhanced axonal regeneration beyond the lesion. Significance. Combinatorial treatment with multichannel bioengineered scaffolds and distal growth factor delivery significantly improves peripheral nerve repair, rivaling the gold standard of autografts.

  1. Growth factors and hormones pro-peptides: the unexpected adventures of the BDNF prodomain.

    PubMed

    Zanin, Juan Pablo; Unsain, Nicolás; Anastasia, Agustin

    2017-05-01

    Most growth factors and hormones are synthesized as pre-pro-proteins which are processed to the biologically active mature protein. The pre- and prodomains are cleaved from the precursor protein in the secretory pathway or, in some cases, extracellularly. The canonical functions of these prodomains are to assist in folding and stabilization of the mature domain, to direct intra and extracellular localization, to facilitate storage, and to regulate bioavailability of their mature counterpart. Recently, exciting evidence has revealed that prodomains of certain growth factors, after cleaved from the precursor pro-protein, can act as independent active signaling molecules. In this review, we discuss the various classical functions of prodomains, and the biological consequences of these pro-peptides acting as ligands. We will focus our attention on the brain-derived neurotrophic factor prodomain (pBDNF), which has been recently described as a novel secreted ligand influencing neuronal morphology and physiology. © 2017 International Society for Neurochemistry.

  2. BDNF and COX-2 participate in anti-depressive mechanisms of catalpol in rats undergoing chronic unpredictable mild stress.

    PubMed

    Wang, Jun-Ming; Yang, Lian-He; Zhang, Yue-Yue; Niu, Chun-Ling; Cui, Ying; Feng, Wei-Sheng; Wang, Gui-Fang

    2015-11-01

    Catalpol, a major compound in Rehmannia glutinosa with both medicinal and nutritional values, has been previously confirmed to shorten the duration of immobility in mice exposed to tail suspension and forced swimming tests. This study attempted to examine the anti-depressive mechanisms of catalpol in rats undergoing chronic unpredictable mild stress (CUMS) by involving brain-derived neurotrophic factor (BDNF) and cyclooxygenase-2 (COX-2). CUMS-exposed rats were given catalpol daily (5, 10, and 20mg/kg, ig) or a reference drug, fluoxetine hydrochloride (FH, 10mg/kg, ig), at 5 weeks after starting the CUMS procedure. Sucrose preference test was performed to observe depression-like behavior, and serum and brain tissues were used for neurochemical and fluorescent quantitative reverse transcription PCR analysis. CUMS induced depression-like behavior, whereas catalpol and FH administration attenuated this symptom. Moreover, CUMS caused excessively elevated levels of serum corticosterone, an index of hypothalamic-pituitary-adrenal (HPA) axis hyperactivation, in a manner attenuated by catalpol and FH administration. Catalpol administration also further decreased BDNF activities, downregulated the mRNA expression of BDNF and tropomyosin-related kinase B (TrkB), and reversed the excessive elevation in the activities and mRNA expression levels of COX-2 and prostaglandin E2 (PGE2) in the hippocampus and frontal cortex of rats undergoing CUMS. Results indicate that catalpol can ameliorate CUMS-induced depression-like behavior, and suggest its mechanisms may partially be ascribed to restoring HPA axis dysfunctions, upregulating BDNF expression and its cognate receptor TrkB, and downregulating COX-2 expression, thereby reducing PGE2 levels in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans.

    PubMed

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.

  4. Identification of a Functionally Distinct Truncated BDNF mRNA Splice Variant and Protein in Trachemys scripta elegans

    PubMed Central

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein. PMID:23825634

  5. Brain-Derived Neurotrophic Factor Signaling Rewrites the Glucocorticoid Transcriptome via Glucocorticoid Receptor Phosphorylation

    PubMed Central

    Lambert, W. Marcus; Xu, Chong-Feng; Neubert, Thomas A.; Chao, Moses V.

    2013-01-01

    Abnormal glucocorticoid and neurotrophin signaling has been implicated in numerous psychiatric disorders. However, the impact of neurotrophic signaling on glucocorticoid receptor (GR)-dependent gene expression is not understood. We therefore examined the impact of brain-derived neurotrophic factor (BDNF) signaling on GR transcriptional regulatory function by gene expression profiling in primary rat cortical neurons stimulated with the selective GR agonist dexamethasone (Dex) and BDNF, alone or in combination. Simultaneous treatment with BDNF and Dex elicited a unique set of GR-responsive genes associated with neuronal growth and differentiation and also enhanced the induction of a large number of Dex-sensitive genes. BDNF via its receptor TrkB enhanced the transcriptional activity of a synthetic GR reporter, suggesting a direct effect of BDNF signaling on GR function. Indeed, BDNF treatment induces the phosphorylation of GR at serine 155 (S155) and serine 287 (S287). Expression of a nonphosphorylatable mutant (GR S155A/S287A) impaired the induction of a subset of BDNF- and Dex-regulated genes. Mechanistically, BDNF-induced GR phosphorylation increased GR occupancy and cofactor recruitment at the promoter of a BDNF-enhanced gene. GR phosphorylation in vivo is sensitive to changes in the levels of BDNF and TrkB as well as stress. Therefore, BDNF signaling specifies and amplifies the GR transcriptome through a coordinated GR phosphorylation-dependent detection mechanism. PMID:23878391

  6. Brain ischaemia induces shedding of a BDNF-scavenger ectodomain from TrkB receptors by excitotoxicity activation of metalloproteinases and γ-secretases.

    PubMed

    Tejeda, Gonzalo S; Ayuso-Dolado, Sara; Arbeteta, Raquel; Esteban-Ortega, Gema M; Vidaurre, Oscar G; Díaz-Guerra, Margarita

    2016-04-01

    Stroke remains a leading cause of death and disability in the world with limited therapies available to restrict brain damage or improve functional recovery after cerebral ischaemia. A promising strategy currently under investigation is the promotion of brain-derived neurotrophic factor (BDNF) signalling through tropomyosin-related kinase B (TrkB) receptors, a pathway essential for neuronal survival and function. However, TrkB and BDNF-signalling are impaired by excitotoxicity, a primary pathological process in stroke also associated with neurodegenerative diseases. Pathological imbalance of TrkB isoforms is critical in neurodegeneration and is caused by calpain processing of BDNF high affinity full-length receptor (TrkB-FL) and an inversion of the transcriptional pattern of the Ntrk2 gene, to favour expression of the truncated isoform TrkB-T1 over TrkB-FL. We report here that both TrkB-FL and neuronal TrkB-T1 also undergo ectodomain shedding by metalloproteinases activated after ischaemic injury or excitotoxic damage of cortical neurons. Subsequently, the remaining membrane-bound C-terminal fragments (CTFs) are cleaved by γ-secretases within the transmembrane region, releasing their intracellular domains (ICDs) into the cytosol. Therefore, we identify TrkB-FL and TrkB-T1 as new substrates of regulated intramembrane proteolysis (RIP), a mechanism that highly contributes to TrkB-T1 regulation in ischaemia but is minor for TrkB-FL which is mainly processed by calpain. However, since the secreted TrkB ectodomain acts as a BDNF scavenger and significantly alters BDNF/TrkB signalling, the mechanism of RIP could contribute to neuronal death in excitotoxicity. These results are highly relevant since they reveal new targets for the rational design of therapies to treat stroke and other pathologies with an excitotoxic component. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. Emodin opposes chronic unpredictable mild stress induced depressive-like behavior in mice by upregulating the levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor.

    PubMed

    Li, Meng; Fu, Qiang; Li, Ying; Li, Shanshan; Xue, Jinsong; Ma, Shiping

    2014-10-01

    Emodin, the major active component of Rhubarb, has shown neuroprotective activity. This study is attempted to investigate whether emodin possesses beneficial effects on chronic unpredictable mild stress (CUMS)-induced behavioral deficits (depression-like behaviors) and explore the possible mechanisms. ICR mice were subjected to chronic unpredictable mild stress for 42 consecutive days. Then, emodin and fluoxetine (positive control drug) were administered for 21 consecutive days at the last three weeks of CUMS procedure. The classical behavioral tests: open field test (OFT), sucrose preference test (SPT), tail suspension test (TST) and forced swimming test (FST) were applied to evaluate the antidepressant effects of emodin. Then plasma corticosterone concentration, hippocampal glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF) levels were tested to probe the mechanisms. Our results indicated that 6 weeks of CUMS exposure induced significant depression-like behavior, with high, plasma corticosterone concentration and low hippocampal GR and BDNF expression levels. Whereas, chronic emodin (20, 40 and 80 mg/kg) treatments reversed the behavioral deficiency induced by CUMS exposure. Treatment with emodin normalized the change of plasma corticosterone level, which demonstrated that emodin could partially restore CUMS-induced HPA axis impairments. Besides, hippocampal GR (mRNA and protein) and BDNF (mRNA) expressions were also up-regulated after emodin treatments. In conclusion, emodin remarkably improved depression-like behavior in CUMS mice and its antidepressant activity is mediated, at least in part, by the up-regulating GR and BDNF levels in hippocampus. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. NPY intraperitoneal injections produce antidepressant-like effects and downregulate BDNF in the rat hypothalamus.

    PubMed

    Gelfo, Francesca; Tirassa, Paola; De Bartolo, Paola; Croce, Nicoletta; Bernardini, Sergio; Caltagirone, Carlo; Petrosini, Laura; Angelucci, Francesco

    2012-06-01

    Several studies have documented an involvement of Neuropeptide Y (NPY) in stress-related disorders. Stress-related disorders are also characterized by changes in brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), neurotrophins implicated in the survival and function of neurons. Thus the aim of this study was to investigate whether an NPY intraperitoneal treatment has antidepressant-like effects in rats subjected to a classical stress paradigm, the Forced Swim Test (FST), in association with changes in local brain neurotrophin production. Rats were intraperitoneally injected with either NPY (60 μg/kg) or a vehicle for three consecutive days between two FST sessions and then tested for time spent (or delay onset) in immobile posture. Moreover, we measured by enzyme-linked immunosorbent assay (ELISA) neurotrophin levels in the hypothalamus and corticosterone levels in plasma. The data showed that NPY induced a significant delay in the onset and a significant reduction in the duration of the immobility posture in FST. We also found that NPY decreased BDNF levels in the hypothalamus and corticosterone levels in plasma. Immobility posture in FST can be reduced by antidepressant drugs. Thus, our data show an antidepressant-like effect of NPY associated with changes in BDNF levels in the hypothalamus and reduced activity of hypothalamic-pituitary-adrenal (HPA) axis. These findings, while confirming the involvement of the NPY system in stress-related disorders, suggest that a less invasive route of administration, such as an intraperitoneal injection, may be instrumental in coping with stressful events in animal models and perhaps in humans. © 2012 Blackwell Publishing Ltd.

  9. Adaptation of Slow Myofibers: The Effect of Sustained BDNF Treatment of Extraocular Muscles in Infant Nonhuman Primates

    PubMed Central

    Willoughby, Christy L.; Fleuriet, Jérome; Walton, Mark M.; Mustari, Michael J.; McLoon, Linda K.

    2015-01-01

    Purpose. We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. Methods. The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. Results. No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. Conclusions. We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM. PMID:26030102

  10. Adaptation of slow myofibers: the effect of sustained BDNF treatment of extraocular muscles in infant nonhuman primates.

    PubMed

    Willoughby, Christy L; Fleuriet, Jérome; Walton, Mark M; Mustari, Michael J; McLoon, Linda K

    2015-06-01

    We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM.

  11. Repeated treatment with nitric oxide synthase inhibitor attenuates learned helplessness development in rats and increases hippocampal BDNF expression.

    PubMed

    Stanquini, Laura Alves; Biojone, Caroline; Guimarães, Francisco Silveira; Joca, Sâmia Regiane

    2017-11-20

    Nitric oxide synthase (NOS) inhibitors induce antidepressant-like effects in animal models sensitive to acute drug treatment such as the forced swimming test. However, it is not yet clear if repeated treatment with these drugs is required to induce antidepressant-like effects in preclinical models. The aim of this study was to test the effect induced by acute or repeated (7 days) treatment with 7-nitroindazole (7-NI), a preferential inhibitor of neuronal NOS, in rats submitted to the learned helplessness (LH) model. In addition, we aimed at investigating if 7-NI treatment would increase brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus, similarly to the effect of prototype antidepressants. Animals were submitted to a pre-test (PT) session with inescapable footshocks or habituation (no shocks) to the experimental shuttle box. Six days later they were exposed to a test with escapable footshocks. Independent groups received acute (a single injection after PT or before test) or repeated (once a day for 7 days) treatment with vehicle or 7-NI (30 mg/kg). Repeated, but not acute, treatment with 7-NI attenuated LH development. The effect was similar to repeated imipramine treatment. Moreover, in an independent experimental group, only repeated treatment with 7-NI and imipramine increased BDNF protein levels in the hippocampus. The results suggest the nitrergic system could be a target for the treatment of depressive-like conditions. They also indicate that, similar to the positive control imipramine, the antidepressant-like effects of NOS inhibition could involve an increase in hippocampal BDNF levels.

  12. [Behavior in the forced-swimming test and expression of BDNF and Bcl-xl genes in the rat brain].

    PubMed

    Berezova, I V; Shishkina, G T; Kalinina, T S; Dygalo, N N

    2011-01-01

    A single exposure of rats to the forced-swimming stress decreased BDNF mRNA levels in the cortex and increased Bcl-xl gene expression in the hippocampus and amygdala 24 h after the stress. The animals demonstrated a depressive-like behavior and elevated blood corticosterone level. There was a significant negative correlation between BDNF mRNA level in the cortex and immobility time during swimming. Repeated exposure to swimming stress caused the elevation of the hippocampal BDNF mRNA level assessed 24 h after the second swimming session. The data suggest that stress-induced down-regulation of cortical BDNF gene expression and behavioral despair in the forced-swimming test may be interrelated. The increase in the BDNF and Bcl-xl mRNA levels may contribute to the mechanisms protecting the brain against negative effects of stress.

  13. Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway.

    PubMed

    Yan, Xiaodong; Liu, Juanfang; Zhang, Zhengping; Li, Wenhao; Sun, Siguo; Zhao, Jian; Dong, Xin; Qian, Jixian; Sun, Honghui

    2017-01-01

    Low-level laser (LLL) irradiation has been reported to promote neuronal differentiation, but the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) has been confirmed to be one of the most important neurotrophic factors because it is critical for the differentiation and survival of neurons during development. Thus, this study aimed to investigate the effects of LLL irradiation on Bdnf messenger RNA (mRNA) transcription and the molecular pathway involved in LLL-induced Bdnf mRNA transcription in cultured dorsal root ganglion neurons (DRGNs) using Ca 2+ imaging, pharmacological detections, RNA interference, immunocytochemistry assay, Western blot, and qPCR analysis. We show here that LLL induced increases in the [Ca 2+ ] i level, Bdnf mRNA transcription, cAMP-response element-binding protein (CREB) phosphorylation, and extracellular signal-regulated kinase (ERK) phosphorylation, mediated by Ca 2+ release via inositol triphosphate receptor (IP3R)-sensitive calcium (Ca 2+ ) stores. Blockade of Ca 2+ increase suppressed Bdnf mRNA transcription, CREB phosphorylation, and ERK phosphorylation. Downregulation of phosphorylated (p)-CREB reduced Bdnf mRNA transcription triggered by LLL. Furthermore, blockade of ERK using PD98059 inhibitor reduced p-CREB and Bdnf mRNA transcription induced by LLL. Taken together, these findings establish the Ca 2+ -ERK-CREB cascade as a potential signaling pathway involved in LLL-induced Bdnf mRNA transcription. To our knowledge, this is the first report of the mechanisms of Ca 2+ -dependent Bdnf mRNA transcription triggered by LLL. These findings may help further explore the complex molecular signaling networks in LLL-triggered nerve regeneration in vivo and may also provide experimental evidence for the development of LLL for clinical applications.

  14. Mechanism of Hyperphagia Contributing to Obesity in Brain-Derived Neurotrophic Factor Knockout Mice

    PubMed Central

    Fox, Edward A.; Biddinger, Jessica E.; Jones, Kevin R.; McAdams, Jennifer; Worman, Amber

    2012-01-01

    Global-heterozygous and brain-specific homozygous knockouts (KO's) of brain-derived neurotrophic factor (BDNF) cause late- and early-onset obesity, respectively, both involving hyperphagia. Little is known about the mechanism underlying this hyperphagia or whether BDNF loss from peripheral tissues could contribute to overeating. Since global-homozygous BDNF-KO is perinatal lethal, a BDNF-KO that spared sufficient brainstem BDNF to support normal health was utilized to begin to address these issues. Meal pattern and microstructure analyses suggested overeating of BDNF-KO mice was mediated by deficits in both satiation and satiety that resulted in increased meal size and frequency and implicated a reduction of vagal signaling from gut-to-brain. Meal-induced c-Fos activation in the nucleus of the solitary tract, a more direct measure of vagal afferent signaling, however, was not decreased in BDNF-KO mice, and thus was not consistent with a vagal afferent role. Interestingly though, meal-induced c-Fos activation was increased in the dorsal vagal motor nucleus (DMV) of BDNF-KO mice. This could imply that augmentation of vago-vagal digestive reflexes occurred (e.g., accommodation), which would support increased meal size and possibly increased meal number by reducing the increase in intragastric pressure produced by a given amount of ingesta. Additionally, vagal sensory neuron number in BDNF-KO mice was altered in a manner consistent with the increased meal-induced activation of the DMV. These results suggest reduced BDNF causes satiety and satiation deficits that support hyperphagia, possibly involving augmentation of vago-vagal reflexes mediated by central pathways or vagal afferents regulated by BDNF levels. PMID:23069761

  15. Mechanism of hyperphagia contributing to obesity in brain-derived neurotrophic factor knockout mice.

    PubMed

    Fox, E A; Biddinger, J E; Jones, K R; McAdams, J; Worman, A

    2013-01-15

    Global-heterozygous and brain-specific homozygous knockouts (KOs) of brain-derived neurotrophic factor (BDNF) cause late- and early-onset obesity, respectively, both involving hyperphagia. Little is known about the mechanism underlying this hyperphagia or whether BDNF loss from peripheral tissues could contribute to overeating. Since global-homozygous BDNF-KO is perinatal lethal, a BDNF-KO that spared sufficient brainstem BDNF to support normal health was utilized to begin to address these issues. Meal pattern and microstructure analyses suggested overeating of BDNF-KO mice was mediated by deficits in both satiation and satiety that resulted in increased meal size and frequency and implicated a reduction of vagal signaling from the gut to the brain. Meal-induced c-Fos activation in the nucleus of the solitary tract, a more direct measure of vagal afferent signaling, however, was not decreased in BDNF-KO mice, and thus was not consistent with a vagal afferent role. Interestingly though, meal-induced c-Fos activation was increased in the dorsal motor nucleus of the vagus nerve (DMV) of BDNF-KO mice. This could imply that augmentation of vago-vagal digestive reflexes occurred (e.g., accommodation), which would support increased meal size and possibly increased meal number by reducing the increase in intragastric pressure produced by a given amount of ingesta. Additionally, vagal sensory neuron number in BDNF-KO mice was altered in a manner consistent with the increased meal-induced activation of the DMV. These results suggest reduced BDNF causes satiety and satiation deficits that support hyperphagia, possibly involving augmentation of vago-vagal reflexes mediated by central pathways or vagal afferents regulated by BDNF levels. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Genomic Organization and Identification of Promoter Regions for the BDNF Gene in the Pond Turtle Trachemys scripta elegans

    PubMed Central

    Zheng, Zhaoqing; Keifer, Joyce

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is an important regulator of neuronal development and synaptic function. The BDNF gene undergoes significant activity-dependent regulation during learning. Here, we identified the BDNF promoter regions, transcription start sites, and potential regulatory sequences for BDNF exons I–III that may contribute to activity-dependent gene and protein expression in the pond turtle Trachemys scripta elegans (tBDNF). By using transfection of BDNF promoter/luciferase plasmid constructs into human neuroblastoma SHSY5Y cells and mouse embryonic fibroblast NIH3T3 cells, we identified the basal regulatory activity of promoter sequences located upstream of each tBDNF exon, designated as pBDNFI–III. Further, through chromatin immunoprecipitation (ChIP) assays, we detected CREB binding directly to exon I and exon III promoters, while BHLHB2, but not CREB, binds within the exon II promoter. Elucidation of the promoter regions and regulatory protein binding sites in the tBDNF gene is essential for understanding the regulatory mechanisms that control tBDNF gene expression. PMID:24443176

  17. Genomic organization and identification of promoter regions for the BDNF gene in the pond turtle Trachemys scripta elegans.

    PubMed

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Keifer, Joyce

    2014-08-01

    Brain-derived neurotrophic factor (BDNF) is an important regulator of neuronal development and synaptic function. The BDNF gene undergoes significant activity-dependent regulation during learning. Here, we identified the BDNF promoter regions, transcription start sites, and potential regulatory sequences for BDNF exons I-III that may contribute to activity-dependent gene and protein expression in the pond turtle Trachemys scripta elegans (tBDNF). By using transfection of BDNF promoter/luciferase plasmid constructs into human neuroblastoma SHSY5Y cells and mouse embryonic fibroblast NIH3T3 cells, we identified the basal regulatory activity of promoter sequences located upstream of each tBDNF exon, designated as pBDNFI-III. Further, through chromatin immunoprecipitation (ChIP) assays, we detected CREB binding directly to exon I and exon III promoters, while BHLHB2, but not CREB, binds within the exon II promoter. Elucidation of the promoter regions and regulatory protein binding sites in the tBDNF gene is essential for understanding the regulatory mechanisms that control tBDNF gene expression.

  18. Exploratory behavior, cortical BDNF expression, and sleep homeostasis.

    PubMed

    Huber, Reto; Tononi, Giulio; Cirelli, Chiara

    2007-02-01

    Slow-wave activity (SWA; 0.5-4.0 Hz) during non-rapid eye movement (NREM) sleep is a reliable indicator of sleep need, as it increases with the duration of prior wakefulness and decreases during sleep. However, which biologic process occurring during wakefulness is responsible for the increase of sleep SWA remains unknown. The aim of the study was to determine whether neuronal plasticity underlies the link between waking activities and the SWA response. We manipulated, in rats, the amount of exploratory activity while maintaining the total duration of waking constant. We then measured the extent to which exploration increases cortical expression of plasticity-related genes (BDNF, Arc, Homer, NGFI-A), and the SWA response once the animals were allowed to sleep. Basic neurophysiology and molecular laboratory. Male Wistar Kyoto rats (250-300 g; 2-3 month old). None. We found that, within the same animal, the amount of exploratory behavior during wakefulness could predict the extent to which BDNF was induced, as well as the extent of the homeostatic SWA response during subsequent sleep. This study suggests a direct link between the synaptic plasticity triggered by waking activities and the homeostatic sleep response and identifies BDNF as a major mediator of this link at the molecular level.

  19. Stability of BDNF in Human Samples Stored Up to 6 Months and Correlations of Serum and EDTA-Plasma Concentrations.

    PubMed

    Polyakova, Maryna; Schlögl, Haiko; Sacher, Julia; Schmidt-Kassow, Maren; Kaiser, Jochen; Stumvoll, Michael; Kratzsch, Jürgen; Schroeter, Matthias L

    2017-06-03

    Brain-derived neurotrophic factor (BDNF), an important neural growth factor, has gained growing interest in neuroscience, but many influencing physiological and analytical aspects still remain unclear. In this study we assessed the impact of storage time at room temperature, repeated freeze/thaw cycles, and storage at -80 °C up to 6 months on serum and ethylenediaminetetraacetic acid (EDTA)-plasma BDNF. Furthermore, we assessed correlations of serum and plasma BDNF concentrations in two independent sets of samples. Coefficients of variations (CVs) for serum BDNF concentrations were significantly lower than CVs of plasma concentrations ( n = 245, p = 0.006). Mean serum and plasma concentrations at all analyzed time points remained within the acceptable change limit of the inter-assay precision as declared by the manufacturer. Serum and plasma BDNF concentrations correlated positively in both sets of samples and at all analyzed time points of the stability assessment ( r = 0.455 to r s = 0.596; p < 0.004). In summary, when considering the acceptable change limit, BDNF was stable in serum and in EDTA-plasma up to 6 months. Due to a higher reliability, we suggest favoring serum over EDTA-plasma for future experiments assessing peripheral BDNF concentrations.

  20. Apigenin attenuates isoflurane-induced cognitive dysfunction via epigenetic regulation and neuroinflammation in aged rats.

    PubMed

    Chen, Lin; Xie, Wenji; Xie, Wenqin; Zhuang, Weiqiang; Jiang, Changcheng; Liu, Naizhen

    2017-11-01

    Post operational cognitive dysfunction (POCD) occurs in patients after anesthesia and surgery. Abnormal histone acetylation and neuroinflammation are key factors in the pathogenesis of cognitive impairment. Apigenin not only has an anti-inflammatory activity but also modifies histone acetylation. We aimed to investigate whether apigenin can attenuate isoflurane exposure-induced cognitive decline by regulating histone acetylation and inflammatory signaling. Spatial learning and memory were assessed by Morris water maze test. Levels of histone acetylation, BDNF and downstream signaling, and inflammatory components were analyzed. Isoflurane exposure in aged rats lead to impaired spatial learning and memory. These rats exhibited dysregulated histone H3K9 and H4K12 acetylation, which was accompanied by reduced BDNF expression and suppressed BDNF downstream signaling pathway. Apigenin restored histone acetylation and BDNF signaling. Apigenin also suppressed isoflurane exposure induced upregulation of proinflammatory cytokines and NFκB signaling pathway. Memory impairment induced by isoflurane exposure is associated with dysregulated histone acetylation in the hippocampus, which affects BDNF expression and hence BDNF downstream signaling pathway. Apigenin recovers cognitive function by restoring histone acetylation and suppressing neuroinflammation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The interplay of BDNF-TrkB with NMDA receptor in propofol-induced cognition dysfunction : Mechanism for the effects of propofol on cognitive function.

    PubMed

    Zhou, Junfei; Wang, Fang; Zhang, Jun; Li, Jianfeng; Ma, Li; Dong, Tieli; Zhuang, Zhigang

    2018-04-05

    The aim of the present study was to verify whether propofol impaired learning and memory through the interplay of N-methyl-D-aspartate (NMDA) receptor with brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling pathway. 120 Sprague-Dawley (SD) rats were randomly assigned into eight groups. Experimental drugs including saline, intralipid, propofol, N-methyl-D-aspartate (NMDA), 7,8-dihydroxyflavone (7,8-DHF), K252a and MK-801. Spatial learning and memory of rats were tested by the Morris water maze (MWM) test. The mRNA and protein expression were determined by immunohistochemistry, RT-PCR and western blot. Finally, hippocampus cells proliferation and apoptosis were examined by PCNA immunohistochemistry and TUNEL respectively. The memory and learning was diminished in the propofol exposure group, however, the impaired memory and learning of rats were improved with the addition of NMDA and 7,8-DHF, while the improvement of memory and learning of rats were reversed with the addition of K252a and MK-801. In addition, the mRNA and protein expression levels and hippocampus cells proliferation were the same trend with the results of the MWM test, while apoptosis in hippocampus was reversed. The propofol can impair memory and learning of rats and induce cognition dysfunction through the interplay of NMDA receptor and BDNF-TrkB-CREB signaling pathway.

  2. Action control is mediated by prefrontal BDNF and glucocorticoid receptor binding.

    PubMed

    Gourley, Shannon L; Swanson, Andrew M; Jacobs, Andrea M; Howell, Jessica L; Mo, Michelle; Dileone, Ralph J; Koleske, Anthony J; Taylor, Jane R

    2012-12-11

    Stressor exposure biases decision-making strategies from those based on the relationship between actions and their consequences to others restricted by stimulus-response associations. Chronic stressor exposure also desensitizes glucocorticoid receptors (GR) and diminishes motivation to acquire food reinforcement, although causal relationships are largely not established. We show that a history of chronic exposure to the GR ligand corticosterone or acute posttraining GR blockade with RU38486 makes rodents less able to perform actions based on their consequences. Thus, optimal GR binding is necessary for the consolidation of new response-outcome learning. In contrast, medial prefrontal (but not striatal) BDNF can account for stress-related amotivation, in that selective medial prefrontal cortical Bdnf knockdown decreases break-point ratios in a progressive-ratio task. Knockdown also increases vulnerability to RU38486. Despite the role of BDNF in dendritic spine reorganization, deep-layer spine remodeling does not obviously parallel progressive-ratio response patterns, but treatment with the Na(+)-channel inhibitor riluzole reverses corticosteroid-induced motivational deficits and restores prefrontal BDNF expression after corticosterone. We argue that when prefrontal neurotrophin systems are compromised, and GR-mediated hypothalamic-pituitary-adrenal axis feedback is desensitized (as in the case of chronic stress hormone exposure), amotivation and inflexible maladaptive response strategies that contribute to stress-related mood disorders result.

  3. Investigating the role of the brain-derived neurotrophic factor (BDNF) val66met variant in obsessive-compulsive disorder (OCD).

    PubMed

    Hemmings, Sîan M J; Kinnear, Craig J; Van der Merwe, Lize; Lochner, Christine; Corfield, Valerie A; Moolman-Smook, Johanna C; Stein, Dan J

    2008-01-01

    Although evidence from family studies suggest that genetic factors play an important role in mediating obsessive-compulsive disorder (OCD), results from genetic case-control association analyses have been inconsistent. Discrepant findings may be attributed to the lack of phenotypic resolution, and population stratification. The aim of the present study was to investigate the role that the val66met variant within the gene encoding brain-derived neurotrophic factor (BDNF) may play in mediating the development of selected OCD subtypes accounting for the aforementioned confounding factors. One hundred and twelve OCD subjects and 140 controls were selected from the South African Afrikaner population. A significant association was observed in the male subgroup, with the met66 allele implicated as the risk allele in the development of OCD. This allele was also found to be associated with an earlier age at onset of OCD in males. On the other hand, the val66val genotype was associated with more severe OCD in the female population. No evidence of population stratification was observed in Afrikaner control subjects. These preliminary results point towards genetically distinct characteristics of OCD mediated by dysfunctions in BDNF. The present investigation forms part of ongoing research to elucidate the genetic components involved in the aetiology of OCD and OCD-related characteristics.

  4. Age-modulated association between prefrontal NAA and the BDNF gene.

    PubMed

    Salehi, Basira; Preuss, Nora; van der Veen, Jan Willem; Shen, Jun; Neumeister, Alexander; Drevets, Wayne C; Hodgkinson, Colin; Goldman, David; Wendland, Jens R; Singleton, Andrew; Gibbs, Jesse R; Cookson, Mark R; Hasler, Gregor

    2013-07-01

    Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of psychiatric and neurological disorders and in the mechanisms of antidepressant pharmacotherapy. Psychiatric and neurological conditions have also been associated with reduced brain levels of N-acetyl-aspartate (NAA), which has been used as a putative marker of neural integrity. However, few studies have explored the relationship between BDNF polymorphisms and NAA levels directly. Here, we present data from a single-voxel proton magnetic resonance spectroscopy study of 64 individuals and explore the relationship between BDNF polymorphisms and prefrontal NAA level. Our results indicate an association between a single nucleotide polymorphism (SNP) within BDNF, known as rs1519480, and reduced NAA level (p = 0.023). NAA levels were further predicted by age and Asian ancestry. There was a significant rs1519480 × age interaction on NAA level (p = 0.031). Specifically, the effect of rs1519480 on NAA level became significant at age ⩾34.17 yr. NAA level decreased with advancing age for genotype TT (p = 0.001) but not for genotype CT (p = 0.82) or CC (p = 0.34). Additional in silico analysis of 142 post-mortem brain samples revealed an association between the same SNP and reduced BDNF mRNA expression in the prefrontal cortex. The rs1519480 SNP influences BDNF mRNA expression and has an impact on prefrontal NAA level over time. This genetic mechanism may contribute to inter-individual variation in cognitive performance seen during normal ageing, as well as contributing to the risk for developing psychiatric and neurological conditions.

  5. Effects of adolescent social stress and antidepressant treatment on cognitive inflexibility and Bdnf epigenetic modifications in the mPFC of adult mice.

    PubMed

    Xu, Hang; Wang, Jiesi; Zhang, Ke; Zhao, Mei; Ellenbroek, Bart; Shao, Feng; Wang, Weiwen

    2018-02-01

    Adolescent social stress (ASS) can increase susceptibility to depression in adulthood. However, the underlying psychological and neural mechanisms remain unclear. Cortically mediated cognitive dysfunctions are increasingly recognized as an independent and important risk factor of depression. Using social defeat stress, a classical animal model of depression, our previous studies found that mice subjected to this form of stress during early adolescence displayed cognitive inflexibility (CI) in adulthood. This change was accompanied by a down-regulation of Bdnf gene expression in the medial prefrontal cortex (mPFC); this gene encodes a key molecule involved in depression and antidepressant action. In the present paper, we identified epigenetic modification of Bdnf as a possible mechanism underlying the behavioral and molecular changes. ASS induced a set of depressive phenotypes, including increased social avoidance and CI, as well as reduced levels of total Bdnf and isoform IV but not isoform I or VI transcripts in the mPFC. In parallel with changes in Bdnf gene expression, previously stressed adult mice showed increased levels of dimethylation of histone H3 at lysine K9 (H3K9me2) immediately downstream of the Bdnf IV promoter. On the other hand, no differences were found in trimethylation of histone H3 at lysine K4 (H3K4me3) or in acetylation of histone H3 at lysine K9 (H3K9ac) or at K4 (H3K4ac) in the Bdnf IV promoter. Likewise, no alterations were found in DNA methylation of the Bdnf IV promoter. Additionally, treatment with the chronic antidepressant tranylcypromine reversed Bdnf epigenetic changes and related gene transcription while also reversing CI, but not social avoidance, in previously stressed adult mice. These results suggest that epigenetic changes to the Bdnf gene in the mPFC after adolescent social adversity may be involved in the regulation of cognitive dysfunction in depression and antidepressant action in adulthood. Copyright © 2017 Elsevier Ltd

  6. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS.

    PubMed

    Cheeran, Binith; Talelli, Penelope; Mori, Francesco; Koch, Giacomo; Suppa, Antonio; Edwards, Mark; Houlden, Henry; Bhatia, Kailash; Greenwood, Richard; Rothwell, John C

    2008-12-01

    The brain-derived neurotrophic factor gene (BDNF) is one of many genes thought to influence synaptic plasticity in the adult brain and shows a common single nucleotide polymorphism (BDNF Val66Met) in the normal population that is associated with differences in hippocampal volume and episodic memory. It is also thought to influence possible synaptic changes in motor cortex following a simple motor learning task. Here we extend these studies by using new non-invasive transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) techniques that directly test the excitability and plasticity of neuronal circuits in human motor cortex in subjects at rest. We investigated whether the susceptibility to TMS probes of plasticity is significantly influenced by the BDNF polymorphism. Val66Met carriers were matched with Val66Val individuals and tested on the following protocols: continuous and intermittent theta burst TMS; median nerve paired associative stimulation; and homeostatic plasticity in the TDCS/1 Hz rTMS model. The response of Met allele carriers differed significantly in all protocols compared with the response of Val66Val individuals. We suggest that this is due to the effect of BNDF on the susceptibility of synapses to undergo LTP/LTD. The circuits tested here are implicated in the pathophysiology of movement disorders such as dystonia and are being assessed as potential new targets in the treatment of stroke. Thus the polymorphism may be one factor that influences the natural response of the brain to injury and disease.

  7. Elevation of Ser9 phosphorylation of GSK3β is required for HERV-W env-mediated BDNF signaling in human U251 cells.

    PubMed

    Qin, Chengchen; Li, Shan; Yan, Qiujin; Wang, Xiuling; Chen, Yatang; Zhou, Ping; Lu, Mengxin; Zhu, Fan

    2016-08-03

    Human endogenous retrovirus W family (HERV-W) envelope (env) is known to be associated with neurological and psychiatric disorders, such as multiple sclerosis and schizophrenia. Previous studies showed that overexpression of HERV-W env could induce brain-derived neurotrophic factor (BDNF) gene expression. In human and rat cells, BDNF-mediated signal transduction might be modulated by glycogen synthase kinase 3β (GSK3β). Both BDNF and GSK3β are schizophrenia-related genes. In this paper, we investigated whether GSK3β was involved in the HERV-W env-induced expression of BDNF. We found that HERV-W env increased phosphorylation of GSK3β at Ser9 (p-GSK3β (Ser9)) and the ratio of p-GSK3β (Ser9) to total GSK3β (p<0.05) in U251 cells. Overexpression of HERV-W env led to a 36.2% reduction in GSK3β activity compared to control (p<0.05). The levels of β-catenin, cyclin D1 and TSC2 mRNAs were upregulated (p<0.05). These data suggested that overexpression of HERV-W env might activate the GSK3β signaling pathway in U251 cells. Further, knockdown of GSK3β reduced the expression of total GSK3β, p-GSK3β (Ser9), and the ratio of p-GSK3β (Ser9) to total GSK3β by 28.6%, 50.4%, and 30.2%, respectively (p<0.05). Levels of β-catenin, cyclin D1 and TSC2 mRNAs were also reduced (p<0.05). Interestingly, GSK3β activity increased (p<0.05). Knockdown of GSK3β also decreased mRNA and protein expression of BDNF by 49.9% and 48.5% respectively (p<0.05). These results indicated that phosphorylation of GSK3β at Ser9 might be involved in HERV-W env-induced BDNF expression, and will hopefully improve our understanding of the role of HERV-W env in neurological and psychiatric diseases (schizophrenia, etc). Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Zinc monotherapy increases serum brain-derived neurotrophic factor (BDNF) levels and decreases depressive symptoms in overweight or obese subjects: a double-blind, randomized, placebo-controlled trial.

    PubMed

    Solati, Zahra; Jazayeri, Shima; Tehrani-Doost, Mehdi; Mahmoodianfard, Salma; Gohari, Mahmood Reza

    2015-05-01

    Previous studies have shown a positive effect of zinc as an adjunctive therapy on reducing depressive symptoms. However, to our knowledge, no study has examined the effect of zinc monotherapy on mood. The aim of the present study was to determine the effects of zinc monotherapy on depressive symptoms and serum brain-derived neurotrophic factor (BDNF) levels in overweight or obese subjects. Fifty overweight or obese subjects were randomly assigned into two groups and received either 30 mg zinc or placebo daily for 12 weeks. At baseline and post-intervention, depression severity was assessed using Beck depression inventory II (BDI II), and serum BDNF and zinc levels were determined by enzyme-linked immunosorbent assay and atomic absorption spectrophotometry, respectively. The trial was completed with 46 subjects. After a 12-week supplementation, serum zinc and BDNF levels increased significantly in the zinc-supplemented group compared with the placebo group. BDI scores declined in both the groups at the end of the study, but reduction in the zinc-supplemented group was significantly higher than the placebo group. More analysis revealed that following supplementation, BDI scores decreased in subgroup of subjects with depressive symptoms (BDI ≥ 10) (n = 30), but did not change in the subgroup of non-depressed subjects (BDI < 10) (n = 16). Moreover, a significant inverse correlation was observed between serum BDNF levels and depression severity in all participants. Interestingly, a significant positive correlation was found between serum BDNF and zinc levels at baseline. Zinc monotherapy improves mood in overweight or obese subjects most likely through increasing BDNF levels.

  9. Abnormalities in the zinc-metalloprotease-BDNF axis may contribute to megalencephaly and cortical hyperconnectivity in young autism spectrum disorder patients.

    PubMed

    Koh, Jae-Young; Lim, Joon Seo; Byun, Hyae-Ran; Yoo, Min-Heui

    2014-09-03

    Whereas aberrant brain connectivity is likely the core pathology of autism-spectrum disorder (ASD), studies do not agree as to whether hypo- or hyper-connectivity is the main underlying problem. Recent functional imaging studies have shown that, in most young ASD patients, cerebral cortical regions appear hyperconnected, and cortical thickness/brain size is increased. Collectively, these findings indicate that developing ASD brains may exist in an altered neurotrophic milieu. Consistently, some ASD patients, as well as some animal models of ASD, show increased levels of brain-derived neurotrophic factor (BDNF). However, how BDNF is upregulated in ASD is unknown. To address this question, we propose the novel hypothesis that a putative zinc-metalloprotease-BDNF (ZMB) axis in the forebrain plays a pivotal role in the development of hyperconnectivity and megalencephaly in ASD. We have previously demonstrated that extracellular zinc at micromolar concentrations can rapidly increase BDNF levels and phosphorylate the receptor tyrosine kinase TrkB via the activation of metalloproteases. The role of metalloproteases in ASD is still uncertain, but in fragile X syndrome, a monogenic disease with an autistic phenotype, the levels of MMP are increased. Early exposure to lipopolysaccharides (LPS) and other MMP activators such as organic mercurials also have been implicated in ASD pathogenesis. The resultant increases in BDNF levels at synapses, especially those involved in the zinc-containing, associative glutamatergic system may produce abnormal brain circuit development. Various genetic mutations that lead to ASD are also known to affect BDNF signaling: some down-regulate, and others up-regulate it. We hypothesize that, although both up- and down-regulation of BDNF may induce autism symptoms, only BDNF up-regulation is associated with the hyperconnectivity and large brain size observed in most young idiopathic ASD patients. To test this hypothesis, we propose to examine the

  10. Abnormalities in the zinc-metalloprotease-BDNF axis may contribute to megalencephaly and cortical hyperconnectivity in young autism spectrum disorder patients

    PubMed Central

    2014-01-01

    Whereas aberrant brain connectivity is likely the core pathology of autism-spectrum disorder (ASD), studies do not agree as to whether hypo- or hyper-connectivity is the main underlying problem. Recent functional imaging studies have shown that, in most young ASD patients, cerebral cortical regions appear hyperconnected, and cortical thickness/brain size is increased. Collectively, these findings indicate that developing ASD brains may exist in an altered neurotrophic milieu. Consistently, some ASD patients, as well as some animal models of ASD, show increased levels of brain-derived neurotrophic factor (BDNF). However, how BDNF is upregulated in ASD is unknown. To address this question, we propose the novel hypothesis that a putative zinc-metalloprotease-BDNF (ZMB) axis in the forebrain plays a pivotal role in the development of hyperconnectivity and megalencephaly in ASD. We have previously demonstrated that extracellular zinc at micromolar concentrations can rapidly increase BDNF levels and phosphorylate the receptor tyrosine kinase TrkB via the activation of metalloproteases. The role of metalloproteases in ASD is still uncertain, but in fragile X syndrome, a monogenic disease with an autistic phenotype, the levels of MMP are increased. Early exposure to lipopolysaccharides (LPS) and other MMP activators such as organic mercurials also have been implicated in ASD pathogenesis. The resultant increases in BDNF levels at synapses, especially those involved in the zinc-containing, associative glutamatergic system may produce abnormal brain circuit development. Various genetic mutations that lead to ASD are also known to affect BDNF signaling: some down-regulate, and others up-regulate it. We hypothesize that, although both up- and down-regulation of BDNF may induce autism symptoms, only BDNF up-regulation is associated with the hyperconnectivity and large brain size observed in most young idiopathic ASD patients. To test this hypothesis, we propose to examine the

  11. Altering BDNF expression by genetics and/or environment: impact for emotional and depression-like behaviour in laboratory mice.

    PubMed

    Chourbaji, Sabine; Brandwein, Christiane; Gass, Peter

    2011-01-01

    According to the "neurotrophin hypothesis", brain-derived neurotrophic factor (BDNF) is an important candidate gene in depression. Moreover, environmental stress is known to represent a risk factor in the pathophysiology and treatment of this disease. To elucidate, whether changes of BDNF availability signify cause or consequence of depressive-like alterations, it is essential to look for endophenotypes under distinct genetic conditions (e.g. altered BDNF expression). Furthermore it is crucial to examine environment-driven BDNF regulation and its effect on depressive-linked features. Consequently, gene × environment studies investigating prospective genetic mouse models of depression in different environmental contexts become increasingly important. The present review summarizes recent findings in BDNF-mutant mice, which have been controversially discussed as models of depression and anxiety. It furthermore illustrates the potential of environment to serve as naturalistic stressor with the potential to modulate the phenotype in wildtype and mutant mice. Moreover, environment may exert protective effects by regulating BDNF levels as attributed to "environmental enrichment". The effect of this beneficial condition will also be discussed with regard to probable "curative/therapeutic" approaches. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Noninvasive, targeted gene therapy for acute spinal cord injury using LIFU-mediated BDNF-loaded cationic nanobubble destruction.

    PubMed

    Song, Zhaojun; Ye, Yongjie; Zhang, Zhi; Shen, Jieliang; Hu, Zhenming; Wang, Zhigang; Zheng, Jiazhuang

    2018-02-12

    Various gene delivery systems have been widely studied for the acute spinal cord injury (SCI) treatment. In the present study, a novel type of brain-derived neurotrophic factor (BDNF)-loaded cationic nanobubbles (CNBs) conjugated with MAP-2 antibody (mAb MAP-2 /BDNF/CNBs) was prepared to provide low-intensity focused ultrasound (LIFU)-targeted gene therapy. In vitro experiments, the ultrasound-targeted tranfection to BDNF overexpressioin in neurons and efficiently inhibition neuronal apoptosis have been demonstrated, and the elaborately designed mAb MAP-2 /BDNF/CNBs can specifically target to the neurons. Furthermore, in a acute SCI rat model, LIFU-mediated mAb MAP-2 /BDNF/CNBs transfection significantly increased BDNF expression, attenuated histological injury, decreased neurons loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in SCI rats. LIFU-mediated mAb MAP-2 /BDNF/CNBs destruction significantly increase transfection efficiency of BDNF gene both in vitro and in vivo, and has a significant neuroprotective effect on the injured spinal cord. Therefore, the combination of LIFU irradiation and gene therapy through mAb MAP-2 /BDNF/CNBs can be considered as a novel non-invasive and targeted treatment for gene therapy of SCI. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Correlation of BDNF blood levels with interoceptive awareness and maturity fears in anorexia and bulimia nervosa patients.

    PubMed

    Mercader, J M; Fernández-Aranda, F; Gratacòs, Mònica; Aguera, Zaida; Forcano, Laura; Ribasés, Marta; Villarejo, Cynthia; Estivill, Xavier

    2010-04-01

    Association studies and rodent models suggest a major role for BDNF (brain-derived neurotrophic factor) in feeding regulation. Altered BDNF blood levels have been associated with eating disorders (ED) and their related psychopathological traits. Since the influence of BDNF on self-reported eating disorder inventory scores (EDI) has not been tested, we investigated the correlation of EDI scales with BDNF plasma levels. BDNF levels were measured by (ELISA), and the EDI questionnaire was administered in a total of 81 ED patients. The relationship between BDNF levels and EDI scores was calculated using a general linear model. After correcting for multiple testing, BDNF plasma levels negatively correlated with the EDI total score (R (2) = 0.26; p = 4.09 x 10(-4)), interoceptive awareness (R (2) = 0.26; p = 1.96 x 10(-4)), and maturity fears (R (2) = 0.13; p = 6.92 x 10(-4)). When subdividing according to the main diagnoses, interoceptive awareness presented significant correlations with BDNF blood levels in both the anorexia nervosa (R (2) = 0.33, p = 0.0026) and bulimia nervosa groups (R (2) = 0.10; p = 0.008). Our data suggest that BDNF levels may influence the severity of the ED by modulating the associated psychopathology, in particular through the impairment of interoceptive awareness.

  14. Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in anxiety-like behavior

    PubMed Central

    Hammack, Sayamwong E.; Cheung, Joseph; Rhodes, Kimberly M.; Schutz, Kristin C.; Falls, William A.; Braas, Karen M.; May, Victor

    2009-01-01

    Exposure to chronic stress has been argued to produce maladaptive anxiety-like behavioral states, and many of the brain regions associated with stressor responding also mediate anxiety-like behavior. Pituitary adenylate cyclase activating polypeptide (PACAP) and its specific G protein-coupled PAC1 receptor have been associated with many of these stress- and anxiety-associated brain regions, and signaling via this peptidergic system may facilitate the neuroplasticity associated with pathological affective states. Here we investigated whether chronic stress increased transcript expression for PACAP, PAC1 receptor, brain-derived neurotrophic factor (BDNF), and tyrosine receptor kinase B (TrkB) in several nuclei. In rats exposed to a 7 day chronic variate stress paradigm, chronic stress enhanced baseline startle responding induced by handling and exposure to bright lights. Following chronic stress, quantitative transcript assessments of brain regions demonstrated dramatic increases in PACAP and PAC1 receptor, BDNF, and TrkB receptor mRNA expression selectively in the dorsal aspect of the anterolateral bed nucleus of the stria terminalis (dBNST). Related vasoactive intestinal peptide (VIP) and VPAC receptor, and other stress peptide transcript levels were not altered compared to controls. Moreover, acute PACAP38 infusion into the dBNST resulted in a robust dose-dependent anxiogenic response on baseline startle responding that persisted for 7 days. PACAP/PAC1 receptor signaling has established trophic functions and its coordinate effects with chronic stress-induced dBNST BDNF and TrkB transcript expression may underlie the maladaptive BNST remodeling and plasticity associated with anxiety-like behavior. PMID:19181454

  15. Long-term behavioral and NMDA receptor effects of young-adult corticosterone treatment in BDNF heterozygous mice.

    PubMed

    Klug, Maren; Hill, Rachel A; Choy, Kwok Ho Christopher; Kyrios, Michael; Hannan, Anthony J; van den Buuse, Maarten

    2012-06-01

    Psychiatric illnesses, such as schizophrenia, are most likely caused by an interaction between genetic predisposition and environmental factors, including stress during development. The neurotrophin, brain-derived neurotrophic factor (BDNF) has been implicated in this illness as BDNF levels are decreased in the brain of patients with schizophrenia. The aim of the present study was to assess the combined effect of reduced BDNF levels and postnatal stress, simulated by chronic young-adult treatment with the stress hormone, corticosterone. From 6 weeks of age, female and male BDNF heterozygous mice and their wild-type controls were chronically treated with corticosterone in their drinking water for 3 weeks. At 11 weeks of age, male, but not female BDNF heterozygous mice treated with corticosterone exhibited a profound memory deficit in the Y-maze. There were no differences between the groups in baseline prepulse inhibition (PPI), a measure of sensorimotor gating, or its disruption by treatment with MK-801. However, an increase in startle caused by MK-801 treatment was absent in male, but not female BDNF heterozygous mice, irrespective of corticosterone treatment. Analysis of protein levels of the NMDA receptor subunits NR1, NR2A, NR2B and NR2C, showed a marked increase of NR2B levels in the dorsal hippocampus of male BDNF heterozygous mice treated with corticosterone. In the ventral hippocampus, significantly reduced levels of NR2A, NR2B and NR2C were observed in male BDNF heterozygous mice. The NMDA receptor effects in hippocampal sub-regions could be related to the spatial memory deficits and the loss of the effect of MK-801 on startle in these mice, respectively. No significant changes in NMDA receptor subunit levels were observed in any of the female groups. Similarly, no significant changes in levels of BDNF or its receptor, TrkB, were found other than the expected reduced levels of BDNF in heterozygous mice. In conclusion, the data show differential interactive

  16. Ethanol- and acetaldehyde-induced cholinergic imbalance in the hippocampus of Aldh2-knockout mice does not affect nerve growth factor or brain-derived neurotrophic factor.

    PubMed

    Jamal, Mostofa; Ameno, Kiyoshi; Ruby, Mostofa; Miki, Takanori; Tanaka, Naoko; Nakamura, Yu; Kinoshita, Hiroshi

    2013-11-20

    Neurotrophins, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), play an important role in the maintenance of cholinergic-neuron function. The objective of this study was to investigate whether ethanol (EtOH)- and acetaldehyde (AcH)- induced cholinergic effects would cause neurotrophic alterations in the hippocampus of mice. We used Aldh2 knockout (Aldh2-KO) mice, a model of aldehyde dehydrogenase 2 (ALDH2)-deficiency in humans, to examine the effects of acute administration of EtOH and the role of AcH. Hippocampal slices were collected and the mRNA and protein levels of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), NGF and BDNF were analyzed 30 min after the i.p. administration of EtOH (0.5, 1.0, or 2.0 g/kg). We show that treatment with 2.0 g/kg of EtOH decreased ChAT mRNA and protein levels in Aldh2-KO mice but not in wild-type (WT) mice, which suggests a role for AcH in the mechanism of action of EtOH. The administration of 2.0 g/kg of EtOH increased AChE mRNA in both strains of mice. EtOH failed to change the levels of NGF or BDNF at any dose. Aldh2-KO mice exhibited a distinctly lower expression of ChAT and a higher expression of NGF both at mRNA and protein levels in the hippocampus compared with WT mice. Our observations suggest that administration of EtOH and elevated AcH can alter cholinergic markers in the hippocampus of mice, and this effect did not change the levels of NGF or BDNF. © 2013 Elsevier B.V. All rights reserved.

  17. Region-specific expression of brain-derived neurotrophic factor splice variants in morphine conditioned place preference in mice.

    PubMed

    Meng, Min; Zhao, Xinhan; Dang, Yonghui; Ma, Jingyuan; Li, Lixu; Gu, Shanzhi

    2013-06-26

    It is well established that brain-derived neurotrophic factor (BDNF) plays a pivotal role in brain plasticity-related processes, such as learning, memory and drug addiction. However, changes in expression of BDNF splice variants after acquisition, extinction and reinstatement of cue-elicited morphine seeking behavior have not yet been investigated. Real-time PCR was used to assess BDNF splice variants (I, II, IV and VI) in various brain regions during acquisition, extinction and reinstatement of morphine-conditioned place preference (CPP) in mice. Repeated morphine injections (10mg/kg, i.p.) increased expression of BDNF splice variants II, IV and VI in the hippocampus, caudate putamen (CPu) and nucleus accumbens (NAcc). Levels of BDNF splice variants decreased after extinction training and continued to decrease during reinstatement induced by a morphine priming injection (10mg/kg, i.p.). However, after reinstatement induced by exposure to 6 min of forced swimming (FS), expression of BDNF splice variants II, IV and VI was increased in the hippocampus, CPu, NAcc and prefrontal cortex (PFC). After reinstatement induced by 40 min of restraint, expression of BDNF splice variants was increased in PFC. These results show that exposure to either morphine or acute stress can induce reinstatement of drug-seeking, but expression of BDNF splice variants is differentially affected by chronic morphine and acute stress. Furthermore, BDNF splice variants II, IV and VI may play a role in learning and memory for morphine addiction in the hippocampus, CPu and NAcc. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  18. Am80 induces neuronal differentiation via increased tropomyosin-related kinase B expression in a human neuroblastoma SH-SY5Y cell line.

    PubMed

    Shiohira, Hideo; Kitaoka, Akira; Enjoji, Munechika; Uno, Tsukasa; Nakashima, Manabu

    2012-01-01

    Am80, a synthetic retinoid, has been used in differentiation therapy for acute promyelocytic leukemia (APL). All-trans retinoic acid (ATRA) as one of natural retinoid has been also used to treat APL. ATRA treatment causes neuronal differentiation by inducing tropomyosin-related kinase B (TrkB) expression and increasing the sensitivity to brain-derived neurotrophic factor (BDNF), a TrkB ligand. In the present study, we investigated the effects of Am80 on neuronal differentiation, BDNF sensitivity and TrkB expression in human neuroblastoma SH-SY5Y cells. Treatment with Am80 induced morphological differentiation of neurite outgrowth and increased the expression of GAP43 mRNA, a neuronal differentiation marker. Additionally, TrkB protein was also increased, and exogenous BDNF stimulation after treatment with Am80 induced greater neurite outgrowth than without BDNF treatment. These results suggest that Am80 induced neuronal differentiation by increasing TrkB expression and BDNF sensitivity.

  19. A novel role for BDNF-TrkB in the regulation of chemotherapy resistance in head and neck squamous cell carcinoma.

    PubMed

    Lee, Junegoo; Jiffar, Tilahun; Kupferman, Michael E

    2012-01-01

    Mechanisms of resistance for HNSCC to cisplatin (CDDP), the foundational chemotherapeutic agent in the treatment of this disease, remain poorly understood. We previously demonstrated that cisplatin resistance (CR) can be overcome by targeting Trk receptor. In the current study, we explored the potential mechanistic role of the BDNF-TrkB signaling system in the development of CDDP resistance in HNSCC. Utilizing an in vitro system of acquired CR, we confirmed a substantial up-regulation of both BDNF and TrkB at the protein and mRNA levels in CR cells, suggesting an autocrine pathway dysregulation in this system. Exogenous BDNF stimulation led to an enhanced expression of the drug-resistance and anti-apoptotic proteins MDR1 and XiAP, respectively, in a dose-dependently manner, demonstrating a key role for BDNF-TrkB signaling in modulating the response to cytotoxic agents. In addition, modulation of TrkB expression induced an enhanced sensitivity of cells to CDDP in HNSCC. Moreover, genetic suppression of TrkB resulted in changes in expression of Bim, XiAP, and MDR1 contributing to HNSCC survival. To elucidate intracellular signaling pathways responsible for mechanisms underlying BDNF/TrkB induced CDDP-resistance, we analyzed expression levels of these molecules following inhibition of Akt. Inhibition of Akt eliminated BDNF effect on MDR1 and Bim expression in OSC-19P cells as well as modulated expressions of MDR1, Bim, and XiAP in OSC-19CR cells. These results suggest BDNF/TrkB system plays critical roles in CDDP-resistance development by utilizing Akt-dependent signaling pathways.

  20. The functional BDNF Val66Met polymorphism affects functions of pre-attentive visual sensory memory processes.

    PubMed

    Beste, Christian; Schneider, Daniel; Epplen, Jörg T; Arning, Larissa

    2011-01-01

    The brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is involved in nerve growth and survival. Especially, a single nucleotide polymorphism (SNP) in the BDNF gene, Val66Met, has gained a lot of attention, because of its effect on activity-dependent BDNF secretion and its link to impaired memory processes. We hypothesize that the BDNF Val66Met polymorphism may have modulatory effects on the visual sensory (iconic) memory performance. Two hundred and eleven healthy German students (106 female and 105 male) were included in the data analysis. Since BDNF is also discussed to be involved in the pathogenesis of depression, we additionally tested for possible interactions with depressive mood. The BDNF Val66Met polymorphism significantly influenced iconic-memory performance, with the combined Val/Met-Met/Met genotype group revealing less time stability of information stored in iconic memory than the Val/Val group. Furthermore, this stability was positively correlated with depressive mood exclusively in the Val/Val genotype group. Thus, these results show that the BDNF Val66Met polymorphism has an effect on pre-attentive visual sensory memory processes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Effects of Chinese medicinal herbs on expression of brain-derived Neurotrophic factor (BDNF) and its interaction with human breast cancer MDA-MB-231 cells and endothelial HUVECs.

    PubMed

    Chiu, Jen-Hwey; Chen, Fang-Pey; Tsai, Yi-Fang; Lin, Man-Ting; Tseng, Ling-Ming; Shyr, Yi-Ming

    2017-08-12

    Our previous study demonstrated that an up-regulation of the Brain-Derived Neurotrophic Factor (BDNF) signaling pathway is involved the mechanism causing the recurrence of triple negative breast cancer. The aim of this study is to investigate the effects of commonly used Chinese medicinal herbs on MDA-MB-231 and HUVEC cells and how they interact with BDNF. Human TNBC MDA-MB-231 cells and human endothelial HUVEC cells were used to explore the effect of commonly used Chinese herbal medicines on cancer cells alone, on endothelial cells alone and on cancer cell/endothelial cell interactions; this was done via functional studies, including migration and invasion assays. Furthermore, Western blot analysis and real-time PCR investigations were also used to investigate migration signal transduction, invasion signal transduction, and angiogenic signal transduction in these systems. Finally, the effect of the Chinese medicinal herbs on cancer cell/endothelial cell interactions was assessed using co-culture and ELISA. In terms of autoregulation, BDNF up-regulated TrkB gene expression in both MDA-MB-231 and HUVEC cells. Furthermore, BDNF enhanced migration by MDA-MB-231 cells via Rac, Cdc42 and MMP, while also increasing the migration of HUVEC cells via MMP and COX-2 expression. As measured by ELISA, the Chinese herbal medicinal herbs A. membranaceus, P. lactiflora, L. chuanxiong, P. suffruticosa and L. lucidum increased BDNF secretion by MDA-MB-231 cells. Similarly, using a co-culture system with MDA-MB-231 cells, A. membranaceus and L. lucidum modulated BDNF-TrkB signaling by HUVEC cells. We conclude that BDNF plays an important role in the metastatic interaction between MDA-MB-231 and HUVEC cells. Some Chinese medicinal herbs are able to enhance the BDNF-related metastatic potential of the interaction between cancer cells and endothelial cells. These findings provide important information that should help with the development of integrated medical therapies for breast

  2. Serum BDNF and VEGF levels are associated with Risk of Stroke and Vascular Brain Injury: Framingham Study

    PubMed Central

    Pikula, Aleksandra; Beiser, Alexa S.; Chen, Tai C.; Preis, Sarah R.; Vorgias, Demetrios; DeCarli, Charles; Au, Rhoda; Kelly-Hayes, Margaret; Kase, Carlos S.; Wolf, Philip A.; Vasan, Ramachandran S.; Seshadri, Sudha

    2013-01-01

    Background and Purpose BDNF, a major neurotrophin and VEGF, an endothelial growth factor have a documented role in neurogenesis, angiogenesis and neuronal survival. In animal experiments they impact infarct size and functional motor recovery after an ischemic brain lesion. We sought to examine the association of serum BDNF and VEGF with the risk of clinical stroke or subclinical vascular brain injury in a community-based sample. Methods In 3440 stroke/TIA-free FHS participants (mean age 65±11yrs, 56%W), we related baseline BDNF and logVEGF to risk of incident stroke/TIA. In a subsample with brain MRI and with neuropsychological (NP) tests available (N=1863 and 2104, respectively; mean age 61±9yrs, 55%W, in each) we related baseline BDNF and logVEGF to log-white matter hyperintensity volume (lWMHV) on brain MRI, and to visuospatial memory and executive function tests. Results During a median follow-up of 10 years, 193 participants experienced incident stroke/TIA. In multivariable analyses adjusted for age-, sex- and traditional stroke risk factors, lower BDNF and higher logVEGF levels were associated with an increased risk of incident stroke/TIA (HR comparing BDNF Q1 versus Q2–4:1.47, 95%CI:1.09–2.00, p=0.012; and HR/SD increase in logVEGF:1.21, 95%CI:1.04–1.40, p=0.012). Persons with higher BDNF levels had less lWMHV (β±SE=−0.05±0.02; p=0.025), and better visual memory (β±SE=0.18±0.07; p=0.005). Conclusions Lower serum BDNF and higher VEGF concentrations were associated with increased risk of incident stroke/TIA. Higher levels of BDNF were also associated with less white matter hyperintensity and better visual memory. Our findings suggest that circulating BDNF and VEGF levels modify risk of clinical and subclinical vascular brain injury. PMID:23929745

  3. BDNF Val66Met Polymorphism Interacts with Sleep Consolidation to Predict Ability to Create New Declarative Memories

    PubMed Central

    Gosselin, Nadia; De Beaumont, Louis; Gagnon, Katia; Baril, Andrée-Ann; Mongrain, Valérie; Blais, Hélène; Montplaisir, Jacques; Gagnon, Jean-François; Pelleieux, Sandra; Poirier, Judes; Carrier, Julie

    2016-01-01

    It is hypothesized that a fundamental function of sleep is to restore an individual’s day-to-day ability to learn and to constantly adapt to a changing environment through brain plasticity. Brain-derived neurotrophic factor (BDNF) is among the key regulators that shape brain plasticity. However, advancing age and carrying the BDNF Met allele were both identified as factors that potentially reduce BDNF secretion, brain plasticity, and memory. Here, we investigated the moderating role of BDNF polymorphism on sleep and next-morning learning ability in 107 nondemented individuals who were between 55 and 84 years of age. All subjects were tested with 1 night of in-laboratory polysomnography followed by a cognitive evaluation the next morning. We found that in subjects carrying the BDNF Val66Val polymorphism, consolidated sleep was associated with significantly better performance on hippocampus-dependent episodic memory tasks the next morning (β-values from 0.290 to 0.434, p ≤ 0.01). In subjects carrying at least one copy of the BDNF Met allele, a more consolidated sleep was not associated with better memory performance in most memory tests (β-values from −0.309 to −0.392, p values from 0.06 to 0.15). Strikingly, increased sleep consolidation was associated with poorer performance in learning a short story presented verbally in Met allele carriers (β = −0.585, p = 0.005). This study provides new evidence regarding the interacting roles of consolidated sleep and BDNF polymorphism in the ability to learn and stresses the importance of considering BDNF polymorphism when studying how sleep affects cognition. PMID:27511011

  4. The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults

    PubMed Central

    Röder, Brigitte; Schmidt-Kassow, Maren

    2016-01-01

    In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans. PMID:27437149

  5. Curcumin Improves Amyloid β-Peptide (1-42) Induced Spatial Memory Deficits through BDNF-ERK Signaling Pathway.

    PubMed

    Zhang, Lu; Fang, Yu; Xu, Yuming; Lian, Yajun; Xie, Nanchang; Wu, Tianwen; Zhang, Haifeng; Sun, Limin; Zhang, Ruifang; Wang, Zhenhua

    2015-01-01

    Curcumin, the most active component of turmeric, has various beneficial properties, such as antioxidant, anti-inflammatory, and antitumor effects. Previous studies have suggested that curcumin reduces the levels of amyloid and oxidized proteins and prevents memory deficits and thus is beneficial to patients with Alzheimer's disease (AD). However, the molecular mechanisms underlying curcumin's effect on cognitive functions are not well-understood. In the present study, we examined the working memory and spatial reference memory in rats that received a ventricular injection of amyloid-β1-42 (Aβ1-42), representing a rodent model of Alzheimer's disease (AD). The rats treated with Aβ1-42 exhibited obvious cognitive deficits in behavioral tasks. Chronic (seven consecutive days, once per day) but not acute (once a day) curcumin treatments (50, 100, and 200 mg/kg) improved the cognitive functions in a dose-dependent manner. In addition, the beneficial effect of curcumin is accompanied by increased BDNF levels and elevated levels of phosphorylated ERK in the hippocampus. Furthermore, the cognition enhancement effect of curcumin could be mimicked by the overexpression of BDNF in the hippocampus and blocked by either bilateral hippocampal injections with lentiviruses that express BDNF shRNA or a microinjection of ERK inhibitor. These findings suggest that chronic curcumin ameliorates AD-related cognitive deficits and that upregulated BDNF-ERK signaling in the hippocampus may underlie the cognitive improvement produced by curcumin.

  6. Plasma concentrations of BDNF and IGF-1 in abstinent cocaine users with high prevalence of substance use disorders: relationship to psychiatric comorbidity.

    PubMed

    Pedraz, María; Martín-Velasco, Ana Isabel; García-Marchena, Nuria; Araos, Pedro; Serrano, Antonia; Romero-Sanchiz, Pablo; Suárez, Juan; Castilla-Ortega, Estela; Barrios, Vicente; Campos-Cloute, Rafael; Ruiz, Juan Jesús; Torrens, Marta; Chowen, Julie Ann; Argente, Jesús; de la Torre, Rafael; Santín, Luis Javier; Villanúa, María Ángeles; Rodríguez de Fonseca, Fernando; Pavón, Francisco Javier

    2015-01-01

    Recent studies have identified biomarkers related to the severity and pathogenesis of cocaine addiction and common comorbid psychiatric disorders. Monitoring these plasma mediators may improve the stratification of cocaine users seeking treatment. Because the neurotrophic factors are involved in neural plasticity, neurogenesis and neuronal survival, we have determined plasma concentrations of brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1) and IGF-1 binding protein 3 (IGFBP-3) in a cross-sectional study with abstinent cocaine users who sought outpatient treatment for cocaine (n = 100) and age/body mass matched controls (n = 85). Participants were assessed with the diagnostic interview 'Psychiatric Research Interview for Substance and Mental Disorders'. Plasma concentrations of these peptides were not different in cocaine users and controls. They were not associated with length of abstinence, duration of cocaine use or cocaine symptom severity. The pathological use of cocaine did not influence the association of IGF-1 with age observed in healthy subjects, but the correlation between IGF-1 and IGFBP-3 was not significantly detected. Correlation analyses were performed between these peptides and other molecules sensitive to addiction: BDNF concentrations were not associated with inflammatory mediators, lipid derivatives or IGF-1 in cocaine users, but correlated with chemokines (fractalkine/CX3CL1 and SDF-1/CXCL12) and N-acyl-ethanolamines (N-palmitoyl-, N-oleoyl-, N-arachidonoyl-, N-linoleoyl- and N-dihomo-γ-linolenoyl-ethanolamine) in controls; IGF-1 concentrations only showed association with IGFBP-3 concentrations in controls; and IGFBP-3 was only correlated with N-stearoyl-ethanolamine concentrations in cocaine users. Multiple substance use disorders and life-time comorbid psychopathologies were common in abstinent cocaine users. Interestingly, plasma BDNF concentrations were exclusively found to be decreased in users diagnosed

  7. Plasma Concentrations of BDNF and IGF-1 in Abstinent Cocaine Users with High Prevalence of Substance Use Disorders: Relationship to Psychiatric Comorbidity

    PubMed Central

    Araos, Pedro; Serrano, Antonia; Romero-Sanchiz, Pablo; Suárez, Juan; Castilla-Ortega, Estela; Barrios, Vicente; Campos-Cloute, Rafael; Ruiz, Juan Jesús; Torrens, Marta; Chowen, Julie Ann; Argente, Jesús; de la Torre, Rafael; Santín, Luis Javier; Villanúa, María Ángeles; Rodríguez de Fonseca, Fernando; Pavón, Francisco Javier

    2015-01-01

    Recent studies have identified biomarkers related to the severity and pathogenesis of cocaine addiction and common comorbid psychiatric disorders. Monitoring these plasma mediators may improve the stratification of cocaine users seeking treatment. Because the neurotrophic factors are involved in neural plasticity, neurogenesis and neuronal survival, we have determined plasma concentrations of brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1) and IGF-1 binding protein 3 (IGFBP-3) in a cross-sectional study with abstinent cocaine users who sought outpatient treatment for cocaine (n = 100) and age/body mass matched controls (n = 85). Participants were assessed with the diagnostic interview ‘Psychiatric Research Interview for Substance and Mental Disorders’. Plasma concentrations of these peptides were not different in cocaine users and controls. They were not associated with length of abstinence, duration of cocaine use or cocaine symptom severity. The pathological use of cocaine did not influence the association of IGF-1 with age observed in healthy subjects, but the correlation between IGF-1 and IGFBP-3 was not significantly detected. Correlation analyses were performed between these peptides and other molecules sensitive to addiction: BDNF concentrations were not associated with inflammatory mediators, lipid derivatives or IGF-1 in cocaine users, but correlated with chemokines (fractalkine/CX3CL1 and SDF-1/CXCL12) and N-acyl-ethanolamines (N-palmitoyl-, N-oleoyl-, N-arachidonoyl-, N-linoleoyl- and N-dihomo-γ-linolenoyl-ethanolamine) in controls; IGF-1 concentrations only showed association with IGFBP-3 concentrations in controls; and IGFBP-3 was only correlated with N-stearoyl-ethanolamine concentrations in cocaine users. Multiple substance use disorders and life-time comorbid psychopathologies were common in abstinent cocaine users. Interestingly, plasma BDNF concentrations were exclusively found to be decreased in users diagnosed

  8. Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor.

    PubMed

    Taliaz, Dekel; Loya, Assaf; Gersner, Roman; Haramati, Sharon; Chen, Alon; Zangen, Abraham

    2011-03-23

    Chronic stress is a trigger for several psychiatric disorders, including depression; however, critical individual differences in resilience to both the behavioral and the neurochemical effects of stress have been reported. A prominent mechanism by which the brain reacts to acute and chronic stress is activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is inhibited by the hippocampus via a polysynaptic circuit. Alterations in secretion of stress hormones and levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were implicated in depression and the effects of antidepressant medications. However, the potential role of hippocampal BDNF in behavioral resilience to chronic stress and in the regulation of the HPA axis has not been evaluated. In the present study, Sprague Dawley rats were subjected to 4 weeks of chronic mild stress (CMS) to induce depressive-like behaviors after lentiviral vectors were used to induce localized BDNF overexpression or knockdown in the hippocampus. The behavioral outcome was measured during 3 weeks after the CMS procedure, then plasma samples were taken for measurements of corticosterone levels, and finally hippocampal tissue was taken for BDNF measurements. We found that hippocampal BDNF expression plays a critical role in resilience to chronic stress and that reduction of hippocampal BDNF expression in young, but not adult, rats induces prolonged elevations in corticosterone secretion. The present study describes a mechanism for individual differences in responses to chronic stress and implicates hippocampal BDNF in the development of neural circuits that control adequate stress adaptations.

  9. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development.

    PubMed

    Ohta, Ken-Ichi; Suzuki, Shingo; Warita, Katsuhiko; Kaji, Tomohiro; Kusaka, Takashi; Miki, Takanori

    2017-04-01

    Maternal separation (MS) is known to affect hippocampal function such as learning and memory, yet the molecular mechanism remains unknown. We hypothesized that these impairments are attributed to abnormities of neural circuit formation by MS, and focused on brain-derived neurotrophic factor (BDNF) as key factor because BDNF signaling has an essential role in synapse formation during early brain development. Using rat offspring exposed to MS for 6 h/day during postnatal days (PD) 2-20, we estimated BDNF signaling in the hippocampus during brain development. Our results show that MS attenuated BDNF expression and activation of extracellular signal-regulated kinase (ERK) around PD 7. Moreover, plasticity-related immediate early genes, which are transcriptionally regulated by BDNF-ERK signaling, were also reduced by MS around PD 7. Interestingly, detailed analysis revealed that MS particularly reduced expression of BDNF gene and immediate early genes in the cornu ammonis 1 (CA1) of hippocampus at PD 7. Considering that BDNF-ERK signaling is involved in spine formation, we next evaluated spine formation in the hippocampus during the weaning period. Our results show that MS particularly reduced mature spine density in proximal apical dendrites of CA1 pyramidal neurons at PD 21. These results suggest that MS could attenuate BDNF-ERK signaling during primary synaptogenesis with a region-specific manner, which is likely to lead to decreased spine formation and maturation observed in the hippocampal CA1 region. It is speculated that this incomplete spine formation during early brain development has an influence on learning capabilities throughout adulthood. © 2017 International Society for Neurochemistry.

  10. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    NASA Astrophysics Data System (ADS)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  11. Mice over-expressing BDNF in forebrain neurons develop an altered behavioral phenotype with age.

    PubMed

    Weidner, Kate L; Buenaventura, Diego F; Chadman, Kathryn K

    2014-07-15

    Evidence from clinical studies suggests that abnormal activity of brain derived neurotrophic factor (BDNF) contributes to the pathogenesis of autism spectrum disorders (ASDs). A genetically modified line of mice over-expressing a BDNF transgene in forebrain neurons was used to investigate if this mutation leads to changes in behavior consistent with ASD. The mice used in these experiments were behaviorally tested past 5 months of age when spontaneous seizures were evident. These seizures were not observed in age-matched wildtype (WT) mice or younger mice from this transgenic line. The BDNF mice in these experiments weighed less than their WT littermates. The BDNF transgenic (BDNF-tg) mice demonstrated similar levels of sociability in the social approach test. Conversely, the BDNF-tg mice demonstrated less obsessive compulsive-like behavior in the marble burying test, less anxiety-like behavior in the elevated plus maze test, and less depressive-like behavior in the forced swim test. Changes in behavior were found in these older mice that have not been observed in younger mice from this transgenic line, which may be due to the development of seizures as the mice age. These mice do not have an ASD phenotype but may be useful to study adult onset epilepsy. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Upregulation of BDNF and NGF in cervical intervertebral discs exposed to painful whole-body vibration.

    PubMed

    Kartha, Sonia; Zeeman, Martha E; Baig, Hassam A; Guarino, Benjamin B; Winkelstein, Beth A

    2014-09-01

    In vivo study defining expression of the neurotrophins, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), in cervical intervertebral discs after painful whole-body vibration (WBV). The goal of this study is to determine if BDNF and NGF are expressed in cervical discs after painful WBV in a rat model. WBV is a possible source of neck pain and has been implicated as increasing the risk for disc disorders. Typically, aneural regions of painful human lumbar discs exhibit hyperinnervation, suggesting nerve ingrowth as potentially contributing to disc degeneration and pain. BDNF and NGF are upregulated in painfully degenerate lumbar discs and hypothesized to contribute to this pathology. Male Holtzman rats underwent 7 days of repeated WBV (15 Hz, 30 min/d) or sham exposures, followed by 7 days of rest. Cervical discs were collected for analysis of BDNF and NGF expression through RT-qPCR and Western blot analysis. Immunohistochemistry also evaluated their regional expression in the disc. Vibration significantly increases BDNF messenger ribonucleic acid (mRNA) levels (P=0.036), as well as total-NGF mRNA (P=0.035). Protein expression of both BDNF (P=0.006) and the 75-kDa NGF (P=0.045) increase by nearly 4- and 10-fold, respectively. Both BDNF mRNA (R=0.396; P=0.012) and protein (R=0.280; P=0.035) levels are significantly correlated with the degree of behavioral sensitivity (i.e., pain) at day 14. Total-NGF mRNA is also significantly correlated with the extent of behavioral sensitivity (R=0.276; P=0.044). Both neurotrophins are most increased in the inner annulus fibrosus and nucleus pulposus. The increases in BDNF and NGF in the cervical discs after painful vibration are observed in typically aneural regions of the disc, consistent with reports of its hyperinnervation. Yet, the induction of nerve ingrowth into the disc was not explicitly investigated. Neurotrophin expression also correlates with behavioral sensitivity, suggesting a role for both

  13. Low-Intensity Repetitive Transcranial Magnetic Stimulation Improves Abnormal Visual Cortical Circuit Topography and Upregulates BDNF in Mice

    PubMed Central

    Makowiecki, Kalina; Harvey, Alan R.; Sherrard, Rachel M.

    2014-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as a treatment for neurological and psychiatric disorders. Although the induced field is focused on a target region during rTMS, adjacent areas also receive stimulation at a lower intensity and the contribution of this perifocal stimulation to network-wide effects is poorly defined. Here, we examined low-intensity rTMS (LI-rTMS)-induced changes on a model neural network using the visual systems of normal (C57Bl/6J wild-type, n = 22) and ephrin-A2A5−/− (n = 22) mice, the latter possessing visuotopic anomalies. Mice were treated with LI-rTMS or sham (handling control) daily for 14 d, then fluorojade and fluororuby were injected into visual cortex. The distribution of dorsal LGN (dLGN) neurons and corticotectal terminal zones (TZs) was mapped and disorder defined by comparing their actual location with that predicted by injection sites. In the afferent geniculocortical projection, LI-rTMS decreased the abnormally high dispersion of retrogradely labeled neurons in the dLGN of ephrin-A2A5−/− mice, indicating geniculocortical map refinement. In the corticotectal efferents, LI-rTMS improved topography of the most abnormal TZs in ephrin-A2A5−/− mice without altering topographically normal TZs. To investigate a possible molecular mechanism for LI-rTMS-induced structural plasticity, we measured brain derived neurotrophic factor (BDNF) in the visual cortex and superior colliculus after single and multiple stimulations. BDNF was upregulated after a single stimulation for all groups, but only sustained in the superior colliculus of ephrin-A2A5−/− mice. Our results show that LI-rTMS upregulates BDNF, promoting a plastic environment conducive to beneficial reorganization of abnormal cortical circuits, information that has important implications for clinical rTMS. PMID:25100609

  14. Long-term lithium treatment increases intracellular and extracellular brain-derived neurotrophic factor (BDNF) in cortical and hippocampal neurons at subtherapeutic concentrations.

    PubMed

    De-Paula, Vanessa J; Gattaz, Wagner F; Forlenza, Orestes V

    2016-12-01

    The putative neuroprotective effects of lithium treatment rely on the fact that it modulates several homeostatic mechanisms involved in the neurotrophic response, autophagy, oxidative stress, inflammation, and mitochondrial function. Lithium is a well-established therapeutic option for the acute and long-term management of bipolar disorder and major depression. The aim of this study was to evaluate the effects of subtherapeutic and therapeutic concentrations of chronic lithium treatment on brain-derived neurotrophic factor (BDNF) synthesis and secretion. Primary cultures of cortical and hippocampal neurons were treated with different subtherapeutic (0.02 and 0.2 mM) and therapeutic (2 mM) concentrations of chronic lithium treatment in cortical and hippocampal cell culture. Lithium treatment increased the intracellular protein expression of cortical neurons (10% at 0.02 mM) and hippocampal neurons (28% and 14% at 0.02 mM and 0.2 mM, respectively). Extracellular BDNF of cortical neurons increased 30% and 428% at 0.02 and 0.2 mM, respectively and in hippocampal neurons increased 44% at 0.02 mM. The present study indicates that chronic, low-dose lithium treatment up-regulates BDNF production in primary neuronal cell culture. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Development of a cost-efficient novel method for rapid, concurrent genotyping of five common single nucleotide polymorphisms of the brain derived neurotrophic factor (BDNF) gene by tetra-primer amplification refractory mutation system.

    PubMed

    Wang, Cathy K; Xu, Michael S; Ross, Colin J; Lo, Ryan; Procyshyn, Ric M; Vila-Rodriguez, Fidel; White, Randall F; Honer, William G; Barr, Alasdair M

    2015-09-01

    Brain derived neurotrophic factor (BDNF) is a molecular trophic factor that plays a key role in neuronal survival and plasticity. Single nucleotide polymorphisms (SNPs) of the BDNF gene have been associated with specific phenotypic traits in a large number of neuropsychiatric disorders and the response to psychotherapeutic medications in patient populations. Nevertheless, due to study differences and occasionally contrasting findings, substantial further research is required to understand in better detail the association between specific BDNF SNPs and these psychiatric disorders. While considerable progress has been made recently in developing advanced genotyping platforms of SNPs, many high-throughput probe- or array-based detection methods currently available are limited by high costs, slow processing times or access to advanced instrumentation. The polymerase chain reaction (PCR)-based, tetra-primer amplification refractory mutation system (T-ARMS) method is a potential alternative technique for detecting SNP genotypes efficiently, quickly, easily, and cheaply. As a tool in psychopathology research, T-ARMS was shown to be capable of detecting five common SNPs in the BDNF gene (rs6265, rs988748, rs11030104, 11757G/C and rs7103411), which are all SNPs with previously demonstrated clinical relevance to schizophrenia and depression. The present technique therefore represents a suitable protocol for many research laboratories to study the genetic correlates of BDNF in psychiatric disorders. Copyright Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Aerobic Fitness Linked to Cortical Brain Development in Adolescent Males: Preliminary Findings Suggest a Possible Role of BDNF Genotype.

    PubMed

    Herting, Megan M; Keenan, Madison F; Nagel, Bonnie J

    2016-01-01

    Aerobic exercise has been shown to impact brain structure and cognition in children and adults. Exercise-induced activation of a growth protein known as brain derived neurotrophic factor (BDNF) is thought to contribute to such relationships. To date, however, no study has examined how aerobic fitness relates to cortical brain structure during development and if BDNF genotype moderates these relationships. Using structural magnetic resonance imaging (MRI) and FreeSurfer, the current study examined how aerobic fitness relates to volume, thickness, and surface area in 34 male adolescents, 15 to 18 years old. Moreover, we examined if the val66met BDNF genotype moderated these relationships. We hypothesized that aerobic fitness would relate to greater thickness and volumes in frontal, parietal, and motor regions, and that these relationships would be less robust in individuals carrying a Met allele, since this genotype leads to lower BDNF expression. We found that aerobic fitness positively related to right rostral middle frontal cortical volume in all adolescents. However, results also showed BDNF genotype moderated the relationship between aerobic fitness and bilateral medial precuneus surface area, with a positive relationship seen in individuals with the Val/Val allele, but no relationship detected in those adolescents carrying a Met allele. Lastly, using self-reported levels of aerobic activity, we found that higher-fit adolescents showed larger right medial pericalcarine, right cuneus and left precuneus surface areas as compared to their low-fit peers. Our findings suggest that aerobic fitness is linked to cortical brain development in male adolescents, and that more research is warranted to determine how an individual's genes may influence these relationships.

  17. Aerobic Fitness Linked to Cortical Brain Development in Adolescent Males: Preliminary Findings Suggest a Possible Role of BDNF Genotype

    PubMed Central

    Herting, Megan M.; Keenan, Madison F.; Nagel, Bonnie J.

    2016-01-01

    Aerobic exercise has been shown to impact brain structure and cognition in children and adults. Exercise-induced activation of a growth protein known as brain derived neurotrophic factor (BDNF) is thought to contribute to such relationships. To date, however, no study has examined how aerobic fitness relates to cortical brain structure during development and if BDNF genotype moderates these relationships. Using structural magnetic resonance imaging (MRI) and FreeSurfer, the current study examined how aerobic fitness relates to volume, thickness, and surface area in 34 male adolescents, 15 to 18 years old. Moreover, we examined if the val66met BDNF genotype moderated these relationships. We hypothesized that aerobic fitness would relate to greater thickness and volumes in frontal, parietal, and motor regions, and that these relationships would be less robust in individuals carrying a Met allele, since this genotype leads to lower BDNF expression. We found that aerobic fitness positively related to right rostral middle frontal cortical volume in all adolescents. However, results also showed BDNF genotype moderated the relationship between aerobic fitness and bilateral medial precuneus surface area, with a positive relationship seen in individuals with the Val/Val allele, but no relationship detected in those adolescents carrying a Met allele. Lastly, using self-reported levels of aerobic activity, we found that higher-fit adolescents showed larger right medial pericalcarine, right cuneus and left precuneus surface areas as compared to their low-fit peers. Our findings suggest that aerobic fitness is linked to cortical brain development in male adolescents, and that more research is warranted to determine how an individual’s genes may influence these relationships. PMID:27445764

  18. BDNF Val66Met Polymorphism Interacts with Sleep Consolidation to Predict Ability to Create New Declarative Memories.

    PubMed

    Gosselin, Nadia; De Beaumont, Louis; Gagnon, Katia; Baril, Andrée-Ann; Mongrain, Valérie; Blais, Hélène; Montplaisir, Jacques; Gagnon, Jean-François; Pelleieux, Sandra; Poirier, Judes; Carrier, Julie

    2016-08-10

    It is hypothesized that a fundamental function of sleep is to restore an individual's day-to-day ability to learn and to constantly adapt to a changing environment through brain plasticity. Brain-derived neurotrophic factor (BDNF) is among the key regulators that shape brain plasticity. However, advancing age and carrying the BDNF Met allele were both identified as factors that potentially reduce BDNF secretion, brain plasticity, and memory. Here, we investigated the moderating role of BDNF polymorphism on sleep and next-morning learning ability in 107 nondemented individuals who were between 55 and 84 years of age. All subjects were tested with 1 night of in-laboratory polysomnography followed by a cognitive evaluation the next morning. We found that in subjects carrying the BDNF Val66Val polymorphism, consolidated sleep was associated with significantly better performance on hippocampus-dependent episodic memory tasks the next morning (β-values from 0.290 to 0.434, p ≤ 0.01). In subjects carrying at least one copy of the BDNF Met allele, a more consolidated sleep was not associated with better memory performance in most memory tests (β-values from -0.309 to -0.392, p values from 0.06 to 0.15). Strikingly, increased sleep consolidation was associated with poorer performance in learning a short story presented verbally in Met allele carriers (β = -0.585, p = 0.005). This study provides new evidence regarding the interacting roles of consolidated sleep and BDNF polymorphism in the ability to learn and stresses the importance of considering BDNF polymorphism when studying how sleep affects cognition. Individuals with the BDNF Val/Val (valine allele) polymorphism showed better memory performance after a night of consolidated sleep. However, we observed that middle-aged and older individuals who are carriers of the BDNF Met allele displayed no positive association between sleep quality and their ability to learn the next morning. This interaction between sleep and

  19. Treadmill exercise after social isolation increases the levels of NGF, BDNF, and synapsin I to induce survival of neurons in the hippocampus, and improves depression-like behavior

    PubMed Central

    Hong, Young-Pyo; Lee, Hyo-Chul; Kim, Hyun-Tae

    2015-01-01

    [Purpose] We investigated the effects of 8 weeks of treadmill exercise on nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and synapsin I protein expression and on the number of 5-bromo-2'-deoxyuridine-5'-mono-phosphate (BrdU)-positive cells in the dentate gyrus of the hippocampus in socially isolated rats. Additionally, we examined the effects of exercise on the number of serotonin (5-HT)- and tryptophan hydroxylase (TPH)-positive cells in the raphe nuclei and on depression behaviors induced by social isolation. [Methods] Forty male Sprague-Dawley rats were divided into four groups: (1) group housing and control group (GCG, n = 10); (2) group housing and exercise group (GEG, n = 10); (3) isolated housing and control group (ICG, n = 10); and (4) isolated housing and exercise group (IEG, n = 10). After 1 week of housing under the normal condition of 3 animals per cage, rats were socially isolated via transfer to individual cages for 8 weeks. Rats were then subjected to treadmill exercise for 5 days per week for 8 weeks during which time the speed of the treadmill was gradually increased. [Results] Compared to the GCG, levels of NGF, BDNF, and synapsin I were significantly decreased in the ICG and significantly increased in the IEG (p < 0.001 respectively). Significantly more BrdU-positive cells in the GEG were present as compared to the GCG and ICG, and more BrdU-positive cells were found in the IEG as compared to the ICG (p < 0.001). 5-HT-positive cells in the GEG were significantly increased compared to the GCG and ICG, and more of these cells were found in the IEG as compared to the ICG (p < 0.01). TPH-positive cells in the GEG were significantly increased compared to those in the GCG and ICG (p < 0.05). In the forced swim test, immobility time was significantly increased in the ICG and significantly decreased in the IEG as compared to the ICG (p < 0.01). [Conclusion] These results showed that regular treadmill exercise following social

  20. Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement

    PubMed Central

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F.; Escobar, Martha L.

    2011-01-01

    It has been proposed that long-term memory (LTM) persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related LTM when protein synthesis was inhibited. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis-dependent in different time windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 h after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side) in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes. PMID:21960964

  1. Innate BDNF expression is associated with ethanol intake in alcohol-preferring AA and alcohol-avoiding ANA rats.

    PubMed

    Raivio, Noora; Miettinen, Pekka; Kiianmaa, Kalervo

    2014-09-04

    We have shown recently that acute administration of ethanol modulates the expression of brain-derived neurotrophic factor (BDNF) in several rat brain areas known to be involved in the development of addiction to ethanol and other drugs of abuse, suggesting that BDNF may be a factor contributing to the neuroadaptive changes set in motion by ethanol exposure. The purpose of the present study was to further clarify the role of BDNF in reinforcement from ethanol and in the development of addiction to ethanol by specifying the effect of acute administration of ethanol (1.5 or 3.0 g/kg i.p.) on the expression profile of BDNF mRNA in the ventral tegmental area and in the terminal areas of the mesolimbic dopamine pathway in the brain of alcohol-preferring AA and alcohol-avoiding ANA rats, selected for high and low voluntary ethanol intake, respectively. The level of BDNF mRNA expression was higher in the amygdala and ventral tegmental area of AA than in those of ANA rats, and there was a trend for a higher level in the nucleus accumbens. In the amygdala and hippocampus, a biphasic change in the BDNF mRNA levels was detected: the levels were decreased at 3 and 6h but increased above the basal levels at 24h. Furthermore, there was a difference between the AA and ANA lines in the effect of ethanol, the ANA rats showing an increase in BDNF mRNA levels while such a change was not seen in AA rats. These findings suggest that the innate levels of BDNF expression may play a role in the mediation of the reinforcing effects of ethanol and in the control of ethanol intake. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Neural progenitor cell implants modulate vascular endothelial growth factor and brain-derived neurotrophic factor expression in rat axotomized neurons.

    PubMed

    Talaverón, Rocío; Matarredona, Esperanza R; de la Cruz, Rosa R; Pastor, Angel M

    2013-01-01

    Axotomy of central neurons leads to functional and structural alterations which largely revert when neural progenitor cells (NPCs) are implanted in the lesion site. The new microenvironment created by NPCs in the host tissue might modulate in the damaged neurons the expression of a high variety of molecules with relevant roles in the repair mechanisms, including neurotrophic factors. In the present work, we aimed to analyze changes in neurotrophic factor expression in axotomized neurons induced by NPC implants. For this purpose, we performed immunofluorescence followed by confocal microscopy analysis for the detection of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF) on brainstem sections from rats with axotomy of abducens internuclear neurons that received NPC implants (implanted group) or vehicle injections (axotomized group) in the lesion site. Control abducens internuclear neurons were strongly immunoreactive to VEGF and BDNF but showed a weak staining for NT-3 and NGF. Comparisons between groups revealed that lesioned neurons from animals that received NPC implants showed a significant increase in VEGF content with respect to animals receiving vehicle injections. However, the immunoreactivity for BDNF, which was increased in the axotomized group as compared to control, was not modified in the implanted group. The modifications induced by NPC implants on VEGF and BDNF content were specific for the population of axotomized abducens internuclear neurons since the neighboring abducens motoneurons were not affected. Similar levels of NT-3 and NGF immunolabeling were obtained in injured neurons from axotomized and implanted animals. Among all the analyzed neurotrophic factors, only VEGF was expressed by the implanted cells in the lesion site. Our results point to a role of NPC implants in the modulation of neurotrophic factor expression by lesioned central neurons, which might

  3. An investigation into "two hit" effects of BDNF deficiency and young-adult cannabinoid receptor stimulation on prepulse inhibition regulation and memory in mice.

    PubMed

    Klug, Maren; van den Buuse, Maarten

    2013-01-01

    Reduced brain-derived neurotrophic factor (BDNF) signaling has been shown in the frontal cortex and hippocampus in schizophrenia. The aim of the present study was to investigate whether a BDNF deficit would modulate effects of chronic cannabis intake, a well-described risk factor for schizophrenia development. BDNF heterozygous mice (HET) and wild-type controls were chronically treated during weeks 6, 7, and 8 of life with the cannabinoid receptor agonist, CP55,940 (CP). After a 2-week delay, there were no CP-induced deficits in any of the groups in short-term spatial memory in a Y-maze task or novel object recognition memory. Baseline prepulse inhibition (PPI) was lower but average startle was increased in BDNF HET compared to wild-type controls. Acute CP administration before the PPI session caused a marked increase in PPI in male HET mice pre-treated with CP but not in any of the other male groups. In females, there were small increases of PPI in all groups upon acute CP administration. Acute CP administration furthermore reduced startle and this effect was greater in HET mice irrespective of chronic CP pre-treatment. Analysis of the levels of [(3)H]CP55,940 binding by autoradiography revealed a significant increase in the nucleus accumbens of male BDNF HET mice previously treated with CP but not in any of the other groups or in the caudate nucleus. These results show that BDNF deficiency and chronic young-adult cannabinoid receptor stimulation do not interact in this model on learning and memory later in life. In contrast, male "two hit" mice, but not females, were hypersensitive to the effect of acute CP on sensorimotor gating. These effects may be related to a selective increase of [(3)H]CP55,940 binding in the nucleus accumbens, reflecting up-regulation of CB1 receptor density in this region. These data could be of relevance to our understanding of differential "two hit" neurodevelopmental mechanisms in schizophrenia.

  4. Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex.

    PubMed

    Chiba, Shuichi; Numakawa, Tadahiro; Ninomiya, Midori; Richards, Misty C; Wakabayashi, Chisato; Kunugi, Hiroshi

    2012-10-01

    Stress and the resulting increase in glucocorticoid levels have been implicated in the pathophysiology of depressive disorders. We investigated the effects of chronic restraint stress (CRS: 6 hours × 28 days) on anxiety- and depression-like behaviors in rats and on the possible changes in glucocorticoid receptor (GR) expression as well as brain-derived neurotrophic factor (BDNF)-dependent neural function in the prefrontal cortex (PFC). We observed significant reductions in body weight gain, food intake and sucrose preference from 1 week after the onset of CRS. In the 5th week of CRS, we conducted open-field (OFT), elevated plus-maze (EPM) and forced swim tests (FST). We observed a decrease in the number of entries into open arms during the EPM (anxiety-like behavior) and increased immobility during the FST (depression-like behavior). When the PFC was removed after CRS and subject to western blot analysis, the GR expression reduced compared with control, while the levels of BDNF and its receptors remained unchanged. Basal glutamate concentrations in PFC acute slice which were measured by high performance liquid chromatography were not influenced by CRS. However, BDNF-induced glutamate release was attenuated after CRS. These results suggest that reduced GR expression and altered BDNF function may be involved in chronic stress-induced anxiety--and depression-like behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Involvement of Endogenous Brain-Derived Neurotrophic Factor in Hypothalamic-Pituitary-Adrenal Axis Activity.

    PubMed

    Naert, G; Zussy, C; Tran Van Ba, C; Chevallier, N; Tang, Y-P; Maurice, T; Givalois, L

    2015-11-01

    Brain-derived neurotrophic factor (BDNF) appears to be highly involved in hypothalamic-pituitary-adrenal (HPA) axis regulation during adulthood, playing an important role in homeostasis maintenance. The present study aimed to determine the involvement of BDNF in HPA axis activity under basal and stress conditions via partial inhibition of this endogenous neurotrophin. Experiments were conducted in rats and mice with two complementary approaches: (i) BDNF knockdown with stereotaxic delivery of BDNF-specific small interfering RNA (siRNA) into the lateral ventricle of adult male rats and (ii) genetically induced knockdown (KD) of BDNF expression specifically in the central nervous system during the first ontogenesis in mice (KD mice). Delivery of siRNA in the rat brain decreased BDNF levels in the hippocampus (-31%) and hypothalamus (-35%) but not in the amygdala, frontal cortex and pituitary. In addition, siRNA induced no change of the basal HPA axis activity. BDNF siRNA rats exhibited decreased BDNF levels and concomitant altered adrenocortoctrophic hormone (ACTH) and corticosterone responses to restraint stress, suggesting the involvement of BDNF in the HPA axis adaptive response to stress. In KD mice, BDNF levels in the hippocampus and hypothalamus were decreased by 20% in heterozygous and by 60% in homozygous animals compared to wild-type littermates. Although, in heterozygous KD mice, no significant change was observed in the basal levels of plasma ACTH and corticosterone, both hormones were significantly increased in homozygous KD mice, demonstrating that robust cerebral BDNF inhibition (60%) is necessary to affect basal HPA axis activity. All of these results in both rats and mice demonstrate the involvement and importance of a robust endogenous pool of BDNF in basal HPA axis regulation and the pivotal function of de novo BDNF synthesis in the establishment of an adapted response to stress. © 2015 British Society for Neuroendocrinology.

  6. Postischemic alterations of BDNF, NGF, HSP 70 and ubiquitin immunoreactivity in the gerbil hippocampus: pharmacological approach.

    PubMed

    Himeda, Toshiki; Tounai, Hiroko; Hayakawa, Natsumi; Araki, Tsutomu

    2007-03-01

    1. We investigated the immunohistochemical alterations of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus 1 h to 14 days after transient cerebral ischemia in gerbils. We also examined the effect of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor pitavastatin against the changes of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus after cerebral ischemia in the hippocampus after ischemia. 2. The transient cerebral ischemia was carried out by clamping the carotid arteries with aneurismal clips for 5 min. 3. In the present study, the alteration of HSP 70 and ubiquitin immunoreactivity in the hippocampal CA1 sector was more pronounced than that of BDNF and NGF immunoreactivity after transient cerebral ischemia. In double-labeled immunostainings, BDNF, NGF and ubiquitin immunostaining was observed both in GFAP-positive astrocytes and MRF-1-positive microglia in the hippocampal CA1 sector after ischemia. Furthermore, prophylactic treatment with pitavastatin prevented the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after ischemia. 4. These findings suggest that the expression of stress protein including HSP 70 and ubiquitin may play a key role in the protection against the hippocampal CA1 neuronal damage after transient cerebral ischemia in comparison with the expression of neurotrophic factor such as BDNF and NGF. The present findings also suggest that the glial BDNF, NGF and ubiquitin may play some role for helping surviving neurons after ischemia. Furthermore, our present study indicates that prophylactic treatment with pitavastatin can prevent the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after transient cerebral ischemia. Thus our study provides further valuable information for the pathogenesis after transient cerebral ischemia.

  7. Neurotrophins and their receptors in the rat pituitary gland: regulation of BDNF and trkB mRNA levels by adrenal hormones.

    PubMed

    Kononen, J; Soinila, S; Persson, H; Honkaniemi, J; Hökfelt, T; Pelto-Huikko, M

    1994-12-01

    We studied the expression of messenger ribonucleic acids (mRNAs) for neurotrophins and neurotrophin receptors in the rat pituitary gland and examined the influence of adrenal hormones on their mRNA levels, using in situ hybridization and Northern blot analysis. The only neurotrophin present at detectable levels in the pituitary was brain-derived neurotrophic factor (BDNF), which was observed in the anterior and intermediate lobes. Several transcripts of the putative receptor for BDNF, trkB, were present in the anterior and posterior lobes of the pituitary. A low amount of trkC mRNA was found in both the anterior and the intermediate lobe. Dexamethasone treatment decreased both BDNF and trkB mRNA levels in the anterior lobe of the pituitary. Adrenalectomy had no effect on trkB expression, but it decreased BDNF mRNA levels in comparison to the control animals. This effect could not be reversed by dexamethasone substitution, suggesting that BDNF, mRNA levels may be regulated not only by glucocorticoids but also by other adrenal hormones. These results demonstrate that BDNF, trkB and trkC are expressed in the pituitary gland and that glucocorticoids and possibly other adrenal hormones may modulate pituitary functions by regulating the expression of neurotrophic factors and their receptors. Whether BDNF acts as a secreted hormone, a trophic factor, or has autocrine/paracrine functions within the pituitary through its receptor, trkB, remains to be studied.

  8. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke.

    PubMed

    Clarkson, Andrew N; Overman, Justine J; Zhong, Sheng; Mueller, Rudolf; Lynch, Gary; Carmichael, S Thomas

    2011-03-09

    Stroke is the leading cause of adult disability. Recovery after stroke shares similar molecular and cellular properties with learning and memory. A main component of learning-induced plasticity involves signaling through AMPA receptors (AMPARs). We systematically tested the role of AMPAR function in motor recovery in a mouse model of focal stroke. AMPAR function controls functional recovery beginning 5 d after the stroke. Positive allosteric modulators of AMPARs enhance recovery of limb control when administered after a delay from the stroke. Conversely, AMPAR antagonists impair motor recovery. The contributions of AMPARs to recovery are mediated by release of brain-derived neurotrophic factor (BDNF) in periinfarct cortex, as blocking local BDNF function in periinfarct cortex blocks AMPAR-mediated recovery and prevents the normal pattern of motor recovery. In contrast to a delayed AMPAR role in motor recovery, early administration of AMPAR agonists after stroke increases stroke damage. These findings indicate that the role of glutamate signaling through the AMPAR changes over time in stroke: early potentiation of AMPAR signaling worsens stroke damage, whereas later potentiation of the same signaling system improves functional recovery.

  9. ACTIVITY-DEPENDENT, STRESS-RESPONSIVE BDNF SIGNALING AND THE QUEST FOR OPTIMAL BRAIN HEALTH AND RESILIENCE THROUGHOUT THE LIFESPAN

    PubMed Central

    Rothman, S. M.; Mattson, M. P.

    2013-01-01

    During development of the nervous system, the formation of connections (synapses) between neurons is dependent upon electrical activity in those neurons, and neurotrophic factors produced by target cells play a pivotal role in such activity-dependent sculpting of the neural networks. A similar interplay between neurotransmitter and neurotrophic factor signaling pathways mediates adaptive responses of neural networks to environmental demands in adult mammals, with the excitatory neurotransmitter glutamate and brain-derived neurotrophic factor (BDNF) being particularly prominent regulators of synaptic plasticity throughout the central nervous system. Optimal brain health throughout the lifespan is promoted by intermittent challenges such as exercise, cognitive stimulation and dietary energy restriction, that subject neurons to activity-related metabolic stress. At the molecular level, such challenges to neurons result in the production of proteins involved in neurogenesis, learning and memory and neuronal survival; examples include proteins that regulate mitochondrial biogenesis, protein quality control, and resistance of cells to oxidative, metabolic and proteotoxic stress. BDNF signaling mediates up-regulation of several such proteins including the protein chaperone GRP-78, antioxidant enzymes, the cell survival protein Bcl-2, and the DNA repair enzyme APE1. Insufficient exposure to such challenges, genetic factors may conspire to impair BDNF production and/or signaling resulting in the vulnerability of the brain to injury and neurodegenerative disorders including Alzheimer’s, Parkinson’s and Huntington’s diseases. Further, BDNF signaling is negatively regulated by glucocorticoids. Glucocorticoids impair synaptic plasticity in the brain by negatively regulating spine density, neurogenesis and long-term potentiation, effects that are potentially linked to glucocorticoid regulation of BDNF. Findings suggest that BDNF signaling in specific brain regions mediates

  10. A protective effect of the BDNF Met/Met genotype in obesity in healthy Caucasian subjects but not in patients with coronary heart disease.

    PubMed

    Sustar, A; Nikolac Perkovic, M; Nedic Erjavec, G; Svob Strac, D; Pivac, N

    2016-08-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor with an important role in the regulation of body weight, body mass index (BMI) and obesity. Increased BMI that leads to obesity is a substantial risk factor for coronary heart disease (CHD). The functional BDNF Val66Met polymorphism (rs6265) has been associated with CHD, obesity and BMI. The aim of the study was to determine the association between BDNF rs6265 polymorphism and CHD and/or BMI in patients with CHD and healthy control subjects. The study included 704 Caucasian subjects: 206 subjects with CHD and 498 healthy control subjects. The BDNF rs6265 genotype frequency was similar in male and female subjects, and there were no differences in the frequency of the BDNF rs6265 genotypes in 206 patients with CHD and in 498 healthy subjects. When study participants were subdivided according to the BMI categories into normal weight, overweight and obese subjects, significantly different BDNF rs6265 genotype frequency was found within healthy subjects, but not within patients with CHD. Healthy subjects, but not patients with CHD, subdivided into carriers of the Met/Met, Met/Val and Val/Val genotype, had different BMI scores. The BDNF rs6265 genotype frequency was similar in male and female subjects, and there were no differences in the frequency of the BDNF rs6265 genotypes in 206 patients with CHD and in 498 healthy subjects. When study participants were subdivided according to the BMI categories into normal weight, overweight and obese subjects, significantly different BDNF rs6265 genotype frequency was found within healthy subjects, but not within patients with CHD. Healthy subjects, but not patients with CHD, subdivided into carriers of the Met/Met, Met/Val and Val/Val genotype, had different BMI scores. BDNF rs6265 polymorphism was not associated with a diagnosis of CHD or with BMI categories among patients with CHD. In contrast, healthy Caucasians, carriers of the BDNF Met/Met genotype, had more

  11. Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer's disease

    PubMed Central

    Jiao, S-S; Shen, L-L; Zhu, C; Bu, X-L; Liu, Y-H; Liu, C-H; Yao, X-Q; Zhang, L-L; Zhou, H-D; Walker, D G; Tan, J; Götz, J; Zhou, X-F; Wang, Y-J

    2016-01-01

    Reduced expression of brain-derived neurotrophic factor (BDNF) has a crucial role in the pathogenesis of Alzheimer's disease (AD), which is characterized with the formation of neuritic plaques consisting of amyloid-beta (Aβ) and neurofibrillary tangles composed of hyperphosphorylated tau protein. A growing body of evidence indicates a potential protective effect of BDNF against Aβ-induced neurotoxicity in AD mouse models. However, the direct therapeutic effect of BDNF supplement on tauopathy in AD remains to be established. Here, we found that the BDNF level was reduced in the serum and brain of AD patients and P301L transgenic mice (a mouse model of tauopathy). Intralateral ventricle injection of adeno-associated virus carrying the gene encoding human BDNF (AAV-BDNF) achieved stable expression of BDNF gene and restored the BDNF level in the brains of P301L mice. Restoration of the BDNF level attenuated behavioral deficits, prevented neuron loss, alleviated synaptic degeneration and reduced neuronal abnormality, but did not affect tau hyperphosphorylation level in the brains of P301L mice. Long-term expression of AAV-BDNF in the brain was well tolerated by the mice. These findings suggest that the gene delivery of BDNF is a promising treatment for tau-related neurodegeneration for AD and other neurodegenerative disorders with tauopathy. PMID:27701410

  12. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice.

    PubMed

    Wu, Xiang; Chen, Huixin; Huang, Chunhui; Gu, Xinmei; Wang, Jialing; Xu, Dilin; Yu, Xin; Shuai, Chu; Chen, Liping; Li, Shun; Xu, Yiguo; Gao, Tao; Ye, Mingrui; Su, Wei; Liu, Haixiong; Zhang, Jinrong; Wang, Chuang; Chen, Junping; Wang, Qinwen; Cui, Wei

    2017-06-01

    Post-operative cognitive dysfunction (POCD) is associated with elderly patients undergoing surgery. However, pharmacological treatments for POCD are limited. In this study, we found that curcumin, an active compound derived from Curcuma longa, ameliorated the cognitive dysfunction following abdominal surgery in aged mice. Further, curcumin prevented surgery-induced anti-oxidant enzyme activity. Curcumin also increased brain-derived neurotrophic factor (BDNF)-positive area and expression of pAkt in the brain, suggesting that curcumin activated BDNF signaling in aged mice. Furthermore, curcumin neutralized cholinergic dysfunction involving choline acetyltransferase expression induced by surgery. These results strongly suggested that curcumin prevented cognitive impairments via multiple targets, possibly by increasing the activity of anti-oxidant enzymes, activation of BDNF signaling, and neutralization of cholinergic dysfunction, concurrently. Based on these novel findings, curcumin might be a potential agent in POCD prophylaxis and treatment.

  13. Suicide attempt, clinical correlates, and BDNF Val66Met polymorphism in chronic patients with schizophrenia.

    PubMed

    Xia, Haisen; Zhang, Guangya; Du, Xiangdong; Zhang, Yingyang; Yin, Guangzhong; Dai, Jing; He, Man-Xi; Soares, Jair C; Li, Xiaosi; Zhang, Xiang Yang

    2018-02-01

    Recent evidence suggests the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of suicidal behavior. Because schizophrenia patients usually have high suicide rates and numerous studies have suggested that BDNF may contribute to the psychopathology of schizophrenia, we hypothesized that the functional polymorphism of BDNF (Val66Met) was associated with suicide attempts in patients with schizophrenia in a Chinese Han population. This polymorphism was genotyped in 825 chronic schizophrenia patients with (n = 123) and without (n = 702) suicide attempts and 445 healthy controls without a history of suicide attempts using a case-control design. The schizophrenia symptoms were assessed by the Positive and Negative Syndrome Scale. There were no significant differences in BDNF Val66Met genotype and allele distributions between the patients and healthy controls. However, we found the Val allele (p = .023) and the Val/Val genotypes (p = .058) to be associated with a history of suicide attempts. Moreover, some clinical characteristics, including age and cigarettes smoked each day, interacted with the BDNF gene variant and appeared to play an important role in suicide attempts among schizophrenia patients. The BDNF Val66Met polymorphism itself and its interaction with some clinical variables may influence suicide attempts among schizophrenia patients. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. Effects of acute voluntary loaded wheel running on BDNF expression in the rat hippocampus.

    PubMed

    Lee, Minchul; Soya, Hideaki

    2017-12-31

    Voluntary loaded wheel running involves the use of a load during a voluntary running activity. A muscle-strength or power-type activity performed at a relatively high intensity and a short duration may cause fewer apparent metabolic adaptations but may still elicit muscle fiber hypertrophy. This study aimed to determine the effects of acute voluntary wheel running with an additional load on brain-derived neurotrophic factor (BDNF) expression in the rat hippocampus. Ten-week old male Wistar rats were assigned randomly to a (1) sedentary (Control) group; (2) voluntary exercise with no load (No-load) group; or (3) voluntary exercise with an additional load (Load) group for 1-week (acute period). The expression of BDNF genes was quantified by real-time PCR. The average distance levels were not significantly different in the No-load and Load groups. However, the average work levels significantly increased in the Load group. The relative soleus weights were greater in the No-load group. Furthermore, loaded wheel running up-regulated the BDNF mRNA level compared with that in the Control group. The BDNF mRNA levels showed a positive correlation with workload levels (r=0.75), suggesting that the availability of multiple workload levels contributes to the BDNF-related benefits of loaded wheel running noted in this study. This novel approach yielded the first set of findings showing that acute voluntary loaded wheel running, which causes muscular adaptation, enhanced BDNF expression, suggesting a possible role of high-intensity short-term exercise in hippocampal BDNF activity. ©2017 The Korean Society for Exercise Nutrition

  15. BDNF Val66Met polymorphism is associated with HPA axis reactivity to psychological stress characterized by genotype and gender interactions.

    PubMed

    Shalev, Idan; Lerer, Elad; Israel, Salomon; Uzefovsky, Florina; Gritsenko, Inga; Mankuta, David; Ebstein, Richard P; Kaitz, Marsha

    2009-04-01

    A key protein in maintaining neuronal integrity throughout the life span is brain-derived neurotrophic factor (BDNF). The BDNF gene is characterized by a functional polymorphism, which has been associated with stress-related disorders such as anxiety-related syndromes and depression, prompting us to examine individual responses by Genotype and Sex to a standardized social stress paradigm. Gender differences in BDNFxstress responses were posited because estrogen induces synthesis of BDNF in several brain regions. 97 university students (51 females and 46 males) participated in a social stress procedure (Trier Social Stress Test, TSST). Indices of stress were derived from repeated measurement of cortisol, blood pressure, and heart rate during the TSST. All subjects were genotyped for the Val66Met polymorphism. Tests of within-subject effects showed a significant three-way interaction (SPSS GLM repeated measures: Time (eight levels)xBDNF (val/val, val/met)xSex: p=0.0002), which reflects gender differences in the pattern of cortisol rise and decline during the social challenge. In male subjects, val/val homozygotes showed a greater rise in salivary cortisol than val/met heterozygotes. In female subjects, there was a trend for the opposite response, which is significant when area under the curve increase (AUCi) was calculated for the val/val homozygotes to show the lowest rise. Overall, the same pattern of results was observed for blood pressure and heart rate. These results indicate that a common, functionally significant polymorphism in the BDNF gene modulates HPA axis reactivity and regulation during the TSST differently in men and women. Findings may be related to gender differences in reactivity and vulnerability to social stress.

  16. Role of BDNF val66met polymorphism on the association between physical activity and incident dementia.

    PubMed

    Kim, Jae-Min; Stewart, Robert; Bae, Kyung-Yeol; Kim, Sung-Wan; Yang, Su-Jin; Park, Kee-Hyung; Shin, Il-Seon; Yoon, Jin-Sang

    2011-03-01

    Increased physical activity may have beneficial effects on cognitive outcomes; a role of brain-derived neurotrophic factor (BDNF) has been suggested in animal models but not yet tested in humans. This study investigated modification by BDNF val66met polymorphism of the association between physical activity, incident dementia and other cognitive outcomes. Of 732 community elders, 107 had dementia at baseline, and 518 (83%) of the remainder were followed over 2.4 years. Cognitive impairment and decline were defined from Mini-Mental State Examination scores. Self-reported level of physical activity was recorded on a 4-point scale. BDNF val66met and apolipoprotein E genotypes were ascertained. Covariates included age, sex, education, depression, vascular risk factors, and instrumental activities of daily living. Baseline lower physical activity was significantly associated with incident dementia as well as with baseline dementia and cognitive impairment and incident cognitive decline. BDNF val66met polymorphism itself was not associated with any cognitive outcome. However, the strength of association between lower activity and all cognitive outcomes increased incrementally with the number of met alleles, and was strongest in those with the met/met genotype. BDNF×activity interaction terms were stronger for prospective outcomes (incident dementia, cognitive decline) compared to cross-sectional outcomes (prevalent dementia, cognitive impairment no dementia). This study supports a previously suggested neurobiological basis for the effects of physical activity on dementia involving the BDNF system since the met allele is recognised to be associated with lower activity-dependent secretion of BDNF. Copyright © 2010. Published by Elsevier Inc.

  17. Association of BDNF and BMPR1A with clinicopathologic parameters in benign and malignant gallbladder lesions

    PubMed Central

    2013-01-01

    Background Neurotrophic factors such as brain derived neurotrophic factor (BDNF) are synthesized in a variety of neural and non-neuronal cell types and regulate survival, proliferation and apoptosis. In addition, bone morphogenetic proteins (BMPs) inhibit the proliferation of pulmonary large carcinoma cells bone morphogenetic protein receptor, type IA (BMPR1A). Little is known about the expression of BDNF or BMPR1A in malignant gall bladder lesions. This study was to evaluate BDNF and BMPR1A expression and evaluate the clinicopathological significance in benign and malignant lesions of the gallbladder. Methods The BDNF and BMPR1A expression of gallbladder adenocarcinoma, peritumoral tissues, adenoma, polyp and chronic cholecystitis were Immunohistochemically determined. Results BDNF expression was significantly higher in gallbladder adenocarcinoma than in peritumoral tissues, adenoma, polyps and chronic cholecystitis samples. However, BMPR1A expression was significantly lower in gallbladder adenocarcinoma than in peritumoral tissues, adenomas, polyps and chronic cholecystitis tissues. The specimens with increased expression of BDNF in the benign lesions exhibited moderate- or severe-dysplasia of gallbladder epithelium. BDNF expression was significantly lower in well-differentiated adenocarcinomas with maximum tumor diameter <2 cm, no metastasis to lymph nodes, and no invasion of regional tissues compared to poorly-differentiated adenocarcinomas with maximal tumor diameter >2 cm, metastasis of lymph node, and invasiveness of regional tissues in gallbladder adenocarcinoma. BMPR1A expression were significantly higher in the well-differentiated adenocarcinoma with maximal tumor diameter <2 cm, no metastasis of lymph node, and no invasion of regional tissues compared to poorly-differentiated adenocarcinomas with maximal tumor diameter >2 cm, metastasis of lymph node, and invasiveness of regional tissues in gallbladder. Univariate Kaplan-Meier analysis indicated

  18. BDNF Val66Met predicts cognitive decline in the Wisconsin Registry for Alzheimer's Prevention

    PubMed Central

    Boots, Elizabeth A.; Schultz, Stephanie A.; Clark, Lindsay R.; Racine, Annie M.; Darst, Burcu F.; Koscik, Rebecca L.; Carlsson, Cynthia M.; Gallagher, Catherine L.; Hogan, Kirk J.; Bendlin, Barbara B.; Asthana, Sanjay; Sager, Mark A.; Hermann, Bruce P.; Christian, Bradley T.; Dubal, Dena B.; Engelman, Corinne D.; Johnson, Sterling C.

    2017-01-01

    Objective: To examine the influence of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism on longitudinal cognitive trajectories in a large, cognitively healthy cohort enriched for Alzheimer disease (AD) risk and to understand whether β-amyloid (Aβ) burden plays a moderating role in this relationship. Methods: One thousand twenty-three adults (baseline age 54.94 ± 6.41 years) enrolled in the Wisconsin Registry for Alzheimer's Prevention underwent BDNF genotyping and cognitive assessment at up to 5 time points (average follow-up 6.92 ± 3.22 years). A subset (n = 140) underwent 11C-Pittsburgh compound B (PiB) scanning. Covariate-adjusted mixed-effects regression models were used to elucidate the effect of BDNF on cognitive trajectories in 4 cognitive domains, including verbal learning and memory, speed and flexibility, working memory, and immediate memory. Secondary mixed-effects regression models were conducted to examine whether Aβ burden, indexed by composite PiB load, modified any observed BDNF-related cognitive trajectories. Results: Compared to BDNF Val/Val homozygotes, Met carriers showed steeper decline in verbal learning and memory (p = 0.002) and speed and flexibility (p = 0.017). In addition, Aβ burden moderated the relationship between BDNF and verbal learning and memory such that Met carriers with greater Aβ burden showed even steeper cognitive decline (p = 0.033). Conclusions: In a middle-aged cohort with AD risk, carriage of the BDNF Met allele was associated with steeper decline in episodic memory and executive function. This decline was exacerbated by greater Aβ burden. These results suggest that the BDNF Val66Met polymorphism may play an important role in cognitive decline and could be considered as a target for novel AD therapeutics. PMID:28468845

  19. BDNF Val66Met predicts cognitive decline in the Wisconsin Registry for Alzheimer's Prevention.

    PubMed

    Boots, Elizabeth A; Schultz, Stephanie A; Clark, Lindsay R; Racine, Annie M; Darst, Burcu F; Koscik, Rebecca L; Carlsson, Cynthia M; Gallagher, Catherine L; Hogan, Kirk J; Bendlin, Barbara B; Asthana, Sanjay; Sager, Mark A; Hermann, Bruce P; Christian, Bradley T; Dubal, Dena B; Engelman, Corinne D; Johnson, Sterling C; Okonkwo, Ozioma C

    2017-05-30

    To examine the influence of the brain-derived neurotrophic factor ( BDNF ) Val66Met polymorphism on longitudinal cognitive trajectories in a large, cognitively healthy cohort enriched for Alzheimer disease (AD) risk and to understand whether β-amyloid (Aβ) burden plays a moderating role in this relationship. One thousand twenty-three adults (baseline age 54.94 ± 6.41 years) enrolled in the Wisconsin Registry for Alzheimer's Prevention underwent BDNF genotyping and cognitive assessment at up to 5 time points (average follow-up 6.92 ± 3.22 years). A subset (n = 140) underwent 11 C-Pittsburgh compound B (PiB) scanning. Covariate-adjusted mixed-effects regression models were used to elucidate the effect of BDNF on cognitive trajectories in 4 cognitive domains, including verbal learning and memory, speed and flexibility, working memory, and immediate memory. Secondary mixed-effects regression models were conducted to examine whether Aβ burden, indexed by composite PiB load, modified any observed BDNF -related cognitive trajectories. Compared to BDNF Val/Val homozygotes, Met carriers showed steeper decline in verbal learning and memory ( p = 0.002) and speed and flexibility ( p = 0.017). In addition, Aβ burden moderated the relationship between BDNF and verbal learning and memory such that Met carriers with greater Aβ burden showed even steeper cognitive decline ( p = 0.033). In a middle-aged cohort with AD risk, carriage of the BDNF Met allele was associated with steeper decline in episodic memory and executive function. This decline was exacerbated by greater Aβ burden. These results suggest that the BDNF Val66Met polymorphism may play an important role in cognitive decline and could be considered as a target for novel AD therapeutics. © 2017 American Academy of Neurology.

  20. Rotigotine, a dopamine receptor agonist, increased BDNF protein levels in the rat cortex and hippocampus.

    PubMed

    Adachi, Naoki; Yoshimura, Aya; Chiba, Shuichi; Ogawa, Shintaro; Kunugi, Hiroshi

    2018-01-01

    Brain-derived neurotrophic factor (BDNF) critically controls the fate and function of the neuronal network and has received much attention as a target of many brain diseases. Dopaminergic system dysfunction has also been implicated in a variety of neuropsychiatric diseases. Rotigotine, a non-ergot dopamine receptor agonist, is used in the treatment of Parkinson's disease and restless legs syndrome. To investigate the effects of rotigotine on neuronal functions both in vivo and in vitro, rats and primary cortical neurons were administered rotigotine, and the mRNA and protein expression levels of BDNF, its receptor TrkB and downstream signaling molecules, and synaptic proteins were determined. We found that BDNF protein was increased in the cortex and hippocampus of rats after 7days of rotigotine treatment. In contrast, BDNF mRNAs were reduced 6h after rotigotine treatment in cultured neurons presumably through the transient suppression of neuronal activity. We identified differential expression of D1, D2, and D3 receptors in the rat brain and cultured neurons. The observed increase in the expression of BDNF protein in the cortex and hippocampus after subchronic administration of rotigotine suggests that it may exert its medical effect in part through improving BDNF function in the brain. In addition, our results highlight the complex relationships between rotigotine and BDNF expression, which depend on the brain region, time course, and dose of the drug. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.